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1 Introduction

CURARE is a program that transforms Lisp programs into equivalent programs that take ad-
vantage of the concurrency available on multiprocessors by executing some portion of their
tasks in parallel. The resulting programs contain synchronization constructs sufficient to
produce correct and deterministic results and to create a workload appropriate to the paral-
lelism of a target machine. This paper describes CURARE'S underlying assumptions and its
algorithms.

CU RARE addresses the problem of effectively and efficiently programming shared-memory
multiprocessors with the programming language Lisp. Currently, there are a variety of shared-
memory multiprocessors, such as SPUR [12], Butterfly, Sequent, and others, but few non-
trivial uses of their potential parallelism exist. In addition, most research on programming
multiprocessors has concentrated on solving numeric programs written in FORTRAN 12,16,
17].

Lisp, because of its flexible control and data-structures, is typically used for symbolic,
not numeric, computation such as in artificial intelligence or compiler writing. The flexibility
and generality of Lisp, which are its strengths in these applications, impose serious limits on
the program analysis necessary to restructure programs automatically. Lisp's three major
impediments are its ubiquitous pointers, its side-effects, and its flexible control-structures, all
of which make the techniques applied to FORTRAN programs unsuitable for Lisp programs.

CURARE cannot avoid these problems, but it attempts to solve them by concentrating its
efforts on restructuring a single program feature-recursive function calls-and by accepting
programmer-supplied declarations in place of information that is impossible to collect me-
chanically. CURARE'S goal is to restructure Lisp programs that use only the common features
of the language to improve their execution speed and ensure their correct concurrent execu-
tion. Although its final product may not match the speed of a hand-crafted multiprocessor
program, the average quality of its product should be better than an average programmer's
attempts at programming a multiprocessor.

1.1 Why Lisp?

Why use Lisp instead of an existing programming language or a language invented for pro-
gramming multiprocessors?

Lisp has several advantages over existing languages. First, it is widely used so that many
programmers are familiar with it and many programs have been and are being written in it.
For these reasons among others, various groups are investigating and implementing Lisp on
diverse multiprocessors [8,10,11]. These systems provide a variety of environments for testing
CURARE. Second, Lisp is a flexible language whose syntax and semantics is easily extended
for experiments. Few other languages can be transformed and manipulated as easily as Lisp.
Finally, Lisp has the serious impediments mentioned above. Pointer-manipulating program
are difficult to restructure, but are common in non-numeric applications so that some method
of mechanically preparing them for concurrent execution is desirable. Lisp pointers are well-
suited to this experiment since they are better behaved than pointers in other languages that



allow arbitrary computations on pointer values.
Lisp is also preferable to a new multiprocessor language for several reasons. First, it

allows existing programs to be used without rewriting them in a new and uncommon language.
Programs can also be developed and debugged in the simpler and more hospitable uniprocessor
environments for which Lisp is famous. Second, developing a new language is difficult without
programming experience in its application domain. Multiprocessors are too new to have such
a body of experience. CURARE'S approach of extending an existing language with declarations
will illuminate the areas in which Lisp and similar languages need to adapt to multiprocessors.
Finally, programming languages must balance the degree of control given a programmer
against the portability of the resulting programs. It is always tempting to provide imperative
features that correspond to the architecture of a particular machine or group of machines,
but fit poorly into the design of other computers. CURARE's declarative approach limits this
temptation by having the programmer supply advice rather than describe the details of a
computation.

1.2 Typical Multiprocessor Lisp System

The techniques described in this paper are intended to transform programs for execution on
small-to-medium sized, shared-memory multiprocessors. A small-to-medium multiprocessor
has roughly 5 to 100 autonomous processing units, each of which is capable of executing Lisp
functions. We limit the size of the target computer because CURARE is unlikely to produce
programs that can effectively keep more than 100 or so processors busy. Furthermore, very
large numbers of processors may require different programming paradigms, such as the data-
parallelism advocated for the Connection Machine [13).

Each processor must be an autonomous unit capable of executing Lisp functions within a
single shared Lisp address space (Figure 1). The Lisp system has multiple, concurrent threads
of control. A Lisp process can access any data within the system, except for a small amount
that may be kept private to a process. The system does not mediate access to shared data;
programs must, therefore, synchronize explicitly.

This model is a simple generalization of existing uniprocessor, multiprocess Lisp systems
[1] and the multiprocessor Lisp systems mentioned above. The model allows us to separate
the details of CURARE from the language extensions and hardware features embodied in these
systems.

Finally, we also assume that Lisp process creation, deletion, and context-switching are
noticeably more expensive than function invocation. In addition, this imbalance will persist
for several reasons. First, processes are larger program units than functions and as such
have more state, such as scheduling information. Maintaining this information has a cost in
execution time. Second, as long as function calls are more frequent than context switches, it
would be inappropriate to make the latter less costly at the expense of the former. This is
not an argument against reducing the cost of processes. However, programmers and program
transformation systems cannot treat processes as a free and infinite resource (cf. Halstead's
Multilisp, [10]).
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Figure 1: A prototypical multiprocessor Lisp system executes processes within a shared address space

containing programs and data. The processes are autonomous and concurrent, although the system may

contain more processes than processors, thereby requiring multiprogramming.

1.3 Overview of Technique

This section contains a descriptive overview of the techniques used by CURARE. The details,
which are elaborated in later sections, will be more understandable if seen in the context
presented below.

CURARE takes advantage of a multiprocessor's parallelism by transforming Lisp programs
so that the multiple invocations of a recursive function execute concurrently. Two invocations
are concurrent if part of invocation i executes at the same time as part of invocation j.
This model is called Concurrent Recursive Invocations (CRI). We concentrate on recursive
functions for several reasons. First, recursive functions are a more general class of control-
structure than the explicit loops used in other investigations of parallelism. Any loop can be
easily transformed into a recursive function, but the converse is not true because recursive
functions have state that requires additional, explicit data-structures. Second, a recursive
function delimits a discrete, repeatedly-executed task. Each invocation applies the body of
the function to a portion of the data. Finally, a function's body is a partially-closed scope
with a well-defined set of imported entities. There are fewer and simpler relationships between
invocations of a function than between arbitrary pieces of code.

Two relationships between objects in a program prevent its correct, concurrent execution.
The first relationship is control dependency, which occurs when the execution of a piece of code
is contingent on the result of another piece of code. For example, both arms of a conditional
statement are control dependent on the predicate of the statement. Control dependencies are
easily detected and represented [9] and will not be discussed in detail.

3
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The other relationship is data-dependency, which occurs when statement A writes a loca-
tion subsequently read or written by statement B. Reversing the execution order of A and
B may change their results. For example, consider the statements X 4- 1 and Y 4- X. If X's
initial value is not 1, then Y's final value depends on the order of execution of the statements.
Statements A and B also are said to conflict over their use of X's memory location.

The three possible types of data-dependency have been given names:

* Flow Dependency: A writes a location that B reads.

e Antidependency: A reads a location that B writes.

e Output Dependency: A writes a location that B also writes.

Non-atomic operations complicate detecting data-dependencies. Intermingling pieces of
non-atomic operations can totally change their results.

Some data-dependencies, such as the modification of a variable, are easy to detect. Others,
such as the modification of a cell in a list structure, are much more difficult to find. In either
case, to execute a program concurrently, we must transform it so that conflicts cannot affect
the final result of its execution.

This paper discusses three such transformations. The first requires the use of lock and
unlock primitives to synchronize access to shared-locations. Locks are expensive, but are
always able to order accesses. The next technique rewrites a function's body to delay subse-
quent, conflicting invocations until after the execution of operations that conflict with them.
This approach may be less expensive than locking, but will not not work for all recursive
functions. The final approach is still less general and costly. In some circumstances, the
order of operations does not affect their final result, in which case constraints arising from
data-dependencies do not exist.

User-supplied declarations are an important aspect of conflict-detection and program-
transformation. Without declarations, a system such as CURARE must use the most conser-
vative assumptions about any relationship it cannot deduce. In particular, CURARE would
have to assume the worst possible aliasing between input parameters, which would prevent
any possibility of concurrent execution. Also, deducing that the semantics of operations
permits their reordering is impossible in general. However, such information is frequently ob-
vious to a programmer, who could thus supply the information necessary to produce efficient
multiprocessor programs.

1.4 Overview of Paper

The rest of this paper describes the algorithms used by CURARE. Section 2 describes the
techniques used to detect conflicts in memory-resident structures. Section 3 discusses the
semantics of concurrent execution and three ways of ensuring its correctness. Section 4
describes the execution model. Section 5 discusses ways to expand the class of functions that
CURARE can transform.
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2 Conflicts in Memory-Resident Structures

The locus of a memory conflict, which itself is the cause of a data-dependency, is either a
program variable or a location in a memory-resident object. Conflicts among uses of variables
are easily detected in most cases. Only the most general features of Lisp, such as the set
and oval functions, frustrate this analysis. However, these features are infrequently used in
most programs, therefore, a program analyzer can reasonably assume the worst about their
side-effects.

The FORTRAN-restructuring literature contains an extensive discussion of the techniques
for detecting conflicts among accesses to arrays (for example, the work done at Rice, IBM, and
the University of Illinois, [2,5,24]). The techniques developed for FORTRAN can be applied
to Lisp arrays also. The major difference between the two types of arrays are that Lisp arrays
can contain pointers but FORTRAN arrays contain only numbers. In addition, FORTIL4.N
programs rarely use double indirect array references, such as A [A [I] ], that simulate pointers.'
Pointers can cause two apparently distinct array references to lead to a conflicting memory
location. This problem with pointers is discussed in detail below. The results from that
discussion can be applied to arrays as well, thereby enabling the use of FORTRAN conflict
detection techniques for Lisp arrays.

The rest of this section discusses detecting conflicts among references to a third type of
object-memory-resident data-structures. These objects are a contiguous block of memory
with named fields, for example list-cells or structures produced by defstruct. These objects
frequently contain pointers linking them into arbitrary graphs.

Detecting conflicts in programs that manipulate arbitrary graphs is impossible in general.
Any two references into the graph can lead to the same location. Instead, we hope to identify
a class of structures for which a simple program analysis can indicate the absence of conflicts
and to provide a way for a programmer to label objects belonging to this group.

2.1 Conflicts Among Structures

A data-structure is a set of named fields fl, .2, ... f9 for 1 < q. We use Pascal notation
to designate a reference to field fj of an instance I: I.f,. Although programs typically
use more than one data-structure, we will make the simplifying assumption that a program
only manipulates one type of structure. Generalizing to more complex programs requires
distinguishing the type of object manipulated by a reference, which is possible because of the
requirement in Lisp that structure accessors have unique names.2 We further assume that
fields in a structure can be partitioned into two sets, those pointing to other instances of the
structure (fl, f2, ... f,) and those pointing to other types of objects (f+, f,+2, .... fq). Not
every program makes a clear distinction between the sets (particularly list-cells). However,

'Because of the difficulties caused by pointers, most FORTRAN transformation systems will not work on
programs containing this construct.

21n an inheritance system, such as Flavors or PCL [1,4], more than one class of objects can be manipulated
by a given accessor. However, the behavior of a related group of objects should be similar enough that an
analysis can apply to objects from all such classes.
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(setf (cadr x) 5)

(print (caadr x))

Figure 2: Pair of conflicting statements.

user-defined structures typically have fields pointing to their predecessors and successors in
a graph and other fields containing information specific to the node. A programmer can
easily declare the class in which a structure field belongs. This information is simply the type
declarations required in strongly-typed languages.

A link, 1, is a triple (I1, f,, 12) such that 1 and 12 are instances of a structure and
Iife = 12. The first element of a triple is its source (S), the second is its field (F), and the
third is its target (T). For example, S(l) = f,. A link is an assertion that instance I1 contains
a pointer in field f, to instance 12 of the same type of structure.

A path P is an ordered sequence of links, 11,12, ... lk, such that T(li) = S(13+1 ) for
1 < i < k. Define the length IPI = k. The destination of a path is its last target: T(Ik). In
other words, a path is an ordered traversal of some nodes in the graph formed by instances
of a structure.

The accessor, A(P), of a path, P, is the ordered sequence of fields along the elements of
the path: F(11 ), F(1 2 ), . .. F(lk) where the 14's are links in the path. Given the initial source
of a path and its accessor, the path can be recreated by applying the accessor to nodes in the
graph. Let I = S(11 ) in a path P. Then, A(P) o I is the application of the accessor to the
instance, which yields the destination of the path.

A structure access is a pair consisting of an accessor, A(P), and a structure instance, I:
(A(P), I). It corresponds to reading the value of the location A(P) o I.

A structure modification is a triple consisting of an accessor, A(P), a structure instance,
I, and a value, V: (A(P), I, V). It corresponds to replacing the value in the location A(P)oI
by V.

To detect conflicts in a Lisp program, an analyzer must identify a set of structure accessors
and detect when the destination of a path used in a write operation is equal to a source or
target in the path of another operation. For example, the statements in Figure 2 conflict
because the destination of the path of the first statement, x. cdr. car, is used in the path of
the second statement, x. cdr. car. car.

This process is complicated by two factors: aliasing and program variables. When two
distinct structure instances contain a pointer to the same location-there exist links i, and
lk such that S(bI) $ S(IL,) but T(1,) = T()-the paths containing the instances are aliased.
The structure instances shared by these paths no longer have a unique identity since they call
be reached by distinct accessors. Arbitrary aliasing aniong structures makes analysis fruitless
since any two accessors can point to the same location.

However, some forms of aliasing are so well-defined that they are benign. For example, a
doubly-linked structure has an infinite number of patlhs to any instance in it. However, this
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set of paths can be reduced to a finite set of unique paths by combining adjacent successor-
predecessor pairs in a path. The canonicalization, C, of a path is an injective mapping from
paths to paths. The effect of a canonicalization function is specific to a particular structure
and depends on the linkage between instances of the structure. In the doubly-linked example:

C(,1 1 12 Im, (I., succ, 1.), (1,, pred, lk), ... k-) C(11,12, 1... 1ra, I,,... Ik)

C(11, 12 .ln, (I, pred, Iy), (I,, succ, I.), In. -ik) * C(1 1 , .. 12 , . ... Ik)

C(11, 12, lk) = (11, 12, lk)

To provide this information to CURARE, a programmer would declare that the succ and pred
operations are inverses of each other and that a canonical path does not contain adjacent
pairs of these operations.

The set of structure instances accessible from a given instances, I, denoted accessible(I),
is the smallest set of instances satisfying:

accessiblc(nil) = 0

accessible(I) = {I} U accessiblc(I.fl) u accessible(I.f2 ) ... U accessible(I.f,)

An instance of a structure, I, has the single access path property (SAPP) if there edsts
only one canonical path to any instances in accessiblE(I). In effect, this property requires
that instances form a tree rather than a general graph. We are measuring how often this
occurs in Lisp programs.

The second factor complicating this analysis is that instances of structures are stored in
program variables. Our analysis would be more useful if it could report conflicts among the
variables in a program. However, the values of variables change during the execution of a
program, which complicates the bookkeeping.

For any two references to the same variable, ', let the transfer function, r, be the accessor
of the difference in the value of v between the two references. If v's value did not change
between references, then r, = 0. If the relationship between the values of v cannot be
determined or no accessor can map the first value to the second, then r, = A', where .4 is the
alphabet of accessors and * is the Kleene star. If v is a parameter of a recursive function and a
is the accessor of the function used to compute the actual value of the parameter, then 7-, = a+ ,

where a+ = aa ° . For example, the function in Figure 3 has a transfer function r1 = cdr+. If
a variable, v, can be assigned one of many distinct values with accessors a1 , (2 .. a,,, then
rv = a, Ia2l ... a,,,, where "I" is the regular expression disjunction operator. This combination
is flow-insensitive since the information from va.ious paths through the program is combined
into a form that does not permit us to distinguish the portion that is valid at a particular
point in the program. The n-fold composition of 7,., written T. is r,. rv.

Transfer-functions can be combined with access paths to detect conflicts in programs.
First, we need to define a conflict precisely. Let Mt = (A(PI), I,, V) be a structure mod-
ification and A = (A(P 2 ), r2) be a structure access. 11 conflicts with A, written .1SA.

7I



(defun f (1)
(when 1

(print (car 1))
(f (cdr I))))

Figure 3: A simple recursive function

if

T( ) S(1 I) for 1 < i < IP 2 , or

where 1F is the jth link in path x. This formula says that a structure modification conflicts
with a structure access if the location modification by the former is read by the latter.

Similarly, two modifications, M1 = (A(Pi), Ii, I 1 ) and .I2 = (A(P 2 ), 12, 1"2), conflict if
the first one modifies a location read or written by the second:

T S( 2) for 1 < ' < IP2 1. orA I ) = T(liP, ,

Consider two references to a variable v. The first reference, t-.A 1 , is the application of
accessor A1 = al.al .. alto v. Similarly, the other reference, v.A2 , is the application of
A 2 a ... a2 to v. Let 7, = tt... jtp be the transfer function between the values of v

at the references. If the first reference is a modification operation, then

r.A.4A.2 v.AC'.rV..4 2

', - t ...(2 ~ t . . .a m  O

where -_ is the prefix operator so that a -< b if a is a prefix of b. In other words, the references
conflict if the location modified by the first one is used by the second one, taking into account
the change in v's value between them. Similarlv, if the second reference is a modification
operation, then

v.A 2"3r.A 4* r.A2r.-,.Al

4* al ... am  a

This technique relies heavily on the SAPP to ensure that eveiy location has only a single
name so that conflicts can be detected by matching strings.

For example, consider the function ill Figure 4. Let .41 be car. cdr, -2 be car, and 7 be

cdr. Then, A,.A 2 under r because r, o A2 = cdr.car = .41.
The same technique works for more complicated transfer functions, as long as the prefix

operation matches a string against a regular expression. In addition, the technique can be

%,.".-2" -- -- ( . . ... ... . . .. .. :
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(defun f (1)
(when 1

(setf (cadr 1) ; Al * cdr.car
(car 1)) ; A2 a car

(f (cdr 1))))

Figure 4: A recursive function with a conflict between invocations.

used to find the distance of a conflict. The distance of a conflict in a recursive function is the
number of invocations separating the conflicting references. For example, in f, the distance
of the conflict is 1 since the location written in an invocation is read in the subsequent one.

d
If A, -r .v o A 2 , then A, and A 2 conflict at distance d, written A,®A2.

2.2 Example: Lists

This section describes the application of the technique described above to a particular data-
structure-the Lisp list. A list cell has two fields, car and cdr. Assume that both fields point
only to other list cells. Lists do not require a canonicalization function, so the SAPP can be
restated that lists do not contain cycles or shared substructures.

List accesses are strings in the language {car, cdr)+. Transfer functions are regular
expressions over the alphabet {car,cdr}.

For example, the function in Figure 5 contains three accessors

A, cdr

A 2 cdr.car (modify)
A 3 car

and a transfer function rl = cdr. Since A 2 is the only accessor that modifies a location, the

only conflicts are between A 2 and A, or A 3 . A 2 does not conflict with A, since cdr+.car can
never be a prefix of cdr. However, A 2 0.4 3 since cdr.car -< cdr+.car.

3 Concurrent Execution of Recursive Functions

This section describes the Concurrent Recursive Invocation (CRI) execution model for func-
tions restructured by CURARE. In this model, invocations of a recursive function execute
concurrently, subject to the constraints necessary to preserve the result of the function. This
exposition has three parts. The first one elaborates the execution model and calculates its
potential parallelism. The second discusses the semantics that must be preserved ill spite of
parallel execution. And, the third shows how to ensure these semantics with locks and other
devices.

*u' n .I * I -± ° I " r 5d--,f.. •\! II-~-~ :~N~-~K -



(defun f (1)
(cond ((null 1) nil)

((null (cdr 1)) , Al
(f (cdr 1)))
(t

(setf (cadr 1) ; A2

(+ (car 1) ; A3
(cadr 1)))

(1 (cdr 1)))))

Figure 5: A complex recursive function with a conflict between invocations.

3.1 Mechanics of Concurrent Execution

Consider a function, f, that contains self-recursive calls C1 , C2, ... C. If f returns the result
returned by these calls, it is a tail-recursive function. If f does not use the result returned
by one of these calls, say Ci, then Ci is a free call.

Every statement, S, S2, .. . S,, in the body of f can be partitioned into one of twvo sets:
the head, Hf, or the tail, Tf, of f. A statement, Si, belongs in the tail of f if Si is not a
recursive call and is dominated by a recursive call. A statement that is not in f's tail is in
its head. The head contains all recursive calls and all statements that might execute before
a recursive call.

The ith invocation of f, denoted If, is the i - 1h recursive call on f. If is the external
call that began the recursion.

Consider for a moment a simple recursive function, f, that contains no loops or function
calls other than a single self-recursive call C1. In the normal course of recursion, invoca-
tions If,1, I execute statements from the head of f followed by a phase of executing
statements from the tail of f as the recursion unwinds (Figure 6).

How must f change so that its invocations can execute concurrently? Ignore, for the
moment, side-effects in f that cause conflicts and that may produce incorrect results (this
problem is discussed in Section 3.1.1). The first part of the question is when does an invocation
begin executing? One approach would create processes for all invocations and simultaneously
begin their execution. However, the agent spawning the processes must know how many to
create (the depth of the recursion) and the actual arguments for every call. It is impossible
to know this information a priori for any but the simplest functions.

A more practical approach treats a recursive call as the creation of a new process to execute
the subsequent invocation asynchronously. Obviously, this approach will not yield parallelism
if the spawning process needs to wait for an answer from the recursive call. However, if the
spawning process is not strict in its use of the result (e.g., it stores the result in a data
structure rather than looking at its value), then a Multilisp future provides process creation

10
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If
0

Hf

Figure 6: The normal course of a recursive call on a simple function f that contains only a single
self-recursive call.

and synchronization features that permit concurrent execution [10]. Furthermore, if the
spawning invocation never uses the result from the recursive call, as, for example, when it
calls for effect, then a future's synchronization mechanism is unnecessary. Either way, the
recursive call takes the form shown in Figure 7. CURARE can transform some functions that
use results from self-recursive calls into equivalent functions that do not use these values
(Section 5).

The concurrency of this approach, and therefore its potential speedup on a multiprocessor,
depends on the relative size of f's head and tail. Let the size of the two sets, JHI and ITu I
respectively, be some measure of the execution time spent in each set of statements. A variety
of measures are discussed and evaluated by Sarka and Hennessy [20,21].

The number of processes that execute simultaneously-the concurrency of the system-
is given by

iHA + ITf

Proof. In the time required to execute a single invocation, IHI + ITfi, we can spawn off

lull new processes since IHI is the time from the beginning of an invocation through a

recursive call. I

Note that IHf +ITI is fixed, so that the only way to increase the concurrency is to decrease
the amount of code executed before a self-recursive call. In contrast to sequential function
execution, in which tail-recursive functions have major benefits in speed and space, concurrent
function execution favors functions in which recursive calls occur as early as possible (head-
recursive functions).

110

% V. .

ftqlo0l J 
.



f

f
d

Hf

Figure 7: Control flow between recursive calls when a recursive call spawns off a process to execute its

subsequent invocation.

A similar principle applies to functions containing more than one recursive call. The code
executed before each such call reduces the potential concurrency. However, calculating the
concurrency for these functions is much more complicated. In addition, semantic constraints
discussed below impose further limits on the interleaving of recursive calls from different calls
sites.

3.1.1 Semantics of Concurrent Execution

In the previous section, our discussion ignored the consequences of concurrent execution on
the results produced by a function with side-effects. This section rectifies this onission and
shows how to preserve the semantics of sequential execution, albeit at a cost in execution
time.

Throughout the rest of this paper, we will view a function invocation as a tra laction,
that is, an atomic action that takes a program from consistent state to consistent state.
Invocations are the appropriate granularity for primitive operations since they are the smallest
independently scheduled tasks.

Conventional database systems usually guarantee that execution of a set of transactions
will be serializable. An execution is final-state serializable if its result is equal to the final
result of a serial execution of the same set of transactions in some unspecified order [S].
This guarantee is not appropriate for concurrent functions for two reasons. First, a function
executed under this guarantee can produce non-deterministic results. Most programming lan-
guages guarantee reproducible results unless a programmer uses inherently non-deterministic
language features. Although some argue that multiprocessing is such a feature, changing
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this principle would constitute a major revision of the semantics of Lisp and would necessi.
tate rewriting most programs submitted to CURARE. Second, CURARE Can make stronger
promises than a database because it pre-analyzes programs before execution and knows the
sequential execution order of its transactions.3

CURARE'S guarantee is that the execution of a set of transactions (invocations) is sequen-
tializable. An execution is final-state sequentializable if its final result is equal to the final
result of the serial execution of the same set of transactions in their sequential order. This
result is the one that a programmer expects: concurrent execution improves the speed of a
program but does not change its result.

CURARE ensures that a program is sequentializable by conflict serializing its concurrent
execution with its sequential execution. Execution of a set of transactions is conflict serial-
izable if it is conflict equivalent to a serial execution of the same transactions. Executions of
two sets of transactions are conflict equivalent if they contain the same transactions and all
conflicts are resolved the same way in both executions. We use conflict serializability as our
correctness criterion because it is intuitive, easily verified, and corresponds to the conflicts
discussed in Section 2.

3.2 Ensuring Correct Execution

The next few sections discuss various techniques for ensuring the correct execution of con-
current function invocations. The methods are discussed in order of decreasing cost and
generality.

3.2.1 Locking

Locking conflicting items is a simple and effective method of ensuring the conflict serializability
of a set of transactions. Formally, assume that invocations I and If, for i < j, access

location .M and that at least one contains a statement that modifies M. To ensure that I!
has exclusive use of Mi before It (the sequential execution order) CURARE inserting a lock
statement, Lock(M), in the head of f and an unlock statement, Unlock(M), in the body of f.
The head of I executes before any portion of gI, so location Al will be locked when the latter
invocation begins and will remain locked until the first invocation finishes with the location.

If a third invocation, If for j < k, accesses location Al and conflicts with the other two
invocations, the locking still works correctly. Since If contains a Lock C) statement in its
head, it cannot spawn subsequent invocations, including I, until it has locked Al. Therefore,
the order of access to conflicting locations is preserved even if more than two invocations
conflict over a location.

The naive locking scheme described above can be improved in several respects. First, if
invocations I and If conflict over a set of locations, .M1 , A12, ... Mm, and all such sets are

3Other attempts at using database semantics in concurrent Lisp systems have taken the database approach
of foregoing analysis and detecting conflicts at runtime [15].
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disjoint, then replace the m locks by a single lock. For example, suppose that a function
conflicts over the locations 1. car, 1. car. cdr, and 1.car. cdr. car and that ri = cdr, then
locking the location 1. car is enough. Second, move unlock statements so that they execute
as soon after their lock statements as possible. Unlock(M) should be put in the body of
f after all uses of Al and after all lock statements. The latter condition ensures that the
locking follows a two-phase protocol for avoiding deadlocks. Finally, replace exclusive locks
by read-write locks in cases in which more than one invocation reads Al.

Locking has two costs: the costs of the locks themselves and the resulting loss of concur-
rency. The locks described above are expensive since they are fine-grained locks for single
memory locations. Some computer architectures associate a tag with each memory location
that can be used as a lock.4 Other architectures require a more-costly, dynamically-allocated
collection of locks (the number of locks depends on the data and the depth of the recursion).

The other cost of locking is a loss of concurrency. Assume that invocations of f conflicts
with invocations offset by distances dl,d 2, ... d.. The maximum concurrency of f is no
more than min(di,d2 , ... d.) if an invocation release its locks just before it terminates. This
estimate is slightly pessimistic if invocations release their locks as soon as they finish with a
location.

3.2.2 Delays

Another way of achieving the same result as locking, without some of its overhead, is to
delay operations so that the second operation in a conflicting pair always occurs after the
first [22]. In the CRI model, the only inherent ordering on statement execution is that heads
of functions execute sequentially.

Moving conflicting statements into the head of function ensures their correct execution
order. Let statements Si and S. in the body of f conflict over location M. Assume that 5,
always executes before Si in an invocation of f. By moving S, to the head of f-also moving
any statements upon which it depends-the conflict between S, and S is always resolved
in accordance with sequential execution since 5, executes before $, executes in either the
current or subsequent invocations. If 5, sometimes executes before S. and sometimes after,
then both statements must move to f's head.

Which statements must be moved with S,? All statements that produce values used by
Si. Furthermore, in moving, we must preserve the control dependencies between statements.
Considerable work has been done on algorithms and data-structures for code-motion [6,9.19,
23].

The cost of this approach is the loss of concurrency caused by increasing the size of f's
head. Such a loss may be acceptable if the resulting concurrency is still greater than the
parallelism of a computer or is greater than that produced by locking.

"SPUR is not one of these architectures. Although LISP pointers have a tag byte, SPUR's test-and-set
instruction destroys the information stored in the bytes of a word other than the low-order byte.

144,

* *~*I * '~ U ~ *%.%~ w'V



(setq a a 1))
(setq a ( a 2))

Figure 8: A pair of statements that do not conflict.

3.2.3 Reordering

Some conflicts between statements impose constraints that are stronger than necessary for
correct execution. For example, if addition is an atomic operation, then the apparent conflict
between the statements in Figure 8 is illusionary and ignoring the ordering constraints will
not affect the final result. Below are three categories of operations for which unnecessary
constraints arising from conflicts can be easily identified and removed.

The first type is atomic, commutative, and associative operations, such as addition. Com-
mutativity and associativity ensure the same result regardless of the order of application of
an operator. Atomicity guarantees a consistent result, even if two operations overlap. Non-
atomic commutative and associative operations can be made atomic with the aid of locks.

The next class of operations consists of those that put a value into an unordered data-
structure. Lisp contains several such structures, such as hashtables and unordered lists, beside
the ones that users define. Since the order in which items are added to these objects does not
matter, constraints related to this order are unnecessary.

The third class of operations is searching unordered sets or searching for one of many
acceptable results. If a program is willing to accept any result meeting a criterion, then a
search can proceed in parallel without the additional constraint of having to find the same
result as a sequential search.

Operations in these three categories are difficult to identify mechanically in all but the
most trivial cases. Generally, these properties are closely connected to the semantics of a
program, as for example, whether a set is ordered or unordered, and cannot be deduced from
an analysis of the program. User-supplied declarations are the only way to provide such
information to a program like CURARE.

4 An Implementation

This section rounds out the previous discussion by investigating an approach to implementing
CRI in a typical multiprocessor Lisp system as described in Section 1.2. This discussion is
concerned with balancing the work from a recursive call among the available processors, not
with nitty-gritty details, such as the appropriate synchronization primitives. CURARE is a
program transformer that can accommodate a wide variety of target language features simply
by changing its final, code-generator stage, which produces Lisp code from CURARE'S internal
representation.

The larger question of producing programs with parallelism appropriate for a particular
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Lisp Address Space

Task Oueue for
Function f

Figure 9: The arrangement used to execute concurrent invocations of recursive functions. Servers repeat-
edly execute f's body, using parameters obtained from a task queue and enqueuing parameters for subsequent
invocations.

machine has been neglected in most of the multiprocessor literature (except Sarkar and Hen-
nessy's work, (20,21]). The correct balance between the concurrency of a program and the
parallelism of a processor permits the former to execute efficiently, without wasteful context
switches or idle processors. The ideal would be to have a queue of non-preemptable tasks
sufficient to keep all processors busy.

This ideal is approachable in our execution model. Because every transaction executes an
identical function body, we can have a collection of servers that repeatedly execute this piece
of code. Each server only needs to obtain the arguments to an invocation to begin executing
a new task. It does not need to execute a process context switch. Since the invocations are
well-ordered, tasks execute without preemption.

4.1 Details

Assume a multiprocessor with P processors. A subset of these processors, numbering S, Ivill
execute servers for invocations of function f, which they obtain from a central ta. k queue
(Figure 9). One question that arises is the appropriate number of servers for a given function
invocation.

An abstract model of a server is:

while -, *recursion-done* do
dequeue parameters;
{body of f)

end

IG
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A server first checks whether the recursion terminated. If not, the server dequeues parameters
for the next invocation and executes f's body. Servers repeat this process until the recursion
ends. CURARE modifies f's body to enqueue arguments to recursive calls, instead of making
the calls directly. These arguments include not only the actual parameters to a call, but also
values for non-local variables referenced in f. A practical server would need a more elaborate
arrangement to avoid memory bottlenecks. For example, the invocation that terminates the
recursion can enqueue tokens that kill the other severs, thereby eliminating the termination
flag. However, the central queue will remain a potential bottleneck and limit on the maximum
concurrency. This bottleneck will not adversely affect performance, if the time spent executing
an invocation is much longer than the time spent waiting for the queue.

If f contains only a single self-recursive call, then queue entries for its invocations are
enqueued in their sequential order. In this case the task queue never grows to more than
N items, where N is the number of entries in the queue when the servers began executing.
Execution of a task removes an item from the queue and that task adds at most one item to
the queue, so its length never increases.

If, on the other hand, f contains multiple self-recursive calls, then the order of invocations
can be scrambled by the queue. Such an outcome would destroy the temporal ordering
between invocations that CURARE depends on. This problem can be resolved by maintaining
an ordered set of queues, one for each call site, and by having a server use the next queue
only after it finishes executing all calls in the current queue.

The first step in analyzing the performance of this arrangement is to find the time required
to execute a recursive call. Consider a simple recursive function f with h = IHiI and t = ITI1.
Let c1 be the maximum concurrency allowed by f, that is the minimum of . and the
distances of f's conflicts. Finally, let d be the depth of f's recursion.

To a first approximation, the invocations are divided into I sets of S tasks, each set of

which takes Sh + t time steps to execute, so that an entire recursive call requires [dj (Sh + t)
time steps (Figure 10). However, this analysis assumes that all processes in a group begin
executing simultaneously and ignores the possible overlap between groups. The second group
can begin execution as soon as a server from the first group finishes h + t steps. The possible
overlap is shown in Figure 11. The total execution time is therefore,

([fl- 1)(h + t) + (Sh + t)

time steps when S < d.
Setting the first derivative of the equation with respect to 5 equal to zero, we obtain a

minimum at S = i +-Q . This value minimizes the execution time of a simple recursive
function when there are more invocations than servers (if there are more servers than invo-
cations, then we should use d servers). The value of S calculated above has to be balanced
against cf, the maximum number of servers that a function can keep occupied. We should
use the minimum of these two values.

Allocating processors to a function with multiple self-recursive calls is not more difficult
with the multiple queue approach mentioned above. The required number of servers can be
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Figure 10: First approximation to the total execution time required by S servers to execute d tasks.

calculated separately for each call site and we can either allocate a fixed number of servers
for the entire function execution or dynamically allocate servers as the execution proceeds.

However, the problem of allocating processors to an entire Lisp program is more difficult.
A program generally contains many recursive functions, some of which invoke each other.
Consider two recursive functions fi and f2 such that fi invokes f2. Furthermore, assume that
fi requires S servers and f2 requires S2 servers. Looking at the call graph of a program, an
analyzer might allocate 51 x S2 servers to handle the S possible invocations of f2. However,
extravagant allocation of this sort is not practical for larger programs that contain many
recursive calls as it will soon exhaust the pool of processors. In addition, processors allocated
this way will rarely all execute simultaneously, so the program's concurrency will be small.

Another option is to dedicate only S2 processes to f2 and require the S invocations of f,
to wait their turn for the processors necessary to execute f2. This may reduce the concurrency
of fr's execution to the point at which it should execute sequentially.

As the preceding discussion points out, load balancing problems are extremely difficult
when enough tasks are involved. These problems have not been solved for simpler tasks
running on small collections of machines. To compound the problem, the times used in the
calculations are simple estimates. Both factors suggest that a simple allocation scheme, with
a dynamic component, is the best approach.
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Figure 11: Execution time of S servers executing d tasks.

5 Expanding the Class of Transformable Functions

CU'RARE only transforms functions that have the specific forms described above. However,
scme functions that are initially unacceptable to CURARE canl be changed into equivalent
functions that CU'RARE can manipulate. We distinguish this second group of transformation -

from those described earlier to avoid obscuring the issues involved in concurrent execution.
Described below are two transformations that removed impediments to concurrent execu- ,

tion. The problem that they solve is that CURARE only transforms recursive functions that
do not return a value that is used within the body of a function. Functions that use the
result from a self-recursive call must wait for the recursive invocations to finish executing, ,
which precludes concurrent execution. However, we can change some functions that use their ?

results into equivalent functions that do not use these values and hence make them candidates..
for concurrent execution. Two such transformations are: changing recursion to iteration and ,

modifying functions to use a destination-passing style.
The first one produces iterative functions from certain types of recursive functions. It-

erative functions, in turn, are equivalent to tail- recursive functions. CURARE can transform
these functions. Although each invocation of a tail-recursive function returns a result, the
function never uses these values. Changing the single return that produces a value into an
assignment eliminates the return. The result of a call on the function will appear in a vari-
able. Restricted classes of recursive functions can be transformed into iterative functions by a
set of well-known transformations [3,7,14]. Some of these transformations, particularly those
described by Huet and Lang, depend on subtle properties of a function's operations, such as
commutativity and associativity, and so require information like that provided by CURARE'S

declarative model.
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(defun remq (obj lst)

(cond ((null lst) nil)

((eq obj (car lst))
(remq obj (cdr lst)))

(t
(cons (car lst) (remq obj (cdr lst))))))

Figure 12: The function remq returns a list with all items in 1st that are eq to its first argument removed.

(defun remq-d (dest obj lst)
(cond ((null lst)

(setf (cdr dest) nil))
((eq obj (car 1st))
(remq-d dest obj (cdr 1st)))

(t

(let ((cell (cons (car 1st) nil)))

(remq-d cell obj (cdr Ist))

(setf (cdr dest) cell)))))

Figure 13: The function remq-d is the ramq function rewritten in the destination-passing style. Its first

argument is a list-cell whose cdr is the destination for results.

The second transformation eliminates return statements in a function whose recursive
calls return values that are stored in a data-structure. Although these functions can execute
concurrently with the aid of futures, their transformed versions need not incur the overhead
of these devices and may be more amenable to CURARE'S optimizations.

This transformation produces a function that uses a destination-passing style (DPS). In
this style, instead of returning a result that is immediately stored in a structure, a function is
passed the structure as an argument and stores the value directly. For example, the function
in Figure 12 returns a copy of a list with all elements eq to its first argument removed.
The function in Figure 13 shows this function rewritten in the destination-passing style. Its

first argument (dest) contains a list-cell whose cdr is the destination for returned values.
Although this function is less attractive than the original one, it does not execute any more

operations than the conventional function; it just performs them in a different order.
At first glance, the DPS function appears to contain more side-effects and is more difficult

to analyze than the original. This comparison is correct if both functions were input to Cu-
RARE. It would not be able to conclude that the second function contains no conflicts because

CURARE'S conflict-detection algorithm is flowv-insensitive and hence the function would need
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synchronization code. However, the destructive operations in this function are the product of
the DPS transformation and so CURARE does not start with a blank slate. It can conclude
that since the result from a recursive call in the original function is stored in a single, unique
location, the store operations in the DPS function also operate on unique locations and do not
conflict. The additional information about the origin of the destructive operations enables
CURARE to transform the DPS function.

6 On the Nature of Declarations
CURARE relies upon a programmer for a wide variety of information that it cannot collect by

analyzing a program, for example:

" whether a structure field points to other structures,

" the type of actual arguments to a function,

" the canonicalization function for a structure,

" whether to restructure a function,

" whether an operation has characteristics necessary for reordering, and

• constraints on data-structures and on functions' results.

The first two items are commonly declared in strongly-typed programming languages. The
other items are increasingly abstract program properties of a type that is rarely provided by
programmers. CURARE must make the form of declarations as simple as possible, so that a
programmer can add them with confidence.

Fortunately, a programmer does not have to write these declarations in a vacuum or
supply them for all functions in a program. These declarations can be added as part of
an iterative process of tuning a program's performance on a multiprocessor, by examining
CURARE's output and program timings. CURARE can help this process by indicating why it
failed to transform a function. One crude form of feedback is the locks that CURARE inserted.
More helpful are the unresolved conflicts that necessitate these locks. Even more useful is
knowledge of the information that would permit CURARE to transform a function.

However, as long as CURARE makes pessimistic assumptions about unknown information,
the absence of declarations will not cause it to produce incorrect programs-only slow ones.
This lack of speed is a valuable form of feedback about when and where to insert declarations.

7 Conclusion

CURARE is a first attempt at automatically restructuring Lisp programs for concurrent exe-
cution. It uses several new ideas, including a simple conflict-detection algorithm for memory-
resident data structures that contain pointers, an emphasis on recursive functions instead
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of program loops, an expanded vocabulary of transformations for improving a program's
structure and concurrent preformance, and a simple execution environment.

Implementation and testing of these ideas is under way. A working prototype of CU RARE

can already apply some of these transformations to list-manipulating Scheme programs. It
is written in Common Lisp and Portable Common Loops. A more complete version, which
should be capable of preparing small programs for concurrent execution, will be finished this
spring.
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