

Before first call: Before later calls:
call lookup call address of method
address of selector dass of receiver

Figure 1: In-line caching in SOAR: sender.

loadc (r14)classOffset,r6 ; Fetch class of receiver into r6
%load (r15)0,r5 ; Load class of last receiver
%trap3 ne, r5,r6 ; Trap if classes not equal

Figure 2: In-line caching in SOAR: called method's prologue.

is compiled into an integer addition. The tags on SOAR values distinguish
integers from pointers, and the hardware checks that the operands of an
addition are, in fact, integers, causing a trap if they are not.

For a send involving an ordinary operator (or selector, to use the Small-
talk term), the compiler produces the following two-word sequence shown
on the left of Figure 2. When this is executed, the routine lookup determines
the address of the code for the appropriate method, which depends on the
selector and the class of the first operand (the receiver). It gets the selector
from the return address of the call, and the receiver from its standard
location in register 6. As a side-effect, it changes the initial sequence to the
following. Subsequent executions of this code, therefore, go directly to the
method found on the previous encounter.

Of course, should the call turn out to be used polymorphically, the above
scheme alone will cause erroneous results on subsequent executions of the
call. Therefore, the sendee verifies each cached send with the prologue
shown in Figure 2. If the trap is taken, the trap handler can interpolate a
call to lookup, fetching the necessary selector from a known location relative
to the trap instruction (just before the 'loadc' instruction 2).

SOAR handles sends to the superclass differently. However, since these
are quite rare, they can be ignored for the purposes of this paper.

The code sequences above yield an overhead of 8 machine cycles for a
send and matching return (1 for the call itself, 2 for the return, 2 for each

2'Loadc' is a special "load class" instruction whose purpose is to catch the case where
the receiver is an integer, and therefore does not have its class within it. I will ignore this
issue for the purposes of this paper.

3

V W

load, and 1 for the trap), assuming that the cache hits. Ungar's figures
[7] indicate that roughly 8% of execution time is spent in the prologue
alone in the larger standard Smalltalk-80 benchmarks. The figure is 22%
if we restrict measurement to user code-code generated by the compiler,
as opposed to runtime support routines. His figures imply that if the costs
of the call and return are included, the total minimum call overhead on
cached methods amounts to 13% of execution time, or 35%, considering
just user code.

3 Effects of Possible Changes to the SOAR
Architecture

One could imagine trying to improve SOAR's call overhead using various
schemes for bundling the entire call sequence and method prologue into a
single complex call instruction. However, this approach would drastically
change the flavor of the architecture. In this section, I'll consider changes
that maintain the "RISCness" of SOAR. SOAR follows the RISC philoso-
phy in that it has a simple, microcode-like instruction set and its support
of high-level languages consists only of providing a variety of simple tag
checks that can be performed in parallel with other operations.

First, consider the possibility of changing the representation of the in-
line cache to put checking at the call site. To do so, we first change the
representation of an object's class in its header to be an integer index
into a class table. The sole purpose of this change is to make it feasible
to represent a class in the immediate field of a RISC instruction. Figure 3
shows possible new before-and-after call sequences. Here, the previous class
for each call is stored in the instruction that tests that the class has not
changed. This saves two cycles per dynamic call, at the cost of increasing
the size of each call by 50%. However, Ungar's data indicates that the
resulting change in image size would be small.

When the cache misses and the trap is taken, the trap handler can find
the selector to use for the look up operation by following the call to its
destination. As before, the selector can be stored in the word preceding the
call target.

There is a slight awkwardness imposed by this scheme. SOAR imme-

4

.€ , ,. - ,-. .,-.: ,,. ..,,-. ,-. ,- ,-. ,.. .- ,-.- ..- .. -.....-.........-............ ,.......-......-...-

Before first call: Before later calls:
call lookup loadc (r6)classOffset,rt
address of selector %trap3 ne,r6,previous class
nop call address of method

Figure 3: An alternative in-line caching technique.

Before first call: Before later calls:
call lookup tagtrap ne,r6,previous class
address of selector call address of method

Figure 4: In-line caching with bigger tags.

diates are 12 bits long, which might seem to accomodate a moderately
generous 4096 classes. However, the upper 4 bits of the immediate go to
specifying the tag. If one is willing to tolerate an odd encoding for the class
index (in which the upper 4 bits and lower 8 bits are significant) this need
not matter. The major impact occurs when one must find the actual class
object. An alternative is to change the SOAR architecture so to eliminate
tagged immediates. Ungar suggests that this would slow SOAR down by
10%, but it is not clear that he considered all possible work-arounds, such
as keeping the common immediates like nil in global registers.

It is more interesting to consider a more radical change. In the SPUR
system [3], the 8-bit tags are not part of the 32 bit data portion of a word,
so that an entire word is 40 bits long. Tags serve essentially the same
purpose as in SOAR-that of allowing easy checks of data types. However,
they can carry 6 bits of type information. Suppose that we extend the type
information to 14 bits 3 and carry a type index with every object. Now a
call may be implemented as shown in Figure 3. Here, the checking overhead

for a cached call has been reduced to a single cycle. The new instruction
'tagtrap' compares an immediate field against the tag part of a register.

3 1n fact, the current implementation of SPUR actually uses an entire 64-bit word to

carry 40 bits. This, however, was purely a matter of expedience in the development of a
first implementation of the architecture.

5

WWI I- min N WWIZU S

4 Dynamic Open Coding

At this point, we have eliminated all but 1 cycle of the checking overhead for
cached calls. This still leaves the overhead of the bare call-return sequence
itself. This overhead would be inconsequential if it were not for the tendency
for Smalltalk code to contain many sends.

A traditional way of dealing with the overhead of calls to small proce-
dures is to open-code these procedures, placing a copy of the body of the
procedure, suitably modified, at the call site. With suitable care, the same
strategy may be adopted in SOAR, but with the expansion taking place at
execution time.

Some obvious candidates for this strategy are the "pseudo-primitive"
methods. In the standard Smalltalk-80 virtual machine, these are methods
whose bodies are encoded in their headers, and which do nothing but return
the receiver or return an instance variable. In each of these cases, the body
of the method, exclusive of call and return, consists of a single SOAR
instruction. Consider the right-hand code sequence in Figure 3. Instead
of a call, the routine lookup can insert the actual single instruction to
be executed (suitably modified to account for being used in the sender's
context.) The compiler would recognize cases where this is possible and
indicate to lookup that the substitution is desired by a suitable flag in the
method. The resulting call overhead would then be a single cycle.

This approach complicates the handling of cache misses, since the ad-
dress of the method is no longer immediately available at the call site.
One solution is to provide a separate data structure in which to store a
mapping of call sites to method selectors. The effect of this on the time
required to handle cache misses is uncertain, since it depends on how often
such pseudo-primitive sends are polymorphic.

Pseudo-primitive methods are not the only ones that might benefit from
open codings. Any method whose body, exclusive of calls and returns,
consists of a single instruction might be handled by the same technique,
assuming the compiler determines this to be safe. Certain chains of calls,
in which the body of the called method consists of a send to the receiver of
the same arguments in the same order, may be eliminated by this technique.

6]
Id

5 Discussion

The purpose of the above exercise was to explore some architectural al-
ternatives to compile-time type inference and user type declarations. By
reducing the overhead of a non-polymorphic call from 8 cycles to 4 cycles,
we reduce the total time spent in the check-call-return sequence from 13%
of total execution time to 7.5%, and from 35% of execution time for user
code to 17.5%. About 33% of all sends in SOAR (D'Ambrosio) are pseudo-
primitive, and for these, at least, we can reduce the overhead to a single
cycle.

This is not to say that compile-time type analysis along the lines of the
Classy system [4] is unnecessary. Open coding a call realizes only part of the
possible optimization of that call. Constant folding, register allocation, and
other classical techniques can in some cases squeeze a great deal more speed
out of a program. Rather, I have tried to show that there are substantial
gains to be made by relatively straightforward modifications to the SOAR
architecture.

6 Acknowledgement

This research was sponsored by the Defense Advanced Projects Agency
(DoD), Arpa Order No. 4871, monitored by Space and Naval Warfare
Systems Command under Contract N00039-84-C-0089.

References

[1] Robert G. Atkinson. Hurricane: an optimizing compier for smalltalk.
In OOPSLA '86 Conference Proceedings, pages 151-158, Association for
Computing Machinery, September 1986. Also published as SIGPLAN
Notices, volume 21, number 11 (Nov., 1986).

[2] Bruce D'Ambrosio. Smalltalk-80 language measurements: dynamic use
of compiled methods. In David A. Patterson, editor, Smalltalk on a
RISC: Architectural Investigations, pages 110-125, University of Cali-
fornia, Berkeley, 1983. Berkeley technical report.

7

[3] Mark D. Hill, Susan J. Eggers, James R. Larus, and George S. Taylor,
et al. SPUR: a VLSI multiprocessor workstation. IEEE Computer,
19(11):8-24, November 1986.

[4] James Larus and William Bush. Classy: a method for efficiently com-
piling smalltalk. In David A. Patterson, editor, Smalltalk on a RISC:
Architectural Investigations, pages 186-202, University of California,
Berkeley, 1983. Berkeley technical report.

[5] A. Dain Samples, Michael Klein, and Peter Foley. SOAR Architecture.
Technical Report UCB/CS/85/226, University of California, Berkeley,
Computer Science Division, March 1985.

[6] Norihisa Suzuki and Minoru Terada. Creating efficient systems for
object-oriented languages. In Conference Record of the Eleventh Annual
A CM Symposium on Principles of Programming Languages, pages 290-
296, Association for Computing Machinery, January 1984.

[7] David M. Ungar. The Design and Evaluation of a High Performance
Smalltalk System. PhD thesis, University of California, Berkeley, 1986.
Issued as technical report UCB/CSD 86/287.

81

7

.o o ., .-- , - . .. o , . .. M s - / T 7/ .s
STURITY CLASSIFICATION OF TlAI

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassifled
2s. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION I AVAJLABIUTY OF REPORT

unlmited

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

Be. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Regents of the Unverst (N oR ab) SAA

of California SPAWAR

6c. ADDRESS (Cit), State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Berkeley, California 94720 Space and Naval Warfare Systems Command
Washington, DC 20363-5100

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (7f applicable)
DARPA I

BS. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Improved RISC Support for the Salltalk-80 Language
.*
12. PERSONAL AUTHOR(S) Paul N. Hilfinger

Tb. TIME COVERED 14. DATE OF REPORT (Yea,, Month Day) 15. PAGE COUNT
13. TYPE OF REPORT - TI O EE TOT 3/16487*
technical FROM TO*

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP j SUB-GROUP

"9. ABSTRACT (Coninue on reverse if necessary and identify by block number)

Enclosed in paper.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CIASSIFICATION
UUNCLASSIFIEDUNLIMITED 0 SAME AS RPT. DDTIC USERS unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

D FORM 1473, e MA 53 APR editon may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

%V

