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V. specific, load balancing is the process of redistributing the workload submitted to a network

of computers to avoid the situation in which some of the hosts are congested, while others

are underloaded. As a result, system performance, e.g., job throughput rate or job response

time, is likely to improve.

A variety of approaches have been employed to study load balancing, including

graph-theoretical methods (Stone77, Stone78, Bokhari79, WuSO], queueing network

analysis [Chow79, Livny82, Rama83, Wang85. Eager86a, Eager86b], simulation

[Bryant8l. Livny82, Leland86, Zhou86], experimental implementation [Hwang82,

Bershad85, Hagmann86. Ezzat86], and measurements [Ezzat86]. In (Zhou86], one of the

authors describes a trace-driven simulation study of load balancing. In that study. job

information collected from production systems was used to drive the simulator of a distri-

buted system containing a number of hosts. Load balancing was found to be very effective

in reducing both the average and the standard deviation of job response times. Comparis-

. ons were also made among the performances of a number of load balancing algorithms.

Encouraged by the results of this study, and in order to gain further insights into a number

of issues, we implemented load balancing on a cluster of diskless SUN-2 workstations run

ning in our distributed systems laboratory under the SUN UNIX operating system. con-

nected by an Ethernet and supported by file servers. This experimental environment

enables us to conduct measurement studies of load balancing.

Our purposes in implementing a prototype load balancer and doing measurements on

it were several-fold. First. we were interested in investigating the feasibility of load

balancing in a UNIX environment. We wanted to experiment with various load indices

proposed by other researchers as well as by us. in order to determine one or a family of load

indices suitable for load balancing. We wanted to compare. in a more realistic environ-

ment, the algorithms we had studied using simulation in order to validate our results. and

to tune our simulation model so that it can be used, with more confidence, in exploring

parts of the design space unreachable by our implementation. We also wanted to assess

quantitatively the amount of overhead introduced by load information exchanges and job

transfers between the hosts. Finally, we hoped that our experimental implementation can

serve as a base for a production load balancing system.
/' iWhile a number of implementations of load balancing have been reported. as will be

discussed in the next section, measurements have not been used as an important approach

to the study of load balancing performance. In [Bershad85], some comparisons of the job

response times before and after the installation of the load balancer were provided. Hag-

mann presented a set of measurements of the costs of remote job executions [Hagmann86].

Ezzat reported some performance figures of load balancing in the NEST system with 3 hosts

driven by benchmark programs [Ezzat86I. We intended to use measurements as our pri-

mary method of study in this research.

The design and implementation of our load balancing system, and some of the meas-

:..-5. urement experiments we performed on it, are reported in this paper The important results

t UNIX is a trademark of AT&T Bell Laboratories %
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from our study include the following:

transparent. flexible load balancing at the job level can be achieved at a low cost, and

without modifying either the system kernel or any of the existing application pro-

grams:

* load balancing is capable of substantially reducing the mean of the process response

times (up to 30-40%j, and their standard deviation 1 up to 40-50w . especially when the

system is heavily loaded, andor the instantaneous loads on the hosts are appreciably

unbalanced;

p. * a number of "reasonable" load balancing algorithms using periodic load information

exchanges or acquiring such information on demand produce comparable performance

improvements.

load balancing can still be highly effective when only a small fraction of the workload

,down to 20-, in terms of CPU time consumption) can be executed remotely:

* the relative percentage) reduction in response time is uniform across all classes of

jobs, mobile or immobile, big or small.

load balancing at the job level has limited ability in reducing the temporal fluctua-
tions in the load, mainly due to the generation of multiple processes by some single

jobs: balancing at a finer level te.g., process or task' may be able to reduce temporal
load fluctuations further, at the expense of increased communication overhead:

The rest of the paper is organized as follows. The design and implementation prob-

lems we dealt with are discussed in Section 2 In Section 3. we describe the design of the

measurement experiments, including the artificial workloads we constructed. The results

of the experiments are presented in Sections 4. 5, and 6. with Section 4 comparing the algo-

rithms used for load balancing and assessing the importance of their adjustable parameters.

Section 5 studying the effects of the workloads on load balancing performance. and Section

6 discussing the influence of load balancing on individual hosts and job types. The major

results are summarized in Section 7

2. DESIGN AND IMPLEMENTATION

We briefly review existing load balancing systems first. This prepares us for a presen-

tation of the basic design and implementation of our prototype load balancer Next. we

describe the load balancing algorithms we have implemented and studied, and. finally, we

provide some results of our overhead measurements. %

2.1. Related Works

VI A number of load balancing implementations have been reported in the literature
J !Hwang2. Hagmann85. Bershad85, Ezzat86]. In almost all of them. a special syntax for i.

command submission has been introduced to inform the system that the command is eligi-
ble for load balancing. In some cases, a specially constructed version of applications

.oftware is needed for remote execution. The operating system had to be changed in many

cases in order to make remote execution possible.

%
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The earliest implementation known to the authors was done at Purdue University in

a UNIX environment [Hwang82]t. Special versions of compilers, assemblers, and text pro-

cessing programs were constructed that called a system scheduling routine, rxe. to deter-

mine a "lightly loaded" destination host for execution. A modified form of the UNIX load

areraget , with considerations for the machine heterogeneity, was used as the load index.

Bershad implemented a load balancer for the Berkeley UNIX 4.2 BSD operating sys-

tem (Bershad85]. Like the Purdue system. only a few programs with large CPU time

demands 'CPU hogs") were considered, and the program and data files had to be explicitly

moved to the execution host due to the lack of a distributed file system. System servers

,daemons. in UNIX terminology, were used to exchange and maintain load information

represented by load averages, and to create remote jobs upon user requests"-.4.

The Process Server implemented at Xerox PARC was targeted for a workstation

environment iHagmann86]. A collection of personal workstations are supported by Process

Servers that may be permanently dedicated compute servers or workstations donated by

their owners when they are not using them. A central agent ithe Controller) is used to col-

lect load information and perform job placements for the entire system. Each command has

to be modified to make its remote execution possible.

Very recently, a load balancer for the NEST system of AT&T Bell Laboratories has

been reported LEzzat86]. The load balancer is implemented on a number of workstations
connected by an Ethernet-like local network. The name of a special program. rexec, must

be used as a prefix to any command string to be load balanced. Rexec obtains the hosts'

loads, measured by their respective normalized response times, and transfers the command

to the most lightly loaded host. Care was taken to use the software and to create tem-

porary files on the execution host irather than on the initial host) as much as possible, in

order to improve performance.

2.2. System Basics

While the above load balancers have provided much knowledge about load balancing

design and implementation, the requirements of our research were quite different from the

ones of those systems. In designing our load balancer. we felt the following characteristics

to be highly desirable:

1, transparency: no special syntax should be introduced, unless the user has some specific

requirements; the placement of a job should be done automatically on the basis of the ",

system's load conditions and the job's resource demands:

2 no or lttle change to the system kernel*: the cost of installing and maintaining the

load balancer should be minimized;

Both the AT&T Bell I.aboratories and the Berkeley vtrs.ions of UNIX were present in the sytem

It Load average in UNIX is an estimate of the number of "active'" processes in the syvtem. averaged over
a given periodr e g I minute

- In our implementation. we had to add a small amount of code to the .yvtem kernel to generate and
maintain the load index used by the load balancing algorthms. and to provide enough precision for our
measurements No functional changes. however wa, made to the kernel

I la
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3) no modifications to commands and applications: the code of no existing command

% should have to be modified to adapt it to load balancing;

41 general applicability: we are interested in considering all types of jobs. at least in prin-
ciple. rather than only a specific category, e.g., text processing commands: also. the

O.l' design should not assume some specific system architecture: the same design should

be suitable for time-sharing systems and compute servers, as well as personal works-
tations, provided that certain basic requirements are met. namely, a communication
system and the availability of a distributed file system. F

Like the designers of the other load balancers, we were also concerned with the over-

head of load balancing: the remote execution of a job should not incur high overhead in
terms of extra processing and real time delay. Since our implementation is experimental in
nature. we are less concerned with issues such as remote process management and control.

and user interface facilities, which we plan to add to the system for a production version.

4. There are two basic issues in the design of a load balancing system. The policy issue

is concerned with the algorithm used to determine which jobs or processes should be exe-
cuted remotely. and where. The mechanism issue is concerned with the physical facilities
to be used for remote execution. i.e., with the way a job is transferred to a remote host and
its results sent back. Before these two issues can be studied, however, we have to decide

,, the level at which load balancing takes place. There are several choices. At the job. or

command. level, the user interface can be changed so that some of the jobs submitted by
the user may be redirected to some remote host for execution. Alternatively. load balanc-
ing can be done at the process level. In that case, the process management module of the

vsystem kernel must be modified to identify processes to be executed remotely A third
choice is to modify individual applications and incorporate remote execution facilities there
.Johnston86j. However. considering our requirements discussed above, the second and

third approaches are to be ruled out.

After the level of load balancing is determined, we still have to decide whether the
jobs or processes are to be transferred during their execution process migration,. or only Lit
start-up time initial placement). Process migration has been suggested by a number of

researchers as potentially more capable of improving system performance Leland86. '

Cabrera86i. On the other hand. it is also likely to incur higher overhead, and is very
difficult to implement in such systems as UNIX. In addition, since we decided to do load

%- balancing at the job level, and multiple processes may be created by a single job. we would

.5". have to consider the interactions between the processes explicitly. These considerations led
us to restrict ourselves to initial job placement in our experimental load balancer.

Our implementation is based on a modified C shell7 implemented at Berkeley by
Harry Rubin and Venkat Rangan for the Berkeley UNIX 4.3 BSD system running on VAX
machines [Joy83, McKusick85]. This modified C shell intercepts user commands and exe-

cutes certain types of commands remotely when the local host is heavily loaded, using the
rexec daemon available in the system. The structure of our system is depicted in Figure It-

I C ihell 1i the name of the command interpreter in Berkeley UNIX operating 4ystem J.oyS01

t To ditsingsh our modified C shell from the standard one. we call it C.shell The R-shell. to be

A,
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LIM%

;'4," R-shell

Host B

LIMM

Host A

~ Figure 1. Structure of load balancing implementation.

L.,

S At startup time, the C-shell reads in a configuration file that specifies a list of names of
jobs that are eligible for remote execution*. When an eligible job is submitted by the user
to the C-shell, the C-shell contacts a Load Information Manager (LIM), a software module
that constantly monitors the loads of the hosts in the system and performs job placements.
If the initial host is heavily loaded, while some other hosts are not, one of the remote hosts
is selected as the destination for the job. In any case, the placement decision is returned to
the C-shell. For remote execution, the C-shell contacts the Load Balance Manager (LBM)-
on the destination host, which starts up an R-shell and establishes a stream connection
between it and the home C-shell. The command line is transmitted over this connection to
the R-shell after the user's identity has been authenticated and an appropriate user
environment is set up there. Access control to files and other resources in the system is
automatically enforced as the R-shell assumes the same user identity as that of the home

.. .. .-

described below, shares the same software with C-shell, but is only to receive remote jobs and execute
them.

i%
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C-shell. Since starting an R-shell is an expensive operation as we will see below, we keep

such a shell alive after the execution of the first job so that if a later command from the

same user login session is placed on the same host, we do not have to go through the same

process described above. The R-shells on remote hosts act as agents for the home C-shell,

and are terminated when the home C-shell exits. This scheme has the potential problem of

a proliferation of R-shells. However, the code segments of all C-shells and R-shells on each

host are shared, so that, when an R-shell is not active, almost no resources are consumed.

Thus. our load balancing system design is at the job level, and stresses a clear separa- Ls

tion of policy from mechanism. The collection and management of load information, and

the job placement decision-making are performed by the LIMs, one on each host. and

cooperating among themselves in ways dictated by the load balancing algorithm. Only the

initial filtering of jobs by their names is performed in the C-shell to avoid querying the .

LIM too frequently. and to allow personalized selection of jobs. The load balancing mechan-

ism. on the other hand. is provided by the LBM on each host, with the cooperation of the

C-shell and R-shell. The separation between policy and mechanism makes it easy to exper-

iment with different algorithms, as only the LIM needs to be changed. In fact. the LIM

software can be constructed so that the load balancing algorithm may be changed dynami-

cally as the system's size and load change.

We assume that the distributed system includes a distributed file system supported by

one or more file servers. The program and data files of a job do not have to be fetched from

the originating host, but from a file server, no matter where the job is executed. Thus, we

assume that the cost of accessing the files is the same for all hosts. While this is basically

true for the environment in which our load balancer is implemented 'a number of diskless

workstations supported by file serversi, the location of the program and data is an impor- ",

tant factor to consider in systems where files are scattered on a number of hosts ' which are

not dedicated file servers:. We decided not to consider this problem in order to concentrate

on the issues we are most concerned with now. V -

2.3. Algorithms

A large number of algorithms have been proposed in the literature see 'Wang:5 for

a taxonomy,. The problem domain we are concerned with in this research i e.. initial job

placement in a loosely-coupled network environment for general-purpose computing. with

distributed job submissions), and our desire to implement the algorithms make many of the

proposed algorithms unsuitable. Also, we are not particularly interested in studying

specific algorithms, but rather in comparing different approaches to load information

exchange and job placement. Among dynamic algorithms, in which the current system's

load conditions are considered, two large categories are commonly recognized. In source-

initiated algorithms, the overloaded hosts actively seek host3 to transfer their jobs to. In

contrast, the underutilized hosts actively look for jobs on overloaded hosts and execute

* them in seruer-initiated algorithms. Since server-initiated algorithms are most suitably

supported by process migrations. as pointed out by Eager et al. [Eager86a], we will only

consider source-initiated algorithms in this paper.

"V
4'-Y
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A load balancing algorithm consists of three component policies. The infbrmaton pol-

cv decides what kind of information about a host's load load index) is to be used to make
job placement decisions, and the way such information is to be made available to the

decision-makers. The transfer policy decides what jobs are eligible for remote executions.

. and under what local load conditions. Finally, the placement policy specifies the method

with which a remote host is selected for the execution of a job. These three policies interact

in various ways: the placement policy utilizes the load information supplied by the informa-

tion policy, and acts only on the jobs determined to be eligible by the transfer policy

We implemented and studied five load balancing algorithms that differ in their infor-

mation policies and in the corresponding placement policies. The load index used by all the

algorithms is the same, and will be described in the next section. All the algorithms use

the same transfer policy, which is based on the job name. as described in the previous sec-

tion, and on a local load threshold. More specifically. if the name of the job 'i.e.. the com-

mand' is on the users list. the job is considered eligible for remote execution, and one of the

LIMs is contacted for placement. The LIM checks the load on the job's originating host.

and will consider the job for remote execution only if the load is above a specified threshold

* T.. Notice that, even in this case, the job is not necessarily executed remotely: if the LIM

* ~ fails to find a suitably lightly loaded host. the job will be executed locally. The algorithms
% we studied are described below.

DISTED

Periodically. the LIM on each host extracts load information from the local kernel to

compute the load index. If the new value of the load index is significantly different

from the previous one. it is broadcast for every other LIM to update its record of this

host's load. When a LIM receives a placement request from one of the local C-shells.

it first decides whether the local load is above the threshold. If this is the case, the

LIM searches through its list of host load records, selects as the destination the host
appearing to have the lightest load. and informs the C-shell of the decision The joi

will he executed locally if all the hosts are heavily loaded.

GLOBAL

The information exchange method used by the DISTED algorithm above is stralght-
forward, but generates a large number of broadcast messages The (LOBAL algo-
rithm attempts to cut down the number of messages by employing a master LIM that

receives load information from all the other slave, LIMs periodically, and periodically

broadcast the load vector containing the loads of all the hosts. The placement policy

A of GLOBAL is the same as that of DISTED.

CENTRAL
-..

/Some refinements to this basic scheme have been implemented F"or iaample. the local load i, broad-
:ast once in a while even if the local host's load has not changed much, so that other hosts will not I.-
-ume that this host is unavailable Also, the local load i; not broadcast if it stays above in upper thrts-
hold T,,

W4
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This algorithm goes one step further than GLOBAL in centralizing the placement
decision-making. Not only is the load information collected by the master LIM, but
also all the placement requests are directed to it. Consequently, load information
flows only from the slaves to the master, and the role of the slave LIMs is reduced to
that of periodically reporting local load information to the master. If communication
is fast and the system's scale is not too large. this algorithm can support the system
with a low volume of information exchanges. The placement policy of CENTRAL
coincides with that of DISTED except that the master LIM, instead of the local LIMs.
performs all the placements. This algorithm is used in the Process Server [Hag-
mann86!.

LOWEST

The above algorithms rely on periodic load information exchanges to provide the LIMs
with reasonably up-to-date load information. The LOWEST algorithm acquires such
information on demand in a distributed fashion. When a placement request arrives at
a local LIM. this LIM polls a number of hosts up to a limit L,, specified by the infor-
mation policy, and selects the host with the lightest load. If the system is large, it
becomes impractical to poll every host. and the placement may be suhoptimal. On the
other hand. unlike the above three algorithms, the overhead incurred by the informa-

".'. tion policy of LOWEST is independent of the system's size. This algorithm and the
next one were proposed by Eager et a. EagerS6bl

RANDOM

This algorithm does not need any load information other than that for the local host.
If a job is determined to be eligible, a remote host is picked at random. Ind the job
transferred there. Because of implementation difficulties, no retransfer of jobs is
allowed in our version of this algorithm.

For comparison, we also ran measurement experiments with load balancing disabled We
call this the NoLB case.

It is recognized that there exist other algorithms that can potentially produce good
performance The above five algorithms were chosen because they are implementable and
they represent different approaches to the load information exchange periodic versus on-
demand . to the job placement system-wide selection, subset, random and they are of
varying levels of complexity, with RANDOM being the simplest.

2.4. Overhead Assessment

We measured the additional CPU processing and job delays due to load balancing.
that is. to the exchanges of load information. the job placements. and the remote execu-
tions Table I shows some of the results for Sun-2 workstations with 2 MB of memory and
a .Com Ethernet board Note that all times in the table are real time delays and are aer-
ages of a few hundred to a few thousand repetitions The measurements were taken on
empty hosts When the system is loaded, the delays become longer and their variance
increases For locally executed jobs, the average overhead is very low, typically 5-10 mil-
liseconds, and is mainly due to searching the job list in the C-shell. and. in case the job

_0'

U).
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Table 1. Load balancing overhead measurements

extract load info. from kernel and send out a message '500 bytes, 14.5 ms

receive a load message and store into load vector (500 bytes, 5.7 ms

placement request by C-shell to LIM (round-trip)

to local LIM 23.8 ms
m to remote LIM ( for CENTRAL) 52.9 ms

remote job execution overhead incl. placement by local LIM,

assuming R-shell already set up) 325 ms

start an R-shell setup) 5 sec

-4 name is on the list, to querying the LIM. The delay due to a LIM query plus the overhead

- r,: of remote execution is highly variable, depending on the loads of source and destination
hosts. On the average, it is a few hundred milliseconds. This assumes that an R-shell has
already been set up on the destination host. Otherwise, several seconds of additional delay
may be incurred. Overall, the overhead of load balancing seem to be quite low With an
exchange period of 3 seconds, load information updates cost from one to a few percent of
CPU time on Sun-2 workstations. The delay due to remote execution is hardly perceivable
by an interactive user, and is very small compared to the average job response time. which

is in the range of a few tens of seconds

3. EXPERIMENT DESIGN

Before we discuss our experiments, we need to describe the performance index used to
assess and compare the performance of different systems or algorithms. Since we are
interested in an interactive computing environment, the mean response time of all the jobs
executed during a measurement session seems to be an appropriate performance index.
However. the response times of jobs executed remotely in the background turned out to be

difficult to obtain in our implementation. Instead. we made use of the Fystem accounting

facility to obtain the response times of all the processes executed during a measurement
• .' .: session, and used the mean process response time as our performance index. For the execu-

tion of most of the jobs, only one process is created, so the two indices are the same, except
for the command line processing in the C-shell. which is not accounted for in the process
response time. For a few commands (namely, cc. lint, and ditroff), however, several

processes are created, and their response times are all considered in computing the mean.
The overhead of load balancing is accounted for by measuring it during the experiment run
and adding it to the process response times. Another important concern in system perfor-

I?', mance usually is the predictability of the process response times. In many cases, making
the response time more predictable is at least as important as reducing the mean. We use
the standard deviation of the process response times as a measure of predictability.

'e.#': ,: oNL 2A, 2€..'" '. ". ... .. ''. ., ,. Z.""~.-... .. "x"." .?. .," .".' ." .". ' . " .",.* ""'', ,. .''.. '.-', .' - - ''- ' "' A'' '



. .... . T . . .... I. .

We identify four major factors that affect the performance of a load balancing system.
4First, load indices that capture the current load conditions and are, preferably, capable of

predicting host load in the near future are of crucial importance. A poor load index may

cause job transfers that do not contribute to balancing the load of the system. and might

even make things worse. Secondly, the algorithm used for load balancing determines the

cost of distributing load information, and the quality of job transfers. Thirdly, the perfor-

mance improvements due to load balancing are dependent also on the workload the system

is subjected to. The workload will be characterized along two dimensions, which will be

considered as independent factors: that of its intensity, i.e., its magnitude, and that of its

mobility, i.e.. the fraction of the workload as defined in Section 5.21 that can to be executed

remotely. Lastly, the underlying implementation of the load balancer certainly impacts

load balancing performance, but since the implementation is fixed in our case, our measure-

ment experiments only explore the remaining three dimensions. More specifically. we vary

one factor at a time and study its influence. A number of levels or values are assigned to

each of the factors, as listed below.

" Load index: instantaneous CPU queue length

time-averaged CPU queue length

linear combination of averaged CPU. pagingswapping, and 10

queue lengths averages of different intervals

* Algorithm: NoLB. DISTED, GLOBAL. CENTRAL. LOWEST. RANDOM

each algorithm has a number of adjustable parameters

" Workload intensity: each host uses one of three types of artificial workloads: :4

light 1Li. moderate (M,. and heavy, H.
A system workload is a combination of the host workloads So. for

a system of six hosts, we studied the following comhinations:

2H. 2M. 2L cacnonical workload: 5H: t6M: 6L '..

" Workload mobility: several values of the immobilitY tJitor ,see Section 5 2,

The problems concerning load indices are very important. In FerrariSj. a linear 1771
combination of resource queue lengths. with the corresponding job resource consumptions

as coefficients, is proposed as a load index based on mean value analysis. and an experi- '-

mental evaluation of that index is presented. That work is carried forward in Ferrari8 7 ;

where a measurement-based evaluation of a wide range of load indices using the implemen- S
tation described in this paper is presented. Instead of repeating the results of that

research, we shall just use the load index that we found to be among the best. that is. the

sum of the process queue lengths of the CPU, the paging system, and the 10 system. aver-

aged over a 4 second period. Note that this equals the total number of processes ready to

run and executing, being paged/swapped, and doing file 1,'0, respectively We have

described the algorithms we study in Section 2. and Section 4 will present the results using

the canonical workload.

l~sX. ,X'4, - . .,- *"" "4.. . .
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5"% The construction of workloads accounted for most of our efforts in the design of the

experiments. On the one hand, since a high degree of repeatability of the experiments was

felt to be absolutely necessary, we used artificial workloads. On the other hand, we want

these workloads to represent real workloads reasonably well. so that we can have

confidence in the realism of the results. We traced a production VAX-. IL780 running

under the Berkeley UNIX 4.3BSD system [Joy83, McKusick851 for an extended period of

several months and analyzed the types and frequencies of the commands executed by the

system. On the basis of such an analysis, we selected a number of frequently executed com-

mands, as listed in Table 2, and used them to construct scripts, i.e, streams of commands.

Table 2. Commands used in scripts and their eligibilities for remote execution

command elig. function command elig. function

cat N ciew a file Is N directory listing

"',.'cc Y C compiler man Y manual page clewing "',

cp N file copying mt N move a file

date N current time Inroff Y text fbrmater

df N file system usage ps N process checking

ditroff Y text formater pu,d N current directory

du N disk usage rm N delete a file

eorep tcrt ntttern ;earch ;ort N file -,orting

eqn Y equation tormuter spell Y ipelling checker

tgrep t,.t pattern ;enrch thl Y tahle forfnater

linger N ,ter in[I)rmttof trff Y text forrnater

grep Y text pattern iearrh uptime N ,v,;tern tuptirne
gn Y graph printing users N list t current t seri

lint Y C program checker tIC N word otint in a file

pq N printer queue check who N user into'rmation

To obtain various levels, or intensities, of load, such as those characterizing multi-user sys-

tems. we ran a variable number of the jobs in the background. Also, we simulated user

think times by the "sleep" command. The scripts are classified into three levels: light,

moderate, and heavy, with a number of distinct scripts constructed for each level so that
hosts subjected to the same level of workload can use different scripts. The ranges of CPU
utilizations and mean load index values of the three levels of scripts are shown in Table 3.* . '.

Each script runs for about 30 minutes on a Sun-2 workstation. Job and system perfor-

mance statistics, such as resource demands. response times, resource utilizations, and
resource queue lengths. were measured throughout each run.

% % %.9 -.'" -. . ", * . -''' .".- ' -% f.".'.'. , ."" '", . ."" '", .-
*. . 4....-... . ...... . . . ...... .... .... . . . ....... i-......*..-t-..J. --...--.- *-* ....z . . ;.g'4£ .. $--.--. A**p *X: t
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Table 3. Characterization of the workload levels

type CPU utilization average load index 1
light 30-45% 0.3-0.7
moderate 60-70% 1.0-1.8
heavy 70-85% 1.8-3.0

As in any measurement experiment, we must consider the variability of the experi-
mental environment, and, therefore, that of the measurement results. In dynamic load
balancing, the placement of each job may vary from one run of the experiment to the next,
because of the unavoidable variations in the timings of the events. (This problem was I
further complicated in our experiments by the fact that we had to share the file server and

% the network with other parts of the research community. We tried to minimize this impact

by running the experiments during the night.i Thus, we repeated the same experiment a ,,
.r. number of times , typically 6). and computed the mean and the 90% confidence interval ,CI)"'

*of the performance indices over these replications.

4. COMPARISONS OF ALGORITHMS

We first compare the performances of the algorithms, then study the effects of the
adjustable parameters for the algorithms.

Ll. Basic Comparisons

To compare the performances of the five algorithms described in Section 2. we applied
each of them to a system of six Sun-2 workstations running the canonical workload
described in Section :3 With this workload, two of the six workstations were subjected to
heavy job scripts, two to moderate scripts, and the remaining two to light scripts. For each
of the algorithms, we varied the adjustable parameters iconsidered as secondary factors;.

-- such as the local load threshold T.. the load exchange period P for the periodic policies, and
the probe limit L, for the non-periodic policy LOWEST,. in order to achieve the best per-
formance under that algorithm. For algorithm. Table 4 shows the mean response time and
its 90'5- confidence interval, the percentage improvement in response time relative to the
NoLB case. the standard deviation of the response times and its percentage improvement,
and the values of the adjustable parameters used in the run.

The first observation one can make about the results in Table 4 is that load balancing
can indeed improve system performance substantially. The canonical workload was con-
structed to reflect a loading situation commonly observed in production environments: some
workstations are loaded, while others are not. By transferring jobs from heavily loaded
hosts to lightly loaded ones, the mean job response time can be improved. Comparing the ko

All confidence intervals in the tables and figures of this paper have been computed with . 90%
confidence level

d-7



-14-

Table 4. Performance of the algorithms (all times are in seconds)

replication count: 6
* total number of jobs per run: 501

total number of eligible jobs per run: 254 (50.7%)
total number of processes per run: 766 (1.53 processes/job)

average process execution time: 7.45
approximate average CPU utilization for NoLB case: 60%

Algorithm Resp. Time Improv. Std. Dev. Improv. Parameters

NoLB 53.3 *0.83 0.0% 90.1 0.0% -

DISTED 36.4 *0.09 31.7% 50.6 43.8% P =15, Tr= 0.8

GLOBAL 32.6 *0.67 38.9% 43.6 51.7% P=5, Tr=0.8

CENTRAL 33.7 *0.54 36.8% 48.5 46.8% P=i0, Tr=0.8

LOWEST 31.8 *0.37 40.3% 42.8 52.5% Pr=4, Tr=0.8

RANDOM 39.9 * 1.21 25.2% 62.0 31.2% T, = 1.0

improvements in mean response time and those in the standard deviation of the response
times, we notice that the latter is reduced more substantially. This means that the job
response times are more predictable with load balancing than without.

The performances of the algorithms, except that of RANDOM, are quite close to each
other. In Section 2, we described the algorithms and pointed out that, in the periodic algo-

rithms, the information is ready when a job is to be placed, and the "best" host in the sys-
tem is selected. However, the periodic updates incur higher computation and communica-
tion overhead than the polling method used by LOWEST, and the load information used in

placements tends to be less current than that in LOWEST. Comparing DISTED and GLO-
BAL, we see the adverse effect of the excess use of broadcast messages, as the two algo-
rithms are the same except that, in GLOBAL, a master is used to collect and distribute
load information. As a result, only the master has to handle N messages per period P,
where N is the number of hosts, while all the other hosts need only to send one message

and receive one during each period. For more discussion of the overheads of distributed
and centralized load information exchanges, the reader is referred to [Zhou86].

A complete evaluation of the qualities of the algorithms cannot be done using a sys-

tem of only six hosts. However, since our measurements agree well with our simulation
results (Zhou86], we feel confident about those results. We simulated systems with 7, 14,
21, 28, 35, 42, and 49 hosts, and found that the scalability of the GLOBAL and CENTRAL
algorithms is very good. Their performances are comparable to that of LOWEST
throughout the range of system sizes. On the other hand, the performance of DISTED
becomes worse as the system grows larger, since, in DISTED, the information exchange

overhead per host is linear in the number of hosts.

A.i
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4.2. Adjustable Parameters

The performance of load balancing is dependent on the parameters used in the algo-
rithms. While it is impractical to explore all the possible variations, or even to present in
this paper all the experiments we performed, we show the effects of the three most impor-

tant parameters, namely, the load exchange period P, the local load threshold T,, and the
probe limit Lp, on three of the algorithms, GLOBAL, RANDOM, and LOWEST, respec-
tively. For all cases, the canonical workload is applied to the six-host system, and the
brackets around the data points show the 90% confidence intervals.

The mean process response times of GLOBAL using various values of P is shown in
Figure 2.

M GLOBAL
e Tr .8
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. ,. Load Exchange Period (second)

~~Figure 2. Mean process response time under various load exchange periods P P
~~(Canonical workload, GLOBAL, Tr 0.8). '"

,. When the exchange rate is too high, the overhead outweighs the benefit of up-to-date infor-

-," mation. On the other hand, if the rate is too low, the information may get too stale, and"- '

' performance suffers. The optimal exchange rate is also dependent on the workload.

'..- Specifically, the rate should be higher if the job arrival rate is high and the average -

,.. resource demands of the jobs are low. This is the case in our simulation studies for multi- .

: user time-sharing systems. It is remarkable, however, that substantial performance gains i.

~are still achieved with an exchange period as long as 60 seconds. At that point, it becomes

• ",-quite possible that multiple jobs are transferred during the period to a host that used to be

... lightly loaded, and actually make it overloaded. This form of system instability is called-..

3.0.

host overloading [Zhou86L. The message here seems to be that a load balancing system can

Fcue
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tolerate a certain level of host overloading without suffering substantial performance

degradation. ,I.
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• Figure 3. Mean process response time under various local load thresholds T,

.,.: ' (Canonical workload, RANDOM).

", -'Similarly, there are conflicting requirements for the local load threshold Tr. On the
one hand,. sufficient number ojbshave to be transferred between the hosts in order to

one e

-. balance their loads. On the other hand, however, an excessive amount of job transfers will

.. increase system overhead, and may even cause severe host overloading. This tradeoff isI
i,. illustrated by Figure 3, which shows the relationship between the mean response time and

'-. the local load threshold for the RANDOM algorithm, which uses Tr as its sole parameter.

Again, the optimal threshold is dependent on the load level of the system. If all the hosts

,'"'.''. are subjected to heavy workloads, T should be set relatively high to avoid unproductive job

s ;.-. transfers.

- '.'-We also studied the performance of LOWEST with various values of the host probe

limit L,. The results are displayed in Figure 4, which shows a minimum like those in Fig-
/, ures 2 and 3.

iT

From Figures 2, 3, and 4, it is clear that the parameter values of the algorithms

should be dynamically adjusted as the system load conditions change over time, in order to

keep obtaining most of the performance gains of load balancing. Load balancing algo-

rithnms that dynamically adjust their parameters may be called adaptive algorithms. Such
adjustments require system wide load information. It seems likely that the algorithms that

...
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'
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Figure 4. Mean process response time under various probe limits LP

'Canonical workload, LOWEST, T, = 0.8).

actively exchange such information among the hosts will be better capable of making
parameter adjustments. Furthermore, the introduction of a central agent should facilitate
this task. as parameter adjustment decisions can be made by the central agent quickly and
effectively, and propagated to the other hosts. In this regard, GLOBAL and CENTRAL
seem to be more suitable for adaptie load balancing than LOWEST and DISTED

5. PERFORMANCE UNDER DIFFERENT WORKLOADS

The previous section compared the performance of the algorithms using the canonical
workload. In this section, we study load balancing performance under different workloads.
We first study workloads of different intensities, then study those with different levels of
mobility. The GLOBAL algorithm was chosen for this part of the study.

5.1. Different Intensities

Tables 5, 6, and 7 show the values of the performance indices and their improvements
relative to the NoLB case when all hosts in the system are subjected to heavy, moderate.
and light load, respectively. Although the load level is the same for all the hosts,
separately constructed scripts are used so that no synchronization effect will occur.

Load balancing can provide performance gains due to two factors: long-term system
load imbalances and short-term load imbalances. For the canonical workload, significant
differences in host loads over the entire run (long-term imbalances) exists, so the

%~ N,%



:" - t8- ]

Table 5. Five hosts with heavy loads P= 10.0 sec. Tr= 1.0)

Algorithm Response Time Improvement Std. Dev. Improvement

NoLB 87.0 -2.03 0.0% 121.4 0.017%"

GLOBAL .59.4 t0.15 31.7%"c 75.9 37.5 -_

Table 6. Six hosts with moderate loads (P 10.0 sec. T, 0.8"

Algorithm Response Time Improvement Std. Dev. Improvement

NoLB 49.5 ±0.27 0.00 72.4 0.0c

GLOBAL 39*4 ±0.44 20.51 57.5 20.6c-e

Table 7. Six hosts with light loads P= 10.0 sec, T,= 0.6 1

Algorithm Response Time Improvement Std. Dev. Improvement

NoLB 28.7 -0.65 0.0% 38.7 0.0% '

.GLOBAL 252 -0.52 12.2' :31.4 18.9.

performance gains can be easily explained For the workloads used in this section. how-

ever. the hosts are similarly loaded, yet sizable reductions in response times are observed

for the heavy and moderate workload cases These gains can only be attributed to the

short-term host load imbalances. At any particular point in time. some hosts are likely to

be significantly less loaded than others, hence transferring jobs to them will reduce the

. 00_overall mean job response time. The distinction between senders and receivers is not clear

here: a host may be overloaded at one time and transfers jobs out, and underloaded later

.." and receives jobs from other hosts.

A comparison between the response time reductions in the three cases show that the

*higher the system load, the greater performance improvement may be expected This is

intuitive, but also highly desirable. Also, it should be noted that the reductions in the

standard deviation of the process response times when the hosts are evenly loaded are not

as large as in the long-term unbalanced case in Section 4.

The reader may have noticed that. while six workstations were used for the moderate

and light workloads. only five are used for the heavy workload. This is because in the

latter case the file server was heavily congested by file requests. In our system, all the

workstations get their files, and all but two of the workstations do remote paging and swap-

____ ping, from a single file server, which is also shared by other workstations, and is simply

another Sun-2 workstation configured with disks When the six workstations are active,

the load on the file server becomes higher than that on the workstations, even for the

moderate workload case. With a heavy workload, the file server can be overwhelmed with
% =% %
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file access and paging requests, with its average load index going up to 6 and over. Our
experience agrees well with the results of a performance study of diskless workstations by
Lazowska et al., in which the authors concluded that the file server's CPU tends to be the
first resource in the system to saturate [Lazowska84]. With the file server's CPU being the
focus of contention, the system is no longer correctly configured, and the potential benefits

of load balancing are overshadowed by the negative impact of a major 1/O bottleneck. We
conjecture, therefore, that greater performance gains are possible if more powerful and/or
multiple file servers are provided. A load index value of 3 is considered to represent a N7,
heavy load in our workstation environment, but may be considered quite normal in corn-
pute servers or time-sharing systems. With the possibly higher loads in those types of
environment, the utility of load balancing should be greater.

5.2. Different Mobilities

In any computer system, there exist jobs that perform local services and.,or require
local resources, and hence cannot or should not be transferred by the load balancer. Exam- "'"
pies include system servers, login sessions, mail and message handling programs. and
highly interactive jobs such as command interpreters and text editors. These jobs are
bound to have an adverse impact on load balancing performance. as the choice of jobs to be
transferred is now limited. In [Zhou86], we studied this problem and defined as LmmobItlitV

factor f the percentage of jobs that cannot be transferred. In this paper, however, we find it
more convenient and accurate to define the immobility factor as the percentage of CPU
time consumed by the immobile jobs over all jobs. The impact of immobile jobs on the

mean response time is depicted in Figure 5. The different values of the immobility factor
ihown in the graph were obtained by changing the list of eligible jobs in the configuration ..
file, as we can easily measure the total amount of CPU times consumed by each type of
jobs. and compute their respective percentages of the total. Note that the canonical work-
load used in all the previous sections corresponds to an immobility factor of 0 17 As we
have observed in [ZhouS6] using trace-driven simulation, the curves are distinctively con-
cave. Even when the immobility factor is as high as 0-S i.e.. SO' of the workload is iimmo-
bile, most of the performance gains of load balancing are still retained. This seems to sug-
gest an characteristic of load balancing: only a small percentage of the jobs need to be
transferred among the hosts to achieve effective load balancing. For a wide range of immo- .-

bility factor values and other adjustable parameters, we have observed that only less than
half of the eligible jobs are actually transferred.

6. EFFECTS ON INDIVIDUAL HOSTS AND JOB TYPES

In the above two sections, we have studied the influences of the two major factors,
namely. the algorithms and the workloads, on load balancing performance. We go into
more detailed studies in this section by examining the impact of load balancing on the load-

ing and performance of the individual hosts and on the response times of each type of jobs.
P.it
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Figure 5. The influence of immobile jobs (Canonical workload, GLOBAL).

6.1. Effects on Individual Hosts

Although it is now clear that load balancing can improve system-wide performance,
its impact on the loading of individual hosts is equally important, especially in a worksta-

tion environment. Figure 6 shows the average load index value of each host throughout a

run. and with different values of the immobility factor f. We see a significant reduction in
the loads of all the hosts except those that were originally very lightly loaded. This is a

confirmation of the reduction in the average response times we observed, and is in agree-
ment with the Little's result. We also notice a strong equalization of the hosts' loads: as
the immobility factor goes from 1.0 down to 0.17, the hosts' loads are compressed into a
narrow range. Thus the term "load balancing" is truly appropriate in our case, even
though none of the algorithms we studied takes it as its explicit objective.

The fact that the loads of the hosts tend to become balanced on the average does not
necessarily mean that they are balanced during shorter intervals, which would be highly
desirable though. Indeed, this is shown not to be the case by Figure 7, where the 20 second
average load index (instead of the 4 second average used earlier in this paper) is plotted as
a function of the time during a run. Several comparisons may be made using the plots.
Comparing the loads of the hosts without load balancing, we see significant differences in
loads. These differences are substantially reduced by load balancing. However, there still
exist load fluctuations in each host. Our load balancer operates at the job level, and several

processes may be created by a single job. As long as those processes are treated as an

.ok
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Figure 6. Loads on hosts, with various immobility factors
(Canonical workload, GLOBAL, P = 10.0 sec, T,= 0.8).

inseparable group, temporal fluctuations in load seem unavoidable. Since smoothing the
hosts' load over time is highly desirable, we conclude that load balancing at the job level
using initial placement only has the drawback of not being able to eliminate temporal
fluctuations. On the other hand, it is questionable whether the performance gains due to
further reductions in temporal load fluctuations provided by load balancing at a finer
granularity will more than offset the additional communication and computation overhead.
More research is called for here.

6.2. Effects on Each Type of Jobs

The conjecture could be made that, while the mobile jobs will generally benefit from
load balancing, the immobile jobs will not benefit much, or not at all. Our measurements
contradict this conjecture. Table 8 lists the mean response times of each type of jobs exe-
cuted during the runs with and without load balancing. All times are in seconds, and the
percentage improvements are provided following the response times for the load balancing
case.

The average response times of all types of jobs are reduced, and, with only a few
exceptions (cp, date and finger), the reductions are uniform across the board. There is no
clear difference in improvements between different classes of jobs, big or small, mobile or
immobile. While the response time of a job to be transferred will improve because it will be
executed on a more lightly loaded host, those of the jobs already running on the initial host4,'
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improvements can still be retained when up to 80% of the workload cannot be transferred

between the hosts. While we observed that load balancing has strong equalization effects
on the individual hosts' loads over the entire measurement runs, there still exist temporal
fluctuations in host loads. We attribute this drawback to the fact that several processes
may be created by a single job, and suggest that load balancing at a finer granularity be
studied to see whether this conjecture is correct, and whether such fluctuations can be

advantageously reduced.

Five source-initiated load balancing algorithms were studied that used different
methods to distribute load information and perform job placement. We find that algorithms
using periodic load exchanges and those acquiring such information on demand provide
comparable performances. For the former class of algorithms, the use of a central agent to
collect and distribute load information reduces the computation and communication over-
head. and hence provides better performance. The centralized algorithms are also better
suited for adaptive load balancing, in which the algorithm andor its parameters may be
changed dynamically. On the other hand, distributed algorithms such as LOWEST gen-
erally impose lower overhead, scale better, and are more reliable. We also find that the
performance of load balancing is, to various degrees, sensitive to the algorithms* parameter
values.

As well as load balancing algorithms and their parameters, workloads also have a
strong impact on performance. Generally speaking, the higher the load, the greater the
imbalances in the hosts' loads (both long-and short-term), the greater the performance
improvements that may be expected. Short-term imbalances can be as profitably exploited
as long-term imbalances, as demonstrated by the performance gains when all the hosts are
subjected to similar levels of loads.
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