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Compiling Smalltalk-80 to a RISC

I ABSTRACT

The Smalltalk On A RISC lroject at U.C. Berkeley proved that
good performance executing a high-level language on a modified
RISC architecture was attainable. The system removed a layer of
interpretation, translating bytecodes to a register-based instruction
set. This paper describes the bytecode translator and how it was
affected by SOAR architectural features. The translator generates
code of reasonable density and speed. Because of bytecode seman-
tics, relatively few optimizations are possible, but hardware and
software mechanisms at runtime offset these limitations. Register
allocation with register windows is the major task of the compiler.
Several hardware features -could be easily performed by the com-
piler.
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Compiling Smalltalk-80 to a RISC

1. Introduction

The goal of the Smailtalk On A RISC (SOAR) project at U.C. Berkeley was to

produce a high-performance execution engine for the Smalltalk-801 language [1]. The

heart of the effort is a Berkeley RISC processor extended to support Smalltalk [2]. The

processor was designed in conjunction with the runtime system [3], which together

have yielded substantial performance improvements over conventional Smalltalk-80

implementations. An extensive performance evaluation can be found in Ungar's disser-

tation [4]; SOAR runs Smalltalk roughly 2.5 times as fast as a Motorola 68010 with a

similar cycle time, which works out to be about the same speed as the Xerox Dorado

high-performance workstation. One reason for the SOAR system's speed is its compila-

tion of Smalltalk, It has been estimated that compiling Smalltalk to the SOAR

instruction set produces a factor of two speedup over conventional interpreted sys-

tems. This paper describes the SOAR compiler, presenting the mechanisms of compil-

ing Smalltalk to the special-purpose SOAR RISC instruction set. "

2. The Nature of the Compiler

The Smalltalk-80 language is defined operationally in terms of a virtual machine

that executes stack-based instructions called bytecodes. The Smalltalk-80 program-

ming environment is a binary image that runs on the virtual machine. The problem

with the virtual machine is that it is inefficient if naively implemented. It is com-

monly realized as a bytecode interpreter, which requires special hardware (such as that

possessed by the Dorado) to avoid interposing a layer of overhead between the virtual

machine and the native machine.

An alternative is to compile bytecodes to native machine instructions, an

approach successfully taken by Deutsch and Schiffman [5]. The Deutsch and Schiffman

system dynamically translates procedures (called methods in Smalltalk) as needed,

keeping a cache of native-code methods and flushing the least-recently-used ones. The

'Smaltaik-90 is a trademark of Xerox Corporation.
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2

SOAR system takes this approach a step further and compiles all methods from

bytecodes into SOAR instructions - the canonical representation of a method in the

SOAR system is as SOAR instructions, not bytecodes. Where caching is done for space

efficiency, compiling everything simplifies and speeds up the system for a moderate

cost in space.

We considered compiling Smalitalk directly to SOAR, avoiding bytecodes

entirely, but we did not take this path for three reasons. First, the virtual machine is

the semantic definition of the language. This implies that a correct bytecode compiler

is, along with correct system functions, a correct Smalltalk implementation. Second,

keeping bytecodes as an intermediate form permits mixed-mode debugging like that

found in LISP systems, where functions to be debugged are interpreted, and tested

functions that should run fast are compiled. Third, the standard virtual image is a

bytecode-based image; to produce a SOAR-based native image those bytecodes must

be translated to SOAR instructions. Rather than develop two separate compilers, one

for taking bytecodes to SOAR and another for compiling Smalltalk to SOAR, we

implemented one bytecode compiler with two implementations: a C version for image

conversion, and a Smalltalk version for use with the converted image. Debugging is

addressed in more detail in Lee's report [8], and image conversion in a recent paper

[3].

The basic task of the compiler is to translate stack-oriented bytecodes into

RISC-style loads, stores, and other register-based instructions. It does this by assigning

Smalltalk variables and stack locations to registers and memory locations, and then

simulating at compile time the bytecode stack operations, converting them to SOAR

operations. The simulated stack is used to remember value sources and operations;

when a value destination is encountered the code to load, compute, and store the value

is generated. If the Smaltalk variables A and B are assigned to registers, for example,

a push of A and a pop-and-store into B is translated into a register-to-register move;

the simulated stack is used to remember the source A until the destination B is

encountered. The stack is simulated at compile time to avoid unnecessary computa-

tions at runtime.

VXV P' No, 0 ~ ~ - vC



3

In this regard, the Smalltalk bytecodes perform the same function as any stack-

based intermediate language such as, for example, UCODE [7]. Bytecodes are unlike

UCODE in that, as we will discuss later, they restrict the compiler writer, particularly

in implementing optimizations that would result in code motion or that require type

information to perform. For example, common subexpression elimination is exception-

ally difficult to do in Smalltalk.

Given the restrictive semantics of the Smalltalk bytecodes and the simple archi-

tecture of SOAR, the compiler falls or stands on its success in mapping Smalltalk vari-

ables to registers and memory.

3. SOAR Register Windows

One feature of the Berkeley RISC architectures is a register file of overlapping

register windows, each window corresponding to a procedure activation frame. The

windows are allocated on procedure call in a stack discipline, using the registers in the

window overlap to pass parameters. The advantage of register windows is fast pro-

cedure call and return, avoiding the saving and restoring of registers. Tests with

benchmarks indicate that SOAR Smalltalk would be 46% slower without them.2

It is crucial that the size of these register windows be chosen wisely. If a method

requires more storage than can fit in a window, the extra values are spilled to

memory, slowing down the procedure call and the method's execution as well as

increasing its code size. If windows are too small, an excessive number of methods will

spill, degrading the performance of the whole system. On the other hand, if windows

are too large, registers will be wasted and fewer windows can be accommodated on the

processor chip.

For SOAR, the goal was to have 90% to W% of all activation frames fit in

SOAR windows. Preliminary studies [9] indicated that a window size of 10 registers

with complete overlap was best. The SOAR windows are smaller than those of other

RISC designs such as RISC 11, which has 32, because Smalltalk methods are

2 All results quoted in this paper are found in either Ungar's dissertation 141 or Bush's report 181, un-
les stated otherwise.
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correspondingly smaller than procedures in more traditional imperative-style

languages.

An alternative would have been to use variable size windows at some expense in

hardware [10]. For SOAR, we concluded that variable size windows would not result

in significant enough improvement to offset the additional hardware complexity.

The SOAR hardware divides each window into two identical sets of 8 registers, a

high set (15-8) and a low set (7-0). Each set contains 6 general purpose registers and 2

dedicated registers used for return addresses (15 and 7) and return values (14 and 6).

The current method receives its parameters and stores its local variables in the

high register set. It sets up parameters for any methods that it calls in the low set.

Unlike other RISC designs, the SOAR architecture has no registers dedicated solely for

local use -- all are shared between two activation records. This allows the compiler

flexibility in register allocation -- registers can be used for arguments or local values

depending on what is appropriate. Temporaries that must persist through calls to

other methods ('retained' temporaries) are put in free high registers. 'Transitory' tem-

poraries (those whose life spans do not cross procedure calls, such as intermediate

results from compiler-generated expressions) can be put in the lows. Figure 1 presents

this categorization pictorially.

Allocating variables and temporaries to registers is complicated by the fact that

it is possible to write a Smalltalk method whose variables and temporaries will not all

fit in a register window. When more registers are required than are available, we

resort to spilling. There are two rules used to determine what and when to spill to

memory. The first rule of assignment by category specifies that entire categories of

variables are spilled -- if not all of the arguments fit in the registers, for example, all

are spilled. The second rule of permanent assignment means that a variable cannot be

moved once it has been allocated a location -- if, for example, a local variable has been

put in a register, it will not later be spilled to make room for a temporary. Neither of

these rules result in minimal register usage or minimal memory traffic, but they are

reasonable and simple. Since a major goal of the SOAR architectural design was to

minimize spills at a reasonable cost, their infrequent occurrence justified an easily
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Callee and Return Address
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Callee Arguments

Transitory Temporaries

0

Figure 1: Register Allocation in a SOAR Register Window

modifiable, simple spilling strategy.

The details of our allocation and assignment strategy are straightforward. The

compiler assigns up to four arguments and locals to a method's high registers, and the

remaining high registers are used for retained temporaries. If there are more argu-

ments than will fit in four registers, all arguments are put in memory. If the argu-

ments will fit in four registers, but the local variables will not fit with the arguments.

all of the locals are stored in memory. Transitory temporaries can be stored in the

lows. Retained temporaries are stored in registers if any are available at that point in

the computation, and in memory otherwise.

A nice benefit of the above rules is that for most Smalltalk methods, code can be

generated in one pass over the bytecodes by making some initial assumptions about

the method's register requirements. If the assumptions turn out to be false, a second

pass can be made with the new information. Only 9% of all methods in the

1P 1P% %
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Smalltalk-80 system require the second pass.3

Spills can be implemented in one of two ways. First, space can be allocated from

a common spill pool, or a separate spill object can be allocated for each activation

frame that spills. The former has complications for garbage collection and processes,

and the latter eats up a register in each spilling frame. Both techniques have been

tried in SOAR; neither has shown itself to be clearly superior over the other.

4. How the SOAR Architecture Simplifies the Compiler

Register windows and spills complicate the compiler; SOAR architectural support

for Smalltalk has in the main simplified it. An important architectural feature allows

the compiler to generate standard arithmetic and comparison instructions in spite of

the fact that the operations may be on non-integer objects.

Since Smalltalk is polymorphic and variable types are not known at compile

time, it is never safe to generate integer instructions without runtime type checking.

The virtual machine requires a dynamic method lookup on each operator, including

'+'. Implementing this lookup naively is very expensive. Studies have shown [II] that

in fact most arithmetic operations in Smalltalk involve only integers. SOAR takes

advantage of this fact by assuming all simple arithmetic operations (plus, minus, com-

parisons, etc.) will be performed only on integers. The compiler thus treats all such

operations as if they were on integers, and generates integer code. If, say, an add

instruction is initiated on two objects, and one or both of them turn out to be non-

integers, the hardware will trap and transfer to a handler that will look up the correct

method for the intended operation. When the execution of the looked-up method is

complete, the trap handler returns to the instruction immediately following the one

that caused the trap.

It would not be difficult for the compiler to generate code to test explicitly for

integer tags, but it would slow down system performance by an estimated 26% and

'The Smalltalk and the C versions of the compiler differ in this regard: the C version effectively

makes two passes over each method. However, speed was not as critical for the C version as for the
Smalltalk version.

F' . . : Y o SI. .'
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would increase image size by 15%.

The tag mechanism is also used to provide hardware assist for garbage collection,

thus further simplifying the task of code generation. SOAR uses a generation scaveng-

ing scheme, dividing memory into regions of old and new objects, and uses generation

tags on pointers to detect when pointers to new objects are stored into old ones. The

tag check is performed in the hardware, and a trap handler records the necessary

information if a trap is taken. Benchmark results indicate that tagged stores are so

rare that the compiler could in fact generate explicit tests and only slow the system

about 1% and expand the image 2%.

The compiler also takes advantage of hardware that maps registers to memory

addresses, and allows what we call a pointer to register. Since a Smalltalk program

can access any object in memory, and activation records are just another kind of

object, it is necessary to handle references to them. Remember that activation records

exist as on-chip register windows. The pointer to register feature permits the compiler

to ignore complications that would otherwise be caused by overt references to activa-

tion records. Once again, however, it turns out that checking for pointers to activa-

tion records is not as severe a problem as it was initially feared to be. The instances

requiring such a check do not occur often, and Ungar concluded that the feature could

be removed with only a 3% performance penalty.

5. How Bytecode Compilation Simplifies the Compiler

Both language and pragmatic considerations limited the optimizations we could

perform.

First, Smalltalk is a polymorphic language. That is, the same 'A+B' expression

within a Smalltalk method could on one instantiation add two integers and on the

next concatenate two strings. In the latter case it is not true that 'A+B' equals 'B+A'.

Furthermore, which method is invoked is, by definition, a function of the leftmost

operand ('A' in our example). Together these facts preclude almost all expression
evaluation optimization.

p.
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Second, the fact that activation frames are full-fledged Smalltalk objects requires

a relatively straightforward mapping between bytecode frames and compiled ones,

eliminating optimizations such as method integration.

Third, our pragmatic goal was to bring up a working Smalltalk-80 image for the

SOAR processor. This made us fundamentally conservative in our approach to the

language. Correctness, as defined by the bytecodes and the image, was more impor-

tant than efficiency. Because of this we were loath to change the image (including the

standard Smalltalk-80 compiler) or take advantage of ambiguities in the language

specification. We were not in the normal position of a compiler writer.

There is one optimization which has been employed successfully by Deutsch and

Schiffman and the SOAR system. While it is true that the language permits

polymorphic expressions, the fact of the matter is that 96% of the time the method

invoked does not change. Thus. for example, if 'A+B' added complex numbers the last

time it was evaluated, it is highly likely that it will be used to add complex numbers

the next time it is evaluated. Using this observation we cache the last method called.

When it is called again, we merely check that the type of the leftmost operand this

call matches the type of the leftmost operand from the last call. If they do not match

the standard method lookup mechanism is re-invoked. Ungar estimated that removing

this caching strategy would slow down our system by 33%.

6. Results

Three types of performance measurements were made with the SOAR compiler:

compilation speed, code expansion, and register window utilization.

Since the SOAR compiler is an extra stage added to the bytecode compiler. it can

only slow compilation down. However, on a Dorado (equivalent in performance to

SOAR) the compiler is reasonably fast both objectively and subjectively. Results from

compiling the entire Smalltalk-80 image of 4770 methods indicate that it adds a mean
time of 50 milliseconds to a method's total compilation time. This lengthens compila-

tion by 70%. Subjectively, the compiler does not intrude on system use since it is usu-

ally invoked interactively on one method at a time. A mean total compilation time of

about 120 milliseconds per method does not noticeably affect response time.

• ., .,-,-,,-,- -. ',"* * ,- ", .- ' . . . . , . • .• -" , " . -



One of the virtues of bytecodes is that they are a compact representation. A

major concern at the start of the project was an anticipated explosion in method size

that could result from moving to four-byte word-sized instructions. Preliminary esti-

mates indicated potential expansion of up to 1000% [12]. Fortunately, observed

expansion with the actual implementation is considerably lower. For the entire

Smalltalk-80 image the mean bytecode method size is 32.5 bytes; that expands to a

mean length of 40.8 SOAR words, ' an expansion factor of 499%. We note here that

the largest method compiles into 637 bytes of bytecodes; it takes the Smalltalk-80

compiler and our compiler approximately 3 seconds to compile this method from

Smalltalk into 684 SOAR words. These expansion results are very similar to the

expansion factor of 503% reported by Deutsch and Schiffman [51 for their comparable

translator with in-line cache.

To put these averages in perspective, total method storage required for the

bytecode image is 155025 bytes, and is 774648 bytes for the SOAR version. For

current workstations with memories in the four to eight megabyte range, this increase

of roughly 800k bytes is not significant.

A major goal of the SOAR design was to have over 90% of the methods fit all

their storage into registers. Static results from the compiler support the current win-

dow size. Only 9% of all methods spill. Examining total register requirements also sup-

ports the 16 register window. These numbers are expressed in terms of the numbers of

high registers used, because all method-specific allocation is done in the high registers.5

number of high registers methods using no more than that number
2 29?'
4 65%
8 92%

16 99%
32 100%

Dynamic results from benchmarks confirm the static results, and more emphatically

rhe method lengths include literals and in-line cache instructions.

'rhese numbers include the 2 special receiver and return address registers. Note that the percentage
of methods that spill is higher than the percentage of methods that require more than 8 registers because
the registers are divided up into two regions (arguments and locals, and temporaries) that have different
spill disciplines.



M w .-. : -

10

endorse the chosen window size. Dynamically, less than 3% of methods spill. The

above figures show that if we increased the register window set size to 32 from 8, all

methods in the Smalltalk-80 system would fit in register windows, and spilling could

effectively be eliminated. However, since less than 3% of all calls require spilling, even

if we could (somehow) keep the same number of register windows on the chip, increas-

ing the window size from 16 to 64 registers would not be cost effective.

Static results also indicate that the current spill rules are reasonable.

category mean size maximum size
arguments 0.83 13

local-variables 0.68 19
retained temporaries 0.82 10

total registers 2.32 28
spill area 0.45 22

Argument, local variable, and temporary demands are small on the average, but in the

worst case all exceed the window size.

7. Conclusions

The Smalltalk-80 language and its bytecode representation restrict the conven-

tional optimizations available to the SOAR compiler. Nonetheless, the compiler gen-

erates efficient code, primarily due to register windows, integer tags and traps, and

in-line method caches. Experience with the compiler has verified the architectural

design decision to use a 16-register fully overlapped window. Several features sup-

ported by the SOAR hardware could easily be performed by the compiler at marginal

increased time and space costs.
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