
-Ai79 344 MODELING AND SIMULATION OF THE UFTR (MI
TRANSFORM ALGORITHM. (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON RFS ON SCHOOL OF ENGI C H COOPER

UNCLASSIFIED DEC 86 AFIT/GE/ENG/86-44-VOL-i F/G 12/1

mhhhhhhmmmhml
mohhhmmhmhhhu
EhhhhhhhhmmmhlIIIImmImIII

IIIIIIIIIIIIII
1llllhllllll

L1.6

1111 1.0.0

u~hiii

1 .25 $111.4_____ 11111.6

MICROCOPY RESOLUTION TEST CHART

N- jNAL '~

" is , '

qr2

%% .*,

.' . ., w " .,5 ". " % . ".".". "... ." .'.' ". ", '. . ,.• ', '."w '.". '... ,,

gripr

~OF~

MODELING AND SIMULATION OF THE
WFTA 16 PFA PROCESSOR USING THE

VHSIC HARDWARE DESCRIPTION LANGUAGE
VOLUME I

THESIS

Charles H. Cooper
Captain, USAF

AFIT/GE/ENG/86D-44 , DTIC"
rhs ocument hL C E beNAR1797 4

hsas ben pprovedfor public release cind sale; its "itibutton is unlimited. APR 1 198

DEPARTMENT OF THE AIR FORCE" A
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

7Wright-Patterson Air Force Base, Ohio

87 4 15 073

AFIT/GE/ENG/86D-44

F

IT

MODELING AND SIMULATION OF THE
WFTA 16 PFA PROCESSOR USING THE

VHSIC HARDWARE DESCRIPTION LANGUAGE
VOLUME I

THESIS

Charles H. Cooper .,

Captain, USAF) ? o

AFIT/GE/ENG/86D-44 "I'

IA-f 1987

Approved for public release; distribution unlimited

..-.. ..

* 4. *t**.,.~% tS 't't*,.~ C ~~ > ' ~eJ . .<

AFIT/GE/ENG/86D-44

MODELING AND SIMULATION OF THE WFTA 16 PFA PROCESSOR

USING THE

VHSIC HARDWARE DESCRIPTION LANGUAGE

VOLUME I

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

~In Partial Fulfillment of the

. ':Requirements for the Degree of

. Master of Science in Electrical Engineering

TY,
a'.-,

€ -', Charles H. Cooper, B.S. :

December 1986 ... '

a-'

".-"-'Approved for public release; distribution unlimited

a-&

~Acknowledgement

I would like to thank my thesis advisor, Captain Richard Linderman,

for the guidance and timely remotivation needed to ensure the successfulW7

completion of this research effort. I would especially like to thank

Lieutenant Colonel (Retired) Harold Carter for his repeated assistance

in getting the VHDL support environment installed on the AFIT computer

resources.

Most importantly, I would like to thank my wife, Jennifer Leigh, for

all the assistance and support she provided during the months of research.

Without her patience and understanding, this thesis effort would not have

been completed.

-k o

11 ".'"

TABLE OF CONTENTS

VOLUME I t

Acknowedgements o................ ii

List of Figures vi 57

- Abstractv.. iii

Chapter 1 Introduction

1.1 Overview 1

1.1.1 VHDL 2

1.1.2 WFTA Digital Signal Processing 6

1.2 Problem ... 7

1.3 Scope ... 7

1.4 Assumptions 8

1.5 Standards .. 8

1.6 Summary of Current Knowledge 8

1.6.1 1985 WFTA/VHDL Thesis Work at AFIT 8

1.6.1.1 Capt. James M. Collins' Thesis 8

1.6.1.2 Capt. Paul C. Rossbach's Thesis 9

1.6.1.3 Capt. Paul W. Coutee's Thesis 9

1.6.1.4 Capt. Kent Taylor's Thesis 9

1.6.2 1986 WFTA/VHDL Thesis Work at AFIT 10
-..- i

1.6.2.1 Capt. Carl Shephard's Thesis 10

1.6.2.2 Capt. Gary Hedrick's Thesis 10

1.6.3 N.2 Simulation System 11

1.7 Approach 12

- 1.8 Sequence of Presentation 13

V.

Chapter 2 Development of WFTA Architecture

2.1 Overview .. 15

2.2 The Winograd Fourier Transform Algorithm 15

2.3 WFTA Pipeline Processor Architecture 18

2.4 VHDL Support Environment 23

2.4.1 VHDL Language Analyzer 26

2.4.2 VHDL Design Library Mangager 27

2.4.3 VHDL Simulator 31

2.4.4 VHDL Design Library 32

2.4.5 VHDL Reverse Analyzer 34

2.4.6 VHDL Simplifier 35

Chapter 3 VHDL Modeling of the WFTA 16 PFA Processor

3.1 Overview 36

3.2 Top-down Decomposition of the WFTA 16 PFA Processor 38

3.2.1 Signal Flow and Operation of the WFTA 16 PFA

Processor 39

3.2.2 Decomposition of the PISO and SIPO Registers 46

3.2.3 Decomposition of the Arithmetic Circuitry 49

3.3 VHDL Format for the WFTA 16 PFA Processor 53

3.4 Bottom-up Composition of the VHDL Design Library 57

Chapter 4 Simulation of Simple WFTA 16 PFA Processor Components

4.1 Overview .. 60

4.2 Development of the VHDL Test Bench 60

4.3 Model Generation from the VHDL IVAN Representations 68

iv

"-.

. ..

S4.4 Compiling and Linking of the VHDL Ada Models 69

4.5 Running the Simulator Kernel 71

4.6 Execution of the Report Generator 71

Chapter 5 Conclusions and Recommendations

5.1 Conclusions 73

5.2 Recommendations 74

VOLUME II

APPENDIX A VHDL Department of Defense Objectives A-I

APPENDIX B VHDL Modeling Descriptions B-i

APPENDIX C VHDL Analyzer Listings C-i

APPENDIX D VHDL Simulation Reports D-I

APPENDIX E VHDL Error Report E-1

V.:

II.

v

- -
,'.

' LIST OF FIGURES

Chapter 2

Figure 2-1. Cubic Data Structure of the 4080-point Good-Thomas

PFA Implementation 19V

Figure 2-2. 4 080-Point WFTA PFA Processor..............6..........20

Figure 2-3. Winograd Processor Architecture 21

Figure 2-4. Active/Watchdog Processors...........................22

Figure 2-5. The VHDL Support Environment 25

Figure 2-6. The VHDL Language Analyzer 28

Figure 2-7. Role of the Design Library Manager...................30

Figure 2-8. VHDL Supports Hierarchical Descriptions 33 -

Figure 2-9. Example of the Design Library Organization...........34

Chapter 3

Figure 3-1. Winograd Processor Architecture......................37

Figure 3-2. Decomposition and Signal Flow of the WFTA 16

Processsor 40 -

Figure 3-3. Pre-addition Pipeline 44

Figure 3-4. Post-addition Pipeline...............................45

Figure 3-5. PISO Cell 47

Figure 3-6. SIPO Cell 47

A.Figure 3-7. Clocked CMOS Latch...................................49

Figure 3-8. Column Form of the WFTA 16 PFA Processor.............50

Figure 3-9. Resettable CMOS Latch 52

Fiuei.ItraeDcarto omt 5

Figure 3-11. BodyfeDeclaration Format....................... 55

Figure........... 5

Chapter 4

Figure 4-1. PISO Cell 61

Figure 4-2. PISO Test Bench Interface Declaration 62

Figure 4-3. PISO Test Bench Body Declaration 03

Figure 4-4. Timing Diagram for Two Phased Clock 66

Figure 4-5. Dynamic MSFF 67

vii-

%.4

- - - - - -

Abstract

The VHSIC Hardware Description Language (VHDL) is applied to the

problem of modeling and simulating VLSI CMOS components of the WFTA 16

PFA processor. The 16-point PFA processor is one of three PFA processors

under design and development for the implementation of the 4080-point PFA

pipeline processor by the VLSI design group at the Air Force Institute of

Technology. The PFA processor is modeled by applying the hierarchical

facilities of the VHDL language to form the top level register component

descriptions from combinations of the primary building block hardware

element descriptions. Two simple VHDL simulations are performed using

the beta test versions of the VHDL simulator and support environment.

The simple component simulations are performed on a VHDL behavioral

_ description of the Parallel-In, Serial-Out register cell and a VHDL

structural description of a dynamic MSFF.

viii

%
Jlat

-. I. .

-4.. ,-., -

... "**...

MODELING AND SIMULATION
OF THE

WFTA 16 PFA PROCESSOR
USING THE

VHSIC HARDWARE DESCRIPTION LANGUAGE

VOLUME I

Chapter 1

Introduction

1.1 Overview

The development of technology critical Department of Defense (DOD)

programs, such as the Strategic Defense Initiative (SDI), continually

drive the state-of-the-art in silicon fabrication technology. The actual

state-of-the-art in silicon fabrication technology doubles approximately

every three to five years, and currently includes the development of the

VHSIC Phase I (Very High Speed Integrated Circuit) class of silicon chips.

The VHSIC class of integrated circuit (IC) chips is ideally suited for

critical military system applications due to the extremely high operating

speeds, the tremendous rate of data throughput, and the minute size of

the individual IC's.

The rate of change in the state-of-the-art in silicon fabrication

technology results in a tremendous increase in both the performance and

function achieved by a single IC. With the increase in the performance

and function of an IC comes an increase in the design complexity of the

same IC. As the number of functions per IC chip is increased the design

j.-, .'1

complexity increases. In the silicon industry, recent advances in the

development and application of VHSIC chips require functionally complex

chip designs. This no longer affords a company the luxury of allowing

the complete development of a single IC to be the sole responsibility of

an individual design engineer. Instead, VHSIC chips are developed by

- design teams that require concise and accurate communication of design

information between team members and possibly even between design teams

.-j -composed of more than one silicon manufacturing company [3].

In the past, the communication of critical design information for

the function of small and medium scale ICs was accomplished through the

formal language approach, using hardware description languages (HDLs).

*Unfortunately, these HDLs were not flexible or universal enough to allow

modifications in the language to keep pace with the advances and changes

in the technology of the silicon industry. As the silicon fabrication

industry advances into the VLSI (Very Large Scale Integration) era there

exists a need to develop portable computer aided engineering tools that

can both model and simulate the VLSI class of IC chips in a concise and

timely manner [8].

1.1.1 VHDL

In March 1980, the Department of Defense (DOD) established the

VHSIC program office to drive the state-of-the-art in IC technology

toward the needs of the DOD. In the early stages of development of the

VLSI program, the program office recognized that a single standard HDL

acceptable to the nation's defense contractors and major universities

2
"4

A- .

ft.-_

was not available. However, the lack of a single standard language for

hardware design was very similar to the problem that the Ada program

office had encountered a few years earlier when the Department of Defense

set out to establish the Ada programming language as the single standard

software programming language for all the defense contractors. To solve

the problem, the VHSIC program office decided to use a similar approach

to that of the Ada program office and set out to establish a DOD standard

HDL for the defense contractors and major universities. The result was

the development of the VHSIC Hardware Description Language (VHDL) [18].

In the summer of 1981, the Institute for Defense Analyses set up the

Orono workshop to define the system requirements for a standard HDL. The

results of this workshop were used as the basis for establishing the set

of language requirements for VHDL and for defining the system requirements

for the VHDL support environment [18]. In addition, the VHSIC program

- '. office levied the requirement that the VHDL language be based on Ada

constructs wherever possible [14].

The primary objective of the VHDL language is to support technology

insertion. Technology insertion is defined in the "VHDL Design Analysis

and Justification" report as "the utilization of the latest technology

in the development of new systems, as well as in existing ones, in order

to relax their environmental requirements, enhance their capabilities, or

improve their performance" [9]. When the VHDL language has been fully

developed and tested there should be a significant reduction in both the

lag time and total system costs required to insert the most current VLSI

state-of-the-art technology into DOD systems (9].

- 3 ,"

The team of Intermetrics, IBM, and Texas Instruments was awarded the

DOD contract for the design, development, and implementation of VHDL and

its support environment by the VHSIC program office. The preliminary

design phase of the VHDL contract began in July 1983 and concluded in C

July 1984 with the delivery of the language design. During a two month

review period the language design was reviewed extensively by the DOD

user community, the nation's defense contractors, and the major colleges Pi

and universities conducting VLSI research and development. In October

1984 the VHDL development contractors began the implementation phase by

first modifying the existing VHDL design language (Version 5.0) based on

-. the recommendations agreed upon during the design reviews [171. This

*. resulted in the release of Version 7.2 of the VHDL language. The VHDL

implementation phase was originally scheduled to end in December 1985;

however, this phase is now scheduled to end in early 1987 and will

culminate with the delivery of the final implementation of the design

tools for the Version 7.2 of the VHDL support environment [2]. 1

The design, development, and implementation of VHDL as a standard

HDL has made significant progress in the past two years and has caught

the interest of segments of the DOD user community. However, the VHSIC

program office must still convince the majority of the defense community

that VHDL is capable of satisfying all the requirements for a complete

HDL at all the levels of digital system description. Furthermore, the

program office must also convince the defense community that the language

will have the universality and flexibility to adapt to the technology

changes in silicon manufacturing and remain a viable design tool well

4

I%

:LIP

into the 1990's. The VHSIC program office has recruited the assistance

of the Air Force Institute of Technology (AFIT) School of Engineering to

help pioneer the beta test and use of the VHDL language in the research

and development of VLSI technologies at major universities (2].

The AFIT School of Engineering is conducting thesis research in four

major areas of VHDL development. The first area of research involves the

development of an UNIX-based VHDL compiler for the modeling, simulation,

and design of VLSI chips at major universities using the UNIX operating

system. The second area of research is being done in the definition of

design tools to be used in conjunction with the VHDL development of VLSI

IC's. The third area of research requires the definition and development

of the interface requirements between the UNIX-based VHDL compiler and

the individual VHDL design tools. Finally, a portion of the VLSI beta

test research conducted at AFIT will include the design, development,

fabrication, modeling, and simulation of a pipeline of VLSI Prime Factor

Algorithm (PFA) signal processors which implement the Winograd Fourier

Transform Algorithm (WFTA). The VHSIC program office is funding the VLSI

research and VHDL education conducted at the AFIT School of Engineering

in order to help develop a foundation for the application of the VHDL

language at major universities involved in VLSI research [2).

The VHSIC program office is continuing to make every effort possible

to ensure that the VHDL language captures all the requirements of the

potential user groups and develops a large, widespread base among DOD

agencies, defense contractors, and major universities. This includes

the submission of the VHDL language to the Institute of Electrical and

.5. 5

' b

Electronic Engineers (IEEE) for approval as the standard HDL for VLSI

class ICs. The IEEE held reviews on the VHDL language this year in an

effort to release the approved VHDL language as an industry standard at

the earliest possible date [2].

1.1.2 WFTA Digital Signal Processing

As the state-of-the-art in VLSI technology increases a systems

ability to receive information or collect data, it also increases the

burden on the system to process or obtain useful information from the

data. In fact, in most of the advanced military systems in development

and/or use today, the most limiting factor in system performance is the

ability of the system to process the information received in a real-time

2or near real-time mode of operation. However, great strides have been

made toward reducing the total amount of time required to accomplish the

digital signal processing requirements of a system. With many of the

most important advancements coming in the application of state-of-the-art

VLSI technologies to provide the ability to implement very complex signal

processing functions on a single silicon substrate. Additionally, the

application of innovative algorithm designs can physically reduce the

total number of numerical computations required in most system signal

processing [3].

The Air Force Institute of Technology is currently developing a PFA

pipeline signal processor which combines innovative techniques for the

development of processor algorithms with the advanced silicon properties

of the VLSI technology. The result is the implementation of the design,

".- development, and test of the 4080-point Winograd Fourier Transform

6

;& ..Lni1 _-NY

Algorithm (WFTA) method of implementing a Discrete Fourier Transform

(DFT). The WFTA PFA pipeline processor should produce about a tenfold

increase in the signal processing throughput over the current use of .,

existing signal processing algorithms [3].

1.2 Problem

The problem addressed in this thesis is to model and simulate the

large CMOS WFTA 16 PFA processor using the VHSIC Hardware Description

Language (VHDL).

1.3 Scope

The VHDL modeling and simulation research addressed in this thesis

is one of three concurrent 1986 efforts, under the guidance and direction

of Dr. Linderman, implementing the description, design, development, and

fabrication of the VHSIC 4080-point WFTA PFA pipeline signal processor.

Capt. Carl Shephard has designed, developed, and fabricated the VLSI

architecture for the 16-point WFTA DFT from the original WFTA algorithm

concepts developed by Dr. Linderman and advanced by four 1985 graduate

electrical engineering thesis students. Capt. Gary Hedrick has designed,

developed, and fabricated the PFA pipeline interface processor and error

correcting memory chips for the 4080-point WFTA pipeline PFA signal

processor. ..

The major portion of the beta test research in this thesis will be u

directed toward the analysis of VHDL as a design tool for the mcdeling

and simulation of the 16-point DFT developed for the 4080-point WFTA PFA

pipeline signal processor. The research analysis performed in this

thesis will examine and evaluate the ability of the VHDL language and

7

VHDL support environment to support the modeling and simulation task.

There will be no hardware development in this thesis; however, any

design errors identified in the modeling and simulation process will be

brought to the attention of the actual processor chip design engineer. I

*. 1.4 Assumptions

All VHDL models will be developed upon the completion of the VLSI

component design and development process. This thesis assumes complete

verification of the arithmetic and control functions for each of the DFT

components which form the VHSIC 4080-point WFTA pipeline processor. In

addition, to accomplish the research required of this thesis effort the

VHDL software required for VHDL source code analysis and simulation must

be installed and available for use.

1.5 Standards

The overall objective of the VHDL program is to develop a standard

hardware description language for VLSI class components. This thesis

will evaluate the proposed VHDL standard with respect to ability to model

and simulate the WFTA 16 PFA processor.

1.6 Summary of Current Knowledge

1.6.1 1985 WFTA/VHDL Thesis Work at AFIT

1.6.2.1 Capt. James M. Collins' Thesis

Capt. Collins' thesis provides the basic foundation upon which this

thesis is built. The thesis applied the preliminary version (Version

5.0) of the VHDL language to the problem of modeling a CMOS VLSI class

8.'•]

circuit. In the thesis Capt. Collins applies the hierarchical facilities

of the VHDL language to the modeling of the 16-point DFT processor, which

is a major component of the 4080-point WFTA PFA pipeline processor. In

addition, Capt. Collins' thesis used the C programming language to verify

timing, control, and hardware macrocells used to implement the WFTA PFA

pipeline processor architecture [3].

1.6.1.2 Capt. Paul C. Rossbach's Thesis

Capt. Rossbach's thesis addresses the initial design, simulation,

implementation, and testing of the control circuitry for the VLSI linear

4080-point WFTA pipeline processor. The WFTA processor is designed to

compute a 4080-point DFT of complex data points approximately every 120

microseconds, using a 70 MHZ clock signals [161.

1.6.1.3 Capt. Paul W. Coutee's Thesis

Capt. Coutee's thesis addresses the initial design, development, and

implementation of the arithmetic circuitry for the VLSI 4080-point WFTA

PFA pipeline processor. The thesis includes a detailed analysis of the

serial pipeline architecture of the arithmetic circuitry sections of the

WFTA PFA processors [4].

1.6.1.4 Capt. Kent Taylor's Thesis

Capt. Taylor's thesis addresses the design validity and VLSI circuit

implementation of the Winograd Fourier Transform Algorithm and the Good-

Thomas Prime Factor Algorithm. The two algorithms are used to compute

the linear 4080-point DFT by creating an array of DFTs with blocklengths

of 15-points, 16-points, and 17-points. In addition, Capt. Taylor's

9
d-

thesis investigates the numerical accuracy of the algorithms through a

software simulation that uses the signal-to-noise ratio as the accuracy

metric. The arithmetic circuitry of the WFTA PFA processor is designed

to compute over eight thousand 4080-point DFT problems per second, with

a numerical accuracy of over 10 dB [18].

1.6.2 1986 WFTA PFA Thesis Work at AFIT

1.6.2.1 Capt. Carl Shephard's Thesis

As previously stated, Capt Shephard is a member of the 1986 WFTA

design/test team directed by Dr. Richard Linderman. Capt. Shephard's

* thesis addresses the design, development, and fabrication of the VLSI

architecture for the 16-point, 15-point, and 17-point WFTA processors.

The processors will be designed and fabricated using a 1.25 micron VLSI

technology. The 1986 thesis research conducted by Capt. Shephard is a

continuation of the preliminary design and development efforts of the

1985 WFTA design/test team, which were described in the previous section.

1.6.2.2 Capt. Gary Hedrick's Thesis

Capt. Hedrick is also a member of the 1986 WFTA design/test team.

Capt. Hedrick's thesis addresses the design, development, and fabrication

of the pipeline interface processor and the processor error correcting

memory for the 4080-point WFTA pipeline processor. Capt. Hedrick's chip

designs will also be implemented using 1.25 micron VLSI technology. All

of Capt. Hedrick's thesis efforts are new thesis research work, and are

not a continuation of the 1985 WFTA design efforts.

10

'-a

1.6.4 N.2 Simulation System

The N.2 simulation system is a collection of computer aided design

(CAD) software tools assembled to assist system architects, digital

design engineers, and software programmers in the development, test, and r..

evaluation of potential hardware and software designs prior to the actual

system implementation. N.2 is a register transfer level (RTL) simulation

system which utilizes the Instruction Set Processor (ISP) language to

describe digital hardware components. The N.2 simulation system was

identified as a potential design tool for the modeling and simulation of

the WFTA pipeline processor, due to the N.2 systems ability to describe

hardware components. However, after extensive research and analysis, a

c maior limitation in the N.2 simulation system prevented the use of the

system as a modeling and simulation tool for the evaluation of the WFTA

pipeline processor. The current AFIT CAD version of the N.2 simulation

system is limited to the description of hardware components at the RTL

level, and does not support hardware descriptions at the logical design

level (gates, flip-flops, etc.) or the circuit design level (transistors,

resistors, etc.). Therefore, if future thesis research work at AFIT is

to include N.2 simulation of hardware designs at the logical design level

an updated version of the N.2 simulation system must be purchased. An

N.2 description of the 4080-point WFTA pipeline processor would require

logical design level descriptions and will not be addressed in this

thesis effort due to inability of the software [1).

7r.,-

1.7 Approach

The primary emphasis of this thesis effort was to model and

simulate the VLSI large CMOS WFTA 16 PFA processor using Version 7.2 of

the VHDL language and UTMC Release 2.0 of the VHDL support environment.

As previously stated, the VHDL source code descriptions developed by Capt

Collins formed the baseline source code descriptions used to model and

simulate the WFTA 16 PFA processor. The 1985 VHDL source code modeling

descriptions developed by Capt. Collins were rewritten and modified to

conform to Version 7.2 of the VHDL language, and then run on the VHDL

language analyzer to verify conformity with the VHDL language syntax,

semantic, and lexical construct requirements. The WFTA 16 PFA processor

modeling and simulation results provided the much needed inputs to the

understanding of the relative ease of operation and application of the

VHDL language and VHDL language support environment. The results also

provided insight into the effectiveness of the VHDL language to model

VLSI ICs.

The VHDL source code developed by Capt. Collins was accomplished

-ab

through the structural decomposition of the 16-point WFTA processor. The

VHDL source code descriptions of the processor architecture were modeled
-p.

by decomposing the WFTA processor into subsystems, major components of

those subsystems, macrocells of the major components, and finally the

microcells that make up the macrocells. Decomposition of the 16-point

PFA processor architecture led to a top-down approach to VHDL modeling,

and provides a definition of the hardware and signal interfaces at each

of the levels of decomposition. Once the lowest level of decomposition

12

%. % ...-- .aaa

is complete, the smallest individual logic components were modeled using

a behavioral architecture description of the VLSI processor hardware.

The 16-point WFTA PFA processor was then modeled at successively higher

levels of decomposition, by using the previously analyzed VHDL library

descriptions of the lower level components to create structural, and

mixed structural and behavioral architecture descriptions through the

predefined hardware and signal interfaces. Once the 16-point WFTA PFA

processor is modeled and the VHDL library contains all the hardware

modeling descriptions at each of the decomposition levels,
then the -.

simulation of the processor or component of the processor is performed

to verify the dynamic behavior.

* 1.8 Sequence of Presentation.4.

Chapter 2 begins by presenting a brief description of the Winograd

Fourier Transform Algorithm and the development of the WFTA PFA
pipeline .;

processor architecture being developed at AFIT. The chapter concludes

with a brief description of the VHDL language support environment.

Chapter 3 reports on the steps involved with the modeling of the

WFTA 16 PFA processor and the creation of the VHDL design library to

support the modeling descriptions of the PFA processor. The VHDL source

code modeling descriptions and the VHDL language analyzer listings for

the WFTA 16 processor will be provided in the appendix.

Chapter 4 reports on the steps involved with the simple simulation

of a single WFTA 16 PFA processor component. The chapter describes the

steps involved with the compilation, linking, and running of Ada programs

created from the VHDL source code modeling descriptions contained in the

13]
"4.

- - - -- - -- - -- - --- -----. -- w ------ [w~;;rv- w i w - ----- w u "'- -]-w v ~ "- --r] r

VHDL design library. The Ada programs created perform the actual dynamic

analysis and simulation of the hardware component. The simulation also

generates a report of the time history of the simulation. The reports

from simulation runs will be provided in Appendix D. W7

Chapter 5 provides an analysis of the utility of the VHDL laaguage

as a VLSI design tool for the modeling and simulation of large CMOS ICs.

Recommendations and conclusions based on the research performed in this

thesis will be presented. An error report on problems encountered in the

modeling and simulation efforts will be provided in Appendix E.

... 4.-.

14
w

Chapter 2

VHDL Development of WFTA Architecture

2.1 Overview

This chapter presents the reader with the basic WFTA concepts and

VHDL support system background required to gain a complete understanding

of the modeling and simulation results presented in Chapters 3 and 4.

This thesis assumes that the reader is familiar with the basic constructs

of the VHDL language. If the reader is not familiar with the use of the

VHDL language, Volumes I (The Tutorial) & II of the VHDL User's Reference

Manual [11,12), the VHDL Language Reference Manual [10], and Chapter 3 of

Capt. Collins' thesis [3] all provide excellent references for learning

the basic concepts of the VHDL language.

The chapter begins with a brief description of the development of

the Good-Thomas Prime Factor Algorithm (PFA) and the Winograd Fourier

Transform Algorithm. Once an understanding of these two algorithms is

established, their specific application to the AFIT 4080-point WFTA PFA

pipeline processor is presented in the next section. The final section

of the chapter is dedicated to the understanding of the application of

the VHDL language support environment. Appendix A of the this thesis

provides the reader with additional VHDL information on the definition of

the seven DOD objectives for the VHDL language and VHDL language support

environment.

2.2 The Winograd Fourier Transform Algorithm

The primary objective of VLSI DFT design engineers is to directly

and efficiently compute very large DFTs by minimizing the total number of

15

vw'. : . c:--rry - p.

arithmetic operations required. Graduate students at AFIT, under the

direct supervision of Dr. Richard Linderman, have implemented in VLSI a

DFT algorithm technique designed to achieve a significant reduction in

the number of arithmetic operations required to calculate a 4080-point

DFT. In fact, the current VLSI design of the WFTA 4080-point processor

will reduce the total number of arithmetic additions and multiplications

by a factor greater than 500 over the direct implementation of the DFT

algorithm [3]. The dramatic reductions in the total number of arithmetic

operations required by the processor were achieved through the use of the

following two computationally efficient algorithms: 1) the Good-Thomas

Prime Factor Algorithm (PFA), and 2) the Winograd Fourier Transform

Algorithm [4].

The Good-Thomas PFA is applied to a one-dimensional linear DFT with

an array of n data points, and transforms the linear array into m DFTs

with a m-dimensional array of n data points. As a result, the direct

implementation of the Good-Thomas PFA allows the arithmetic computations

of a large one-dimensional DFT to be obtained through the calculation of

a serial sequence of m fourier transforms. However, the application of

the Good-Thomas PFA requires the concurrent application of the Chinese

Remainder Theorm (CRT), to properly map the linear sequential data points

into the m-dimensional data structure. The implementation of the CRT

requires that the m-dimensions of the data structure be relatively prime

from one another; therefore, the m-dimensional data structure should not

contain any dimension lengths with the same common factors. Furthermore,

to achieve the maximum efficiency for a sequential PFA pipeline processor

16

71.

U,'~ - ,.. ZZ k.i ..-. "..*"" •",.-.- ":'

network, each of the DFT processors should take approximately the same

amount of time to solve their respective DFT arithmetic operations. This

restricts the lengths of the m dimensions of the data structure to m

prime lengths of the same relative size [3,4,18].

Once the Good-Thomas PFA has been applied to a large DFT to obtain a

sequence of m smaller DFTs, the Winograd Fourier Transform Algorithm is

applied to each of the m smaller DFTs to minimize the total number of

arithmetic operations required to compute each of the DFTs. The WFTA,

developed by Dr. Shmuel Winograd, represents a significant improvement in

the standard algorithm techniques used by the direct implementation of

many of the existing Fast Fourier Transform (FFT) algorithms. In fact,

Dr. Winograd's algorithm reduces the total number of multiplications in

the arithmetic operations required to compute a DFT from O(nlogn) to

O(n), while at the same time leaving the number of additions constant.

Therefore, the Winograd processing algorithm significantly improves the

computational efficiency of the PFA pipeline processor over the direct e

implementation of existing FFT algorithms [3,4].

As a result, the 4080-point DFT was chosen as the best possible

demonstration case for the design, development, and fabrication of a

WFTA PFA pipeline processor network. The 4080-point DFT also has many

practical applications because it closely approximates the 4096-point K
scans used in current radar systems [3]. The design of the 4080-point

WFTA pipeline processor was based on the application of the Good-Thomas

PFA, which transforms the linear 4080-point DFT into a sequence of three

relatively prime DFTs (16-point, 15-point, and 17-point DFTs). The three

17 V,

A . 7. . .. ,

-N

prime DFTs were chosen to help achieve the maximum PFA pipeline processor

- efficiency by requiring the total computation times of the DFT processors

to be approximately equal to each other. The 3-dimensional data structure

created by the application of the Good-Thomas PFA is demonstrated in

Figure 2-1. Additional information on the application of the Good-Thomas

PFA, the CRT, and the WFTA to the development of the 4080-point WFTA PFA

pipeline processor can be obtained by referencing the 1985 WFTA theses

[31,[41,[16], and [18].

2.3 WFTA Pipeline Processor Architecture

As previously stated, AFIT is developing a 4080-point WFTA pipeline

processor. The PFA processor is constructed from three smaller prime DFT

blocks determined by the application of the principles of the Good-Thomas

PFA. The WFTA pipeline processor solves a 4080-point DFT through the

sequential calculation of 255 (15*17) 16-point DFTs, 272 (16*17) 15-point

DFTs, and 240 (15*16) 17-point DFTs. The VLSI WFTA pipeline architecture

designed to implement the sequential calculations is shown in Figure 2-2.

As seen in the figure, the 4080-point WFTA pipeline processor is composed

of the three WFTA processors (16,15,17), eight individual memory blocks,

four memory controllers, and an interface control processor.

Each of the three WFTA processors can be viewed as a sequence of

pre-additions, multiplications, and post-additions to a given input

vector. Therefore, the WFTA process can be written as the equation:

X CDAx (1)

where D is defined as the diagonal matrix composed of the multiplication

4-..- ,
18

Lot

~U

|'--

- -- - - - - - -- -- - - -

',-.',

~17X

¥y

,'%U

FIGURE 2-1. Cubic Data Structure of the 4080-point Good-Thomas PFA
Implementation [3].

coefficients, C is defined as the incidence matrix of pre-additions, and

A is defined as the incidence matrix of post-additions [3,16]. The

hardware used to implement the above equation for each of the WFTA PFA

processors is shown in Figure 2-3. However, one should note that the

design structure in Figure 2-3 performs separate pre-additions and

multiplications for both the real and imaginary parts of the data stream.

Therefore, the data only takes on a complex format in the post-addition

operations of the WFTA PFA processor.

19s

*1~ U.'°

I,

" e ,, ,. ,,. . +.,.- i.... ,- .
-

.," .. e .+% , .,- .".. ." ,'+." • .. .,+ ° . -.-. .,. ,-. ,

4 ..

% % -. ------------ ----- ------------------- ------- %

HOST

PFA CONTROLLER

EC ECC EIC C
A 6C D isE F 1

e o M em o rl M e no y M em ory

FIGURE 2-2. 4080-Point WFTA PFA Processor.

"1--- -

|-A,

Each of the three processors in the 4080-point WFTA PFA pipeline

processor are designed with a fault tolerance capability. The fault

tolerance is incorporated into the basic architectural design of each

WFTA PFA processor through the use of redundant processors and a "watch

dog" monitoring of the functional operation of the processors for parity

20
i

- -

RESLT DAAHO1HKS

.4.INSCA IN

'4rrrl"

REA S.4P. EA ?S OFF-C.I

ADS MUILIS ADDS RNSAK

14 OUT INMACALING

ADDRES
- CONROL

4~ ~ SEUNE

IINPU

IDD NADRSE

OUTn

FIGURE 2-3. Wrinograd Processor Architecture [3).

errors. The redundant design architecture of the WFTA processors is

shown in Figure 2-4. The control of each of the redundant processors is

resident in the PFA interface control processor. The interface control
"7.:

processor will only allow one of the redundant WFTA processors to bej

"active" and transferring the computed data set information to memory.

- Additional information on fault tolerance in the WFTA pipeline processor

can be obtained by referencing Capt. Coutee's thesis [4).

21

-. -~HOST

MEM IAFrA MEM %FTA MEM ITA KEMI

-UU

FIGURE 2-4. Active/Watchdog Processors []

Each of the eight separate memory banks has the capacity to store

4080 complex data points with a word length of 48 bits. The control of

each memory bank is accomplished through a memory controller and the PFA

interface processor (See Figure 2-2). The controllers alternate the

input and output banks of XROM addressed memory for each of the WF2TA PFA

-processor operations. For example, the initial input bank of memory for

- ~ the 16-point WFTA processor is the A bank of memory. However, during the

A. 22

first WFTA 16 operation on the input data in bank A, the host processor

is loading the data for the second WFTA 16 operation into bank B. The

first WFTA 16 operation puts the data results from the execution of the

16-point DFT into the C bank of memory. Upon completion of the first

WFTA 16 PFA processor operation, the memory controllers immediately (when

directed by the PFA interface control processor) alternate memory banks

A & B and C & D. Now the PEA interface controller for the PFA pipeline

processors begins the execution of the first WFTA 15 operation and the

second WFTA 16 operation. The WFTA 16 PFA processor is now receiving

input data from the B bank of memory and transmitting the results to bank

D. While at the same time, the WFTA 15 PFA processor is receiving input

data from the C bank of memory (the results from the first WFTA 16 PFA

operation) and putting the results from the execution of the 15-point DFT

into the E bank of memory, and the host processor once again transmits

input data for the third WFTA 16 operation into the A bank of memory.

Therefore, the PEA interface control processor and the memory controllers

continue to alternate the input and output data banks of memory for each

execution of the DFTs in the WFTA PEA processors. For a more complete

and detailed description of the WFTA PEA processor, memory controller

operations, and DFT execution reference Capt. Taylor's thesis 1181.

4.%

2.4 VHDL Support Environment

The VHDL support environment is composed of an assorted collection

of user support software and system data designed to assist VLSI design
.LO

"

managers and engineers in making the most efficient use of the design

capabilities of the VHDL language. The contracting team of Intermetrics,

-4. 23
X.og

.*- - - -.

Texas Instruments, and IBM have developed the initial beta releases of

the VHDL support environment for implementation on a standard VAX/VMS

operating system and computer hardware configuration. The software

configuration of the VAX must include Version 4.2 (or later) of the VMS

operating system and the Ada software support required to create an Ada

runtime support library for the VHDL language analyzer. The design tools

and systee data in the VHDL support environment provide four basic system

capabilities: 1) the VHDL design verification of the static and dynamic

language semantics, lexical constructs, and language syntax of a VHDL

source code modeling description for a hardware component; 2) the design

library support management for the revision and cataloguing of segments

(design units) of a hardware component design; 3) the simultaneous

access of multiple design managers and engineers to VHDL design support

data, design tools, and design libraries; and 4) the system capability

to provide a basic foundation for the future addition of VHDL design

automation tools [5].

The VHDL support environment is constructed of the six major design

components illustrated in Figure 2-5. The figure shows the VHDL system

configuration and data flow between the major components. Five of the

major components of the VHDL support environment are VHDL design tools,

these Include the VHDL language analyzer, the VHDL reverse analyzer, the

VHDL simplifier, the VHDL simulator, and the VHDL design library manager.

The sixth component is the designated repository for the design data, the

VHDL design library.

24

r ,°. '. ."-w-

I

- -------- ------- ------- -------".. -------II
r - ZSIMPLIFIER I OTHER '

TOOLS I

I " TSO I C E ANAL.YZER I DESIGN LIBhARY IM L' 1 SIMULATION

AAYEVERSE46ANALYZER] :
DE S I N-' -

LI BRAY

FIGURE 2-5. The VHDL Support Environment [5].

I "--!

The initial beta releases of the VHDL support environment have been

delivered to AFIT for installation, test, and evaluation. The design

tools provided in the initial beta releases of the support environment

include; the VHDL language analyzer, the VHDL reverse analyzer, the VHDL

simulator, and the VHDL design library manager. However, due to language

* restrictions and time constraints on the amount of thesis research that

can be accomplished, the VHDL reverse analyzer will not be evaluated in

this thesis. The following subsections will describe the functions of

all six of the major components of the VHDL support environment, and will

describe in detail the VHDL language analyzer, the VHDL design library

- .- manager, the VHDL design library, and VHDL simulator tested at AFIT.

25

...... s. 2, .,.. -. . a ._.. ,.,.:, , - _ - .,.A.. ,.." ".

2.4.1 VHDL Language Analyzer

The VHDL language analyzer is one of the four primary components of

the VHDL support environment to be tested and evaluated by this thesis.

The analyzer performs a static error check of the modeled VHDL hardware

descriptions. The static error check includes a lexical check of the

VHDL source code modeling descriptions, a language syntax check of the

VHDL source code against the construct rules of the VHDL language, and a

static analysis of the language semantics in the VHDL source code. The

semantic static analysis of the VHDL source code modeling descriptions is

based upon the previously analyzed design units called in the code [5].

If the analyzer static error analysis yields no errors in the VHDL

source code, then the language analyzer translates the VHDL source code

modeling descriptions of the hardware component into the Intermediate

VHDL Attributed Notation (IVAN) form and places the results into the VHDL

design library as a new design unit. The VHDL analyzer also produces a

detailed listing that documents the static error analysis of the specific

hardware component being analyzed.

The language analyzer listing provides the user with information

about the errors detected In the VHDL source code being analyzed (if

there are any), an echo of the actual VHDL source code, a mapping of what

design units were created in the design library, a mapping of what design

units the analysis depends on, information on the processing and runtime

statistics of the language analyzer, and a listing of what symbols and

parameters that were used by the language analyzer. The actual analyzer

listings for the VHDL source code modeling descriptions of the WFTA 16

26'

S26

I.-

.1- * . . - |

PFA processor are available in Appendix C, while the actual VHDL source

code modeling descriptions are available in Appendix B. The structure of

the analyzer listing can also be altered to provide only the specific

information desired by the user. The restructuring of the VHDL analyzer

listing is accomplished through the use of the VHDL library system, which

is a set of functions available to the design library manager. For a

more detailed description on the use of the VHDL language analyzer and

analyzer listing options, reference the VHDL Analyzer User's Manual [5].

If the analyzer static error analysis detects errors in the VHDL

source code descriptions, then the analyzer creates a detailed analyzer

listing showing the location and type of errors detected in the source

code. In addition, the design unit in which the errors were detected

is not placed into the VHDL design library. The errors should then be

corrected by using the text editor of the host system, such as the VAX

EDT editor. The errors detected during the static analysis of the VHDL

source code descriptions initiate error messages at the user's terminal
I

;;A that inform the user of the errors detected during the execution of the

language analyzer. The functions of the analyzer are demonstrated in

Figure 2-6. A detailed listing of the analyzer errors is presented in

the VHDL Analyzer User's Manual and can be referenced during the actual

execution of the language analyzer to give a user a better understanding

of the type of errors encountered [5].

A

2.4.2 VHDL Design Library Manager

The VHDL Design Library Manager (DLM) is the second of the four

primary components of the VHDL support environment tested and evaluated

by this thesis. The DLM is the backbone of the VHDL support environment,

27
%• % %

• .:.Z.

sum

A a 9

USM[I~II

FIGURE 2-6. The VHDL Language Analyzer [5].

- ---------------------------- ------------------------------- 4

and defines the integration framework for communication of VLSI design

information between the VHDL design tools and the VHDL design library.

The DLM also provides the VHDL user software support required to access,

manipulate, and manage the IVAN design units created and stored in the

VHDL design library. A collection of the four VHDL software packages

described below and illustrated in Figure 2-7 combine to form the VHDL

DL [9].

28

F'-

j -7- , - -7

1. VHDL Library System (VLS) -- The VLS is a set of user oriented

functions designed to allow the VHDL user to interactively examine

and manipulate the IVAN design units in the VHDL design library.

The VILS commands are available to the user at the host command level

and indirectly access the VHDL design library through the utility

operations software package. A detailed description of the VLS

commands available to the user is presented in the VHDL Design

Library User's Manual/Implementor's Guide [9].

2. Utility Operations -- The utility operations package of the DLM

provides the software support of the interface between the VHDL

design tools and the VHDL design library. The utility operations

software is designed and defined by an Ada package constructed of

t- numerous subprograms. Each subprogram implements a common VHDL user

oriented function required for the general use and manipulation of

the design library by the VHDL support environment design tools.

3. IVAN Operations -- The IVAN operations package provides the

software support required for the access of the abstract form of the

data contained in the design library nodes, see Figure 2-7. The

IVAN operations software is defined by an Ada software package that

communicates with the VHDL design tools through the interface with

the DLM utility operations package.

4. Library Structure Operations (HIF) -- The library structure

operations software is a set of Ada packages used to establish the

hierarchical structure of the VHDL design library. The DLM library

operations package is accessed by the VHDL design tools in the VHDL

support environment through the DLM utility operations package. The

29

UC

1:: 1 M - W-

) SUPPORT
ENVIRONMENT
TOOLS ANDIVHOL LIBRARY

_______________________________ JSYSTEM
UTILITY

OPERATIONS

IVAN URRSTUCTUREINTERFACE OEAiNOPERAOPORSTIONS

IVAN UDAYDESIGN
DATA STULURIBRARY

FIGURE 2-7. Role of the Design Library Manager [9).

VHDL design tools use the DLM library operations package to build,

access, and manage the high-level organization of the design library

nodes [9].

The interface between the DLN and the other design tools in the VHDL

support environment is not tool dependent. The DLM interface with the

VHDL design tools remains constant and is not modified as new VHDL design

W 30

%.

. ~* -Z

tools are added to the VHDL support environment. Furthermore, as shown

in Figure 2-7, no VHDL design tool has direct access to the VHDL design

library. All design tool access to the design library occurs through the

utility operations package, that has direct access to the IVAN operations

package and the library structure operations package. The design library

is then directly accessed by the IVAN operations package or DLM library

structure operations package. Specific details on the DLM are available

in the VHDL Design Library User's Manual/Implementor's Guide [9].

2.4.3 VHDL Simulator

The VHDL simulator is the third of the four primary components of

the VHDL support environment tested and evaluated by this thesis. The

simulator computes the dynamic behavior of a hardware component modeling

description from the IVAN representations in the VHDL project design

library nodes. The VHDL simulator is composed of three software programs

provided to the user, the model generator program, the report generator

program, and the Simulator core Ada program library. The model generator

extracts the IVAN representations of the hardware components in the VHDL

design library and constructs Ada modules to be used in the creation of

a simulator kernel, without destroying the IVAN representations in the

VHDL design library. The report generator generates user formatted

simulation reports on the signal history of those signals specified by

the user. The simulator core contains software packages which implement

the dynamic event driven simulation capabilities of the VHDL support

environment. The Ada hardware component modules created by the model

generator are compiled and linked using the simulator core library for

31

the simulation kernels. The simulation kernel is an executable Ada

program which generates the signal mapping and signal trace files used

by the report generator. The report generator then creates a simulation

report based on the user parameters defined in the report control file by

using the signal mapping and signal trace files [6].

2.4.4 VHDL Design Library

The VHDL design library is the last of the four primary components

of the VHDL support environment evaluated by this thesis. The design

library is the system design data repository, shared by all design tools,

for the IVAN representations of the analyzed VHDL design units. The

design library supports the hierarchical structure of the VHDL language

and the incremental analysis of a large-scale component partitioned into

smaller design subcomponents.

The hierarchical structure of the VHDL language enables a user to

break a hardware component into a combination of subcomponents, and then

break the subcomponents into a combination of sub-subcomponents, etc.

Continuing to break the components into smaller subcomponents, creates a

tree type structure of design library nodes. Figures 2-8 and 2-9 present

a user's view of the hierarchical structure of the design units in the

VHDL design library. As seen from these illustrations, the structure of

the design library supports more than one description of a particular

design entity. Additional information on the structure and building of

the VHDL design library is available in the VHDL Design Library User's

Manual/Implementor's Guide [9].

32

l
i

t 7-h

-lf l -w - -- -- - -

A

C I b

0 0

,.-.

. 4B4

FIGURE 2-8. S

L--------

S33

m~eLIT,

,-.4

N FIGURE 2-8. VHDL Supports Hierarchical Descriptions [9]. "

* *4*".,

'4--

:- .:..

X C1 C2

2.4.5 VH eere nlye

17

",,4"

I..!

FIGURE 2-9. Example of the Design Library Organization [9].

2.4.5 VHDL Reverse Analyzer

The VHDL reverse analyzer is not tested or evaluated in this thesis;

however, a brief description of the purpose of the reverse analyzer is

provided for completeness of the VHDL support environment. The VHDL

reverse analyzer constructs a VHDL source code modeling description from

the IVAN representations in the design library. The reverse analyzer

supports the analysis, modification, and redesign of VLSI class hardware

components [5,9].

34

z-. --

2.4.6 VHDL Simplifier

The VHDL simplifier is not tested or evaluated in this thesis. The

simplifier merges design modules of a modeled hardware component into a

single hardware description module. The new module then forms a complete

777
modeling description of the entire hardware component and replaces the

the previous hierarchical description in the design library with a single

module [5,9]. ®r

35

.- - - - - - . - , . ." , , ,.., - ,-,7

Chapter 3

VHDL Modeling of the WFTA 16 PFA Processor

3.1 Overview

As previously stated, the structural architecture of the WFTA 16

PFA pipeline processor is built around the sequential application of the

three PFA processors to compute the 16, 15, and 17-point DFTs. Each of

the three WFTA PFA processors used to implement the 4080-point WFTA PFA

pipeline processor architecture is constructed of the same basic hardware

components. The major components of the WFTA processors at the register

level include the input and output registers (PISO and SIPO) and the

arithmetic circuitry cells (pre-addition array, multiplier array, post-

4addition array, parity check/zero fill cells, and parity/round cells).
The major register level components of the WFTA 16 PFA processor are

illustrated in Figure 3-1. The primary differences between the 16, 15,

and 17-point PFA processors is in the number of arithmetic operations

and the height of the multiplication array. The basic architectural

structure of the major register level components is the same [3]. As a

result of the similar processor architectures, only the WFTA 16 PFA

processor will be modeled. This chapter presents the basic steps applied

to accomplish the modeling of the hardware components and the building of

the VHDL design library to support the modeling and simulation of the

WFTA 16 PFA processor.

The chapter begins with a section describing the successive steps

required to perform a top-down decomposition of the WFTA 16 PFA processor

into its basic structural elements. The actual modeling of the hardware

36

Pit 44 b

.2""

RESULTS DAT A HANDSHAKES/
OUT IN SCALING

LISOFF-CHIP

8 7 ARITY Comm

CONTROL
POS T - P fR " -

4- SEQUENCER
IMRG IHAG IIIAG
P 0S T- MU T P IE E-

ADDS ADDS A
IARITYP A RI TY IT00D

ROUND____ rCHECK 6
ADDRESS It

IhA -,P- iso S
, |SliI] T £ .

C: 4 4 4,,4
RE[SULTS DATA INPUT
EUT IN ADDRESSES,,.OUT I N

N-

FIGURE 3-1. Winograd Processor Architecture [3].

components with the VHDL language will be accomplished by creating VHDL

source code descriptions of the basic structural elements and then

combining these descriptions at successively higher levels of abstraction

to eventually form the VHDL descriptions of the major register level

7%2r, components. The second section of the chapter will be dedicated to the

37

definition of the format used to create the VHDL source code descriptions

of the WFTA 16 PFA processor hardware components. While, the last

section of the chapter describes the direct application of the bottom-up

concepts of design to the analysis of the VHDL source code descriptions F-

and the development of the VHDL design library to support the simulation

of the WFTA 16 processor.

3.2 Top-down Decomposition of the WFTA 16 PFA Processor Fe'

The first step in the VHDL modeling of the WFTA 16 PFA processor

is to perform a top-down decomposition of the processor into the major

register level components that perform the computation of the 16-point

DFT. The top-down decomposition of the processor at the register level

actually defines the signal flow characteristics between the major system

components at this level. Once the signal flow characteristics have been

determined, the interface specifications for the major components are

defined and the VHDL design entity interface requirements for the VHDL

source code descriptions are extracted from the interface specifications.

Therefore, the VHDL design entities for the major components at the

register level are actually pre-defined by the architectural structure

and basic signal flow characteristics of the processor. Before beginning

the top-down decomposition of the major register level components shown

in Figure 3-1, it is important to describe the actual signal flow and

operation of the WFTA 16 PFA processor. The description begins with the

input of the data into the PISO register and culminates with the output

of the data from the SIPO register.

38

E V-]-

-9 ..- -.. ,. , . . ,- . . ,.,,.. .- ..- . . ,

s
3.2.1 Signal Flow and Operation of the WFTA 16 PFA Processor

At the register level the WFTA PFA processor can be described as a

bit-serial machine. As presented in Figure 3-1, the major processing

components include the input and output registers and the arithmetic

circuitry. However, as Illustrated in Figure 3-1 the WFTA processor is

divided into two separate, but complete and identical computational

sections. The real and imaginary sections of the WFTA processor are

independent mirror images of one another through the last column of the

post-addition array. In the last column of the post-addition array the

computations on the real and imaginary data sets are combined to form the

complex outputs of the 16-points DFT. As a result of the mirror image

structuri, ar, 'itecture of the two computational sections, only one of

Jo the two sections will be modeled and described in this thesis. However,

it must be emphasi7ed that the real and imaginary sections of the WFTA

processor perform exactly the same operations, at the same time, in the

same sequence, using only different sets of data from the input banks of

the off-chip memory [3]. Figure 3-2 presents a register level view of a

single section (real or imaginary) of the WFTA 16 PFA processor and best

illustrates the processor hardware which will be modeled with the VRDL

language in this thesis.

The parallel input register in Figure 3-2 is a Parallel-In, Serial-

Out (PISO) register 24 bits wide and 16 words deep (24 x 16). The input

data word is provided by an off-chip input memory bank and provides a

data word 24 bits wide with 23 data bits and 1 parity bit. Every other

clock cycle the PISO receives a new data word from one of the two input

---.. "39 -'

Sh

- .#' " "- . "- • . " "¢ -' " " ".".. '.".". ..€ ,# -".r $.,-. ',e., ,¢ t.." 4.,,. ...- ".," ',b$ 'e.",,., .%_. ,".% _"

V .

PRRALLEL INPUT CHIRL

L - , LT 16PISO Zi:

ICIIL C TRL

PRRLLEL OUTPUT

FIGURE 3-2. Decomposition and Signal Flow of the WFTA 16 Processor [3].

banks of memory addressed by the XROM. The control signal SD PISO is

used to shift the 24 bit data word input at the top row of the PISO down

by one row. Therefore, after the input of 16 data words (or 32 clock

cycles) the PISO is completely filled with input data and must now be

shifted into the serial registers of the PISO. The control signal

4- LATCH_PISO is forced high and the transfer of the word-parallel data

into the serial shift registers of the PISO occurs at this time. Once

the transfer of the data from the parallel registers of the PISO is

40

. _ , _C~d -.. , ...I. _. , . . .

"dS

complete, the parallel registers are now free to receive the next 16

data words. The PISO will continue to input the data in blocks of 16

data words into the parallel registers and shift the data into the

serial registers and out into the pipeline as long as the OPERATE

control signal remains high [3].

The 16 data words in the serial registers of the PISO are now ready

to be shifted into the arithmetic circuitry cells of the pipeline. As

long as the SRPISO control signal of the PISO stays high, the 16 data

words are shifted one bit at a time, starting with the least significant

bit (LSB) first, into the processor pipeline. To allow for the numerical

growth required in the arithmetic circuitry of the processor, the data

must be extended to a 32-bit word length in the Parity Check/Zero Fill

- x (PC/ZF) cell. The PC/ZF cell also performs an odd-parity error check on

the data and strips the parity bit from the data words. The zero fill

section of the PC/ZF cell inserts zeros prior to the LSB to scale up the

data and enhance the signal to noise ratio. The sign extensions required

for a specific data set are appended after the most significant bit to

prevent an arithmetic overflow problem in the computational array sections

of the processor pipeline. For a more detailed register level description

of the operations performed by the PFA processor the reader is referred to

Capt. Coutee's [4], Capt. Rossbach's [16], and Capt. Taylor's [18] 1985

theses.

The actual number of zero fills and sign extensions required for

a specific data set is determined by the adaptive scaling algorithm.

The algorithm considers the relative magnitude of the input data set

41

."'.""

and determines the necessary adjustments required to prevent arithmetic

overflow in the computational sections of the processor. Each and

every 4080-point data set inputted by the Host computer into the WFTA

PFA pipeline processor has an associated scale factor. The scale factor

reflects the magnitude of the largest number in the entire data set. The

scale factor is also the smallest number of sign extensions that must be

applied to any number in the data set. Thus, to avoid the possibility of

arithmetic overflow, the largest number (a scale factor 0) requires a

minimum of five sign extensions. If a 4080-point data set contains only

very small numbers, the processor can replace sign extensions with zero

fills to enhance the overall numerical accuracy of the WFTA PFA pipeline

process [3].

The arithmetic circuitry cells that for." the pre-addition array,

the multiplier array, and the post-addition array actually implement the

16-point DFT. The multiplicand for the multiplier array is generated

from the output of the PC/ZF cells by the pre-addition array. The cells

of the pre-addition array require a maximum of four sequential addition/

subtraction operations. All multiplicands generated in less than four

addition/subtraction operations must remain aligned with the other data

elements in the processor pipeline. Therefore, those positions in the

pre-addition array, and also the post-addition array, that do not require

an adder/subtractor (A/S) cell must be replaced with a one-delay wide

Master-Slave Flip-Flops (MSFFs). Most of the circuit elements in the

WFTA 16 PFA processor require an input Phi2 latch and an output Phil

latch; however, the PC/ZF and A/S cells are exceptions to this rule.

The PC/ZF cell requires only a Phi2 latch that is preceded by some

42

.1 4- .

additional combinational logic. While the A/S cells are exactly the

reverse, they require data that enters on the Phil latch and leaves on

the Phi2 latch [3).

A pipeline view of the pre-addition array for the WFTA 16 PFA

processsor is presented in Figure 3-3. As seen in Figure 3-3, the

pre-addition array is only constructed from three columns of A/S cells

and MSFFs. As previously stated, some multiplicands require a minimum

of four addition/subtraction operations; however, only two of the

multiplicands (data words) require four A/S cell columns. But these

two data words do not have any other arithmetic operations performed on

their bit streams, they travel through the remainder of the pipeline by

passing through only single-delay MSFFs in the post-addition array.

Furthermore, the sum and difference of these two bit streams only pass

through trivial multipliers C xl) in the multiplier array. Since the

two data streams do not perform any arithmetic operations in the post-

addition array and the multiplier array equates to a multiplication by

one, it is possible to delay the fourth column addition/subtraction

operations required in the pre-addition array until the first column

of the post-addition array. This eliminates the entire fourth column of

the pre-addition array and reduces the total pipeline latency by one

clock cycle and also eliminates 35 MSFFs. As illustrated in Figure 3-3,

the PC/ZF cell and pre-addition array introduce four cycles of latency

into the processor pipeline [3].

The multiplier array of the WFTA 16 PFA processor consists of a

[18 X 14] array of multiplier cells. The 28 bit Winograd coefficients

are encoded into fourteen multiplier cells using Booth's quaternary

43

F 1 o" 1 1-

v. :, ','F A: . A::. A:; A:.[3

FIGURE 3-3. Pre-addition Pipeline [3]. 7

encoding algorithm. Therefore, each bit of the reduced coefficient

represents a single bit multiplier cell of the serial multiplier array.

Each of the multiplier cells requires a latency of 3 clock cycles and the

entire multiplier array requires a total latency of 41 clock cycles

(3 X 14 - 1) for the pipeline processor [3].

The post-addition array of the WFTA 16 PFA processor arithmetic

circuitry requires three columns of A/S cells. The pipeline view of the

post-addition array and parity/round cells is presented in Figure 3-4.

The first column of the post-addition array includes the deferred fourth

column operations for the two bit streams from the pre-addition array.

The first two columns of the post-addition array perform the independent

operations on either the real or imaginary data streams. The third

column combines the two independent data streams and produces the complex

outputs of the 16-point DFT operation. The post-addition pipeline view

also contains the parity generation and arithmetic rounding (PR) cell.

The PR cell rounds the 32 bit results from the arithmetic arrays to 23

44°.".. .

M-MM-

,,.

S'.4.

F I(ITIPLIER TO SIF.

PHI 2 PHI I PHI 2 Pil I PHI 2 PHI I

ADD I ADD I ADD 2 ADD 2 ADD 3 ADD 3 Ph

FIGURE 3-4. Post-addition Pipeline [3].

data bits and calculates the odd parity bit requirement for these 23 bits

and appends this to the 23 bits to create a 24 bit data word. Thus, the

post-addition array and PR cell introduce a latency of 3 1/2 clock cycles

to the total latency for the WFTA pipeline processor [3].

The output of the post-addition array is input into the Serial-In-
I

Parallel-Out (SIPO) register. The SIPO has the same basic structure as y, .%-

the PIS0 register. The data for the SIPO enters bit serial and is output

word (24 bit) parallel. Once the MSB (parity bit) has been shifted into

the SIPO, the control signal LATCH SIPO is forced high and the data is

shifted from the serial registers into the parallel registers of the

SIPO. Every other clock cycle produces an output parallel data word that

is sent to the off-chip memory location addressed by the XROM. The XROM

is designed for the processor memory address generation and is an element

of the control circuitry of the WFTA 16 PFA processor, which will not be

modeled by this thesis effort [3].

45 I

- - - -.- .. .-... . . - W y-C~ w

3.2.2 Decomposition of the PISO and SIPO Registers

* As previously stated, the basic structural architecture of the PIS0

and SIPO registers is the same. The registers form input and output data

registers with a word length of 24 bits wide and 16 words deep. The PISO

register has 24 parallel input data ports and 16 serial output data ports.

While the SIPO register reverses the input and output functions and

creates a register that has 24 parallel output data ports and 16 serial

input data ports. The PISO and SIPO registers are controlled by a two

phase clock and three control signals. When the individual PISO and SIPO

registers are decomposed into the next lower level of hardware structural

elements, each of the registers is viewed as an array (24 X 16) of PISO

and SIPO cells. Both the PISO and SIPO cells of the PFA processor are

constructed of the same basic hardware elements as shown in Figures 3-5

and 3-6.

The PIS0 and SIPO cells each have a parallel and serial input data

port, a parallel and serial output data port, a two phased clock signal,

and three control signals. The three control signals in the PIS0 cell

control the parallel shift down of the data word to the next lower word

level, the latching of the data into the serial registers in the cell,

and the serial shift right of the data by one bit into the arithmetic ,'

circuitry pipeline. While, the three control signals in the SIPO cell

control the serial shift right of the data by one bit out of the pipeline,

the latching of the data into the parallel registers in the cell, and the

parallel shift up of the data word to the next higher word level. As

illustrated in Figures 3-5 and 3-6, the individual PISO and SIPO cells

are constructed from three uni-directional transmission gates and two

46

. .. .'2-

SERIAL IN

SR-P150 -

INALE PARALLEL

SEILOUT

FIUR 3-. IS Cll

PARALLEL IN

SDSIPO7

PARALLEL OUTAt

FIGURE 3-6. SIPO Cell.

47 9

Master-Slave Flip-Flops (MSFFs). The transmission gates are modeled as

single direction gates because the data flow directions are pre-defined

by the architectural design structure. The transmission gate is also

defined as a basic structural hardware element of the PFA processor and

is one of the primary building block elements. As one of the lowest

level components modeled, the VHDL source code modeling descriptions be

implemented using a VHDL behavioral architecture description.

The MSFFs can be further decomposed into two serial CMOS latches

clocked by the Phil and Phi2 inputs from the two phase clock. The CMOS

latch is illustrated in Figure 3-7 and is constructed from a transmission

gate, a tri-state inverter, and a clocked inverter. The transmission

gate and tri-state inverter are basic structural hardware elements and

are modeled using a VHDL behavioral architecture description. While the

clocked inverter is further decomposed into a transmission gate and

inverter. The inverter will also be defined as a primary building block

for the modeling of the WFTA 16 PFA processor and as a basic structural

hardware element will be modeled using a VHDL behavioral architecture

description. Thus, the entire PISO and SIPO registers are described by

a combination of only three basic structural hardware elements; the uni-

directional transmission gate, the tri-state inverter, and the inverter.

VHDL modeling descriptions of these three primary building blocks will be

written using a behavioral architecture description. The behavioral

descriptions will then be structurally combined at successively higher

levels of abstraction to form the structure of the individual PISO and

TI SIPO cells. The PIS0 and SIPO cells are then structurally combined to

" -' ' form the 124 X 16] array that defines the PISO and SIPO register.

'.
48

I%
A Mr e jC r

9--

CLK CLK ARI

FIGURE 3-7. Clocked CMOS Latch [3].

Additional information and details on the modeling of the clocked CMOS

latch and MSFF is contained in Capt. Collins' [3] and Capt. Coutee's [4]

theses.

3.2.3 Decomposition of the Arithmetic Circuitry

The arithmetic circuitry is composed of the pre-addition array, the

multiplier array, the post-addition array, the parity check/zero fill

cells, and the parity/round cells. Any single section of the processor

arithmetic circuitry can be viewed as a continuous operation on a single

bit slice of a 32 bit vector. Once a data word enters the PISO, each bit

of the word is associated with 15 other data bits from the same bit

position in the other 15 data words of the PISO. This bit slice

alignment must be maintained throughout the entire latency period of 119

clock cycles required for the processor to complete the pipeline signal

~ **:.' rocessing.

V49

J.VI

I.,,. ..

The arithmetic circuitry for the PFA processor can be structurally

decomposed into 23 parallel columns of functional computational elements,

as illustrated in Figure 3-8. The height of each column represents the

number of bit streams crossing the interface. Each of the columns is 7W

structurally decomposed into a single bit wide array of computational

elements. In the pre-addition array the columns are composed of A/S

cells and single delay MSFFs. The multiplier array is constructed of

five multiplier elements (+2, +1, 0, -1, -2). While, the post-addition

array is constructed of A/S cells and MSFFs like the pre-addition array.

16 X 24 C'LL1S. "

S..

PIPELINE PIPELINE

Y I NI' S / M N

H 1 1TTP H I 2 ," .

is is SERIAL MULTIPLIERS IS X 12 114 is 16 '"

x x3DELAYS PER COLMN x X X "-

1 2 2 1 3 .

2 2

2 2

~~~SIPO "-

L
1 6  X  2 4  C E L L S

.

S.;r

FIGURE 3-8. Column Form of the WFTA 16 PFA Processor [3].

54.50

:"" . . .. . . ._._._._._.



The A/S cells and MSFFs of the pre- and post-addition arrays are

decomposed into primary building block elements like the PISO and SIPO

cells. As previously stated, the MSFFs and resettable MSFFs (RMSFFs)

are constructed from combinations of three basic hardware elements; the

uni-directional transmission gate, the tr-state inverter, and the

inverter. The RMSFFs have a similar structural architecture to the

MSFFs. The only difference is that the RMSFFs are constructed from the

resettable CMOS latch shown in Figure 3-9. Therefore, the VHDL modeling

descriptions are slightly different, but are still composed of the same

basic structural hardware elements. The A/S cells are decomposed into

2 RMSFFs, 5 CMOS latches, an inverter, and a full adder/subtractor. The

RMSFFs, CMOS latches, and inverter are constructed of the three basic

structural hardware elements previously described (transmission gates,

tri-state inverters, and inverters). However, the full adder/subtractor

must be defined as a new basic structural hardware element and primary

building block. The full adder/subtractor will be modeled by using a

VHDL behavioral architecture description. Therefore, the pre- and post-

addition arrays are structurally decomposed into four primary building

block elements; the uni-directional transmission gate, the tr-state

inverter, the inverter, and the full adder/subtractor. The exact

combinations of the A/S cells and MSFFs in the pre- and post-addition

array columns is described in detail in Capt. Coutee's thesis [4].

The [14 X 18] multiplier array is structurally decomposed into a

combination of five different multiplier cells. The multiplier cells

include the positive two multiplier cell, the positive one multiplier

cell, the zero multiplier cell, the negative one multiplier cell, and

51

'4%



--

1%l

lITIN BIT-OUT

CLK-.-

Cttn LKDi .$A-.

FIGURE 3-9. Resettable CMOS latch [3].

the negative two multiplier cell. The zero multiplier cell is decomposed

into 4 MSFFs, which as previously described are constructed from three

basic structural elements. The remaining multiplier cells (+2, +1, -1,

and -2) are each decomposed into different structural combinations of

4 MSFFs, a RMSFF, an inverter, and a full adder/subtractor. Therefore,

just as in the pre- and post-addition arrays, the multiplier cells are

constructed from the four basic structural elements previously described;

the uni-directional transmission gate, the tri-state inverter, the

inverter, and the full adder/subtractor. The exact combination of .

multiplier cells required to form the Booth's quaternary representation

of the multiplier array for the WFTA 16 PFA processor is described in

detail in Capt. Coutee's thesis (4].

52

- -. ,,-.... ~ ~~~. ... r ..-"_ . . .. ,. . . . .,. . ..M v . . .. . , - , .



The parity/round and parity check/zero fill columns of the processor

arithmetic circuitry are decomposed into parity/round (PARRND) cells and

parity check/zero fill (PARZER) cells. The PARRND cell is structurally

decomposed into a combination of 2 CMOS latches and 2 MSFFs. While the

PARZER cell is decomposed into a combination of 2 transmission gates, a

MSFF, and a Set-Reset Flip-Flop (SRFF). Each of these elements, except ...

the SRFF, has previously been described in terms of its basic structural

hardware elements. The SRFF is structurally decomposed into 3 CMOS

latches. Therefore, the PARRND and PARZER cells can also be decomposed

into three primary building block hardware elements; the uni-directional

transmission gate, the tri-state inverter, and the inverter. Again, the

specific details on the actual cell structure and columns structures are

described in detail in Capt. Coutee's thesis [4).

Thus, the PISO/SIPO registers and the processor arithmetic circuitry

are modeled in the VHDL language by using structural combinations of the

four primary building block elements; the uni-directional transmission

gate, the tr-state inverter, the inverter, and the full adder/subtractor.

The VHDL source code modeling descriptions of these basic elements are

contained in Appendix B, along with the structural combinations of these

elements used to describe and model the major register level components

of the WFTA 16 PFA processor.

3.3 VHDL Format for the WFTA 16 PFA Processor

The format used to document the VHDL source code descriptions for

the modeling of the WFTA 16 PFA processor is shown in Figures 3-10 and

3-11. As shown in the uni-directional transmission gate example, the

53

--. .. . . ...



.. J.

-- DATE: 9 September 1986
V -- VERSION: 2.0
-- TITLE: Transmission Gate
-- FILENAME: T GATE.VHD
-- COORDINATOR: Capt. Charles H. Cooper
-- OPERATING SYSTEM: VMS
-- LANGUAGE: VHDL

-- ENTITY:

with package WFTA DECLARATIONS;
use WFTA DECLARATIONS;

entity T GATE
(bit in: in Z BIT;
control: in CNTRL;
bitout: buffer ZBIT) is

generic (tdelay: TIME : Ons)

end TGATE;

-- FUNCTION:
This is a behavioral description of a

-- transmission gate. It actually needs both senses
-- of the control signal to drive the CMOS 'P' and
-- 'N' transistors but since the inverted signal
-- does not perform any separate function it is not
-- included in the port list or architectural
-- description. The T GATE is sensitive to both the

input and control signals. However if control "
'0', then the output will be not change regardless

-- of the value of the input. The process statement
-- reflects this consideration. If the control has
-- not just changed to 'I' the output will not
-- reflect the input. As soon as control switches

-- to '1' then the input will be enabled. As long
-- . as the control remains high the output will
-- reflect the input, when it falls the input signal
-- will be disabled and not be allowed to cause
-- events in the Transaction queue.

FIGURE 3-10. Interface Declaration Format.

54i4V.'71

% % ' ' "" .''. " ,% " " ia " - , . " ' ' ' ' ' ' ' ' " " ' - "- "



P M 1:77

architecture BEHAVIOR of TGATE is

BEHAVIOR BLK:

block

begin

process (bit-in , control)

begin

-- if (control '1' and not control'stable) then

-- enable bitin;
S -- end if;

-- if (control - '0') then

-- disable bit in;
-- end if;

if (control - '1') then
bit out <- bit in;

end if;-

end process;

end block;

end BEHAVIOR;

FIGURE 3-11. Body Declaration Format.

55 'H

-- - - - -- - - - - A2,. .6 IL



format of the VHDL source code modeling description is divided into two

sections; the interface declaration section and the body declaration

section(s). The interface declaration section contains specific file

information on a hardware element, the design entity description of the

hardware element, and a functional description of the hardware element.

The specific file information for the hardware element includes the

origination date, version number, title, filename, coordinator, project

name, operating system, and description language. The VHDL design

entity description of a hardware element defines the element interfaces,

the use of additional packages, and the use of any special assertion

statements required for the element. The functional description provides

the user with a top level functional description of a hardware element '

and provides an insight into the operation of the element.

The body declaration section(s) contains the actual VHDL source code

for the specific hardware element defined in the design entity. The body

declaration section is defined by the V14DL language documentation as

either an architectural declaration o- a configuration declaration. The

WFTA 16 modeling descriptions all use an architectural declaration to

define the behavior, architecture, or structure of a specific design

entity. A VHDL modeling description can contain more than one type of

architectural declaration, but must contain only one design entity

description as illustrated in the SRFF VHDL source code description in

Appendix B. Therefore, all VHDL source code modeling descriptions for

the WFTA 16 PFA processor will use the interface and body declaration

format described.

56

, W- r 7



3.4 Bottom-up Composition of the VHDL Design Library

The VHDL design library for the WFTA 16 PFA processor is created

by the VHDL language analyzer through the bottom-up analysis of the VHDL

source code modeling descriptions. At AFIT, the VHDL support environment

software required to perform the VHDL source code analysis is installed

on the CSC VAX/VMS operating system under the DATAMGR VMS user name. The

DATAMGR user directory is divided into two subdirectories for the VHDL

system installation. The DESIGNLIBRARY subdirectory is created to hold

the data repositories required for the development of the multiple VHDL

project design libraries. While the VHDL2_SYSTEM subdirectory is created

to hold the VHDL system software required for the analysis and simulation

of the modeling descriptions. In addition, the VHDL support environment

(requires the addition of an execution command call in the user LOGIN.COM

file for the execution of the VHDL system VHDL UTMC5 LOGIN.COM file. The

VHDL support environment is designed to allow the user to create multiple

design libraries. The individual design libraries are created to reduce

the effect of possible design library corruption. Therefore, the AFIT

VHDL support environment was designed to support three VMS project user

accounts (USER1, USER2, and USER3). Each of the three user accounts has

its own individual project design library data repositories located in

the DATAMGR.DESIGN LIBRARY subdirectory. The individual project design

libraries hold the IVAN representations for each design project and are

created by executing the VHDL design library manager ADD USER command of

the VHDL library system (VLS) software. The source code descriptions for

the WFTA 16 PFA processor are located in the <<USERI>> design library.

57

,1 %



The PFA processor VHDL source code modeling descriptions are created

and stored in the USERI user account using any system editor. The source

code is then analyzed by executing the VHDL language analyzer. The exact

order of analysis for the VHDL source code descriptions is critical in

the creation of the PFA processor design library. The first VHDL source

code descriptions analyzed must be the VHDL packages created to support

the hardware descriptions. For the WFTA processor the WFTADECLARATIONS

package is analyzed first, this creates the IVAN representations for the

new signal types and functions required for the successful description of

the processor hardware. Once the VHDL packages have been analyzed the

lower level basic hardware structural element descriptions are analyzed.

The basic hardware descriptions include the transmission gate, inverter,

( tri-state inverter, AND gate, OR gate, XOR gate, and XNOR gate.

Once the basic structural hardware element descriptions have been

analyzed the bottom-up concepts of VLSI design are applied to create the

the structural combination of hardware elements required to create the

successively higher level hardware descriptions. The bottom-up concepts

of design as applied to the creation of the PISO/SIPO register will be

used as an example to illustrate the order required in the analysis of

the successively higher level hardware descriptions. As previously

stated, the PISO/SIPO register is created from only three basic hardware

elements; the transmission gate, tri-state inverter, and inverter. Once

these three elements are analyzed and their IVAN representations stored

in the <<USERi>> default context design library, the next higher level of

hardware elements are formed. For the PISO/SIPO the next higher level

58

• . ' .



V.,?

of hardware elements only consists of the CMOS latch, the latch is built

with a combination of the three basic hardware elements. When the CMOS

latch IVAN representation is inserted into the design library by the VHDL

language analyzer the next higher level of PISO/SIPO hardware elements

can be analyzed. Again the next higher level component of the PISO/SIPO

register consists of only one element, the MSFF. The MSFF is composed of

a combination of CMOS latches. When the analysis of the MSFF is complete

the PISO/SIPO cell source code modeling description is the next higher

level of hardware element analyzed. This is followed by the analysis of

the PISO/SIPO row and then the final analysis of the PISO/SIPO register

itself. The most important concept to remember in the construction of

the design library through the analysis of the source code descriptions,

is that any component called in a description must already be analyzed by

the VHDL language analyzer. The only exception to this concept is the

analysis of a design entity can be accomplished and used for higher level

analysis of the hardware elements without the actual definition of the
..-.

architecture of the element. However, if the design entity is redefined

the analysis of all higher elements is voided. Therefore, as seen from

the PISO/SIPO cell example the design library is created through the

successive analysis of lower level elements to form the highest level

elements. All other major register level hardware elements of the WFTA -'-

PFA processor are analyzed in the same manner, by applying the bottom-up

concepts of design.

59 ..

". ".".



:-21""Chapter4

Simulation of Simple WFTA 16 PFA Processor Components

4.1 Overview

The simulation of a hardware element using the VHDL language and

VHDL language support environment is accomplished through a sequence of

of five major serial steps. The five major steps include the development

of a VHDL test bench for the hardware element to be simulated, the model
a- .

generation of the Ada source code for each of the hardware components of

of the hardware element, the compiling and linking of these Ada files

into a sublibrary of the simulator core, the execution of the simulation

kernel created by the compiling and linking of the Ada files, and the

report generation of the user specified signals created in the execution

of the simulation kernel. This chapter presents the implementation of

this sequence of steps in the simulation of a VHDL behavioral modeling

description of the PISO cell and the simulation of a VHDL structural

modeling description of the dynamic MSFF composed of two transmission

gates and two tr-state inverters.

4.2 Development of the VHDL Test Bench rM

The behavioral modeling description of the PISO cell is dependent on %

the WFTADECLARATIONS package due to the use of tr-state signals. A

structural view of the PISO cell is illustrated in Figure 4-1. As shown p

in the figure and specified in the design entity of the VHDL source code

modeling description in Appendix D, the PISO cell has two inputs, two

outputs, three control signals, and a two phase clock. Therefore, the

VHDL test bench for the PISO cell must define these signals and the VHD.'

60

. ' ' , ...- - . ". .,-. . ,,. .....-... ...........-.-... <.' . ......~ ;*;c*;~ -1 . .->....:.c- .. ,. .-



predefined component variables required by the VHDL test bench, which is

located in the VHDL simulator core. The VHDL source code for the PISO

cell test bench is shown in Figures 4-2 and 4-3. As seen in the source

code, the test bench is the top level unit of a hardware element modeling

description and defines the unique dynamic characteristics for the VHDL

simulation of the element. Therefore, the test bench must not depend on

P LAT

CONTROL

PAR IN C ELPAR OUT

N PISO U
P TCELL
U P
T U

T

SER IN SER OUT

CLOCK

PHII2

PHI P

FIGURE 4-1. PISO Cell.

61

V .



DATE: 25 NOVEMBER 1986
-- VERSION: 1.0

-- TITLE: Test Bench for Simple Piso Cell

-- FILENAME: test bench.vhd
- COORDINATOR: Capt. Charles H. Cooper
" -- PROJECT: THESIS

OPERATING SYSTEM: VMS
-- LANGUAGE: VHDL

- ENTITY:

with package <<VHDL>>SIMULATORSTANDARD;
use SIMULATOR STANDARD;

with package WFTA DECLARATIONS;
use WFTADECLARAT7IONS;

entity TEST BENCH is

end TESTBENCH;

- FUNCTION:
This is the test bench for the simple

-- Piso cell.

FIGURE 4-2. PISO Test Bench Interface Declaration. Z

any external influences and will not include any ports or generics in

the interface declaration [6].

The control of the simulation conditions are accomplished through

the virtual test equipment predefined by the package SIMULATORSTANDARD

in the <<VHDL>> library created during the installation of the simulator.

The test bench accomplishes this through the instantiation of the virtual

62
-p. t



b~.p\

architecture PISO of TESTBENCH is

PISOBLK:I

block

signal stop, st enable, overflow, bn enable : BIT;

signal quiescence, trans.overflow, deltaoverflow : BIT;
signal activity, cum activity :

SIMULATOR STANDARD.TRANSACTION NUMBER TYPE;
signal CLK GO, SPACT, SPAC 2, PHI_2, PHIl1: BIT;
signal DATA, PS_D, PS_R, P LAT: BIT;

signal P-1, SI: ZBIT;
signal P_0, S_0: BIT;

initialize BIT to 10;

component SIMPLE PISO CELL port
( P YN, S IN: in ZBIT;
P SHIFT DOWN,
PSHIFT RIGHT,
P_LATCH,
CLK2, CLKi: in BIT;
POUT, SOUT: buffer BIT);

for all : SIMPLE PISO CELL use
entity (SIMPLE PISO CELL)
architecture (BEHAVIOR);

end for;

begin

LI : signal trace data recorder
port(st enable, overflow)
generic(simulator standard.trace on);

L2 : test bench control
port (stopT
generic (100, 1000, Ins);

L3 : bed of nails

port (bn enable, quiescence, trans overflow,
delta overflow, activity, cum.activity)

generic (10000, 100);

FIGURE 4-3. PISO Test Bench Body Declaration.

63

wjwlre '4'.
'S3; i. .e



,:.
-. --- - - - - -

st enable <- '1';
bn-enable <- '1' ; ii

P_I <- convbz(DATA and
(not (convz b(SI))));

S-I <- P1T after 90 ns;

DATA <- '1';

PSD <- (DATA and (not PS_R) and
(not PLAT));

PLAT <- P SD and (not PS_R)
after 30 ns;

P SR <- P LAT after 30 ns;

CLK -GO <- 'I'; '

PHI: 1 <- (CLK GO and (not SPAC_1) and- -4
(not PHI_2) and (not SPAC_2)) *-

after 1 ns;
SPAC_1 <- (PHI_1 and (not PHI 2) and

(not SPAC 2))
after 3 ns;

PHI_2 <- (SPAC_1 and (not SPAC_2))
after 3 ns;

SPAC_2 <- PHI_2 after 3 nas;

STOP <- '1' after 800 ns;

--PISO
PISO : SIMPLE PISO CELL port

(PI N-> I,
S-IN > S-I,
P SHIFT DOWN -> P S D,
P-SHIFT-RIGHT > PSR,
P-LATCH-'> PLAT,
CLK2 -> PHI_2, T,
CLK1 -> PHI l,
P OUT -> P 0,
S-oUT -> S-0);

end block;
end PISO;

FIGURE 4-3 (CONT). PISO Test Bench Body Declaration.

64

. r * : .1..1 , , ,L. , . ... ., .,, ,.*.. .. ,. . ., . . •. . - . , • .;



test equipment components that include the SIGNAL TRACEDATARECORDER,

TEST BENCH CONTROL, and BED OF NAILS. The VHDL test equipment components

are described in more detail in the VHDL Build 2 Simulator User's Manual

[6].

The input, control, and clock signals are defined in the test bench.

The simulator restriction of no multiple inputs requires the use of the

logical timing statements defined in Figure 4-3 to create the PHI_1 and

PHI 2 phased clock signals. The timing diagram for the two phase clock

signals is shown in Figure 4-4. The control signals are defined using
.9.0

a similar logical timing statement and controls the movement of data

through the PISO. The data is first shifted down with the PSD (parallel

', shift down) control signal, then latched into the serial registers with

the P LAC (parallel latch) control signal, and finally the data is shifted

'C. right with the P S R (parallel shift right) control signal. The input

data is also alternated between '1' and '0' values using logical timing

statements. The time delay for the change of signals is defined using
-a.

the reserved word after in each of the signal definition statements.

The values for the variables are then assigned to the PISO cell in the

component instantiations. Once the signal variables have been defined

the test bench is analyzed with the VHDL language analyzer and the IVAN

representation stored in the default design library (<<USERi>>). The

commands used to analyze the VHDL source code modeling descriptions for

the PISO cell simulation are as follows:

$ vhdl WFTAPAC.VHD

$ vhdl SIMPLEPISOCELL.VHD

$ vhdl PISO TEST BENCH.VHD

65

--.. """



The errors identified in the analysis of the VHDL source code hardware

descriptions are described in detail in the VHDL Analyzer User's Manual

[5]. This completes the development of the VHDL test bench step of the

simulation process.

The development of the dynamic MSFF test bench is similar to the

development of the test bench for the PISO cell. The structural block

diagram for the dynamic MSFF is shown in Figure 4-5 and is composed of

two uni-directional transmission gates and two tri-state inverters.

The test equipment variables are basically the same and only differ with

-1'.

0
4 7 16 19

0
7 10 19 22

PH119

0
10 13 22 25

SPAC 2 I

Elii

TIME

( n sec )

FIGURE 4-4. Timing Diagram for Two Phased Clock.

.

66



'I..w) Nvu

the simulation run times defined by the stop variable. The input, clock,

and control signal assignments are done in a similar manner to the PISO

cell; in fact, the two phased clock signals are identical. The VHDL

source code modeling descriptions for all the MSFF components and the

test bench are contained in Appendix D. Again, the test bench must be

-" analyzed with the VHDL language analyzer and the IVAN representations

inserted into the default design library with the following commands:

$ vhdl WFTAPAC.VHD

$ vhdl SIMPLETGATE.VHD

$ vhdl ZINVERT.VHD

$ vhdl MSFF TEST BENCH.VHD

SY N A M I C M S F F

GR I I
I I ,

- I I -

467

I

I I':

-. L I w

~~,J'N

FIGURE 4-5. Dynamic KSFF.

67 "

'I



". 'J.

4.3 Model Generation from the VHDL IVAN Representations ?Y

The VHDL model generator software extracts the hardware description

modeling information from the design library (IVAN representations) and

then constructs the Ada modules used in the generation of the simulator

kernel. The model generator uses a two step process. First, the model

generator transforms the IVAN representations from the design library

into an internal Ada representation. The internal representation is then

converted into the standard Ada text files. The commands used to execute

the model generator for the PISO cell simulation are as follows: ,

$ mg package-WFTADECLARATIONS/srcf-WFTAPAC

$ mg architecture-BEHAVIOR[SIMPLE PISO CELL]/srcf-SIMPLE PISO CELL

$ mg architecturePISO[TEST BENCH]/TOP

The commands used to execute the model generator for the dynamic MSFF

simulation are as follows:

$ ag package-WFTADECLARATIONS/srcf-WFTAPAC I.

$ mg architecture-BEHAVIOR[SIMPLET GATE]/srcf-SIMPLE TGATE

$ ag architecture-BEHAVIOR[Z INVERTER]/srcf-Z_INVERT

$ ag architecture=STRUCTURE[DYNAMIC .MSFF]/srcf=DYNAMICMSFF

$ ag architecture-D MSFF[TEST BENCH]/TOP

- The detailed information on the execution of the model generator and the

possible errors detected during the model generation step of the VHDL

simulation process are contained in the VHDL Build 2 Simulator User's

Manual [6].

AID%.

68
°I"



A.'.

4.4 Compiling and Linking of the VHDL Ada Models

The VAX Ada support software is executed to compile the standard Ada

text files created by the model generator and then links the compiled Ada

modules to form the SIM KERNELMAIN program used to execute the actual

simulation of the hardware component. However, to compile the Ada source

modules requires the designation of one or more Ada program libraries for

the storage of the compiled Ada objects. The libraries are created by

the execution of the following commands for the PISO cell and dynamic

MSFF simulations.

--PISO Cell

$ acs create sublibrary [DATAMGR.VHDL2_SYSTEM.ADALIBSIMCORE.PISO]

--Dynamic MSFF

$ acs create sublibrary (DATAMGR.VHDL2_SYSTEM.ADALIB SIMCORE.DMSFF]

Once the sublibraries have been created the Ada libraries must be set for

the compilation and creation of the Ada object files. The library is set

by the following commands for the PISO cell and dynamic MSFF simulations.

-PISO Cell

$ acs set library [DATAMGR.VHDL2_SYSTEM.ADALIB SIM CORE.PISO]

--Dynamic MSFF

$ acs set library [DATAMGR.VHDL2 SYSTEM.ADALIBSIMCORE.DMSFF]

• '--A

.%

69

P:

. .J . .
~ 'A - - 4 p A %A.~f '~ .P ~ ~ P ~ \. ~PA%



The Ada object files are then created by the execution of the following

commands:

-PISO Cell

$ ada/opt WFTAPAC.ADA

$ ada/opt SIMPLE PISO CELL

$ ada/opt PISO.ADA
'iiA

-Dynamic MSFF

$ ada/opt WFTAPAC.ADA .

$ ada/opt SIMPLETGATE.ADA

$ ada/opt Z INVERT.ADA

$ ada/opt DYNAMIC_ -MSFF.ADA

$ ada/opt DMSFF.ADA V

When the standard Ada text files have been compiled in the designated ACS

sublibrary the models are linked with the test bench through the command:

-PISO Cell and Dynamic MSFF

$ acs link SIM KERNEL MAIN

The linking of the Ada models creates the SIMKERNEL MAIN.EXE file, this

file is an executable Ada file that will run to perform the specified

simulation experiment for a hardware component. Execution and error

details on the compiling and linking step of the VHDL simulation process

are contained in the VHDL Build 2 Simulator User's Manual [6].

70



*"I W~ V .

4.5 Running the Simulator Kernel

F1

The simulation of the hardware component is performed through the

• ,-- execution of the SIM KERNEL MAIN.EXE file. This process creates a Signal

Map File (TESTBENCH.SMF) and a Signal Trace File (TESTBENCH.STF) that

are used by the VHDL report generator. The Signal Map File is a text

, Wfile that contains the documentation of the signal numbers used in the

Signal Trace File, the Signal Map files for the PISO cell and dynamic

MSFF are contained in Appendix D. The Signal Trace File contains a

signal history record of the simulated hardware component. The hardware

component simulation is run by executing the following VMS command:

--PISO Cell and Dynamic MSFF

$ run SIM KERNEL MAIN

*-" The runtime execution and error details for the VHDL simulator are also

documented in the VHDL Build 2 Simulator User's Manual [6].

4.6 Execution of the Report Generator

The VHDL report generator documents the time history of the signals

specified by the user. The report generator uses the Signal Map File

and Signal Trace files as inputs for the documentation of the selected

signal histories. The signals desired and the format for the report to

be generated is specified in the INPUT.RCL file. This file must be

created prior to the execution of the report generator and is created by

using the host system editor. The INPUT.RCL file for both the PISO cell

and dynamic MSFF simulation reports are documented on the first page of

each report contained in Appendix D. The VMS command used to execute the

71

e Orp e"AW, W.'r,



report generator for both simulations is as follows:

--PISO Cell and Dynamic MSFF

$ rg INPUT.RCL TESTBENCH

The execution of this command creates a TEST BENCH.RPT file that contains

the user specified signal time history information. The specific details

on the execution and error messages created by the VHDL report generator

are specified in the VHDL Build 2 Simulator User's Manual [6]. The

actual reports for the simulation of the PISO cell and dynamic MSFF are

contained in Appendix D. The results in the signal history reports for

the simple simulations of the PISO cell and dynamic MSFF show that both

hardware elements performed as specified.

72

* *-.k2



Chapter 5

6 Conclusions and Recommendations

5.1 Conclusions

This thesis addressed the problem of modeling and simulating the

. arithmetic processing hardware of the WFTA 16 PFA processor with the

VHSIC Hardware Description Language (VHDL). The modeling of the WFTA 16

PFA processor hardware components was done at all the levels of component

abstraction from the gate level to the register level. The VHDL language

supported the description of hardware models at all these levels and

therefore provides and excellent design tool for the modeling of VLSI

hardware components. The VHDL support environment provides an excellent

VLSI design tool for the successful modeling and simulation of the VHDL

source code hardware modeling descriptions. The AFIT beta testing of the

UTMC developmental releases of the VHDL language support environment were

successful and provided much needed interface information on the actual

development, modeling, execution, and simulation with the VHDL support

environment. However, the Build 2 restrictions on the VHDL simulator did

require limited modeling and simulation application of the VHDL language

used in the source code descriptions. Therefore, the simulations run in

this thesis are not optimal VHDL hardware simulations due to the fact

that Build 2 release of the VHDL simulator software used was not a final

version of the VHDL simulator, but was only a limited developmental beta

release of the VHDL simulator modules completed to date.

73
A



5.2 Recom:endations

The application of the VHDL language and VHDL support environment

to the modeling and simulation of the 4080-point WFTA PFA pipeline slgnal

processor should be continued with 1987 AFIT graduate students. The VHD F.

simulations completed in this thesis were done on very simple hArdwAre

elements of the WFTA 16 PFA process )r, an,! were by nn means a cro: :Pr

and comprehensive simulation of the processor. The similations con; ,,ete! -

were limited by the current developmental restrictions of the Build 2

Simulator and were limited by disk memory on the AFIT CSC VAX/VMS system.

Therefore, as additional releases of the VHDL simulator are receive! fr"

beta testing the Rlmulations on WFTA PFA processor elements should beroome

more complete and should eventually provide a system simulatton of the

entire PFA pipeline processor.

The current disk memory space on the AFIT CSC VAY/VMV sho'l. be

expanded to accommodate the VHD:- support environment. H a,-tt.,, tI,,

VHDL Data Manager should set up the required number of user accounth

needed to support the use of the VHDL support environment by students

and faculty. Overall the VHDL language and support environment provide
i°

an excellent design tool for the implementation, modeling, and simulation

of VLSI class hardware components.

74

- - 7d. . . F



% -6
Bibliography

1. Air Force Institute of Technology. N.2 Manual. March 1985.
Department of Electrical and Computer Engineering, School of
Fngineering, AFIT (AL), Wright-Patterson AFB OH.

2. Carter, Dr (It Col) Harold W., Associate Professor, Department of
Electrical Engineering. Personal Interviews. Air Force Institute of
Technology, Wright-Patterson AFB OH, 10 January through 7 February

r,, 4 -is, (a't 'anes M. ModelinE and Simulatior. of a Signal Processor

Implement ing the Winograd Fourier Transform. MS thesis, AFIT/GE/ENG7
85D-9. School of Engineering, Air Force Institute of Technology (AU),

Wright-Patterson AFS OH, December 1985.

4. Coutee, Paul W. Arithmetic Circuitry for HI h VLSI Winograd
Fourier Tranafrrm Processors. MS Thesisa, GE/ENG/8 -11-T. School of
Fr.gineering, Air Force Institute of Technology (AU) Wright-Patterson

AFB OH. December 1985.

'tprmetri, (o)rporati1r. VHD: Analyzer User's Manual. 30 April
1486 , AS:) , ' , %right-Patterson AFB Oh. Contract F33615-83-C-1003.

.Intermetrics corporation. VHDI Build 2 Simulator User's Manual.
3; T-,Y 486 , ASD (AFS( ', WrIght-Patterson AFB OH. Contract F33615-

1-.tprm .rr r.iratIor.. VHL): DeL Ig Aralysis. 16 February 1984,
F ' :, Wright-Patterson AFB OH. Contract F33615-83-C-1003.

Intermetrica Corporation. VHDI Design Analysis and Justification.
Version 5.0. 3( July 1984, ASD (AFSC), Wright-Patterson AFB OH.
Contract F33615-83-C-1003.

' . Intermetrics Corporation. VHDL Design Library User's Manual/
Implementor's Guide, Volume I - Body. 15 March 1986, ASD (AFSC),
Wright-Patterson AFB OH. Contract F33615-83-C-1003.

IntermetrIrs Corporation. VHD/ lAnguage Reference Manual, Version
7_. ,I Auvst I9P , AIM ,hT-' , Wright-Patterson AFB OH. Contract

IntermitricA orp,,rit ion. VHDI User's Manual, Volume I -- VHI)!
Tutorial. I August 14F5, AsrWT AF , right-Fatterson AFB 0H.-

12. Intermetrics Corporation. VHDI User's Manual Volume II -- VHDL
User's Reference Gulde. I August 1985, 7S (FSC), Wright-Patterson
AFR OH. Contract F33615-83-C-1003.

75

*-. _ -j . j . . . .. . . . ,., . * .. ' --.. ....-). .- '..i . . .. ..



--. °

13. International Business Machines Corporation. Preliminary Lanuage

Requirements for VHDL. Version 2.0. 1 February 1984, ASD (AFSC),
Wright-Patterson AFB OH. Contract F33615-83-C-1003.

14. Linderman, Dr (Capt) Richard W., Assistant Professor, Department of
Electrical Engineering. Personal Interviews. Air Force Institute of
Technology, Wright-Patterson AFB OH, 10 January through 7 February

1986.

15. Lipsett, Roger et al. "VHDL - Language." Rough Draft of
Report to be published in IEEEDT. Intermetrics Corporation, Bethesda
MD, 7 November 1985.

16. Rossbach, Paul C. Control Circuitry for Hi hn VLSI Winograd
Fourier Transform Processors. MS Thesis, GE/ENG -5D- 35. School of

Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1985.

17. Shahdad, Moe et al. "VHSIC Hardware Description Language."
Computer,18: 94-02 (February 1985).

18. Taylor, Kent. Architecture and Numerical Accuracy of High Speed DFT
Processors. MS Thesis, GE/ENG785D-47. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December

I1985.

7U

.1

r.

__<hJ,

____ o.)AA• d

-. *o . o- ,' <•p

___ ____ 'P



?N

Vita

Captain Charles H. Cooper was born on 18 December, 1956 at March Air

Force Base, Riverside, California. He attended Kaiserslautern American

High School in Kaiserslautern, West Germany, and was appointed to the

United States Air Force Academy in June 1975. He graduated from the Air

Force Academy with a Bachelor of Science Degree in Electrical Engineering

in May 1979 and was commissioned as a regular officer in the United States

Air Force. He was assigned to Space Division, Deputy for Technology, Los

Angeles Air Force Station, California where he served as the mission

planning project officer for the Teal Ruby Experiment. In November 1981,

o •he was assigned to the Eastern Space and Missile Center, 6555th Aerospace

Test Group, Satellite Integration Division, Cape Canaveral Air Force

Station/Kennedy Space Center, Florida, where he served as the Air Force

Launch Controller for orbiter/payload integration operations on the

January 1985 launch of STS Mission 51-C. In May 1985 he entered the Air

Force Institute of Technology to pursue a Masters degree in Electrical

Engineering. He is married to the former Jennifer Leigh Barron of

Colorado Springs, Colorado and has two daughters Stephanie Leigh and

Jessica Anne.

77

~ * ' ~ -~ ' N$N .



UNCLASS IFTIED.7
SECURITY CLASSIFICATION OF THISPAGE

REPORT DOCUMENTATION PAGE ODAByo 0704-0OIU

.-a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
U N C L A S S IFTI E 1)

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
____________________________________ Approved for public release;

* 2b OECLASSFICATION DOWNGRADING SCHEDULE distribution unlimi ted.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NuPVBER(S)

AFIT/G'F/FNG/86l0-44

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION
W* (if applicable)

School of Fnrineering. AFIT/ IFNG

6c ADDRESS (City State, and ZIP Code) 7b ADDRESS(Cit) State and ZIP Code)
Air Force Institut(- of Technolopy
INT-ight-Patterson AFIb, Oil 45433-058~3I

go NAME OF FUNDING/ SPONSORING IBb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
4":ORGANIZATION (if applicable)

AFWAL AADE

Bc. ADDR ESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK WORK UNIT

6ripgrt-Patterson AFB, OH 145433-6583 ELEMENT NO NO NO IACCESSION NO

I1I TITLE (include Security CGass,fication)
Mlodcling and Simulat iot o-A thle WFTA 16 l'FA Processor using the VHSIC Hardware ilescript ic..
Language, Volume I.

12 PERSONAL AUTHOR(S)
Charles H. Cooper , Capt ., t*SAF

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
MS1 Thesis, FROM To 1980 December

16 SUPPLEMENTARY NOTATIO'.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)%
FIELD GROUP ISUB-GROUIP VHSIC Hardware Description Language Digital Simulation

u9 12Computer Architecture Signal Processing

19 ABSTRACT (Continue on reverse sf necessary and idlentily by block number)

The VHSIC Hardware Description Language (VHDL) is applied to the probler of modeling
and simulating VLSI CMOS components of the WFTA 16 PFA processor. The 16-point PFA
processor is one of three PFA processors under design and development for the implemenita-
tion of the 4080-point PEA pipeline processor by tile VLSI design group at the Air Force
Institutt, of Technology. The PFA processor is modeled by applying, the hierarchical
facilities, of thie VIIl), language to form the top level Trister comporlent (17 -(' ilt iOTns

from corilinat ions of the primarN buildig block hzardwarc elem,-it descri;It i(,. . Two simpl' *

VHDL, simullat ions are performed using tile beta test Ver-Sions Of tille VHIil. Sir>:l ator and
~ ~.support environment. The- simple component simulations are performed on a Vi.heiiaxiora:

description of the Parallel-In, Serial-Out (PISO) cell and a VHDL, structuyal description l
of a dynaIMic Maste-r-Slave Flip-Flop (MSFF). %A S 3~'

20DSRBUTION/ AVAILAILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
C3NLASSIFIED/UNLIIWTED 0 SAME AS RPT 0 DTIC USERS tTNC LAS S I F I 1)

% 2 AEOF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22( OFFCE SYMBOL
7RcadW. Linderman 513-255-6913 1AFIT/LNC.

DForm 1473, JUN 86 Previous editions are obsolete SECURITY CLASSiFICATO% OF THIS PAGE

UN C1.AS SI F I F 1
%' "* * e~~<.. *




