
Working Paper No. 338 one FILE COPY (D

in
in
CO

O) rs
^"

i <
•

Q
<

1

AN INTRODUCTION TO STRUCTURED MODEUNG

by

ARTHUR M. GEOFFRIOl^

:^;X

Revised
February 1987

Contrsct N00014-75-C-0570

iW
I^SLSCTE ̂

^
% APR 13 1987

■

This document has been app^oveü
fox public rolecse and sale; its
distribuion is unlimited

WESTERN MANAGEMENT SCIENCE INSTITUTE
University of California, Los Angeles

87 4 14 036 \
üWW*JW*SMMir**iifvr*jrüC,.KA.VlLA<A ^V^W"JSi'\A\V^A'VWFVxJ.V.i •_• ,V\XrU/ kVkVXM A':«W'A^A^"J■^;^fAi&•V.^>X^>>>L>fK>'>>>^>^^Khi."

TW wywy w wfrw^w mrnvww -■ w ■ ^

WESTERN MANAGEMENT SCIENCE INSTITUTE
University of California, Los Angeles

Working Paper No. 338

June, 1986
Revised February, 1987

AN INTRODUCTION TO STRUCTURED MODELING

by

Arthur M. Geoffrlon

To appear In Proceedings of the Conference on Integrated
Modeling Systems (held at the University of Texas, Austin,
October 1986) and, without the section on Implementation, In
Managrement Science, May 1987.

I acknowledge with gratitude the substantial assistance and
encouragement provided by many colleagues and students. In-
cluding G. Bradley, S. Charl, R. Clemence, D. Dolk, C.K. Farn,
J. Jackson, C. Jones, M. Lenard, J. Mamer, S. Maturana, Y. Tsal,
and G. Wright.

My debt extends to the National Science Foundation and the
Office of Naval Research for supporting this work since Its
Inception, to the Naval Personnel R&D Center, and to Hewlett-
Packard and IBM for their generous grants to the UCLA Graduate
School of Management. The views contained In this report are
mine and not to be attributed to the sponsoring agencies.

l|ll*U«n*H«MV II« I mVT^PlVH ■^W^WRWUPPBi T" •■ U Wtl WVT ö » VWTTT-.T-^" v

Abstract

The discipline of modeling has advanced only slowly com-
pared to disciplines concerned with analyzing and solving
models once they are brought into being. Structured Modeling
is an attempt to redress this imbalance.

Structured Modeling aims to provide a formal mathematical
framework and computer-based environment for conceiving, rep-
resenting, and manipulating a wide variety of models. The
framework uses a hierarchically organized, partitioned, and
attributed acyclic graph to represent the semantic as well as
mathematical structure of a model. The computer-based environ-
ment is evolving via experimental prototypes that provide for
ad hoc query, immediate expression evaluation, solving simul-
taneous systems, and optimization.

If successful, Structured Modeling will enable model-
based work to be done with greater productivity and acceptance
by non-specialists, will exploit important developments in
small computers, and will cross-fertilize management science/
operations research, artificial intelligence, database manage-
ment, programming language design, and software engineering.

This paper is an introduction and status report on a long
term project. The presentation is based largely on examples;
rigorous development and details are left to a series of tech-
nical reports.

-/-'

*m^s^^^

M^iwuwn wiwJni>iJT"m i^n^^ w^' ^ '' wi'i ^ npr^—n

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Problems and Opportunities Facing MS/OR 1
Low Productivity 1
Poor Managerial Acceptance 2
Desktop Computing Revolution 2
Emerging foundations of Modeling 3
Progress in Database Management 3
Popularity of Spreadsheet Modeling 3

1.2 The Answer: A New Generation of Modeling Systems . . 3

1.3 Structured Modeling 5
Related Modeling Approaches and Systems 6

1.4 Organization 8

2. BASICS OF STRUCTURED MODELING 9

2.1 Basic Definitions 9
Elemental Structure 9
Generic Structure 10
Modular Structure 11
Structured Model 11
Model Schema 12

2.2 Example and Additional Concepts 12
Element Graph 12
Genus Graph 13
Modular Tree 13
Non-Graphical Notation 13
Schema 14
Elemental Detail Tables 16

2.3 Models, Problems, and Solvers 17

2.4 Prospects for Achieving a New Generation
of Modeling Systems 18

3. SOME USES OF STRUCTURED MODELING 21

3.1 Top-Down Model Design 21
Example 21

3.2 Integrated Modeling 24
Example 25

3.3 Communication and Documentation 27

4. IMPLEMENTATION 29

4.1 Structured Modeling Systems 29

4.2 Overview of All Three Implementations 30

4.3 The UCLA Implementation FW/SM 32
Model Library 32
Solver Library 32
System Programs 3 3
Schema Section 3 3
Elemental Detail Section 3 3
Reference Section 34
Reference Section: Text Displays 3 5
Reference Section: Tabular Displays 35
Reference Section: Graphical Displays 36
Activity Section 37

5. OPPORTUNITIES FOR FURTHER WORK 39

5.1 Structured Modeling Framework 39
Scope and Comparative Studies 39
First Order Logic 40
Semantic Networks 41
Conceptual Modeling 42
Extensions 42

5.2 Model Design 43
"Normal Form" Theory 4 3
Program and System Design Techniques 43
Knowledge Base Design Techniques 44

5.3 Implementation Design 44
Language and Compiler Design 44
Data Structures 45
User Interface 4 5
Solver Interface 46
Factorable Programming Technology for Derivatives 46
Program Integration Techniques 46
Continuous Time Models 47
Data Flow Computers 47

5.4 Model Management Systems 47
Translators 48
Data Acquisition Techniques 48
Formalizing Model Schema Operations 48

6. CONCLUSION 49

BIBLIOGRAPHY 50
COMMERCIAL SOFTWARE REFERENCES 56
APPENDIX: SOME FORMALITIES 57

1. INTRODUCTION

Structured modeling Is an approach to modeling and also to
the design of computer-based modeling systems quite different
from current ones. This section motivates the need for struc-
tured modeling by considering some of the problems and oppor-
tunities presently facing the management science/operations
research (MS/OR) community. These suggest some desirable fea-
tures for future modeling systems. Those features are the main
objectives of structured modeling.

1.1 Problems and Opportunities Facing MS/OR

The two problems and four opportunities discussed below
are among the more important ones confronting the MS/OR
community.

Low Productivity

Doing MS/OR tends to be a low productivity activity. Even
seasoned practitioners are repeatedly surprised by how much
effort is needed to achieve useful results.

A contributing factor is that at least three distinct
representations typically are us«»d for each model: a "natural"
representation suitable for communication with people (often
managers) without special training in MS/OR, a mathematical
representation suitable for analytical use, and a computer-
executable representation (see, e.g., Fourer <1983>). Such
multiple representations are inefficient by virtue of their
redundancy, are susceptible to inconsistency, and they demand
too many different skills to complete even small projects.

A second factor contributing to low productivity is that
interfacing models with advanced solvers (especially optimizers)
traditionally has been a laborious task requiring specialized
skills. Typically the burden falls on the user to present the
model at hand in a format acceptable to the chosen solver.
Interface standards are sorely needed. The only one commonly
used, the MPS standard for linear programming, is ancient and
not very suitable for modern mathematical programming systems.

A third factor is that most modeling software addresses
just one among the many kinds of models that arise — e.g., just
linear programs, or just multi-period financial models. Such
software is awkward at best and unusable at worst when, as is
increasingly necessary, models of different kinds must be inte-
grated in order to address issues of importance. There is a need
for modeling software of wider applicability.

-1-

p|H^WW«p<rfWW<^»ywtMMMW»<^«^^MI>IMtlUl■■II»MtW^I^I*IWI*I*M»^"**■''**«■*'■»■ "■'■i'" rrwirrm

A fourth factor contributing to low productivity is that
available modeling software typically caters to just one or two
of the many phases of the total life-cycle associated with
model-based analysis and systems. Some of the more important
phases are: determine requirements, design, build, test, use,
revise, maintain, document, explain, analyze results, report
findings, and evolve. Most MS/OR practitioners are forced to
piece together a patchwork guilt of tools to deal with these
various phases as they arise over the life of a project.
Modeling environments with greater life-cycle scope are needed
(Gass <1987>).

Poor Managerial Acceptance

A second and much lamented problem facing MS/OR is that
managers and policy makers call for model-based assistance too
infrequently.

One reason for this is that MS/OR practitioners and their
work often are incomprehensible to non-specialists. To the ex-
tent that practitioners are poor communicators or techno-centric
instead of problem-centric, managers perceive insufficient empa-
thy and business ur. lerstanding and hence turn elsewhere for help.

A related reason is that even technically successful MS/OR
work can make managers feel less powerful rather than more so.
This occurs whenever a manager becomes dependent on the MS/OR
practitioner — as usually happens when the manager does not
really understand the model or how it can be used to arrive at
conclusions of practical interest. The natural response to this
kind of dependency is to avoid it.

These perennial problems are counterbalanced by perennial
opportunities often recited by the MS/OR faithful. In addition,
there have recently emerged certain new opportunities each of
which, if properly exploited, has the potential to exert an in-
fluence of historic proportions.

Desktop Computing Revolution

One important opportunity is the desktop computing revolu-
tion. This rapidly evolving technology offers numerous possibil-
ities for doing MS/OR more productively, and communicating and
delivering MS/OR in ways that managers and policy makers are
more likely to accept (Gass, Greenberg, Hoffman and Langley
<1986>). The next generation of desktop machines promises to
remove many of the remaining barriers to desktop implementation
(Crecine <1986>).

-2-

Emerging Foundations of Modeling

Another opportunity is that modeling has, in recent years,
become an active subject of study in its own right for research-
ers in several fields: database management (see, e.g.. Brodle
<1984> anc' Tsichritzis and Lochovsky <1982> on "data models"),
prograrominn language design (see, e.g., Horowitz <1984> and Shaw
<1984>), and artificial intelligence (see, e.g., Brachman and
Levesque <1985> and Mylopoulos and Levesque <1984> on "knowledge
representation") . A particularly noteworthy development is the
"conceptual modeling" movement (Brodle et al <1984>) , which at-
tempts to synthesize what is known about modeling issues common
to all three fields.

It is both surprising and inviting that these fields make
virtually no reference to the literature of MS/OR or its closely
kindred fields. MS/OR, for its part, traditionally has taken
modeling for granted as whatever anyone wants to posit within
the conventional languages of mathematics, and thus has failed
to develop any coherent modeling theories of its own. The
development of new foundations for analytical modeling is long
overdue and has many good ideas to draw upon from the three
fields mentioned.

Progress in Database Management

A third opportunity for MS/OR is tha remarkable flowering
of the field of database management during the last decade,
especially the explosive emergence of relational technology, the
development of excellent database programs for desktop computers
(Krasnoff and Dickinson <1986>), and the evolution of sophisti-
cated query interfaces (Jarke and Vassillou <1985>). Database
systems are natural adjuncts to data-hungry MS/OR software. Data
management and flexible retrieval capability are just as impor-
tant for most MS/OR applications as the functions performed by
the solvers toward which the models usually are oriented.

Popularity of Spreadsheet Modeling

A fourth opportunity, not unrelated to the first one,
arises from the legions of modeling enthusiasts created by the
phenomenal rise of spreadsheet software. Many of these people
have the potential to graduate to more sophisticated modeling,
and so form a great reservoir of potential demand for MS/OR
technology and expertise (Bodily <1986>).

1.2 The Answer: A New Generation of Modeling Systems

The problems and opportunities just enumerated call for a
new generation of modeling systems with the following desirable
features:

(a) a rigorous and coherent conceptual framework for

-3-

I—M>—^——WW ll.ir,.ll"T1l'""''l.''iTHllll w» J ■ '.I ■ u WJWrwmmin mnmitmjtmjtmii

modeling based on a single model representation
format suitable for managerial communication,
mathematical use, and direct computer execution

(b) independence of model representation and model
solution, with model interface standards to facili-
tate building a library of models and of easily
accessed solvers for retrieval, systems of simul-
taneous equations, optimization, and other important
manipulations

(c) sufficient generality to encompass most of the
great modeling paradigms that MS/OR and kindred
model-based fields have developed for organizing
the complexity of reality (activity analysis,
decision trees, flow networks, graphs, markov
chains, queueing systems, etc.)

(d) usefulness for most phases of the entire life-
cycle associated with model-based work

(e) representational independence of general model
structure and the detailed data needed to describe
specific model instances

(f) desktop implementation with a modern user inter-
face (e.g., visually interactive, directly manip-
ulative, syntactically humane, and with liberal
use of graphics and tables)

(g) integrated facilities for data management and ad
hoc query in the tradition of database systems

(h) immediate expression evaluation in the tradition
of desktop spreadsheet software.

Features (a) through (d) address, respectively, the four
contributing factors listed earlier for low productivity.
Feature (c) also helps productivity by reducing learning time
in situations where multiple models must be maintained. Produc-
tivity is further enhanced by feature (e), which facilitates
reusing the same general model structure in different specific
applications.

Feature (a) should help to overcome poor managerial accept-
ance to the extent that it succeeds in facilitating managerial
communication. Feature (e) should also facilitate communica-
tion, for general model structure is free of distracting detail.
Feature (f) not only can lead to improved managerial acceptance,
but may even be a prerequisite for it.

Features (f), (a), (g) , aid (h) respectively address the
four opportunities listed earlier. In addition, feature (e)

-4-

is one of the recurring themes of the second opportunity (the
emerging foundations of modeling) . It is one of the pillars of
database theory because specific database content changes far
more frequently than does database structure.

1.3 Structured Modeling

Structured modeling aims to provide the foundation for a
new generation of modeling systems with all of the features
listed in Section 1.2. It also aims to influence how model-based
work is carried out using more conventional modeling systems.

The formal framework of structured modeling is based on
discrete mathematics. It uses a hierarchically organized, parti-
tioned, and attributed acyclic graph to represent a model or a
model class. Particular attention is given to representing se-
mantic as well as mathematical structure, and to compatibility
with four of the most fundamental manipulations applied to
models: retrieval, expression evaluation, solving a simultaneous
system, and optimization.

At the core of structured modeling is the notion of a defi-
nitional system, that is, a system of definitions of all of the
elements comprising a "model". The definitions have some special
properties: they are typed (there are five types), correlated
(interdependencies are explicit), and certain of the types are
value-bearing. Moreover, the definitions are grouped by defini-
tional similarity, the resulting groups are organized hierarch-
ically by conceptual similarity, and the whole system of defini-
tions must be free of circularity.

This kind of definitional system turns out to be widely
applicable within model-oriented fields such as MS/OR/DSS (for
finance, logistics, marketing, production, and other application
areas), information systems, economics, and engineering. Thus
structured modeling ideas have the potential for wide adoption.

This kind of definitional system also turns out to have
deep connections to formalisms used in artificial intelligence,
database management, programming language design, and software
engineering. These connections invite cross-fertilization among
these fields from the modeling perspective.

Structured modeling ideas may be useful even if structured
modeling software is not available or is not selected for use.
Usually there are many opportunities in the context of conven-
tional modeling systems to use some of the modeling concepts,
constructs, and guidelines that comprise the structured modeling
approach. Some of the guidelines for "good" modeling associated
with structured modeling are: (1) incorporate important data
development processes directly into the model, (2) document
definitional interdependencies, (3) use stepwise refinement.

-5-

gT^T^TWT^II^I^IWIW'^IPTIIllHmiHllllJ ■ II ■U»l.»»g«U»»»fP'»'»"»,»""T»^-■"»«»■»'

(4) compose models from validated submodels, and (5) exploit
parallel structure.

Finally, it should be noted that structured modeling lays
the foundation for a unified theory of model aggregation. This
was the original need that led to the development of structured
modeling. A draft research monograph on aggregation is at an
advanced stage of preparation, but is now suspended pending
completion of basic work on structured modeling.

Related Modeling Approaches and Systems

Structured modeling has benefited significantly from ideas
introduced by or embodied in other modeling approaches and sys-
tems. Numerous opportunities remain for cross-fertilization. We
consider briefly some of the principal categories of related
approaches and systems from the point of view of the eight
desirable features. A companion paper gives further details
(Geoffrion <1986b>).

Names of commercially available software packages are given
in italics. Their vendors are listed in a separate reference
section following the bibliography.

Many attempts have been made to make mathematical programm-
ing systems easier to use by orienting them more toward moieling
and less toward the optimizers around which they are built. Two
standouts are GAMS (Bisschop and Meeraus <1982>, Kendrick and
Meeraus <1987>) and PLATOFORM (Palmer <1984>). Others are AMPL
(Fourer, Gay and Kernighan <1987>), CAMPS (Lucas and Mitra
<1985>), EMP (Schittkowski <1985>), GXMP (Dolk <1986b>), LINDO,
LPMODEL (Katz, Risman and Rodeh <1980>), MLD (Burger <1982>),
and PAM. As a group, the greatest strength of these systems —
their ability to raise the productivity of optimization applica-
tions — is perhaps also their greatest weakness in that they
are wedded to one particular modeling paradigm (contrary to de-
sired feature (c)). They also lack integrated facilities for ad
hoc query and immediate expression evaluation.

Financial planning systems are designed primarily to sup-
port the preparation of business analyses and reports based on
the spreadsheet modeling paradigm, that is, based on named rows
and on columns that usually correspond to successive time per-
iods. This paradigm turns out to be of surprisingly general
applicability (Bodily <1986>, Plane <1986>). Unlike the leading
desktop spreadsheet packages, these systems use a simple declar-
ative language to specify the spreadsheet, and they automatical-
ly attempt to solve any simultaneous equations that may be im-
plicit in the spreadsheet. The dominant package in this class is
the mainframe system IFPS (also available in desktop versions).
A version is even available with integrated optimization capa-
bility (Roy, Lasdon and Lordeman <1986>). As a group, financial
planning systems offer high productivity, support for multiple
life-cycle phases, and good managerial understandability within

-6-

their Intended domain of application. Their main weaknesses are
in the areas of compatibility with modeling paradigms other than
the spreadsheet, independence of general model structure and
detailed data, and integrated facilities for ad hoc query.

Database management systems usually are not thought of as
"modeling" systems by the MS/OR community, but this is a mis-
take. All are based on one or another data model (Tsichritzis
and Lochovsky <1982>) . A recent survey (Krasnoff and Dickinson
<1986>) lists 56 desktop relational database systems. As a group
these systems are, of course, strong on database functions. But
they are weak on compatibility with non-database modeling para-
digms and on provisions for accessing non-database solvers for
simultaneous equations and optimization.

Integrated multi-function desktop productivity software, of
which Framework is a current example, provides word processing,
spreadsheet modeling, some database capabilities, business
graphics, a built-in programming language, and other useful
functions. One recent package. Guru, even includes an expert
system shell. These systems can be excellent productivity tools
for a wide variety of tasks, including many kinds of modeling.
However, it may not be appropriate to think of them as modeling
systems in a true sense because they do not offer a coherent
conceptual framework for modeling. How they fare by features
(b) through (e) depends largely on how they are used. They do
possess features (f), (h), and perhaps (g).

A related approach is a modeling environment based on
loosely integrated utilities for data extraction, large file
manipulation, data management, solving simultaneous systems,
and other functions arising in model-based work. A nice example
is ANALYTICOL at AT&T Bell Laboratories (Childs and Meacham
<1985>). It fares well by features (c), (d) and perhaps (g), and
not so well by features (a), (h), and perhaps (f). How it fares
by features (b) and (e) depends almost entirely on how it is
used.

The above categories do not exhaust the landscape of model-
ing approaches and systems. For example, there are discrete
event simulation frameworks and languages (e.g., Markowitz
<1979>, Oren, Zeigler and Elzas <1984>); various knowledge rep-
resentation approaches from artificial intelligence (Brachman
and Levesque <1985>) , among which the closest to structured
modeling appears to be the "conceptual graph" formalism of Sowa
<1984> within the general category of semantic networks; and the
novel approach of Jones <1985> to graphical modeling systems
based on attributed graph grammars, which can capture general
model structure at a level similar to that used in structured
modeling. Each of these is discussed at some length in Geoffrion
<1986b>. In addition, of course, there are numerous application-
specific packages which, by definition, have conceptual frame-
works of nauow applicability and thus lack feature (c) .

-7-

«•fwrvw^n vi«

This brief review of related modeling approaches and sys-
tems is not intended to show that structured modeling's prede-
cessors are inferior because none exhibits all eight desirable
features. Rather, the review is intended to show that structured
modeling aims at an apparently vacant niche, and to suggest that
there are benefits to be gained (in both directions) from study-
ing structured modeling in the context of alternative approaches
and systems.

1.4 Organization

Section 2 contains an introduction to the basic ideas of
structured modeling, an example, an explanation of how these
ideas fit into the world of model-based work, and a discussion of
the prospects for achieving a new generation of modeling systems
of the type envisioned in Section 1.2. Rigorous definitions and
selected technical results on the structured modeling framework
are deferred to the Appendix.

Section 3 exemplifies three of the ways in which structured
modeling can be used: for top-down model design by stepwise re-
finement, for integrated modeling in the sense of unifying two
or more distinct models in a coordinated way, and for clear com-
munication and documentation. All five of the modeling guide-
lines listed in the previous subsection are illustrated along
the way.

Section 4 describes structured modeling systems in general
and three development prototypes in particular, with emphasis on
the Framevor/c-based implementation presently in progress at UCLA.

Section 5 discusses opportunities for further research and
development. Many are inspired by important parallels between
issues in structured modeling and similar issues in database
management, programming language design and software engineer-
ing, and artificial intelligence. The opportunities are collect-
ed into four main categories: the structured modeling framework
itself, designing a model within the framework, computer imple-
mentation design, and model management systems.

Finally, Section 6 offers some closing comments.

This paper makes few assumptions concerning the reader's
background beyond general familiarity with MS/OR and tolerance
for basic terminology drawn from graph theory and a few other
parts of discrete mathematics. Familiarity with elementary rela-
tional database ideas will also be helpful (e.g., Date <1981>) .

Because of the introductory nature of this paper, it is
necessary to defer numerous details and related developments to
a forthcoming series of technical reports.

-8-
I

injM* * -Vt^iT

2. BASICS OF STRUCTURED MODELING

The structured modeling framework has three levels: ele-
mental structure, generic structure, and modular structure. Each
is defined in turn, followed by an illustration (as well as
other ideas) based on a classic MS/OR application, the feedmix
model. Then the role of these modeling ideas is discussed in a
broader context, followed by an assessment of their potential as
the basis for a new generation of modeling systems of the type
advocated in Section 1.2.

2.1 Basic Definitions

The definitions given here are, for the most part, infor-
mal. Rigorous versions are given in the Appendix of this paper,
but a forthcoming technical report must be consulted for a com-
plete development. A detailed example is given in the next
subsection for all of these definitions.

The reader is invited at this point to test the author's
claim that structured models are easy to understand. The sever-
est possible test would be to examine a structured model prior
to any study of structured modeling concepts. Doing this will
not only help the reader judge the claim, but also aid digestion
of the definitions. So please spend a few minutes examining, in
this order. Figure 5 (the general structure of the feedmix
model), Figure 6 (sample data for a particular instance), Figure
3 (a diagram of definitional dependencies at a more aggregate,
dimensionally independent level), and Figure 4 (a way of organ-
izing the essential concepts of the model).

Elemental Structure

Structured modeling views a model as being composed of dis-
crete elements. The central notion is that each element has a
definition in which the element's existence is either postulated
as a primitive of the model, or postulated in terms of other
elements whose definitions have already been given.

Elemental structure aims to capture all of the definitional
detail of a specific model instance. It can be viewed in terms
of a directed graph of elements (nodes) and "calls" (arcs) . Each
call represents a definitional reference, that is, the partici-
pation of one element's definition in the definition of another.
The head node of each arc is the calling element and the tail
node is the called element. There are five types of elements,
some of which have a value:

1) primitive entity elements have no associated value
and generally represent things or concepts postu-
lated as primitives of the model (e.g., protein as
a nutrient);

-9-

. . ..-...-v^-. -. ^L*.wL-.L-VL>L-V^vw-,(v>L>u>w>t-fcaatvi^wiiff.*nxi\x*>rj<J\Ki\/J'^^■BV/^/aV/i^)</KVV\^£<iöfji<BB8(K'tO0(

mmmmmmmmmummmmmmmmmnmmmmm m

2) compound entity elements have no associated value
and generally represent things or concepts that are
defined in terns of other things or concepts (e.g.,
a "link" in a transportation system defined in
terms of a certain plant and a certain customer) ;

3) attribute elements have a constant value and
generally represent properties of things or
concepts (e.g., a minimum daily requirement in
grams associated with protein);

4) function elements have a value that is denendent
according to a definite rule on the values of
called elements, and generally represent calcu-
lable properties and more complex aspects of
models (e.g., the total annual cost associated
with inventories);

5) test elements are like function elements except
that their value must be either True or False
(e.g., whether the minimum daily requirement
level for protein is met) .

The graph is assumed to be acyclic because it is possible and
desirable to avoid circular definitions. If the graph is to
represent the entire elemental structure, then it must also be
attributed. Attributes must be associated with its nodes and
arcs to represent (i) the values of non-entity elements, (ii)
the rules by which the values of function and test elements
are calculated, and (iii) an order for the inbound arcs at
each node.

Generic Structure

Generic structure aims to capture the natural familial
groupings of elements. Mathematically, this is accomplished
by partitioning all elements of a given type into genera,
each of which is a cell of the partition. Thus each genus
comprises elements of the same type (e.g., the collection of
all primitive entity elements representing nutrients).

Not every possible partition by type is allowed. It must
satisfy a property called generic similarity, which means
roughly that every element in a genus calls elements in the
same foreign genera (e.g., every element in the minimum daily
requirement genus makes reference to some element in the
nutrient genus). This property seems to hold for all sensible
partitions and is essential in order to prove certain desir-
able properties of the structured modeling framework.

-10-

Modular Structure

Modular structure aims to organize generic structure hier-
archically to the extent that this seems appropriate and useful.
The basic idea is to group genera into conceptual units called
modules according to commonality or semantic relatedness, then
to group these modules into higher order modules, and so on
(e.g., the nutrient genus and the minimum daily requirement
genus might be grouped together into a "nutrient data" module) .
This enables the complexity of a model to be managed in terms of
higher order abstractions.

Mathematically, modular structure is a rooted tree whose
root represents the entire model and whose terminal nodes cor-
respond 1:1 with the genera. All other nodes are modules repre-
senting conceptual units comprising their descendent genera.

Not every possible modular structure is allowed. It must
admit an indented list representation with no forward refer-
ences, that is, the genera must be listed in such an order that
no element in a genus ever calls an element in a genus that is
farther down the list. A modular structure that satisfies this
qualification is called monotone, and its indented list repre-
sentation is called a modular outline.

In practice it is easy and natural to define a monotone
modular structure. But if for some reason it is desired to
ignore modular structure or to postpone its design, then it is
always possible to posit the trivial monotone modular structure
in which there are no modules other than the root and all gen-
era are ordered according to a topological sort of the genus
graph (defined in Section 2.2). Such a sort is easy to perform.
There is also an efficient procedure for finding a monotone
order, if one exists, for any given modular structure.

Structured Model

Finally we can define a structured model as (a) an element-
al structure together with (b) a generic structure satisfying
similarity and (c) a monotone modular structure.

It should be noted that the acyclicity assumption on ele-
mental structure and the closely related monotonicity assumption
on modular structure do not necessarily preclude representing
models with simultaneity or recursion. In all realistic cases
examined to date, simultaneity and recursion can be dealt with
in a natural way without violating these assumptions. Sometimes
this involves switching to an equivalent representation of some
model feature, sometimes it involves modeling in such a way that
a "solver" external to the model carries the burden (as by solv-
ing a system of simultaneous equations), and sometimes it simply
involves recognizing that simultaneity or recursion exists in a

-11-

mAünewwivMMSMU^^

l^WVnWT^fWVT^ini I^IW^^*'• 1'* l'Wll ■ I 4 II« I • IIPVW ir • UTvrwi—ri i . w v»^ w •

way that does not impinge on the acyclicity or monotonicity
assumptions. These assumptions play a key role in the theory and
application of structured modeling.

It should also be noted that structured modeling is not
limited to static models. Dynamic models with discretized time
can be accommodated by introducing a primitive entity genus with
as many elements as there are time instants or time slices, and
dynamic models with continuous time often can be accommodated by
allowing the values of attribute and function elements to be
functions of time.

Model Schema

Up to this point we have been concerned with specific model
instances. However, the focus of applied modeling work is very
rarely on a single model instance. Nearly always it is on an
entire class of similar instances. Therefore it is appropriate
to formalize the notion of a class of "similar" structured
models. That is the purpose of the concept of a model schema.

Informally speaking, a model schema is any class of struc-
tured models whose modular outlines all can be placed in 1:1
correspondence in a way that is consistent with modular struc-
ture, with generic structure, and with the intended meaning of
the models.

2.2 Example and Additional Concepts

The feedmix problem can be found in the linear programming
chapter of most basic textbooks on MS/OR. We use it to illus-
trate the concepts just defined and to introduce some important
additional ideas and notational conventions.

Element Graph

Figure 1 is the element graph for a simple model with two
nutrients and two materials from which feeds are blended. It is
the directed graph of elemental structure without any annota-
tions to indicate node or arc attributes. Figure 1 does, how-
ever, employ informal annotations to indicate node interpreta-
tion and type. Node type is indicated here by the shape of the
symbol used: squares for primitive entity elements, circles for
attribute elements, triangles for function elements, and hexa-
gonti for test elements. There are no compound entity elements.
Recall that an arc represents a call of the tail element by the
head element.

The process of calculating the values of all function and
test elements in their natural topological order is called eval-
uation. Such an order always exists by virtue of the acyclicity
assumption. For Figure 1, evaluation can be accomplished by
proceeding from bottom to top.

-12-

^^^^^^^^^W^y^FT*T^T^T»T» V»'.1» '.'»'J»'1«1^^»^"?!^.'^." ' V." »J'» i»>w^m-»^w»»»j»«»—w^,

Genus Graph

There is an obvious grouping of elements. Primitive entity
elements are partitioned into nutrient elements (the NUTR genus)
and materials elements (the MATERIAL genus). Attribute elements
are partitioned into minimum daily requirement elements (the MIN
genus), elements specifying how much of each nutrient is in each
pound of material (the ANALYSIS genus), quantity elements (the Q
genus), and unit cost elements (the UCOST genus). Function
elements are partitioned into the elements that calculate the
achieved nutrition levels (the NLEVEL genus) and the total cost
element (the singleton TOTCOST genus). Finally, the test ele-
ments are all left together in a single genus (T:NLEVEL).

These partitions are shown in Figure 2. The informal defi-
nition of generic similarity clearly holds by inspection of the
incoming arcs to the elements in each genus.

The graph theoretic condensation of an element graph accord-
ing to such partitions is called the genus graph; see Figure 3.
It is more convenient than the element graph for most purposes
because it is dimension independent. For example. Figure 3 does
not depend on how many nutrients or materials there may be. It
can be shown that the genus graph is always acyclic when the
element graph is finite and acyclic and generic similarity holds.

Modular Tree

Several plausible hierarchical organizations of generic
structure are possible, including this one: group the genera
NUTR and MIN together in a module whose interpretation is
"nutrient data", and group MATERIAL, UCOST, and ANALYSIS to-
gether in another module whose interpretation is "material
data". This modular structure is represented by the modular
tree shown in Figure 4. Note that there is no mathematical
connection between the arcs of the genus graph and those of
the modular tree.

Figure 4 also includes an indented list representation of
the tree. It can be seen from Figure 3 that there are no for-
ward references in this list, and so it is a bona fide modular
outline.

Non-Graphical Notation

Element graphs, genus graphs, and modular trees offer a
practical vehicle for expressing elemental, generic, and modular
structure, to say nothing of expressing a model schema, only if
supported by a software system with advanced graphics capabili-
ties. A less demanding alternative is to express generic and
modular structure and model schemata by a text-based "schema",

-13-

and to express elemental structure by such a schema together
with a collection of "elemental detail tables". Both concepts
will be explained in some detail.

The particular notational conventions used here for text-
based schemata and elemental detail tables constitute only one
possible solution to the problem of designing a practical nota-
tion for structured models and model schemata. They have certain
advantages, as will become evident, but do not "define" struc-
tured modeling in any sense. Others may wish and, indeed, are
encouraged to propose other notational conventions to embody the
core concepts of structured modeling described informally above
and formally in the Appendix.

Schema

Figure 5 gives a text-based schema that expresses the gen-
eric and modular structure of the feedmix example. It also rep-
resents a model schema in the sense defined earlier, that is, an
entire class of structured models for feedmixing whose modular
outlines are all 1:1 with one another in a consistent way — in
fact, they are all identical.

Figure 5 uses a format and syntax that is detailed in a
forthcoming technical report. An acguaintance with this schema
will be a big step toward understanding schemata in general.
Thus we give an overview of schema format and syntax followed by
a narrative interpretation of the particular schema at hand.

1. A schema is composed of paragraphs, one for each line
of the modular outline and indented in exactly the
same way. There are two kinds of paragraphs: module
paragraphs describing modules, which always begin with
the module name, and genus paragraphs describing genera,
which always begin with the genus name.

2. Module names and genus names are unique and capital-
ized. The former always begin with an ampersand (&)
for quick recognition, while the latter always begin
with a letter of the alphabet.

3. Every paragraph consists of two parts: a formal part
followed by an Interpretation part. The interpretation
part is distinguished in Figure 5 by being printed in
italics (a special separation character is used when
the schema is prepared using a single-font editor).
The syntax of the interpretation part is essentially
unrestricted, although the style followed here is rec-
ommended, including: introduce an underlined, capital-
ized, unique key phrase in each paragraph and capital-
ize this phrase at each subsequent use. The purpose
is to provide easily readable documentation. The formal
part of a module paragraph consists only of the module
name. The syntax of the formal part of a genus paragraph

-14-

Is the subject of the remaining comments.

4. The formal part of a genus paragraph always Includes
a type indicator (/pe/, /ce/, /a/, /f/, or /t/) to
Indicate element type. The indicator /va/, for variable
attribute, can be used In place of /a/ for an attribute
genus when Its values are discretionary and hence
likely to change or to be placed under solver control.

5. The genus name In a non-/Pe/ genus paragraph Is always
followed by a generic calling sequence in parentheses
that identifies all of the elements which participate
in the definition of a typical element. The syntax of
generic calling sequences is designed so that the gen-
eric similarity property holds.

6. The type indicator in a genus paragraph usually is
followed by an index set statement that specifies the
element population of the genus. If omitted, then it
is understood that every possible element exists.

7. The index set statement of an attribute genus paragraph
usually is followed by a range statement, announced by
a colon, that specifies the allowable values for the
elements of the genus.

8. The index set statement of a function or test genus
paragraph is always followed by a generic rule,
announced by a semicolon, that specifies how the
element values are to be calculated.

9. Every genus that can have more than one element is
fully indexed. An index is never "dummy", but is always
a specific lower case letter uniquely associated with
the genus that introduces it. A genus that introduces
an index is said to be self-indexed, and the index is
given immediately after the genus name in its genus
paragraph. A genus that does not introduce an index is
externally indexed unless it must be a singleton. It
is indexed by the free indices in its calling sequence.

The full syntax associated with items 5-8 is a lot richer
than is apparent from the simple example presented in Figure 5.
Nevertheless, that schema suffices for Illustrative purposes.

The first paragraph simply says that there is a module
named SNUTDATA having to do with nutrient data. Indentation
reveals that there are two genera in this module, NUTR and MIN.

The second paragraph says that there is a primitive entity
genus named NUTR whose elements are indexed by 1. It does not
say how many elements are in the genus or what any of them are.
That is the job of the elemental detail tables. NUTR is self-
indexed.

-15-

The third paragraph says that there Is an attribute genus
named MIN whose typical element MINI calls element NUTRi. The
index set statement (NUTR) says that MIN has one element for
every element of NUTR. The range statement says that all ele-
ments have nonnegative real values. MIN is externally indexed
(by i), as are all subsequent genera except MATERIAL (which is
self-indexed by m) and TOTCOST (which has no indices at all).

The next three paragraphs are similar to the first three.

The paragraph for the attribute genus ANALYSIS has a typi-
cal element ANALYSISim that calls elements NUTRi and MATERIALm.
The index set statement says that ANALYSIS has an element for
every nutrient-material combination, and the range statement
says that all elements have nonnegative real values.

Consider the first function genus. Its typical element
NLEVELi calls ANALYSISim for all m (this is indicated by the
dot in place of the second index of ANALYSIS in the calling
sequence), and also Qm for all m (note that Q appears in the
calling sequence with none of its indices — alternatively, "Q."
could have been used) . The generic rule says that NLEVELi is
calculated by summing the prod- ct of ANALYSISim and Qm over
all m.

The other function genus, TOTCOST, must be a singleton
because there are no free indices in its calling sequence. It
calls all elements of genera UCOST and Q. The meaning of the
generic rule should be evident.

The test genus has typical element T:NLEVELi, which calls
the corresponding element of NLEVEL and the corresponding ele-
ment of MIN. The index set statement stipulates that there is a
T:NLEVEL element for every element of NUTR. The generic rule
stipulates that T:NELEVELi has value True if and only if the
value of NLEVELi is greater than or equal to the value of MINI.

Elemental Detail Tables

The purpose of elemental detail tables is to describe a
particular instance of the general class of models represented
by a schema. The skeletal structure of elemental detail tables
is automatically determined from the schema according to rules
given in a forthcoming technical report.

Figure 6 gives the six elemental detail tables for the
schema of Figure 5.

The first table, named NUTR, lists the identifiers of the
nutrients and the minimum daily requirement value for each. It
also provides for an interpretation of the nutrient identifiers.

-16-

W&km^^^

In general, the identifiers introduced by a self-indexed genus
can be any unique names, and the interpretation column helps
document the modeler's Intentions.

The second table performs a function similar to the first,
but for materials instead of nutrients.

The ANALYSIS table gives the analysis values for all ele-
ments in the ANALYSIS genus. The other tables are equally
obvious.

2.3 Models, Problems, and Solvers

The foregoing has focused entirely on modeling. What about
the things one does with models?

We make a sharp distinction between a "model" as an ab-
straction of reality, the "problems" or "tasks" one poses in
terms of a model, and the "solver" used to solve a problem or
carry out a task. For example, consider the feedmix model. The
usual problem associated with this model is to find values for
the QUANTITY elements so as to minimize the value of the TOTAL
COST element subject to the values of all NUTRITION TEST ele-
ments being True. The type of solver most appropriate to this
kind of problem is well known, namely one that implements an
algorithm for linear programming.

Optimization is not the only important kind of problem that
one might wish to pose in connection with a model. Two others
are ad hoc queries aimed at retrieving information about the
model, and finding values for selected attribute elements so
that certain test elements are True. The former requires a type
of solver sometimes called a query processor in the field of
database management, and the latter often requires an equation
solver. Many other important kinds of problems and tasks could
be identified, such as drawing logical inferences (which re-
quires a type of solver sometimes known as an inference engine
in the field of artificial intelligence).

Structured modeling provides a framework for modeling
within which various problems and tasks can be posed precisely
and naturally. It does not provide a framework that directly
supports the algorithmic aspects of solvers. Solver design and
implementation is an entirely distinct area to which modeling
bears a client relationship.

A structured modeling system should, however, make provision
for invoking solvers of various kinds. These can be thought of as
residing in a "solver library", where they are conveniently
available for use whenever needed.

-17-

2.4 Prospects for Achieving a New Generation of Modeling Systems

Now that the basics of structured modeling have been ex-
plained, it is appropriate to consider the potential of these
ideas as a basis for the new generation of modeling systems
advocated in Section 1.2. The discussion is organized according
to the eight desirable features given there.

Feature (a): rigorous modeling framework with a single
model representation suitable for managerial communication,
mathematical use, and direct computer execution. The structured
modeling framework described previously is rigorous and offers
a choice of two notational styles: one based on attributed
graphs (the element graph, genus graph, and modular tree) and
one comprising a text-based schema together, if a specific
model instance is required, with elemental detail tables. A
structured modeling system could be based on either one or a
combination of these styles.

Suitability for managerial communication is discussed in
some detail in Section 3.3 where, among other points, it is
noted that genus graphs are particularly attractive devices for
managerial communication.

Suitability for mathematical use depends on what kind of
mathematics one wishes to apply. Obviously there is no issue
with respect to graph theoretic mathematics. But there may be
for other kinds of mathematics. Probably the most important
kind, at least in MS/OR, is ordinary algebra with indexing over
sets of similar mathematical objects. One of the reasons for
introducing the text-based schema notation was to enable this
kind of mathematics (see especially items 5, 6, 8, and 9 in
Section 2.2).

Direct computer executability is possible if due care is
exercised in designing the notational conventions supported by a
structured modeling system. Standard compiler technology (e.g.,
Aho, Sethi, and Ullman <1986>) can be used to digest schemata
like Figures 5, 7, and 10 because they can be (and, in fact,
are) written in a context-free language. Graph-based notations
probably can be digested with the help of graph grammars (see
Jones <1985>).

Feature (b): model/solver independence with interface
standards and provision for libraries of models and solvers. It
is clear from Section 2.3 that structured models are entirely
separate from any solver that may be invoked on them. Structur-
ed models can be kept in libraries and so can solvers. The de-
sign of interface standards that facilitate coupling solvers to
models is a technical challenge that seems not overly difficult
because all models can be represented using the very same for-
malism. The knotty problem of interface standards can be dealt
with by inverting the usual approach: instead of living with

-18-

multiple solver-oriented standards for modelers to write to,
provide a single model-oriented standard for solver and model-
ing system technicians to write to.

Building a library of models, especially of model classes,
facilitates reusing old models in new situations. A similar
point holds with respect to building a library of solvers. An
organization that undertakes modeling efforts frequently could
achieve a significant productivity gain from such reuse. This
suggests that it could be worthwhile for a group of similar or-
ganizations to collaborate on a joint library of models and sol-
vers, or for a library of generic applicability to be built for
a specific functional area. The latter approach is being imple-
mented for marketing at Purdue, where a major commercial data-
base as well as traditional descriptive and normative marketing
models are being cast in structured form (Wright <1986>) .

Feature (c): generality. The generality of structured
modeling follows from the fact, explained in Section 1.3, that
it formalizes the notion of a definitional system as a way to
describe models — both model classes and particular model in-
stances. Structured modeling does not aim to offer a modeling
paradigm in the usual sense, but rather a lingua franca within
which models from a widP variety of paradigms can be expressed.

The three simple models given in this paper, all drawn from
MS/OR, do not begin to illustrate the generality of structured
modeling. An extensive and more suggestive collection of struc-
tured models is in preparation; it covers a wide variety of
applications to business, database management, economics, engi-
neering, MS/OR, and various other application areas.

Feature (d): life-cycle orientation. The life-cycle of a
modeling application goes from the initial feasibility analysis
to the final completion of the original objectives. Examination
of the many stages in between shows that true life-cycle orien-
tation requires what might best be thought of as an interactive
work "environment". This environment should support not only
models and solvers as discussed previously, but should also
offer a variety of utilities needed for communication, organiz-
ing things and ideas, and for different kinds of ancillary
quantitative analysis. This poses a considerable challenge for
the design of structured modeling system implementations.

Feature (e): general structure/detailed data independence.
The notion of general structure is captured in structured
modeling by the modular and generic structure formalisms. The
notion of detailed data is captured by the notion of elemental
structure. The former can be expressed by a text-based schema,
and the latter by elemental detail tables.

Feature (f): desktop computer based with a modern user
interface. There are two primary challenges: i) performance
difficulties when the number of elements gets large or the user

-19-

i. n . « .u, W»K «k * WKk B M n W * ITU WW JXW> WXW* V)l V^W>. V>t> W>Ji>.^>«>^ J>J.>J.""J."».i,>v><>V.'JTTTViV j.> j

Interface gets sophisticated, and 11) access to mainframe data
and programs. The next generation of personal workstations
(e.g., Creclne <1986>) should provide sufficient resources to
deal with the first challenge for models of at least moderate
size, and malr.frame links are progressing rapidly (e.g. , Derfler
<1986>) .

Feature (g): integrated ad hoc query capabilities. It can
be shown under mild assumptions that elemental detail tables
(proposed for non-graphical notation) can be viewed as a rela-
tional database in third normal form or higher (see, e.g.,
Ullman <1982>) . The primary key columns are the ones to the
left of the vertical double lines; these we call the stub
columns.

This is an important result because it establishes a bridge
between structured modeling and the relatively mature field of
relational databases. One useful consequence is that a strong
point of departure is Immediately available for the development
of query languages for ad hoc retrieval and for implementations
of structured modeling systems.

Feature (h): resident expression evaluation capability.
This requirement is attainable using spreadsheet technology and
extensions thereof. It has the potential for considerable effic-
iency because of element graph acyclicity (the required topolog-
ical sort can be done once and for all for a given schema) .

It is reasonable to conclude that all of the features
defining a "new generation" are achievable by a properly
designed and implemented structured modeling system. They all
have, in fact, been achieved to some degree by prototype
implementations (see Section 4) .

Of course, the simultaneous achievement of all these fea-
tures is likely to exact a price in terms of complexity and
performance relative to systems with more modest ambitions, or
that have a narrower domain of application. Will structured
modeling systems be simple enough to be usable by application
domain experts? Will they be efficient enough for production
applications as well as prototyping? Will they be able to com-
pete with more highly specialized systems? The answers to such
questions must await further progress in computer implementa-
tion.

-20-

3. SOME USES OF STRUCTURED MODELING

This section Illustrates some of the ways In which a struc-
tured modeling system could be used: to do "top-down" model de-
sign by stepwlse refinement, to do "Integrated" modeling, and
for communication and documentation.

3.1 rop-Doi«rn Model Design

Top-down design Is a time-honored concept that has been
used with success by engineers, computer software designers,
and probably by almost every profession concerned with under-
takings of great complexity. For present purposes, "top-down
design" means stepvise refinement based on a hierarchical view
of complexity. The rationale for this approach is to attempt
to get the "big picture" right at the outset with a minimum of
distracting or Inessential clutter, and then to add detail In
stages that take advantage of previously established perspec-
tive. The overall effect is one of hierarchical decomposition
of the complexity dimension.

Structured modeling provides a hospitable framework within
which to develop top-down ideas because modular structure is
hierarchy, and because generic structure usually lends Itself
conveniently to refinement.

Example

We Illustrate top-down model design using another class-
ical model of management science as the point of departure,
namely the economic order guantlty model with multiple (inde-
pendent) items. Figure 7 presents a schema for this model
along with elemental detail tables containing sample data. The
reader should have no difficulty deciphering this schema based
on the explanations given in Section 2.2.

DEMAND RATE, HOLDING COST RATE, and FIXED SETUP COST must,
in virtually every real application, be calculated from other
data. Thus the schema of Figure 7 is but a "first pass" toward
a truly applicable model. It requires further refinement. For
the second pass, assume:

(a) DEMAND RATE must be calculated as the sum of
demands deriving from several final products

(b) HOLDING COST RATE Is the sum of the opportu-
nity cost of capital tied up and the out-of-
pocket storage cost

(c) FIXED SETUP COST Is the sum of separate costs
for the materials and labor consumed.

-21-

RWVMVWVWWVWVnailMMlMmilVanVMI*"«!« '"i '-w m-'»^ ■•■»»■•

Consequently, D, H, and F each must be elaborated into an en-
tire module. The result might be as follows for the &ITENDATA
module (the rest of the schema stays the same).

&ITEMDATA Certain ITEM DATA are provided.

&D DEMAND RATE DATA

FINALPRODp /pe/ There is a list of FINAL PRODUCTS.

DPARTIAL(ITEMi,FINALPRODp) /a/ {ITEM)x(FINALPROD) : R+
Uach FINAL PRODUCT contributes a PARTIAL DEMAND RATE
(units per year) for each ITEM.

D(DPARTIALi.) /f/ (ITEM) ; SUMp (DPARTIALip) Every ITEM
has a DEMAND RATE (units per year) equal to the sum of
its PARTIAL DEMAND RATES.

&H HOLDING COST RATE DATA

VAL(ITEMi) /a/ (ITEM) : R+ Every ITEM has a UNIT VALUE
(dollars per unit).

STORAGE(ITEMi) /a/ (ITEM) : R+ Every ITEM has a STORAGE
COST RATE (dollars per unit per year) associated with
physical possession.

H(VALifSTORAGE!) /f/ (ITEM) ; 0.12 * VALi -I- STORAGEi
Every ITEM has a HOLDING COST RATE (dollars per unit
per year) equal to a 12% opportunity cost of capital
tied up (calculated on the basis of UNIT VALUE) plus
the STORAGE COST RATE.

&F SETUP COST DATA

FMATERIAL(ITEMi) /a/ (ITEM) : R+ The setup of an ITEM
incurs a specific SETUP MATERIAL COST (dollars per setup).

FLABOR(ITEMi) /a/ (ITEM) : R+ The setup of an ITEM incurs
a specific SETUP LABOR COST (dollars per setup).

F(FMATERIALirFLABORi) /f/ (ITEM) ; FMATERIALi + FLABORi
Every ITEM has a FIXED SETUP COST (dollars per setup)
equal to SETUP MATERIAL COST plus SETUP LABOR COST.

Still greater detail can be added at a third pass. Assume:

(d) PARTIAL DEMAND RATES must be built up from demand
estimates for FINAL PRODUCTS and the parts explosion

(e) UNIT VALUE must be assembled from its major com-
ponents

-22-

(f) SETUP LABOR COST must be constructed as labor
hours times labor rate.

Then DPARTIAL becomes this module:

&DPARTIAL PARTIAL DEMAND RATE DEVELOPMENT

DFINAL(FINALPRODp) /a/ {FINALPROD} : R+ Bach FINAL
PRODUCT has an estimated FINAL PRODUCT DEMAND RATE
(units per year).

BILL(ITEMifFINALPRODp) /a/ {ITEM)x{FINALPROD) : Int+
! . There is a tahle giving the number of each ITEM in each
\ FINAL PRODUCT; this is called the BILL OF MATERIALS.
Ig

DPARTIAL(BILLipfDFINALp) /f/ (BILL) ; DFINALp * BILLlp
Each FINAL PRODUCT contributes a PARTIAL DEMAND RATE
(units per year) for each ITEM equal to the estimated
FINAL PRODUCT DEMAND RATE times the appropriate BILL
OF MATERIALS multiplier.

In addition, VAL becomes a module:

&VAL UNIT VALUE DEVELOPMENT

DIRMAT(ITEMi) /a/ (ITEM) : R+ The value of each ITEM
includes a certain amount of DIRECT MATERIAL COST
(dollars per unit).

DIRLAB(ITEMi) /a/ (ITEM) : R+ The value of each ITEM
includes a certain amount of DIRECT LABOR COST (dollars
per unit).

VAL(DIRMATifDIRLABi) /f/ (ITEM) ; DIRMATi + DIRLABi
Every ITEM has a UNIT VALUE (dollars per unit) equal
to the sum of DIRECT MATERIAL COST and DIRECT LABOR
COST.

Finally, FLABOR becomes a module:

&FLABOR SETUP LABOR COST DEVELOPMENT

SETLABOR /pe/ There is a labor class known as
SETUP LABOR.

SETRATE(SETLABOR) /a/ (SETLABOR) : R+ SETUP LABOR
is charged at a certain SETUP LABOR RATE (dollars
per hour) .

-23-

C-,

llPlllPIPHWilil>WiW>iWflWW>fl»TW<Wl>lWfWWWW»W'«wiw»*wnw^T^www^^

SETHOURS (SETLABOR,ITEMl) /a/ (ITEM) : R-f The setup of
an ITEM requires a specific number of SETUP LABOR HOURS
(hours per setup).

FLABOR(SETRATE,SETHOURSi) /f/ (ITEM) ,* BETRÄTE *
SETHOURSi The setup of an ITEM incurs a specific
SETUP LABOR COST (dollars per setup) equal to SETUP
LABOR RATE times SETUP LABOR HOURS.

It is instructive to examine the effect of these stepwise
refinements on the genus graph and on the modular outline.

The genus graphs corresponding to each of the three passes
are given in Figures 8A, 8B, and 8C. The graphs are drawn so that
the additional detail supplied at each pass literally occurs from
the top down.

There is a side point to be made here about a common phe-
nomenon that might be called the "data iceberg". Most textbook
models represent only the tip of a figurative iceberg, ignoring
the great mass of data and associated calculation required
underneath to support the tip that it may bask in the light of
mathematical analysis and computational solution. Structured
modeling can represent this additional detail in an organized
way through stepwise schema refinement.

The modular outlines after each of the three design passes
are shown in Figure 9. This diagram vividly summarizes the
stepwise refinement aspect of the top-down design process. Of
course, stepwise refinement may not always lead to such an
elegant progression of transformations of the modular outline.

Considering that so many new attribute genera have been
introduced, one may wonder whether the final version of the
schema is better viewed as a "model" or as a "database"; only a
few genera have to do with what is actually required to formu-
late the classical EOQ cost minimization problem. Structured
modeling is indifferent to whether it is representing something
that is more like a traditional analytical model or more like a
database. The distinction is artificial and will, we hope, grad-
ually dissolve with the advent of more comprehensive modeling
approaches like the one proposed.

3.2 Integrated Modeling

There are several different things one might mean by "in-
tegrated modeling" (Geoffrion <1986c>). Here it is used in the
sense of coordinated unification of two or more distinct
models. Integration can be across business functions, as when a
production model is combined with a distribution model; across

-24-

geography, as when regional energy models are combined into a
national model; across time, as when a planning model is
combined with a scheduling model; or across other dimensions.

Integrated modeling enables results and insights that
cannot be achieved by separate models. This becomes increasingly
significant for any organization in which modeling has been in
use for some time, as the classical approach of many independent
applications can be expected to reach a point of diminishing
returns. Integrated modeling may even be essential in strategic
studies, which usually involve whole systems rather than sub-
systems, and in very large modeling efforts of any kind, where
independent construction, test, and final assembly of component
models may be the only practical way to cope with the complexity
required of the final model.

For these and other reasons, it is widely believed that
integrated modeling is of growing importance (e.g., Harrison
and de Kluyver <1984> and Walker <1982>).

Structured modeling provides a natural framework for inte-
grated modeling because it makes explicit the essence of what
must be coordinated, namely definitional and computational de-
pendencies among submodels. Moreover, on the basis of limited
experience, it appears that the conceptual integrity of the
submodels usually can be preserved when integration is done
within the structured modeling framework.

Example

A very simple example of integrated modeling is obtained
by juxtaposing the well known Hitchcock-Koopmans transportation
model with the multi-item EOQ model introduced in the previous
subsection. Figure 10 gives a schema for the transportation
model, and Figure 11 gives the corresponding elemental detail
tables filled in with sample data (not used in this example).

If the transportation model is posed on an annualized
basis, solving the usual linear programming problem yields the
"optimal" annual flows, but does not prescribe how often ship-
ments should be made or, equivalently, what the shipment size
should be. Very frequent shipments are small and thus good for
the customer in that they lead to small inventories, but bad in
that they are expensive to receive (they require many transac-
tions) . Infrequent shipments lead to just the opposite result.
The best compromise can be found by solving an EOQ problem for
each shipment link.

The situation can be described by two separate structured
models. One is the transportation model whose schema is given
in Figure 10. The other is the multi-item EOQ model whose
schema is as given in Figure 7 with these modifications: (a)
replace the ITEM genus by a copy of the LINK genus (since each
transportation link plays the role of an "item"); replace the D

-25-

^TWTVVTwnvnwi<vi■rnwn mn ■ ■ i-wn«n-»TT m?-"»^-

genus by a copy of the FLOW genus (since each transportation
flow plays the role of a "demand rate") ; and rename the SETUP$
genus to REC$ to commemorate the reInterpretation of a setup
cost as a shipment receiving cost. See Figure 12 for the two
genus graphs.

To evaluate costs, one may do the following:

1. Choose values for the FLOW variables In the
transportation model and evaluate to obtain $.

2. Set the FLOW attributes In the EOQ model to the
same values as the FLOW variables In the other
model, choose values for the Q variables, and
evaluate to obtain TOT$.

3. Add $ and TOT$ to obtain the grand total cost.

If desired, FLOW can be chosen In Step 1 by solving the usual
linear programming problem, and Q can be chosen In Step 2 by
solving the usual EOQ problem for Its closed form solution.

Sequential rather than simultaneous use of the two models
leads, of course, to suboptlmlzatlon. The two models must be
Integrated If jointly optimal choices of FLOW and Q are desir-
ed. This can be accomplished by joining the two schemata In
this way:

1. Concatenate the two schemata, with the transporta-
tion schema coming first (an arbitrary choice).

2. Drop the LINK and FLOW genera from the second schema,
and reroute all calls to them to the LINK and FLOW
genera of the first schema Instead.

3. Create a new singleton function genus TOTCOST whose
purpose Is to add the values of $ and TOT$; place
It at the very end.

The resulting genus graph Is shown In Figure 13, and the modu-
lar outline In Figure 14. The global optimization problem can
now be posed as choosing values for FLOW and Q so as to mini-
mize TOTCOST.

Notice that the conceptual integrity of each component
model is largely preserved.

-26-

3.3 Communication and Documentation

One of the critical success factors for MS/OR applications
is good communication and documentation. Structured modeling
offers some attractive possibilities in this area.

Perhaps the most important feature of structured modeling
in this regard is the completeness and readability of model
schemata and elemental detail tables (see Figures 5-7, 10, and
11) . If well executed, they are suitable with only minor adap-
tation for nontechnical as well as technical audiences. A sim-
plified version of a schema, called the natural language sum-
mary, is suitable for even the least technical of audiences.
It abbreviates the formal part of each genus paragraph to just
the genus name with free indices suffixed. See Figure 15 for an
example. Schemata and natural language summaries have the ap-
pealing property of providing a dictionary of model parts that
is without forward references.

Thoughtfully designed modular structure contributes greatly
to the readability of a schema, although none of the simple
models used in this exposition is substantial enough to exhibit
the richness of this concept as a means of organizing complex-
ity. A more realistic example is given in Figure 16, which is
based on a capital expenditure planning application done for a
telephone company (Geoffrion <1986a>). Only part of the modular
tree is shown; it goes to a depth of seven levels. Figure 17
gives a partial natural language summary.

Figures 16 and 17 also illustrate a useful technique for
constructing "views" of a model tailored to the needs of spe-
cific audiences: prune away subtrees, but do not separate sib-
lings. Figure 16 exhibits two such views, one used to design a
series of executive seminars at the vice presidential level of
telephone operating companies, and the other used to design a
briefing of budget directors. Both views hide unwanted detail.
The first view is also used to organize the main managerial
documentation for the capital expenditure planning system; in
fact, Figure 17 actually is an excerpt from this documentation.

The genus graph (see Figures 3, 8, 12, and 13) holds prom-
ise as a communication and documentation aid. This is confirmed
by the fact that many authors have independently invented close-
ly related graphics for expository purposes. An example adapted
from an introductory quantitative methods text is shown in Fig-
ure 18. Many other examples can be found in articles and books
on analytical modeling (e.g., the deterministic influence dia-
grams of Howard and Matheson <1984>), artificial intelligence
(e.g., the conceptual graphs of Sowa <1984>) , database systems
(e.g., the entity-relationship diagrams of Chen <1976>), soft-
ware design (e.g., data flow diagrams as in Enos and Van Tilburg
<1981> or Yourdon and Constantine <1979>), and even finance
(e.g., the well known "DuPont graph" given, among other places,
on p.229 of Weston and Copeland <1986>) .

-27-

W^^^T^JiniP WUF'IJi I LP " J M Tl!^ f'F'1 mrrwiw

Extracts of genus graphs often suffice for explanatory
purposes when the entire genus graph Is overwhelming or un-
necessary. Figure 19 shows an extract from the full genus graph
for the capital expenditure planning model: namely, all nodes
that reach one target node (note that genus names have been
replaced by their associated key phrases). This diagram has
been used to explain the capital feasibility test. The explan-
ation proceeds from the top down until the curiosity of the
questioner is satisfied. The dialog went something like this:

Q. How does the Capital Feasibility Test work?

A. It checks whether Total Capital Expenditures are
within the Capital Limits.

Q. Total Capital Expenditures?

A. Yes, this is the simple sum of Portfolio Capital
Expenditures and all Other Capital Expenditures
outside of the portfolio.

Q. Oh, I see.

The modular tree can also be a useful communication graphic.

-28-

^^M^J^i":'i>^^^/^Sji^ i^flj&Afi&i/^iffi ^.tj&^^tj^^^^ .<■/.

4. IMPLEMENTATION

Three prototype structured modeling systems are complete or
nearly so. The first two, LEXICON (Clemence <1984>) and IIS
(Farn <1985>) , were designed early In the evolution of structur-
ed modeling and are discussed only briefly. The third, FW/SM, Is
now being developed at UCLA under the author's direction. All
three adopt the non-graphical notatlonal style (text-based
schema cum elemental detail tables) described In Section 2.2.
Other prototypes are at an earlier stage of development and will
not be discussed here.

4.1 Structured Modeling Systems

An interactive structured modeling environment in the
non-graphical style has four main components:

Model Library schemata for a variety of models
of interest to the organization,
some perhaps with associated
elemental detail

Solver Library a collection of solvers to use in
applications, typically including
solvers for retrieval, simultaneous
equations, and optimization

System Programs

Workspace Store

code that creates the desired func-
tionality of the structured modeling
system

workspaces in development or previ-
ously developed.

The workspace is the primary face of the system seen by the
user. It is model-specific and consists of four parts:

Schema Section here the user composes, maintains,
and browses the text for a single
schema

Elemental Detail
Section

here the user loads, maintains, and
browses the elemental detail tables
associated with the schema

.Reference system-generated reference documen-
Section tation corresponding to the schema

and elemental detail; the user can
manipulate all exhibits using
suitable editors (see Section 4.3)

Activity Section here the user does retrieval, opti-

-29-

mization, other needed model manip-
ulations, and many other things
throughout the modeling life-cycle.

The overall organization of the system should be hier-
archical, and the user interface should be modern (e.g., Jarke
and Vassiliou <1985>, Shneiderman <1987>) and should be reason-
ably appealing to users who are application domain oriented
rather than modeling oriented.

Necessary functional capabilities include:

"Schema Compiler" Read the schema, check the syntax
and higher level structure, create
skeletal elemental detail tables
with resident expression evaluation
capability, and configure a schema-
directed loader/editor to facilitate
data entry and maintenance of the
elemental detail tables.

Create all Reference Section exhibits
automatically.

Accept model manipulation requests
expressed in terms of the schema and
elemental detail tables and invoke
the user-requested solver for re-
trieval, simultaneous equation solu-
tion, optimization, etc.

Make available an outliner, text
editor, table editor, graph maker,
file and case manager, statistical
analyzer, and other utilities that
may be needed during the modeling
life-cycle, especially in connection
with the Activity Section. These
facilities should be well-integrated
and as interactive as is practical.

Other kinds of functional capabilities may be appropriate
for special application contexts.

"Reference Section
Maker"

"Solver
Interfaces"

"Workbench
Facilities"

4.2 Overview of All Three Implementations

Figure 20 gives a brief summary of the three prototypes by
functional capability.

LEXICON was done jn FORTRAN on a mainframe and is aimed
mainly at supporting opiJmization for large linear programming
problems. It links to the advanced optimization system XS of

-30-

aM «B ^ ■«•■•^^■■•■■■■•vavavaHaMi^iiHBWV^as^^iHav «^ •

LEXIWH IIS FW/SM
SCHEMA COMPILER

rtructure ED Tables Implicit Implicit Yes
Resident Evaluation No Yes Yes

No Yes Yes

REFERENCE EXHIBITS

SOLVER INTERFACES
Ad Hoc Query
Optimization

WORKBENCH FACILITIES

Some Several Many

No Yes Yes
LP LP (some) Network,

LP, NLP
Minimal Some Many

Fig. 20 Comparison of Three Prototype Implementations

Brown and Graves <1984>. The schema and data files are entered
and processed in batch mode, but otherwise user interaction with
LEXICON is menu-driven and dialog-based. There is no four-
section "workspace". Only a subset of the full schema syntax is
supported. Elemental detail tables are modified in form and not
directly accessible to the user.

IIS was done in TCnowMedgreMan for the IBM PC/XT and is aimed
mainly at demonstrating the feasibility of a hybrid information/
analytical modeling system. It includes an interface to LINDO
for a restricted class of linear programs. The workbench facil-
ities available are those supplied by KnowledgeMan. The system
is totally menu-driven; it has no "workspace", but a similar
effect is achieved through its hierarchical menu structure. Only
a subset of the full schema syntax is supported and elemental
detail tables are modified in form and not directly accessible
to the user.

FW/SM is being done in Framework for the IBM PC/AT and is
aimed at creating a fully functional structured modeling system.
Framework is a well known integrated multi-function program with
built-in word processing, outlining, spreadsheet, flat file
database, business graphics, and telecommunications. Whatever is
not supported by these facilities can be programmed in Frame-
work's built-in language, or can be done by programs in any
language by running them in a "DOS window" without leaving the
Framework environment. The user interface is visually oriented
and, in keeping with one of the recurring themes of structured
modeling, tree-structured.

Flexible single table retrieval capability is available
from native Framework facilities, and multi-table retrieval
capability has been added. Two types of interfaces to optimi-
zation codes are used: control table and automatic. A control

-31-

table Interface for generalized network optimization Is opera-
tional, and two fully automatic Interfaces for linear and
nonlinear programming are under development.

Further details are given In the next subsection.

4.3 The UCLA Implementation FW/SM

This section reviews the main components of FW/SM according
co the anatomical view presented in Section 4.1.

Model Library

Presently the Model Library contains about fifty schemata
divided into six categories: administrative, database, econom-
ics, engineering, management science/operations research, and
miscellaneous. Many are simple examples drawn from the major
modeling paradigms, but others are translations of models used
by various authors to Illustrate alternative modeling frameworks
or systems. The latter permit comparisons between structured
modeling and these alternatives. A few examples:

- the static Mexican steel Industry model from
Kendrick, Meeraus, and Alatorre <1983> (GAMS)

- the demonstration problem from Ellison and Mitra
<1982> and Lucas, Mitra, and Darby-Dowman <1983>
(the UIMPS and CAMPS systems for LP)

- the educational database example from Chapter 27
of Date <1981> (relational, hierarchical, and
network data models)

- the shipping industry example from Hammer and
McLeod <1981> and the world traveler example from
Hull and King <1986> (semantic database models).

Solver Library

Presently there are four solvers in the Solver Library that
have been or are being interfaced:

- GENNET (Brown and McBride <1984>) for general-
ized network flow optimization

- GINO for nonlinear programming

- LINDO for linear and integer programming

- a query processor for a simple relation algebraic
query language for ad hoc retrieval.

Some of the interfaces are discussed at the end of this section.

-32-

System Programs

System programs are written in FRED (the object-oriented
language provided as an integral part of Framework), in PASCAL,
or in C. FRED programs are executed interpretively, while com-
piled PASCAL and C programs are run through Framevor/c • s DOS
window. These programs are, of course, invisible to the user.
The user sees only a menu of processing options.

Schema Section

The reader has already seen several examples of schemata
(Figures 5, 7, and 10). In Framework, it is natural to make each
genus paragraph its own "word frame" and each module paragraph a
"containing frame." The two main features of the Schema Section
are a syntax checker and Framewor/c • s built-in tree-oriented
editor.

The syntax checker is, like all processing options, invoked
by simple menu selection. It issues diagnostics that pinpoint
departures from the lexical, syntactic, and higher order struc-
ture prescribed for schemata.

The tree-oriented editor combines the capabilities of word
processing with the capabilities of what is sometimes called an
"outliner" (e.g., Dickinson <1986>). An outliner organizes and
manipulates blocks of text (or other material) according to a
user-supplied hierarchical (tree-based) structure. There are
facilities to alter this structure (create, delete, copy, or
move nodes; delete, copy, or move subtrees), to navigate within
it (move toward or away from the root, move to a sibling) , and
to control its display (hide or unhide subtrees, hide or unhide
node content).

These outliner facilities are very useful in the Schema
Section because the paragraphs of a schema are arranged accord-
ing to the modular outline (see Figures 4, 9, and 14).

Elemental Detail Section

The reader has already seen several examples of elemental
detail tables (see Figures 6, 7, and 11). Recall that, for
whatever schema is present in the Schema Section, the Schema
Compiler needs to create empty elemental detail tables complete
with resident expression evaluation capability. In Framework, it
is natural for each table to be its own "database frame" with a
FRED-coded "defining formula" for the generic rule associated
with each column corresponding to a function or test genus.

The two main features in this section are Framework's
built-in table-oriented editor and a schema-directed loader/
editor produced by the Schema Compiler.

-33-

mmmmmmmmmmmmmmmmmmmmmmmm

The table-oriented editor understands the language of rows,
columns, and data formats. Among its functions are data entry
in any of three views, flexible copy and move operations, single
table data extraction via general logical expressions, sorting,
and a variety of column statistics. This editor is more than
adequate for most keyboard-oriented input and editing tasks
arising for the elemental detail tables.

Greater efficiency is possible with a schema-directed
editor (not yet implemented). It has three primary functions,
all of them based on information contained in the schema:
automatic entry, error-trapping, optional table operations,
and prompting.

"Automatic entry" fills out columns whose contents are de-
termined by the content of other columns. Again using the feed-
mix model as an example, the first two columns of the ANALYSIS
table can be filled in automatically with the Cartesian product
of nutrients and materials after both of those columns have been
filled out for the NUTR and MATERIAL tables (note that the index
set statement of the ANALYSIS paragraph of Figure 5 stipulates a
full Cartesian product) .

"Error-trapping" rejects unacceptable entries based on
information in the schema. For example, an attempt to enter a
text string or a negative number in the minimum daily require-
ment column of the NUTR table would be resisted or flagged
because the range statement of the MIN paragraph in the schema
stipulates that only nonnegative numbers are allowed. Error-
trapping can be on-line or done en masse when the user wishes.

"Optional table operations" are mostly manipulations that
the system can perform to bring an elemental detail table into
conformity with an index set statement. For example, such a
statement can specify that a certain binary relation (like
transitivity) must hold for two stub columns over a common
domain; the system can help to enforce the desired relation
(e.g., by taking the transitive closure).

"Prompting" is really a menu of options which the user
currently has depending on what prior data entry or editing has
taken place. With the feedmix model (see Figures 5 and 6) , for
example, the option to enter the minimum daily requirements
would not appear until the list of nutrients has been entered.

Reference Section

There are many different summary reports that one might
want to see in coniection with a Schema Section, whether newly
composed or called up from memory. The same is true, although
to a lesser extent, of the Elementa_ Detail Section. Instead of
trying to anticipate and produce all of these, a surprisingly
successful strategy is adopted: produce a few basic displays
containing the essentials, and let the user manipulate them

-34«

interactively to obtain customized reports. The manipulation can
be by Framework's word processor and outliner for text displays,
by Framework's table-oriented editor for tabular displays, or by
a graphics-oriented editor (not available within Framework) for
graphic displays.

Here are some examples of the basic displays produced by
FW/SM, and of typical manipulations. They are of three types:
textual, tabular, and graphical.

Reference Section: Text Displays

The main two text displays are the Natural Language Summary
and the Modular Outline.

The Natural Language Summary was introduced in Section 3.3
and illustrated in Figure 15. Tailoring it to specific audi-
ences, as in Figure 17, is facilitated by the outliner which, as
mentioned earlier, supports subtree hiding (e.g., hide all of
the genus paragraphs under &MATERIALS) as well as the usual word
processing functions. Subtree hiding and unhiding also provide
versatile tools for on-line briefings; start with everything
hidden except the direct descendents of the root, and dynamic-
ally unhide and re-hide detail as appropriate.

The Modular Outline (e.g.. Figures 4, 9, and 14) is auto-
matically available as Framewor/c's "outline view" of the Schema
Section. Subtree hiding/unhiding is again the most useful
manipulation.

Reference Section: Tabular Displays

The main two tabular displays are the Adjacency/Reach-
ability Matrix and the Genus/Module Summary. Framewor/c's word
processor and table-oriented editor are useful for manipulating
them.

The Adjacency/Reachability Matrix is illustrated in Figure
21. Each entry indicates the number of steps it takes to go from
the row genus to the column genus in the genus graph (two or
more steps print as "2") . The modular outline is used to deter-
mine both row and column order; by the no-forward-reference
property, the matrix is necessarily upper triangular. Reading
this table columnwise indicates which genera definitionally
influence the column genus. Reading the table rowwise indicates
which genera are definitionally influenced by the row genus.
Thus, for example, if an error is discovered in one of the
analysis coefficient values, one can tell at a glance which
other genera could be affected.

The Geuus/Wodule Summary is illustrated in Figure 22. The
NAME column contains all genus and module names in modular
outline order. The SEQ and PATH columns provide two reference
numberings to permit the rows to be restored to their original

-35-

r^V^f^^-UH'^'^T^n^'^'^'^ 'l»FWr^T^r^p-i-tWTvmT\-rrrmr

order after rearrangement and to facilitate finding paragraphs
in the schema. The first numbering is obvious. The second one
encodes, in a standard way, the position of each node in the
modular outline (Figure 4). The TYPE column indicates which of
the five possible types each genus is. The TABLE column gives
the elemental detail table name corresponding to each genus.
Finally, the KEY PHRASE column gives the (undfarlined) key phrase
appearing in the interpretation part of each genus and module
paragraph.

Consider now a few of the easy but useful manipulations of
these two tables that Framework supports. Sorting on the GENUS
column facilitates row access to the Adjacency/Reachability
Matrix because then the row names are alphabetized. To produce a
list of all genera that reach ANALYSIS, one may sort on the
ANALYSIS colu1' nd block-copy the first part of the resulting
GENUS columi.. ..j.cernatively, one may extract the desired rows
by executing the selection formula "ANALYSIS > 0". The logic of
a selection formula can be arbitrarily complex, as logical
"and", "or", "not", and other operators are available.

Sorting the Genus/Module Summary on NAME produces an alpha-
betized dictionary of genus and module names; on TYPE produces
(contiguous) lists of the modules and of the genera of each of
the five types; on TABLE produces an alphabetized list of tables
and the genera associated with each; and on KEY PHRASE produces
an alphabetized list of key phrases. Row extraction via logical
expressions can also be useful. For example, it is easy to
extract just the rov/s corresponding to attribute genera in the
&MATERIALS module.

Reference Section: Graphical Displays

The two main graphical displays of interest are the Genus
Graph (e.g.. Figure 3) and the Modular Tree (e.g.. Figure 4).
Their full implementation awaits the acquisition of suitable
graphics tools. A graphic display editor would also be desir-
able, so that the user can (a) reposition nodes or change their
representation, and (b) pan and zoom to overcome the limited
size and resolution of the monitor screen. In the meantime, a
partial implementation allows any one node of the genus graph to
be displayed centrally on screen along with all adjacent arcs
and nodes. In the style of Javelin's "Diagram view", the genus
graph can be "walked" by changing the central node to one of its
neighbors.

In addition to supporting on-screen graphic displays, it is
also desirable to be able to drive a graphics printer and/or
plotter so that larger, more detailed exhibits can be prepared.

-36-

rmmmwwww^mww^^^mwm 9 ti ■m»in n» I»»I—TW^W» " »imi^i J<W»WH^ I'^HHIWH^H^ tf»n^ iyiij»uii»npnwr

Activity Section

The main facilities required by the Activity Section for
MS/OR applications are those for retrieval, those for optimiza-
tion, and general workbench tools. We discuss each in turn.

Here are three simple examples of queries that could arise
in connection with the feedmix model:

(a) List the materials in decreasing order of unit cost.

(b) List the materials used in quantity greater than 1
pound per day per animal and with unit cost greater
than 2 dollars per pound.

(c) List the materials with above average analysis in
those nutrients for which the current mix fails the
nutrition test.

The ability to answer such queries is important in order to gain
full advantage of the information in the Elemental Detail Sec-
tion, and in order to support a modeling application over its
entire life-cycle. A distinction should be made between queries
that involve but a single table and those that involve more than
one. The first query above involves just one elemental detail
table, while the other two involve two tables.

Framework provides flexible facilities for ad hoc query of
single elemental detail tables. A simple relation algebraic
query language has been implemented to permit multi-table ad hoc
query. The five basic relation algebraic operations are support-
ed, and also a few other important ones like the "natural join"
(see, e.g., Section 5.2 of Ullman <1982>). An interface to a
more advanced relational database package should be feasible be-
cause of the result mentioned in Section 2.4 under feature (g).

One style of optimization solver interface is the control
table, a non-procedural device by which the user instructs the
optimizer how to operate on the model at hand. Figure 23 gives
an example of the GENNET control table filled in so as to make
GENNET solve the transportation model of Figures 10 and 11. This
table is independent of the content of the elemental detail
tables so long as the schema does not change. (The column head-
ings never change, but the row entries must be tailored to each
schema, i.e., to each class of network flow models.) The syntax
is straightforward. The last line can be interpreted as follows:
generate arcs for all rows in table LINK, with the tail nodes
taken from the PLANT column and the head nodes taken from the
CUST column; use unit costs from the COST column of table LINK,
infinite upper flow capacities, zero lower flow capacities, and
no gains or losses on the flows (the last three entries could
have been omitted, as they coincide with the default values).

-37-

1

Another style of optimizer interface is to make it almost
fully automatic. The user would simply issue a command that
identifies the objective function (a single function element),
the variables (usually a list of variable attribute genera), and
the constraints (usually a list of test genera). For example,
the command to solve the transportation model might be:

"Choose FLOW to minimize $ subject to
TiSUP, T:DEM using GENNET."

Two such interfaces are under development for GINO and any LP
optimizer that reads standard MPS input.

It is not clear at this time which of these two styles of
interface is best in which circumstance. There are advantages to
requiring the user to understand both the model and the solver
at hand well enough to be able to fill out a simple control
table linking the two. On the other hand, there are advantages
to minimizing the work required of the user.

Whichever interface style is adopted, no computer programm-
ing skill is required of the user and it should be easy to
switch optimizers if more than one apply to the model at hand.

If structured modeling systems should come into wide use,
there would be incentives for optimizer developers to make their
solvers available for inclusion in the Solver Library with suit-
able interface facilities. First, it would leave them free to
concentrate on algorithmic matters without the distraction of
having to build matrix generators, report writers, and user
interfaces up to current desktop standards. Second, it would
give access to realistic test problems. And third, it would
supply a broader potential user base.

Other kinds of solvers besides those for retrieval or op-
timization would be desirable additions to the Solver Library.
For example, a general equation-solver would be useful (e.g.,
Derman and Sheppard <1985>).

For workbench facilities we rely at present mainly on the
integrated facilities of Framework: word processing, outlining,
simple database, business graphics, spreadsheet, file manage-
ment, and telecommunications. As an illustration. Figure 24
shows two graphs produced via standard menu options from the
first elemental detail table in Figure 7. Desirable additional
facilities include an input/output form editor (e.g., Prichard
<1985>), data extraction tools (e.g.. Belanger and Kintala
<1985>), interactive data analysis, and statistical analysis.

-38-

MMMvu^an- am mjjfti ^ <, K ^ ^ iVR.- ^.Titr^^ ^^^^\o^.\v\s.\^\^A.v^^\v^.^.\^\v^^\■w"te.Vu^P■»^^ vWXVA^JXVXi'r Jafei-'r^^^yj

5. OPPORTUNITIES FOR FURTHER WORK

Structured modeling provides many opportunities for further
research, development, and cross-fertilization with established
fields. Some of these opportunities are indicated here under
four headings: the structured modeling framework, model design,
implementation design, and model management systems.

Seven types of expertise are especially useful: discrete
mathematics, analytical modeling, decision support system de-
sign, database management, high-level programming language de-
sign, software engineering, and artificial intelligence. The
relevance of the first three is obvious. The relevance of the
others derives from certain interdisciplinary parallels.

The parallels can be stated as follows. Designing a frame-
work for analytical modeling is analogous to designing a data
model (e.g., Tsichritzis and Lochovsky <1982>), designing a pro-
gramming language (e.g., Shaw <1984>), and designing a framework
for knowledge representation (e.g., Brachman and Levesque
<1985>). All of these design activities are centrally concerned
with representational frameworks. Moreover, designing a model
schema within a framework for analytical modeling is analogous
to designing a database schema within a given data model, de-
signing a computer program within a given programming language,
and designing a knowledge base within a given framework for
knowledge representation.

It follows that the fields of database management, program-
ming language design, software engineering, and artificial in-
telligence all have potentially important contributions to make
to structured modeling. In fact, work in any of these fields can
inform all of the others.

5.1 Structured Modeling Framework

The structured modeling framework itself can be studied in
a theoretical way.

Scope and Comparative Studies

It would be useful to have a better understanding of the
representational scope of structured modeling and its rela-
tionship to other frameworks, including those from related
fields.

Ordinary mathematical programming models, graph and network
models, and spreadsheet models are among those that always can
be rendered as a structured model. What kinds of models cannot
be so rendered? Are some types of recursive models intractable?

-39-

fUWU^UWUPiiW V^ ' I ■ J^"* r^r ■vrvi^*m-''irw7wi-v

It turns out that any relational database can be rendered
as a structured model. This is argued constructively in a forth-
coming technical report and is proven theoretically by Farn
<1985> using first order logic (more on this below). Farn also
shows that the Entity-Relationship data model of Chen <1976> is
subsumed by structured modeling. What about other data modeling
frameworks? One that has been examined in detail is the well
known and influential Semantic Data Model (SDM) of Hammer and
McLeod <1981>. Most of the semantic features of SDM can be ren-
dered straightforwardly in structured modeling, and virtually
all of the remaining ones violate one or another tenet of struc-
tured modeling (usually avoidance of redundancy or the desira-
bility of divorcing general structure from detailed data).
Several other data models appear worthy of careful examination.

Functional programming languages (e.g., Glaser, Hankin and
Till <1984>) bear a strong kinship to structured modeling.
These declarative (non-procedural) languages are more problem-
oriented than conventional computer programming languages, have
a simpler mathematical basis, and are better suited to exploit-
ing certain highly parallel computer architectures. How does
their expressive power relate to that of structured modeling?
It is intriguing to note that, from the functional programming
viewpoint, the differences between "modeling" and "programming"
largely disappear.

An area where modeling and programming have often been con-
fused is discrete event simulation. It might seem that structur-
ed modeling is not applicable to this area because it does not
allow the kind of procedural programming often used in the past
to accomplish such simulations, but a research direction is
suggested elsewhere (Geoffrion <1986b>) that may bring discrete
event simulation within the reach of structured modeling.

Is structured modeling general enough to encompass any of
the knowledge representation frameworks used in artificial in-
telligence (e.g., logic, production rules, semantic networks,
or frames)? If so, then it should be possible to build hybrid
systems that include access not only to solvers for retrieval
and optimization, the mainstay model manipulations of struc-
tured modeling, but also to some types of inference engines. If
not, then what additional syntactic/semantic extensions does
structured modeling require in order to represent AI knowledge
bases?

Two knowledge representation frameworks warrant special
discussion: first order logic and semantic networks.

First Order Logic

First order logic (FOL for short — see, e.g., Barr and
Feigenbaum <1981>) is important for several reasons. First, it
is one of the foundations on which AI was originally erected.
Second, it probably is the best developed mathematically of all

7.
\

WW* H'\J*I'I.*>WT1

knowledge representation frameworks. Third, and most pertinent
for the present discussion, FOL provides a common ground on
which many alternative modeling frameworks can be understood and
compared.

Levesque and Brachman <1985> have used FOL to help under-
stand what seems to be an inherent trade-off between the ex-
pressiveness of knowledge representation frameworks and their
computational tractabillty. Reiter <1984> has expressed the
relational data model in FOL and used this view to illuminate
questions relating to query definition, incomplete information,
integrity constraints, and extensions with greater semantic
expressiveness. Li <1985> has recast the Entity-Relationship
model and Semantic Data Model in FOL, and used this view to
show that the latter subsumes the former. As mentioned earlier,
Farn also used this approach.

A clear understanding of the relationship between struc-
tured modeling and FOL should yield insights into the express-
ive power of structured modeling, both alone and in relation to
other modeling frameworks that may be recast in terms of FOL.
It should also serve as a useful compass when contemplating
future changes in the structured modeling framework and, possi-
bly, as a gateway leading to the eventual incorporation of
inference engines into structured modeling.

Chari <1985> is looking into this relationship and doing a
PROLOG implementation.

Semantic Networks

The term "semantic network" actually covers a diversity of
representational formalisms based on attributed graphs (e.g.,
Brachman and Levesque <1985>). It is said to be the most popular
of all approaches to knowledge representation.

Our interest in semantic networks is that it appears to be
the closest of all knowledge representation approaches to
structured modeling, particularly in the rich development pre-
sented by Sowa <1984>. This book is the culmination of a long-
term effort to unify the foundations of artificial intelligence
in terms of "conceptual graphs". Many conceptual graphs can be
represented as structured models and, conversely, a subset of
all structured models can be represented as conceptual graphs.
This relationship is explained in some detail in Geoffrion
<1986b>.

Of particular interest is Sowa's demonstration of a two-
way mapping between conceptual graphs and first order logic.
This provides a way of attacking the agenda set forth in the
previous topic. It could also lead to a kind of inference
theory for structured modeling analogous to that available for
FOL.

-41-

Also of interest Is Sowa's proposed two-way mapping between
conceptual graphs and natural language. It may be possible to
develop an analogous mapping between structured modeling and
natural language.

Conceptual Modeling

"Conceptual modeling" is a term coined to symbolize the
need to cross-fertilize and harmonize common modeling issues
arising in three previously independent fields: data modeling in
database theory, knowledge representation in artificial intelli-
gence, and programming language abstractions in high-level lang-
uage design (Brodie et al <1984>). This requires raising model-
ing to a higher plane of abstraction and generality.

Analytical modeling as practiced in MS/OR is an important
and conspicuous omission from the list. The goal of conceptual
modeling should be to find the common abstract ground of all
four fields. Since structured modeling already provides a for-
mal framework for analytical modeling and, as has been mention-
ed, for other types of modeling as well, it would be appealing
to study how structured modeling can contribute to both the
original and expanded mission of conceptual modeling.

Successful work along these lines would have two primary
benefits. First, it would produce a deeper and more general
understanding of the modeling process so that it can be prac-
ticed more as a science and less as an art. Those who understand
this more general theory of modeling would be armed with con-
cepts and distinctions that sharpen their ability to organize
the complexity of reality in formal ways. Second, it could
produce a correspondence between each modeling framework and a
master set of modeling abstractions, whether the framework is
from data modeling, knowledge representation, programming lan-
guage abstractions, or analytical modeling. One would then be
in a position to determine the relative power of the various
modeling frameworks, and to translate more easily among them.
This could be a powerful approach to many of the comparative
studies issues raised earlier, and would complement the first
order logic approach mentioned in that context.

Extensions

Extensions of the existing structured modeling framework
are possible. One attractive possibility would be to allow
attribute elements to have values that are specified only proba-
bilistically. This would facilitate some types of stochastic
modeling and Monte Carlo simulation. Another possibility would
be to allow an infinite number of elements. This would, for ex-
ample, allow a genus to represent a countable infinity of time
periods and thus permit modeling infinite time horizons explic-
itly rather than implicitly.

-42-

Other extensions and refinements of a less radical nature
may also be of interest. For example, the syntax and semantics
of generic calling sequences, range statements, index set state-
ments, and generic rules could be refined to facilitate express-
ing details that are presently awkward or impossible to express.
There is room for considerable variation among implementations
of structured modeling, and in fact beyond a certain level of
detail most syntax probably should be implementation-specific.

Designing extensions is an area calling for considerable
discretion. The unbridled pursuit of representational power in a
modeling framework can easily lead to excessive complexity, to a
loss of previously available functionality, or to incompatibil-
ity with the desirable features listed in Section 1.2. Often it
is wiser to let the user of a modeling system carry the burden
of certain model details rather than to impose the burden on the
system.

5.2 Model Design

Assuming one variant or another of a structured modeling
framework, how should one» go about designing a model — particu-
larly the generic and modular structure — for a given practical
application? It is always possible tc design different struc-
tures that are more or less equivalent for any particular situa-
tion, but not all of these are equally useful. Some will have
better properties than others. Principles are needed to help
guide the practitioner.

The interdisciplinary parallels noted at the outset suggest
that it is useful to look to neighboring fields for related
ideas and results that can be adapted to the special needs of
structured modeling.

"Normal Form" Theory

Recall that designing a relational database schema is anal-
ogous to designing a structured modeling schema. The theory of
functional dependency and "normal forms" has been developed to
avoid troublesome insertion, deletion, and update anomalies for
relational databases (e.g.. Chapter 7 of Ullman <1982>). Are
there similar issues to be studied for structured modeling?
Structured modeling appears to be relatively free of such anom-
alies, but it remains to establish this formally and to devise
countermeasures for such cases as may exist. Farn <1985> was the
first to examine this area.

Program and System Design Techniques

Recall that designing a computer program is analogous to
designing a structured modeling schema. Many criteria have been
proposed for what constitutes a "good" computer program, includ-
ing these adapted from Yourdon and Constantine <1979>: clarity

-43-

■p^^^v^v^^VWVnasfWTwvnvnwwW^^nwvwa m ■ • ■■ inaii KII**! v wi^'wi^ir«

of intent, execution efficiency, correctness, maintainability,
modifiability, flexibility, and generality. Each of these has an
obvious meaning in the analogous context of structured
modeling.

Computer scientists and experienced implementors have long
pursued an understanding of how computer program and system
design influences these and other criteria. They have not
hesitated to propose design techniques; among them are modular
design, top-down design, structured design, Jackson's method,
HOS, SADT, and others (e.g., Yourdon <1975> and Enos and Van
Tilburg <1981>) . If much of this work is pragmatic, stylistic,
or otherwise subjective in character, this may be due to the
inherent difficulty of the task and does not necessarily reflect
adversely on the utility of this work. Some of these contribu-
tions can help inspire guidelines and techniques for designing
good structured modeling schemata.

One of the classic contributions in this vein is "struc-
tured programming" (see Dahl, Dijkstra, and Hoare <1972> and
Wirth <197l>) . The spirit of structured programming is reflected
in any schema with a well-considered modular structure, for
genera then will obey a transparent hierarchical organization
and there will be no forward references.

Knowledge Base Design Techniques

Recall that designing a knowledge base is analogous to
designing a structured modeling schema. Are there knowledge
base design techniques that can be adapted to structured
modeling?

Is it possible to design an expert system that can con-
struct a rough structured modeling schema for a new situation?

5.3 Implementation Design

Turning structured modeling ideas into good computer
implementations raises many design challenges.

Language and Compiler Design

How can the context-free schema language used in this paper
be improved? Would non context-free languages offer any advan-
tages? Is a syntax-directed editor practical (e.g.. Reps,
Teitelbaum and Demers <1983>)? If so, this would significantly
enlarge the pool of potential users because nearly any language
is much harder to write than to read. What is the best design
for the Schema Compiler? If a command language is needed to
support some of the work carried out in the Activity Section of
the workspace, what should its syntax be?

-44-

\-KMX**MIL*.KUIL**MKUn.Mi^rj<UMiuiiu<iwnjt^ \x^;unjuutBJ*i"JiftAJ^nxl\XA> -J- .'J^V^V. rjcJ>r^AMV//JWJUWV.V^.-.VA»Af^■WV',V\AI"-V.VIA»:A;W

To consider just one topic in a little more detail, recall
our intent to endow a structured modeling system with ad hoc
query capabilities in the tradition of database management
systems. We know that we can adopt virtually any relational
database query language since, as explained earlier, elemental
detail tables can be viewed as a relational database. But it
should be possible to do better than that because a structured
modeling schema has much more semantic content than a relational
database schema. Thus an enticing topic is how to design a
schema-directed query language and processor that is both sim-
pler to use and more powerful than whatever is adopted as the
point of departure from the realm of relational database sys-
tems. See Farn <1985> for an early contribution along these
lines.

Data Structures

Data structure design for elemental detail becomes impor-
tant when, as is often the case in medium to large-scale
applications, the total number of elements is in the thousands
or higher.

User Interface

Is a fully graphic, rather than text-oriented, interface
based on the genus graph practical for the Schema Section of the
workspace? The work of Jones <1985> seems particularly applic-
able here because it specifically addresses attributed graphs
(which, of course, is the basic mathematical formalism of struc-
tured modeling). Jones' work and its relation to structured
modeling are discussed at some length in Geoffrion <1986b>.

What is the best user interface for the schema-directed
loader/editor in the Elemental Detail Section? It must balance
prompting capabilities against flexibility of data entry.

Ease of use is a design objective of a structured modeling
system because accessibility to problem domain experts (manag-
ers, policy makers, etc.) and user productivity are major goals.
This suggests exploring how to exploit the availability of key
phrases and explicit definitional linkages in a schema in order
to achieve something approaching natural language dialog
throughout the workspace. Natural language techniques from
artificial intelligence could be useful. A promising approach
along these lines would be to apply the work of Sowa <1984>
mentioned earlier.

Another desirable feature would be the ability to select
automatically the most appropriate solver depending on the par-
ticular query posed by the user and the mathematical nature of
the model. This poses some deep questions of problem recognition
and classification.

-45-

Solver Interface

Given a particular solver, how can it be installed in the
Solver Library and interfaced once and for all with the rest of
the system?

The interface can take one of several forms. One is to
provide for a nonprocedural control table for the user to fill
out whenever the solver is to be invoked. Another is to make
the interface fully automatic by constructing a program that can
read any compatible structured model and construct the necessary
solver inputs therefrom. Both approaches are discussed in Sec-
tion 4.3 in the context of solvers for optimization.

If theoretical work on reconciling structured modeling with
the knowledge representation frameworks of artificial intelli-
gence is successful, then some new implementation design issues
arise: how to package AI solvers (for reasoning, question-
answering, and other purposes) for installation in the Solver
Library, and how best to interface with them. Any translation of
a model representation that may need to occur should be totally
transparent to the user.

Factorable Programming Technology for Derivatives

Expression evaluation is supposed to be a resident capabil-
ity of a structured modeling system and so is not ordinarily
thought of as requiring a special solver. However, a special
solver may well be required if first and perhaps higher order
derivatives are desired for function element values viewed as
functions of prior attribute element values. McCormick <1983>
has shown how to calculate such derivatives efficiently and
exactly if the functions in question are represented in so-
called "factorable form". Roughly speaking, this means that
each function must be expressed as compositions of simple sums,
products, and univariate transformations.

Lenard <1986> observed that, for many models, a structured
modeling element graph supplies the better part of the required
factorable representations if a little care is exercised when
designing the model schema. Can this observation be implemented
so as to achieve efficient computation of derivatives with mini-
mum inconvenience to the modeler?

Program Integration Techniques

A structured modeling system incorporates many standard
capabilities along with the novel ones. It should be much more
efficient to assemble such a system from existing components
than to build it from the ground up. This calls for program
integration techniques.

-46-

A number of techniques are sketched in a forthcoming tech-
nical report. These and others can be found in the literature
and in existing systems (e.g., Vo <1985>) . Which techniques are
most suitable?

Continuous Tine Models

Many models with continuous time dynamics require attribute
and function element values to be entire functions of time.
Evaluation can then involve solving differential equations and
taking integrals, and different kinds of solvers may then become
necessary (e.g., for optimal control) by comparison with those
used for static or discrete time models. This poses implementa-
tion design problems that have not yet been studied.

Data Flow Computers

It turns out that the element graph of a structured model
is essentially equivalent to a machine-level program for a data
flow computer, a kind of parallel processing architecture that
overcomes some of the limitations of conventional von Neumann
computers (e.g., Ackerman <1982>). This suggests that evalua-
tion could be an extremely efficient process on such a computer.
Implementation design for structured modeling on data flow
computers is an attractive and untouched topic.

5.4 Model Management Systems

It has been recognized during the last decade that better
computer-based systems are needed to support modeling in organ-
izations where there are many models and many users. This sit-
uation raises important issues in the management of information
resources. A variety of approaches to these issues can be found
in a rapidly growing literature. See, for example, Dolk and
Konsynski <1985> and Palmer <1984>. An extensive bibliography
has been compiled by Blanning <1986>.

It can be argued that a structured modeling system of the
type envisioned here provides the kernel of a model management
system. The Model Library already provides for multiple models,
the Solver Library already provides for multiple solvers, and an
explicit design goal is to support the entire modeling life-
cycle, which typically involves many people spanning different
roles. One can create a structured model of the Model Library
itself to categorize models by type, purpose, users, files
needed, and so on. One can do a similar thing for the Solver
Library, the System Programs, the Workspace Store, and for the
community of users. Such tools can help support the essential
managerial functions of model management. The first papers in
this general vein are Dolk <1986a> and <1986c>.

-47-

Several new research topics are suggested by a structured
modeling approach to model management. Three are selected for
mention here.

Translators

There is a practical need to convert existing models,
data, and associated materials to and from the lingua franca of
structured modeling. It is not realistic to expect structured
modeling to become the only language used. Cohabitation with
other languages and systems is Inevitable. Thus translators are
needed for conventional mathematics and other modeling lan-
guages, data processing applications, and systems for informa-
tion management and decision support.

Data Acquisition Techniques

Data acquisition is a topic of importance to organiza-
tions with multiple data sources on computer media. Can tools
for data acquisition be designed so as to be schema-directed,
that is, able to acquire data that are based on inferred or
user-supplied correspondences between a model schema of in-
terest and models describing the data sources?

Formalizing Model Schema Operations

It may be possible to formalize the basic operations over
model schemata used for stepwise schema refinement, model com-
parison, model integration, and other kinds of development or
model management work. For example, an important operation is
joining two schemata together in such a way that equivalent
genera are merged. Relatively few operation types probably
account for most of the operations performed in practice.
Formalization could bring orderly thought to many activities
that would otherwise be ad hoc, and could lead to improved
computer-based support for important classes of activities.

There are at least three possible approaches to formal1-
zation. First, take a tree manipulation approach based on modu-
lar structure. Second, take a graph grammar approach based on
an attributed graph view of structured modeling (cf Jones
<1985>). Third, take a formation rule approach based on a
semantic network view of structured modeling (cf Sections 3.5
and 3.6 of Sowa <1984>). All three deserve exploration.

-48-

i imt \rm *.~* .- n ^ « >

6. CONCLUSION

Structured modeling is a style intended to produce high
quality model-based work with greater productivity and user
acceptance. To achieve this objective it will be necessary to
develop professional quality modeling environments based on
these ideas and to produce cogent pedagogical materials for
practitioners. These materials should also explain how to use
structured modeling ideas in conjunction with conventional
software.

The current prototype implementation FW/SM is a useful step
toward professional quality software for structured modeling. It
has helped to refine the original vision of a computer-based
structured modeling environment and will continue to shed light
on a variety of issues as new features are added and experience
with it accumulates.

The development of pedagogical materials for practitioners
is still in its early stages. Nevertheless, a few pioneers have
already undertaken development work aimed at practical appli-
cation.

It is too early to say whether systems based on structured
modeling will succeed in providing the answer to some of the
problems and opportunities facing MS/OR and kindred communities.
Whatever the outcome, we submit that the eight design objectives
of Section 1.2 merit serious attention by designers of new
systems.

Serious attention is also merited by the striking inter-
disciplinary parallels pointed out in Section 5 between analyt-
ical modeling, database management, programming languages and
software engineering, and artificial intelligence. Cross-
fertilization is a most attractive undertaking. Progress in any
of these fields informs the others.

The challenges of trying to conceive and bring into being
a new generation of modeling systems are exciting and impor-
tant. However, one should keep in mind that language influences
how people think. Any coherent modeling system provides a "lan-
guage" for modeling, and so must influence how its users think
when modeling or doing modal-based analysis. We saw in Section
3, for example, that a structured modeling systen». leads natur-
ally to top-down and integrated approaches to model design, and
to certain styles of communication with lay audiences. Are
these influences truly beneficial? What other, perhaps less
apparent, influences are there? We need to understand these
issues in the broad context of rational cpproaches to mankind's
organized activities, not only for structured modeling, but
also for alternative modeling approaches. This is the true
challenge of making modeling more of a science.

-49-

UF« *ar . • » K » rj. '^. r.« .uw-A..*,. ./vw vj r^ fjtr .*\. * * t * i ■ -i v^, . •> .LA <-■ -, i •. > .. v/.vi ;i M... . \ ..■ 4A.1MUM .*»;■. M. r .. r vmn L^iAJUW\/v\A/*n

BIBLIOGRAPHY

ACKERMAN, W. <1982>. "Data Flow Languages," Computer, 15:2 (Feb-
ruary), 15-25.

AHO, A.V., R. SETHI and J.D. ULI21AN <1986>. Compilers, Addison-
Wesley, Reading, MA.

BARR, A. and E.A. FEIGENBAUM <1981>. The Handbook of Artificial
Intelligence, Volume 1, William Kaufmann, Los Altos, CA.

BELANGER, D.C. and C.M.R. KINTALA <1985>. "Data Extraction
Tools," AT&T Technical J., 64:9 (November), 2025-2035.

BISSCHOP, J. and A. MEERAUS <1982>. "On the Development of a
General Algebraic Modeling System in a Strategic Planning
Environment," Math. Programming Stud. 20 (October), North-
Holland, Amsterdam, 1-29.

BLANKING, R.W. <1986>. "Tutorial on Model Management," paper
presented at HICSS-19, Hawaii, January.

BODILY, S. <1986>. "Spreadsheet Modeling as a Stepping Stone,"
Interfaces, 16:5 (September-October), 34-52.

BRACHMAN, R.J. and H.J. LEVESQUE <1985>. Readings in Knowledge
Representation, Morgan Kaufmann, Los Altos, CA.

BRODIE, M.L. <1984>. "On the Development of Data Models," in
Brodle et al <1984>.

BRODIE, M., J. MYLOPOULOS and J. SCHMIDT <1984>. On Conceptual
Modeling, Springer-Verlag, Berlin.

BROWN, G.G. and G.W. GRAVES <1984>. "XS Mathematical Programming
System," Graduate School of Management, UCLA, personal communi-
cation.

BROWN, G.G. and R. McBRIDE <1984>. "Solving Generalized Net-
works," Management Sei., 30:12 (December), 1497-1523.

BURGER, W.F. <1982>. "MLD: A Language and Data Base for Model-
ing," IBM Research Division, San Jose, Research Report RC 9639
(#42311), September 14.

CHARI, S. <1985>. "Knowledge Representation Using Structured
Modeling," Research Proposal, Graduate School of Management,
Computers and Information Systems, UCLA, December.

CHEN, P.P.S. <1976>. "The Entity-Relationship Model: Towards a
Unified View of Data," ACM Trans. Database Systems, 1:1 (March),
9-36.

-50-

WWÄimijfaXUjftOtVXUy^.*^^

CHILDS, C. and C.R. MEACHAM <1985>. "ANALYTICOL - An Analytical
Computing Environment," AT&T Technical J., 64:9 (November),
1995-2007.

CLEMENCE, Jr., R.D. <1984>. LEXICON: A Structured Modeling
System for Optimization, Master's Thesis, Naval Postgraduate
School, Monterey, CA, June.

CRECINE, J.P. <1986>. "The Next Generation of Personal Compu-
ters," Science, 231:4741 (February 28), 935-943.

DAHL, O.J., E.W. DIJKSTRA and C.A.R. HOARE <1972>. Structured
Programming, Academic Press, London.

DATE, C.J. <1981>. An Introduction to Database Systems, Volume
1, Third Edition, Addison-Wesley, Reading, MA.

DERFLER, Jr., F. <1986>. "Micro to Mainframe," PC Magazine, 5:9
(May 13), 116-124.

DERMAN, E. and E.G. SHEPPARD <1985>. "HEQS - A Hierarchical
Equation Solver," AT&T Technical J., 64:9 (November), 2061-
2096.

DICKINSON, J. <1986>. "The Business of Words: Outliners," PC
Magazine, 5:6 (March 25), 199-220.

DOLK, D.R. <1986a>. "Data as Models: An Approach to Implementing
Model Management," Decision Support Systems, 2:1 (March), 73-80.

DOLK, D.R. <1986b>. "A Generalized Model Management System for
Mathematical Programming," ACM Trans. Math. Software, 12:2
(June), 92-125.

DOLK, D.R. <1986c>. "Model Management and Structured Modeling:
The Role of an Information Resource Dictionary System," Dept. of
Administrative Sciences, Naval Postgraduate School, August.

DOLK, D.R. and B. KONSYNSKI <1985>. "Model Management in Organ-
izations," Information and Management, 9:1 (August), 35-47.

ELLISON, E.F.D. and G. MITRA <1982>. "UIMP: User Interface for
Mathematical Programming," ACM Trans. Math. Software, 8:3
(September), 229-255.

ENOS, J. and R. VAN TILBURG <1981>. "Software Design," Computer,
14:2 (February), 61-83.

FARN, C.K. <1985>. An Integrated Information System Architecture
Based on Structured Modeling, Ph.D. Thesis, Graduate School of
Management, UCLA.

-51-

wwuw^vw^vj"^ vu vuwwi^uv-i^^

FOURER, R. <1983>. "Modeling Languages Versus Matrix Generators
for Linear Programming," ACM Trans. Math. Software, 9:2 (June),
143-183.

FOURER, R., D.M. GAY and B.W. KERNIGHAN <1987>. "AMPL: A Mathe-
matical Programming Language," Computing Science Technical
Report No. 133, AT&T Bell Laboratories, Murray Hill, NJ 07974,
January.

GASS, S. <1987>. "Managing the Modeling Process," to appear in
.European J. Oper. i?es. (May) .

GASS, S.I., H.J. GREENBERG, K.L. HOFFMAN and R.W. LANGLEY
<1986>. Impacts of Microcomputers on Operations Research,
North-Holland, New York.

GEOFFRION, A.M. <1986a>. "Capital Portfolio Optimization: A
Managerial Overview," Proc. National Communications Forum, 40:1,
6-10.

GEOFFRION, A.M. <1986b>. "Modeling Approaches and Systems
Related to Structured Modeling," Working Paper No. 339, Graduate
School of Management, UCLA, July.

GEOFFRION, A.M. <1986c>. "Integrated Modeling Systems," Working
Paper No. 34 3, Graduate School of Management, UCLA, November. To
appear in Proceedings of the Conference on Integrated Modeling
Systems (held at the University of Texas, Austin, October 1986).

GLASER, H., C. HANKIN and D. TILL <1984>. Principles of Func-
tional Programming, Prentice/Hall International, Englewood
Cliffs, NJ.

HAMMER, M. and D. McLEOD <1981>. "Database Description with SDM:
A Semantic Database Model," ACM Trans. Database Systems, 6:3
(September).

HARRISON, T.P. and CA. DE KLUYVER <1984>. "MS/OR and the Forest
Products Industry: New Directions," Interfaces, 14:5 (September/
October), 1-7.

HOWARD, R.A. and J.E. MATHESON <1984>. "Influence Diagrams," in
R.A. Howard and J.E. Matheson (eds) , The Principles and Applica-
tions of Decision Analysis, Strategic Decisions Group, Menlo
Park, CA.

HOROWITZ, E. <1984>. Fundamentals of Programming Languages,
Second Edition, Computer Science Press, Rockville, MD.

HULL, R. and R. KING <1986>. "Semantic Database Modeling:
Survey, Applications, and Research Issues," Technical Report
86-201, Computer Science Department, University of Southern
California, April 1.

-52-

JARKE, M. and Y. VASSILIOU <1985>. "A Framework for Choosing a
Database Query Language," Comput. Surveys, 17:3 (September),
313-340.

JONES, C.V. <1985>. Graph-Based Models, Ph.D. Thesis, Cornell
University.

KATZ, S., L.J. RISMAN and M. RODEH <1980>. "A System for Con-
structing Linear Programming Models," IBM Systems J., 19:4.

KENDRICK, D.A. and A. MEERAUS <1987>. GAMS: An Introduction, The
World Bank, January. The Scientific Press, Palo Alto, to appear.

KENDRICK, D.A., A. MEERAUS and J. ALATORRE <1983>. The Planning
of Investment Programs in the Steel Industry, The Johns Hopkins
University Press, Baltimore, MD.

KRASNOFF, B. and J. DICKINSON <1986>. "Project Database II," PC
Magazine, 5:12 (June 24), 106-227.

LEITARD, M.L. <1986>. "Representing Models as Data," J. Management
Information Systems, 2:4, 36-48.

LEVESQUE, H.J. and R.J. BRACHMAN <1985>. "A Fundamental Trade-
off in Knowledge Representation and Reasoning," in Brachman and
Levesque <1985>.

LI, Y.P. <1985>. "On Data Modeling Through Logic," Research
Paper, Graduate School of Management, UCLA, February 8.

LUCAS, C. and G. MITRA <1985>. "CAMPS: Preliminary User Manual,"
Department of Mathematics and Statistics, Brunei University,
U.K., July.

LUCAS, C, G. MITRA and K. DARBY-DOWMAN <1983>. "Modeling of
Mathematical Programs: An Analysis of Strategy and an Outline
Description of a Computer Assisted System," Report TR/09/83,
Department of Mathematics and Statistics, Brunei University,
U.K., October.

MARKOWITZ, H.M. <1979>. "SIMSCRIPT," in J. Beizer, A.G. Holzman
and A. Kent (eds.), Encyclopedia of Computer Science and Tech-
nology, Marcel Dekker, New York.

McCORMICK, G.P. <1983>. Wonlinear Programming, Wiley, New York.

MYLOPOULOS, J. and H.J. LEVESQUE <1984>. "An Overview of
Knowledge Representation," in Brodie et al <1984>.

OREN, T.I., B.P. ZEIGLER and M.S. ELZAS <1984>. Simulation and
Model-Based Methodologies: An Integrative View, NATO ASI Series,
Springer-Verlag, Berlin.

-53-

^mnrnn^fwfrmmwwwm^ww^

PALMER, K. <1984>. A Model Management Framework for Mathematical
Programming, Wiley, New York.

PLANE, D.R. <1986>. Quantitative Tools for Decision Support
Using IFPS, Addison-Wesley, Reading, MA.

PRICHARD, Jr., R.M. <1985>. "FE - A Multi-Interface Form
System," AT&T Technical J., 64:9 (November), 2009-2023.

REITER, R. <1984>. "Towards a Logical Reconstruction of Rela-
tional Database Theory," in Brodle et al <1984>.

REPS, T., T. TEITELBAUM and A. DEMERS <1983>. "Incremental
Context-Dependent Analysis for Language-Based Editors," ACM
Trans. Programming Languages and Systems, 5:3 (July), 449-477.

ROY, A., L. LASDON and J. LORDEMAN <1986>. "Extending Planning
Languages to Include Optimization Capabilities," Management
Sei., 32:3 (March), 360-373.

SCHITTKOWSKI, K. <1985>. "EMP: A Software System Supporting the
Numerical Solution of Mathematical Programming Problems," Work-
ing Paper, Institut fur Informatik, Universität Stuttgart.

SHAW, M. <1984>. "The Impact of Modeling and Abstraction Con-
cerns on Modern Programming Languages," in Brodle et al <1984>.

SHNEIDERMAN, B. <1987>. Designing the User Interface, Addison-
Wesley, Reading, MA.

SOWA, J.F. <1984>. Conceptual Structures; Jn/ormation Processing
in Wind and Machine, Addison-Wesley, Reading, MA.

TSICHRITZIS, D.C. and F.H. LCCHOVSKY <1982>. Data Models,
Prentice-Hall, Englewood Cliffs, NJ.

ULLMAN, J.D. <1982>. Principles of Database Systems, Second
Edition, Computer Science Press, Rockville, MD.

VO, K.-P. <1985>. "IFS - A Tool to Build Integrated, Inter-
active Application Software," AT&T Technical J., 64:9
(November), 2097-2117.

WALKER, W.E. <1982>. "Models in the Policy Process: Past,
Present and Future," Interfaces, 12:5 (October), 91-100.

WESTON, J.F. and T.E. COPELAND <1986>. Managerial Finance,
Eighth Edition, The Dryden Press, Chicago, IL.

WIRTH, N. <1971>. "Program Development by Stepwise Refinement,"
Comm. ACM, 14:4 (April), 221-227.

-54-

4

^»w

WRIGHT, G. <1986>. "An Integrated Marketing Information System i
Based on Structured Modeling," paper presented at the Workshop
on Structured Modeling, UCLA, August. i

YOURDON, E. <1975>. Technlgues of Program Structure and Design, '
Prentice-Hall, Englewood Cliffs, NJ. !

YOURDON, E. and L.L. CONSTANTTNE <1979>. Structured Design, I
Prentice-Hall, Englewood Cliffs, NJ.

-55-

Jsa^MamMMiMaga^^

COMMERCIAL SOFTWARE REFERENCES

Framework II. Ashton-Tate, 20101 Hamilton Ave., Torrance,
CA 90502.

GINO. LINDO Systems Inc., P.O. Box 148231, Chicago, XL 60614.

Guru. Micro Data Base Systems Inc., P.O. Box 248, Lafayette,
IN 47902.

IFPS. Execucom Systems Corp., 3410 Far West Blvd., Austin,
TX 78731.

Javelin. Javelin Software Corporation, One Kendall Square,
Building 200, Cambridge, MA 02139.

KnowledgeMan. Micro Data Base Systems Inc., P.O. Box 248,
Lafayette, IN 47902.

LINDO. LINDO Systems Inc., P.O. Box 148231, Chicago, IL 60614

PAM. Ketron, Inc., 151 S. Warner Rd., Wayne, PA 19807.

-56-

APPENDIX: SOME FORMALITIES

A forthcoming technical report presents the concepts of
structured modeling In numerous formal definitions, proves
basic theoretical results, and develops in detail the non-
graphical (text and table based) notational conventions
sketched in Section 2.2.

This appendix quotes selected formal definitions and prop-
ositions from this report. This serves : (a) to answer ques-
tions that may arise from the informal definitions given in
Sections 2.1 and 2.2 of this paper, (b) to supply certain de-
tails not given in Section 2, and (c) to facilitate comparing
structured modeling with alternative modeling approaches, many
of which are described in Geoffrion <1986b>.

A primitive entity element is undefined mathematically.

A compound entity element is a segmented tuple of primitive
entity elements and/or other compound entity elements.
(A "segmented tuple" is a finite nonempty ordered list whose
components are partitioned in a contiguous way.)

An attribute element is a segmented tuple of entity elements
together with a unique value in some range.

A function element is a segmented tuple of elements together
with a rule that associates a unique value in some range to this
tuple — more precisely, in the case of non-entity elements, to
the value of these elements provided these values fall within a
prescribed domain.

A test element is ii/ce a /unction element, except that it has a
two-valued range (True, False}.

The segmented tuple portion of an element is called its calling
sequence. An element B is said to call another element A if A
appears in B's calling sequence. A calling sequence segment has
the obvious definition.

A collection of elements is closed if, for every element in the
collection, all elements in the calling sequence of that element
are also in the collection.

A closed collection of elements is acyclic if there is no se-
quence {E1,E2,... ,En-l,El} such that El calls E2, E2 calls E3,
..., En-1 calls En=El, where n>2 and the elements of the se-
quence are not necessarily distinct.

An elemental structure is a nonempty, finite, closed, acyclic
collection of elements.

-57-

A generic structure is defined on an elemental structure as a
collection of partitions, one for each of the five types of ele-
ments. The resulting mutually exclusive and exhaustive element
sets are called genera (plural of genus;.

A generic structure satisfies the generic similarity property if
the following is true for every genus other than primitive
entity genera: every element in the genus has the same number
of calling sequence segments and all calls in a given segment
are to the same genus; moreover, each segment calls the same
genus for every element. When this property holds, one can
speak in the obvious sense of one genus "calling'' another, and
of a "genus' calling sequence".

A modular structure is defined on a generic structure as a
rooted tree whose terminal nodes are in 1:1 correspondence with
the genera. The non-terminal nodes are called modules. The de-
fault modular structure corresponds to the simplest possible
such rooted tree, namely the one with only one module (the
root).

A monotone ordering of a modular structure defined on a generic
structure satisfying similarity is specified by an order for
each sibling set. These orders are extended in the usual way to
obtain a partial order over all nodes except the root whereby
any two nodes can be compared so long as neither lies on the
rootpath of the other. This partial order is monotone in that
it is consistent with the partial order on the terminal nodes
induced by calls among genera; that is, if genus B calls genus
A and A and B are descendents of distinct sibling nodes 41 and
#2 respectively (A-41 and/or B=#2 permitted;, then 01 comes
"before" #2 in their sibling order.

A structured model is an elemental structure together with a
generic structure satisfying similarity and a monotone-ordered
modular structure.

The modular outline of a monotone-ordered modular structure is
the indented list representation corresponding to the preorder
traversal.

The element graph of an elemental structure is an attributed
directed graph with a node for every element and an arc from
element B to element A if element A calls element B. Every node
has an attribute denoting its type (primitive entity, compound
entity, attribute, function, or test). Every non-entity node
has another attribute giving its value, every attribute node has
another attribute giving its range, and every function and test
node has an attribute giving its rule. Every arc has two attri-
butes; the first identifies the calling sequence segment to
which it corresponds, and the second identifies its position
within the segment.

-58-

■ ■ u « u wmm um*

The genus graph of a generic structure satisfying similarity is
a directed graph with a node for every genus and an arc for
every segment of every genus (primitive entity genera excepted)
directed from the genus being called to the calling genus.

A model schema is any prescribed class of structured models that
satisfies isomorphism in this sense: given any two models in the
class, their modules and genera can be placed in 1:1 correspon-
dence in such a way that (a) adjacency is preserved in the mod-
ular structure trees, and (b) corresponding genera have the same
number of calling sequence segments and call corresponding
genera from each segment.

The following propositions give some of the basic theore-
tical results associated with the above concepts, with a mini-
mum of commentary.

Proposition. In an elemental structure with a generic
structure satisfying similarity, no element calls another
element in the same genus.

Proposition. Genus graphs are always acyclic.

A well known property of acyclic directed graphs is that
their nodes can be classified uniquely into ranks such that
nodes of rank r (r>l) have incoming arcs only from nodes of
lower rank including at least one node of rank r-1.

Element and genus graphs can be ranked, for both are acy-
clic. The next result asserts that these rankings are consis-
tent when viewed in terms of elements. One consequence of this
fact is that no partition of elements comprising generic struc-
ture may put together elements of different type or elemental
rank, if generic similarity is to hold.

Proposition. Consider an elemental structure together
with a generic structure satisfying similarity. The rank
of any element based on the element graph is identical to
the rank of the element's genus based on the genus graph.

The next result gives a key property of the modular
outline.

Proposition. If genus B calls genus A in a structured
model, then A comes before B in the modular outline.

Consider an elemental structure, together with a generic
structure satisfying similarity and a modular structure. It is
natural to wonder about the existence of a monotone ordering
and how to construct one, for without a monotone ordering there
can be no structured model. The following result gives one of
two known characterizations of when a monotone ordering exists.

-59-

w*m ———W—^———»W^WWT^T^W^WWWWTWt^TW^W^TTP IT«IL» II» H»"* IKf U II

The characterization as stated is theoretical, but the proof
provides a simple and constructive method (that has been imple-
mented) for determining monotone orderings when they exist.

Proposition (excerpt). Consider an elemental structure,
together vith a generic structure satisfying similarity
and a modular structure. A monotone ordering exists if and
only if the following condition holds: for every sibling
set of the modular structure tree, there is no sibling
sequence (S1,S2,...,Sn-l,Sl) such that some genus descend-
ant of SI calls some genus descendent of 52, some genus
descendant of S2 calls some genus descendent of S3, ...,
some genus descendent of Sn-1 calls some genus descendent
of Sn=Sl, where n>2 and the siblings in the sequence are
not necessarily distinct,

A similar issue arises relative to the situation where no
modular structure is given. It follows from the second and last
propositions that, given an elemental structure together with a
generic structure satisfying similarity, the default modular
structure always has a monotone ordering.

-60-

mmzMMtiu iaflSaflkfcMMhft; mMMMMMMlMMäMSh

NinxmoNiuT
o o

TOTAL COST

MW DAILY RBQTS ANALYSIS QUAWmY UNITCOSTS

oo oooo oo oo

D D
NUTRIENTS

D D
MATERIALS

Fig. 1 Element Graph for a 2x2 Feedmix Model

(O)

/^~^ /&

(oo) (oooo) (5~ö)(öö)

D D D D

Fig. 2 Element Graph Nodes Partitioned by Type for Feedmix Model

■ n ■ na n ■ n H n ■ T^jn-

TiNLEVEL

TOTCOST

f
UCOST

NUTR MATERIAL

Fig. 3 Genus Graph for Ftednix Model

&FEEDMJX

NUTR

MIN

MATERIAL

UCOST

ANALYSIS

AFEEDMIX

&NUT_DATA

NUTR

M1N

^MATERIALS

MATERIAL

UC»ST

ANALYSIS

Q
NLEVEL

T.NLEVEL

TOTCOST

Fig. 4 Modular Tree and Modular Outline for Feedmix Model

u

H I
I
I

— I

4J U

U 10
0. o

0. CJ

3
u

W

8 a

u i
-I — |

Si
05
U
(->

o o
<M O

kl >
Ifl-H

C-H
(ST)

tn o o o o
o o o o

•a-o
wo co

>»

I

TJ TJ T) TJ

U A) «9 «

a ou u u

« oo
Ho«

^8
H II

TJTJ
WO
ID 10 0.U

(0
•p

s
H

rH 0)
«J -0
+J 0
cac
0)
6 X
a) •H
H

0)
0) 0)
H fa
a
6 M
«J 0
M <M

«)

•H

2 E-.

3
g. ai | w ^ q
0 <0 l< 0 10 ."> •o 10 « ^s
M 0 ■Q t>J«M q hi Q) JH g (4

WM 0) 0 3 M «>4 0
•H q

10 ± w a ■ 1 0) l « (D^H Ü «•u »►J >-(
E 1^ 10

^
•H • •Q i:Q 10 Q

•H o e u " C H c « % A u «
q 43--I 10 H a EH a) „0 •H •H (U * 14 4J
<o ■w q ^ ?; «*«N- H w ■ H 3 »qta •H

10 4J ^ ?a
EH 0 •HEH Ü His; *;

4J h EH
^

•q WH •H X H O 4J
10 X u -< H 1- Ü HO: 10 <D% iH-H

■q
4J m « S^ a

o IB
Ü ü «a AH* ^^

IK ■Z EH^: 4 i-?Ä EH e EH-O w (n >, Ü S3 tJ < % •H In 1» 0)
E-. Ü i0 <0 0) 0 1^ >J «q 4J
fe a-o CM r"< 01 u U 4J 4J *-«. n
fc «J; X ■M ^-M a; p <u an ^ ■c t, s rr« (4 •HEH W t3 « a u
JC la « « « (D-H J ^ J 10 0
ti "U ^ x: £ o ^ 2 O « <4
Ü 0 0 • • 3 <l) ^ ■u O <4 fc <A S io • to D^: Ö» s* •H 4J 4J -^ — .q -> M q ü EH u
»H 0-H V) l-l -N -S + « •• AJ 18 — to 10 W -N
0 b. q . •H <~ Vq io OS eg * OS tq -H P "H

(J 10 a q "i H H 10 OH ..g S u v-o S-c S-H U «C^M ID s e
14 + -M <0 ■U Q) X EH A) 0 2 »: 10 WH

•H «EH *J H qi •-* IQ u ir — O q
►H a: <0 «»; « • ix S q TI 5^ t-H 4J 8 10

• • [q -H E- •-co — q ->. N^E-. 14 ^ 10 a 8. «<3 0 —i H 10 O-i 4J H 10 5 in
E- — ^ Q (8 q) s* X 10 \a; 0) «a •» HI « o; a ^"H x^ 08° IM is e EH iH
Q ■H F ^ to 0 10 0 e-i'H \lH-t ~a •»

Q £ «^ X b "o S0 V q •H s: 4J >,
? 5c -H EH 10 ■o

^§ Ü * * 10 v.«
h ~.tt "0 H a CJ ^^ -^ ato M 10 IM t)
0) a; 5 a; •H II •HOi 6,

■H »hj u • X (1) X
i- JZ v •-H N ^q Xlfl • M $ to

•HEH Q.S
• (OH IH

a tl 10^ q t. a"1 . «tM 10 5 ■H-H sa v^ 10 ■K H E^Ei »4 >H W H to J •-)
H X N»IH la tn \q H Ei >,:* W « M

1
%

•HQ
•w

it
10 Sl^i? iu . S2

E* S" «i 3S^ (0 EH4J
HSB q h |S^ is^ p nj .

O ~< to < b a 10 ^J H 0) N-»N. U h] 0
3 a ao

w Ä fc) D -H bj
H •H 5* •u iC P H >5H-H a>. J EH O 5 wO H
^

0% wH M (0 EH ^rq •«: W a: K w
> 5 :-H2

HTSEH
M X*. « K H a) p to

O O
U 1 ►J -u W -u W ^-H P H h « w 383 za a

Sa; q
H-O U -U w H HH i^i |-l Sc JC5: 4J H au g. > on e a a; as a

o 2: W 0 q o 2 EH EHO

3 5 a zo
3 ^

^ §s 8 8lä

H
0)

-O

s
X

0)
fa

o
iw

I
Ü

in

•H
fa

PI i« ■■■ I ■ VM« ll 1

ITEMl /pe/ There is a list of ITEMS.

ilTEHDATA Certain ITEH DATA «re provided.

D(lTENi) /a/ (ITEM) : R+ £very ITEM ham ■ DEM AMD RASPS (units
per year).

H(ITENl) /a/ (ITEM) : R+ fvary ITEM has a MOLDING COST RATE
(dollars per unit par year;.

F(ITEMl) /a/ (ITEM) : R+ Every ITEM has a riXED SETUP COST
(dollars per setup;.

Q(lTEMi) /va/ (ITEM) : R+ The ORDER QUAMTfTY (units par order;
for mach ITEM is to Jbe chosen.

fcOPCON OPERATING cossEOUENCES following from ORDER QUANTITY choices.

FREQ(Di,Qi) /f/ (ITEM) ; Di/Ql Every ITEN has a SETUP rREOUEMCY (average
number of setups per year; equal to DEMAND RATE divided
by ORDER QUANTITY.

SETUP$(FREQi,Pi) /f/ (ITEM) i FREQl • Pi Every ITEM has an
ANNUAL SETUP COST (dollars per year) equal to the SETUP
FREQUENCY times the SETUP COST.

CARRY$(HlfQi) /t/ (ITEM) f Hi • Qi/2 Every ITEM has an ANNUAL
CARRYING COST (dollars per year) equal to its HOLDING COST RATE
times one-half of its ORDER QUANTITY (which estimates average Inventory
level).

ITEM$(SETDP$i,CARRY$i) /t/ (ITEM) } 8BTUP$i ♦ CARRy$i Every ITEM
has an ANNUAL ITEM COST (dollars per year) equal to its ANNUAL
SETUP COST plus its ANNUAL CARRYING COST.

TOT$ (ITEMS) /f/ ; SUMi (ITBM$i) Th« TOTAL ANNUAL COST (dollars
per year) is the SUB of all ANNUAL ITEM COSTS.

ITEM

ITEM | | D H F Q FREQ SETUPS CARRY$ ITEMS

COKE || 3600 .40 9.00 500 7.20 64.80 100 164.80
7-UP || 2500 .40 9.50 300 8.33 79.17 60 139.17
BEER || 2000 .54 9.00 400 5 45 108 153

TOTS

| j TOTS

|| 456.97

Fig. 7 Schema and Sample Elemental Detail for a Multi-Item EOQ Model

TOT*

ITKMJ

m;M

Fig. 8A Genus Graph for EOQ Model: First Pass

ion

ntM$

/ \ t
FLABOR FMAri:RIAL DPARllAL

IINALI'ROD HTM

VAL SlORAGE

Fig. 8B Genus Graph for Multi-Item EOQ Model: Second Pass

■jÜUO-itfSiQMN^ÖQflyQ^^

z
o
u a
c

in

t
Z
g
u

tu

Z

c

0)

I
W

e a»
H
i

•H
4J
rH

£
U
o

4J

o
u
«0
H

o

u
4)
(0
W
(0
ft

0)
(1)

H

(L4

8

i
to
w
id
ft

•o
M
o

o, ••
(0 u 0)

1 u

fl) o
Ü w

u
00

•H

Ä»M«ÄaÄ»AM.«/V«A an »fl «L*^ C**A M ILB^Mi»]^ M*XJIM*^

a.
D
W

o o
o o
oo

O PI

0

26

o o o
o o o
o o o « « »
m in IN
M H IM

3 0 10
a a -t
MC«
4J id >
PFH «
•H ♦J iH
& < u

(0

S

o in mo in
in r» * » r»

n r» IN r* in
«N H n IN

o o o o o
o o o o
o o o o * * » *
in in o IN

H IM N

lj tJ (J H H

O
in
IN

IN
o

— fl —
—1(—

gg

«•

D
W

s
W

8 a < o

M
0

«w

rH
•H
(0
*J H

s
H X
(0

+» c
C O
0) •H
ß-p
0) <d
rH 4J
U u

0
a) a
rH (0
ac
6 (0
«J >H
W EH

0
0

■u

10

2
0

I

4)
c
c
o
c

■a

I

I
•• to

I"
10

li
11

Q)

C
o

•H

5
O

(0
c
(0

(0

■H

____ _J,_J,_J,^>,^1«_,,^, ^i-w.-^if^vi^r. ^in..^ iJ-»VJ-«vr«un,l--«U!lu« [■liMIIHMini iimir »U»UJIM»-»*li.M'llM«je«lC«y.X»l«LMRJ4RA;RJ<R.J(AJIJLI<nj(IVJ((U(njl,nj(TJ«f<J«fU

u, 0)

1
I
•H

1
1
id

c
o

(0

•

o
n
c
2

O

(0
x:
(0

Ü

(0

g
0)
o

fM

CO

H
S
CO

u
0

H «St B
«J! W SB r< ÄÖ W
H p W En H iJ O
«< Ö O < »J fe U
O O
U tH

«fl

0) 0) c-o
•H 0
H JB
+>
3TJ
O 0)

■P
>H id
«J u
H 0^
3 0)

s^
SH

H ^
W H
O
O •

tJ»

g •H

D
U

0)

o s
X)
0)
4J
(0

0)
•p
c
H

0
<w

x: a
«j
M
Ü

(0

c
0)
Ü

n
H

•H
fa

limn wifm I*! iiva ■ ■ inr ■■! ■ u ■ i

&NUT_DATA NUTRIENT DATA

NUTRi There is a list of NUTRIENTS that animals require.

MINi For each NUTRIENT there is a MINIMUM DAILY REQUIREMENT
(units per day per animal) for the target animal population.

«.MATERIALS MATERIALS DATA

MATERIALm There is a list of MATERIALS that can be blended
for animal feed.

UCOSTm Each MATERIAL has a UNIT COST ($ per pound of material) .

ANALYSISim Each NUTRIENT-MATERIAL combination has an ANALYSIS
(units of nutrient per pound of material).

Qm The feed QUANTITY (pounds per day per animal) of each
MATERIAL is to be chosen.

NLEVELi Qnce the QUANTITIES are chosen, there is a NUTRITION
LEVEL (units per day per animal) for each NUTRIENT calculable
from the ANALYSIS.

T: NLEVELi For each NUTRIENT there is a NUTRITION TEST to determine
whether the NUTRITION LEVEL is at least as large as the MINIMUM
DAILY REQUIREMENT.

TOTCOST There is a TOTAL COST (dollars per day per animal)
associated with the chosen QUANTITIES.

Fig. 15 Natural Language Summary for Feedmix Model

&CAPFEAS

T:IGF

T:NIC

VPVIEW

&TOLLDATA

&TOLLQ

&TOLLCAL "
KLSEP1

SER1

T:S1

&IODATA

&IOQ —

&IOCAL -

3 Genera

&TRDATA

3 Genera

&SOURCES

&USES

T:FUNDS

UCAP

T:CE

5 Genera

4 Genera

6 Genera

5 Genera

4 Genera

6 Genera

5 Genera

•>?'j?>

BUDGET DIRECTORS VIEW

Fig. 16 Modular Tree for Capital Planning Model,
with Two Views Indicated

tMimsmiimiftaam^

YRt The model addresses a PLANNING HORIZON of five individual XEAE£.

&PRDATA There are some BASIC PROJECT DATA.

PRp There is a list of candidate PROJECTS.

PNAMEp Each PROJECT has an EXTENDED PROJECT 1 AME.

BCp A DIVISIBILITY CODE, either "B" or "CM, is assigned to each
PROJECT to indicate whether it is indivisible (binary) or con-
tinuously divisible in character.

XLp A LOWER ACCEPTANCE LIMIT (a fraction) is specified for each
PROJECT (the default is 0).

XUp An UPPER ACCEPTANCE LIMIT (a fraction) is specified for each
PROJECT (the default is 1).

NPVp A NET PRESENT VALUE (NPV) is given for each PROJECT.

Xp An ACCEPTANCE LEVEL between 0 and 1 is to be chosen for each
PROJECT; a complete set of choices defines a trial PORTFOLIO.

NPVX PORTFOLIO NPV is the primary index of a PORTFOLIO'S merit.
It is the sum over PROJECTS of ACCEPTANCE LEVEL times PROJECT NPV.

&LEGALITY The PORTFOLIO must be "LEGAL".

&RESFEAS RESOURCE FEASIBILITY is a desirable PORTFOLIO property.

iSERFEAS SERVICE FEASIBILITY is a desirable PORTFOLIO property.

&FINFEAS FINANCIAL FEASIBILITY is a desirable PORTFOLIO property.

&FUNDS The model incorporates a FUNDS STATEMENT based on the
standard financial statement by the same name. It depends on the
PORTFOLIO, is calculated for each YEAR, and plays a key role in
defining FINANCIAL FEASIBILITY.

&CAPFEAS CAPITAL FEASIBILITY is an aspect of FINANCIAL FEASIBILITY.

UCAPt An UPPER CAPITAL LIMIT is given for each YEAR for the
company as a whole.

T:CEt Given a trial PORTFOLIO, a CAPITAL FEASIBILITY TEST
checks for each YEAR whetht^ TOTAL CAPITAL EXPENDITURES are
within the UPPER CAPITAL LIMIT.

T:IGFt Given a trial PORTFOLIO, an IGF FEASIBILITY TEST is applied
to the FUNDS STATEMENT each YEAR to check whether the ratio of NET
FUNDS FROM INTERNAL SOURCES to CAPITAL REQUIREMENTS is at least as
large as a threshold value supplied by management.

TrNICt A NET INCOME FEASIBILITY TEST applies each YEAR to check
whether NET INCOME TO COMMON is at least as large as a threshold
value supplied by management.

Fig. 17 Natural Language Summary for VP View of Capital Planning Model

r

Fig. 18 Graphic from Plane <1986>

CAPITAL
FEASDUTY

TEST

TOTAL CAPITAL
EXPENDITURES

PORTFOUO CAPITAL
EXPENDITURES

t
CAPITAL CONSUMPTION

COEFFICIENTS
OTHER CAPITAL
EXPENDITURES

CAPITAL
LIMITS

PROJECTS YEARS

Fig. 19 Genus Graph Extract for Capital Planning Model

rwtf «■■«■»■*>ai>

GENUS

NUTR
MIN
MATERIAL
UCOST
ANALYSIS
Q
NLEVEL
T:NLEVEL
TOTCOST

NUTR

0

MIN MATERIAL UCOST ANALYSIS Q NLEVEL TtNLEVEL TOTCOST

1
0

1
0

1

1

0

2

2

1
1
0

2
1
2

2
2
1
0

2
1

Fig. 21 Adjacency/Reachability Matrix for Feedmix Model

NAME SEQ PATH TYPE TABLE KEY PHRASE

&NUT DATA 1 1 NUTRIENT DATA
NUTR 2 1.1 PE NUTR NUTRIENTS
MIN 3 1.2 A NUTR MINIMUM DAILY REQUIREMENT
&MATERIALS 4 2 MATERIALS DATA
MATERIAL 5 2.1 PE MATERIAL MATERIALS
UCOST 6 2.2 A MATERIAL UNIT COST
ANALYSIS 7 2.3 A ANALYSIS ANALYSIS
Q 8 3 VA Q QUANTITY
NLEVEL 9 4 F NLEVEL NUTRITION LEVEL
T: NLEVEL 10 5 T NLEVEL NUTRITION TEST
TOTCOST 11 6 F TOTCOST TOTAL COST

Fig. 22 Genus/Module Summary for Feedmix Model

TAIL NODE HEAD NODE UNIT COST UPPER CAP LOWER CAP MULT

PLANT.PLANT PLANT.PLANT PLANT.SUP -1
OUST.OUST OUST.OUST OUST.DEM OUST.DEM 1
LINK.PLANT LINK.OUST LINK.COST INF 0 1

Fig. 2 3 GENNET Control Table for Transportation Model

120 -i

ice -
80 -

£0 -

MO -

20 -

0^ä

COKE 7-UP

SETUP«

CARRY«

BEER

COKE

7-UP
iü

BEER

ITEM«

Fig. 24 Two Business Graphs for Multi-Item EOQ Model

