

Effects of Message Loss
onI Distributed Termination

Richard Koo

Sam Touegt

87-823
March 1987

APPROVED FOP, PULiC80 -,F!EASE 44
DISTRIBUTION1 UNLIMITED

Department of Computer Science

Cornell University
Ithaca, New York 14853-7501

.4 The views, opinions and findings contained in this report are those of the authors and
should Dot be construed as an official Department of Defense position, policy, or decision.

This author was supported by the Defense Advanced Research Projects Agency (DoD
under ARPA order 5378, Contract MDA9O3-85-C-0124.

tThis author was supported by the National Science Foundation under grant DCR-

8601864. -

%

1 Introduction

In the design of many fault-tolerant distributed protocols, processors are as-

sumned to be the only faulty components; communication channels between
processors are assumed to be failure-free. This is particularly evident in
the large amount of literature devoted to distributed agreement protocols
Fis83. This unequal treatment of processor and communication failures

has been justified on the grounds that any failures a channel exhibits can be
attributed to either one of the two processors the channel connects. This
way of modeling channel failures is not satisfactory. Hadzilacos -Had86'
wrote:

... we prefer to consider a component faulty only if it misbe-
haves, not if other components related to it misbehave. More-
over, in BA 'Byzantine Agreement!, pronouncing a processor
correct or faulty is not merely a question of accounting for

faults: a processor that, .. ,is faulty is exempted from the
requirement to decide on a value subject to the Agreement and

Validity conditions.

In this paper, we study the problem of designing protocols that toler-
ate failures of communication channels. We consider those protocols that
guarantee knowledge gain between processors via message transfers. (We
call these non-trivial protocols.) We show that for asynchronous systems,
non-trivial protocols cannot be guaranteed to terminate even if we assume

that only transient communication failures can occur, and we only want
to achieve a weak kind of termination. The same result also holds for
synchronous systems.

Informally, a protocol weakly terminates if from every point of its execu-
/i tion. the execution can be continued to a point at which all processors stop.

Channel failures are transient if any message sent repeatedly is eventual

received. Transient channel failure is the model usually adopted by proto-
col designers to account for the faulty behavior of communication links in
long-haul and local computer networks. e.g., ARPANET and Ethernet.

Several previous results are related to the problem of termination in the
presence of transient channel failures. With permanent channels failures. it

is well-known that it is impossible to achieve common knowledge (or --co-

J~ne-

ordinated attack" 'Gra78J), or even eventual common knowledge HM85b'.
In contrast to these r suits, we consider transient channel failures, we do
not restrict our study to protocols that achieve either common knowledge
or eventual common knowledge, and we concentrate on the problem of ter-
mination. These differences are underscored by the fact that with transient
channel failures, there is a protocol for achieving eventual common knowl-

edge. However, this protocol is non-terminating. (See Appendix A.)

In his study of commit protocols, Skeen Ske82' showed that processors
may have to block forever, neither committing or aborting. (i.e.. the commit
protocol may not terminate), if the communication network is permanently
partitioned. In contrast to this result, we show that even if only transient
channel failures may occur (and hence, even if the network is not partitioned
permanently), any non-trivial protocol (including commit protocols) can-
not be guaranteed to terminate. Therefore, our result complements and,'or
generalizes previous impossibility results 'Gra78,H \185b,Ske82.

In this paper. we prove our result onlh for asynchronous systems. A
similar proof can show that it also holds for synchronous systems. The
paper is organized as follows: a formal model of asynchronous system is
in Section 2. We present the result in Section 3. Section 4 contains the

discussion.

2 Model of an asynchronous distributed system

A distributed system consists of m processors that communicate by mes-
sages via communication channels. Each processor is a deterministic state .

machine, which may have an infinite number of states. In each state, a
processor can execute zero or more atomic actions. The states in which
a processor cannot execute any atomic actions are called terminai states.
Executions of atomic actions are called events. Any event may cause a
processor to change its state. Two possible events of a processor i are:

1. send,(processor, message). which i executes to send message to an
other processor: and ,-

2. receive,(processor, message), which i executes to receive message from
another processor.

2

J.,

4.--

2.1 Runs of processors

Let stateio be an initial state of processor i, and s, be a sequence of events
of i. The pair hi (state,o, si) is a local history of i if si is a sequence
of events that Z executes beginning at state stateiO. Let h,.state denote
statejo, and hi.events denote si. A local history hi is finite, if hi.events is

finite.
A m-tuple of local histories, hist = {hi, h2 , ... h,}, is a system history

u"°;' if -

.. *7i : 1 < i < m, h, is a local history of p-rocessor i: and

2. h,.events contains receivei(j, msg), only if hj.events contains
send,(i, msg).

If all hi's are finite local histories, hist is a finite system history. Since
all processors are deterministic, any finite system history unambiguously
specifies the state of each processor.

An asynchronous run r is a pair (hist, mesg) such that hist is a finite
system history, and mesg is a subset of the set of messages that are not
yet deLivered: i.e., those messages that are sent and not received in hzst.1

The two components of r are denoted by r.htst and r.mesg. respectively.

Messages that are sent and not received in hist, and also are not in mesg 1
.::are lost.

To model message losses, we introduce the following notation: r'
failure(r), if runs r' and r are identical except that some messages that
are not yet delivered in r are lost in r'. To be more precise. let r hist.

mesg) and r' = (hist'. mesg'). If hist' = hist and mesg' - rncsg. then r'
failure(r). (See Figure 1.)

4 An asynchronous system is defined as the set of all asynchronous runs.

Each run corresponds to a possible state of the system. Changes of system
-. states are modeled bv continuations of runs. A run r' is a continuation of

a run r. if r' and r meet the following conditions: Let h, be proj(r.htst).
and h, be prolj(r'.hzst).

'A lock-step synchronous run (htst, mesg) DDS87' must meet the following additional
requirements For all processors i and j, the numbers of events that i and j have respec-
tively in hist differ by at most one; and for al mig mesg, if the sender of msg is i. then

the sending of msg is :'s last event in hst.

3--

AirN6..

H%

LEGEND
*9 event loss of message

t processor stops --- run

-. delivery of message

Processorsr

Real Time

Processors failure(r)

* /7

Real Time

Figure 1I. Exampie of failure(r)

,. ~~1. 7i 1 < I < , h'.state =h,.state, and hi.events is a prefix of ..:":

"0 2. for all receivej(j, mig) that are in r' and not in r, either rmsg -r.mesg,".
I ~or the event send,(1, msg) is in r' but not in r, and :.!

-.. '3. for al messages m,9g Ei r'.mesg, either m.3g z: r.rneig, or the sending
i : of m,59 is an event in r' but not in r. .

We say r = prefiz(r'), if and only if r' is a continuation of r.
~We now describe the channel failure model. We assume that all channels

' "exhibit onlv transient omission failures. If copies of a message are sent,..

repeatedly over a channel, at least one copy will eventually be received. _"
: However, there is no bound on the number of messages that may be lost.

t ~To simplify our discussion of lost messages, we assume that every copy of a i-.
~~~message is unique. From this assumption and the definitions of runs and of --.
~~continuations, a message lost in a run is also lost in all of its continuations. :"

Events are partially ordered by the after relation -Lan78 . Event e' is L .

after event e in run r if and only if

,, 1. e and e' are events of the same processor, and a prefix of r contains ",

, e but not e'; _

"° 2. e is the sending of a message msg and e' is the receipt of rnsg9 or3. there is an event e" such that e' is after e", and e" is after e.-'

%,. If e' is after e, then we say that e is before e'.

'ft

2.2 Distributed Protocols ha-i r

2.fral"eev tmg ht r nr an o eihr me t rtes'g,_

A local protocol P, of a processor i is a funct ion from i' urren stat and-

3.fral esae sgEr.mgetrmg r.msg.o thsndn

the sequence of messages that i has received to the next atomic action to be-.

executed by . (Our results can be eneralized to allow non- deterministic
protocols.) A distributed protocol s a n-tuple P a tP2 P, such
that for a s I < e < n, P, is a local protocol of processor i.A system

owvthistory h,. h, is bonitent with P if for all t t n, the sequence

of events a hi corresponds to an executi n of local protocol P, beg ng
from the nintal state of h,. A run r is consistent with protocol P if r.ht is

1. eande' re eent ofthe ameproesso, ad aprefx o ontis

e but ot e'

2. eis te sndin ofa mesagemsgand ' i therecept f ms; o



I.%

consistent with P. If r is consistent with P, so do prefix(r) and failurelr).

For convenience, protocol P can be identified with the set of asynchronous
runs that are consistent with it.

The termination property of a protocol P is characterized by the runs in
P. A terminating run is one in which all processors enter terminal states. A
weakly terminating run is o.ne that has at least one terminating continuation
in P. Runs that are not weakly terminating are non-terminating. Examples
of non-terminating runs are runs in which the system is deadlocked, and
runs in which one processor is in an infinite loop. Protocol P is weakly
terminating, if aUl its runs are weakly terminating; it is non-terminating

otherwise.

3 Problem of Protocol Termination

In this section, we prove that any protocol that guarantees knowledge trans-
fer despite transient communication failures is non-terminating. Roughly,
our argument goes as follows. First, given any weakly terminating pro-
tocol and any initial system state, we show that starting from this state,
this protocol must have a run that terminates without message transfers.

Then, we note that without message transfers, knowledge cannot be trans-
ferred in asynchronous systems IC.NI861. Hence, in asynchronous systems
with transient communication failures. weakly terminating protocols can-
not guarantee knowledge transfer.

J!

3.1 Termination without Message Exchange

An event is a last receive event in a run if it is not before another rec(7v, "..

event in this run. A run r is an initial run if its contains no events: it
includes only the initial states of the processors.

Theorem 1 Let P be a weakly terminating protocol. For a24 initzai r7ns r

in P, r has a terminating continuation in P in which no processor receu',K.

any messages.

Proof: By contradiction. Let r be an initial run in P such that ever-
terminating continuation of r in P contains at least n (n 0) receive
events. Let r' = !'ist'. rn eg') be a terminating continuation of r in P 'hat

6

%"

"-44'.

,.4:
. . . . . . . . , . . - , . . .. . . . .' . , , . , " . -4- ' - :

i.4 e', " t -.-. .. ',",'.'''' .'. . ' ' . _ k''' ',---,' ' .. d_ ,. 2 ?, .t ,.. .. .



contains exactly n receive events. Let e be a last receive event in r', and
suppose that e occurs at processor i.

Dclete e and all events that are after e from hist'. It is easy to see that
this results in a system history hist" (See Figure 2). Let run r" = (hist",
-). Note that r" = failure(prefix (r')). Since r' satisfies P. r" must also

satisfy P: thus, r" is also in P. Moreover. r" is a run that has only n - 1-
receive events.

-- Since e is a last receive event of r', all events that are deleted from r'
in the construction of r" occur only at processor i. The histories of aUl

processors except i in r' and r" are the same. Since r' is a terminating run.
I is the only processor in r" that has not terminated. By construction. the
channels of r" are empty. Hence, in any continuation of r", i receives the
same number of messages as it does in r", namely n - 1. Since P is weakly
terminating, r" has a terminating continuation r" in P. However. run r"
contradicts the minimality of n.

3.2 Processors' Knowledge

3.2.1 Syntax
- .

We adopt the notation used by Halpern and Moses "HM85a to describe
the knowledge of processors. Let 11 be a set of primitive propositions

{Pi. P2 .... }. The language L((P) is the smallest set of formulas containincg
(D. dosed under -, ', and modal operators K 1 , K 2 ,.  and K,. Formulas

- of the form p , q are abbreviations for -(-p,' -q). p q are for -ip -,1

3.2.2 Semantics

For all processors 7j : m--~, i's view of a run r is the projection of r.hzst

projt r.hist), on i. The views of processor i divide runs of a protocol i.to
lquivalence classes. Runs r and r' are in the same equivalence class (with
respect to i ), if and only if proji(r.hzst) = proQ,(r'.hzst) The equivalence
class of r according to i, denoted by poss(r), determines what z can know
at the end of r.

A processor's knowledge at the end of a run is defined inductively. Let
P be a protocol, and be a function mapping from -P to the set of subsets

7,

. J. ..... .. ,... .. . ., ..... .. .. . ,: ..:> :,:-





of runs of P. Let r = p denote that formula p is interpreted to be true in

r. If p is a primitive proposition (p Z P),

r =p iff r E 7r(p).

For formulas -p and p" q where p, q EC(4),

r -p iff not r = p;
r = p, q iff r = p and r =q.

And finally, processor i knows p in r, if and only if p is true in all the runs
that are equivalent to r. 7p

r Kip iff Vr' E poss (r),r' p. r.

A protocol P is said to guarantee a formula p, if every run r of P has a
continuation r' in P such that r' I p.

3.3 Termination without Knowledge Transfer

In this section, we show that in the presence of transient communication
failures, a weakly terminating protocol cannot guarantee the transfer of a
processor's local knowledge to another processor. In other words, protocols

1 that guarantee knowledge transfer are necessarily non-terminating.

Chandy and Misra ICM86' defined that a formula p is local to a processor
i with respect to protocol P, if Yr E P, r = K,p ' K1 -p. They show that
in an asynchronous system, a processor must receive messages to acquire
knowledge of a non-local formula:

Lemma 1 (CM86) Let p be a formula that is not local to processor i and
i s local to some other processors in protocol P. If for some run r and
its continuation r' in P, r = -(Ki , Ks-p) and r' = K,p , K,-p, then I
receives at least one more message in r' than it does in r.

A formula p is an a priori formula of i in protocol P, if for all initial
runs r of P, r = Kp K1-p. Obviously, if p is not a priori to i. then it is

not local to i.

Theorem 2 Let P be a protocol, and p E C(D) be a formula that is not

a priori to processor i and is local to some other processors in P. If P is
weakly terminating, it cannot guarantee Kp v K,-p.

-. 9 )



Proof- By contradiction. Without loss of generality, suppose that P
guarantees K,p, K,-p and is weakly terminating. Since p is not a priori to
, P has an initial run r such that r = -(Kip v K,-p). Since P is weakly

terminating, by Theorem 1, r has a terminating continuation r' in P in
which no messages are received. Furthermore, since r = -(Kp I/ K,-p)
and no messages are received in r', by Lemma 1, r' = -(Kp K,-p)
Thus P does not guarantee Kp K,-p. a contradiction.

4 Discussion

We have showed that in asynchronous systems with transient channel fail- '.
ures. only non-terminating protocols can guarantee transfer of knowledge.
This result can be extended to systems with synchronous processors and
synchronous communication.

Synchronicity is a critical parameter of the problem of reaching agree-
ment in the presence of processor failures. In asynchronous systems, there
are no deterministic solutions even if only one processor may fail by halt-
ing FLP85 ; in synchronous systems, however, several solutions are known

_DDS87,Fis83T. In contrast, our negative result holds for both synchronous
and asynchronous systems.

Since weakly terminating protocols do not guarantee knowledge trans-
fer, we may have to settle for protocols that guarantee only that all but one
processors will terminate. The following problem serves as an illustration.
Processors and j are connected by a link with transient failures. We want

a protocol that i can use to send a message m to j such that

1. j receives m from i, and

2. 1 and j are eventually allowed to forget m.

Such a protocol P is given in Figure 3 SkeS6. Since channel failures are
transient, one of the copies of m that i sends repeatedly to j is guaranteed
to be received by . Similarly, the acknowledgements ack(m) from j. and
ack(ack(m)) from L, will also be received by i and j, respectively. It is
now easy to see that protocol P achieves the two goals. Note. however.
that processor t never terminates (it will remain in the do-forever loop).

. -10

o l% p



Z.-

Let ack denote acknowledgements. :

processor i processor j
repeat until receipt of ack(m) wait to receive m;

send m to j; repeat until receipt of ack(ack(m))
od; send ack(m) to i;
forget m: od;
do forever forget m:

if ack(m) is received then stop.
send ack(ack(m)) to j:

od.

Figure 3: Protocol P.

Our result shows that this is not a deficiency of this particular protocol: in

a system with transient channel failures, any protocol that achieves goals

1) and (2) also guarantees that j knows m; therefore, it must be non-

terminating.

Acknowledgement

We would like to thank Amr El Abbadi and Tommy Joseph for their valu-

able comments on previous drafts of the paper, and Gil Neiger for his

contribution to Appendix A.
Sk

References

C%186 K. M. Chandy and J. Misra. How processes learn. Distributed .6

Computing. 1:40-52, 1986.

DDS87 D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchro-
nism needed for distributed consensus. Journal of .4CM. 34(1),
.January 1987.

A,*

Fis83 %I. J. Fischer. The consensus problem in unreliable distributed
systems (a brief survey). In Intl. Conference on Foundations of

S11

-.



*' .'

Computations Theory, Lecture Notes in Computer Science, 'ol.

ume 158, pages 127-140, Springer-Verlag, New York, 1983.

FLP85' MI. Fischer, N. Lynch, and M. Paterson. Impossibility of dis- r

tributed consensus with one faulty process. Journal of AC.1M,

32(2):374-382, 1985.

Gra78' J. Gray. Notes on database operating systems. In Lecture notes

in computer science 60, Springer Verlag, 1978.

Had86' Vassos Hadzilacos. Connectivity requirements for byzantine

agreement under restricted types of failures. 1986. Unpublished A

manuscript.

' IHM85a' J. Y. Halpern and Y. Moses. A guide to the modal logics of
knowledge and belief. In Ninth International Joint Conference

on Artificial Intelligence, pages 480-490, 1985.

HM85b J. Y. Halpern and Y. Moses. Knowledge and common knowledge

in a distributed environment. 1985. To appear in JACM. An ear-
lier version of the paper appeared in the Third ACM Symposium
on Principles of Distributed Computing, 1984.

Lam78' L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558-565.

July 1978.

Ske82 D. MI. Skeen. Crash recovery in a distributed database system.

PhD thesis. Computer Science Division, University of California.
Berkeley, 1982.

-Ske86' D. ME. Skeen. Private Communication, April 1986.

.4-.

12

Lil.'



%

;A--

Let ack°(m) denote m, and ackh-'(m) denote the acknowledgement to ackk(m).

processor i processor j
k := 0; k 1;
do forever do forever

repeat until receipt of ackk-'(m) wait to receive ack-l(m);

send ackO(m) to j; repeat until receipt of ackk-l(m) %od; send ackk(m) to i:

k := k - 2; od: "Iqd
od. k := k - 2; ,

od. %-

Figure 4: Protocol Q allows processors i and j to attain eventual common
knowledge of m.

Appendix A: Achieving Eventual Common Knowledge

We present a protocol that allows processors i and j to gain eventual corn- $
mon knowledge of a fact m despite transient channel failures. We give only
an informal description here. (The formal definition of eventual common
knowledge is in tHM85b'.)

A fact is eventually true in a run r. if it must become true some time
in the "future" of r. Furthermore, a fact m is stable with respect to a
protocol P, if for all run r ; P, once rn becomes true in a run r, it remains
true in all continuations of r in P. Eventual common knowledge of a stable
fact m is achieved in a run r, if in r, m is true. and that eventually every
processor knows that rn is true, and that eventually every processor knows
that eventually every processor knows that m is true.., ad infinttum.

Let m be a stable fact and suppose that processor i knows that m is
true. We claim that the non-terminating protocol Q in Figure 4 allows
processors i and j to attain eventual common knowledge of m, despite
transient channel failures. It is clear that the repeated sending of ack'(m)
by processor i guarantees that at least one ack0 (m) will arrive at processor
j. Hence, j will send ackl(m) to i repeatedly until at least one ack'(m)
arrives at i. Thus, it follows by induction that for all k > 0, at least
one ack 2k(m) will arrive at j, and at least one ack"k-(m) will arrive at i

13



Jft

F.
despite transient channel failures. Let E'm denote that both i and j knowm, and E'-lm denote that both i and j know Ekm. It is easy to see that
the receiving of ack°(rn) by j implies E'm. In general, for all k > 0. the
receiving of ackk(rn) by J implies Eklm. Thus, despite transient channel
failures, i and j achieve eventual common knowledge of m by executing
protocol Q. Note, however, that neither i nor j ever stop executing Q.

....

14

-~ 0


