Productivity Engineering in the UNIXt Environ:ent

0T FILE CORY

Using Expert Systems to Manage Distributed Computer Systems

Technical Report

S. L. Graham DT,C

Principal Investigator ZLECTE
(415) 642-2059 APR 2 2 1987

x R

AD-A179 329

e

“The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government.”

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

tUNIX is a trademark of AT&T Bell Laboratories

DITRIBUTION STATEMENT A ‘
Approved for public release;

Distribution Unlimited ! 87 4 21 010

B N A L 4 L Lo D e I R N O TR RO R T e TRy

' SECUNTY CASSFCAYON OF YRR ASE. . - /fﬂ*/f/?Vfo

REPORT DOCUMENTATION PAGE

000 e S —r——————
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
unclassified
” e —r—— .
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
unlimited

P — T ——
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Regents of the University] (¥ applicable)

of California SPAWAR

6¢. ADDRESS (City, State, and 2iP Code) 7b. ADDRESS (City, State, and ZIP Code)
Berkeley, California 94720 Space and Naval Warfare Systems Command

Washington, DC 20363-5100

82. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Of applicable)
! DARPA

8¢<. ADDRESS (City, State, and ZiP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. |NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

« Using Expert Systems to Manage Distributed Computer Systems

12. PERSONAL AUTHOR(S)

x Joseph Pasquale

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
technical FROM 10 x January, 1987 x 11

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
@ UNCLASSIFIEDUNLIMITED €3 SAME AS RPT. ELDﬂC usErs | unclassified .
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Ares Code) [22¢c. OFFICE SYMBOL 1
1 DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

TS

P e " T A N TP T AT T e, N T L e e e - - -\ . . Ce e el L. L
£ R S i S R e R B A, G N I I A A N I R A T T T S L TS PRAL
h o) T WYy N

W W WU W YW e WS T R A T

Using Expert Systems to Manage Distributed Computer Systems

Joseph Pasquale

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract
v

Expert systems can be used effectively to manage distributed computer systems which are
based on decentralized control of shared resources. These distributed systems can exhibit
high reliability and performance. Yet, designing such systems pose formidable problems.
These problems involve real-time distributed decision-making where decision-makers do not
know with full certainty the state of remote nodes. We identify what characteristics an
intelligent decision-making agent must possess to successfully attack these problems, and
argue that expert systems share these characteristics. We also present the architecture of
an Expert Manager, an experimental system which uses expert system techniques to
manage a distributed computer system.

,\

Accesion For }
NTIS CRA&I)
a

DTIC TAB

tInannounced 0
J-.-tihication

b e— -.‘;_:....:.”__""..“_‘;
BY e
Diut 1ib:tion] '

b - - e

Availatulity Codes

Y

Avail) g/ Of {
Ll

{ |
I

Dist

A-/

This work was supported by an [.B M. Fellowship and by the Defense Advanced Research Projects Agency
(DoD), monitored by the Naval Electronics Systems Command under contract No. N00039-84-C-0089 The views
and conclusions contained in this document are those of the author and should not be interpreted as representing
official policies, either expressed or implied, of [.B.M., the Defense Research Projects Agency or of the US Govern-
ment.

O G e i A v

mmmmmm“m—'——

1. Introduction

A distributed computer system (or simply a distributed system) is a set of networked com-
puters which not only communicate with each other, but typically share resources and
sometimes work together to solve problems. Because they are comprised of multiple proces-
sors which are essentially compartmentalized, these systems can exhibit high performance
and reliability relative to a single computer of equivalent combined processing power.

We still have a great deal to learn about how to tap the potential speed and reliability of
distributed systems. One promising way is through decentralized control of shared
resources in the distributed system, where all computers take part in making decisions
about how resources should be allocated. Better performance is then realized by exploiting
parallelism in decision-making, and multiple loci of control provide redundancy for better
reliability.

Of course, decentralized control of resources in distributed systems poses formidable prob-
lems. Yet, we feel that these problems can be overcome through the use of expert system
techniques. We agree with Stankovic, who states that major breakthroughs to achieve the
full potential advantages of distributed computer systems "will necessarily use heuristics
similar to those found in ‘expert’ systems."” [1]

To illustrate the types of problems encountered in decentralized control, consider a society
of computers where control is fully decentralized. These computers are willing to share
resources and work together to solve problems. Specifically, consider what happens if one
of the computers in this society becomes overloaded with work, while others are lightly
loaded. It would be reasonable to offload some work to the lightly loaded computers. This
technique is commonly referred to as load balancing or luad leveling. Since there is no cen-
tral controller, the overloaded computer must know or determine who is lightly loaded.
Possible solutions to this state-distribution problem are: (1) to query other computers on
demand; (2) to keep track of lightly loaded computers by periodic querying; (3) for lightly
loaded computers to periodically broadcast to others the fact that they are lightly loaded.

The basic problem confronted by a computer in this society is that of not knowing the
current state of remote computers, or more generally, not knowing the current global state
of the distributed system. This same problem is even more pronounced in decentralized
dynamic message routing algorithms, where local decisions concerning where to forward a
message depend on knowledge of the state of remote nodes.

Each of the sample state-distribution methods presented above provides the overloaded
computer with state information about other lightly loaded computers, but with varying
degrees of delay, uncertainty and resource usage. The delay is the elapsed time between
the point of realizing a decision must be made and the point of actually having adequate
information to make that decision. Uncertainty arises in having to make decisions based
on information which is not timely and is possibly noisy. Finally, resource usage refers to
the cumulative effort and total resources required to communicate the state information. A
first step toward intelligent distributed decision-making is to quantify these three parame-
ters. A decision cost function may then be developed and evaluated for each potential
state-distribution algorithm. However, this is a sizable task since the parameters are
difficult to measure and are usually mutually dependent.

There is another basic problem which is more subtle than simply not knowing the current
state of the system. A set of local decisions, which individually optimize global system per-
formance, might be non-optimal when made jointly (i.e., at the same time). This is illus-
trated in the following example. Consider the society of computers mentioned above, except
that many computers (rather than simply one) are now overloaded. Let us assume that
they know exactly the instantaneous current load of remote computers, so that the problem
of not knowing the global system state mentioned above is not relevant. Since they all
know which remote computer is the least loaded, they might all decide to offload work to

.
T BRI . ANy ? RENL L LK EIC aw b L -

D SR AN OO NS e i, Wt L% A& AL AR R S

,,,,

the same remote computer, consequently overloading it. Thus, although each decision
when considered by itself is well founded, when considered together they produce bad
results. Solutions to this problem require some type of a priori cooperation between com-
puters on decisions.

The objective of this paper is to informally describe how expert system techniques can help
in addressing some of the problems raised. Section 2 will describe a model of a distributed
computer system providing context for the rest of the paper. Section 3 will present why
expert systems are relevant for managing distributed systems, section 4 will briefly
describe current work in building such an expert system, and section 5 will present conclu-
sions.

2. A Model of a Distributed System

The goal of this paper is to argue in an informal way how expert systems can be useful in
solving distributed systems resource management problems. For this purpose, we present a
simple, informai and qualitative model of a distributed system. The model implicitly
assumes decentralized control and a willingness for cooperation on the part of decision-
making entities. This allows us to focus on how to optimize performance purely through
intelligent decision-making and coordination.

A distributed computer system can be modeled as a network of managers and resources. A
manager receives computational requests from users, and then decides which resources
should be used for those computations. A resource is an object needed to support a compu-
tation. Resources accept requests from managers to do work and return results when the
work is done. Typically, many managers are simultaneously receiving requests for compu-
tations from users, and there ure many choices of resources which will support any particu-
lar computation.

At any point in time, a resource is in one of a finite number of configurations, or states.
The state of a resource is given by a vector describing muny of the resource’'s characteristics
(e.g., up/down, idle/busy, number of pending requests). Generally, the elements of this
state vector are measures which imply a cost or penalty for using the resource. For
instance, there would be a greater penalty associated with using a resource which is
currently very busy than with a resource which is not busy.

We call the set of states of all resources in the distributed system the global system state. It
would be highly desirable if all managers could know the global system state for all times.
Typically though, at any single point in time, a manager is only interested in the current
states of a subset of resources, specifically those that are eligible for the computation at
hand. This subset of current states is called the relevant global system state, and is nor-
mally different for each manager.

Our assumptions about the network are that it is connected (i.e., not partitioned), and that
there is a oon-trivial cost associated with communication (including the communication of
state information between resources and managers). These assumptions stress the impor-
tance of finding methods of decision-making and coordination which are based not solely on
communication, but on doing any possible local computations which decrease the need for
communication.

Given this model. the goal shared by all managers is to mutually decide on a set of
resources of minimal (or at least low) cost to support a set of requested computations, sub-
ject to the following considerations:

1. The states of resources (and therefore their costs) are constantly changing. The
minimal time to transmit state information from any resource to any manager is not
constrained to be less than the time between state changes.

—-“mmmmmm“mmmmmm“wxﬂ relTe e BT A e AT

2. There is an additional non-trivial cost incurred by a manager which is proportional to
the time and effort involved in simply making a decision.

3. Many managers may be making simultaneous decisions concerning the same
resources.

The crucial element of this model which makes the problem difficult is the need for making
decisions in real time which depend on information which is inherently uncertain to the
decision-maker. Our purpose is then to illustrate that mechanisms offered by expert sys-
tems can be very useful to attacking this problem. We will describe what these mechan-
isms are, and why they are useful.

e e TN TR T e

3. Characteristics of a Distributed Intelligent Resource Manager

Two basic problems in decentralized resource management were presented in section 1. Let
us summarize them.

1. A manager generally doés not know with complete certainty the global system state.
Knowing the global system state is relevant to making good decisions concerning the
allocation of resources.

T WL TR ¥ VW T e

2. Simultaneous decisions concerning the allocation of resources which individually
optimize (minimize) some cost function may not mutually be optimal.

Let us consider in a qualitative way the characteristics of mechanisms which are needed to
attack these problems. We list five properties these mechanisms should possess:

1. Ability to deal with uncertainty
Ability to react to changing situations

2
3. Capabilities {or interpretation and inference
4. Ability to collaborate and coordinate

5

High performance

One will find that expert systems have many of the properties listed above. We now discuss
each of these properties, und offer reasons for how expert systems might realize them.

3.1. Ability to Deal with Uncertainty

Given that a resource can change state faster than the time it takes to transmit state infor-
mation to managers, managers will always be somewhat uncertain about the states of
resources. This is a common characteristic of distributed systems management. Therefore,
it is important that managers be able to deal with uncertain information as an integral
part of their decision-making process. This means that a manager must be able to quantify
the degree to which it believes the information it uses in making decisions, and to consider
the consequences of its decisions as a function of the uncertainty of its information.
Specifically, it must consider the benefits derived from its decisions if the information used
is indeed true, and the penalties incurred if the information is false.

Expert systems have provided the context for much research in systems which must deal
with uncertain information. In fact, some of the earliest expert systems such as MYCIN (2]
made significant contributions in the use and expression of uncertainty. Although there is
still much to learn about dealing with uncertain information, there are many methods of
quantifying uncertainty, and of calculi for quantifying the combination of multiple sources
of uncertain information. Among these are Bayesian posterior probabilities (3], certainty
factors [4). fuzzy logic (5], the Dempster-Schafer theory of belief functions [6], and multi-
valued logics (7). Thus, expert systems research offers many mechanisms for expressing

g
f
J
L
1
[
!
,‘
A

m Y o™

'IIlll"'-l.‘l'.l““‘\"f)
(AL S S PO N NN S NN A Y, OO

TN A A LY RN} i PN s e p AR B Sy S YN,

and working with uncertain information.

3.2. Ability to React to Changing Situations

Given the dynamic nature of the distributed system model described, managers must be
able to constantly monitor the states of resources and react based on this changing informa-
tion. This form of control is commonly referred to as data-driven. Mechanisms are needed
to monitor resources, communicate monitored information, and then react based on received
information. Further, it is advantageous to find ways of inferring the changing state of
resources, rather than simply communicating it. Clearly, there will be a need for both
inference and communication.

Data-driven, or forward-chaining, control is common to many expert systems, which are
most often programmed using rule-based languages. A rule is simply a situation-action
pair; given the existence of the expressed situation, do the action. A program simply is a
set of declarative rules with no .explicit expression of control. Control is embodied in the
expert system’s inference engine, and can be either forward-chaining (data-driven) or
backward-chaining (goal-driven), or a mixture. In the context of trying to determine the
relevant global system state which is essentially a classification problem, we are most
interested in forward-chaining control. This is a simple form of control (relative to
backward-chaining) and can be programmed very efficiently. An efficient expert system
language based on forward-chaining control is OPS5 (8).

Although data-driven control provides the right mechanism for making a manager reactive
to changing situations, we do not mean to imply that goal-driven control is not desirable in
the context of managing distributed systems. Consider cases where a manager has many
different policies for different situations; goal-driven operation can be extremely useful.
For example, one might consider different message routing policies for different network
conditions (9]. To illustrate, a static routing policy which works fine for normal network
conditions would be useless if part of the network were to be suddenly destroyed. In this
situation, new routes would have to be found quickly, so a routing policy such as flooding
would be more appropriate. A set of distributed expert systems, upon recognition of the
new situation, would set out to find new routes as their new goal. Note that finding new
routes is an instance of the general decentralized control of resources problem we have been
considering all along.

3.3. Interpretive and Inferential Capabilities

It is not enough for a manager to simply react based on individual pieces of information. A
manager needs the capability for combining many pieces of low-level information to form
higher-level concepts, and react based on these concepts. This involves mechanisms for
interpreting low-level measurement data, taking into account its uncertainty, and incor-
porating the interpreted data into a manager's knowledge database. These same mechan-
isms can also be used to infer higher-level knowledge from the current available
knowledge. For example, a manager might infer that a resource is overloaded upon receiv-
ing low-level measurement data indicating the current number of pending requests. To
infer this, the manager would have to combine this measurement data with other informa-
tion indicating the resource’s average capacity for processing requests. One of the main
motivations behind using expert systems is in the power derived from combining of domain
knowledge and new information to make inferences.

Rule-based languages provide natural support for interpreting information and for express-
ing inferences. In fact, a rule which expresses "IF it is believed (with at least certainty C)
that situation S exists, THEN infer S’ with certainty C'," is exactly an inference. As chains
of inferences are built, high-level concepts are being derived from low-level ones.

\‘,:-}\

-\Q\' Y

" A o« .

“~ ,s._'...-.; N

SIS NY
AN

I TS g hg ath ot a'd a'd atd a't g’ « TSRS N AR AR RN\ PNV UTUTTTYVE YR PR ge g YV s AT FREAMRSE

3.4. Ability to Collaborate and Coordinate

To attack the problem of managers making decisions which mutually conflict. managers
must be able to collaborate with each other and coordinate their decisions. This implies
mechanisms for communication and a common language to describe current knowledge,
goals and plans. To constrict the problem space to a manageable level, and to avoid large
amounts of communication, it is reasonable that managers make long-term decisions on
goals and policies, and agree on a number of plans or strategies for accomplishing these
goals and for implementing the policies. Managers could also exchange abstract models of
their decision-making processes to be used to predict each others decisions [10] {11]. By
abstract models, we mean that exchanged models are simplified and retain only major dis-
tinctions between possible decisions in the way they conflict. This is to restrict the number
of possible decisions to take into account.

An important special case arises where all managers share the same decision-making algo-
rithm, as would be reasonable in decentralized resource control in a real distributed system.
Specifically, for a given knowledge base, input (request for computations), and location in
the distributed system, this algorithm produces a unique decision concerning the allocation
of resources. Now, managers would not need explicit models of each other to predict each
others actions. They need only consider what they themselves would do if they were at the
other managers’ locations. The problem is now reduced to a simpler, yet still difficult, prob-
lem of knowing what is in each others knowledge bases and inputs. Although it is difficult
to predict inputs since these are determined by the actions of users, knowing what is in
each others knowledge bases becomes a problem of arriving at a mutually consistent view
of the global system state.

Research in team decision theory has contributed many ideas in the areas of multiple agent
cooperation [12] [13], as has the field of distributed artificial intelligence (DAI). An early
Al. experiment in cooperative problem-solving system which emphasized dealing with
distribution-caused uncertainty was done by Lesser and Erman in building a distributed
version of the Hearsay-II speech understanding system [14].

3.5. High Performance

Since managers must make time-critical decisions, performance is an important issue. This
requirement precludes using current algorithms which use linear programming techniques
to optimally schedule a set of resources for a set of tasks. These algorithms involve gather-
ing all information at a central processor, computing the optimal allocation, and then send-
ing out instructions to carry out the work. Unfortunately, this method usually takes too
long, and further uses centralized control which we have ruled out for reasons given in sec-
tion 1.

Our goal is to develop mechanisms for making the best decisions in a restricted amount of
time and in a decentralized manner. As already mentioned. to make good decisions a
manager must have an accurate view of the global system state, hopefully a view con-
sistent with other managers. The problem then is to converge on a correct view and then to
make a decision, as quickly as possible, on how to allocate resources. We concentrate on
how to quickly converge on a correct view of the global system state.

To achieve this goal, we propose the hypothesize-and-test problem-solving paradigm. Upon
a manager's reception of new measurement data from remote resources, multiple
hypotheses are generated which to varying degrees of certainty explain the data. Onune
might see this as extending paths in the search space of possible global system states.
Since performance is crucial to the success of a manager's decisions, the manager takes an
active part in pruning this extended search space by testing hypotheses through expen-
ments. For example, to test the hypothesis that a resource is not functional, a simple

" LY T TR S TS N e e
* ".'u \'.\’:i:\ '\.' B N ':' - ’f‘p : ‘..V~ .' \' .\} .-‘.h *\.\.\.:\.* \ \ \J\ \\\ ‘

p tos Pl

.« w

experiment would be to send a request which causes the resource to reply promptly. This is
commonly referred to as probing. If a reply is returned, the hypothesis can quickly be
rejected.

Thus, high performance is gained by extending the search space using a highly efficient
form of control, namely forward-chaining, and by taking an active part in pruning the
search space of global system states. Note that we expect managers to decide on policies,
and rely on services provided by an operating system, for instance, to carry out these poli-
cies (i.e., implement the mechanism). Consequently, this consideration of high performance
is in the context of policy decision-making.

4. Architecture of an Expert Manager

We now describe an architecture for an Expert Manager. In our implementation, every
decision-making node in the distributed system has an instance of an Expert Manager. At
this early point in our research, we are concentrating most on resolving the problem of
inferring the relevant global system state given partial and uncertain state information.
Consequently, the goal of this architecture is to provide a framework for determining the
global system state based on partial information. It also provides for active feedback,
allowing actions to take place based on the perceived global system state.

Network

Figure 1

Figure 1 shows the modules making up an Expert Manager. The basic flow of information
occurs as follows. There are four basic modules: Sensory Input Interpreter, Hypotheses
Generator, Beliefs Manager, and Action Generator. Other modules will be discussed later.

mmmmwmmxmwmmmwwwmww‘wm —

Monitored state information is received by the Sensory Input Interpreter, which tries to
makes sense of this uncertain raw sensory data. This may cause a number of hypotheses to
be generated by the Hypotheses Generator, which try to explain the received information.
If there is substantial evidence to support a hypothesis, it becomes a belief (or fact as far as
the Expert Manager is concerned), to be managed by the Beliefs Manager. The Action
Generator will take action if there are beliefs indicating the system is in a bad or undesir-
able state and it is known how to get back to a more desirable state.

There are three auxiliary modules: the Experiment Generator, Learner, and Critic. The
Experiment Generator will start an experiment if there are competing hypotheses which
require further evidence. The Learner allows for rudimentary learning by observing past
trends. Finally, the Critic notes the actions of the Action Generator, monitors the effects,
and then makes determinations as to whether the action was beneficial or not.

We now describe in more detail the function of each module.

4.1. The Sensory Input Interpreter

Data received over the network from remote sources is first read by the Sensory Input Inter-
preter (SII). The data is a set of measurements made at a resource which make up part or
all of the relevant aspects of the resource’s state. For example, for a resource such as a com-
pute server, these measurements might include lengths of CPU process and IO queues, and
amount of free primary memory. For each measurement, two statistics are maintained: an
average and a measure of variability, both weighted toward recent measurements. Finally,
all measurements are time-stamped as to when the measurement took place.

The SII's primary task is to make a judgement as to how believable this information is by
giving it an initial belief factor (BF), a number between 0 and 1 similar to a probability.
This initial BF is a function of three variables: (1) the difference between the measurement
and its predicted value, which is based on an extrapolation from the past history of meas-
urements; (2} how cld the measurement is; (3) the potential variability of the measurement.

A BF of a measurement will then decay in time, and the rate of decay is proportional to the
variability of the measurement. We may think of the BF of a measurement as an indica-
tion of how useful that measurement is. The older a measurement is, the less useful it is.
Moreover, the usefulness of a measurement which has a history of high variability
degrades more rapidly than a measurement which has a history of low variability.

In summary, the Sensory Input Interpreter maintains a database of remote measurements,
and assigns a Belief Factor BF to each measurement which changes in time based on age
and variability.

4.2. The Hypotheses Generator

The Hypotheses Generator (HG) continually monitors the SII database and generates
hypotheses which try to explain the measurements received (or why no measurements have
been received for a period of time). These hypotheses are programmed using a rule-based
language. The antecedent of a rule expresses what conditions need to be present for the
rule to "fire." This would be a list of ranges for measurements, along with ranges for BFs,
which must match the SII database. The consequent of a rule expresses either a single
hypothesis or a set of competing hypotheses which explain the conditions of the antecedent.
Hypotheses are also given BFs which are a measure of how much evidence supports them.
These BFs also change in time based on new evidence or lack of evidence.

When a hypothesis's BF falls below a certain threshold, that hypothesis gets removed from
the HG's database of current hypotheses. When a hypothesis’s BF goes above a certain
threshold, that hypothesis becomes eligible to become a belief. These low and high

PMOIRET R &SNP NIl)

A el sy

thresholds are functions of the BF's of competing hypotheses. For example, the low thres-
hold might be .2 plus or minus a quantity which depends on whether there are other com-
peting hypotheses with very high or very low BFs. High thresholds work in a similar way
using a base value of .8.

4.3. The Experiment Generator

The Experiment Generator (EG) simply tries to speed up the operation of converging on a
single hypothesis whenever competing hypotheses exist. It is programmed using a rule-
based language, where rule antecedents contain hypotheses, and the consequents contain
actions. These actions are processes which get activated to perform experiments. Such
experiments will produce evidence to confirm or reject the various competing hypotheses.
For example, if there are two competing hypotheses, one stating that a resource is over-
loaded and another stating that the resource is down, an experiment might simply involve
sending the resource a high-priority message asking for immediate response. If an response
is received, the second hypothesis can euasily be rejected. If no answer is received, both
hypotheses must be entertained until other evidence arrives.

4.4. The Beliefs Manager

The Beliefs Manager (BM) maintains the database of what the Expert Manager believes to
be true (i.e., facts). Specifically, the beliefs maintained by the BM express what the Expert
Manager thinks the global system state is. Examples of beliefs would be what the connec-
tivity graph of the network is, what the load of various resources are, or whether they are
not operational or not. Different beliefs are expressed in different languages. depending on
what is most natural. A number of different knowledge representations. such as simple
lists, frames, networks, matrices, are currently recognized. Each belief is tagged with the
type of representation language in which it is expressed. Thus, any module making use of
the BM’s database can understand a belief by inspecting the language representation type.

Beliefs are generated whenever the belief factor of a hypothesis reaches above some thres-
hold. Note that this might cause a belief to be replaced if the hypothesis contradicts it.
Beliefs are also generated through a learning mechanism, to be discussed later.

We are still working on finding a small but rich set of knowledge representation languages
which express beliefs in the domain of distributed computer systems.

4.5. The Action Generator

The Action Generator (AG) is the module which provides feedback to the distributed sys-
tem. The AG, like the Hypothesis Generator, contains rules. The antecedent of its rules
expresses a set of beliefs, and the consequent expresses an action. If the set of beliefs are
found in the belief database, the rule fires, causing the action to take place. The action will
be the name of a process which gets activated when the rule fires. Processes used to carry
out actions have a standard interface. This interface includes a way to start the process,
stop it, and find out its status. In fact, an action will express the name of a process and
which of these three functions to do.

The purpose of the AG is to notice that some aspect of the distributed system is not work-
ing correctly, and to take active measures to correct the problem. For example, the AG
might notice that the load on the node on which it resides is too high, and may activate a
process to offload work onto other nodes. Or, the AG might notice that a neighbor node is
overloaded from metwork traffic. It would then activate a process which tells other nodes to
route messages around the overloaded node.

Atata & A N.EE S L

Y Ca g s o * e e 0 . P YU S S I) ~.-..-*~'-..-*-.-{- .*’f-f o
- O A GRS S Loty “ el Y

'h-r' g':-.':v: - 'n's »

SETTRAIATRTATRARS

4.8. The Critic

The Critic tries to hold the Action Generator accountable for its actions. It essentially takes
note whenever a rule belonging to the Action Generator fires, and then monitors its effects
by getting information from the Sensory Input Interpreter’s database. Rules can then be
graded on how beneficial their effects are. and how quickly they take place

Implementing the Critic turns out to be difficult because it must somehow correlate actions
with effects which take place possibly much later in time. This is commonly called the
Assignment of Credit problem [15]. This remains an area of active research for us.

4.7. The Learner

The Expert Manager needs a mechanism whereby general learning or discovery of new
facts can take place. At this time, we are experimenting with a very particular learning
function. This involves the discovery of conditions which lead to bad states. The Learner is
given knowledge of what good states are and what bad states are, each expressed as a set of
beliefs. For example, a bad state would be simply the belief that the local node is over-
loaded. The Learner keeps a small and constantly updated history of measurements
relevant to the bad states it was told about. When one of these bad states actually occurs,
the Learner stores a snapshot of the current history. Given that these bad states occur
many times and the Learner eventually acquires many snapshots, it looks for conditions
which always exist before the bad state occurs. These are very useful discoveries to make,

3 since beliefs are then generated which express conditions which potentially lead to bad

b states. The Action Generator can then be programmed to take evasive action when these
conditions exist, thus avoiding bad states.

5. Conclusions

The potential gain in performance and reliability of distributed systems is yet to be real-
ized. We believe that management of resources based on decentralized control is the right
path to achieving this potential. Through the use of expert system techniques, specifically

{1) the ability to deal with the uncertainty of remote measurements as an integral part of
problem-solving,

12) the ability to infer high-level concepts such as hypotheses and beliefs from low-level
measurement data, and

(3) the ability to converge quickly on views of the global system state by using. a
hypothesize-and-test paradigm,

we believe the formidable problems posed by real-time distributed decision-making can be
overcome.

6. Acknowledgements

I would like to thank my advisor Professor Domenico Ferrari for his ideas and suggestions.
His constant encouragement and valuable advice have made this project possible. I would
also like to thank Barbara Bittel for reading and making suggestions on earlier versions of
this paper. Finally, I thank Professor Lotfi Zadeh and the speakers of his weekly Expert
Systems seminar for many thought-provoking discussions.

\
b
b
J
Y

. . ettt ettt A" T R
NS SN AN LU L Ui VR ARy . . IS CR RN SLhCS

BT RO AN AT I N . L :
o w T T N -;‘;‘-;{n"_nf'.p T PP AR PR X A AT AT)

AR . . . a8z 8 e # s B'a 802 ATe 0V ata pha’als AL AT.'nlL at. 24" n 4 tag lag't [RWS el e g e al gt bt

7. Refersnces

1. Stankovic, J.A., Distributed Computer Systems, IEEE Transactions on Computers, C-
33:12 (1984) p. 1113.

2. Shortliffe, E.H., Computer-based medical consultation: MYCIN, American Elsevier, New
York, 1976.

3. Pearl, J., On Evidential Reasoning in a Hierarchy of Hypothesis, Artificial Intelligence
Journal, 28:1 (1986) pp. 9-16.

4. Shortliffe, E.H. and Buchanan, B.G., A model of inexact reasoning in medicine,
Mathematical Biosciences, 23 (1975) pp. 351-379.

5. Zadeh, L.A., The role of fuzzy logic in the management of uncertainty in expert systems,
Fuzzy Sets and Systems, 11 (1983), pp. 199-227.

6. Shafer, G., A Mathematical Theory of Evidence, Princeton University Press, 1976.

7. Gaines, B.R., Fuzzy and probability uncertainty logics, Information and Control, 38
(1978), pp. 154-169.

8. Brownston, L. et al.,, Programming Expert Systems in OPS5, Addison-Wesley. Reading
MA, 1985.

) 9. Tanenbaum, A.S., Computer Networks, Prentice Hall, New Jersey, 1981.

10. Tenney, R.R. and Sandell, N.R., Structures for distributed decisionmaking, /[EEE Tran-
sactions on Systems, Man, and Cybernetics, SMC-11:8, (1981 pp. 517-527.

11. Tenney, R.R. and Sandell, N.R., Strategies for distributed decisionmaking, I[EEE Tran-
sactions on Systems, Man, and Cybernetics, SMC-11:3, 11981) pp. 527-538.

12. Ho, Y., Team Decision Theory and Information Structures, Proceedings of the IEEE,
68:6, 11980) pp. 644-654.

13. Tenney, R.R. and Sandell, N.R., Detection with Distributed Sensors, IEEE Transactions
on Aerospace and Electronic Systems, AES-17:4, 11981) pp. 501-510.

14. Lesser, V.R. and Erman, L.D., Distributed Interpretation: A Model and Experiment,
IEEE Transactions on Computers, C-29:12, (1980) pp. 1144-1162.

15. Minsky, M., Steps Toward Artificial Intelligence, in Computers and Thought, E.A.
Feigenbaum and J. Feldman, eds., McGraw-Hill, New York, 1963, pp. 406-450.

Y . X ¢ AT AT A AT T AT AT o T a ® a P a® ¥ a? o . e, Tt PR . P
.v"‘t"a"'ﬂ O, .’. “.q..."“" " "\(. l‘._.‘ ' » NS SRS ~ CATRTUIC N .\\ ».' ALNLAS '. AR SO WA SN s‘\{: (%

MO0 KL 458, AN AN A RS AXAN) m&m

