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S04 1 Introduction

N

A"i In the design of many fault-tolerant distributed protocols. processors are as-

Rl sumed to be the only faulty components; communication channels between

-‘.;«'.! Processors are assurnf:d to be failure-free. ’Thi's is particularly evident. in

‘1: : the large amount of literature devoted to distributed agreement protocols

:-{ Fis83'. This unequal treatment of processor and communication failures

Ry J has been justified on the grounds that any failures a channel exhibits can be
attributed to either one of the two processors the channel connects. This

o way of modeling channel failures is not satisfactory. Hadzilacos Had36

“,733_ wrote:

S , o

... we prefer to consider a component faulty only if it misbe-

u haves, not if other components related to it misbehave. More-

s, over, in BA [Byzantine Agreement;, pronouncing a processor

::',;* correct or faulty is not merely a question of accounting for

:‘;ﬁ_ faults: a processor that, ... , is faulty is exempted from the

oL requirement to decide on a value subject to the Agreement and

- Validity conditions.

:-';:'(: In this paper, we study the problem of designing protocols that toler-

:;:_ ate failures of communication channels. We consider those protocols that

u o~ guarantee knowledge gain between processors via message transfers. (We

J call these non-trivial protocols.) We show that for asynchronous systems,

}‘;-.', non-trivial protocols cannot be guaranteed to terminate even if we assume

.';: that only transient communication failures can occur, and we only want

:;::: to achieve a weak kind of termination. The same result also holds for

1 svnchronous systems.

s Informally, a protocol weakly terminates if from every point of its execu-

J._;f tion. the execution can be continued to a point at which all processors stop.

J':;l_': Channel failures are transient if any message sent repeatedly is eventually

e received. Transient channel failure is the model usually adopted by proto-

' col designers to account for the faulty behavior of communication links in

o long-haul and local computer networks, e.g., ARPANET and Ethernet.

::_:;- Several previous results are related to the problem of termination in the

ey presence of transient channel failures. With permanent channels failures. it

.':;‘ is well-known that it is impossible to achieve common knowledge (or “co-
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ordinated attack” [GraT78]), or even eventual common knowledge HMS5b".
In contrast to these r sults, we consider transient channel failures. we do
not restrict our study to protocols that achieve either common knowledge
or eventual common knowledge, and we concentrate on the problem of ter-
mination. These differences are underscored by the fact that with transient
channel failures, there is a protocol for achieving eventual common knowl-
edge. However, this protocol is non-terminating. {See Appendix A.)

In his study of commit protocols. Skeen Ske32 showed that processors
may have to block forever, neither committing or aborting. (i.e.. the commit
protocol may not terminate). if the communication network is permanently
partitioned. In contrast to this result, we show that even if only transient
channel failures may occur (and hence, even if the network is not partitioned
permanently), any non-trivial protocol (including commit protocols) can-
not be guaranteed to terminate. Therefore, our result complements andor
generalizes previous impossibility results Gra78 HM85b,5ke82 .

In this paper. we prove our result only for asynchronous systems. A
similar proof can show that it also holds for synchronous syvstems. The
paper is organized as follows: a formal model of asynchronous system is

in Section 2. We present the result in Section 3. Section 4 contains the
discussion.

2 DModel of an asynchronous distributed system

A distributed system consists of m processors that communicate by mes-
sages via communication channels. Each processor is a deterministic state
machine, which may have an infinite number of states. In each state. a
processor can eXxecute zero or more atomic actions. The states in which
a processor cannot execute any atomic actions are called terminal states.
Executions of atomic actions are called events. Any event may cause a
processor to change its state. Two possible events of a processor 1 are:

1. send,(processor, message). which 1 executes to send message to an
other processor; and

2. receive (processor, message ), which 1 executes to receive message from
another processor.
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2.1 Runs of processors

Let state; o be an initial state of processor ¢, and s, be a sequence of events
of i. The pair h; = (state,q,s;) is a local history of v if s; is a sequence
of events that i executes beginning at state state,q. Let h,.state denote
state; g, and h;.events denote s5;. A local history h; is finite, if h;.events is
finite.

A m-tuple of local histories, hist = {h;,ha,...,hm}, is a system history
if

1. 71:1<{¢< m,h,is a local history of processor i: and

2. h,.events contains receive;(j, msg), only if hj.events contains
send,(z, msg).

If all h;’s are finite local histories, hist is a finite system history. Since
all processors are deterministic. any finite system history unambiguously
specifies the state of each processor.

An asynchronous run r is a pair (hist, mesg) such that hist is a finite
system history, and mesg is a subset of the set of messages that are not
vet delivered; i.e., those messages that are sent and not received in hist.!
The two components of r are denoted by r.hist and r.mesg, respectively.
Messages that are sent and not received in hist, and also are not in mesg
are lost.

To model message losses. we introduce the following notation: r' =
failure(r), if runs r’ and r are identical except that some messages that
are not yet delivered in r are lost in r'. To be more precise. let r = (Aist.
mesg) and r’ = (hist'. mesg’). If hist’ = hist and mesg’
failure(r). (See Figure 1.)

An asynchronous systemn is defined as the set of all asynchronous runs.

Z mesg. then r' =

Each run corresponds to a possible state of the system. Changes of system
states are modeled by continuations of runs. A run r' is a continuation of
a run r. if v’ and r meet the following conditions: Let h, be proj(r.h1st),
and h; be proj(r'.hist).

' A lock-step synchronous run (hist, mesg) DDS87 must meet the following additional
requirements. For all processors i and j, the numbers of events that : and j have respec-
tively in Aust differ by at most one; and for all msg < mesg, if the sender of msg is i. then
the sending of msg is +'s last event in hust.
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:; 1. 71 : 1 < i € m, hlstate = h,.state, and h;.events is a prefix of
o h!.events;

N,

e 2. for all receive;(j, msg) that are in »' and not in r, either msg £ r.mesg,

X 7

IR
St

or the event send,(i, msg) is in r’ but not in r; and

L ',”

3. for all messages msg £ r'.mesg, either msg < r.mesg, or the sending
of msg is an event in r’ but not in r.

.
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We say r = prefiz(r'), if and only if r' is a continuation of r.

We now describe the channel failure model. We assume that all channels
exhibit only transient omission failures. If copies of a message are sent
repeatedly over a channel, at least one copy will eventually be received.
However, there is no bound on the number of messages that may be lost.
To simplify our discussion of lost messages, we assume that every copy of a
message Is unique. From this assumption and the definitions of runs and of
continuations, a message lost in a run is also lost in all of its continuations.

Events are partially ordered by the after relation Lam78. Event ¢’ is
after event e in run r if and only if

]

s

'

]

1. e and ¢’ are events of the same processor, and a prefix of r contains
e but not ¢';

2. e is the sending of a message msg and ¢’ is the receipt of msg: or
3. there is an event e” such that ¢’ is after ", and €” is after e.

If € is after e, then we say that e is before €.

2.2 Distributed Protocols

A local protocol P, of a processor ¢ is a function from :'s current state and
the sequence of messages that i has received to the next atomic action to be
executed by 1. (Qur results can be generalized to allow non-deterministic

protocols.) A distributed protocol is a n-tuple P = {P,,P;,---, P,} such -
that for all 1 < 1 < n, P, is a local protocol of processor i. A svstem :::::
history {hy. -, hn} is consistent with P if for all 1 < ¢ < n, the sequence o

YW

of events in h; corresponds to an execution of local protocol P, beginning
from the initial state of A,. A run ris consistent with protocol P if r.hist is
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consistent with P. If r is consistent with P, so do prefiz(r) and fatlure(r).

BRE TR

For convenience, protocol P can be identified with the set of asynchronous

e e %

runs that are consistent with it.
The termination property of a protocol P is characterized by the runsin

P. A terminating runis one in which all processors enter terminal states. A
weakly terminating runis one that has at least one terminating continuation
in P. Runs that are not weakly terminating are non-terminating. Examples
of non-terminating runs are runs in which the system is deadlocked. and

runs in which one processor is in an infinite loop. Protocol P is weakly
terminating, if all its runs are weakly terminating; it is non-terminating
otherwise.

3 Problem of Protocol Termination

In this section, we prove that any protocol that guarantees knowledge trans-
fer despite transient communication failures is non-terminating. Roughly.
our argument goes as follows. First. given any weakly terminating pro-
tocol and any initial system state, we show that starting from this state,
this protocol must have a run that terminates without message transfers.
Then, we note that without message transfers, knowledge cannot be trans-
ferred in asynchronous systems CM86i. Hence, in asynchronous systems
with transient communication failures. weakly terminating protocols can-
not guarantee knowledge transfer.

3.1 Termination without Message Exchange

An event is a last receive event in a run if it is not before another receive
event in this run. A run r is an initze! run if its contains no events: it
includes only the initial states of the processors.

Theorem 1 Let P be a weakly terminating protocol. For ail initial runs r
in P, r has a terminaling continuation in P in which no processor recetres Tl
any messages. o0

Proof: By contradiction. Let r be an initial run in P such that every B
terminating continuation of r in P contains at least n {n - () recewve
events. Let r' = (hist'. mesg') be a terminating continuation of r in P rthat

o7}
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e contains exactly n receive events. Let e be a last receive event in ', and
suppose that e occurs at processor t.
Dclete e and all events that are after e from hist’. It is easy to see that

n this results in a system history hist” (See Figure 2). Let run " = (hist”,
e ®). Note that r” = failure(prefiz(r')). Since r’ satisfles P. r”" must also
::::::: satisfy P: thus, r” is also in P. Moreover. r” is a run that has only n — 1
S receive events.

;'-‘:\ Since e is a last receive event of r’, all events that are deleted from r'

in the construction of r” occur only at processor 1. The histories of all
processors except ¢ in r’ and r” are the same. Since r’ Is a terminating run.
! is the only processor in r” that has not terminated. By construction, the
channels of r" are empty. Hence, in any continuation of r”, i receives the
same number of messages as it does in r”, namely n — 1. Since P is weakly
terminating, r” has a terminating continuation r* in P. However. run r°
contradicts the minimality of n. z

3.2 Processors’ Knowledge

3.2.1 Syntax

We adopt the notation used by Halpern and Moses HMS83a to describe _j:
the knowledge of processors. Let ® be a set of primitive propositions —
{p1.p2....}. The language L(®) is the smallest set of formulas containing -
®. closed under -, *. and modal operators A, K,,.... and A,,. Formulas ‘
of the form p . q are abbreviations for —=(-p » —q). p Z q are for —=ip = -4 1:-_:
3.2.2 Semantics H
For all processors 7i: 1 Z ¢ < m, i's view of a run r is the projection of r_Aust ‘r\
proj{r.hist), on i. The views of processor i divide runs of a protocol into .’—’
equivalence classes. Runs r and r’ are in the same equivalence class (with -
respect to t), if and only if proj(r.hist) = proj(r' hist). The equivalence =
class of r according to t, denoted by poss,(r). determines what : can know .
at the end of r. -
A processor's knowledge at the end of a run is defined inductively. Let :::

P be a protocol, and = be a function mapping from P to the set of subsets a
' -,

Z
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Figure 2: Construction of # from r', and r* from r"

. Note that the histories
of all processors save that of i are unchanged.
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of runs of P. Let r = p denote that formula p is interpreted to be true in
r. If p is a primitive proposition (p £ 9),

r=piff r € n(p).
For formulas —p and p A ¢ where p,q € £(®),
r = —p iff not r = p;
r=prqgiffr=pandr =gq.
And finally, processor : knows pin r, if and only if p is true in all the runs
that are equivalent to r. 7p = £(9),

r = Kip iff vr' € poss (r), 7’ = p.

A protocol P is said to guarantee a formula p, if every run r of P has a
continuation 7' in P such that v’ = p.

3.3 Termination without Knowledge Transfer

In this section, we show that in the presence of transient communication
failures, a weakly terminating protocol cannot guarantee the transfer of a
processor s local knowledge to another processor. In other words, protocols
that guarantee knowledge transfer are necessarily non-terminating.

Chandy and Misra CM86! defined that a formula p is local to a processor
¢t with respect to protocol P, if Yr € P,r = R;p / Ai—p. They show that
in an asynchronous system, a processor must receive messages to acquire
knowledge of a non-local formula:

Lemma 1 (CM86) Let p be a formula that is not local to processor | and
is local to some other processors in protocol P. If for some run r and
its continuation v’ in P, r = ~(K,; + K;-p) and r' = K\p . K,-p. fhen l
receives at least one more message in r' than it does in r. -

I'ry.
3
B
R
wl

A formula p is an a prior: formula of ¢ in protocol P, if for all initial
runs r of P, r = K,p+ KA;—p. Obviously, if p is not a priori to i. then it is

3

. -

not local to 1. o
Theorem 2 [et P he a protocol, and p € L(®) be a formula that is not :f-
a priori to processor i and is local to some other processors in P. If P 1s j:
weakly terminating, it cannot guarantee K,p v K,~p. ﬁ
9 ;
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Proof: By contradicticn. Without loss of generality, suppose that P
guarantees A,p K,—p and is weakly terminating. Since p is not a priori to
1, P has an initial run r such that r = —(K;p v K;—p). Since P is weakly
terminating, by Theorem 1, r has a terminating continuation r’ in P in
which no messages are received. Furthermore, since r = =(A,p / K,~p)
and no messages are received in r’, by Lemma 1, r’ = -(A,p v K,—p)
Thus P does not guarantee K,p . R, —p. a contradiction.

4 Discussion

We have showed that in asynchronous systems with transient channel fail-
ures, only non-terminating protocols can guarantee transfer of knowledge.
This result can be extended to systems with synchronous processors and
synchronous communication.

Synchronicity is a critical parameter of the problem of reaching agree-
ment in the presence of processor failures. In asynchronous systems. there
are no deterministic solutions even if only one processor may fail by halt-
ing FLP85; in synchronous systems, however, several solutions are known
‘DDS87,Fis33'. In contrast, our negative result holds for both synchronous
and asynchronous systems.

Since weakly terminating protocols do not guarantee knowledge trans-
fer. we may have to settle for protocols that guarantee only that all but one
processors will terminate. The following problem serves as an illustration.
Processors : and ; are connected by a link with transient failures. VWe want
a protocol that 1 can use to send a message m to j such that

1. j receives m from 1, and

2. 1 and j are eventually allowed to forget m.

Such a protocol P is given in Figure 3 Ske36 . Since channel failures are
transient, one of the copies of m that 1 sends repeatedly to j is guaranteed
to be received by j. Similarly, the acknowledgements ack(m) from ;. and
ack(ack(m)) from i, will also be received by i and j, respectively. It is
now easy to see that protocol P achieves the two goals. Note, however.
that processor ¢ never terminates (it will remain in the do-forever loop.
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AN Let ack denote acknowledgements. S
N
X | | 8
e processor : processor j .uf:
‘ repeat until receipt of ack(m) wait to receive m; EE
send m to J: repeat until receipt of ack(ack(m)) :";::_
W od; send ack{m) to i; '.;
forget m: od; o
\ do forever forget m; i
if ack{m) is received then stop. &)

send ack{ack(m)) to j:

N L}

v -
T od. g
<, )

2

hY
Figure 3: Protocol P. ‘1
b Our result shows that this is not a deficiency of this particular protocol: in :_
\.- a system with transient channel failures, any protocol that achieves goals [,‘:]
(1) and (2) also guarantees that ; knows m: therefore, it must be non- o
terminating.
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Let ack®(m) denote m, and ack®*~!(m) denote the acknowledgement to ack*(m).

[P NR RIS [ g g g a8 s .
'.I [
¢ -‘l » ' »

: processor i processor j =
k= 0; k:=1; G

do forever do forever N
L repeat until receipt of ack*~1(m) wait to receive ack®~!(m); :::'4
‘E send ackk(m) to J: repeat until receipt of ack*=1(m) :;_;~.
) od; send ack®(m) to i: ey
k:=k ~ 2: Od: g-r-%
A od. =k - 2; :i.t":
od. N
, \.'::'\."

Figure 4: Protocol Q allows processors i and j to attain eventual common
knowledge of m.

. X

A

Appendix A: Achieving Eventual Common Knowledge {:
PN

We present a protocol that allows processors 1 and j to gain eventual com- S
mon knowledge of a fact m despite transient channel failures. We give only :f‘_f-"
an informal description here. (The formal definition of eventual common : _I::
knowledge is in HM85b'.) :f;:'.‘
A fact is eventually true in a run r. if it must become true some time {“

in the “future” of r. Furthermore, a fact m is stable with respect to a -
protocol P, if for all run r £ P, once m becomes true in a run r, it remains \."\
true in all continuations of r in P. Eventual common knowledge of a stable ::::
fact m is achieved in a run r, if in r, m is true. and that eventually every ;:;4':;
processor knows that m is true, and that eventually every processor knows >
that eventually every processor knows that m is true, - - -, ad infinitum. ;.,'.:
Let m be a stable fact and suppose that processor : knows that m is oo
true. We claim that the non-terminating protocol Q in Figure 4 allows r_\.:
processors ¢ and ; to attain eventual common knowledge of m, despite x':’#

transient channel failures. It is clear that the repeated sending of ack®(m)
by processor i guarantees that at least one ack®(m) will arrive at processor
j. Hence, j will send ack!(m) to 1 repeatedly until at least one ack!'(m)
arrives at i. Thus, it follows by induction that for all & > 0, at least

G
i (1

one ack?*(m) will arrive at j, and at least one ack**~!(m) will arrive at : P
s
13 oS
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despite transient channel failures. Let £E!m denote that both i and j know
m, and E*“!'m denote that both ; and j know E*m. It is easy to see that
the receiving of ack?(m) by j implies E'm. In general, for all & > 0. the

receiving of ack?*(m) by ; implies E*~'m. Thus, despite transient channel

failures, i and j achieve eventual common knowledge of m by executing

protocol Q. Note, however, that neither i nor j ever stop executing Q.
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