

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STINDARDS-1963-A

OTTIC FILE COPY

AFIT/GSO/ENS-ENG/86D-1

DESÍGN OF GPS STATUS

REPORTING SYSTEM

THESIS

Harrison C. Freer Captain, USAF

AFIT/GSO/ENS-ENG/86D-1

87 4

Ĵ,

Approved for public release; distribution unlimited

AFIT/GSO/ENS-ENG/86D-1

DESIGN OF GPS STATUS REPORTING SYSTEM

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Space Operations

Harrison C. Freer, B.S., M.A.

Captain, USAF

December 1986

Approved for public release; distribution unlimited

Preface

The purpose of this study was to design a satisfactory status reporting system for NAVSTAR GPS. A systems engineering approach was used, and the focus was limited to a complete operational satellite constellation and navigation user requirements. The recommended system consists of a two tier database computed in real-time as the operational GPS constellation changes and a microcomputer program to customize outage information for extraordinary requirements.

In writing this thesis, I have had a great deal of help from others. I am indebted to my faculty advisors, Lt Col John Valusek and Dr. Darrel Hopper for their patience, guidance, and assistance. I also wish to thank Maj. Frank Zawada, and Maj Rudy Schwab at Space Command Plans for suggesting and sponsoring this effort. Finally, I wish to thank my wife Tricia and my children for their understanding, encouragement, and cooperation in allowing me to complete this thesis.

Accession For NTIS GRALI R DTIC TAB Unannounced П Justification B▼. Distribution/ Availability Codes Avail and/or Special Dist

Table of Contents

	rage
Preface	11
List of Figures	v
List of Tables	vi
Abstract	vii
I. Introduction	1
II. Current Environment	9
Literature Review	9
Current Radionavigation Status Reporting	16
Systems	10
III. Methodology	21
Overview,	21
Problem Definition	24
Value System Design	25
Svetem Svothesis	28
System Syncheckis	31
	44
IV. Model GPS Status Reporting System	45
	45
Specifice of the Proposed System	45
Cont	67
How the Sweter Would Work	60
	72
	12
V. Survey Analysis	74
Survey Development and Administration	74
Analysis of Survey Results	76
Recommendations Based on Survey Results	87
	•.
VI. Conclusion	89
Key Elements of Proposed System	92
Areas for Further Study	93
Annendix A: GPS Status Reporting Survey and Regults	90
Appendix A. OLO Diatus Reputting Durvey and Results .	105

ALL BALLER

Bibli	log	ra	ph	У	•	•	•	•	•	٠	٠	•	•	•		•	•	•	•	•	•	•	٠	•		•	•	•	108
Vita	•	•	•	•	•	•	٠	•	•		•	•	•	•	•	٠	•	٠	٠	•	•	•	,	•	•	•	•	•	111

.

•

.

<u>List of Figures</u>

Figu	re p	age
1.	GPS System Concept	3
2.	Objective Hierachy, General to Specific ••••••	27
3.	Map of Recommended US Sampling Points	54
4.	Sample Screen for Database Cross Referencing	61
5.	Sample Screen for Area Query of Database • • • • •	61
6.	Introductory Screen to Micro Program • • • • • • •	64
7.	Main Menu Screen For Micro Program	64
8.	GPS Satellite Menu Screen for Micro Program • • • •	65
9.	GPS Parameter Menu Screen for Micro Program ••••	65
10.	Constellation Status Screen for Micro Program	66
11.	Degraded Coverage Output Screen for Micro Program .	66
12.	Survey Results for Basic Book Reference and Automated Systems	82
13.	Survey Results for Precomputed Book Reference System and Follow-up Questions • • • • • • • • • • • •	83
14.	Survey Results for Automated Reporting System and Microcomputer Customization Feature ••••••••••••••••••••••••••••••••••••	84
15.	Proposed Reporting System Information Flow Schematic • • • • • • • • • • • • • • • • • • •	92

.

1. 1.

<u>List of Tables</u>

Table	1	page
2.1.	Degraded Coverage as a Function of Mask Angle	12
3.1.	Transmission Method/Computational Means Compatibility	33
3.2.	Transmission Method Utility Measures	34
3.3.	Computational Means Utility Measures	35
3.4.	Computer Cost Estimates of Alternatives • • • •	. 37
3.5.	Summary of O & M Cost Estimates of Alternatives .	42
4.1.	Reference Orbit Parameters Baseline Satellite Deployment	49
4.2.	Selection Criteria for Sampling GPS Coverage	53
4.3.	Degraded Coverage Parameters • • • • • • • • • • •	57
4.4.	Summary of Cost Estimates of Alternatives	67
4.5.	Proposed System Cost Estimates •••••••••	68
5.1.	Survey Results for GPS Degraded Coverage When Error Exceeds 100 Meters Horizontal	77
5.2.	Survey Results for 3 D Reporting Preference • • •	78
5.3.	Comparison of 3 D and 2 D Degraded Coverage • • •	80
6.1.	Summary of Proposed Status Reporting System	91
6.2.	Recommended Changes to Survey Questionnaire • • •	96
A.1.	Summary of Survey Results for Short Answer Ouestions	102

AFIT/GSO/ENS-ENG/86D-1

Abstract

The purpose of this study was to design a status reporting system for NAVSTAR GPS. A systems engineering approach was used for the full satellite constellation with fully functioning user equipment. The recommended system consists of three main elements: a database, a status transmission mechanism, and microcomputer software. The database proposed has two tiers and is maintained in real-time as the operational constellation changes. The first tier contains the orbital ephemeris of the active constellation. The second tier consists of areas and associated times of degraded coverage.

Two methods of initial transmission of the status information are identified. The Notices to Airmen (NOTAM) system that currently exists is one primary transmission system. The other recommended initial link in the transmission process is electronic mail. Further dissemination by appropriate agencies using a variety of transmission methods is also outlined.

The final element of the system is software that can run on microcomputers. This software would allow users with special requirements to compute degraded coverage from the ephemeris data using assumptions and parameters different from those used in producing the second tier of the database.

vii

DESIGN OF GPS STATUS REPORTING SYSTEM

I. Introduction

<u>Background</u>. Department of Defense policy in 1986 calls for NAVSTAR GPS to become the primary DOD radio navigation system. Therefore, accurate dissemination of system status information is critical. Sound operating practices and FAA tasking require establishment of procedures for informing users when the navigation capabilities available from GPS become degraded. Air Force Space Command will have control responsibility for GPS and is studying ways to integrate it with existing navigation operations.

In the early 1990's, the satellite based NAVSTAR GPS will provide all-weather world-wide navigation for air, land, and sea use with accuracy not available by any other means. Initial Operational Capability (IOC) was scheduled for 1989 prior to the January 28, 1986 shuttle Challenger accident, but because of the present launch vehicle crisis, it appears that date will slip a minimum of two years. Military planners continue to actively address operational issues involved with GPS employment, and this research project is part of that effort. Specifically, this thesis presents a status reporting system for navigation users.

GPS is a US Defense Department developed system that consists of three segments: a space segment, a control segment, and a user segment. The space segment is made up of 18 operational and 3 active spare satellites in 6 circular. 20,600 KM, 55 degree inclined orbits broadcasting precise position and time information on 2 L-band frequencies. The control segment consists of a master control center, dispersed monitoring stations, and dispersed transmission stations to accomplish satellite updating and housekeeping activities. A wide variety of user equipment, specialized for individual needs, makes up the still evolving user segment. A Nuclear Detection Payload with the capability to provide very accurate nuclear detonation information to military commanders also flies on GPS satellites. While GPS is a DOD system fulfilling military navigation related requirements, it is expected to have widespread civilian uses. Figure 1 represents an overview of the total GPS system.

3

all and the second

One of the two GPS modes is the Precision mode (PM). It provides targeting quality accuracy for military operations and is accessed through a classified code. A second course mode (CM) provides navigation information to any user possessing appropriate receiver equipment. Test results of nominal CM accuracy in the 55 meter range prompted DOD to provide a detuning capability on operational satellites. Controversy still surrounds this purposeful degrading of accuracy that has come to be known as Selective Availability (SA). But even at 100 meters, the currently proposed setting, GPS represents a quantum improvement in accuracy for many applications compared to existing navigation aids. Normally, GPS receivers automatically select four satellites in the sky to calculate three-dimensional position and time. For each known quantity, one less satellite is required to determine the remaining parameters. For example, if altitude is known, as with a ship (sea level), only three satellites are needed. With all 18 satellites, there will normally be at least 5 satellites available for use at any position on the earth.

The number of satellites "visible" to a user is a function of mask angle, defined as angle above the local horizon below which signal errors due to refraction degrade signal usefulness. Another factor that affects GPS accuracy is the geometry of satellites. Position Dilution of Precision (PDOP) is a common measure of the effects of this

geometry. PDOP is defined as the ratio of the root mean square (r.m.s.) position error to the r.m.s. ranging error from all satellites (Kruh, 1981: E9.3.2). For typical assumed values, mask angle of 5 degrees and PDOP of less than 6, four satellites are useful 99.5% of the time (Kruh, 1981: E9.3.2). These assumed values are based on stringent military specification for which GPS is being designed. The 99.5% figure does not consider the three active spares that are currently planned to provide additional redundancy in CONUS.

200222

The robustness to failure of a single GPS satellite differs from current navigation aids, where failure of any aid significantly affects users until the system returns to service in at least some limited geographic area. In the case of GPS, a single satellite failure will likely result in poor navigation geometry for some short period of time at any given location. These periods of poor satellite geometry or insufficient visible satellites vary with the specific satellite or satellites that have failed. Therefore, it becomes questionable whether just reporting individual satellite losses to navigation users provides the required, useful information.

<u>Problem Statement</u>. A satisfactory status reporting system is required to implement GPS based navigation.

<u>Research Objective</u>. Determine an acceptable method of measuring NAVSTAR GPS status for navigation use and identify satisfactory systems for reporting status to users.

<u>Subsidiary Objectives</u>. The determination of measurement criteria that emphasizes safety, while offering operational capability when the GPS system is functioning satisfactorily, requires analysis of three subordinate aspects of the problem. First, what are the requirements currently established for navigation systems and how does GPS measure up to these requirements? Requirements vary depending on the phase of navigation being considered. Secondly, what degree of constellation degradation constitutes a system that makes it unreliable for navigation? Questions in this area include the following:

- 1. Is PDOP the correct measure of merit to take into account satellite geometry? If so, what is the appropriate maximum PDOP value that is acceptable for good navigation fixes?
- 2. What mask angle (elevation angle) should be used to consider a satellite visible?
- 3. Are different mask angles appropriate for different navigation applications?
- 4. Is there a minimum time period of no satellite coverage that is acceptable to navigation users, and if so, what is a reasonable time period below which to discount an outage? Is this acceptable outage period application dependent?

When these questions are addressed, it will be possible to evaluate how best to disseminate system degradation to users in a simple, familiar manner.

<u>Scope, Limitations, & Assumptions</u>. Many ancillary uses of GPS have been proposed, including time transfer, hydrographic surveying, and spacecraft navigation. Some of these implementations are already in operation using the

limited constellation of prototype satellites currently in orbit. However, the present research is concerned only with the normal navigation capability provided by GPS. This assumes a low threat jamming environment and does not specifically address the weapons delivery aid or test range instrumentation potential of GPS.

ر¹دار ⁽مار ۱۹۴٬ ۹۴٬ ۹۴)

5

Furthermore, this thesis is to focus on a GPS system after initial buildup of the constellation and not the interim period prior to initial operational capability. Finally, a fully functioning control segment is assumed with the capability to regularly update navigation data.

Methodology. A systems engineering approach using the Hall activity matrix as a guideline is the basic approach for this research (Sage, 1977:5). The effort will focus on the Project Planning phase of Hall's structure. To achieve the stated objective of this research, it is necessary to determine measurable objectives and systematically compare generated alternatives. Chapter three is dedicated to the details of the process which is followed.

Organization of the Report. Chapter one has been concerned with background information and an overview of the scope and approach of the analysis. In chapter two a summary of the issues found in the technical literature and a description of several in-place navigation aid status reporting systems is presented. Chapter three describes in detail the systems engineering approach used in this analysis

as well as the results of the first four steps in the process. A model GPS status reporting system is described in chapter four with specific parameters chosen for major elements of the system. This model was tested by sampling navigation users with a questionnaire, and the results are presented in chapter five. Chapter six deals with the conclusions of the analysis and ideas for future work that may be valuable in this area.

II. Current Environment

This chapter presents the current views found in the literature on topics relating to a GPS status reporting system. It then discusses ways being used in 1986 to report the status of a sample of radionavigation aids. The literature points out considerable controversy over issues directly related to status reporting along with a wide range of views on exactly how GPS implementation will proceed. The current status reporting information was compiled primarily from review of directing regulations and interviews with individuals actually responsible for disseminating that information. Some assessments of status systems is also based on the author's world-wide aviation experience.

Literature Review

One of the most important considerations for understanding the requirements of a GPS status reporting system is the requirements of current navigation aids. The Federal Radionavigation Plan (FRP), 1984, a joint Dept. of Defense/Dept. of Transportation plan, outlines present radionavigation systems and their requirements as well as factors considered important in selecting future systems. It divides uses into the four broad categories of air, sea, land, and space, and then subdivides these into several different phases. GPS is the most versatile system discussed in the plan because it has the potential for providing future

navigation to all users in every area except terminal precision approach guidance for aircraft (FRP:I-22).

The plan further describes major factors for evaluating navigation aids. These are accuracy, availability, coverage, reliability, fix rate, fix dimension, capacity, and ambiguity potential. Once again, all systems except GPS have serious deficiencies associated with at least one of these factors which limits its usefulness (FRP:III-32).

Optimism about the capabilities of GPS by military planners is perhaps best illustrated by the following statement: "It is the goal of the DOD to phase out use of TACAN, VOR/DME, OMEGA, LORAN-C and TRANSIT in military aircraft and other platforms" (FRP:I-9). This list represents virtually all radionavigation aids DOD currently relies on, with the exception of ILS/MLS which is used for precision approach guidance. Widespread civilian use of GPS is also anticipated (FRP:I-37) (Degoot, 1984:23) (Gregory, 1985:57-59). This diversity of users creates a status dissemination task of unprecedented scale.

One key area of concern outlined in the FRP in connection with GPS certification as a "sole means of air navigation" is coverage (FRP:I-9). With a single satellite failure, there is some small but finite time when four wellplaced satellites are not available. PDOP is the most popular measure to account for poor satellite geometry. The terms Geometric Dilution of Position (GDOP), which includes

time error, and Horizontal Dilution of Position (HDOP), which considers only two dimensional position are also seen. In all cases lower is better, but there is a range of assumptions about how high is acceptable. Much of the literature assumes loss of coverage over any area that has a calculated PDOP above six (Kruh, 1981:E9.2.3) (Knable and Kalafus, 1984:290). This assumption is made in spite of FAA test results that show accuracy that meets FRP criteria for all but precision approach use with higher PDOP values (Connor, 1982:Cl.1.5). Clearly, further analysis of data is needed on how PDOP values correlate to GPS accuracy, which in turn determines when the system provides sufficient coverage.

Another coverage-related question has to do with the lowest acceptable position in the sky from which a satellite can be used for navigation. This figure is most often given as a "mask angle", which is the the angle above the local horizon. Originally, designers planned on a 5 degree mask angle, and the analysis of at least four satellites in view 100% of the time is based on this 5 degree value. With a mask angle of 10 degrees, at least 4 satellites are in view only 99.98% of the time (Kruh, 1981: E9.3.7). The FAA has indicated that 7.5 degrees may be the correct figure, while loss of coverage is also explained using 8 and 10-degree mask angles (Knable & Kalafus, 1984:294). Rationale for the use of any specific value is generally absent from the literature. However, it should be noted that the variations

in assumptions have a large impact on the expected coverage should a satellite be lost. Table 2-1 illustrates the differences for different mask angle assumptions for a typical location with a nominal constellation and one SV out of service. Specifically, the location is New York City, and the calculations were made using a computer program called ZPDOPG with satellite vehicle (SV) number one out of service (ZPDOPG, 1985).

Table 2-1

Degraded Coverage as a Function of Selected Mask Angles

Mask Angle	Number of Degraded Times Each 24 Hours	Total Duration of Degraded Coverage Each 24 Hours
5 Degrees	2	35 minutes
7.5 Degrees	5	3 hours
10 Degrees	7	4.5 hours

Integrity of the GPS system is the other factor of GPS that the FRP questions (FRP:I-9). This has to do with a requirement to provide a positive indication to the user of system failure within 10 seconds of it's occurrence (Braff & Bradley, 1984:309). As explained by Braff and Bradley in a Mitre/FAA paper, GPS has some integral monitoring which functionally turns off the transmitted signal if it is determined to be in error by internal circuitry. It does not, however, have a system for testing the signal after it leaves the transmitter, which is a feature of the current international standard for air navigation, VOR (Braff & Bradley, 1984:307). The absence of this test of the "signal in space" which is considered the "ultimate integrity" check of the VOR system is viewed by some as a property that disqualifies GPS as a legitimate "sole means of air navigation" candidate in its present form (Braff & Bradley, 1984:309).

The 10-second criteria is based on the most critical scenario of a pilot flying a non-precision approach using GPS who receives a faulty signal not detected by the internal fault system. In this situation, there is not a positive indication (typically an off flag in the receiver) in sufficient time to allow the pilot to take appropriate action. The Multiservice Initial OT&E of NAVSTAR GPS User Equipment Final Report recommends modification of current user equipment computer logic to reject erroneous satellite signals using more strenuous standards (AFOTEC, 1986:9). As the present system is envisioned, the control segment would have to uplink a command to the satellite to cease transmission, and the time required for this sequence of events to take place is on the order of 15 minutes (Braff & Bradley, 1984:309). A variety of other solutions to overcome this problem have been studied, but they generally require significant costs to implement (Klein & Parkinson, 1984:303). Many of these "enhancements" to the GPS system also address increasing accuracy of GPS in a Selective Availability

environment using pseudo-satellites, commonly referred to as differential GPS (Kalafus and others, 1983:187).

From the above discussion of PDOP, it should be clear that the time the system should be considered unreliable is an open issue. With the currently planned 18 satellite system, there are always at least 4 satellites in view, and coverage is lost solely as a result of large PDOP. (Kruh, 1981:E9.3.7) Another source of system degradation that is identified by the multiservice IOT&E of user equipment is the improper uploading of ephemeris, clock bias and/or almanac data from the control segment (AFOTEC, 1986:9). While an operational control segment should greatly reduce these degradations, test results showed that incorrect satellite data "caused significant loss of operational capability due to degraded navigation information and/or GPS user equipment failure" (AFOTEC, 1986:9). User equipment software modification is also being pursued to detect this problem.

A final consideration is the requirement to provide a three dimensional position fix. No current enroute air navigation system provides three dimensional position, and there are several techniques employed by user equipment to provide good two dimensional position accuracy with fewer than four satellites available.

Use of an accurate clock and input of non-satellite derived altitude information are frequently cited as methods

of providing users with accurate navigation information when less than four satellites are providing correct signals. Sturza examines navigation using GPS and a precise clock and concludes that suitable navigation can be performed by this method (Sturza, 1983:155). Knable and Kalafus discuss "clock coasting and altimeter aiding" and also conclude that accurate clocks and encoding altimeters are available to provide needed information to the GPS receiver, but they remark that the cost of such equipment is still rather high (Knable and Kalafus, 1984:289-301). These results are important because they broaden the view of what degree of system degradation is appropriate for status reporting. The results also influence the time constraints for reporting outages.

Integration of GPS with other navigation systems is another alternative for building additional redundancy into GPS navigation. Inertial navigation systems (INS) are the predominant ones being considered as integration candidates. Navigation system integration is an operationally mature approach to getting the most from a group of systems. Wiederholt and Klien review several synergistic effects of interfacing GPS with other navigation platforms as a method of insuring accurate navigation information when the required numbers of useful satellites are not available (Wiederholt and Klein, 1984:129-151). They take a generic approach to the integration argument while Schwartz specifically

15

addresses GPS/INS interface, again finding very encouraging results (Schwartz, 1983:325-337). It should be noted that initial military installations of GPS equipment will feature integration with INS systems for the F-16, B-52, F-111, A-6, and submarines. The UH-60 helicopter will integrate its GPS equipment with doppler radar.

While military applications do come under some scrutiny from the FAA and Coast Guard in their respective areas of safety responsibility, some flexibility seems to exist compared to civil applications. In the civilian sector, a special committee of the Radio Technical Commission for Aeronautics (RTCA) - SC 159 is actively pursuing Minimum Aviation System Performance Standards for GPS, with a draft in circulation (RTCA, 1986:A2.1-A2.7).

Methods of Distributing Radionavigation Status Information

This section describes the current procedures used to disseminate navigation aid status of important systems that are related to the GPS problem.

<u>TRANSIT</u>. TRANSIT is a US Navy satellite based system used for world-wide maritime navigation. When a satellite problem occurs, the Naval Astronautics Group, the controlling agency, sends out an autodin message to approximately 175 ships and over 100 other addressees consisting mainly of military command centers. The DMA hydrographic office is also an addressee, and it formats the message for an hourly radio broadcast message on the world-wide navigation warning

system. Approximately 50 messages a year are generated for both scheduled and non-scheduled satellite outages.

OMEGA. OMEGA is a US Coast Guard administered VLF world wide marine and air navigation system consisting of eight dispersed transmission stations. Some information on status is published in AIM Class II NOTAMS. For example, the Jul 3, 1986 AIM lists the North Dakota OMEGA Station out of service from 7 Jul to 30 Jul from 2000Z to 2400Z in the general remarks section of the Class II NOTAMS. AIM also publishes a Coast Guard phone number for current OMEGA information. There is apparently very little control of overseas stations regarding status reporting.

<u>VOR</u>. VOR is the International standard for short range air navigation. Within the CONUS, VORs are automatically monitored using a remote monitoring system with a warning sent to the responsible flight service station (FSS) or military operations center when an out-of-tolerance condition is detected.

Standard procedure is to confirm system outage with at least two aircraft operating in the vicinity of the VOR and attempting to remotely reset the system before initiating NOTAM action. This practice results from the fact that the alarm indicates a malfunction in the monitoring line indistinguishable from an actual navigation aid problem. Once a system failure is confirmed, the FSS issues a NOTAM through the FAA automated NOTAM system, and it is available

to users nationwide within several minutes. The entire process takes less than 15 minutes on average.

By international agreement, virtually every country in the world is responsible for maintaining a similar type of VOR reporting system. In practice, there is a wide range of interpretation and compliance, with US operations being the high-quality standard. The economic development of a specific country, in general, directly reflects the sophistication of their national airspace system. As one might expect, Western European and Japanese facilities are generally well maintained, and outages are reported in a timely, systematic manner. As one proceeds to less developed areas of the world like Africa, a more ad hoc approach to detecting and reporting system outages is the rule.

TACAN. TACAN (Tactical Air Navigation) is strictly a military system providing line of sight aid similar to VOR with distance measuring equipment (DME) as an integral feature. Outages are normally reported through theater military NOTAM systems. Since many North American facilities are combined VORs and TACANS (VORTACS), information concerning these facilities is available from either the FAA NOTAM system or the military system. As the current military NOTAM system in the US is phased out in the next several years, all reporting and information will be through FAA channels.

LORAN-C. LORAN is a long range aid originally developed for maritime use but becoming increasingly popular as an air navigation system. Outages are reported through the Notice to Mariner system. Coast Guard radio broadcast of unplanned outages is the most immediate form of this information to mariners.

FAA involvement with LORAN is a recent development, and they are moving to incorporate LORAN into the National Airspace System. They have not developed any standardized procedures of reporting system status for aviation users. The first FAA approved LORAN non-precision approach was commissioned in 1985 at Boston's Logan Airport. Approval to use the approach is contingent on the Air Traffic Control Tower personnel monitoring a good LORAN signal. FAA approval for LORAN approaches at up to 80 airports by the end of 1987 is anticipated, with 400 as candidates for eventually establishing such approaches.

Conclusion

Review of the literature on how GPS fits into the overall navigation system is important for understanding the complexities of designing a status reporting system. Terminology related to GPS orbital characteristics and how experts expect them to relate to navigation performance are also relevent to the status reporting design problem. An extensive body of literature discussing enhancements to a stand-alone GPS concept also exists. Some of these ideas are

presented to illustrate the dynamics of the GPS environment in which the status reporting system design effort was attempted.

The substantial infrastructure that exists for reporting current status information was reviewed. The purpose of this was to show that integration of GPS into existing systems promises benefits of user familiarity and cost savings. It also illustrates that GPS has unique features that differentiate it from any current system.

Th methodology used in attacking the research problem is explained in detail in chapter three. In addition, the initial steps in the process are applied to the status reporting problem.

III. <u>Methodology</u>

An overview of the systems engineering approach used to address the problem of designing a suitable GPS status reporting system begins this chapter. Following the overview, is a detailed discussion of the first four steps in the systems engineering process as they apply to the status reporting status problem.

Overview

systems engineering approach, based on Hall's activity matrix for systems engineering, is used to develop a suitable GPS status reporting system. (Sage, 1977a:5). This approach was chosen as an accepted standard in the field of systems engineering (Sage, 1979b:499-503). This project is assumed to be currently in the Project Planning phase. The seven steps Hall suggests to provide a framework of systems engineering are as follows:

- 1. Problem Definition
- 2. Value System Design
- 3. System Synthesis
- 4. System Analysis
- 5. Optimization
- 6. Decision Making
- 7. Plan for Future Action

Each of these steps is addressed in this paper.

In the first step of problem definition, the exact nature of the problem is identified and scoped. Needs, constraints, and alterables are identified and related. The problem is partitioned, and subjective elements are isolated chiefly

by assumptions.

The second step is value system design, where objectives are defined, ordered in a hierarchical structure, and related to the needs, constraints and alterables of the problem definition. Additionally, measurements for the objectives are established so that one can evaluate how well the system achieves the stated goal of developing a suitable status reporting capability.

The next step in the process is system synthesis. Here the concern is with identifying alternative approaches to status reporting. A good description of the alternatives greatly enhances the efficiency and accuracy of efforts in later steps, and is thus an important aspect of the system synthesis step. Determining how each alternative will be measured essentially completes this phase.

The stage is now set for developing the models to be used in evaluating alternatives using the objective measurement criteria, which is done in the system analysis step. Models are developed with the intent to capture the essential elements of the system. Models accurately describe the system as it relates to the problem at hand so that alternatives can be judged in a systematic manner.

Optimization of alternatives is the next step, and limiting the number of alternatives to those that are not dominated in terms of objective measures is the goal. The concept of the nondominated solution set is helpful in

understanding this step. Further consideration needs only to be given to those alternatives that have at least one objective measurement that is greater than another alternative. An aggregate comparative approach to assessing some objective measurements is used in this analysis while a quantitative estimation is developed for others.

Decision making follows in the framework, and here decision maker preferences are considered. It is assumed that the key elements in establishing decision making preference in this problem are the perceptions, desires, and opinions of the users of the system being developed. A survey was used to measure these factors so that alternatives can be compared. The survey's purpose is to provide user feedback to help decision makers in choosing among those alternatives that were not eliminated in the systems analysis step.

One completes a phase of the Hall process by planning for future actions. This includes documenting the work that has been done and presenting results in briefing form.

Problem Definition

The first step in each phase of the systems engineering structured approach to problem solving is to clearly define the problem. A technique to aid in this process is to list the needs, constraints, and alterables of the system to be designed. The needs of the system are those functions

or capabilities desired in the system being designed. Constraints are those design parameters over which the system engineer has little control. Alterables are those parameters that the designer can control to a significant degree. The needs, constraints, and alterables of a GPS status reporting system as they are currently understood are listed as follows:

Needs.

- Inform all navigation users of GPS satellite vehicle (SV)anomalies that will affect their ability to navigate using GPS.
- 2. Provide system status in a timely manner so that alternative courses of action can be evaluated during mission planning.
- 3. Be easy to learn and use.
- 4. Easily administered, maintained and modified as related navigation systems evolve.

Constraints.

- Minimize cost and manpower requirements consistent with providing adequate service.
- 2. Requirement for modification of user receiver equipment to automatically determine current and future poor navigation solutions is not practical.
- 3. There are a wide variety of GPS users dispersed globally.
- 4. Limited telecommunications capabilities.
- 5. Status system should identify GPS status that will cause navigation solutions with errors larger than established criteria for respective phases of air and marine navigation as put forth in the FRP.

Alterables.

Als die Berdiel Te die Gindie Aleiden die Aleiden zu

- 1. The level of detail in terms of time and geographical area for which to report.
- Methods for disseminating status information (NOTAMs, radio broadcast, bulletin board, FLIP/AIM, combinations).
- 3. Format of status information (text, graphics, voice, combinations).
- 4. What higher status requirements above those of the FRP should be reported, and at what detail? Three dimensional "degraded" coverage versus the two dimensional requirements as described by the FRP.
- 5. Should selective high priority users have real time contact with the Master Control Center at critical periods of a mission in addition to the basic system service provided?

Value System Design

In the value system design step of systems engineering, the task is to develop objectives related to the needs, constraints, and alterables of the problem definition step. Typically, objectives are structured from general to more specific, with the most specific objectives allowing for quantitative evaluation during system analysis. Listed below are the objectives of a GPS status reporting system:

Objectives.

and the second at a last

- 1. Design a satisfactory GPS status reporting system.
- 2. Minimize life cycle cost of the system.
- 3. Minimize the peak and average manpower requirements to implement the system
- 4. Maximize speed of dissemination of status changes.
- 5. Maximize the number of users with reasonable access to status information.

- 6. Provide sufficient detail of the system status to allow well informed navigation planning decisions.
- 7. Make the system as simple as possible to interpret.

Figure 2 represents a hierarchy of how system utility and costs are analyzed with the most specific factors addressed in measuring alternatives.

27

· 🖍

Several measurements are not self evident and are considered as described here. Reliability is rated as high where the expected reliability is as good or better than the current methods of disseminating safety-related information. Unproven systems or systems that rely on links prone to unavailability are rated correspondingly lower. In the area of ease of use, those systems that present outage areas and times directly are rated high. Those systems that require cross referencing and table entry to determine degraded coverage are rated medium, and those systems requiring actual hands-on computer use are rated low.

In rating the level of detail reported, systems that allow specific parameters to be selected in determining outages are rated high. Those that have limited capacity for storing or transmitting outage information are rated medium. Systems that also must provide for an extensive list of possible combinations of outages are rated low.

System Synthesis (Alternatives)

Alternatives were developed to satisfy the system design problem of a workable status reporting system. Alternatives were developed from prospective reporting means found in preliminary studies, suggestions by AF Space Command personnel, and brainstorming in the conduct of this research. While possible solutions are necessarily open ended, this list represents the range of known, short-term alternatives being considered. The alternatives addressed in this paper

are listed below:

- 1. Narrative NOTAM/Notice to Mariners (ANMS)
- 2. Simple NOTAM/ANMS with reference to supporting document
- 3. Simple NOTAM/ANMS with data base query
- 4. Bulletin board
- 5. World wide radio broadcast
- 6. Autodin Message
- 7. Microcomputer software and a simple notice mechanism
- 8. Some combination of the above

A more detailed description of each alternative is discussed in the following section.

<u>Alternative</u> #1. Publish a narrative NOTAM/ANMS describing coverage problem areas each time a navigation message from an SV is in error. For example: "NAVSTAR satellite # 17 out. Area from 20W to 60W and 30N to 50N not suitable for GPS navigation from 070024Jul to 100024Jul, etc. etc.."

<u>Alternative #2</u>. Publish a simple NOTAM/ANMS and develop a reference FLIP/AIM document for users to look up what effect in terms of SV visibility and geometry they can expect. For example: "NAVSTAR SV #17 out, refer to GPS outage tables in an appropriate supporting publication." While the geographic area affected by a specific satellite outage is a constant value, the time of the degraded service changes by approximately 4 minutes each day. This would require a Julian day conversion calculation to be incorporated into the tables.

FLIP Documents are managed by the Defense Mapping Agency (DMA) and the National Oceanic and Atmospheric Administration (NOAA) and distributed and updated at regular intervals to a wide range of operations centers. Commercial publication of the information contained in FLIP is also available.

<u>Alternative</u> #3. Publish a simple NOTAM/ANMS and provide a database for reference by geographic area as to what affect a specific SV or combinations of SV outages would have on an area. The FSS, base operations, or Coast Guard district office could then query the database for information on degraded coverage. A time correction for the current day would be made automatically, and the outage times would be available directly.

<u>Alternative</u> #4. Set up a bulletin board type service that contains GPS system status. This can be accomplished either by using existing military or commercial bulletin boards. Outages could be reported directly, or constellation status could simply be posted.

Alternative #5. Radio broadcast GPS system status. Several broadcast services currently exist mostly related to dissemination of weather information for both aviation and maritime users. Since the amount of information that can be transmitted by this means is rather small, in all likelihood some other medium would also be required to support this system. One such radio system is the world-wide navigation

warning system (WWNWS), administered by DMA.

<u>Alternative</u> #6. Use an autodin message to major theater command centers and federal agencies (FAA, Coast Guard, DMA) detailing outages. Allow them to develop more specific dissemination procedures that are customized for their area of concern and the types of operations for which they are responsible.

<u>Alternative</u> #7. Use any short notification method with microcomputer software to calculate degraded coverage due to satellite outages. The software should be made commercially available for use by the military and civilians and run on several different popular microcomputers. This microcomputer software would allow customizing outage parameters like mask angle and navigation accuracy threshold to other than selected default values.

<u>Alternative</u> #8. Use a combination of some or all of the above methods.

Systems Analysis

<u>؞ڗۦڬۥۊۦٚڟ؞ٷۥٞڟ؞ۊ</u>ٵڟڕؾٵڟ؞ۊڲڟ؞ۊڲڰ؞ؿڴڣڟڬڟ؞ڣڎڟؠڟڎڴ؉ۊڲڴ؉ۼٵڟ؞ۼڲڟ؞ۊڲڟ؞ۊڲڟ؞ڟڲڟ؞ڟڲڟ؞ڟٵڟ؞ۼٵڐ؞

Before discussing the above alternatives in terms of meeting the established objectives, two points are worthy of reemphasis. First, this system is designed to provide planning information and not real-time notification. When a satellite being used for navigation actually becomes unreliable, user equipment should indicate this so that appropriate actions can be taken. Second, problems with the constellation requiring a SV to be considered out of service

are expected to be very infrequent occurrences. Historical satellite reliability indicates a major anomaly causing loss of the system occurs, on average, once every 100 days (Kahn, 1985:B-7). With the experience gained with developmental GPS satellites, Joint Program Office personnel expect an even lower anomaly rate (Connoly, 1986:interview). Furthermore, in the vast majority of cases, these problems are expected to be corrected within 12 hours of occurrence.

To facilitate identifying all the combinations of possible alternatives, two components required of all systems are paired. First there are three options identified for computing degraded coverage, or outage areas. These are as follows:

- 1. A centralized computation that directly reports outage areas and times.
- 2. A precomputed set of possible outage combinations published and distributed in book or disk form.
- 3. A microcomputer based system to allow dispersed organizations to calculate outages for their needs.

Second, there are different methods available to transmit outage information. Some methods are compatible with any computational option while others are suitable for only a subset of the computational options. The transmission methods considered here are as follows:

- 1. Notices to Airman (NOTAM).
- 2. Automated Notices to Mariners System (ANMS).
- 3. Bulletin Board System (BB).
- 4. Electronic Mail(EM).

are expected to be very infrequent occurrences. Historical satellite reliability indicates a major anomaly causing loss of the system occurs, on average, once every 100 days (Kahn, 1985:B-7). With the experience gained with developmental GPS satellites, Joint Program Office personnel expect an even lower anomaly rate (Connoly, 1986:interview). Furthermore, in the vast majority of cases, these problems are expected to be corrected within 12 hours of occurrence.

To facilitate identifying all the combinations of possible alternatives, two components required of all systems are paired. First there are three options identified for computing degraded coverage, or outage areas. These are as follows:

- 1. A centralized computation that directly reports outage areas and times.
- 2. A precomputed set of possible outage combinations published and distributed in book or disk form.
- 3. A microcomputer based system to allow dispersed organizations to calculate outages for their needs.

Second, there are different methods available to transmit outage information. Some methods are compatible with any computational option while others are suitable for only a subset of the computational options. The transmission methods considered here are as follows:

1. Notices to Airman (NOTAM).

- 2. Automated Notices to Mariners System (ANMS).
- 3. Bulletin Board System (BB).
- 4. Electronic Mail(EM).

- 5. Autodin Message.
- World Wide Navigation Warning Radio Broadcast System (WWNWS).
- 7. Direct reception of constellation health from GPS satellites.

Table 3.1 presents a matrix indicating which transmission methods are compatible with each of the computational options.

TABLE 3.1

		-	
Transmit Method	Reported Directly	Precomputed and Put in a Book	Computed by a Microcomputer
NOTAMS	LIMITED	YES	YES
ANMS	LIMITED	YES	YES
BB	LIMITED	YES	YES
EM	LIMITED	YES	YES
WWNWS	NO	YES	YES
AUTODIN	LIMITED	YES	YES
GPS	NO	YES	YES

Transmission Method/Computational Means Compatibility

<u>Utility</u>: Next, the alternatives are evaluated in terms of utility. The the first three measures of utility are directly related to the chosen means of transmission and are summarized in Table 3.2.

Table 3.2

Transmission Methods Utility Measures

Transmit Method	Response Time	Users Reached	Reliability
NOTAM	20 to 30 min	Nearly all Aviation Users	High
ANMS	20 to 90 min	Nearly all Maritime Users	High
BB	15 min	Users with Access to Computer and Mode	Med-Low m
EM	15 min	Sophisticated centers for further distribution	Med-Low
WWNWS	30 to 90 min	Nearly all ocean going vessels	High
Autodin	30 min to hrs	Locations with message centers	Med-High
GPS	10-20 min	Users with receivers designed to display constellation status	High

The last three measures of utility are directly related to the computational option selected and are estimated as summarized in Table 3.3.

34

Computation Method	Accuracy	Ease of Use	Level of Detail
Reported Directly	High	High	Med
Precomputed Book	Med	Med	Low
Microcomputer	Med	Low	High

Table 3.3

Computational Means Utility Measures

<u>Cost</u>. Cost is the next consideration in evaluating alternatives. Many of the costs involved in implementing a system are common to all alternatives and do not affect choices among alternatives and are thus not addressed in depth. Similarly, even though some specific costs are difficult to analyze, it may be easy to conceptualize comparisons between alternatives, and this approach is taken with some cost figures. Additionally, many alternatives involve sunk costs of systems that are required and in place for reasons other than GPS status reporting. These costs are considered only to the extent that a reporting system would require expansion or modification to existing or planned systems. Choosing whose costs to include is another challenge in trying to determine accurate cost estimates.

The approach taken here in evaluating alternatives is to consider those costs which would be incurred by the federal government. This is in keeping with Office Of Management and Budget directives, but not common to the way funding is

commonly analyzed by the Air Force. It is penny wise and dollar foolish to design a system that minimizes cost to AF Space Command or USAF if it requires unnecessarily large outlays by other federal agencies like DMA or DOT. It is also inappropriate and counter to Congressional mandate for DOD to absorb costs that can be passed along to civilian GPS users. Therefore, it is assumed that costs incurred by users outside the Defense Department would be paid by the user.

Training and Operations Instructions (OI) development costs fall into the category common to whichever alternative is selected. Although some slight variation in level of effort could conceivably exist among different alternatives, the variation is hard to predict and is assumed negligible. In all likelihood, status reporting OI development will be put

under the umbrella of the GPS control segment OI contract or a generic Scientific and Technical Assistance contract. Satellite controller training should be incorporated into current training curriculum, while user training will be handled in conjunction with military rating or civilian licensing programs.

Computer costs represent a significant cost for any status reporting system alternative proposed in this paper. Even so, widely varying current practices for estimating and projecting computer costs made estimating these costs difficult. For off-the-shelf equipment the Data Pro Research

Corporation series of pricing literature seems to be the most common first-cut cost estimation tool. Current negotiated contracts, GSA schedules, and past contract costs are also used to varying degrees. For software development estimations, an accepted method is the COnstructive COst MOdel (COCOMO) as described by Boehm in <u>Software Engineering</u> <u>Economics</u> (Boehm, 1981:117-140). Table 3.4 summarizes the cost estimates for computer software and hardware made for the various alternatives, and a detailed discussion of how the costs were derived follows.

TABLE 3.4

Computer Costs of Alternatives

Alternative Computation Method	Software	Hardware
Direct Reporting	\$128,000	\$50,000
Precomputed Book/Disk	\$59,000	\$30,000
Microcomputer Based System	\$92,000	\$300,000

Software development costs were computed using COCOMO. The Intermediate COCOMO equation was used to calculate Man Months of programming time to complete the effort. The cost of a Man Month of programming is estimated at \$9000 including overhead. This is representative of several government analyst and programmer schedules from major software vendors

plus a 20% inflation factor. Nominal values for development effort were assumed, and the effort was considered to be classed as moderately stringent "semi-detached". Boehm distinguishes between a familiar, flexible programming problem he calls organic; the rigorous, constrained effort he calls embedded; and an intermediary situation containing some elements of both which he calls semi-detached. The COCOMO estimating equation used here is as follows:

1.12 MM = 3.0(KDSI)

MM is Man Months and KDSI is thousands of delivered source instructions.

The software estimate is based on 4 KDSI for the direct reporting system, 2 KDSI for the precomputed option, and 3 KDSI for the microcomputer system. This represents approximately twice the number of lines of FORTRAN code required of several programs designed for internal use that compute the required information. Even though there are possible development savings by modifying these existing programs, it is assumed that a total rewrite using ADA would be accomplished to reduce software maintenance costs.

Different estimates are used in all three alternative approaches because each approach has a unique requirement in addition to the basic visibility, geometry calculation. The direct reporting system will require extensive crossreferencing of the computed database, so the software effort

will increase. For the precomputed option, some plotting and summary presentation will add to the basic program. The menu driven, "user friendly" requirement for execution and editing of the micro based system will require significant expansion of the basic code.

Hardware costs for the direct reporting system are essentially sunk costs with the availability of an IBM 3083 system and backup currently in place to support GPS. The cost above represents the estimate that a dedicated disk drive could be a requirement for the status reporting system.

The hardware cost associated with the precomputed option represents an estimate of time-share costs or purchase of a dedicated minicomputer to compute many combinations of possible outages. With an 18 SV constellation plus spares, there are 1,561 possible combinations of outages to cover the loss of any 1, 2, or 3 satellites at once that must be computed.

The microcomputer hardware estimate assumes that if a system is chosen that mandates the use of microcomputers to calculate outage periods some additional hardware will be required. The rationale is that some federal organizations will take the opportunity to justify purchase of a system solely to implement status reporting. A total of 150 such dedicated units are factored into the estimate at a nominal cost of \$2000 based on the current Air Force microcomputer contract with Zenith Data Systems. No inflation factor is

used because the trend in hardware costs is level or declining and is expected to remain so in the near future.

Costs of communication links required to implement any alternative system are almost exclusively sunk costs. Funding of federal data networks, phone lines, and some electronic mail capability exists irrespective of GPS status reporting systems. Because of other mission requirements, the communications capabilities at the Satellite Operations Center are excellent. This capability should not be taxed in the foreseeable future by the infrequent use of some capability for status reporting. Since Autodin has no utility measures that exceed other alternative transmission means whose costs are also considered negligible, it is dropped from further consideration as a viable alternative.

There exists the option to provide GPS status on a commercial bulletin board system like CompuServe instead of the less sophisticated military run bulletin boards. No setup charges exist for establishing this type service, and charges are based on either the number of ports (lines) required or an on-line time charge.

One communication link which is not currently projected is a low cost receiver that can display constellation status from a direct reading of the GPS SV transmission. Research and development is being done in this area, both with receiver manufacturer funds and with some FAA funding. Estimating cost and quantity requirements of this equipment

and then establishing the portion of costs that are inherited from enhanced GPS operation is not possible in the short term. This capability does have long term potential merit, however, and may develop in time for consideration as a status reporting component. However, to fund such a development for the express purpose of status reporting violates a constraint of the problem definition for this paper.

Operations and Maintenance Costs associated with the different alternatives represent diverse requirements. In the direct reporting approach, the bulk of the cost should be associated with software and database maintenance. For the precomputed alternative, printing, distribution, and updating of supporting documents were considered to be the significant costs. The cost drivers for a dispersed microcomputer based system will also be software publication and revision costs.

Cost estimates of operations and maintenance are based on 1991 dollars using a 5 year time horizon and a discount rate to compute Net Present Value of 10%. This discount rate was determined using the current recommended method of using the treasury note rate with the maturation date closest to the time horizon of interest (Feldman, 1986:class notes).

Current practices indicate that 0&M services would be contracted out, and that is the assumption used to calculate these costs. This assumption also allows for easier

calculations of true total costs. Table 3.5 summarizes O&M costs and is followed by a detailed explanation of how the figures were derived.

day.

TABLE 3.5

Summary of O&M Cost Estimates For Different Alternatives

Transmission Method	Computation Method	Total 5 Yr NPV
NOTAM/ANMS EM/M11 BB WWNWS	Direct Reporting	\$450,000
NOTAM/ANMS EM/M11 BB WWNWS	Precomputed Book	\$1,700,000
NOTAM/ANMS EM/M11. BB WWNWS	Microcomputer Based	\$500,000
Comm. BB	Direct Reporting	\$950,000
Comm. BB	Microcomputer	\$888,000

The direct reporting system 0&M budget is estimated to require the equivalent of one full time computer analyst for software and database maintenance. This figure is assumed to be constant over the five year life of the status reporting system, and a yearly figure of 108,000 is used. This again is based on current representative market rates adjusted 20% for inflation. Total NPV 0&M cost for this approach based on the assumptions above is \$450,000 then year dollars.

Operations and maintenance costs for the precomputed

42

<u>᠉᠋᠉᠉᠉</u>᠉᠘ᢞᡘᢌᡸᢌᢄᢣᢄᢌᢄᢌᢄᢌᢄᢌᢄᢌᢄᢌᡬᡒᡬᠼᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬᠼᡬᡓᡬᠼᡬᠼᡭᠼᡭᠼᡭᠼᡭᠼᡭᠼᡭᠼᡭᠼᡭᢏᡭᡭᠼᡭᠼᡭᢏᡭᡞᡭᠽᡭᠼᡭᠼᡭᡷᡬᢤᢤᢤᡭᢤᡘᢤᡘᢤᡭᡧᡭᢣᡭ

book system are determined by using price and quantity figures for a comparable FLIP document currently in print. The costs are based on the current National Oceanic and Atmospheric Administration price of \$1.50 per copy of <u>The</u> <u>Airport/Facility Directory</u> for volume purchases (NOAA, 1985:12). A comparable figure can also be derived by using the Defense Mapping Agency printing cost, of \$.75 for their <u>IFR Supplement</u>, <u>United States</u>, and factoring in 100% overhead costs. DMA produced approximately 110,000 supplements covering the US, Europe, and the Pacific in 1986. Republication schedules range from 13 times a year for the European Supplement to 2 times a year for the US VFR Supplement. A semiannual revision schedule is chosen for cost estimation using the following requirement rates:

1991	60,000	copies
1992	60,000	copies
1993	80.000	copies
1994	120,000	copies
1995	120,000	copies

The total net present value in then year dollars for this scenario is \$1.7 million. If revision is required only once year, the total NPV is \$850,000.

The major 0&M costs for a microcomputer based computation system would seem to be in the publication and distribution of program disks. Reconfiguration of the SV constellation such as moving spares or adding backup SVs would not require a reissue of the software program. Therefore, it is assumed that fewer revisions would be

required. Also, backup copies could easily be made at subordinate levels, so the total distribution requirement would be small compared to the precomputed option. The equivalent of one full-time analyst and one administrative assistant for the first year and part-time support at 50% of that rate in follow-on years is the basis for this portion of O&M costs. A distribution of 10,000 copies at \$3 a copy with four revisions, 2 in the first year and 1 in each of the following 2 years, is assumed. Total NPV O&M = \$500,000.

If the microcomputer computation method is used with a bulletin board, program updates and distribution cost could be saved by loading the updates directly onto the bulletin board, reducing the O&M costs to \$388,000. Commercial bulletin board rates are based on the CompuServe flat rate fee of \$10,000 per month for a contribution to NPV of \$500,000.

Conclusion

This chapter has explained the methodology used in this analysis and discussed the process of completing the first fours steps in the Systems Engineering approach. Utility and cost measures for different alternative components were developed at some length to complete the systems analysis step. The next chapter presents a proposed total system that strives to take advantage of best utility features of several options while controlling costs.

IV. Model GPS Status Reporting System

A model GPS status reporting system is developed in this chapter. This model is the result of a trade-off study of the system requirements, potential solutions, and costs. First, an overview of the design philosophy and major components of the system are introduced. This is followed by a detailed discussion of parameters selected and the requirements of the software to implement the system. Next, cost estimation is addressed, using the previous chapter costs as a basis. The chapter concludes with a brief explanation of how the system would work.

<u>Overview</u>

To the maximum extent practical, the proposed status reporting system uses the expertise, structure, and equipment expected to be in place in 1991. For example, weather circuits that currently carry NOTAM information are proposed in lieu of a dedicated GPS network. A user perspective is assumed when making decisions on how to present and index information. This prospective produces the corollary assumption that it is wiser to process the data automatically than to expect users to manipulate and calculate partially processed data. Also, for the same reason, the design uses procedures and products already familiar to users when possible. The rationale for this is to maximize user acceptance and minimize training time required to gain

45

proficiency in using the proposed system.

Use of automation to provide an efficient and effective status reporting system is viewed as critical because of the time and manpower constraints to produce the needed information. The proposed system would require computing capability (probably at speeds comparable to a 1986 mainframe computer) to calculate areas and times of degraded coverage whenever outages occur. Also required is software to perform these calculations and to provide formatting in a functionally oriented form. A two-part database would be established whenever a satellite vehicle (SV) problem occurred or the constellation was changed for any reason. The first part of the database would simply be the current operating constellation configuration. A second, more extensive database would contain outage times for various locations on earth.

Master Control Station (MCS) access to the Air Weather Networks (both military and civilian) is the next major component of the envisioned system. Plans call for such access at the Consolidated Satellite Operations Center (CSOC), but provisions would be required to automatically transmit the GPS data on the weather circuits. Additionally, electronic mail capability to the Defense Mapping Agency Hydrographic office and others would be required for disseminating constellation changes. Finally, a software package for use on microcomputers capable of taking the

operating satellite data and customizing parameters of the system for specific uses would be made available.

Specifics of the Proposed Design

<u>Mainframe Hardware</u>. Computational capability would be provided by the IBM mainframe computers that are part of the Master Control System. Primary and backup capability is available using the three IBM 3083 systems currently in place at the Satellite Operations Center. They should have the capability to directly port SV constellation information into the status reporting software.

<u>Mainframe Software</u>. Mainframe software would be required to generate a two-tier database. The first part of the database would contain constellation status, while the second part would contain locations and times of degraded coverage. A review of how satellite (SV) orbits are normally described is presented to provide an understanding of what information is required for the constellation status database.

Any satellite can be completely characterized by six pieces of information often called orbital elements. Below is a list of the orbital elements as summarized by Bate, Mueller & White, who use a vector-oriented explanation:

- Semi Major Axis (a constant that defines the size of the orbit--radius of circular orbit--27000 KM for GPS)
- Eccentricity (shape of the orbit--zero for the essentially circular orbits of GPS).

Dife

(*)• (* .• .• .•

- Argument of Perigee (where the SV reaches its closest point to earth--not an important parameter for circular orbits of GPS).
- 4. Longitude of the Ascending Node (the longitude where the SV crosses the extended equatorial plane of the earth from the southern to the northern hemisphere-spaced every 60 degrees for GPS).
- 5. Inclination (the angle between the extended equatorial plane the direction plane of SV travel--55 degrees for GPS).
- 6. Time of perigee passage (for circular GPS orbit measured as an angle from the extended equatorial plane for a snap shot in time called the epoch and referred to as the argument of latitude at epoch or the mean anomaly) (Bate, and others, 1971:58).

<u>Constellation Status Database</u>. The first segment of the status database would describe each satellite making up the current operational constellation in terms of orbital elements. Since the earth is not a perfect sphere, and there are slight variations in its magnetic field, as well as perturbations caused by the sun and moon, a circular orbit is an approximation. However, the assumption of circular orbits has a negligible effect on satellite visibility and geometry for the purposes of determining coverage (Isler, 1985:A-1).

The combination of these elements is normally referred to as the satellite or constellation ephemeris. An example of the most often discussed operational GPS ephemeris is presented in Table 4.1 as an illustration of how it would appear when queried for GPS status. Note that changes to a nominal published constellation ephemeris are flagged. This flag would be used by a user with special requirements for input into microcomputer software that allows customizing

expected coverage areas.

and we have been been a set of a set of a

Table 4.1

Reference Orbit Parameters Baseline Satellite Deployment

Satellite	Orbit	Longitude of	Right Ascension
Number	Plane	Ascending Node	of Ascending Node
1	1	0.18	30
2	1	240.60	30
3	1	300.12	30
4	2	260.80	90
5	2	320.14	90
6	2	20.20	90
7	3	340.16	150
8	3	40.22	150
9	3	100.28	150
10	4	60.24	210
11	4	120.30	210
12	4	180.00	210
13	5	140.32	270
14	5	200.20	270
15	5	80.26	270
16	6	220.40	330
17	6	280.10	330
18	6	160.34	330
Spares			
19	1	195.15	30
20	3	215.35	270
21	OUT OF	SERVICE 1 JUL- 19 DE	C 91

NOTE: This ephemeris data is the same as that found in FLIP General Planning dated Sample Date and "Micro computer GPS Coverage Software" Ver 0.0 Except SV # 21 is out of service. (Parkinson & Gilbert, 1983:1181)

Degraded Coverage Database. By using coordinate transformations and the ephemeris data, the position of all satellites can be calculated with respect to any position on earth for any given time. The software to generate a more extensive database that identifies global coverage for a given constellation represents the second major component of mainframe software. This is not an insignificant task even for a mainframe computer and will require some trade-offs to allow timely execution. One major trade-off is the number of points on the globe sampled to determine coverage.

The present model proposes selecting 100 points in the contiguous 48 states of the US (CONUS) and 400 additional points to cover the remainder of the world. Selection criteria for all points emphasizes geographic dispersal, major air and sea route coverage, and areas of high interest to DOD.

Sampling Point Selection. Before discussing the sampling approach recommended in this paper, a common current technique for selecting sampling points is reviewed. One common method of choosing points on the globe to sample for determining GPS degraded coverage is to uniformly increment by latitude and longitude. For highly detailed coverage, 2 degree increments are common. This method has useful applications in designing and testing satellite systems and provides good graphic data points. It is not, however, either oriented to user needs or efficient in proviling useful coverage information.

People are generally more comfortable with identifying areas of interest by referencing landmarks than latitude and longitude coordinates. Therefore, it is recommended that sampling points, when practical, be easily recognized

landmarks, like major cities, instead of coordinates. In remote areas this will not always be possible, and longitude and latitude or less well-known landmarks will be required.

By careful selection, the number of sampling points can also be significantly reduced with little or no impact on the amount of useful information available. Time is a factor in producing degraded coverage information. It seems wasteful of time, computer capability, and telecommunications capacity to make extensive calculations for large areas of little navigation interest to general purpose users. Specifically, the South Pacific, Africa, and Central Asia could be adequately covered using fewer sampling points than an equal geographic area in CONUS or Europe.

Selecting sampling points by uniformly incrementing . longitude and latitude every 2 degrees would require approximately 375 points for CONUS and 15,300 points for world-wide coverage. However, the 100 points proposed for CONUS provides essentially the same degraded coverage information with a slight loss of detail in some areas. The proposed system also allows for more detail at important points where extensive navigation demands can be expected and allows easier identification of those points.

Table 4.2 contains criteria used for selecting 100 proposed CONUS sampling points in the order they were applied. They are also recommended as guidelines for selecting remaining sampling locations around the world.

Some further definitions of several terms are necessary and are presented here. A major city is defined as a metropolitan area with a population of 1,000,000 using 1980 census figures. Geographically dispersed is defined as at least 60 nautical miles separation between area centers. For example, even though Newark, NJ is a major city, it is adjacent to New York City and so is not used. A metropolitan statistical area (MSA) is defined by an OMB directive, 30 Jun 1983 as revised through 30 June 1985 (Rand McNally, 1986:53). Generally, a MSA is a central city with a population of at least 50,000 and the surrounding suburbs. Military significance is defined as a location of a major US military installation.

Figure 3 is a plot of points selected in the CONUS using these criteria. The list of points are contained in Appendix B.

a a state a st

Table 4.2

ATR 1074-1074-1074-1074-1074-1074

Selection Criteria for Sampling GPS Coverage

1.	Geog	raphically dispersed major cities.
	a.	major port, air center, rail and highway center
	Ъ.	major coastal port or boarder city
	c.	air, rail, or highway center
2.	Metr disp	opolitan statistical areas (MSAs) geographically ersed from Major Cities.
	a .	coastal MSAs
	Ъ.	border MSAs
	c.	MSAs defining a major air route
	d.	MSAs co-located with a major US military installation
3.	Mino citi	er landmarks geographically dispersed from major .es/MSAs
	8.	coastal towns with sea, air, rail, highway, or military significance
	۵.	boarder towns with sea, air, rail, highway, or military significance
	c.	locations that boarder several states with air, rail, highway, or military significance
	d.	towns with air, rail, highway or military significance
4.	Card	inal latitude and longitude coordinates
	geog	raphically dispersed from all the above
	a •	sea and air significance
	ь.	sea or air significance

One of the goals of the point selection was to provide detail at least as good as a random 2 degree grid for every major commerce center in the country. The measurement used to determine accomplishment of this goal was for each of the 150 largest metropolitan areas to be with 100 miles of a sample point. The 100 mile figure is the approximate worst case miss distance of any point using a random grid spaced at 2 degrees. This was easily accomplished with 50 sample points co-located with these centers, less than 10 percent more than 50 miles removed, and all points within the 100 mile criteria.

Another goal was to have all major military installations meet the 100 mile criteria. This was not achieved, as 7 of the 275 installations published by Rand McNally as major US military installations were more than 100 miles from a chosen point (Rand McNally, 1986:52-53). However, degraded coverage estimates for a limited sample of satellite outages provided accurate results by selecting nearby sampling points in every case tested. For example, Laughlin AFB in Del Rio Texas was an outlying installation, but San Antonio and El Paso samples covered the periods when Laughlin would not have good coverage.

Obviously, the detail of the proposed system is not uniform world-wide, as there is more detail available for the United States and less for remote areas of the globe. There are two reasons for this feature in addition to the arguments

of efficiency and ease of use made previously.

The first reason for this approach is preventing redundancy in status reporting systems within the US. If GPS is used for civil aviation and maritime navigation, the US government will most likely pay for the detailed status reporting system required. As mentioned in chapter three, the approach in calculating system costs here is to include costs to the US federal government as a whole. No attempt is made in this analysis to establish DOD and DOT shares of status reporting system cost.

A second reason that allows limiting the detail for areas outside the US is that all the information needed to calculate finer detail of coverage is available in the ephemeris information part of the database. Organizations that require specialized or detailed information would be free to generate and distribute it as needed.

<u>Degraded Coverage Parameters</u>. Table 4.3 contains the assumptions which are recommended for use in creating the degraded coverage database. The rationale for their selection follows.

Table 4.3

Degraded Coverage Parameters

- Nominal accuracy exceeding 100 meters horizontal (2D) error constitutes degraded coverage. A HDOP of 10 is a suitable estimation of this accuracy.
- 2. A satellite is considered visible if it is at least five degrees above the local horizon.
- 3. Satellite positions are sampled at 2 minute intervals to determine visibility and geometry.
- A maximum of 500 locations are used to generate worldwide coverage degradation.
- 5. Degraded areas are reported for a period of 24 hours following any change to the constellation from its nominal configuration. Updates would be made in 24hour increments, 12 hours prior to the expiration of the valid times for previous data, if required.

The first assumption above is based on the requirement of the FRP for future air navigation aids certified for nonprecision approaches requiring 100 meter accuracy (FRP, 1984:II-19). The implementation of the accuracy assumption using an HDOP of less than 10 is based on developmental test results. This greatly reduces the number of calculations required to determine degraded coverage areas. Choosing an HDOP of 10 as the geometric equivalent of 100 meter accuracy, one has only to consider a constellation with less than 5 satellites in view as a potentially degraded area. This assumes nominal error budgets for factors other than satellite geometry.

The second assumption of using a 5 degree mask angle for

the 24 hour period, if the SV problem is expected to be long term, degraded coverage would occur at approximately the same times for the following days.

Database Access Requirements. A critical element of the resulting database is how it is indexed and crossreferenced for easy access. This is a direct result of the fact that there are many different users with different needs. A layered, menu approach to access the information by one of several key words is suggested. The MCS would transmit the database to Carswell AFB weather switch with addressees getting that portion of the database they request. The FAA, for instance, would likely want the entire North American database loaded directly into their central computer in Kansas City. This data should be retrievable by flight service or base operations personnel using one of several different cross-referencing options. Cross referencing examples are illustrated in Figures 4 and 5.

Figure 4 presents a sample of an initial screen display that would allow query by several means. The operator could either press the number to display the codes for each of the options or, if the code is already known, it could be entered directly. Figure 5 shows a sample follow-on screen that contains all degraded coverage for an area of interest. In this example, the state of Colorado was selected. The degraded coverage for the state would consist of all times that any of the displayed sample locations had a calculated

a baseline allows for system use in the vast majority of user scenarios. It also provides a realistic measurement of designed performance and does not penalize all users by imposing stricter criteria required for a very limited number of applications.

The recommendation that a two minute sampling interval be used is based on numerous computer runs to analyze the behavior of constellation geometry. Bad geometry can occur quickly and be resolved quickly as SVs cross planes or rise and fall from the observer's field of view. This short sampling interval assures detection of virtually all bad geometry. However, it also increases computations, so there is a direct trade-off between sampling interval, number of sampling points, and duration of reporting period.

Choosing to limit the number of sampling points to 500 is a direct result of the trade-off mentioned. See the previous section of this chapter for more detailed rationale for point selection.

The recommendation for a 24 hour reporting interval reflects the computational trade-off mentioned above and the requirement for providing advance planning information. It also considers the view that most SV problems should be resolved in that period of time. This allows for only one transmission in most cases, with the added advantage of providing a complete cycle of possible outage times for a specific constellation status. This means for planning past

outage time.

If a smaller area of interest (eg. Denver) was desired, it could be selected from either of the sample screens. From the screen in Figure 4, if the city number or VOR identifier were known, it could be entered, and degraded coverage times for Denver would be displayed. From the screen in Figure 5, the operator would enter the displayed number code for Denver to display the same data.

The sample screens are for illustration only, and in all likelihood a standardized format would be used to reduce the data flow requirements. For instance, "out of service" is typically abbreviated "OTS". Other abbreviations and formatting are also probable. The end result is that all the information shown in figure 5 would likely take up one or two lines on an 80 column display.

Sample Screen

GPS DEGRADED COVERAGE USA DATABASE

Press 1 to Display City Codes or type Two Digit City ID Press 2 to Display State Codes or Type State ID Press 3 to Display VOR Codes or Type VOR ID Press 4 to Display Stored Route or to Enter New Route Press 5 to Change Database or Exit

Figure 4. Sample Screen for Database Cross Referencing

Sample Screen

GPS DEGRADED COVERAGE

DATE: 0001-2359Z 23 Sep 86 AREA: Colorado, USA SATELLITE STATUS: SV # 16 Out of Service TIMES: 0200 to 0220Z, 1840 to 1910Z SAMPLE LOCATIONS USED TO DETERMINE COVERAGE: 2. Albuquer NM 22. Cheyanne WY 30. Denver CD 40. Goodland KS 42. Grand Jun Co TOTAL DEGRADED COVERAGE TIME: 50 Min. in 2 Time Blocks Press # to View Sample Times, or ESC to Return to Main Menu

Figure 5. Samp) Screen for Area Query of Database
<u>Communications Requirements</u>. As noted above, MCS access to military and civilian weather networks is the recommended means of dissemination to all aviation users. By 1991, US domestic military and civilian MOTAM systems will be combined and automated. Therefore, it is anticipated that all areas of coverage degradation as defined above for the United States and coastal waters could be stored for access in the FAA database. The FAA would be responsible for determining what information and in what format would be made available for international civilian NOTAMS. Military users overseas would get information through overseas military NOTAM channels via the Carswell AFB switch.

Electronic mail would be used to notify selected military operations and the DMA Hydrographic Office for dissemination into the ANNS. In all likelihood, only changes to the ephemeris data would be transmitted over some ANMS links while more detailed information would be available via other ANMS services.

WWNWS Example: "GPS SV #21 out of service 1DEC910900-2300Z"

It is anticipated that the eight Coast Guard districts responsible for local notices to mariners would access the central database for their areas of responsibility and retransmit appropriate information.

<u>Microcomputer Software</u>. Another software package capable of running on a microcomputer is required to

supplement the mainframe program described above. This program would allow any user to update a constellation ephemeris using just the first part of the central database. With this information, one could adjust assumed parameters to meet specific user requirements. The program would be designed to run on the most popular micro computers in use as typically configured (For example, IBM PC or compatible, Apple Macintosh, 256K minimum memory, 2 disk drives). Execution speeds of less than two minutes for a benchmark computation are desired. The program should be menu driven, allow for alternative default values to be permanently stored, and be tamper resistant.

Figures 6 through 11 contain a series of sample screens that illustrate some of the desired software features. Access to on-screen help, error tolerance, and the capability to skip over unneeded menus should be emphasized.

WINKS FOR SAMPANE SAMPANE PARAMETER

Sample Screen

GPS COVERAGE DETERMINATION PROGRAM

This program allows modification of the parameters used to calculate areas of degrade satellite coverage to meet specialized mission needs.

Information on degraded GPS coverage to meet most requirements is available at a local base operations, Coast Guard office, or Flight Service Station.

WARNING: This program is for planning purposes. Its use for making navigation decisions is subject to restrictions.

Press Enter to Begin Program

Figure 6. Introductory Screen to Microcomputer Program

Sample Screen

GPS MAIN MENU

- 1. Satellite Menu
- 2. Parameter Menu
- 3. Help and Instructions
- 4. Determine Degraded Coverage for Baseline Satellite Constellation and Current Parameters
- 5. Store Parameters

Arrow Keys to Move Through Menu, Enter to select choice

Figure 7. Main Menu Screen for Microcomputer Program

Sample Screen

GPS Satellite Menu

Load baseline ephemeris and determine coverage
 Load updated ephemeris and determine coverage
 Load and edit baseline ephemeris data
 Load and edit updated ephemeris data
 Create new ephemeris data

Type F1 for Help... ESC to return to Main Menu

Figure 8. Satellite Menu Screen for Microcomputer Program

Sample Screen GPS Parameter Menu (current values) 1. Location Den VOR 2. Altitude 0 Meters 1 Jul 89 3. Date 4. Start Time 0 Sec (0 Hrs) 5. Stop Time 86400 Sec (24 Hrs) 120 Sec (.08 Hrs. 6. Time Increment 7. Mask Angle 5 degrees 8. Accuracy Threshold 100 Meters Horizontal Type the corresponding number to edit a parameter or ϕ to determine coverage with set parameters ------Type F1 for Help... ESC to return to Main Menu

Figure 9. Parameter Menu Screen for Microcomputer Program

And a second of the second of

		GP	S Conste	llatior	n Status		
5v#	STATUS	S∨#	STATUS	5V#	STATUS	5V#	STATUS
1	GOOD	9	GOOD	17	GOOD	25	N/A
2	GOOD	10	GOOD	18	GOOD	26	N/A
3	GOOD	11	GOOD	19	GOOD	27	N/A
4	GOOD	12	GOOD	20	GOOD	28	N/A
5	GOOD	13	GOOD	51	GOOD	29	N/A
6	GOOD	14	GOOD	55	N/A	30	N/A
7	GOOD	15	GOOD	23	N/A	31	N/A
8	GOOD	16	BAD	24	N/A	32	N/A
Tur	a the cor	esoond		er to r	hanne sa	+-11;	to status

Figure 10. Constellation Status Screen for Microcomputer Program

.

and the second second

(()

GPS Degraded Coverage for 1. Baseline ephemeris, 18/6/2 + 3 spares, created 1/01/89 2. Den Vor, 0, 0001 to 23592 1 Jul 89, 120, 5°, 20 3D. 3. SV #16 BAD GPS Error is calculated to exceed the selected threshold 0900 to 09302 WARNING: This calculation is for planning purposes only and its use in navigation decisions is subject to restrictions Type F1 for Help... ESC to return to Main Menu

Figure 11. Degraded Coverage Output Screen for Microcomputer Program

a a shekarar ka ka ka ka shekarar ka s

For example, assume a GPS user received information that satellite #16 had been placed out of service for 24 hours. If one wanted to determine if Denver would experience 3 D degraded coverage in the next 24 hours it would be accomplished by:

- Pressing 1 on the main menu to select the satellite menu.
- Pressing 1 on the satellite menu to load baseline ephemeris data and determine coverage (this should call the parameter menu).
- 3. Pressing 8 on the parameter menu to change accuracy threshold to the desired value.
- 4. Pressing 0 to determine coverage (this should call the constellation status screen).
- 5. Pressing 16 to turn off satellite #16
- 6. Pressing 0 to calculate degraded coverage.

Degraded coverage information is presented in Figure 11. How this information would be used is dependent on the rules governing the specific type of navigation considered.

Cost

00000000

Controlling cost is a major objective of the proposed system. The assumptions used in cost estimations in chapter three are the basis of cost figures discussed here except as specifically noted. For convenience, the cost information contained in Tables 3.3 and 3.4 are reproduced in Table 4.4. The reader is referred to chapter three for further details of the cost estimations of specific components of the proposed system.

67

Table 4	4	•	4
---------	---	---	---

Summary of Cost Estimates for Alternative Systems

Transmission Method	Computation Method	Computer Costs	Total 5 Yr NPV O&M
NOTAM/ANMS EM/M11.BB WWNWS	Centrally Computed Direct Reporting	\$178,000	\$450,000
NOTAM/ANMS EM/M11. BB WWNWS	Precomputed Book Reference	\$89,000	\$1,700,000
NOTAM/ANMS Em/m11. BB WWNWS	Microcomputer Based	\$392,000	\$500,000
Comm. BB	Centrally Computed Direct Reporting	\$178,000	\$950,000
Comm. BB	Microcomputer Based	\$392,000	\$888,000

Table 4.5 summarizes the proposed system's cost. This is followed by a detailed explanation of the adjustments made from the originally determined costs for the elements comprising the prototype system.

Table 4.5

Proposed Sys	tem Cost Estimate		······
Software Development	\$146,000		
Hardware	50,000		
Communications Links Status Reporting System	0	(A11	inherited)
Operations & Maintenance	685,000		
Totel	\$881,000		

Computer costs connected with the microcomputer option are adjusted in this proposed system. First, the hardware cost of purchasing microcomputers is eliminated. Since adequate information for most users is available in the basic system, it is likely that users requiring customizing input parameters would already have access to a suitable microcomputer for mission planning. Second, the cost used for microcomputer software development is \$18,500. This represents 20% of the cost to develop the microcomputer software when considered as a primary alternative. This is based on the assessment that 80% of the software development for the mirco system would be converted directly from the primary, direct reporting system at little or no cost. 1222222

The O&M cost estimate for the microcomputer segment of the system is also reduced from \$500,000 to \$235,000. This assumes that the O&M contract would be a single contract and that some economies would be realized in terms of personnel productivity. A part time analyst costing \$58,000 a year is used as the basis for the microcomputer contribution to personnel O&M costs. It also is based on a requirement to publish 1000 copies of the micro software package for government use, instead of the 10,000 copy estimate for a stand-alone micro based alternative.

How the System Would Work

To illustrate how the proposed system would operate,

a brief description of anticipated MCS activities is explored. This is followed by a discussion of several different user scenarios. The section concludes with an outline of potential problems that might be anticipated in the operation of the system.

12 AV AL AV

Master Control Station Activities. The first step in implementing the status reporting system is for some responsible individual at the MCS, possibly the senior controller, to determine that a SV will be lost for navigation purposes. Additionally, the anticipated duration of the loss must be longer that the period required to disseminate the information. Perhaps 30 minutes is an appropriate target time, so if the outage is expected to exceed 30 minutes, the status reporting program is called and run.

Prior to the transmission of the results, some verification of at least the ephemeris data would be made. The change would be immediately transmitted and also sent via electronic mail to DMA. When the new areas of degraded coverage are calculated, they would also be transmitted as described above.

<u>Cross Country Flight Scenario</u>. A pilot checking the weather and NOTAMs for a planned cross country flight would have GPS flagged if there were any changes to the standard constellation. The pilot is using GPS for a navigation mission, and therefore would request the GPS flag to be

70

keyed. First, he would get the changes to the standard constellation ephemeris. When his normal NOTAMs and weather are displayed, any areas of degraded GPS coverage 50 nautical miles either side of his intended route of flight and their times would be presented. Depending on the backup equipment in the plane, the pilot would most likely just make a mental note to expect a GPS warning during the segment of flight flagged. Upon arrival at the destination terminal area, the pilot would update current landing conditions at which time GPS status changes that occurred while enroute would be briefed.

Tactical Training Scenario. The next pilot is planning a low level training route using terrain-following navigation, followed by a simulated bombing run. He will apply the changes to the standard constellation, to his micro computer program by turning "off" the SV that is unusable. He then runs the program with a mask angle of 15 degrees for his 4 low level check points. He will then need to change the accuracy threshold to 10 meters three dimensional position for the bombing range since this will be a GPS aided and scored bomb run. This whole process would take only 5 to 10 minutes.

<u>Submarine Position Update Scenario</u>. A submarine relying on GPS for fix update would get a GPS status via coded message from his appropriate controlling agency in conjunction with normal/emergency message traffic. It would

be the controlling agency's responsibility to interpret degraded coverage areas for specific submarine locations and required accuracies.

Potential Problems. Potential problems exist with this proposed system. Availability of computer hardware and software on an as-needed basis is difficult to rely on. This is a two edged sword in that if you overutilize computer time or storage due to numerous changes in the constellation, it will be frowned upon as costly. Conversely, if the system operates as designed, there will be few instances when status reporting procedures are implemented, and the requirement for computer capability will be questioned. There is also a tendency for information systems requirements to proliferate as desirable new features are identified.

A similar situation exists with communications links: if used too much, response time is degraded, and if used too little they are eliminated. Obtaining priority maintenance is also a problem in such a climate.

Finally, distributing, controlling, and updating microcomputer based software is not a mature process in the DOD. User training, standardization, and software control are all challenges to be met if the micro software system is to run efficiently. There are also legal questions that might develop over where responsibilities of various parties begin and end.

Conclusion

No system will satisfy everyone, but an automated system that takes advantage of flexibility and emphasizes end-user friendliness can provide adequate service to the vast majority of interested parties. The GPS user with sophisticated navigation equipment will likely have the resources to extract any degree of accuracy desired from the ephemeris data provided in this proposed status reporting system. The user of less costly equipment is likely to be amazed at the accuracy and reliability of the GPS concept.

This chapter has proposed a system that considers the trade-offs identified in the systems analysis step. Many of the components of the alternatives are included in this system because they all offer advantages in at least one area of utility. Chapter five tests the proposed model using a questionnaire that solicits potential users' views on several key assumptions of the model.

V. SURVEY AMALYSIS

In this chapter, key aspects of the proposed model developed in the previous chapter are analyzed. This is done by discussing the results of a survey of all there exists as who are potential users of GPS navigetion repeat the Procethere is a description of how the survey was insigned and conducted. This is followed by an hypothesis from opapproach to presenting the results of the case of the set Finally, possible changes to the model have of the set of the inputs are discussed.

Survey Development and Administration

The purpose of developing a correction of assumptions used in the proposed atom of the second and the previous chapter of the second of the se

considered an adequate sample size to analyze the attitudes and opinions of interest. Responses were received from operational fighter and transport units, test wing personnel, and officers currently serving in rated supplement assignments. Due to limited time and financial resources, all persons participating in the survey were assigned to Wright Patterson AFB, OH in a variety of capacities.

About 50% of the questionnaires were administered in emell groups where question intent was, on occasion, amplified beyond the specific wording contained in the questionnaire. The other half of the completed surveys were from individuals without an opportunity for clarification and were returned by mail. Surprisingly, 70% of the 75 questionnaires completed at individual convenience were artually returned, even though no formal method was developed to the total surveys.

The questionnaire contains a brief explanation of its purpose in an introductory paragraph followed by 11 multiple better questions that can be grouped into three segments. The tire: group of questions are background in nature. The second group deals with the issues of accuracy and three to meet an equipassants. The third group of questions the second system to accuracy based system to accuracy accuracy and three. The last question is open-ended,

۰.

Analysis of Survey Results

Three hypotheses are presented and discussed on the basis of the survey data. Observations are made throughout which are inspired by subsets of the data but which are not derived from statistical analysis. These observations are meant to provide perspective. Consensus (acceptability) is defined here as a minimum of 2/3 favoring a specific position. This figure was chosen because it represents the measure of one standard deviation for a normal distribution, and is more conservative than a simple majority.

The aviation experience level of the respondents is likely higher than the average military aviator since more than 90% indicate more than 1000 hours primary crew time. Also, even though an effort was made to solicit a wide range of aircraft type experiences, a lower than desired number of respondents indicated bomber and helicopter type aircraft experience. Despite these two characteristics, the assumption of randomness is used in analyzing the data for the purpose at hand: GPS status reporting.

<u>Hypothesis</u> #1. A reporting system that defines degraded coverage as any time that error exceeds 100 meters (328 feet) horizontal accuracy is acceptable.

<u>Results</u>. Survey question #5 addressed this issue. The results are presented in Table 5.1.

T	۱Þ	1	•	5.	, 1
---	----	---	---	----	-----

Response	# Responding	X	
Too Restrictive	4	42	<u>-</u>
About Right	84	83%	
Not Restrictive Enough	14	137	
Total	102	100%	

Survey Results for GPS Degraded Coverage when Error Exceeds 100 Meters Horizontal

<u>Finding</u>. A student T test derived 90% confidence interval for "About Right" is 76% to 88%. Therefore, it is reasonable to not reject the assumption that 100 meter accuracy is acceptable.

Discussion. Most respondents indicated that 100 meters horizontal error was a suitable criteria for considering GPS coverage degraded. This is a compromise that allows use of the system for most applications, even during periods that exceed strict design specifications. The consequences of this result are that both computational demands and size of the database recommended in the proposed model are manageable at reasonable costs.

Of the 9 respondents indicating bomber type aircraft experience, 5 indicated that 100 meters was not restrictive enough. Although this sample size is not large enough to apply statistical techniques, the results strongly indicate that there is a perception in the bomber community that

stricter accuracy criteria is appropriate. One possible explanation for this result is that GPS is being touted as a bombing aid, and in this specialized use more accuracy is desired.

A consensus for accuracy in the range of 100 meters is indicated by the results of the survey. However, some capability to determine degraded coverage using much stricter criteria seems desirable to a minority of potential users. The system proposed herein provides this capability through microcomputer software combined with satellite (SV) constellation status information.

<u>Hypothesis</u> $\frac{1}{2}$. Three dimensional accuracy for navigation use is not an important requirement of a reporting system.

<u>Results</u>. The results of survey question #6 addressing views on reporting degraded coverage in terms of 3 dimensional (3 D) accuracy are contained in Table 5.2.

Table 5.2

Reporting Preference

Response	# Responding	z	
A must requirement	24	24%	
Should be included	30	29%	
Not a major concern	27	27 %	
Little reason to include	15	15%	
Not a requirement	5	5 x	
Total	101	1002	

Note: One respondent did not answer this question.

Finding. A student T test derived 90% confidence interval for either of the first 2 choices is 48% to 64%. Therefore, it is reasonable to reject the hypothesis that 3 D is not important.

Discussion. The survey results indicate that three dimensional accuracy is in fact a desirable feature of a status reporting system. With 53% of the respondents indicating that 3 D information "must" or "should be" included as part of a reporting system, the parameters in the baseline system may not be acceptable.

In the open-ended question several examples were given of navigation missions where the aid of GPS altitude information to crosscheck altimeter information would be beneficial. These examples generally related to remote area operations where reliable, current local altimeter settings are sometimes not available. Even though these applications represent only a small portion of air operations, their military importance may warrant further reporting system stratification. This could be done by including both 2 D and 3 D standard accuracy criteria. However, this would increase the computational requirements and database size required and add another set of data to be communicated and displayed.

Another possible solution is to establish one three dimensional accuracy threshold for reporting all degraded coverage. This would report an area degraded any time the 3 D expected error exceeded some nominal value, possibly 100

79

assessed 0

meters spherical error. The problem with this approach is that outage areas would be identified that are still usable for many applications. An example here may help to illustrate this point. Consider a full 18 SV constellation with three active spares and each SV singly removed from the constellation. That is, SV #1 is removed, then SV #1 is replaced and SV #2 is removed, etc. etc.. Table 5.3 summarizes the likelihood that an outage would occur, the total number of outages for a 24 hour period, and the average time duration of each outage.

Table 5.3

Comparison of 3 D and 2 D Degraded Coverage

Location	Degraded Coverage (Probability 3D/ Probability 2D)	Number of Occurrences (3D/2D)	Average Duration (3D/2D)
New York City	.57/.14	20/5	14/8 (min)
Denver	.57/.33	14/7	23/8 (min)
Miami	.38/.04	14/2	15/10 (min)

(Calculated using ZPDOPG program)

Sector Sector

It is also possible that the microcomputer based supplement to the basic system would be an acceptable method of providing 3 D coverage information. This was not specifically addressed in the questionnaire, but the respondents rated acceptability of microcomputers as part of the system quite high. <u>Hypothesis</u> #3. There is a clear preference for an automated system that provides degraded coverage areas directly over a hardcopy based system that requires referencing a book.

Results. The survey questioned views on a book reference system and an automated database direct reporting system separately. The reason for doing this was to independently get an indication of acceptability of each option. Figure 12 contains a graph of responses to the two questions (\$7 & \$10) that address the comparison between a basic precomputed book reference system and a basic automated system. Figure 13 plots responses to the basic book reference system and those of follow-up questions (#8 & #9) explaining some of the expected features of the system. Figure 14 graphs the responses for views on the basic automated system and a follow-up question (#11) on a microcomputer customizing feature. The respondents were not asked to indicate a preference between the two types of systems directly, which would be useful in a more detailed survey.

PERSONA CHARGENER

Figure 12.

Survey Results for Basic Book Reference and Automated Systems

Figure 13.

Survey Results for Precomputed Book Reference System and Follow-up Questions

Figure 14.

Survey Results for Basic Automated System and Microcomputer Based Customization Feature

A. A. M.

1.1.1.1

<u>Finding</u>. By any measure, the preference for the automated seems to be established. Individual and aggregate positive responses favor the automated system, and individual and aggregate negative responses also favor the automated system. Therefore, there is no reason to reject the hypothesis that the automated system is preferred.

Discussion. The survey indicates that most respondents find either of the basic systems fairly acceptable. A substantial negative response was indicated only when the details were given of how a book reference system would work with the current orbit characteristics of GPS. Requiring a time conversion calculation or look-up table was not well received at all. A fairly course level of geographic and temporal detail was, however, not so objectionable. These inputs should be considered by decision makers evaluating the the merits of any proposed status reporting system because user acceptance is a major element of any such system.

Another finding this writer considers important was the overwhelming endorsement of a microcomputer component of the automated system. Eighty respondents endorsed the microcomputer system component. Computer literacy, and confidence in the capability to effectively employ microcomputers as tools is clearly indicated. This is almost certainly the result of a general pervasiveness of interacting directly with computers at both school and work

ذ 8

for many of the respondents. Since, however, the survey reached a limited sample of potential users, some broader sample is probably appropriate to more precisely measure rook attitude. Conversely, increased personal interactions which computers is a trend likely to continue. Acceptan end computers may even be expected to improve further by the time a system is implemented in 1991 and berond

Other Comments on Survey Results. More than Alt some survey respondents provided additional comments or even question #12. Three themes were repeatedly expresses most frequent and emphatic input was the time of even in any system that is selected. However, deferred even in universally accepted terms is often diffy addition, simplicity is usually in dire to even an increase in a system's requirements for even flexibility.

Another idea expressed several times equipment should be capable of displayers areas of degraded coverage based on each information. However, this added with designed into receivers is not free balanced with requirements and forther feedback on the GPS navigation e presently designed user equipments and does not project further a cona matter problem for Air Force user equipment, there is little interest in adding additional requirements to receivers until erme contational experience is gained.

Several other comments suggested a multi-criteria Terring evere A evere that differentiates between full ever of only capability, and no capability was save of the several second as "good", "marginal", and requered to identify these respective several several "vellow", or "red" nomenclature might evere several instance once again, this several several sets the cost of complexity.

Se weesda . as dased on Survey Results

MICROCOPY RESOLUTION TEST CHART

system. Even with the survey's limited scope and depth, several assumptions were validated while others were called into question. Continued user input is strongly recommended to refine the concepts presented in the prototype system and to test other assumptions required to field a system. In the next chapter, the conclusions of the research effort are summarized, and areas and directions for further work are identified.

VI. CONCLUSION

This chapter recaps the problem addressed in this research effort and its findings. It also discusses some of the specific related areas that appear to warrant further study.

Plans for implementing GPS navigation continue as satellite launch problems have delayed initial operational capability into the early 1990s. The Department of Transportation's (DOT) Federal Aviation Administration and Coast Guard are taking a "wait and see" attitude toward GPS. This approach seems reasonable considering other priorities, budget constraints, and risk assessment of GPS civilian applications potential. Driven primarily by constituency pressures, LORAN-C is a proven short term GPS alternative for many civilian applications that is absorbing considerable DOT resources.

Meanwhile, the Department of Defense (DOD) and Air Force Space Command are exploring ways to provide system status information to the wide range of expected users. This research effort focuses on providing advanced planning information to the peacetime navigation user. It does so by proposing an automated status reporting system that uses much of the infrastructure already in place to support current navigation systems and requirements. Many of the components of the proposed system could also have broader application to GPS operational capabilities planning but are beyond the

scope of this paper.

GPS poses unique status reporting challenges because the number of orbiting satellites visible and their geometry are continually changing with respect to users. The problem is further complicated by the wide variety of users and applications which GPS is designed to support and their global dispersion.

Key Elements of Proposed Status Reporting System

Table 6.1 outlines the recommendations for a status reporting system as determined in this paper. Figure 15 provides a schematic of major agencies involved and information flow.

Table 6.1

1 4 . 1 4 . 1

Summary of Proposed Status Reporting System Developed in this Research Effort

Key System Elements	Subordinate System Features
Centralized computation of	Degraded coverage is defined
degraded coverage areas.	as horizontal error greater
	than 100 meters.
	Sample locations for
	determining outages are
	major landmarks.
Satellite constellation	Some addressees will
configuration and degraded	receive all information
transmitted.	Some addressees will
	receive constellation
	status and a part of outage
	area information.
	Some addressees will receive
	only constellation status.
Electronic mail and Notices	Retransmission of parts of
to Airmen systems are used	the data by electronic mail
by Master Control Station	and radio broadcast are
to initiate status changes.	anticipated.
	Posting of data on
	electronic bulletin
	boards is a possibility.
Microcomputer software	Variable parameters would
capable of determining outage	include position, time,
areas using parameters	mask angle, and accuracy
different than the baseline system is required.	thresholds.
- •	Software would run on a
	range of commercially
	available microcomputers
	Time for computing a
	degraded coverage for
	a nominal situation
	would be less than 10
	minutes

\$

0 N

الدالعة فراحة

Areas For Further Study

The quest for suitable status reporting for a system as large and diverse as GPS is a dynamic process. As space, control, and user segments of the system evolve, so will the requirements of a status reporting system. This paper provides only limited detail on one solution. Further refinements of the actual workings of each element are necessary to implement the recommended solution. Specifically, four areas that this writer considers needing further work are as follows:

- Developing computer code to prototype the proposed system.
- 2. Refining sample point selection criteria.
- 3. Cost estimation.
- 4. Expanded user input.

Prototype Software Development. There are several computer programs designed for internal company and organizational development use that compute satellite coverage areas. Aerospace Corporation of El Segunda, CA has developed programs called EGAD and COVERIT that could potentially be modified to develop a prototype capability. AF Space Command/XPS possesses ZPDOPG, a program designed to run on an IBM PC. It was used and modified in this research to consider various problems in developing the proposed status reporting system. Additionally, companies developing GPS user equipment have similar software packages. Generally, this software has not been designed to optimize run-time for the specific application of computing degraded coverage. Documentation and output format are also not user oriented. Work on these areas and possibly translating the code into a more portable language like ADA would be beneficial.

Sample Point Selection. The approach for selecting sampling locations for calculating and reporting degraded coverage is an area that lends itself to further study. World-wide point selection could be attempted and more quantitative measurement criteria could be explored. Also, trade-offs for selecting additional points and the costs and benefits of more detail could be explored. Operations research networking techniques may be employed for selection and evaluation of chosen points.

<u>Cost Estimation Enhancements</u>. Cost estimation techniques used in this research are not very sophisticated, and additional work in this area would allow more precise cost/benefit analysis. Initial training and operations support documents costs were not quantified, nor were the status reporting system share of communications links costs. Further work in estimating the absolute costs in these areas would be worthwhile. Computer cost estimates are also imprecise.

The COCOMO model used to estimate software development costs has enhancements for providing better cost estimations

base on a wide range of variables not considered in this analysis. As software needs are more fully defined, it should be possible to better estimate their costs. There may also be more sophisticated methods for estimating computer hardware costs in the future that might be applied to this problem. Cost assumptions for operating and maintaining the various alternative systems may also warrant further evaluation.

Historically, software maintenance has been a major logistical expense of the US Air Force. Initiatives to improve this situation, like the requirement to program in approved languages, are ongoing. Some standardization assumptions were made in this research, but this is a dynamic area where cost estimation needs frequent refinement

Charges for military use of telecommunications networks also are subject to change and could invalidate some cost assumptions. Currently, the Defense Communications Agency budgets for operations of DOD networks. A change to a customer charge system would require a more detailed estimate of database size and transmission frequency to realistically estimate costs. Additionally, identifying trends in communications costs and projecting them into the future may be possible. However, this is a rapidly changing technology which makes this task difficult.

Improved User Feedback. The survey conducted as part of this research could be expanded to better test user attitudes regarding a status reporting system. The depth of the questionnaire could be increased, and the background information could be restructured to allow for more correlative measurements. A larger and broader survey sample would also be beneficial.

Table 6.2 contains several recommended questionnaire modifications and the rationale associated with each recommendation.

Table 6.2

Recommended Changes to Survey Questionnaire

Change	Rationale
Expanded introductory remarks	Several respondents made
explaining survey purpose and	comments indicating this
GPS system operation.	would be beneficial.
More background information;	Better correlation
to include age, education	potential for attitudes
level, and actual type	about status reporting
aircraft flown.	questions.
Different breakout of flying	More information to perform
experience. Request total	analysis and judge the
flying time or years of	validity of the sample.
experience for non-aviation	•
users.	
Ask for direct comparison	Allows for stronger
between alternate systems.	evaluations of preferences.
displays, or outputs.	
Include sample screen	Provides a tool for
displays of input and	refining design of the
output formats.	system.
-	•
A broader base of potential GPS users is also desirable. As a starting point, more bomber, helicopter, and naval aviators are recommended. Surface ship and submarine user inputs are also needed. Civil airline and general aviation users should also be consulted. They not only may have slightly different requirements that may be easily incorporated into the design stage, they also have significant political influence in obtaining funds for implementing a system. A more generalized survey wording might be required to account for the wider range of experience of these different groups.

Other elements with substantial interest in GPS status reporting are army surface users. However, GPS represents a substantial departure from current operations for envisioned army applications of patrol navigation, artillery sighting, and armor maneuvers. In all likelihood, a different survey would be required to get substantive input from these forces.

Conclusion

This chapter has summarized the research effort described in this paper. The GPS status reporting system recommended here is an automated system consisting of a twotier database that directly transmits both satellite constellation status and areas of degraded coverage. It also includes microcomputer software capable of customizing degraded coverage predictions based on differing parameters.

The chapter also identifies four areas where, in the

97

author's view, further research could be focused. The first area is actually developing computer code to implement the proposed system. Also, the sample point selection process could be further evaluated. The third area is cost estimation. More sophisticated cost estimation tools are available than were applied in this analysis. The final area identified is improving user feedback in designing a status reporting system. Changes to the survey questionnaire used in this research are suggested along with recommendations on how to improve the survey sample.

GPS represents a significant investment for the US Department of Defense. One requirement for realizing the considerable potential benefits of this system is an effective status reporting system. Hopefully, some of the ideas expressed in this paper will contribute to successful implementation of such a status reporting system.

Appendix A

NAVSTAR GLOBAL POSITIONING SYSTEM

Navigation User Status Reporting Questionnaire

GPS is a satellite based navigation aid that the Department of Defense plans to make its primary radio navigation system. It will replace TACAN, VOR, LORAN, OMEGA, and other navigation systems on military aircraft. This questionnaire is aimed at getting opinions on how best to report degraded coverage.

1. Flying experience (total time as a primary flight crew member)

- 0-200 hrs
 200-500 hrs
 500-1000 hrs
 1000-5000 hrs
 More than 5000 hrs
- J. More Luan Jobo mis

2. Type Aircraft with more than 300 hours (if you have less than 300 total hours mark the type aircraft that you have the most time in).

- 1. Fighter
- 2. Bomber
- 3. Transport
- 4. Trainer/Other
- 5. Helicopter
- 6. More than one of the above selected

3. If you have a civilian pilot rating please list the highest rating and the approximate number of total pilot in command time you have in civilian aircraft

4. Prior to this questionnaire were you aware of the GPS concept?

- 1. Intimately Familiar with the program
- 2. Relatively Familiar
- 3. Familiar
- 4. Vaguely Familiar
- 5. Completely Unaware

5. One proposed reporting system for GPS would consider any area that will not be provided with \pm 100 meter (328 feet) horizontal accuracy as an area of degraded coverage. As a point of reference this is the accuracy required for non-precision VOR and TACAN approaches.

- This accuracy is too restrictive, ______ is what I think should be used.
- 2. This accuracy seems about right.
- This accuracy is not restrictive enough, ______
 is what I think should be used.

6. With GPS equipment, a <u>three dimensional fix</u> in space is available. This adds altitude to horizontal positioning. Which response best expresses your view about reporting degraded navigation in terms of three dimensional accuracy?

- Any system <u>must</u> report in terms of three dimensional accuracy.
- 2. Some information should be made available to calculate three dimensional accuracy.
- 3. Three dimensional information might be nice but not of a major concern to me.
- 4. I see little reason for reporting degraded coverage in terms of three dimensional accuracy
- 5. Establishing degraded coverage in terms of three dimensional accuracy is not necessary.

7. One proposed reporting system would publish a NOTAM stating only which satellite is out of service and refer the pilot to a FLIP type book to determine if he is affected.

- 1. I strongly endorse this concept.
- 2. I find this fairly acceptable.
- 3. I am undecided as to my opinion of this concept.
- 4. I don't think I like this idea very much.
- 5. I strongly oppose this concept.

8. (Ref. #7) If one were required to correct outage times by subtracting four minutes per day from a reference day how then would you view the proposed system?

- 1. I strongly endorse this concept.
- 2. I find this fairly acceptable.
- 3. I am undecided as to my opinion of this concept.
- 4. I don't think I like this idea very much.
- 5. I strongly oppose this concept.

s sides

9. (Ref #7) If size constraints on the FLIP book allowed for differentiation of only <u>large</u> geographic regions (perhaps eastern US) and <u>large</u> time blocks (perhaps 3 hours), how then would you view this system?

- 1. I strongly endorse this concept
- 2. I find this fairly acceptable
- 3. I am undecided as to my opinion of this concept
- 4. I don't think I like this idea very much
- 5. I strongly oppose this concept

10. Another proposed system would establish a database queried via base operations/FAA flight service computer terminals much like civilian NOTAMs are today. This system will be cross-referenced to allow outage information using latitude/longitude, area (state or country), VORTAC identifiers, or major air routes.

1. I strongly endorse this concept.

- 2. I find this fairly acceptable.
- 3. I am undecided as to my opinion of this concept.
- 4. I don't think I like this idea very much.
- 5. I strongly oppose this concept.

11. (Ref #10) The database could also include information on individual satellites. This additional data could be used with a microcomputer program to customize coverage for special mission requirements. How then would you view this system.

1. I strongly endorse this concept.

- 2. I find this fairly acceptable.
- 3. I am undecided as to my opinion of this concept.
- 4. I don't think I like this idea very much.

5. I strongly oppose this concept.

12. Please make any other comments you think might be useful to someone trying to design a workable GPS status reporting system.

a she was a she was to

Res	ponse	1	2	3	4	5	6
Question	1.	1	1	7	92	1	N/A
	2	31	9	56	33	4	29
	3.	62 indica indicate did not a	ated ci d no ci answer	vilian p vilian a the ques	ilot ration viation tion.	tings expe	40 rience or
	4.	7	43	25	23	4	N/A
	5.	4	84	14	N/A	N/A	N/A
	6.	24 Note: one	30 person	27 did not	15 answer	5 this	N/A question
	7.	13	45	19	19	6	N/A
	8.	0	17	27	44	14	N/A
	9.	2	45	31	21	3	N/A
	10.	35	45	10	8	4	N/A
	11.	39	41	18	3	1	N/A

Table A.1

57

Summary of Survey Results Short Answer Questions

Ľ

Contract and a contract and a contract and a

Question 12. The following is a summary of the written comments that specifically address the design of a GPS status reporting system. Emphasis and word choice are the respondents.

1. A "worst case" coverage could be provided for a given area for the next 6 hours. The pilot would expect better than the number published.

2. Make it as simple for the flight crew as possible--don't look up stuff in FLIP/tables/charts (there's already a paperwork excess!).

3. As in all such matters -- "Keep it simple!"

4. Any way receivers could reflect status of individual satellites would be ideal.

5. The system should be fully automated with <u>no</u> pilot compensation necessary. If you want a good example of friendly operation, take a look at the Honeywell LASPRNAV. In this day of microcomputers, having to pull out books or refer to NOTAMs and charts is taking a giant step backward. 6. Design a receiver to display both horizontal and altitude accuracy.

7. The basics of timely status ,simple effectiveness (by area or route) and immediate availability are the ultimate grading criteria for pilots.

8. Don't make it too complicated. Keep it simple!!

9. Need something in the cockpit (idiot lights) to tell when only horizontal guidance is available, when CEP is below specified levels and when the information is totally unusable.

10. Put GPS satellite coverage on a CRT similar to weather satellite coverage areas.

11. I would rather see a database system showing which areas will not receive coverage. As an aircrew member, we have time restrictions on us and time spent looking in a book to see if we have coverages is less time for other mission planning duties. NOTAM system OK if it tells us which areas are affected rather than referring us to a booklet. Also would be nice to have it incorporated into ATIS.

12. System should directly provide useability of network and not require a user to calculate degradation to determine useability.

13. Don't worry too much if it isn't working. Somehow we will survive.

14. I don't care which satellite is out, just which areas. If I lose altitude no biggie, just let me know.

15. Use NOTAM system already in place.

16. Have a flag on the aircraft unit to display status.

17. To the largest extent possible, computerization of GPS status reporting should be employed. The days of hardcopy NOTAMs and flip documents is quickly coming to an end. Let's not be behind the times as soon as the system is deployed. High technology is an appropriate solution. Let's not build a dinosaur.

18. Could a base GPS frequency monitor check satellite transmission status and automatically trigger GPS degrade info rather than a large integrated net?

19. Computer based info is the best way to go but be sure there is a back-up which can be queried when your local display is "off the air".

20. Keep it simple and usable in remote areas.

21. Make status available via radio contact to ARTCC or other ground or air contact points.

22. My concern about the NOTAM system and possibly the database system is for 8-10 hour over-water flights where GPS will be most important.

23. A NOTAM system for degraded coverage <u>must</u> make it absolutely clear to the pilot whether or not he can file to and fly an approach. In my opinion, referring pilots to an additional flip book to determine if a NAVAID is acceptable for use makes the answer subject to interpretation and has an increased effect on the safety factor.

24. Computers are fine, however, back-up manual system needs to be available.

25. Most of all keep the procedures as simple as possible!

26. Should be very easy to use so average "crew dog" can do it without much hassle.

27. Maybe have varying degrees of degradation-- instead of "OK" vs "degraded", have "OK", "marginal" and "degraded". Have a 2 criteria display--3 D position and 2 D position.

APPENDIX B

nn บางบ

Salarah Sala

3-3-Ŋ,

1. COV

US SAMPLE POINTS

MAP	CITY	STATE	VOR	LAT/LONG	CRITERIA	
NU.	ATDANY	NV	ATR	4245N / 734 QU	20	
2	ALDAN I	NN .	ADD	424JN//J40W	10	
2	ALDUQUERQUE	nn TV	ADQ	2517N/10129U	20	1
3	AMARILLU ADCATA		ANA Pot	4040N/12414W	20	
4 5	ACCAIA ATTANTA	CA CA	201 ATT	3338N/8626W	10	
6	ATLANIA ATLANTIC CITY	NI	ACV	39271 / 76350	2 4	
7	RANGOR	MP	RCR	4450N/6852W	24	
, 8	RATTLE MTN	NV	RAM	4034N/11655W	34	
ă	BRLLINGHAM	W V	BI.T	4757N/12235W	34	
10	BILLINGS	MT	BTI.	4548N/10837W	20	1
11	RTRMINCHAM	AT.	VII Z	3340N/8654W	20	
12	RISMARY	ND	DTK	4646N/10040W	20	1
13	BOISE CITY	TD	BOT	4333N/11611W	20	1
14	BOSTON	MA	BOS	4221N/7060W	 1 я	
15	BROWNSVILLE	TX	BRO	2555N/9722W	 2 a	
16	BUFFALO	NY	BUF	4256N/7839W		1
17	CASPER	WY	CPR	4205N/10617W	20	
18	CHARLESTON	WV	HVO	3821N/8146W	20	
19	CHARLESTON	SC	CHS	3254N/8002W	· 2a	
20	CHARLOTTE	NC	CLT	3512N/8057W		
21	CHARLOTTESVILL	VA	GVE	3801N/7809W	20	
22	CHEYENNE	WY	CYS	4113N/10446W	30	
23	CHICAGO	IL	JOT	4133N/8819W	la	i i
24	CLEVELAND	OH OH	DJB	4121N/8210W	la	8
25	COLUMBUS	OH	APE	4009N/8235W	lc	
26	CONCORD	NH	ENE	4325N/7037W	3d	2
27	CORPUS CHRISTI	TX	CRP	2754N/9727W	2a	3
28	DALLAS	TX	DFW	3252N/9702W	lc	
29	DAYTONA BEACH	FL	OMN	2918N/8107W	2a	3
30	DENVER	CO	DEN	3948N/10453W	lc	3
31	DES MOINES	IA	DSM	4126N/9339W	2c	
32	DETROIT	MI	CRL	4203N/8327W	la	2
33	DULUTH	MN	DLH	4648N/9212W	2 a	Ŭ,
34	EL PASO	TX	ELP	3149N/10617W	16	
35	EUGENE	OR	EUG	4407N/12313W	2c	<u>۾</u>
36	FRESNO	CA	RPI	3653N/11948W	2c	5
37	GLASGOW	MT	GGW	4813N/10637W	3с	Ũ
38	GLENDALE	UT	BCE	3741N/11218W	3с	3
39	GOODLAND	KS	GLD	3923N/10141W	3с	3
40	GRAND FORKS	ND	GFK	4757N/9711W	2Ъ	2
41	GRAND JUNCTION	CO	JNC	3904N/10847W	3с	
42	GREAT FALLS	MT	GTF	4727N/11125W	2Ъ	2
43	GREEN BAY	WI	GRB	4433N/8812W	2 a	
44	HARRISBURG	PA	HAR	4014N/7701W	2c	
45	HARTFORD	CN	hfd	4138N/7233W	2 c	1
			10	5		
						Ģ
	የ ዲሚጫ የ አለት አለት ዲሞ ዲሞ ዲሞ አልት ቶሬስ ላ				ه.» · • • • • • • • • • • • • • • • • • •	برم الله هرم برم هرم
Mill.	Called a state of a state of a state of a	S. Cakel	and the second second	<u>and and and and and and and and and and </u>		

US SAMPLE POINTS (cont)

MAP	CITY	STATE	VOR	LAT/LONG	CRITERIA
NO.					
46	HOUSTON	TX	HUB	2939N/9517W	1a
47	INDIANAPOLIS	IN	VPH	3949N/8622W	lc
48	JACKSON	MS	JAN	3230N/9010W	2a
49	JACKSONVILLE	FL	JAX	3020N/8131W	la
50	KANSAS CITY	MO	MKC	3917N/9435W	1c
51	LAS VEGAS	NV	LAS	3539N/10508W	2 c
52	LITTLE ROCK	AR	LIT	3441N/9211W	2 c
53	LOS ANGELES	CA	LAX	3356N/11826W	la
54	LOUISVILLE	KY	IIU	3806N/8535W	1c
55	MARQUETTE	MI	SAW	4622N/8723W	3ъ
56	MEDFORD	OR	OED	4229N/12255W	2a
57	MEMPHIS	TN	MEM	3504N/8959W	1c
58	MIAMI	FL	MIA	2558N/8028W	la
59	MIDLAND	TX	INK	3152N/10315W	2 c
60	MINNEAPOLIS	MN	MSP	4453N/9314W	lc
61	MINOT	ND	MOT	4816N10117W	3a
62	MOBILE	AL	SJI	3044N/8822W	2a
63	MONTEREY	CA	SNS	3640N/12136W	2a
64	NASHVILLE	TN	BNA	3607N/8641W	1c
65	NEW ORLEANS	LA	MSY	3002N/9010W	la
66	NEW YORK	NY	JFK	4038N/7347W	la
67	NORFOLK	VA	ORF	3653N/7612W	2a
68	NORTH PLATTE	N E	LBF	4103N/10045W	3c
69	OKLAHOMA CITY	OK	IRW	3521N/9736W	lc
70	OMAHA	NE	OMA	4110N/9544W	lc
71	PANAMA CITY	FL	PFN	3013N/8541W	2a
72	PHILADELPHIA	PA	ARD	4015N/7454W	1 a
73	PHOENIX	AZ	SRP	3526N/11153W	lc
74	PITTSBURGH	PA	EWC	4049N/8012W	1c
75	PLATTSBURG	NY	PLB	4448N/7325W	3a
76	PORTLAND	OR	PDX	4545N/12235W	1c
77	PRESQUE ISLE	ME	PQI	4646N/6806W	3ъ
78	RAPID CITY	SD	RAP	4359N/10301W	3с
79	REDDING	CA	RBL	4006N/12214W	За
80	RENO	NV	FMG	3932N/11939W	2c
81	SALT LAKE CITY	UT	SLC	4051N/11159W	2 c
82	SAN ANTONIO	TX	SAT	2939N/9828W	lc
83	SAN DIEGO	CA	MZ B	3247N/11713W	la
84	SAN FRANCISCO	CA	SFO	3737N/12222W	la
85	SAVANNAH	GA	SAV	3210N/8107W	2 a
86	SEATLE	WA	SEA	4726N/12218W	la
87	SHREVEPORT	LA	SHV	3246N/9349W	2c
88	SIOUX FALLS	SD	FSD	4339N/9646W	2 c
89	SPOKANE	WA	GEG	4734N/11738W	2ъ
90	SPRINGFIELD	IL	CAP	3953N/8937W	2 c

US SAMPLE POINTS (cont)

MAP NO.	CITY	STATE	VOR	LAT/LONG	CRITERIA
91	ST LOUIS	MO	STL	3852N/9029W	lc
92	ST PETERSBURG	Fl	PIE	2754N/8241W	2 a
93	TUBA CITY	AZ	TBC	3607N/11116W	3c
94	TUCSON	AZ	TUS	3206N/11055W	16
95	WACO	TX	ACT	3140N/9716W	2 d
96	WASHINGTON DC	DC	OTT	3842N/7645W	la
97	WICHITA	KS	ICT	3745N/9735W	2c
98	WILMINGTON	NC	ILM	3421N/7752W	2a
99	YELOWSTONE	WY	DBS	4405N/11212W	3c
100	YUMA	AZ	BZA	3246N/11436W	3Ъ

Bibliography

Bate, Roger R., Donald D Mueller, and Jerry E White. <u>Fundamentals of Astrodynamics</u>. New York: Dover Publications, Inc., 1971.

Boehm, Barry W. <u>Software Engineering Economics</u>. Englewood Cliffs, NJ: Prentice Hall Inc., 1981.

Braff, Ronald and Jerry Bradley. "Global Positioning System as a Sole Means for Civil Air Navigation," <u>IEEE Position</u> <u>Location and Navigation Conference Proceedings</u>: 306-311 (1984)

Connoly, Robin. Capt USAF, GPS Joint Program Office Space Segment, Falcon Air Force Station CO. Personal interview. 22 September 1986.

Connor, Jerome T. "GPS Fixed Wing FAA Exploratory Flight Test," <u>IEEE National Telesystems Conference Proceedings</u>: Cl.1.1-Cl.1.8 (1982)

Copps Edward M. "An Aspect of the Role of the Clock in a GPS Receiver," <u>Navigation, 31 No</u> <u>3</u>: 233-242 (Fall 1984)

Degroot, L. E. <u>The Global Positioning System - A Compilation</u> of <u>Papers Prepared</u> by <u>Collins Government Avionics Division</u>: Cedar Rapids, Iowa: Rockwell International Corporation, 1984.

Department of Defense and Department of Transportation, <u>Federal Radionavigation Plan</u>. Department of Defense and Department of Transportation, Washington, D. C. 1984

Feldman, Kenneth. Class notes in OPER 633, Systems Effectiveness and Trade-offs, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, Jan 1986.

Gregory, William H. "Global Positioning Develops as Civil Navigation System," <u>Aviation Week & Space Technology</u>, 57-59 (November 4, 1985).

Isler, James R. "Evaluation of Efficient GPS Availability Determination (EGAD) Program", Kaman Sciences Internal Paper, September 1985.

Kahn Fredrick. <u>An Evaluation of Orbital Anomaly Resolution</u> <u>Procedures</u>. Contract F04701-83-C-0084. The Aerospace Corportation, El Segudo, CA, (TOR-0084A(5724-01)-1) 15 April 1985.

and a start of a start

Klein, Dale and Bradford W. Parkinson. "The Use of Pseudo-Satellites for Improving GPS Performance," <u>Navigation, 31 No</u> <u>4</u>: 303-315 (Winter 1984 85)

Knable Norman and Rudolph M. Kalafus. "Clock Coasting and Altimeter Error Analysis for GPS," <u>Navigation, 31 No 4</u>: 289-302 (Winter 1984 85)

Kruh, Pierre. "The NAVSTAR Global Positioning System Six-Plane 18-Satellite Constellation," <u>IEEE Telecommunications</u> <u>Conference Proceedings, 3</u>: E9.3.1-E9.3.8 (1981)

National Oceanic and Atmospheric Administration. <u>Catalog of</u> <u>Aeronautical Charts</u>, Riverdale Maryland: National Ocean Service, October 1985-86.

Noe, Philip S. and John H. Painter. Comparative Results for GPS, Loran, and OMEGA Marine Navigation," <u>IEEE National</u> <u>Telesystems Conference Proceedings</u>: Cl.2.1-Cl.2.5 (1982)

Parkinson, Bradford W. and Stephen W. Gilbert. "NAVSTAR: Global Positioning System--Ten Years Later," <u>Proceedings of</u> the <u>IEEE</u>, 71: 1177-1186 (October 1983)

Quade, E.S. and W. I. Boucher. <u>Systems Analysis and Policy</u> <u>Planning: Applications in Defense</u>: Santa Monica, CA: Rand Corporation, 1968.

Radio Technical Commision for Aeronautics. "Minutes of the First Meeting of Special Committee 159, Minimum Aviation System Performance Standard for GPS", RTCA Paper No 618-85/SC159-6: Washington D.C., December 17,1985.

Raghavan, Srinivasa and Vytas Gylys. "GPS Navigation With Fewer than Four Satellite Transmitters," <u>IEEE Position</u> <u>Location and Navigation Conference Proceedings</u>: 268-273 (1983)

Rand McNally. <u>Commercial Atlas and Marketing Guide</u> (117th Edition). Ed William and others, Chicago: Rand McNally & Co., 1986

Sage, Andrew P. <u>Methodology</u> <u>for Large Scale Systems</u>. New York: McGraw Hill Book Company, 1977.

Sturza, Mark A. "GPS Navigation Using Three Satellites and a Precise Clock," <u>Navigation, 30 No 2</u>: 146-156 (Summer 1983)

Till, Robert T. "Evaluation of Radionavigation Systems," <u>IEEE</u> <u>Position Location and Navigation</u> <u>Conference</u> <u>Proceedings</u>: 301-305 (1984) Wiederholt, Lawrence F. and Dale Klein. "Phase III GPS Integration Options for Aircraft Platforms," <u>Navigation, 31</u> <u>No</u> <u>2</u>: 129-151 (Summer 1984)

ZPDOPG, Computer program to calculate GPS coverage. Current deliverable to Air Force Space Command/XPS as part of a Scientific and Technical Assistance Contract. Captain Harrison C Freer was born 14 March 1954 in Poughkeepsie New York. He graduated from high school there and attended Air Force Academy from which he received the degree of Bachelor of Science in International Affairs in June 1976. He completed pilot training in September 1977 and was assigned to the 18 MAS, McGuire AFB NJ, where he piloted C-141s for 4 years. In June 1982 he was assigned to the 21 TFW, Elmendorf AFB AK, where he worked as the Cheif of Operations Scheduling and flew T-33 aircraft. In March 1985 he earned the degree of Masters of Arts, in Organization Management from the University of LaVerne. He entered the Air Force Institute of Technology School of Engineering Space Operations Program in May 1985.

Permanent address: 7880 Conifer Dr.

Colorado Springs, CO 80918

Vita

DEDAD					r
KEPUK	T DOCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE	MARKINGS		
a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILIT	Y OF REPORT	
b. DECLASSIFICATION / DOWINGRADING SCH	EDULE	Approve	d for pu ution un	blic re limited	lease;
AFIT/GSO/ENS-ENG/86D-1	MBEK()	5. MONITORING	ORGANIZATIO	N REPORT NU	MIDER())
. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MONITORING ORGANIZATION			
School of Engineering	AFIT/ENA				
ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (C	ity, State, and	ZIP Code)	
Air Force Institute of Wright-Patterson AFB OF	Technology H 45433				
a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT
1. TITLE (Include Security Classification)					
See box 19					
2. PERSONAL AUTHOR(S) Harrison C. Freer, M.S.	Capt, USAF				
3a. TYPE OF REPORT 13b. TIM	IE COVERED	14. DATE OF REPO	DRT (Year, Mor	th, Day) 15	PAGE COUNT
Masters Thesis FROM	TO	1986 De	cember		118
SUPPLEMENTARY NOTATION					
	18 SUBJECT TERMS	Continue on reven	te if necestary	and identify	by block number)
7. COSATI CODES FIELD GROUP SUB-GROUP	18. SUBJECT TERMS	(Continue on reven	se if necessary	and identify	by block number)
7. COSATI CODES FIELD GROUP SUB-GROUP 1.7 0.7	18. SUBJECT TERMS Global Pos Navstar Sa	(Continue on reven sitioning { atellites	se if necessary System,	and identify Satelli	by block number) te Networks
7. COSATI CODES FIELD GROUP SUB-GROUP 1 7 07 9. ABSTRACT (Continue on reverse if necess	18. SUBJECT TERMS Global Po Navstar Sa sary and identify by block r	(Continue on reven sitioning s atellites number)	se if necessary System ,	and identify Satelli	by block number) te Networks
7. COSATI CODES FIELD GROUP SUB-GROUP I 7 07 9. ABSTRACT (Continue on reverse if necess	18. SUBJECT TERMS (Global Po Navstar Sa sary and identify by block r	(Continue on reven sitioning s atellites wumber)	se if necessary System ,	and identify Satellit	by block number) te Networks
7. COSATI CODES FIELD GROUP SUB-GROUP I 7 07 9. ABSTRACT (Continue on reverse if necess Title: I	18. SUBJECT TERMS (Global Po: Navstar Sa Sary and identify by block r Design of GPS Sa	(Continue on reven sitioning s atellites number) tatus Repo:	rting Sy	and identify Satellit stem	by block number) te Networks
7. COSATI CODES FIELD GROUP SUB-GROUP 1 / 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C	18. SUBJECT TERMS (Global Po Navstar Si Sary and identify by block r Design of GPS Si Chairman - John	(Continue on rever sitioning s atellites humber) tatus Repos	system, System, rting Sy	and identify Satelli stem	by block number) te Networks
7. COSATI CODES FIELD GROUP SUB-GROUP 17 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C	18. SUBJECT TERMS (Global Po Navstar Sa Sary and identify by block r Design of GPS S Chairman: John Assis	(Continue on reven sitioning S atellites humber) tatus Repos R Valusek, stant Profe	ting System, Lt Col,	and identify Satellif stem , USAF Operati	by block number) te Networks
7. COSATI CODES FIELD GROUP SUB-GROUP 17 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C	18. SUBJECT TERMS (Global Po Navstar Sa Sary and identify by block r Design of GPS S Chairman: John Assis	(Continue on reven sitioning s atellites humber) tatus Repos R Valusek, stant Profe	ting System, Lt Col,	and identify Satellif stem , USAF Operati	by block number) te Networks ons Research
7. COSATI CODES FIELD GROUP SUB-GROUP 17 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C	18. SUBJECT TERMS (Global Po Navstar Sa Sary and identify by block r Design of GPS S Chairman: John Assis	(Continue on reven sitioning S atellites humber) tatus Repo: R Valusek, stant Profe	system, System, rting Sy Lt Col, ssor of	and identify Satelli stem , USAF Operati	by block number) te Networks ons Research
7. COSATI CODES FIELD GROUP SUB-GROUP 17 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C	18. SUBJECT TERMS (Global Po Navstar Sa Sary and identify by block r Design of GPS S Chairman: John Assis	(Continue on reven sitioning s atellites humber) tatus Repo: R Valusek, stant Profe	system, System, rting Sy Lt Col, essor of	and identify Satellif stem , USAF Operati	by block number) te Networks ons Research
7. COSATI CODES FIELD GROUP SUB-GROUP 17 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C	18. SUBJECT TERMS (Global Po Navstar Sa Sary and identify by block r Design of GPS S Chairman: John Assis	(Continue on rever sitioning S atellites humber) tatus Repo: R Valusek, stant Profe	system, System, rting Sy Lt Col, essor of E. WOLAVER ter Huse	and identify Satellif stem , USAF Operati	by block number) te Networks ons Research AFR 190-1/. 187
7. COSATI CODES FIELD GROUP SUB-GROUP 17 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C	18. SUBJECT TERMS (Global Po Navstar Sa Sary and identify by block r Design of GPS S Chairman: John Assis	(Continue on rever sitioning S atellites humber) tatus Repo: R Valusek, stant Profe	tor for sublice the formula of the second for sublice	and identify Satellif stem , USAF Operati release: IAW Car Asag	by block number) te Networks ons Research AFR 190-1/. P&? Cevelopment:
7. COSATI CODES FIELD GROUP SUB-GROUP 1 7 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C 0. DISTRIBUTION / AVAILABILITY OF ABSTRA	18. SUBJECT TERMS (Global Po: Navstar Sa Sary and identify by block r Design of GPS S Chairman: John Assis	(Continue on rever sitioning s atellites humber) tatus Repo: R Valusek, stant Profe	System, System, rting Sy Lt Col, ssor of E. Wolaver to fue a suble to fue a suble	and identify Satellif stem , USAF Operati release: IAW Car Askag	by block number) te Networks ons Research AFR 190-1/. Pg?
7. COSATI CODES FIELD GROUP SUB-GROUP 1 7 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C 0. DISTRIBUTION / AVAILABILITY OF ABSTRA GUNCLASSIFIED/UNLIMITED SAME	18. SUBJECT TERMS (Global Po Navstar S Sery and identify by block r Design of GPS S Chairman: John Assis	(Continue on reven sitioning S atellites bumber) tatus Repo: R Valusek, stant Profe LTAN OVan And F Wingt 21. ABSTRACT SE UNCLAS	system, System, rting Sy Lt Col, essor of the base of the base of the the base of the base of the base of the the base of the base of the base of the the base of the base of the base of the base of the the base of the base of the base of the base of the the base of the base of the base of the base of the base of the the base of the base of the base of the base of the base of the the base of the base of the base of the base of the base of the the base of the	and identify Satellif stem , USAF Operati Polecese: IAW Coll 454.33 IFICATION	by block number) te Networks ons Research AFR 1964 /g2 Development
7. COSATI CODES FIELD GROUP SUB-GROUP 1 / 07 9. ABSTRACT (Continue on reverse if neces Title: I Thesis C 0. DISTRIBUTION / AVAILABILITY OF ABSTRA JUNCLASSIFIED/UNLIMITED SAME 2. NAME OF RESPONSIBLE INDIVIDUAL JOHN R. VALUSEK, Lt CO	18. SUBJECT TERMS (Global Po Navstar Si Sary and identify by block r Design of GPS S Chairman: John Assis Chairman: John Assis 1, USAF	(Continue on rever sitioning S atellites bumber) tatus Repo: R Valusek, stant Profe LINCLAS 22b. TELEPHONE (513)	System, System, System, It Col, essor of the Sor applie to how applied to how app	and identify Satellif stem USAF Operati CH 45433 IFICATION Code) 22c. OF AFI	by block number) te Networks ons Research AFR 190-1/. / 87 FICE SYMBOL T/ENS

and the second second second second

The purpose of this study was to design a status reporting system for NAVSTAR GPS. A systems engineering approach was used for the full satellite constellation with a fully functioning user equipment. The recommended system consists of three main elements: a database, a status transmission mechanism, and microcomputer software. The database proposed has two tiers and is maintained in real-time as the operational constellation changes. The first tier contains the orbital ephemeris of the active constellation; The second tier consists of areas and associated times of degraded coverage.

- The study sought

CARLENCE X CRACKER

Two methods of initial transmission of the status information are identified. The Notices to Airmen (NOTAM) system that currently exists is one primary transmission system; The other recommended initial link in the transmission process is electronic mail. Further dissemination by appropriate agencies using a variety of transmission methods, is also outlined.

The final element of the system is software that can run on microcomputers. This software would allow users with special requirements to compute degraded coverage from the ephemeris data using assumptions and parameters different from those used in producing the second tier of the database. If $f = \frac{1}{2} + \frac{1$

the return the return of the

£ ,

