
Working Paper No. 338 one FILE COPY (D 

in 
in 
CO 

O) rs 
^" 

i < 
• 

Q 
< 

1 

AN INTRODUCTION TO STRUCTURED MODEUNG 

by 

ARTHUR M. GEOFFRIOl^ 

:^;X 

Revised 
February 1987 

Contrsct N00014-75-C-0570 

iW 
I^SLSCTE ̂

^ 
% APR 13 1987 

■ 

This document has been app^oveü 
fox public rolecse and sale; its 
distribuion is unlimited  

WESTERN MANAGEMENT SCIENCE INSTITUTE 
University of California, Los Angeles 

87  4      14    036   \ 
üWW*JW*SMMir**iifvr*jrüC,.KA.VlLA<A ^V^W"JSi'\A\V^A'VWFVxJ.V.i •_• ,V\XrU/ kVkVXM A':«W'A^A^"J■^;^fAi&•V.^>X^>>>L>fK>'>>>^>^^Khi." 



TW wywy w wfrw^w mrnvww -■ w ■ ^ 

WESTERN MANAGEMENT SCIENCE  INSTITUTE 
University of California,   Los Angeles 

Working Paper No.   338 

June,   1986 
Revised February,   1987 

AN INTRODUCTION TO STRUCTURED MODELING 

by 

Arthur M.  Geoffrlon 

To appear In Proceedings of the Conference on Integrated 
Modeling Systems  (held at the University of Texas, Austin, 
October 1986)   and,   without the section on Implementation,   In 
Managrement Science,   May 1987. 

I acknowledge with gratitude the substantial  assistance and 
encouragement provided by many colleagues and students.   In- 
cluding G.   Bradley,   S.  Charl,  R.  Clemence,   D.   Dolk,   C.K.   Farn, 
J.  Jackson,   C.  Jones,  M.  Lenard,  J.  Mamer,   S.  Maturana,   Y.   Tsal, 
and G.  Wright. 

My debt extends to the National Science Foundation and the 
Office of Naval Research for supporting this work since Its 
Inception,   to the Naval Personnel R&D Center,   and to Hewlett- 
Packard and IBM for their generous grants to the UCLA Graduate 
School of Management.  The views contained In this report are 
mine and not to be attributed to the sponsoring agencies. 



l|ll*U«n*H«MV II« I mVT^PlVH ■^W^WRWUPPBi T" •■ U Wtl WVT ö » VWTTT-.T-^" v 

Abstract 

The discipline of modeling has advanced only slowly com- 
pared to disciplines concerned with analyzing and solving 
models once they are brought into being.   Structured Modeling 
is an attempt to redress this imbalance. 

Structured Modeling aims to provide a  formal mathematical 
framework and computer-based environment  for conceiving,   rep- 
resenting,   and manipulating a wide variety of models.     The 
framework uses a hierarchically organized,   partitioned,   and 
attributed acyclic graph to represent the semantic as well as 
mathematical structure of a model.  The computer-based environ- 
ment is evolving via experimental prototypes that provide for 
ad hoc query,   immediate expression evaluation,   solving simul- 
taneous systems,   and optimization. 

If successful,   Structured Modeling will  enable model- 
based work to be done with greater productivity and acceptance 
by non-specialists,  will exploit important developments in 
small computers,   and will cross-fertilize management science/ 
operations research,   artificial  intelligence,  database manage- 
ment,  programming language design,  and software engineering. 

This paper is an introduction and status report on a long 
term project.  The presentation is based largely on examples; 
rigorous development and details are left to a series of tech- 
nical reports. 
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1.   INTRODUCTION 

Structured modeling  Is an approach to modeling and also to 
the design of computer-based modeling systems quite different 
from current ones.    This section motivates the need for struc- 
tured modeling by considering some of the problems and oppor- 
tunities presently facing the management science/operations 
research  (MS/OR)   community.  These suggest some desirable fea- 
tures for future modeling systems.  Those features are the main 
objectives of structured modeling. 

1.1 Problems and Opportunities Facing MS/OR 

The two problems and four opportunities discussed below 
are among the more important ones confronting the MS/OR 
community. 

Low Productivity 

Doing MS/OR tends to be a low productivity activity.  Even 
seasoned practitioners are repeatedly surprised by how much 
effort is needed to achieve useful results. 

A contributing factor is that at least three distinct 
representations typically are us«»d  for each model:  a "natural" 
representation suitable for communication with people  (often 
managers)  without special training in MS/OR,   a mathematical 
representation suitable for analytical use,   and a computer- 
executable representation  (see,  e.g.,   Fourer <1983>).  Such 
multiple representations are inefficient by virtue of their 
redundancy,   are susceptible to inconsistency,   and they demand 
too many different skills to complete even small projects. 

A second factor contributing to low productivity is that 
interfacing models with advanced solvers   (especially optimizers) 
traditionally has been a laborious task requiring specialized 
skills.    Typically the burden falls on the user to present the 
model at hand in a format acceptable to the chosen solver. 
Interface standards are sorely needed.  The only one commonly 
used,  the MPS standard for linear programming,   is ancient and 
not very suitable for modern mathematical programming systems. 

A third factor is that most modeling software addresses 
just one among the many kinds of models that arise — e.g.,   just 
linear programs,   or just multi-period financial models.     Such 
software is awkward at best and unusable at worst when,  as  is 
increasingly necessary,  models of different kinds must be inte- 
grated in order to address  issues of  importance.   There is a need 
for modeling software of wider applicability. 

-1- 
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A fourth factor contributing to low productivity is that 
available modeling software typically caters to just one or two 
of the many phases of the total life-cycle associated with 
model-based analysis and systems.    Some of the more important 
phases are:  determine requirements,  design,  build,  test, use, 
revise,  maintain,  document,   explain,  analyze results,   report 
findings,  and evolve.  Most MS/OR practitioners are forced to 
piece together a patchwork guilt of tools to deal with these 
various phases as they arise over the life of a project. 
Modeling environments with greater life-cycle scope are needed 
(Gass <1987>). 

Poor Managerial Acceptance 

A second and much lamented problem facing MS/OR is that 
managers and policy makers call for model-based assistance too 
infrequently. 

One reason for this is that MS/OR practitioners and their 
work often are incomprehensible to non-specialists.   To the ex- 
tent that practitioners are poor communicators or techno-centric 
instead of problem-centric,   managers perceive insufficient empa- 
thy and business ur. lerstanding and hence turn elsewhere for help. 

A related reason is that even technically successful MS/OR 
work can make managers feel  less powerful rather than more so. 
This occurs whenever a manager becomes dependent on the MS/OR 
practitioner — as usually happens when the manager does not 
really understand the model  or how it can be used to arrive at 
conclusions of practical  interest. The natural response to this 
kind of dependency is to avoid it. 

These perennial problems are counterbalanced by perennial 
opportunities often recited by the MS/OR faithful.   In addition, 
there have recently emerged certain new opportunities each of 
which,   if properly exploited,  has the potential to exert an in- 
fluence of historic proportions. 

Desktop Computing Revolution 

One important opportunity is the desktop computing revolu- 
tion.  This rapidly evolving technology offers numerous possibil- 
ities for doing MS/OR more productively,  and communicating and 
delivering MS/OR in ways that managers and policy makers are 
more likely to accept   (Gass,   Greenberg,  Hoffman and Langley 
<1986>).   The next generation of desktop machines promises to 
remove many of the remaining barriers to desktop  implementation 
(Crecine <1986>). 

-2- 



Emerging Foundations of Modeling 

Another opportunity  is that modeling has,   in recent years, 
become an active subject of study in its own right for research- 
ers in several  fields:  database management   (see,   e.g..   Brodle 
<1984> anc' Tsichritzis and Lochovsky <1982> on "data models"), 
prograrominn  language design  (see, e.g.,  Horowitz <1984> and Shaw 
<1984>),  and artificial  intelligence  (see,  e.g.,   Brachman and 
Levesque <1985> and Mylopoulos and Levesque <1984> on "knowledge 
representation"   ) .  A particularly noteworthy development is the 
"conceptual modeling" movement  (Brodle et al <1984>) ,  which at- 
tempts to synthesize what  is known about modeling issues common 
to all three fields. 

It is both surprising and inviting that these fields make 
virtually no reference to the literature of MS/OR or  its closely 
kindred fields.     MS/OR,   for its part,  traditionally has taken 
modeling for granted as whatever anyone wants to posit within 
the conventional  languages of mathematics,   and thus has failed 
to develop any coherent modeling theories of its own.     The 
development of new foundations for analytical modeling is long 
overdue and has many good ideas to draw upon from the three 
fields mentioned. 

Progress in Database Management 

A third opportunity  for MS/OR is tha remarkable  flowering 
of the field of database management during the last decade, 
especially the explosive emergence of relational technology,  the 
development of excellent database programs for desktop computers 
(Krasnoff and Dickinson <1986>),  and the evolution of sophisti- 
cated query interfaces   (Jarke and Vassillou <1985>).     Database 
systems are natural adjuncts to data-hungry MS/OR software.  Data 
management and flexible retrieval capability are just as impor- 
tant  for most MS/OR applications as the  functions performed by 
the solvers toward which the models usually are oriented. 

Popularity of Spreadsheet Modeling 

A fourth opportunity,  not unrelated to the  first one, 
arises  from the  legions of modeling enthusiasts created by the 
phenomenal rise of spreadsheet software.    Many of these people 
have the potential to graduate to more sophisticated modeling, 
and so form a great reservoir of potential demand for MS/OR 
technology and expertise   (Bodily <1986>). 

1.2 The Answer:  A New Generation of Modeling Systems 

The problems and opportunities just enumerated call  for a 
new generation of modeling systems with the  following desirable 
features: 

(a)   a rigorous  and coherent conceptual   framework  for 

-3- 
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modeling based on a single model representation 
format suitable for managerial communication, 
mathematical use, and direct computer execution 

(b) independence of model representation and model 
solution, with model interface standards to facili- 
tate building a library of models and of easily 
accessed solvers for retrieval, systems of simul- 
taneous equations, optimization, and other important 
manipulations 

(c) sufficient generality to encompass most of the 
great modeling paradigms that MS/OR and kindred 
model-based fields have developed for organizing 
the complexity of reality (activity analysis, 
decision trees, flow networks, graphs, markov 
chains, queueing systems, etc.) 

(d) usefulness for most phases of the entire life- 
cycle associated with model-based work 

(e) representational independence of general model 
structure and the detailed data needed to describe 
specific model instances 

(f) desktop implementation with a modern user inter- 
face (e.g., visually interactive, directly manip- 
ulative, syntactically humane, and with liberal 
use of graphics and tables) 

(g) integrated facilities for data management and ad 
hoc query in the tradition of database systems 

(h) immediate expression evaluation in the tradition 
of desktop spreadsheet software. 

Features (a) through (d) address, respectively, the four 
contributing factors listed earlier for low productivity. 
Feature (c) also helps productivity by reducing learning time 
in situations where multiple models must be maintained. Produc- 
tivity is further enhanced by feature (e), which facilitates 
reusing the same general model structure in different specific 
applications. 

Feature (a) should help to overcome poor managerial accept- 
ance to the extent that it succeeds in facilitating managerial 
communication.  Feature (e) should also facilitate communica- 
tion, for general model structure is free of distracting detail. 
Feature (f) not only can lead to improved managerial acceptance, 
but may even be a prerequisite for it. 

Features (f), (a), (g) , aid (h) respectively address the 
four opportunities listed earlier.  In addition, feature (e) 
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is one of the recurring themes of the second opportunity (the 
emerging foundations of modeling) . It is one of the pillars of 
database theory because specific database content changes far 
more frequently than does database structure. 

1.3 Structured Modeling 

Structured modeling aims to provide the foundation for a 
new generation of modeling systems with all of the features 
listed in Section 1.2.  It also aims to influence how model-based 
work is carried out using more conventional modeling systems. 

The formal framework of structured modeling is based on 
discrete mathematics. It uses a hierarchically organized, parti- 
tioned, and attributed acyclic graph to represent a model or a 
model class. Particular attention is given to representing se- 
mantic as well as mathematical structure, and to compatibility 
with four of the most fundamental manipulations applied to 
models: retrieval, expression evaluation, solving a simultaneous 
system, and optimization. 

At the core of structured modeling is the notion of a defi- 
nitional system, that is, a system of definitions of all of the 
elements comprising a "model". The definitions have some special 
properties: they are typed (there are five types), correlated 
(interdependencies are explicit), and certain of the types are 
value-bearing. Moreover, the definitions are grouped by defini- 
tional similarity, the resulting groups are organized hierarch- 
ically by conceptual similarity, and the whole system of defini- 
tions must be free of circularity. 

This kind of definitional system turns out to be widely 
applicable within model-oriented fields such as MS/OR/DSS (for 
finance, logistics, marketing, production, and other application 
areas), information systems, economics, and engineering. Thus 
structured modeling ideas have the potential for wide adoption. 

This kind of definitional system also turns out to have 
deep connections to formalisms used in artificial intelligence, 
database management, programming language design, and software 
engineering. These connections invite cross-fertilization among 
these fields from the modeling perspective. 

Structured modeling ideas may be useful even if structured 
modeling software is not available or is not selected for use. 
Usually there are many opportunities in the context of conven- 
tional modeling systems to use some of the modeling concepts, 
constructs, and guidelines that comprise the structured modeling 
approach. Some of the guidelines for "good" modeling associated 
with structured modeling are: (1) incorporate important data 
development processes directly into the model, (2) document 
definitional interdependencies, (3) use stepwise refinement. 

-5- 
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(4) compose models from validated submodels, and (5) exploit 
parallel structure. 

Finally, it should be noted that structured modeling lays 
the foundation for a unified theory of model aggregation. This 
was the original need that led to the development of structured 
modeling. A draft research monograph on aggregation is at an 
advanced stage of preparation, but is now suspended pending 
completion of basic work on structured modeling. 

Related Modeling Approaches and Systems 

Structured modeling has benefited significantly from ideas 
introduced by or embodied in other modeling approaches and sys- 
tems. Numerous opportunities remain for cross-fertilization. We 
consider briefly some of the principal categories of related 
approaches and systems from the point of view of the eight 
desirable features. A companion paper gives further details 
(Geoffrion <1986b>). 

Names of commercially available software packages are given 
in italics. Their vendors are listed in a separate reference 
section following the bibliography. 

Many attempts have been made to make mathematical programm- 
ing systems easier to use by orienting them more toward moieling 
and less toward the optimizers around which they are built. Two 
standouts are GAMS (Bisschop and Meeraus <1982>, Kendrick and 
Meeraus <1987>) and PLATOFORM (Palmer <1984>). Others are AMPL 
(Fourer, Gay and Kernighan <1987>), CAMPS (Lucas and Mitra 
<1985>), EMP (Schittkowski <1985>), GXMP (Dolk <1986b>), LINDO, 
LPMODEL (Katz, Risman and Rodeh <1980>), MLD (Burger <1982>), 
and PAM.     As a group, the greatest strength of these systems — 
their ability to raise the productivity of optimization applica- 
tions — is perhaps also their greatest weakness in that they 
are wedded to one particular modeling paradigm (contrary to de- 
sired feature (c)). They also lack integrated facilities for ad 
hoc query and immediate expression evaluation. 

Financial planning systems are designed primarily to sup- 
port the preparation of business analyses and reports based on 
the spreadsheet modeling paradigm, that is, based on named rows 
and on columns that usually correspond to successive time per- 
iods. This paradigm turns out to be of surprisingly general 
applicability (Bodily <1986>, Plane <1986>). Unlike the leading 
desktop spreadsheet packages, these systems use a simple declar- 
ative language to specify the spreadsheet, and they automatical- 
ly attempt to solve any simultaneous equations that may be im- 
plicit in the spreadsheet. The dominant package in this class is 
the mainframe system IFPS  (also available in desktop versions). 
A version is even available with integrated optimization capa- 
bility (Roy, Lasdon and Lordeman <1986>). As a group, financial 
planning systems offer high productivity, support for multiple 
life-cycle phases, and good managerial understandability within 
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their Intended domain of application. Their main weaknesses are 
in the areas of compatibility with modeling paradigms other than 
the spreadsheet, independence of general model structure and 
detailed data, and integrated facilities for ad hoc query. 

Database management systems usually are not thought of as 
"modeling" systems by the MS/OR community, but this is a mis- 
take. All are based on one or another data model (Tsichritzis 
and Lochovsky <1982>) . A recent survey (Krasnoff and Dickinson 
<1986>) lists 56 desktop relational database systems. As a group 
these systems are, of course, strong on database functions. But 
they are weak on compatibility with non-database modeling para- 
digms and on provisions for accessing non-database solvers for 
simultaneous equations and optimization. 

Integrated multi-function desktop productivity software, of 
which Framework  is a current example, provides word processing, 
spreadsheet modeling, some database capabilities, business 
graphics, a built-in programming language, and other useful 
functions. One recent package. Guru, even includes an expert 
system shell. These systems can be excellent productivity tools 
for a wide variety of tasks, including many kinds of modeling. 
However, it may not be appropriate to think of them as modeling 
systems in a true sense because they do not offer a coherent 
conceptual framework for modeling. How they fare by features 
(b) through (e) depends largely on how they are used. They do 
possess features (f), (h), and perhaps (g). 

A related approach is a modeling environment based on 
loosely integrated utilities for data extraction, large file 
manipulation, data management, solving simultaneous systems, 
and other functions arising in model-based work. A nice example 
is ANALYTICOL at AT&T Bell Laboratories (Childs and Meacham 
<1985>). It fares well by features (c), (d) and perhaps (g), and 
not so well by features (a), (h), and perhaps (f). How it fares 
by features (b) and (e) depends almost entirely on how it is 
used. 

The above categories do not exhaust the landscape of model- 
ing approaches and systems.  For example, there are discrete 
event simulation frameworks and languages (e.g., Markowitz 
<1979>, Oren, Zeigler and Elzas <1984>); various knowledge rep- 
resentation approaches from artificial intelligence (Brachman 
and Levesque <1985>) , among which the closest to structured 
modeling appears to be the "conceptual graph" formalism of Sowa 
<1984> within the general category of semantic networks; and the 
novel approach of Jones <1985> to graphical modeling systems 
based on attributed graph grammars, which can capture general 
model structure at a level similar to that used in structured 
modeling. Each of these is discussed at some length in Geoffrion 
<1986b>. In addition, of course, there are numerous application- 
specific packages which, by definition, have conceptual frame- 
works of nauow applicability and thus lack feature (c) . 

-7- 
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This brief review of related modeling approaches and sys- 
tems is not intended to show that structured modeling's prede- 
cessors are inferior because none exhibits all eight desirable 
features. Rather, the review is intended to show that structured 
modeling aims at an apparently vacant niche, and to suggest that 
there are benefits to be gained (in both directions) from study- 
ing structured modeling in the context of alternative approaches 
and systems. 

1.4 Organization 

Section 2 contains an introduction to the basic ideas of 
structured modeling, an example, an explanation of how these 
ideas fit into the world of model-based work, and a discussion of 
the prospects for achieving a new generation of modeling systems 
of the type envisioned in Section 1.2. Rigorous definitions and 
selected technical results on the structured modeling framework 
are deferred to the Appendix. 

Section 3 exemplifies three of the ways in which structured 
modeling can be used: for top-down model design by stepwise re- 
finement, for integrated modeling in the sense of unifying two 
or more distinct models in a coordinated way, and for clear com- 
munication and documentation. All five of the modeling guide- 
lines listed in the previous subsection are illustrated along 
the way. 

Section 4 describes structured modeling systems in general 
and three development prototypes in particular, with emphasis on 
the Framevor/c-based implementation presently in progress at UCLA. 

Section 5 discusses opportunities for further research and 
development. Many are inspired by important parallels between 
issues in structured modeling and similar issues in database 
management, programming language design and software engineer- 
ing, and artificial intelligence. The opportunities are collect- 
ed into four main categories: the structured modeling framework 
itself, designing a model within the framework, computer imple- 
mentation design, and model management systems. 

Finally, Section 6 offers some closing comments. 

This paper makes few assumptions concerning the reader's 
background beyond general familiarity with MS/OR and tolerance 
for basic terminology drawn from graph theory and a few other 
parts of discrete mathematics. Familiarity with elementary rela- 
tional database ideas will also be helpful (e.g., Date <1981>) . 

Because of the introductory nature of this paper, it is 
necessary to defer numerous details and related developments to 
a forthcoming series of technical reports. 

-8- 
I 



injM* * -Vt^iT 

2. BASICS OF STRUCTURED MODELING 

The structured modeling framework has three levels: ele- 
mental structure, generic structure, and modular structure. Each 
is defined in turn, followed by an illustration (as well as 
other ideas) based on a  classic MS/OR application, the feedmix 
model. Then the role of these modeling ideas is discussed in a 
broader context, followed by an assessment of their potential as 
the basis for a new generation of modeling systems of the type 
advocated in Section 1.2. 

2.1 Basic Definitions 

The definitions given here are, for the most part, infor- 
mal. Rigorous versions are given in the Appendix of this paper, 
but a forthcoming technical report must be consulted for a com- 
plete development. A detailed example is given in the next 
subsection for all of these definitions. 

The reader is invited at this point to test the author's 
claim that structured models are easy to understand. The sever- 
est possible test would be to examine a structured model prior 
to any study of structured modeling concepts. Doing this will 
not only help the reader judge the claim, but also aid digestion 
of the definitions. So please spend a few minutes examining, in 
this order. Figure 5 (the general structure of the feedmix 
model), Figure 6 (sample data for a particular instance), Figure 
3 (a diagram of definitional dependencies at a more aggregate, 
dimensionally independent level), and Figure 4 (a way of organ- 
izing the essential concepts of the model). 

Elemental Structure 

Structured modeling views a model as being composed of dis- 
crete elements.  The central notion is that each element has a 
definition in which the element's existence is either postulated 
as a primitive of the model, or postulated in terms of other 
elements whose definitions have already been given. 

Elemental structure aims to capture all of the definitional 
detail of a specific model instance. It can be viewed in terms 
of a directed graph of elements (nodes) and "calls" (arcs) . Each 
call represents a definitional reference, that is, the partici- 
pation of one element's definition in the definition of another. 
The head node of each arc is the calling element and the tail 
node is the called element. There are five types  of elements, 
some of which have a value: 

1) primitive entity elements have no associated value 
and generally represent things or concepts postu- 
lated as primitives of the model (e.g., protein as 
a nutrient); 
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2) compound entity  elements have no associated value 
and generally represent things or concepts that are 
defined in terns of other things or concepts (e.g., 
a "link" in a transportation system defined in 
terms of a certain plant and a certain customer) ; 

3) attribute elements have a constant value and 
generally represent properties of things or 
concepts (e.g., a minimum daily requirement in 
grams associated with protein); 

4) function elements have a value that is denendent 
according to a definite rule on the values of 
called elements, and generally represent calcu- 
lable properties and more complex aspects of 
models (e.g., the total annual cost associated 
with inventories); 

5) test elements are like function elements except 
that their value must be either True or False 
(e.g., whether the minimum daily requirement 
level for protein is met) . 

The graph is assumed to be acyclic because it is possible and 
desirable to avoid circular definitions.  If the graph is to 
represent the entire elemental structure, then it must also be 
attributed. Attributes must be associated with its nodes and 
arcs to represent (i) the values of non-entity elements, (ii) 
the rules by which the values of function and test elements 
are calculated, and (iii) an order for the inbound arcs at 
each node. 

Generic Structure 

Generic structure aims to capture the natural familial 
groupings of elements.  Mathematically, this is accomplished 
by partitioning all elements of a given type into genera, 
each of which is a cell of the partition.  Thus each genus 
comprises elements of the same type (e.g., the collection of 
all primitive entity elements representing nutrients). 

Not every possible partition by type is allowed. It must 
satisfy a property called generic similarity, which means 
roughly that every element in a genus calls elements in the 
same foreign genera (e.g., every element in the minimum daily 
requirement genus makes reference to some element in the 
nutrient genus). This property seems to hold for all sensible 
partitions and is essential in order to prove certain desir- 
able properties of the structured modeling framework. 
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Modular Structure 

Modular structure aims to organize generic structure hier- 
archically to the extent that this seems appropriate and useful. 
The basic idea is to group genera into conceptual units called 
modules according to commonality or semantic relatedness, then 
to group these modules into higher order modules, and so on 
(e.g., the nutrient genus and the minimum daily requirement 
genus might be grouped together into a "nutrient data" module) . 
This enables the complexity of a model to be managed in terms of 
higher order abstractions. 

Mathematically, modular structure is a rooted tree whose 
root represents the entire model and whose terminal nodes cor- 
respond 1:1 with the genera. All other nodes are modules repre- 
senting conceptual units comprising their descendent genera. 

Not every possible modular structure is allowed. It must 
admit an indented list representation with no forward refer- 
ences, that is, the genera must be listed in such an order that 
no element in a genus ever calls an element in a genus that is 
farther down the list. A modular structure that satisfies this 
qualification is called monotone, and its indented list repre- 
sentation is called a modular outline. 

In practice it is easy and natural to define a monotone 
modular structure.  But if for some reason it is desired to 
ignore modular structure or to postpone its design, then it is 
always possible to posit the trivial monotone modular structure 
in which there are no modules other than the root and all gen- 
era are ordered according to a topological sort of the genus 
graph (defined in Section 2.2). Such a sort is easy to perform. 
There is also an efficient procedure for finding a monotone 
order, if one exists, for any given modular structure. 

Structured Model 

Finally we can define a structured model as (a) an element- 
al structure together with (b) a generic structure satisfying 
similarity and (c) a monotone modular structure. 

It should be noted that the acyclicity assumption on ele- 
mental structure and the closely related monotonicity assumption 
on modular structure do not necessarily preclude representing 
models with simultaneity or recursion. In all realistic cases 
examined to date, simultaneity and recursion can be dealt with 
in a natural way without violating these assumptions. Sometimes 
this involves switching to an equivalent representation of some 
model feature, sometimes it involves modeling in such a way that 
a "solver" external to the model carries the burden (as by solv- 
ing a system of simultaneous equations), and sometimes it simply 
involves recognizing that simultaneity or recursion exists in a 
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way that does not impinge on the acyclicity or monotonicity 
assumptions. These assumptions play a key role in the theory and 
application of structured modeling. 

It should also be noted that structured modeling is not 
limited to static models. Dynamic models with discretized time 
can be accommodated by introducing a primitive entity genus with 
as many elements as there are time instants or time slices, and 
dynamic models with continuous time often can be accommodated by 
allowing the values of attribute and function elements to be 
functions of time. 

Model Schema 

Up to this point we have been concerned with specific model 
instances. However, the focus of applied modeling work is very 
rarely on a single model instance. Nearly always it is on an 
entire class of similar instances. Therefore it is appropriate 
to formalize the notion of a class of "similar" structured 
models. That is the purpose of the concept of a model schema. 

Informally speaking, a model schema is any class of struc- 
tured models whose modular outlines all can be placed in 1:1 
correspondence in a way that is consistent with modular struc- 
ture, with generic structure, and with the intended meaning of 
the models. 

2.2 Example and Additional Concepts 

The feedmix problem can be found in the linear programming 
chapter of most basic textbooks on MS/OR.  We use it to illus- 
trate the concepts just defined and to introduce some important 
additional ideas and notational conventions. 

Element Graph 

Figure 1 is the element graph  for a simple model with two 
nutrients and two materials from which feeds are blended. It is 
the directed graph of elemental structure without any annota- 
tions to indicate node or arc attributes. Figure 1 does, how- 
ever, employ informal annotations to indicate node interpreta- 
tion and type. Node type is indicated here by the shape of the 
symbol used: squares for primitive entity elements, circles for 
attribute elements, triangles for function elements, and hexa- 
gonti for test elements. There are no compound entity elements. 
Recall that an arc represents a call of the tail element by the 
head element. 

The process of calculating the values of all function and 
test elements in their natural topological order is called eval- 
uation. Such an order always exists by virtue of the acyclicity 
assumption. For Figure 1, evaluation can be accomplished by 
proceeding from bottom to top. 
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Genus Graph 

There is an obvious grouping of elements.  Primitive entity 
elements are partitioned into nutrient elements (the NUTR genus) 
and materials elements (the MATERIAL genus).  Attribute elements 
are partitioned into minimum daily requirement elements (the MIN 
genus), elements specifying how much of each nutrient is in each 
pound of material (the ANALYSIS genus), quantity elements (the Q 
genus), and unit cost elements (the UCOST genus).  Function 
elements are partitioned into the elements that calculate the 
achieved nutrition levels (the NLEVEL genus) and the total cost 
element (the singleton TOTCOST genus).  Finally, the test ele- 
ments are all left together in a single genus (T:NLEVEL). 

These partitions are shown in Figure 2.  The informal defi- 
nition of generic similarity clearly holds by inspection of the 
incoming arcs to the elements in each genus. 

The graph theoretic condensation of an element graph accord- 
ing to such partitions is called the genus graph;   see Figure 3. 
It is more convenient than the element graph for most purposes 
because it is dimension independent. For example. Figure 3 does 
not depend on how many nutrients or materials there may be. It 
can be shown that the genus graph is always acyclic when the 
element graph is finite and acyclic and generic similarity holds. 

Modular Tree 

Several plausible hierarchical organizations of generic 
structure are possible, including this one: group the genera 
NUTR and MIN together in a module whose interpretation is 
"nutrient data", and group MATERIAL, UCOST, and ANALYSIS to- 
gether in another module whose interpretation is "material 
data". This modular structure is represented by the modular 
tree shown in Figure 4.  Note that there is no mathematical 
connection between the arcs of the genus graph and those of 
the modular tree. 

Figure 4 also includes an indented list representation of 
the tree. It can be seen from Figure 3 that there are no for- 
ward references in this list, and so it is a bona fide modular 
outline. 

Non-Graphical Notation 

Element graphs, genus graphs, and modular trees offer a 
practical vehicle for expressing elemental, generic, and modular 
structure, to say nothing of expressing a model schema, only if 
supported by a software system with advanced graphics capabili- 
ties. A less demanding alternative is to express generic and 
modular structure and model schemata by a text-based "schema", 
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and to express elemental structure by such a schema together 
with a collection of  "elemental detail tables".   Both concepts 
will be explained in some detail. 

The particular notational  conventions used here for text- 
based schemata and elemental detail tables constitute only one 
possible solution to the problem of designing a practical nota- 
tion for structured models and model schemata.  They have certain 
advantages,  as will become evident,  but do not "define"  struc- 
tured modeling in any sense.   Others may wish and,   indeed,   are 
encouraged to propose other notational conventions to embody the 
core concepts of structured modeling described informally above 
and formally in the Appendix. 

Schema 

Figure 5 gives a text-based schema  that expresses the gen- 
eric and modular structure of the feedmix example. It also rep- 
resents a model schema in the sense defined earlier, that is, an 
entire class of structured models for feedmixing whose modular 
outlines are all 1:1 with one another in a consistent way — in 
fact, they are all identical. 

Figure 5 uses a format and syntax that is detailed in a 
forthcoming technical report. An acguaintance with this schema 
will be a big step toward understanding schemata in general. 
Thus we give an overview of schema format and syntax followed by 
a narrative interpretation of the particular schema at hand. 

1. A schema is composed of paragraphs,   one for each line 
of the modular outline and indented in exactly the 
same way. There are two kinds of paragraphs: module 
paragraphs  describing modules, which always begin with 
the module name, and genus paragraphs  describing genera, 
which always begin with the genus name. 

2. Module names and genus names are unique and capital- 
ized. The former always begin with an ampersand (&) 
for quick recognition, while the latter always begin 
with a letter of the alphabet. 

3. Every paragraph consists of two parts: a formal  part 
followed by an Interpretation part. The interpretation 
part is distinguished in Figure 5 by being printed in 
italics (a special separation character is used when 
the schema is prepared using a single-font editor). 
The syntax of the interpretation part is essentially 
unrestricted, although the style followed here is rec- 
ommended, including: introduce an underlined, capital- 
ized, unique key phrase  in each paragraph and capital- 
ize this phrase at each subsequent use. The purpose 
is to provide easily readable documentation. The formal 
part of a module paragraph consists only of the module 
name. The syntax of the formal part of a genus paragraph 
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Is the subject of the remaining comments. 

4. The formal part of a genus paragraph always Includes 
a type indicator  (/pe/, /ce/, /a/, /f/, or /t/) to 
Indicate element type. The indicator /va/, for variable 
attribute,   can be used In place of /a/ for an attribute 
genus when Its values are discretionary and hence 
likely to change or to be placed under solver control. 

5. The genus name In a non-/Pe/ genus paragraph Is always 
followed by a generic calling sequence in parentheses 
that identifies all of the elements which participate 
in the definition of a typical element. The syntax of 
generic calling sequences is designed so that the gen- 
eric similarity property holds. 

6. The type indicator in a genus paragraph usually is 
followed by an index set statement  that specifies the 
element population of the genus.  If omitted, then it 
is understood that every possible element exists. 

7. The index set statement of an attribute genus paragraph 
usually is followed by a range statement, announced by 
a colon, that specifies the allowable values for the 
elements of the genus. 

8. The index set statement of a function or test genus 
paragraph is always followed by a generic rule, 
announced by a semicolon, that specifies how the 
element values are to be calculated. 

9. Every genus that can have more than one element is 
fully indexed. An index is never "dummy", but is always 
a specific lower case letter uniquely associated with 
the genus that introduces it. A genus that introduces 
an index is said to be self-indexed,  and the index is 
given immediately after the genus name in its genus 
paragraph. A genus that does not introduce an index is 
externally indexed  unless it must be a singleton. It 
is indexed by the free indices in its calling sequence. 

The full syntax associated with items 5-8 is a lot richer 
than is apparent from the simple example presented in Figure 5. 
Nevertheless, that schema suffices for Illustrative purposes. 

The first paragraph simply says that there is a module 
named SNUTDATA having to do with nutrient data.  Indentation 
reveals that there are two genera in this module, NUTR and MIN. 

The second paragraph says that there is a primitive entity 
genus named NUTR whose elements are indexed by 1. It does not 
say how many elements are in the genus or what any of them are. 
That is the job of the elemental detail tables. NUTR is self- 
indexed. 
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The third paragraph says that there Is an attribute genus 
named MIN whose typical element MINI calls element NUTRi. The 
index set statement (NUTR) says that MIN has one element for 
every element of NUTR. The range statement says that all ele- 
ments have nonnegative real values. MIN is externally indexed 
(by i), as are all subsequent genera except MATERIAL (which is 
self-indexed by m) and TOTCOST (which has no indices at all). 

The next three paragraphs are similar to the first three. 

The paragraph for the attribute genus ANALYSIS has a typi- 
cal element ANALYSISim that calls elements NUTRi and MATERIALm. 
The index set statement says that ANALYSIS has an element for 
every nutrient-material combination, and the range statement 
says that all elements have nonnegative real values. 

Consider the first function genus. Its typical element 
NLEVELi calls ANALYSISim for all m (this is indicated by the 
dot in place of the second index of ANALYSIS in the calling 
sequence), and also Qm for all m (note that Q appears in the 
calling sequence with none of its indices — alternatively, "Q." 
could have been used) . The generic rule says that NLEVELi is 
calculated by summing the prod- ct of ANALYSISim and Qm over 
all m. 

The other function genus, TOTCOST, must be a singleton 
because there are no free indices in its calling sequence. It 
calls all elements of genera UCOST and Q. The meaning of the 
generic rule should be evident. 

The test genus has typical element T:NLEVELi, which calls 
the corresponding element of NLEVEL and the corresponding ele- 
ment of MIN. The index set statement stipulates that there is a 
T:NLEVEL element for every element of NUTR. The generic rule 
stipulates that T:NELEVELi has value True if and only if the 
value of NLEVELi is greater than or equal to the value of MINI. 

Elemental Detail Tables 

The purpose of elemental detail  tables  is to describe a 
particular instance of the general class of models represented 
by a schema. The skeletal structure of elemental detail tables 
is automatically determined from the schema according to rules 
given in a forthcoming technical report. 

Figure 6 gives the six elemental detail tables for the 
schema of Figure 5. 

The first table, named NUTR, lists the identifiers of the 
nutrients and the minimum daily requirement value for each. It 
also provides for an interpretation of the nutrient identifiers. 
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In general, the identifiers introduced by a self-indexed genus 
can be any unique names, and the interpretation column helps 
document the modeler's Intentions. 

The second table performs a function similar to the first, 
but for materials instead of nutrients. 

The ANALYSIS table gives the analysis values for all ele- 
ments in the ANALYSIS genus.  The other tables are equally 
obvious. 

2.3 Models, Problems, and Solvers 

The foregoing has focused entirely on modeling. What about 
the things one does with models? 

We make a sharp distinction between a "model" as an ab- 
straction of reality, the "problems" or "tasks" one poses in 
terms of a model, and the "solver" used to solve a problem or 
carry out a task. For example, consider the feedmix model. The 
usual problem associated with this model is to find values for 
the QUANTITY elements so as to minimize the value of the TOTAL 
COST element subject to the values of all NUTRITION TEST ele- 
ments being True. The type of solver most appropriate to this 
kind of problem is well known, namely one that implements an 
algorithm for linear programming. 

Optimization is not the only important kind of problem that 
one might wish to pose in connection with a model. Two others 
are ad hoc queries aimed at retrieving information about the 
model, and finding values for selected attribute elements so 
that certain test elements are True. The former requires a type 
of solver sometimes called a query processor in the field of 
database management, and the latter often requires an equation 
solver. Many other important kinds of problems and tasks could 
be identified, such as drawing logical inferences (which re- 
quires a type of solver sometimes known as an inference engine 
in the field of artificial intelligence). 

Structured modeling provides a framework for modeling 
within which various problems and tasks can be posed precisely 
and naturally. It does not provide a framework that directly 
supports the algorithmic aspects of solvers. Solver design and 
implementation is an entirely distinct area to which modeling 
bears a client relationship. 

A structured modeling system should, however, make provision 
for invoking solvers of various kinds. These can be thought of as 
residing in a "solver library", where they are conveniently 
available for use whenever needed. 
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2.4 Prospects for Achieving a New Generation of Modeling Systems 

Now that the basics of structured modeling have been ex- 
plained, it is appropriate to consider the potential of these 
ideas as a basis for the new generation of modeling systems 
advocated in Section 1.2. The discussion is organized according 
to the eight desirable features given there. 

Feature (a): rigorous modeling framework with a single 
model representation suitable for managerial communication, 
mathematical  use,  and direct computer execution.  The structured 
modeling framework described previously is rigorous and offers 
a choice of two notational styles: one based on attributed 
graphs (the element graph, genus graph, and modular tree) and 
one comprising a text-based schema together, if a specific 
model instance is required, with elemental detail tables. A 
structured modeling system could be based on either one or a 
combination of these styles. 

Suitability for managerial communication is discussed in 
some detail in Section 3.3 where, among other points, it is 
noted that genus graphs are particularly attractive devices for 
managerial communication. 

Suitability for mathematical use depends on what kind of 
mathematics one wishes to apply. Obviously there is no issue 
with respect to graph theoretic mathematics. But there may be 
for other kinds of mathematics. Probably the most important 
kind, at least in MS/OR, is ordinary algebra with indexing over 
sets of similar mathematical objects. One of the reasons for 
introducing the text-based schema notation was to enable this 
kind of mathematics (see especially items 5, 6, 8, and 9 in 
Section 2.2). 

Direct computer executability is possible if due care is 
exercised in designing the notational conventions supported by a 
structured modeling system. Standard compiler technology (e.g., 
Aho, Sethi, and Ullman <1986>) can be used to digest schemata 
like Figures 5, 7, and 10 because they can be (and, in fact, 
are) written in a context-free language. Graph-based notations 
probably can be digested with the help of graph grammars (see 
Jones <1985>). 

Feature (b): model/solver independence with interface 
standards and provision for libraries of models and solvers.   It 
is clear from Section 2.3 that structured models are entirely 
separate from any solver that may be invoked on them. Structur- 
ed models can be kept in libraries and so can solvers. The de- 
sign of interface standards that facilitate coupling solvers to 
models is a technical challenge that seems not overly difficult 
because all models can be represented using the very same for- 
malism. The knotty problem of interface standards can be dealt 
with by inverting the usual approach: instead of living with 
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multiple solver-oriented standards for modelers to write to, 
provide a single model-oriented standard for solver and model- 
ing system technicians to write to. 

Building a library of models, especially of model classes, 
facilitates reusing old models in new situations. A similar 
point holds with respect to building a library of solvers. An 
organization that undertakes modeling efforts frequently could 
achieve a significant productivity gain from such reuse. This 
suggests that it could be worthwhile for a group of similar or- 
ganizations to collaborate on a joint library of models and sol- 
vers, or for a library of generic applicability to be built for 
a specific functional area. The latter approach is being imple- 
mented for marketing at Purdue, where a major commercial data- 
base as well as traditional descriptive and normative marketing 
models are being cast in structured form (Wright <1986>) . 

Feature (c): generality.  The generality of structured 
modeling follows from the fact, explained in Section 1.3, that 
it formalizes the notion of a definitional system as a way to 
describe models — both model classes and particular model in- 
stances. Structured modeling does not aim to offer a modeling 
paradigm in the usual sense, but rather a lingua franca within 
which models from a widP variety of paradigms can be expressed. 

The three simple models given in this paper, all drawn from 
MS/OR, do not begin to illustrate the generality of structured 
modeling. An extensive and more suggestive collection of struc- 
tured models is in preparation; it covers a wide variety of 
applications to business, database management, economics, engi- 
neering, MS/OR, and various other application areas. 

Feature (d): life-cycle orientation.  The life-cycle of a 
modeling application goes from the initial feasibility analysis 
to the final completion of the original objectives. Examination 
of the many stages in between shows that true life-cycle orien- 
tation requires what might best be thought of as an interactive 
work "environment". This environment should support not only 
models and solvers as discussed previously, but should also 
offer a variety of utilities needed for communication, organiz- 
ing things and ideas, and for different kinds of ancillary 
quantitative analysis. This poses a considerable challenge for 
the design of structured modeling system implementations. 

Feature (e): general  structure/detailed data independence. 
The notion of general structure is captured in structured 
modeling by the modular and generic structure formalisms. The 
notion of detailed data is captured by the notion of elemental 
structure. The former can be expressed by a text-based schema, 
and the latter by elemental detail tables. 

Feature (f): desktop computer based with a modern user 
interface. There are two primary challenges: i) performance 
difficulties when the number of elements gets large or the user 
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Interface gets sophisticated, and 11) access to mainframe data 
and programs.  The next generation of personal workstations 
(e.g., Creclne <1986>) should provide sufficient resources to 
deal with the first challenge for models of at least moderate 
size, and malr.frame links are progressing rapidly (e.g. , Derfler 
<1986>) . 

Feature (g):  integrated ad hoc query capabilities.   It can 
be shown under mild assumptions that elemental detail tables 
(proposed for non-graphical notation) can be viewed as a rela- 
tional database in third normal form or higher (see, e.g., 
Ullman <1982>) .  The primary key columns are the ones to the 
left of the vertical double lines; these we call the stub 
columns. 

This is an important result because it establishes a bridge 
between structured modeling and the relatively mature field of 
relational databases. One useful consequence is that a strong 
point of departure is Immediately available for the development 
of query languages for ad hoc retrieval and for implementations 
of structured modeling systems. 

Feature (h): resident expression evaluation capability. 
This requirement is attainable using spreadsheet technology and 
extensions thereof. It has the potential for considerable effic- 
iency because of element graph acyclicity (the required topolog- 
ical sort can be done once and for all for a given schema) . 

It is reasonable to conclude that all of the features 
defining a "new generation" are achievable by a properly 
designed and implemented structured modeling system. They all 
have, in fact, been achieved to some degree by prototype 
implementations (see Section 4) . 

Of course, the simultaneous achievement of all these fea- 
tures is likely to exact a price in terms of complexity and 
performance relative to systems with more modest ambitions, or 
that have a narrower domain of application. Will structured 
modeling systems be simple enough to be usable by application 
domain experts? Will they be efficient enough for production 
applications as well as prototyping? Will they be able to com- 
pete with more highly specialized systems? The answers to such 
questions must await further progress in computer implementa- 
tion. 
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3. SOME USES OF STRUCTURED MODELING 

This section Illustrates some of the ways In which a struc- 
tured modeling system could be used: to do "top-down" model de- 
sign by stepwlse refinement, to do "Integrated" modeling, and 
for communication and documentation. 

3.1 rop-Doi«rn Model Design 

Top-down design Is a time-honored concept that has been 
used with success by engineers, computer software designers, 
and probably by almost every profession concerned with under- 
takings of great complexity.  For present purposes, "top-down 
design" means stepvise refinement based on a hierarchical view 
of complexity.     The rationale for this approach is to attempt 
to get the "big picture" right at the outset with a minimum of 
distracting or Inessential clutter, and then to add detail In 
stages that take advantage of previously established perspec- 
tive.  The overall effect is one of hierarchical decomposition 
of the complexity dimension. 

Structured modeling provides a hospitable framework within 
which to develop top-down ideas because modular structure is 
hierarchy, and because generic structure usually lends Itself 
conveniently to refinement. 

Example 

We Illustrate top-down model design using another class- 
ical model of management science as the point of departure, 
namely the economic order guantlty model with multiple (inde- 
pendent) items.  Figure 7 presents a schema for this model 
along with elemental detail tables containing sample data. The 
reader should have no difficulty deciphering this schema based 
on the explanations given in Section 2.2. 

DEMAND RATE, HOLDING COST RATE, and FIXED SETUP COST must, 
in virtually every real application, be calculated from other 
data. Thus the schema of Figure 7 is but a "first pass" toward 
a truly applicable model. It requires further refinement. For 
the second pass, assume: 

(a) DEMAND RATE must be calculated as the sum of 
demands deriving from several final products 

(b) HOLDING COST RATE Is the sum of the opportu- 
nity cost of capital tied up and the out-of- 
pocket storage cost 

(c) FIXED SETUP COST Is the sum of separate costs 
for the materials and labor consumed. 
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Consequently, D, H, and F each must be elaborated into an en- 
tire module. The result might be as follows for the &ITENDATA 
module (the rest of the schema stays the same). 

&ITEMDATA Certain ITEM DATA  are provided. 

&D DEMAND RATE DATA 

FINALPRODp /pe/ There is a list of FINAL PRODUCTS. 

DPARTIAL(ITEMi,FINALPRODp) /a/ {ITEM)x(FINALPROD) : R+ 
Uach FINAL PRODUCT contributes a PARTIAL DEMAND RATE 
(units per year)  for each ITEM. 

D(DPARTIALi.) /f/ (ITEM) ; SUMp (DPARTIALip) Every ITEM 
has a DEMAND RATE (units per year)   equal to the sum of 
its  PARTIAL DEMAND RATES. 

&H HOLDING COST RATE DATA 

VAL(ITEMi) /a/ (ITEM) : R+ Every ITEM has a UNIT VALUE 
(dollars per unit). 

STORAGE(ITEMi) /a/ (ITEM) : R+ Every ITEM has a STORAGE 
COST RATE  (dollars per unit per year)   associated with 
physical possession. 

H(VALifSTORAGE!) /f/ (ITEM) ; 0.12 * VALi -I- STORAGEi 
Every ITEM has a HOLDING COST RATE (dollars per unit 
per year) equal to a 12% opportunity cost of capital 
tied up (calculated on the basis of UNIT VALUE) plus 
the STORAGE COST RATE. 

&F SETUP  COST  DATA 

FMATERIAL(ITEMi) /a/ (ITEM) : R+ The setup of an ITEM 
incurs a specific SETUP MATERIAL COST  (dollars per setup). 

FLABOR(ITEMi) /a/ (ITEM) : R+ The setup of an ITEM incurs 
a specific SETUP LABOR COST  (dollars per setup). 

F(FMATERIALirFLABORi) /f/ (ITEM) ; FMATERIALi + FLABORi 
Every ITEM has a FIXED SETUP COST  (dollars per setup) 
equal   to SETUP MATERIAL COST plus  SETUP LABOR COST. 

Still greater detail can be added at a third pass. Assume: 

(d) PARTIAL DEMAND RATES must be built up from demand 
estimates for FINAL PRODUCTS and the parts explosion 

(e) UNIT VALUE must be assembled from its major com- 
ponents 
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(f) SETUP LABOR COST must be constructed as labor 
hours times labor rate. 

Then DPARTIAL becomes this module: 

&DPARTIAL  PARTIAL DEMAND RATE DEVELOPMENT 

DFINAL(FINALPRODp) /a/ {FINALPROD} : R+ Bach FINAL 
PRODUCT has an estimated FINAL PRODUCT DEMAND RATE 
(units per year). 

BILL(ITEMifFINALPRODp) /a/ {ITEM)x{FINALPROD) : Int+ 
! . There is a tahle giving the number of each ITEM in each 
\ FINAL PRODUCT;  this is called the BILL OF MATERIALS. 
Ig 

DPARTIAL(BILLipfDFINALp)   /f/   (BILL)   ;   DFINALp  *   BILLlp 
Each FINAL PRODUCT contributes a  PARTIAL DEMAND RATE 
(units per year)  for each ITEM equal to the estimated 
FINAL PRODUCT DEMAND RATE times  the appropriate BILL 
OF MATERIALS multiplier. 

In addition,  VAL becomes a module: 

&VAL     UNIT VALUE DEVELOPMENT 

DIRMAT(ITEMi)  /a/   (ITEM)   :  R+    The value of each ITEM 
includes a certain amount of DIRECT MATERIAL COST 
(dollars per unit). 

DIRLAB(ITEMi)  /a/  (ITEM)   :  R+    The value of each ITEM 
includes a certain amount of DIRECT LABOR COST  (dollars 
per unit). 

VAL(DIRMATifDIRLABi)   /f/   (ITEM)    ;   DIRMATi  +  DIRLABi 
Every ITEM has a UNIT VALUE  (dollars per unit)   equal 
to  the sum of DIRECT MATERIAL COST and DIRECT LABOR 
COST. 

Finally,   FLABOR becomes a module: 

&FLABOR    SETUP LABOR COST DEVELOPMENT 

SETLABOR /pe/    There is a labor class known as 
SETUP LABOR. 

SETRATE(SETLABOR)   /a/   (SETLABOR)    :   R+    SETUP LABOR 
is charged at a certain SETUP LABOR RATE   (dollars 
per hour) . 
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SETHOURS (SETLABOR,ITEMl) /a/ (ITEM) : R-f  The setup of 
an ITEM requires a specific number of SETUP LABOR HOURS 
(hours per setup). 

FLABOR(SETRATE,SETHOURSi) /f/ (ITEM) ,* BETRÄTE * 
SETHOURSi The setup of an ITEM incurs a specific 
SETUP LABOR COST (dollars per setup)   equal  to SETUP 
LABOR RATE times SETUP LABOR HOURS. 

It is instructive to examine the effect of these stepwise 
refinements on the genus graph and on the modular outline. 

The genus graphs corresponding to each of the three passes 
are given in Figures 8A, 8B, and 8C. The graphs are drawn so that 
the additional detail supplied at each pass literally occurs from 
the top down. 

There is a side point to be made here about a common phe- 
nomenon that might be called the "data iceberg". Most textbook 
models represent only the tip of a figurative iceberg, ignoring 
the great mass of data and associated calculation required 
underneath to support the tip that it may bask in the light of 
mathematical analysis and computational solution. Structured 
modeling can represent this additional detail in an organized 
way through stepwise schema refinement. 

The modular outlines after each of the three design passes 
are shown in Figure 9. This diagram vividly summarizes the 
stepwise refinement aspect of the top-down design process. Of 
course, stepwise refinement may not always lead to such an 
elegant progression of transformations of the modular outline. 

Considering that so many new attribute genera have been 
introduced, one may wonder whether the final version of the 
schema is better viewed as a "model" or as a "database"; only a 
few genera have to do with what is actually required to formu- 
late the classical EOQ cost minimization problem.  Structured 
modeling is indifferent to whether it is representing something 
that is more like a traditional analytical model or more like a 
database. The distinction is artificial and will, we hope, grad- 
ually dissolve with the advent of more comprehensive modeling 
approaches like the one proposed. 

3.2 Integrated Modeling 

There are several different things one might mean by "in- 
tegrated modeling" (Geoffrion <1986c>). Here it is used in the 
sense of coordinated unification of two or more distinct 
models. Integration can be across business functions, as when a 
production model is combined with a distribution model; across 
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geography,   as when regional energy models are combined into a 
national model;  across time,   as when a planning model  is 
combined with a scheduling model;  or across other dimensions. 

Integrated modeling enables results and  insights that 
cannot be achieved by separate models.  This becomes  increasingly 
significant  for any organization in which modeling has been  in 
use for some time,   as the classical approach of many independent 
applications can be expected to reach a point of diminishing 
returns.   Integrated modeling may even be essential in strategic 
studies,  which usually involve whole systems rather than sub- 
systems,  and in very large modeling efforts of any kind,  where 
independent construction,  test,  and final assembly of component 
models may be the only practical way to cope with the complexity 
required of the  final model. 

For these and other reasons, it is widely believed that 
integrated modeling is of growing importance (e.g., Harrison 
and de Kluyver <1984> and Walker <1982>). 

Structured modeling provides a natural   framework for inte- 
grated modeling because it makes explicit the essence of what 
must be coordinated,   namely definitional and computational  de- 
pendencies among submodels.    Moreover,   on the basis of limited 
experience,   it appears that the conceptual  integrity of the 
submodels usually can be preserved when integration  is done 
within the structured modeling  framework. 

Example 

A very simple example of integrated modeling is obtained 
by juxtaposing the well known Hitchcock-Koopmans transportation 
model with the multi-item EOQ model introduced in the previous 
subsection. Figure 10 gives a schema for the transportation 
model, and Figure 11 gives the corresponding elemental detail 
tables filled in with sample data (not used in this example). 

If the transportation model is posed on an annualized 
basis, solving the usual linear programming problem yields the 
"optimal" annual flows, but does not prescribe how often ship- 
ments should be made or, equivalently, what the shipment size 
should be. Very frequent shipments are small and thus good for 
the customer in that they lead to small inventories, but bad in 
that they are expensive to receive (they require many transac- 
tions) . Infrequent shipments lead to just the opposite result. 
The best compromise can be found by solving an EOQ problem for 
each shipment link. 

The situation can be described by two separate structured 
models.  One is the transportation model whose schema is given 
in Figure 10.  The other is the multi-item EOQ model whose 
schema is as given in Figure 7 with these modifications: (a) 
replace the ITEM genus by a copy of the LINK genus (since each 
transportation link plays the role of an "item"); replace the D 
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genus by a copy of the FLOW genus (since each transportation 
flow plays the role of a "demand rate") ; and rename the SETUP$ 
genus to REC$ to commemorate the reInterpretation of a setup 
cost as a shipment receiving cost.  See Figure 12 for the two 
genus graphs. 

To evaluate costs, one may do the following: 

1. Choose values for the FLOW variables In the 
transportation model and evaluate to obtain $. 

2. Set the FLOW attributes In the EOQ model to the 
same values as the FLOW variables In the other 
model, choose values for the Q variables, and 
evaluate to obtain TOT$. 

3. Add $ and TOT$ to obtain the grand total cost. 

If desired, FLOW can be chosen In Step 1 by solving the usual 
linear programming problem, and Q can be chosen In Step 2 by 
solving the usual EOQ problem for Its closed form solution. 

Sequential rather than simultaneous use of the two models 
leads, of course, to suboptlmlzatlon.  The two models must be 
Integrated If jointly optimal choices of FLOW and Q are desir- 
ed.  This can be accomplished by joining the two schemata In 
this way: 

1. Concatenate the two schemata, with the transporta- 
tion schema coming first (an arbitrary choice). 

2. Drop the LINK and FLOW genera from the second schema, 
and reroute all calls to them to the LINK and FLOW 
genera of the first schema Instead. 

3. Create a new singleton function genus TOTCOST whose 
purpose Is to add the values of $ and TOT$; place 
It at the very end. 

The resulting genus graph Is shown In Figure 13, and the modu- 
lar outline In Figure 14. The global optimization problem can 
now be posed as choosing values for FLOW and Q so as to mini- 
mize TOTCOST. 

Notice that the conceptual integrity of each component 
model is largely preserved. 
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3.3 Communication and Documentation 

One of the critical success factors for MS/OR applications 
is good communication and documentation.  Structured modeling 
offers some attractive possibilities in this area. 

Perhaps the most important feature of structured modeling 
in this regard is the completeness and readability of model 
schemata and elemental detail tables (see Figures 5-7, 10, and 
11) . If well executed, they are suitable with only minor adap- 
tation for nontechnical as well as technical audiences. A sim- 
plified version of a schema, called the natural language sum- 
mary, is suitable for even the least technical of audiences. 
It abbreviates the formal part of each genus paragraph to just 
the genus name with free indices suffixed. See Figure 15 for an 
example.  Schemata and natural language summaries have the ap- 
pealing property of providing a dictionary of model parts that 
is without forward references. 

Thoughtfully designed modular structure contributes greatly 
to the readability of a schema, although none of the simple 
models used in this exposition is substantial enough to exhibit 
the richness of this concept as a means of organizing complex- 
ity. A more realistic example is given in Figure 16, which is 
based on a capital expenditure planning application done for a 
telephone company (Geoffrion <1986a>). Only part of the modular 
tree is shown; it goes to a depth of seven levels.  Figure 17 
gives a partial natural language summary. 

Figures 16 and 17 also illustrate a useful technique for 
constructing "views" of a model tailored to the needs of spe- 
cific audiences: prune away subtrees, but do not separate sib- 
lings.  Figure 16 exhibits two such views, one used to design a 
series of executive seminars at the vice presidential level of 
telephone operating companies, and the other used to design a 
briefing of budget directors. Both views hide unwanted detail. 
The first view is also used to organize the main managerial 
documentation for the capital expenditure planning system; in 
fact, Figure 17 actually is an excerpt from this documentation. 

The genus graph (see Figures 3, 8, 12, and 13) holds prom- 
ise as a communication and documentation aid. This is confirmed 
by the fact that many authors have independently invented close- 
ly related graphics for expository purposes. An example adapted 
from an introductory quantitative methods text is shown in Fig- 
ure 18. Many other examples can be found in articles and books 
on analytical modeling (e.g., the deterministic influence dia- 
grams of Howard and Matheson <1984>), artificial intelligence 
(e.g., the conceptual graphs of Sowa <1984>) , database systems 
(e.g., the entity-relationship diagrams of Chen <1976>), soft- 
ware design (e.g., data flow diagrams as in Enos and Van Tilburg 
<1981> or Yourdon and Constantine <1979>), and even finance 
(e.g., the well known "DuPont graph" given, among other places, 
on p.229 of Weston and Copeland <1986>) . 
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Extracts of genus graphs often suffice for explanatory 
purposes when the entire genus graph  Is overwhelming or un- 
necessary.   Figure  19 shows an extract from the  full genus graph 
for the capital expenditure planning model:     namely,   all nodes 
that reach one target node   (note that genus names have been 
replaced by their associated key phrases).     This diagram has 
been used to explain the capital  feasibility test.   The explan- 
ation proceeds  from the top down until the curiosity of the 
questioner is satisfied.   The dialog went something like this: 

Q.   How does the Capital Feasibility Test work? 

A.   It checks whether Total Capital Expenditures are 
within the Capital Limits. 

Q.   Total Capital  Expenditures? 

A.   Yes,   this  is the simple sum of Portfolio Capital 
Expenditures and all Other Capital  Expenditures 
outside of the portfolio. 

Q.   Oh,   I see. 

The modular tree can also be a useful communication graphic. 
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4.   IMPLEMENTATION 

Three prototype structured modeling systems are complete or 
nearly so.  The first two,   LEXICON  (Clemence <1984>)   and IIS 
(Farn <1985>) ,  were designed early In the evolution of structur- 
ed modeling and are discussed only briefly.  The third,  FW/SM,   Is 
now being developed at UCLA under the author's direction.    All 
three adopt the non-graphical notatlonal style   (text-based 
schema cum elemental detail tables)  described In Section 2.2. 
Other prototypes are at an earlier stage of development and will 
not be discussed here. 

4.1 Structured Modeling Systems 

An interactive structured modeling environment in the 
non-graphical style has four main components: 

Model Library schemata for a variety of models 
of interest to the organization, 
some perhaps with associated 
elemental detail 

Solver Library a collection of solvers to use in 
applications,   typically including 
solvers for retrieval,   simultaneous 
equations,   and optimization 

System Programs 

Workspace Store 

code that creates the desired func- 
tionality of the structured modeling 
system 

workspaces in development or previ- 
ously developed. 

The workspace is the primary face of the system seen by the 
user.  It is model-specific and consists of four parts: 

Schema Section here the user composes,  maintains, 
and browses the text  for a single 
schema 

Elemental Detail 
Section 

here the user loads, maintains, and 
browses the elemental detail tables 
associated with the  schema 

.Reference system-generated reference documen- 
Section tation corresponding to the schema 

and elemental detail;   the user can 
manipulate all exhibits using 
suitable editors   (see Section 4.3) 

Activity Section       here the user does  retrieval,   opti- 
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mization, other needed model manip- 
ulations, and many other things 
throughout the modeling life-cycle. 

The overall organization of the system should be hier- 
archical, and the user interface should be modern (e.g., Jarke 
and Vassiliou <1985>, Shneiderman <1987>) and should be reason- 
ably appealing to users who are application domain oriented 
rather than modeling oriented. 

Necessary functional capabilities include: 

"Schema Compiler"  Read the schema, check the syntax 
and higher level structure, create 
skeletal elemental detail tables 
with resident expression evaluation 
capability, and configure a schema- 
directed loader/editor to facilitate 
data entry and maintenance of the 
elemental detail tables. 

Create all Reference Section exhibits 
automatically. 

Accept model manipulation requests 
expressed in terms of the schema and 
elemental detail tables and invoke 
the user-requested solver for re- 
trieval, simultaneous equation solu- 
tion, optimization, etc. 

Make available an outliner, text 
editor, table editor, graph maker, 
file and case manager, statistical 
analyzer, and other utilities that 
may be needed during the modeling 
life-cycle, especially in connection 
with the Activity Section. These 
facilities should be well-integrated 
and as interactive as is practical. 

Other kinds of functional capabilities may be appropriate 
for special application contexts. 

"Reference Section 
Maker" 

"Solver 
Interfaces" 

"Workbench 
Facilities" 

4.2 Overview of All Three Implementations 

Figure 20 gives a brief summary of the three prototypes by 
functional capability. 

LEXICON was done jn FORTRAN on a mainframe and is aimed 
mainly at supporting opiJmization for large linear programming 
problems. It links to the advanced optimization system XS of 
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LEXIWH IIS FW/SM 
SCHEMA COMPILER 

rtructure ED Tables Implicit Implicit Yes 
Resident Evaluation No Yes Yes 

No Yes Yes 

REFERENCE EXHIBITS 

SOLVER  INTERFACES 
Ad Hoc Query 
Optimization 

WORKBENCH FACILITIES 

Some Several Many 

No Yes Yes 
LP LP  (some) Network, 

LP,  NLP 
Minimal Some Many 

Fig.  20    Comparison of Three Prototype Implementations 

Brown and Graves <1984>.   The schema and data  files are entered 
and processed in batch mode,  but otherwise user interaction with 
LEXICON is menu-driven and dialog-based.  There is no four- 
section "workspace".   Only a subset of the full schema syntax is 
supported.  Elemental detail tables are modified in  form and not 
directly accessible to the user. 

IIS was done in TCnowMedgreMan for the IBM PC/XT and is aimed 
mainly at demonstrating the feasibility of a hybrid information/ 
analytical modeling system.  It includes an interface to LINDO 
for a restricted class of linear programs.  The workbench facil- 
ities available are those supplied by KnowledgeMan.     The system 
is totally menu-driven;   it has no "workspace",  but a similar 
effect is achieved through its hierarchical menu structure. Only 
a subset of the full  schema syntax is supported and elemental 
detail tables are modified in  form and not directly accessible 
to the user. 

FW/SM is being done  in Framework for the IBM PC/AT and is 
aimed at creating a fully functional structured modeling system. 
Framework is a well known integrated multi-function program with 
built-in word processing,   outlining,  spreadsheet,   flat file 
database,  business graphics,  and telecommunications.  Whatever is 
not supported by these facilities can be programmed in Frame- 
work's built-in language,   or can be done by programs in any 
language by running them in a  "DOS window" without  leaving the 
Framework environment.    The user interface is visually oriented 
and,   in keeping with one of the recurring themes of structured 
modeling,  tree-structured. 

Flexible single table retrieval capability is available 
from native Framework facilities,  and multi-table retrieval 
capability has been added.   Two types of interfaces to optimi- 
zation codes are used:   control  table and automatic.   A control 
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table Interface for generalized network optimization Is opera- 
tional, and two fully automatic Interfaces for linear and 
nonlinear programming are under development. 

Further details are given In the next subsection. 

4.3 The UCLA Implementation FW/SM 

This section reviews the main components of FW/SM according 
co the anatomical view presented in Section 4.1. 

Model Library 

Presently the Model Library contains about fifty schemata 
divided into six categories: administrative, database, econom- 
ics, engineering, management science/operations research, and 
miscellaneous. Many are simple examples drawn from the major 
modeling paradigms, but others are translations of models used 
by various authors to Illustrate alternative modeling frameworks 
or systems. The latter permit comparisons between structured 
modeling and these alternatives. A few examples: 

- the static Mexican steel Industry model from 
Kendrick, Meeraus, and Alatorre <1983> (GAMS) 

- the demonstration problem from Ellison and Mitra 
<1982> and Lucas, Mitra, and Darby-Dowman <1983> 
(the UIMPS and CAMPS systems for LP) 

- the educational database example from Chapter 27 
of Date <1981> (relational, hierarchical, and 
network data models) 

- the shipping industry example from Hammer and 
McLeod <1981> and the world traveler example from 
Hull and King <1986> (semantic database models). 

Solver Library 

Presently there are four solvers in the Solver Library that 
have been or are being interfaced: 

- GENNET (Brown and McBride <1984>) for general- 
ized network flow optimization 

- GINO  for nonlinear programming 

- LINDO  for linear and integer programming 

- a query processor for a simple relation algebraic 
query language for ad hoc retrieval. 

Some of the interfaces are discussed at the end of this section. 

-32- 



System Programs 

System programs are written in FRED (the object-oriented 
language provided as an integral part of Framework),   in PASCAL, 
or in C. FRED programs are executed interpretively, while com- 
piled PASCAL and C programs are run through Framevor/c • s DOS 
window. These programs are, of course, invisible to the user. 
The user sees only a menu of processing options. 

Schema Section 

The reader has already seen several examples of schemata 
(Figures 5, 7, and 10). In Framework,   it is natural to make each 
genus paragraph its own "word frame" and each module paragraph a 
"containing frame." The two main features of the Schema Section 
are a syntax checker and Framewor/c • s built-in tree-oriented 
editor. 

The syntax checker is, like all processing options, invoked 
by simple menu selection.  It issues diagnostics that pinpoint 
departures from the lexical, syntactic, and higher order struc- 
ture prescribed for schemata. 

The tree-oriented editor combines the capabilities of word 
processing with the capabilities of what is sometimes called an 
"outliner" (e.g., Dickinson <1986>). An outliner organizes and 
manipulates blocks of text (or other material) according to a 
user-supplied hierarchical (tree-based) structure. There are 
facilities to alter this structure (create, delete, copy, or 
move nodes; delete, copy, or move subtrees), to navigate within 
it (move toward or away from the root, move to a sibling) , and 
to control its display (hide or unhide subtrees, hide or unhide 
node content). 

These outliner facilities are very useful in the Schema 
Section because the paragraphs of a schema are arranged accord- 
ing to the modular outline (see Figures 4, 9, and 14). 

Elemental Detail Section 

The reader has already seen several examples of elemental 
detail tables (see Figures 6, 7, and 11).  Recall that, for 
whatever schema is present in the Schema Section, the Schema 
Compiler needs to create empty elemental detail tables complete 
with resident expression evaluation capability. In Framework,   it 
is natural for each table to be its own "database frame" with a 
FRED-coded "defining formula" for the generic rule associated 
with each column corresponding to a function or test genus. 

The two main features in this section are Framework's 
built-in table-oriented editor and a schema-directed loader/ 
editor produced by the Schema Compiler. 
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The table-oriented editor understands the language of rows, 
columns, and data formats. Among its functions are data entry 
in any of three views, flexible copy and move operations, single 
table data extraction via general logical expressions, sorting, 
and a variety of column statistics. This editor is more than 
adequate for most keyboard-oriented input and editing tasks 
arising for the elemental detail tables. 

Greater efficiency is possible with a schema-directed 
editor (not yet implemented). It has three primary functions, 
all of them based on information contained in the schema: 
automatic entry, error-trapping, optional table operations, 
and prompting. 

"Automatic entry" fills out columns whose contents are de- 
termined by the content of other columns. Again using the feed- 
mix model as an example, the first two columns of the ANALYSIS 
table can be filled in automatically with the Cartesian product 
of nutrients and materials after both of those columns have been 
filled out for the NUTR and MATERIAL tables (note that the index 
set statement of the ANALYSIS paragraph of Figure 5 stipulates a 
full Cartesian product) . 

"Error-trapping" rejects unacceptable entries based on 
information in the schema. For example, an attempt to enter a 
text string or a negative number in the minimum daily require- 
ment column of the NUTR table would be resisted or flagged 
because the range statement of the MIN paragraph in the schema 
stipulates that only nonnegative numbers are allowed. Error- 
trapping can be on-line or done en masse when the user wishes. 

"Optional table operations" are mostly manipulations that 
the system can perform to bring an elemental detail table into 
conformity with an index set statement. For example, such a 
statement can specify that a certain binary relation (like 
transitivity) must hold for two stub columns over a common 
domain; the system can help to enforce the desired relation 
(e.g., by taking the transitive closure). 

"Prompting" is really a menu of options which the user 
currently has depending on what prior data entry or editing has 
taken place. With the feedmix model (see Figures 5 and 6) , for 
example, the option to enter the minimum daily requirements 
would not appear until the list of nutrients has been entered. 

Reference Section 

There are many different summary reports that one might 
want to see in coniection with a Schema Section, whether newly 
composed or called up from memory.  The same is true, although 
to a lesser extent, of the Elementa_ Detail Section. Instead of 
trying to anticipate and produce all of these, a surprisingly 
successful strategy is adopted: produce a few basic displays 
containing the essentials, and let the user manipulate them 
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interactively to obtain customized reports. The manipulation can 
be by Framework's  word processor and outliner for text displays, 
by Framework's  table-oriented editor for tabular displays, or by 
a graphics-oriented editor (not available within Framework)   for 
graphic displays. 

Here are some examples of the basic displays produced by 
FW/SM, and of typical manipulations. They are of three types: 
textual, tabular, and graphical. 

Reference Section: Text Displays 

The main two text displays are the Natural Language Summary 
and the Modular Outline. 

The Natural Language Summary was introduced in Section 3.3 
and illustrated in Figure 15. Tailoring it to specific audi- 
ences, as in Figure 17, is facilitated by the outliner which, as 
mentioned earlier, supports subtree hiding (e.g., hide all of 
the genus paragraphs under &MATERIALS) as well as the usual word 
processing functions.  Subtree hiding and unhiding also provide 
versatile tools for on-line briefings; start with everything 
hidden except the direct descendents of the root, and dynamic- 
ally unhide and re-hide detail as appropriate. 

The Modular Outline (e.g.. Figures 4, 9, and 14) is auto- 
matically available as Framewor/c's "outline view" of the Schema 
Section.  Subtree hiding/unhiding is again the most useful 
manipulation. 

Reference Section: Tabular Displays 

The main two tabular displays are the Adjacency/Reach- 
ability Matrix and the Genus/Module Summary. Framewor/c's word 
processor and table-oriented editor are useful for manipulating 
them. 

The Adjacency/Reachability Matrix  is illustrated in Figure 
21. Each entry indicates the number of steps it takes to go from 
the row genus to the column genus in the genus graph (two or 
more steps print as "2") . The modular outline is used to deter- 
mine both row and column order; by the no-forward-reference 
property, the matrix is necessarily upper triangular. Reading 
this table columnwise indicates which genera definitionally 
influence the column genus. Reading the table rowwise indicates 
which genera are definitionally influenced by the row genus. 
Thus, for example, if an error is discovered in one of the 
analysis coefficient values, one can tell at a glance which 
other genera could be affected. 

The Geuus/Wodule Summary is illustrated in Figure 22. The 
NAME column contains all genus and module names in modular 
outline order.  The SEQ and PATH columns provide two reference 
numberings to permit the rows to be restored to their original 
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order after rearrangement and to facilitate finding paragraphs 
in the schema.  The first numbering is obvious. The second one 
encodes, in a standard way, the position of each node in the 
modular outline (Figure 4). The TYPE column indicates which of 
the five possible types each genus is.  The TABLE column gives 
the elemental detail table name corresponding to each genus. 
Finally, the KEY PHRASE column gives the (undfarlined) key phrase 
appearing in the interpretation part of each genus and module 
paragraph. 

Consider now a few of the easy but useful manipulations of 
these two tables that Framework  supports. Sorting on the GENUS 
column facilitates row access to the Adjacency/Reachability 
Matrix because then the row names are alphabetized. To produce a 
list of all genera that reach ANALYSIS, one may sort on the 
ANALYSIS colu1'  nd block-copy the first part of the resulting 
GENUS columi..  ..j.cernatively, one may extract the desired rows 
by executing the selection formula "ANALYSIS > 0". The logic of 
a selection formula can be arbitrarily complex, as logical 
"and", "or", "not", and other operators are available. 

Sorting the Genus/Module Summary on NAME produces an alpha- 
betized dictionary of genus and module names; on TYPE produces 
(contiguous) lists of the modules and of the genera of each of 
the five types; on TABLE produces an alphabetized list of tables 
and the genera associated with each; and on KEY PHRASE produces 
an alphabetized list of key phrases. Row extraction via logical 
expressions can also be useful. For example, it is easy to 
extract just the rov/s corresponding to attribute genera in the 
&MATERIALS module. 

Reference Section: Graphical Displays 

The two main graphical displays of interest are the Genus 
Graph (e.g.. Figure 3) and the Modular Tree (e.g.. Figure 4). 
Their full implementation awaits the acquisition of suitable 
graphics tools. A graphic display editor would also be desir- 
able, so that the user can (a) reposition nodes or change their 
representation, and (b) pan and zoom to overcome the limited 
size and resolution of the monitor screen. In the meantime, a 
partial implementation allows any one node of the genus graph to 
be displayed centrally on screen along with all adjacent arcs 
and nodes. In the style of Javelin's "Diagram view", the genus 
graph can be "walked" by changing the central node to one of its 
neighbors. 

In addition to supporting on-screen graphic displays, it is 
also desirable to be able to drive a graphics printer and/or 
plotter so that larger, more detailed exhibits can be prepared. 
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Activity Section 

The main facilities required by the Activity Section for 
MS/OR applications are those for retrieval, those for optimiza- 
tion, and general workbench tools. We discuss each in turn. 

Here are three simple examples of queries that could arise 
in connection with the feedmix model: 

(a) List the materials in decreasing order of unit cost. 

(b) List the materials used in quantity greater than 1 
pound per day per animal and with unit cost greater 
than 2 dollars per pound. 

(c) List the materials with above average analysis in 
those nutrients for which the current mix fails the 
nutrition test. 

The ability to answer such queries is important in order to gain 
full advantage of the information in the Elemental Detail Sec- 
tion, and in order to support a modeling application over its 
entire life-cycle. A distinction should be made between queries 
that involve but a single table and those that involve more than 
one.  The first query above involves just one elemental detail 
table, while the other two involve two tables. 

Framework  provides flexible facilities for ad hoc query of 
single elemental detail tables. A simple relation algebraic 
query language has been implemented to permit multi-table ad hoc 
query. The five basic relation algebraic operations are support- 
ed, and also a few other important ones like the "natural join" 
(see, e.g., Section 5.2 of Ullman <1982>). An interface to a 
more advanced relational database package should be feasible be- 
cause of the result mentioned in Section 2.4 under feature (g). 

One style of optimization solver interface is the control 
table, a non-procedural device by which the user instructs the 
optimizer how to operate on the model at hand.  Figure 23 gives 
an example of the GENNET control table filled in so as to make 
GENNET solve the transportation model of Figures 10 and 11. This 
table is independent of the content of the elemental detail 
tables so long as the schema does not change. (The column head- 
ings never change, but the row entries must be tailored to each 
schema, i.e., to each class of network flow models.) The syntax 
is straightforward. The last line can be interpreted as follows: 
generate arcs for all rows in table LINK, with the tail nodes 
taken from the PLANT column and the head nodes taken from the 
CUST column; use unit costs from the COST column of table LINK, 
infinite upper flow capacities, zero lower flow capacities, and 
no gains or losses on the flows (the last three entries could 
have been omitted, as they coincide with the default values). 
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Another style of optimizer interface is to make it almost 
fully automatic. The user would simply issue a command that 
identifies the objective function (a single function element), 
the variables (usually a list of variable attribute genera), and 
the constraints (usually a list of test genera). For example, 
the command to solve the transportation model might be: 

"Choose FLOW to minimize $ subject to 
TiSUP, T:DEM using GENNET." 

Two such interfaces are under development for GINO  and any LP 
optimizer that reads standard MPS input. 

It is not clear at this time which of these two styles of 
interface is best in which circumstance. There are advantages to 
requiring the user to understand both the model and the solver 
at hand well enough to be able to fill out a simple control 
table linking the two. On the other hand, there are advantages 
to minimizing the work required of the user. 

Whichever interface style is adopted, no computer programm- 
ing skill is required of the user and it should be easy to 
switch optimizers if more than one apply to the model at hand. 

If structured modeling systems should come into wide use, 
there would be incentives for optimizer developers to make their 
solvers available for inclusion in the Solver Library with suit- 
able interface facilities. First, it would leave them free to 
concentrate on algorithmic matters without the distraction of 
having to build matrix generators, report writers, and user 
interfaces up to current desktop standards. Second, it would 
give access to realistic test problems. And third, it would 
supply a broader potential user base. 

Other kinds of solvers besides those for retrieval or op- 
timization would be desirable additions to the Solver Library. 
For example, a general equation-solver would be useful (e.g., 
Derman and Sheppard <1985>). 

For workbench facilities we rely at present mainly on the 
integrated facilities of Framework:  word processing, outlining, 
simple database, business graphics, spreadsheet, file manage- 
ment, and telecommunications. As an illustration. Figure 24 
shows two graphs produced via standard menu options from the 
first elemental detail table in Figure 7. Desirable additional 
facilities include an input/output form editor (e.g., Prichard 
<1985>), data extraction tools (e.g.. Belanger and Kintala 
<1985>), interactive data analysis, and statistical analysis. 

-38- 

MMMvu^an- am mjjfti ^ <, K ^ ^ iVR.- ^.Titr^^ ^^^^\o^.\v\s.\^\^A.v^^\v^.^.\^\v^^\■w"te.Vu^P■»^^ vWXVA^JXVXi'r Jafei-'r^^^yj 



5. OPPORTUNITIES FOR FURTHER WORK 

Structured modeling provides many opportunities for further 
research, development, and cross-fertilization with established 
fields.  Some of these opportunities are indicated here under 
four headings:  the structured modeling framework, model design, 
implementation design, and model management systems. 

Seven types of expertise are especially useful: discrete 
mathematics, analytical modeling, decision support system de- 
sign, database management, high-level programming language de- 
sign, software engineering, and artificial intelligence. The 
relevance of the first three is obvious. The relevance of the 
others derives from certain interdisciplinary parallels. 

The parallels can be stated as follows. Designing a frame- 
work for analytical modeling is analogous to designing a data 
model (e.g., Tsichritzis and Lochovsky <1982>), designing a pro- 
gramming language (e.g., Shaw <1984>), and designing a framework 
for knowledge representation (e.g., Brachman and Levesque 
<1985>). All of these design activities are centrally concerned 
with representational frameworks.  Moreover, designing a model 
schema within a framework for analytical modeling is analogous 
to designing a database schema within a given data model, de- 
signing a computer program within a given programming language, 
and designing a knowledge base within a given framework for 
knowledge representation. 

It follows that the fields of database management, program- 
ming language design, software engineering, and artificial in- 
telligence all have potentially important contributions to make 
to structured modeling. In fact, work in any of these fields can 
inform all of the others. 

5.1 Structured Modeling Framework 

The structured modeling framework itself can be studied in 
a theoretical way. 

Scope and Comparative Studies 

It would be useful to have a better understanding of the 
representational scope of structured modeling and its rela- 
tionship to other frameworks, including those from related 
fields. 

Ordinary mathematical programming models, graph and network 
models, and spreadsheet models are among those that always can 
be rendered as a structured model. What kinds of models cannot 
be so rendered? Are some types of recursive models intractable? 
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It turns out that any relational database can be rendered 
as a structured model. This is argued constructively in a forth- 
coming technical report and is proven theoretically by Farn 
<1985> using first order logic (more on this below). Farn also 
shows that the Entity-Relationship data model of Chen <1976> is 
subsumed by structured modeling. What about other data modeling 
frameworks? One that has been examined in detail is the well 
known and influential Semantic Data Model (SDM) of Hammer and 
McLeod <1981>. Most of the semantic features of SDM can be ren- 
dered straightforwardly in structured modeling, and virtually 
all of the remaining ones violate one or another tenet of struc- 
tured modeling (usually avoidance of redundancy or the desira- 
bility of divorcing general structure from detailed data). 
Several other data models appear worthy of careful examination. 

Functional programming languages (e.g., Glaser, Hankin and 
Till <1984>) bear a strong kinship to structured modeling. 
These declarative (non-procedural) languages are more problem- 
oriented than conventional computer programming languages, have 
a simpler mathematical basis, and are better suited to exploit- 
ing certain highly parallel computer architectures. How does 
their expressive power relate to that of structured modeling? 
It is intriguing to note that, from the functional programming 
viewpoint, the differences between "modeling" and "programming" 
largely disappear. 

An area where modeling and programming have often been con- 
fused is discrete event simulation. It might seem that structur- 
ed modeling is not applicable to this area because it does not 
allow the kind of procedural programming often used in the past 
to accomplish such simulations, but a research direction is 
suggested elsewhere (Geoffrion <1986b>) that may bring discrete 
event simulation within the reach of structured modeling. 

Is structured modeling general enough to encompass any of 
the knowledge representation frameworks used in artificial in- 
telligence (e.g., logic, production rules, semantic networks, 
or frames)?  If so, then it should be possible to build hybrid 
systems that include access not only to solvers for retrieval 
and optimization, the mainstay model manipulations of struc- 
tured modeling, but also to some types of inference engines. If 
not, then what additional syntactic/semantic extensions does 
structured modeling require in order to represent AI knowledge 
bases? 

Two knowledge representation frameworks warrant special 
discussion: first order logic and semantic networks. 

First Order Logic 

First order logic (FOL for short — see, e.g., Barr and 
Feigenbaum <1981>) is important for several reasons. First, it 
is one of the foundations on which AI was originally erected. 
Second, it probably is the best developed mathematically of all 
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knowledge representation frameworks. Third, and most pertinent 
for the present discussion, FOL provides a common ground on 
which many alternative modeling frameworks can be understood and 
compared. 

Levesque and Brachman <1985> have used FOL to help under- 
stand what seems to be an inherent trade-off between the ex- 
pressiveness of knowledge representation frameworks and their 
computational tractabillty. Reiter <1984> has expressed the 
relational data model in FOL and used this view to illuminate 
questions relating to query definition, incomplete information, 
integrity constraints, and extensions with greater semantic 
expressiveness. Li <1985> has recast the Entity-Relationship 
model and Semantic Data Model in FOL, and used this view to 
show that the latter subsumes the former. As mentioned earlier, 
Farn also used this approach. 

A clear understanding of the relationship between struc- 
tured modeling and FOL should yield insights into the express- 
ive power of structured modeling, both alone and in relation to 
other modeling frameworks that may be recast in terms of FOL. 
It should also serve as a useful compass when contemplating 
future changes in the structured modeling framework and, possi- 
bly, as a gateway leading to the eventual incorporation of 
inference engines into structured modeling. 

Chari <1985> is looking into this relationship and doing a 
PROLOG implementation. 

Semantic Networks 

The term "semantic network" actually covers a diversity of 
representational formalisms based on attributed graphs (e.g., 
Brachman and Levesque <1985>). It is said to be the most popular 
of all approaches to knowledge representation. 

Our interest in semantic networks is that it appears to be 
the closest of all knowledge representation approaches to 
structured modeling, particularly in the rich development pre- 
sented by Sowa <1984>. This book is the culmination of a long- 
term effort to unify the foundations of artificial intelligence 
in terms of "conceptual graphs". Many conceptual graphs can be 
represented as structured models and, conversely, a subset of 
all structured models can be represented as conceptual graphs. 
This relationship is explained in some detail in Geoffrion 
<1986b>. 

Of particular interest is Sowa's demonstration of a two- 
way mapping between conceptual graphs and first order logic. 
This provides a way of attacking the agenda set forth in the 
previous topic.  It could also lead to a kind of inference 
theory for structured modeling analogous to that available for 
FOL. 
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Also of interest Is Sowa's proposed two-way mapping between 
conceptual graphs and natural language. It may be possible to 
develop an analogous mapping between structured modeling and 
natural language. 

Conceptual Modeling 

"Conceptual modeling" is a term coined to symbolize the 
need to cross-fertilize and harmonize common modeling issues 
arising in three previously independent fields: data modeling  in 
database theory, knowledge representation in artificial intelli- 
gence, and programming language abstractions  in high-level lang- 
uage design (Brodie et al <1984>). This requires raising model- 
ing to a higher plane of abstraction and generality. 

Analytical modeling as practiced in MS/OR is an important 
and conspicuous omission from the list. The goal of conceptual 
modeling should be to find the common abstract ground of all 
four fields. Since structured modeling already provides a for- 
mal framework for analytical modeling and, as has been mention- 
ed, for other types of modeling as well, it would be appealing 
to study how structured modeling can contribute to both the 
original and expanded mission of conceptual modeling. 

Successful work along these lines would have two primary 
benefits. First, it would produce a deeper and more general 
understanding of the modeling process so that it can be prac- 
ticed more as a science and less as an art. Those who understand 
this more general theory of modeling would be armed with con- 
cepts and distinctions that sharpen their ability to organize 
the complexity of reality in formal ways.  Second, it could 
produce a correspondence between each modeling framework and a 
master set of modeling abstractions, whether the framework is 
from data modeling, knowledge representation, programming lan- 
guage abstractions, or analytical modeling.  One would then be 
in a position to determine the relative power of the various 
modeling frameworks, and to translate more easily among them. 
This could be a powerful approach to many of the comparative 
studies issues raised earlier, and would complement the first 
order logic approach mentioned in that context. 

Extensions 

Extensions of the existing structured modeling framework 
are possible.  One attractive possibility would be to allow 
attribute elements to have values that are specified only proba- 
bilistically.  This would facilitate some types of stochastic 
modeling and Monte Carlo simulation. Another possibility would 
be to allow an infinite number of elements. This would, for ex- 
ample, allow a genus to represent a countable infinity of time 
periods and thus permit modeling infinite time horizons explic- 
itly rather than implicitly. 
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Other extensions and refinements of a less radical nature 
may also be of interest.  For example, the syntax and semantics 
of generic calling sequences, range statements, index set state- 
ments, and generic rules could be refined to facilitate express- 
ing details that are presently awkward or impossible to express. 
There is room for considerable variation among implementations 
of structured modeling, and in fact beyond a certain level of 
detail most syntax probably should be implementation-specific. 

Designing extensions is an area calling for considerable 
discretion. The unbridled pursuit of representational power in a 
modeling framework can easily lead to excessive complexity, to a 
loss of previously available functionality, or to incompatibil- 
ity with the desirable features listed in Section 1.2. Often it 
is wiser to let the user of a modeling system carry the burden 
of certain model details rather than to impose the burden on the 
system. 

5.2 Model Design 

Assuming one variant or another of a structured modeling 
framework, how should one» go about designing a model — particu- 
larly the generic and modular structure — for a given practical 
application? It is always possible tc design different struc- 
tures that are more or less equivalent for any particular situa- 
tion, but not all of these are equally useful. Some will have 
better properties than others. Principles are needed to help 
guide the practitioner. 

The interdisciplinary parallels noted at the outset suggest 
that it is useful to look to neighboring fields for related 
ideas and results that can be adapted to the special needs of 
structured modeling. 

"Normal Form" Theory 

Recall that designing a relational database schema is anal- 
ogous to designing a structured modeling schema.  The theory of 
functional dependency and "normal forms" has been developed to 
avoid troublesome insertion, deletion, and update anomalies for 
relational databases (e.g.. Chapter 7 of Ullman <1982>). Are 
there similar issues to be studied for structured modeling? 
Structured modeling appears to be relatively free of such anom- 
alies, but it remains to establish this formally and to devise 
countermeasures for such cases as may exist. Farn <1985> was the 
first to examine this area. 

Program and System Design Techniques 

Recall that designing a computer program is analogous to 
designing a structured modeling schema.  Many criteria have been 
proposed for what constitutes a "good" computer program, includ- 
ing these adapted from Yourdon and Constantine <1979>: clarity 
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of intent, execution efficiency, correctness, maintainability, 
modifiability, flexibility, and generality. Each of these has an 
obvious meaning in the analogous context of structured 
modeling. 

Computer scientists and experienced implementors have long 
pursued an understanding of how computer program and system 
design influences these and other criteria.  They have not 
hesitated to propose design techniques; among them are modular 
design, top-down design, structured design, Jackson's method, 
HOS, SADT, and others (e.g., Yourdon <1975> and Enos and Van 
Tilburg <1981>) .  If much of this work is pragmatic, stylistic, 
or otherwise subjective in character, this may be due to the 
inherent difficulty of the task and does not necessarily reflect 
adversely on the utility of this work. Some of these contribu- 
tions can help inspire guidelines and techniques for designing 
good structured modeling schemata. 

One of the classic contributions in this vein is "struc- 
tured programming" (see Dahl, Dijkstra, and Hoare <1972> and 
Wirth <197l>) . The spirit of structured programming is reflected 
in any schema with a well-considered modular structure, for 
genera then will obey a transparent hierarchical organization 
and there will be no forward references. 

Knowledge Base Design Techniques 

Recall that designing a knowledge base is analogous to 
designing a structured modeling schema. Are there knowledge 
base design techniques that can be adapted to structured 
modeling? 

Is it possible to design an expert system that can con- 
struct a rough structured modeling schema for a new situation? 

5.3 Implementation Design 

Turning structured modeling ideas into good computer 
implementations raises many design challenges. 

Language and Compiler Design 

How can the context-free schema language used in this paper 
be improved? Would non context-free languages offer any advan- 
tages? Is a syntax-directed editor practical (e.g.. Reps, 
Teitelbaum and Demers <1983>)? If so, this would significantly 
enlarge the pool of potential users because nearly any language 
is much harder to write than to read. What is the best design 
for the Schema Compiler?  If a command language is needed to 
support some of the work carried out in the Activity Section of 
the workspace, what should its syntax be? 
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To consider just one topic in a little more detail,   recall 
our intent to endow a structured modeling system with ad hoc 
query capabilities  in the tradition of database management 
systems.    We know that we can adopt virtually any relational 
database query language since,   as explained earlier,   elemental 
detail tables can be viewed as a relational database.     But it 
should be possible to do better than that because a structured 
modeling schema has much more semantic content than a relational 
database schema.  Thus an enticing topic is how to design a 
schema-directed query language and processor that is both sim- 
pler to use and more powerful than whatever is adopted as the 
point of departure  from the realm of relational database sys- 
tems.     See Farn <1985>  for an early contribution along these 
lines. 

Data Structures 

Data structure design  for elemental detail becomes  impor- 
tant when,  as is often the case in medium to large-scale 
applications,  the total number of elements is  in the thousands 
or higher. 

User Interface 

Is a fully graphic,   rather than text-oriented,   interface 
based on the genus graph practical for the Schema Section of the 
workspace?    The work of Jones <1985> seems particularly applic- 
able here because it specifically addresses attributed graphs 
(which,   of course,   is the basic mathematical  formalism of struc- 
tured modeling).    Jones'  work and its relation to structured 
modeling are discussed at some length in Geoffrion <1986b>. 

What is the best user interface for the schema-directed 
loader/editor in the Elemental Detail Section?  It must balance 
prompting capabilities against flexibility of data entry. 

Ease of use is a design objective of a structured modeling 
system because accessibility to problem domain experts   (manag- 
ers,   policy makers,   etc.)   and user productivity are major goals. 
This suggests exploring how to exploit the availability of key 
phrases and explicit definitional linkages in a schema in order 
to achieve something approaching natural  language dialog 
throughout the workspace.   Natural language techniques from 
artificial intelligence could be useful.  A promising approach 
along these lines would be to apply the work of Sowa <1984> 
mentioned earlier. 

Another desirable  feature would be the ability to select 
automatically the most appropriate solver depending on the par- 
ticular query posed by the user and the mathematical nature of 
the model.  This poses  some deep questions of problem recognition 
and classification. 
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Solver Interface 

Given a particular solver, how can it be installed in the 
Solver Library and interfaced once and for all with the rest of 
the system? 

The interface can take one of several forms. One is to 
provide for a nonprocedural control table for the user to fill 
out whenever the solver is to be invoked. Another is to make 
the interface fully automatic by constructing a program that can 
read any compatible structured model and construct the necessary 
solver inputs therefrom.  Both approaches are discussed in Sec- 
tion 4.3 in the context of solvers for optimization. 

If theoretical work on reconciling structured modeling with 
the knowledge representation frameworks of artificial intelli- 
gence is successful, then some new implementation design issues 
arise: how to package AI solvers (for reasoning, question- 
answering, and other purposes) for installation in the Solver 
Library, and how best to interface with them. Any translation of 
a model representation that may need to occur should be totally 
transparent to the user. 

Factorable Programming Technology for Derivatives 

Expression evaluation is supposed to be a resident capabil- 
ity of a structured modeling system and so is not ordinarily 
thought of as requiring a special solver. However, a special 
solver may well be required if first and perhaps higher order 
derivatives are desired for function element values viewed as 
functions of prior attribute element values. McCormick <1983> 
has shown how to calculate such derivatives efficiently and 
exactly if the functions in question are represented in so- 
called "factorable form".  Roughly speaking, this means that 
each function must be expressed as compositions of simple sums, 
products, and univariate transformations. 

Lenard <1986> observed that, for many models, a structured 
modeling element graph supplies the better part of the required 
factorable representations if a little care is exercised when 
designing the model schema. Can this observation be implemented 
so as to achieve efficient computation of derivatives with mini- 
mum inconvenience to the modeler? 

Program Integration Techniques 

A structured modeling system incorporates many standard 
capabilities along with the novel ones. It should be much more 
efficient to assemble such a system from existing components 
than to build it from the ground up. This calls for program 
integration techniques. 
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A number of techniques are sketched in a forthcoming tech- 
nical report. These and others can be found in the literature 
and in existing systems (e.g., Vo <1985>) . Which techniques are 
most suitable? 

Continuous Tine Models 

Many models with continuous time dynamics require attribute 
and function element values to be entire functions of time. 
Evaluation can then involve solving differential equations and 
taking integrals, and different kinds of solvers may then become 
necessary (e.g., for optimal control) by comparison with those 
used for static or discrete time models. This poses implementa- 
tion design problems that have not yet been studied. 

Data Flow Computers 

It turns out that the element graph of a structured model 
is essentially equivalent to a machine-level program for a data 
flow computer, a kind of parallel processing architecture that 
overcomes some of the limitations of conventional von Neumann 
computers (e.g., Ackerman <1982>).  This suggests that evalua- 
tion could be an extremely efficient process on such a computer. 
Implementation design for structured modeling on data flow 
computers is an attractive and untouched topic. 

5.4 Model Management Systems 

It has been recognized during the last decade that better 
computer-based systems are needed to support modeling in organ- 
izations where there are many models and many users. This sit- 
uation raises important issues in the management of information 
resources. A variety of approaches to these issues can be found 
in a rapidly growing literature. See, for example, Dolk and 
Konsynski <1985> and Palmer <1984>. An extensive bibliography 
has been compiled by Blanning <1986>. 

It can be argued that a structured modeling system of the 
type envisioned here provides the kernel of a model management 
system. The Model Library already provides for multiple models, 
the Solver Library already provides for multiple solvers, and an 
explicit design goal is to support the entire modeling life- 
cycle, which typically involves many people spanning different 
roles. One can create a structured model of the Model Library 
itself to categorize models by type, purpose, users, files 
needed, and so on. One can do a similar thing for the Solver 
Library, the System Programs, the Workspace Store, and for the 
community of users.  Such tools can help support the essential 
managerial functions of model management. The first papers in 
this general vein are Dolk <1986a> and <1986c>. 
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Several new research topics are suggested by a structured 
modeling approach to model management. Three are selected for 
mention here. 

Translators 

There is a practical need to convert existing models, 
data, and associated materials to and from the lingua franca of 
structured modeling. It is not realistic to expect structured 
modeling to become the only language used. Cohabitation with 
other languages and systems is Inevitable. Thus translators are 
needed for conventional mathematics and other modeling lan- 
guages, data processing applications, and systems for informa- 
tion management and decision support. 

Data Acquisition Techniques 

Data acquisition is a topic of importance to organiza- 
tions with multiple data sources on computer media. Can tools 
for data acquisition be designed so as to be schema-directed, 
that is, able to acquire data that are based on inferred or 
user-supplied correspondences between a model schema of in- 
terest and models describing the data sources? 

Formalizing Model Schema Operations 

It may be possible to formalize the basic operations over 
model schemata used for stepwise schema refinement, model com- 
parison, model integration, and other kinds of development or 
model management work. For example, an important operation is 
joining two schemata together in such a way that equivalent 
genera are merged.  Relatively few operation types probably 
account for most of the operations performed in practice. 
Formalization could bring orderly thought to many activities 
that would otherwise be ad hoc, and could lead to improved 
computer-based support for important classes of activities. 

There are at least three possible approaches to formal1- 
zation. First, take a tree manipulation approach based on modu- 
lar structure.  Second, take a graph grammar approach based on 
an attributed graph view of structured modeling (cf Jones 
<1985>).  Third, take a formation rule approach based on a 
semantic network view of structured modeling (cf Sections 3.5 
and 3.6 of Sowa <1984>). All three deserve exploration. 
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6. CONCLUSION 

Structured modeling is a style intended to produce high 
quality model-based work with greater productivity and user 
acceptance. To achieve this objective it will be necessary to 
develop professional quality modeling environments based on 
these ideas and to produce cogent pedagogical materials for 
practitioners. These materials should also explain how to use 
structured modeling ideas in conjunction with conventional 
software. 

The current prototype implementation FW/SM is a useful step 
toward professional quality software for structured modeling. It 
has helped to refine the original vision of a computer-based 
structured modeling environment and will continue to shed light 
on a variety of issues as new features are added and experience 
with it accumulates. 

The development of pedagogical materials for practitioners 
is still in its early stages. Nevertheless, a few pioneers have 
already undertaken development work aimed at practical appli- 
cation. 

It is too early to say whether systems based on structured 
modeling will succeed in providing the answer to some of the 
problems and opportunities facing MS/OR and kindred communities. 
Whatever the outcome, we submit that the eight design objectives 
of Section 1.2 merit serious attention by designers of new 
systems. 

Serious attention is also merited by the striking inter- 
disciplinary parallels pointed out in Section 5 between analyt- 
ical modeling, database management, programming languages and 
software engineering, and artificial intelligence.  Cross- 
fertilization is a most attractive undertaking. Progress in any 
of these fields informs the others. 

The challenges of trying to conceive and bring into being 
a new generation of modeling systems are exciting and impor- 
tant. However, one should keep in mind that language influences 
how people think.  Any coherent modeling system provides a "lan- 
guage" for modeling, and so must influence how its users think 
when modeling or doing modal-based analysis. We saw in Section 
3, for example, that a structured modeling systen». leads natur- 
ally to top-down and integrated approaches to model design, and 
to certain styles of communication with lay audiences.  Are 
these influences truly beneficial? What other, perhaps less 
apparent, influences are there? We need to understand these 
issues in the broad context of rational cpproaches to mankind's 
organized activities, not only for structured modeling, but 
also for alternative modeling approaches. This is the true 
challenge of making modeling more of a science. 
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APPENDIX: SOME FORMALITIES 

A forthcoming technical report presents the concepts of 
structured modeling In numerous formal definitions, proves 
basic theoretical results, and develops in detail the non- 
graphical (text and table based) notational conventions 
sketched in Section 2.2. 

This appendix quotes selected formal definitions and prop- 
ositions from this report. This serves : (a) to answer ques- 
tions that may arise from the informal definitions given in 
Sections 2.1 and 2.2 of this paper, (b) to supply certain de- 
tails not given in Section 2,  and (c) to facilitate comparing 
structured modeling with alternative modeling approaches, many 
of which are described in Geoffrion <1986b>. 

A  primitive entity element is undefined mathematically. 

A  compound entity element is a segmented tuple of primitive 
entity elements and/or other compound entity elements. 
(A "segmented tuple" is a finite nonempty ordered list whose 
components are partitioned in a contiguous way.) 

An attribute element is a segmented tuple of entity elements 
together with a unique  value in some range. 

A function element is a segmented tuple of elements together 
with a  rule that associates a unique value in some range to this 
tuple — more precisely,  in the case of non-entity elements, to 
the value of these elements provided these values fall within  a 
prescribed  domain. 

A test element is ii/ce a /unction element, except that it has a 
two-valued range  (True, False}. 

The segmented tuple portion of an element is called its  calling 
sequence. An element B is said to  call another element A if A 
appears  in B's calling sequence. A  calling sequence segment has 
the obvious definition. 

A collection of elements is  closed if,   for every element in the 
collection,  all elements in the calling sequence of that element 
are also in the collection. 

A closed collection of elements is  acyclic if there is no se- 
quence  {E1,E2,... ,En-l,El}   such that El calls E2,  E2 calls E3, 
...,  En-1 calls En=El,  where n>2 and the elements of the se- 
quence are not necessarily distinct. 

An  elemental structure is a nonempty, finite,   closed,  acyclic 
collection of elements. 
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A generic structure is defined on an elemental structure as a 
collection of partitions,   one for each of the five types of ele- 
ments.    The resulting mutually exclusive and exhaustive element 
sets are called genera  (plural of genus;. 

A generic structure satisfies the generic similarity property if 
the following is true for every genus other than primitive 
entity genera:    every element in the genus has the same number 
of calling sequence segments and all calls in a given segment 
are to the same genus; moreover, each segment calls the same 
genus for every element.    When this property holds,  one can 
speak in the obvious sense of one genus  "calling'' another, and 
of a  "genus'  calling sequence". 

A modular structure is defined on a generic structure as a 
rooted tree whose terminal nodes are in 1:1 correspondence with 
the genera. The non-terminal nodes are called modules.  The de- 
fault modular structure corresponds to the simplest possible 
such rooted tree,  namely the one with only one module   (the 
root). 

A monotone ordering of a modular structure defined on a generic 
structure satisfying similarity is specified by an order for 
each sibling set.  These orders are extended in the usual way to 
obtain a partial order over all nodes except the root whereby 
any two nodes can be compared so long as neither lies on the 
rootpath of the other.  This partial order is monotone in that 
it is consistent with the partial order on the terminal nodes 
induced by calls among genera; that is,  if genus B calls genus 
A and A and B are descendents of distinct sibling nodes 41 and 
#2 respectively  (A-41 and/or B=#2 permitted;,  then 01  comes 
"before" #2 in their sibling order. 

A structured model is an elemental structure together with a 
generic structure satisfying similarity and a monotone-ordered 
modular structure. 

The modular outline of a monotone-ordered modular structure is 
the indented list representation corresponding to the preorder 
traversal. 

The element graph of an elemental structure is an attributed 
directed graph with a node for every element and an arc from 
element B to element A if element A calls element B.  Every node 
has an attribute denoting its type  (primitive entity,   compound 
entity,  attribute,  function,   or test).    Every non-entity node 
has another attribute giving its value,  every attribute node has 
another attribute giving its range,  and every function and test 
node has an attribute giving its rule.  Every arc has  two attri- 
butes;  the first identifies  the calling sequence segment to 
which it corresponds,  and the second identifies its position 
within the segment. 
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The  genus graph of a generic  structure satisfying similarity is 
a directed graph with a node for every genus and an arc for 
every segment of every genus   (primitive entity genera excepted) 
directed from the genus being called to the calling genus. 

A  model schema is any prescribed class of structured models that 
satisfies isomorphism in this sense: given any two models in the 
class,  their modules and genera can be placed in 1:1 correspon- 
dence in such a way that   (a)  adjacency is preserved in the mod- 
ular structure trees,  and  (b)  corresponding genera have the same 
number of calling sequence segments and call corresponding 
genera from each segment. 

The following propositions give some of the basic theore- 
tical results associated with the above concepts, with a mini- 
mum of commentary. 

Proposition.  In an elemental structure with  a generic 
structure satisfying similarity,  no element calls another 
element in the same genus. 

Proposition. Genus graphs are always acyclic. 

A well known property of acyclic directed graphs is that 
their nodes can be classified uniquely into ranks such that 
nodes of rank r (r>l) have incoming arcs only from nodes of 
lower rank including at least one node of rank r-1. 

Element and genus graphs can be ranked, for both are acy- 
clic. The next result asserts that these rankings are consis- 
tent when viewed in terms of elements. One consequence of this 
fact is that no partition of elements comprising generic struc- 
ture may put together elements of different type or elemental 
rank,   if generic similarity is to hold. 

Proposition. Consider an elemental structure together 
with a generic structure satisfying similarity.   The rank 
of any element based on the element graph is identical  to 
the rank of the element's genus based on the genus graph. 

The next result gives a key property of the modular 
outline. 

Proposition. If genus B calls genus A in a structured 
model,   then A comes before B in the modular outline. 

Consider an elemental structure, together with a generic 
structure satisfying similarity and a modular structure. It is 
natural to wonder about the existence of a monotone ordering 
and how to construct one, for without a monotone ordering there 
can be no structured model.  The following result gives one of 
two known characterizations of when a monotone ordering exists. 
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The characterization as stated is theoretical, but the proof 
provides a simple and constructive method (that has been imple- 
mented) for determining monotone orderings when they exist. 

Proposition (excerpt). Consider an elemental structure, 
together vith a generic structure satisfying similarity 
and a modular structure.  A monotone ordering exists if and 
only if the following condition holds: for every sibling 
set of the modular structure tree,  there is no sibling 
sequence (S1,S2,...,Sn-l,Sl)  such that some genus descend- 
ant of SI calls some genus descendent of  52, some genus 
descendant of S2 calls some genus descendent of S3,   ..., 
some genus descendent of Sn-1 calls some genus descendent 
of Sn=Sl, where n>2 and the siblings in the sequence are 
not necessarily distinct, 

A similar issue arises relative to the situation where no 
modular structure is given. It follows from the second and last 
propositions that, given an elemental structure together with a 
generic structure satisfying similarity, the default modular 
structure always has a monotone ordering. 
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ITEMl /pe/ There is a list of ITEMS. 

ilTEHDATA Certain ITEH DATA  «re provided. 

D(lTENi) /a/ (ITEM) : R+ £very ITEM ham  ■ DEM AMD RASPS (units 
per year). 

H(ITENl) /a/ (ITEM) : R+ fvary ITEM  has a MOLDING COST RATE 
(dollars  per unit par year;. 

F(ITEMl) /a/ (ITEM) : R+ Every ITEM has a riXED SETUP  COST 
(dollars  per setup;. 

Q(lTEMi) /va/ (ITEM) : R+ The ORDER QUAMTfTY (units par  order; 
for mach ITEM is to Jbe chosen. 

fcOPCON OPERATING cossEOUENCES following from ORDER QUANTITY choices. 

FREQ(Di,Qi) /f/ (ITEM) ; Di/Ql Every ITEN has a SETUP rREOUEMCY  (average 
number of setups  per year; equal to DEMAND RATE divided 
by ORDER QUANTITY. 

SETUP$(FREQi,Pi) /f/ (ITEM) i  FREQl • Pi Every ITEM has an 
ANNUAL SETUP COST (dollars per year) equal to the SETUP 
FREQUENCY times  the SETUP COST. 

CARRY$(HlfQi) /t/  (ITEM) f Hi • Qi/2 Every ITEM has an ANNUAL 
CARRYING COST  (dollars per year)  equal  to its HOLDING COST RATE 
times one-half of its ORDER QUANTITY  (which estimates average Inventory 
level). 

ITEM$(SETDP$i,CARRY$i) /t/  (ITEM) } 8BTUP$i ♦ CARRy$i Every ITEM 
has an ANNUAL ITEM COST (dollars per year) equal to its ANNUAL 
SETUP COST plus its ANNUAL CARRYING COST. 

TOT$ (ITEMS) /f/ ; SUMi (ITBM$i)  Th« TOTAL ANNUAL COST   (dollars 
per year)  is the  SUB of all ANNUAL ITEM COSTS. 

ITEM 

ITEM | | D H F Q FREQ SETUPS CARRY$ ITEMS 

COKE || 3600 .40 9.00 500 7.20 64.80 100 164.80 
7-UP || 2500 .40 9.50 300 8.33 79.17 60 139.17 
BEER || 2000 .54 9.00 400 5 45 108 153 

TOTS 

| j   TOTS 

||  456.97 

Fig. 7 Schema and Sample Elemental Detail for a Multi-Item EOQ Model 
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Fig. 8A Genus Graph for EOQ Model: First Pass 
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Fig. 8B Genus Graph for Multi-Item EOQ Model: Second Pass 
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&NUT_DATA  NUTRIENT DATA 

NUTRi There is a list of NUTRIENTS that animals require. 

MINi For each NUTRIENT there is a MINIMUM DAILY REQUIREMENT 
(units per day per animal) for the target animal population. 

«.MATERIALS  MATERIALS DATA 

MATERIALm There is a list of MATERIALS that can be blended 
for animal feed. 

UCOSTm Each MATERIAL has a UNIT COST ($ per pound of material) . 

ANALYSISim Each NUTRIENT-MATERIAL combination has an ANALYSIS 
(units of nutrient per pound of material). 

Qm The feed QUANTITY (pounds per day per animal) of each 
MATERIAL is to be chosen. 

NLEVELi Qnce the QUANTITIES are chosen, there is a NUTRITION 
LEVEL (units per day per animal) for each NUTRIENT calculable 
from the ANALYSIS. 

T: NLEVELi For each NUTRIENT there is a NUTRITION TEST to determine 
whether the NUTRITION LEVEL is at least as large as the MINIMUM 
DAILY REQUIREMENT. 

TOTCOST There is a TOTAL COST (dollars per day per animal) 
associated with the chosen QUANTITIES. 

Fig. 15 Natural Language Summary for Feedmix Model 
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Fig.   16    Modular Tree for Capital Planning Model, 
with Two Views Indicated 
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YRt The model addresses a PLANNING HORIZON of five individual XEAE£. 

&PRDATA There are some BASIC PROJECT DATA. 

PRp There is a list of candidate PROJECTS. 

PNAMEp  Each PROJECT has an EXTENDED PROJECT 1 AME. 

BCp A DIVISIBILITY CODE, either "B" or "CM, is assigned to each 
PROJECT to indicate whether it is indivisible (binary) or con- 
tinuously divisible in character. 

XLp A LOWER ACCEPTANCE LIMIT (a fraction) is specified for each 
PROJECT (the default is 0). 

XUp An UPPER ACCEPTANCE LIMIT (a fraction) is specified for each 
PROJECT (the default is 1). 

NPVp A NET PRESENT VALUE (NPV)   is given for each PROJECT. 

Xp An ACCEPTANCE LEVEL between 0 and 1 is to be chosen for each 
PROJECT; a complete set of choices defines a trial PORTFOLIO. 

NPVX PORTFOLIO NPV is the primary index of a PORTFOLIO'S merit. 
It is the sum over PROJECTS of ACCEPTANCE LEVEL times PROJECT NPV. 

&LEGALITY  The PORTFOLIO must be "LEGAL". 

&RESFEAS RESOURCE FEASIBILITY is a desirable PORTFOLIO property. 

iSERFEAS SERVICE FEASIBILITY is a desirable PORTFOLIO property. 

&FINFEAS FINANCIAL FEASIBILITY is a desirable PORTFOLIO property. 

&FUNDS The model incorporates a FUNDS STATEMENT based on the 
standard financial statement by the same name. It depends on the 
PORTFOLIO, is calculated for each YEAR, and plays a key role in 
defining FINANCIAL FEASIBILITY. 

&CAPFEAS  CAPITAL FEASIBILITY is an aspect of FINANCIAL FEASIBILITY. 

UCAPt An UPPER CAPITAL LIMIT is given for each YEAR for the 
company as a whole. 

T:CEt Given a trial PORTFOLIO, a CAPITAL FEASIBILITY TEST 
checks for each YEAR whetht^ TOTAL CAPITAL EXPENDITURES are 
within the UPPER CAPITAL LIMIT. 

T:IGFt Given a trial PORTFOLIO, an IGF FEASIBILITY TEST is applied 
to the FUNDS STATEMENT each YEAR to check whether the ratio of NET 
FUNDS FROM INTERNAL SOURCES to CAPITAL REQUIREMENTS is at least as 
large as a threshold value supplied by management. 

TrNICt A NET INCOME FEASIBILITY TEST applies each YEAR to check 
whether NET INCOME TO COMMON is at least as large as a threshold 
value supplied by management. 

Fig. 17 Natural Language Summary for VP View of Capital Planning Model 
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Fig. 18 Graphic from Plane <1986> 
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Fig. 19 Genus Graph Extract for Capital Planning Model 
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Fig. 21 Adjacency/Reachability Matrix for Feedmix Model 

NAME SEQ PATH TYPE TABLE KEY PHRASE 

&NUT DATA 1 1 NUTRIENT DATA 
NUTR 2 1.1 PE NUTR NUTRIENTS 
MIN 3 1.2 A NUTR MINIMUM DAILY REQUIREMENT 
&MATERIALS 4 2 MATERIALS DATA 
MATERIAL 5 2.1 PE MATERIAL MATERIALS 
UCOST 6 2.2 A MATERIAL UNIT COST 
ANALYSIS 7 2.3 A ANALYSIS ANALYSIS 
Q 8 3 VA Q QUANTITY 
NLEVEL 9 4 F NLEVEL NUTRITION LEVEL 
T: NLEVEL 10 5 T NLEVEL NUTRITION TEST 
TOTCOST 11 6 F TOTCOST TOTAL COST 

Fig. 22 Genus/Module Summary for Feedmix Model 



TAIL NODE HEAD NODE UNIT COST UPPER CAP LOWER CAP MULT 

PLANT.PLANT PLANT.PLANT PLANT.SUP -1 
OUST.OUST OUST.OUST OUST.DEM OUST.DEM 1 
LINK.PLANT LINK.OUST LINK.COST INF 0 1 

Fig.   2 3    GENNET Control Table for Transportation Model 
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Fig.   24    Two Business Graphs  for Multi-Item EOQ Model 


