Productivity Engineering in the UNIXt Environment

Me FiLE CORY

An Experimental Study of Load Balancing Performance

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

AD-A179 322

“The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government.”

Contract No. N0O0039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

tUNIX is a trademark of AT&T Bell Laboratories

DISTRIBUTION_ STATEMPNY &
Approved for publif: geleosa;
l Distribution Unlimited __ 8 7 4 A e 1

20 Bt 0P B T B RSP S S SRR U ST o B VL SRR S o SR VR P o S SRR R R S SR S DS R R O Ve S R PR PR 1)

SECURITY CLASSIFICATION OF THIS PAGE

e
1a. REPORT SECURITY CLASSIFICATION
unclassified

e o o v Y T Tro B Tt T S v oo oy
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(If applicable)

6a. NAME OF PERFORMING ORGANIZATION
The Regents of the Universit

of California

7a. NAME OF MONITORING ORGANIZATION
SPAWAR

6¢c. ADDRESS (City, State, and ZIP Code)

Berkeley, Califormia 94720

7b. ADDRESS (City, State, and ZIP Code)
Space and Naval Warfare Systems Command
Washington, DC 20363-5100

8b. OFFICE SYMBOL
(f applicable)

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

DARPA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRESS (City, State, and ZIP Code)
1400 Wilson Blvd.

Arlington, VA 22209

10. SOURCE OF FUNDING NUMBERS

TASK
NO.

PROGRAM PROJECT WORK UNIT

ELEMENT NO. NO.

ACCESSION NO.

11. TITLE (Include Security Classification)

*

An Experimental Study of:lLoad Balancing Performance

12. PERSONAL AUTHOR(S)
% Sohgnian zhou and Domenico Ferrari

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [\SA PAGE COUNT
technical FROM TO % January, 1987 *
16 SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

Enclosed in paper.

'9. ABSTRACT (Continue on reverse if necessary and identify by bliock number)

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT
& uncLASSIFIEDAUNLIMITED [T SAME AS RPT.

[oTIC USERS

21, ABSTRACT SECURITY CLASSIFICATION
unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

220 TELEPHONE (inc/ude Area Code) | 22c. OFFICE SYMBOL

DD FORM 1473, 82 MAR

L

R

-

83 APR edition may be used unti! exhausted
All other editions are obsolete.

‘e
R PR
g

.
- W

SECURITY CLASSIFICATION OF THIS PAGE

- -y R IR

' . ‘b -.._ = N W
P, .o _~ . . e
-Inl-l.Anx.-.).\J ' ‘{ e BRI

.-.- -‘~.‘.

mh '.A.l Ai an

T TN TR TR T T TR T A TN IR TN U LW T T W I

N

5

Ap-ALI7 2L ;
e C

REPORT DOCUMENTATION PAGE)
1b. RESTRICTIVE MARKINGS 5

«

3. DISTRIBUTION/ AVAILABILITY OF REPORT §
unlimited :

K

AT e T e e

.
v

o

PO N4 S

A ety te et
R

EIRSRETIRS ;4§

| §
.

A7 F Y

GO e

2 2 I3
AT A

Y SR

R, T

[

pd

SECURITY CLASSIFICATION OF THIS PACGE

=

)

g
‘a
i

Polk 0 L
PR
el
&I

.

Pt Wl

.
)

s

‘l
R
P

i {5

N .
LN

4

RS

. v e
)
P
-
2L S

B
s
Ty

7

O
A,

P

v"}']‘.“.'

A

PR IPE I
S0
I
A
P I |

.

..

row
Y
SECURITY CLASSIFICATION OF THIS PAGE i

~ o " L% % e e TR ™ '..!‘. N AT A T 4": P _‘-" '4\ -
A A S S e g s e LR O e AR

An Experimental Study of Load Balancing Performance

Songnian Zhou and Domenico Ferrari

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley*

ABSTRACT

AT T

-~

The design and implementation of a prototype load balancer on a
loosely-coupled distributed system are discussed, and the results of a large
number of measurement experiments performed on the system under
artificial workloads we constructed using frequently executed system com-
mands are presented. The impacts on the system’s performance of the load
balancing algorithms, as well as of the values of their adjustable parame-
ters, and of the various types of workloads. are evaluated. The effects of
; load balancing on the performances of individual hosts and on each type of
' job are also quantitatively investigated using measurements. The results of
our study show that automatic load balancing at the job level can have very
beneficial effects on the mean and standard deviation of job response times
while causing little overhead and requiring no modification to the system
kernel or to applications programs. This is the case even when only a rela-
tively small fraction of the jobs can he executed remotely, and the reduction

in response time is uniform across all job types, including those that are not
moved for execution to another machine. f R 1}

st e 4 L gouidwa

% SR ~)
i

> <

1. INTRODUCTION

As distributed computing systems become increasingly popular, resource sharing
among a number of computers connected by communication networks becomes feasible and

use the term load balancing in the rest of this paper, but not necessarily with the stronger connotation. el jor

Nl SR ‘

i

lﬂ:!_i e

] NG N A0 RELPET O G 3 A % 4 Ry S5y 0y AT 4 G TR, R TR S P G S F U Ve S v)
R T T o T e W S W N AP T w0 N W AN L W W U LA WU AL L S

.
| desirable. Some of the possible resources to share are computing power, data, and
| hardware devices. The sharing of computing power is usually in the form of load balanc- ?
i ing, or load sharingt, and has been studied in various forms for several years. To be more
0

} t This work was partially sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa u
t Order No. 4871, monitored by Space and Naval Warfare Systems Command under Contract No.
{ N00039-84-C-0089, and by the National Science Foundation under grant DMC-8503575. The views and T
i conclusions contained in this document are those of the authors and should not be interpreted as

representing official policies, either expressed or implied, of the Defense Research Projects Agency or of il
! the US Government.

t The term load balancing has sometimes been used to imply the objective of equalizing the loads of the _; Codes
; hosts, whereas load sharing has simply been taken to mean a redistribution of the workload. We will
|
|
[

N NEE T T W Ty v Tt T L L A AR R R T e e e T

[SURENENAS

_',
Pyl
«a'a

.

RN

W]

specific, load balancing is the process of redistributing the workload submitted to a network
of computers to avoid the situation in which some of the hosts are congested, while others
are underloaded. As a result. system performance. e.g.. job throughput rate or job response
time, is likely to improve.

A variety of approaches have been employed to study load balancing. including
graph-theoretical methods [Stone77, Stone78, Bokhari79., Wu80], queueing network
analysis [Chow79., Livny82, Rama83, Wang85. Eager86a, Eager86b], simulation
(Bryant81, Livny82, Leland86, Zhou86], experimental implementation [Hwang32,
Bershad85, Hagmann86. Ezzat86], and measurements [Ezzat86]. In {Zhou86], one of the
authors describes a trace-driven simulation study of load balancing. In that study. job
information collected from production systems was used to drive the simulator of a distri-
buted system containing a number of hosts. Load balancing was found to be very effective
in reducing both the average and the standard deviation of job response times. Comparis-
ons were also made among the performances of a number of load balancing algorithms.
Encouraged by the results of this study, and in order to gain further insights into a number
of issues, we implemented load balancing on a cluster of diskless SUN-2 workstations run.
ning in our distributed systems laboratory under the SUN. UNIX* operating system. con-
nected by an Ethernet and supported by file servers. This experimental environment
enables us to conduct measurement studies of load balancing.

Our purposes in implementing a prototype load balancer and doing measurements on
it were several-fold. First., we were interested in investigating the feasibility of load
balancing in a UNIX environment. We wanted to experiment with various load indices
proposed by other researchers as well as by us. in order to determine one or a family of load
indices suitable for load balancing. We wanted to compare. in a more realistic environ-
ment, the algorithms we had studied using simulation in order to validate our results. and
to tune our simulation model so that it can be used. with more confidence. in exploring
parts of the design space unreachable by our implementation. We also wanted to assess
quantitatively the amount of overhead introduced by load information exchanges and job
transfers between the hosts. Finally, we hoped that our experimental implementation can
serve as a base for a production load balancing system.

While a number of implementations of load balancing have been reported. as will be
discussed in the next section, measurements have not been used as an impbrtant approach
to the study of load balancing performance. [n [Bershad85], some comparisons of the job
response times before and after the installation of the load balancer were provided. Hag-
mann presented a set of measurements of the costs of remote job executions {Hagmann36].
Ezzat reported some performance figures of load balancing in the NEST system with 3 hosts
driven by benchmark programs (Ezzat86]. We intended to use measurements as our pri-
mary method of study in this research.

The design and implementation of our load balancing system, and some of the meas-
urement experiments we performed on it, are reported in this paper. The important results

t [UNIX 13 a trademark of AT&T Bell Laboratories

‘B con s an Aol). ASe-ars e e Abe AU MRS AWM St ACE Al ied il L e e d Al Ak adh Aol Aal Rak

A
e

-

) . .

, from our study include the following:

.s . transparent, flexible load balancing at the job level can be achieved at a low cost, and
EA without modifying either the system kernel or any of the existing application pro-
i grams;

.

) . load balancing is capable of substantially reducing the mean of the process response
o times (up to 30-40%, and their standard deviation ‘up to 40-350%, especially when the
= system is heavily loaded, and or the instantaneous loads on the hosts are appreciably

unbalanced;
:-, . a number of “reasonable” load balancing algorithms using periodic load information
_.:: exchanges or acquiring such information on demand produce comparable performance

::: improvements;

* . load balancing can still be highly effective when only a small fraction of the workload

idown to 20%, in terms of CPU time consumption) can be executed remotely:

A

- . the relative (percentage) reduction in response time is uniform across all classes of
:-:} jobs, mobile or immobile, big or small.
o~ . load balancing at the job level has limited ability in reducing the temporal fluctua-

tions in the load, mainly due to the generation of multiple processes by some single
'j jobs: balancing at a finer level re.g., process or task: may be able to reduce temporal

- load fluctuations further. at the expense of increased communication overhead:

}_: The rest of the paper is nrganized as follows. The design and implementation prob-
' lems we dealt with are discussed in Section 2. In Section 3. we describe the design of the
. measurement experiments. including the artificial workloads we constructed. The results
SO

. of the experiments are presented in Sections 4. 3, and 6, with Section 4 comparing the ulgo-
rithms used for load balancing and assessing the importance of their adjustable parameters.
Section 5 studying the effects of the workloads on load balancing performance. and Section
£ discussing the influence of load baluncing on ndividual hosts and job types. The major
results are summarized in Section 7

N
- 2. DESIGN AND IMPLEMENTATION

s
"" We briefly review existing load balancing systems first. This prepares us for a presen-
_ tation of the basic design and implementation of our prototype load balancer Next. we
<. describe the load balancing algorithms we have implemented and studied. and. finally. we
':'_: provide some results of our overhead measurements.

I

‘X

y 2.1. Related Works
W
i A number of load balancing implementations have been reported in the literature
D> ; - .

>, "Hwang32. Hagmann85, Bershad85. Ezzat36]. In almost all of them. a special syntax for
1)
:_J, command submission has been introduced to inform the system that the command is eligi-
¥ .
Lo ble for load balancing. In some cases. a specially constructed version of applications
[~ 7 software is needed for remote execution. The operating system had to be changed in many
:-_'; cases (n order to make remote execution possible.

L4
\"'

¢

."\

o = ST e S S A T I

.'.'....“ B -_-_ - {'. - "-’fi _f.(,.*,*-'\
LR A -.'.}_m_n}f;}.a:' ".h.aa_.* RIS R)-. PRI VA rchl«‘:.r':t} w

A~ e
R SRR R SR A R N I
“\"J‘J‘_‘*}-'a O 3 L0 TP iy S S SR I S SN SRR SR R VI AP PE. PR Y. PH DA

PP T OO T ‘maag sk ds dh aan ais ae A-Sd and ged el

The earliest implementation known to the authors was done at Purdue University in
a UNIX environment {Hwang82]¥. Special versions of compilers, assemblers, and text pro-
cessing programs were constructed that called a system scheduling routine, rxe. to deter-
mine a “lightly loaded” destination host for execution. A modified form of the UNIX load
average®, with considerations for the machine heterogeneity, was used as the load index.

Bershad implemented a load balancer for the Berkeley UNIX 4.2 BSD operating sys-
tem (Bershad83]. Like the Purdue system. only a few programs with large CPU time
demands !"CPU hogs'™ were considered. and the program and data files had to be explicitly
moved to the execution host due to the lack of a distributed file system. System servers
‘daemons. in UNIX terminology' were used to exchange and maintain load information
represented by load averages, and to create remote jobs upon user requests

The Process Server implemented at Xerox PARC was targeted for a workstation
environment [Hagmann86). A collection of personal workstations are supported by Process
Servers that may be permanently dedicated compute servers or workstations donated by
their owners when they are not using them. A central agent (the Controller is used to col-
lect load information and perform job placements for the entire system. Each command has
to be modified to make its remote execution possible.

Very recently. a load balancer for the NEST system of AT&T Bell Laboratories has
been reported [Ezzat86]. The load balancer is implemented on a number of workstations
connected by an Ethernet-like local network. The name of a special program. rexec. must
be used as a prefix to any command string to be load balanced. Rexec obtains the hosts’
loads. measured by their respective normalized response times, and transfers the command
to the most lightly loaded host. Care was tuken to use the software and to create tem-
porary files on the execution host trather than on the initizl host) as much as possible, in
order to improve performance.

2.2, System Basics

While the above load balancers have provided much knowledge about load balancing
design and implementation, the requirements of our research were quite different from the
ones of those systems. [n designing our load balancer. we felt the following characteristics
to be highly desirable:

L+ transparency: no special syntax should be introduced. unless the user has some specific
requirements; the placement of a job should be done automatically on the basis of the
system’s load conditions and the job's resource demands:

2y nn or little change to the svstem kernel®: the cost of installing and maintaining the
load balancer should be minimized;

* Both the AT&T Bell Laboratories and the Berkeley versions of UNIX were present in the system

! Load average in UNIX s an estimate of the number of “active” processes in the system. averaged over
a given penod. ¢ g 1 rminute

(n our implementation. we had to add 4 small amount of code to the ~ystem kernel to generate and
maintain the load index used by the load balancing algorithms. and to provide enough precision for our
measurements No functional changes. however. was made to the kernei

~~ . - e L PRI L P R I I
L A S e e e e P S P IR S

W T T T T T Y WO W T T W

e T TN
e S ke el

T———
.

o

T
2_ 5 _t
2, YAy

.l
‘r

- ST IR Y
SN T NS
PO A I

o 3) no modifications to commands and applications: the code of no existing command
Y
- should have to be modified to adapt it to load balancing;

14y general applicability: we are interested in considering all types of jobs, at least in prin-
ciple. rather than only a specific category, e.g.. text processing commands: also. the
design should not assume some specific system architecture; the same design should
be suitable for time-sharing systems and compute servers, as well as personal works-
tations, provided that certain basic requirements are met. namely. a communication
system and the availability of a distributed file system.

Like the designers of the other load balancers. we were also concerned with the over-
head of load balancing: the remote execution of a job should not incur high overhead in
terms of extra processing and real time delay. Since our implementation is experimental in
nature. we are less concerned with issues such as remote process management and control,
and user interface facilities, which we plan to add to the system for a production version.

There are two basic issues in the design of a load balancing system. The policy issue
is concerned with the algorithm used to determine which jobs or processes should be exe-
cuted remotely. and where. The mechanism issue is concerned with the physical facilities
to be used for remote execution, i.e., with the way a job is transferred to a remote host and
its results sent back. Before these two issues can be studied. however. we have to decide
the level at which load balancing takes place. There are several choices. At the job. or
command. level, the user interface can be changed so that some of the jobs submitted by
the user may be redirected to some remote host for execution. Alternatively. load balanc-
ing can be done at the process level. In that case, the process management module of the
system kernel must he modified to identify processes to be executed remotely A third

el S e T 2

choice is to modify individual applications and incorporate remote execution facilities there
Johnston36]. However. considering our requirements discussed above. the second and
third approaches are to be ruled out.

After the level of load balancing is determined. we still have to decide whether the
jobs or processes are to be transferred during their execution ' process migration . or only at
start-up time (imtial placement). Process migration has been suggested by 4 number of
researchers as potentially more capable of improving system performance Leland36,
Cabrera36j. On the other hand. it is also likely to incur higher overhead. and is very
difficult to implement in such systems as UNIX. In addition. since we decided to do load
balancing at the job level, and multiple processes may be created by a single job. we would
b have to comsider the interactions between the processes explicitly. These considerations led

Ny NN
AT IRIRE

.S us to restrict ourselves to initial job placement in our experimental load balancer.

e Our implementation is based on a modified C shell- implemented at Berkeley by
-;::- Harry Rubin and Venkat Rangan for the Berkeley UNIX 4.3 BSD system running on VAX
'«::} machines [Joy33, McKusick35]. This modified C shell intercepts user commands and exe-
:_:" cutes certain types of commands remotely when the local host is heavily loaded. using the

rexec daemon available in the system. The structure of our system is depicted in Figure 1.

. 1
~
"
-
.
K
S
.

¥y

t C shell 13 the name of the command interpreter 1n Berkeley UNIX operating system |.Joys0}

K ::. t To distingwsh our modified C shell from the standard one. we call it C-shell The R-shell. to be :i
~Nz ~
L L2
x
e e
o . . L.

4 - . - . - - a, . - - LRI WS L IPEL UL N SISy SR S v SRt S S S A P TR AR TRl TR SR
SO T P SR Ty g " LTS DT Y By TN TS S AP Rt A AP A IR F RV A B T SRR P AL AR R IR PRE SRS LTS
(VRTINS Pty T 254 ﬁ'd,\,-,-_-.q.-.-\.-\._-. BRI R, W YR N A AT A q

R > () S Q.! .:".!".§ .‘t'. Q’ L) .Q J !'.J.a’ ~ 3 .'“. : 5 rada " YWY, 1 8,0) . B Lo v

- i L paa fua die A\e . i Sin Atm Bumd ol g gl Yiafl i el iy R ek el Sk 1
L] \
[}
L%]
-6 -
LIM

N R-shell
nn
::./-::. \ \ "
\:':\‘
[N

v LBM

\ \ Host B

L
21 \
:_-;,, remots
t::“‘:: ceuﬁo’vi‘:

N
o

o
o LIM
(NS
-_;‘-_:’. fecement
g User C-shell .
T Jobe "] _é o
:.f;_ Is'd
Lt
I

Host A

1=t
f:ﬁ Figure 1. Structure of load balancing implementation.
Ea

& At startup time, the C-shell reads in a configuration file that specifies a list of names of
e jobs that are eligible for remote execution*. When an eligible job is submitted by the user
.}:::.' to the C-shell, the C-shell contacts a Load Information Manager (LIM), a software module
::-:-: that constantly monitors the loads of the hosts in the system and performs job placements.
;_q_ If the initial host is heavily loaded, while some other hosts are not, one of the remote hosts
Eg 18 selected as the destination for the job. In any case, the placement decision is returned to
b the C-shell. For remote execution, the C-shell contacts the Load Balance Manager (LBM)*
\’ on the destination host, which starts up an R-shell and establishes a stream connection
‘-,:_ between it and the home C-shell. The command line is transmitted over this connection to
;,._\,, the R-shell after the user’s identity has been authenticated and an appropriate user
% environment is set up there. Access control to files and other resources in the system is
,'f';j'.\ automatically enforced as the R-shell assumes the same user identity as that of the home
N -
:zf- described below, shares the same software with C-shell, but is only to receive remote jobs and execute

them.

* This list is part of the context of each user, juat like command aliases, and may be dynamically
modified by the user to suit his or her needs.

t Note that there is one LIM and one LBM on each host.

R et .
ol P N
LT T

W

- § -

‘o C-shell. Since starting an R-shell is an expensive operation as we will see below, we keep
oy such a shell alive after the execution of the first job so that if a later command from the
same user login session is placed on the same host. we do not have to go through the same
process described above. The R-shells on remote hosts act as agents for the home C-shell.
and are terminated when the home C-shell exits. This scheme has the potential problem of
a proliferation of R-shells. However, the code segments of all C-shells and R-shells on each
host are shared, so that, when an R-shell is not active, almost no resources are consumed.

Thus. our load balancing system design is at the job level, and stresses a clear separa-
tion of policy from mechanism. The collection and management of load information. and
the job placement decision-making are performed by the LIMs, one on each host. and
cooperating among themselves in ways dictated by the load balancing algorithm. Only the
initial filtering of jobs by their names is performed in the C-shell to avoid querying the
LIM too frequently. and to allow personalized selection of jobs. The load balancing mechan-
ism. on the other hand. is provided by the LBM on each host. with the cooperation of the
C-shell and R-shell. The separation between policy and mechanism makes it easy to exper-
iment with different algorithms, as only the LIM needs to be changed. In fact. the LIM
software can be constructed so that the load balancing algorithm may be changed dynami-
cally as the system’s size and load change.

We assume that the distributed system includes a distributed file system supported by
one or more file servers. The program and data files of a job do not have to be fetched from
the originating host, but from a file server. no matter where the job is executed. Thus, we
assume that the cost of accessing the files is the same for all bosts. While this is basically
true for the environment in which our load balancer is implemented 'a number of diskless
workstations supported by file servers:. the location of the program and data is an impor-
tant factor to consider in systems where files are scattered on a number of hosts ‘which are
not dedicated file servers:. We decided not to consider this problem in order to concentrate

on the tssues we are most concerned with now.

[
-' ‘l

5

.

CN s

2.3. Algorithms

A
ll -y
W

3
0

A large number of algorithms have been proposed in the literature see "Wang~x5 for

a taxonomy. The problem domain we are concerned with in this research 1e. initial job

xlg

i
x

placement in a loosely-coupled network environment for general-purpose computing. with

,.
L]
Talels
A

distributed job submissions), and our desire to implement the algorithms make many of the

14
&

)

proposed algorithms unsuitable. Also. we are not particularly interested in studying :j::'.'
specific algorithms, but rather in comparing different approaches to load information “-_"
exchange and job placement. Among dynamic algorithms. in which the current system’s ."\
load conditions are considered, two large categories are commonly recognized. In source- o~

3

initiated algorithms, the overloaded hosts actively seek hosts to transfer their jobs to. In

o i

contrast, the underutilized hosts actively look for jobs on overloaded hosts and execute
them in server-initiated algorithms. Since server-initiated algorithms are most suitably
supported by process migrations. as pointed out by Eager et a/. [Eager36a], we will only
consider source-initiated algorithms in this paper.

-"' EPE A ‘e "
MR AN

G L e T L T
AT DO TSI Y.~ E N SRS TR

- ot g e~ Lak"alik ok *ode- o v S oameoan . vocar heu me mae sr fee e e i dion ae beb et Sab det B iind i Aok Ae kel Aeks Aeks Aok hel Ak ol dak
L aliae adiie albd - adhd sl o - - -

s
o
e 8-
\ E_: A load balancing algorithm consists of three component policies. The information pol-
E::.:' tcy decides what kind of information about a host's load (load index) is to be used to make
, ;:\ job placement decisions. and the way such information is to be made available to the
M decision-makers. The transfer policy decides what jobs are eligible for remote executions. 4
o and under what local load conditions. Finally, the placement policy specifies the method '_:
’:,::::: with which a remote host is selected for the execution of a job. These three policies interact ;::
:::.:j-_ in various ways: the placement policy utilizes the load information supplied by the informa- <
-. tion policy, and acts only on the jobs determined to be eligible by the transfer policy. _;_~
".') We implemented and studied five load balancing algorithms that differ in their infor- ":
',J_; mation policies and in the corresponding placement policies. The load index used by all the _"
i algorithms is the same. and will be described in the next section. All the algorithms use -
s the same transfer policy, which is based on the job name. as described in the previous sec- ~
- tion, and on a local load threshold. More specifically. if the name of the job ti.e.. the com- 2
T mand) is on the user’s list. the job is considered eligible for remote execution. and one of the o
:’,: - LIMs is contacted for placement. The LIM checks the load on the job's originating host. .
and will consider the job for remote execution only if the load is above a specified threshold ;::
‘rﬁ T-. Notice that. even in this case. the job is not necessarily executed remotely: if the LIM -
.'i fails to find a suitably lightly loaded host. the job will be executed locally. The algorithms ‘".
:,: we studied are described below. i
o DISTED
T2
P> Periodically. the LIM on each host extracts load information from the local kernel to
. compute the load index. If the new value of the load index is significantly different
- from the previous one, it is broadcast for every other LIM to update its record of this
::::: host's load~. When a LIM receives a placement request from one of the local C-shells.
T it first decides whether the local load is above the threshold. [f this is the case. the
‘.-:;;}:' LIM searches through its list of host load records. selects as the destination the host
:) appearing to have the lightest load. and informs the C-shell of the decisian The job :
:«‘-::- will be executed locally if all the hosts are heavily loaded.
o (;LOBAL
': The information exchunge method used by the DISTED algorithm above 15 straight- .

: K forward. but generates a large number of broadcast messages. The GLOBAL algo- Ll
-_}',’ rithm attempts to cut down the number of messages by employing a master LIM that .
.,j:‘: receives load information from all the other islave' LIMs periodically. and periodically f.:'_*
:;x broadcast the load vector containing the loads of all the hosts. The placement policy ::::
I of GLOBAL is the same as that of DISTED. oY
T CENTRAL =
:' ::'j
e - -i
n * Some refinements to this basic scheme have been implemented For example. the local load i~ broad- T
a, cast once in a while even 1f the local host's load has not changed much. so that other hosts will not as- ﬁ

sume that this host 1s unavailable Also. the local load 15 not hroadcast (f 1t stays above an upper thres. et
o hold T j
o 0

v o
e ¢
b =
R R S s e e P

» e

0

B vl an

;‘r‘§

. 9. i

This algorithm goes one step further than GLOBAL in centralizing the placement

.
ol 3

[

>

decision-making. Not only is the load information collected by the master LIM, but

A
i

also all the placement requests are directed to it. Consequently, load information

flows only from the slaves to the master. and the role of the slave LIMs is reduced to

Ol
.
v %
T
0

’,‘.’...

PAACRE)

that of periodically reporting local load information to the master. If communication

»

s]

is fast and the system’s scale is not too large. this algorithm can support the system
with a low volume of information exchanges. The placement policy of CENTRAL
coincides with that of DISTED except that the master LIM, instead of the local LIMs,
performs all the placements. This algorithm is used in the Process Server [Hag-
mann86.

LOWEST

TR

i
s
(R

Pl od
3

The above algorithms rely on periodic load information exchanges to provide the LIMs
with reasonably up-to-date load information. The LOWEST algorithm acquires such

N

information on demand in a distributed fashion. When a placement request arrives at
a local LIM. this LIM polls a number of hosts up to a limit L. specified by the infor-
mation policy. and selects the host with the lightest load. If the system is large, it
becomes impractical to poll every host. and the placement may be suboptimal. On the
other hand. unlike the above three algorithms. the overhead incurred by the informa-
tion policy of LOWEST is independent of the system's size. This algorithm and the

AR

.

next one were proposed by Eager ¢t a/. [Eager36b]
RANDOM N
This algorithm does not need any load information other than that for the local host.
[f a job is determined to be eligible. a remote host is picked at rundom. uand the job
transferred there. Because of implementation difficulties. no retransfer of jobs is
allowed in our version of this algorithm.
For comparison. we also ran measurement experiments with load baluncing disabled We -
call this the NoLB cuse.

[t 15 recognized that there exist other algorithms that can potentially produce good

2 T

performance The ubove five algorithms were chosen because they are implementuable. and

they represent different approaches to the load information exchange pertodic versus on-

1% .

demand . to the job placement ‘system-wide selection. subset. random . and they are of
varying levels of complexity, with RANDOM being the simplest.

2.4. Overhead Assessment

We measured the additional CPU processing and job delays due to load balancing. -
that is. to the exchanges of load information. the job placements. and the remote execu- .
tions Table | shows some of the results for Sun-2 workstations with 2 MB of memory and
a 3Com Ethernet board Note that all times in the table are real time delays and are aver-
ages of a few hundred to a few thousand repetitions The measurements were taken on '
empty hosts When the system is loaded. the delays become longer and their variance
increases For locally executed jobs. the average overhead 1s very low. typically 3-10 mil-
liseconds. and is mainly due to searching the job list in the C-shell. and. in case the job

T .t e e P UL IR B
LR e A I R I e e,

T AR TRCNS PPN N S T I S

2 e el adad ALAN AR R el s A L TR R s

Table 1. Load balancing overhead measurements

r ! -
i extract load info. from kernel and send out a message ‘500 bytes: | 14.5 ms

. receive a load message and store into load vector (300 bytes: 5.7 ms
placement request by C-shell to LIM (round-trip)
to local LIM 23.8 ms
K A‘ to remote LIM (for CENTRAL) 52.9 ms
! }'\\ remote job execution overhead (incl. placement by local LIM,
koL assuming R-shell already set up) 325 ms
;::,g. start an R-shell (setup) 5 sec
t; -
.,v:f:{ name is on the list, to querying the LIM. The delay due to a LIM query plus the overhead
',_:;: of remote execution is highly variable, depending on the loads of source and destination
K o hosts. On the average. it is a few hundred milliseconds. This assumes that an R-shell has
u already been set up on the destination host. Otherwise, several seconds of additional delay
‘.- R may be incurred. Overall. the overhead of load balancing seem to be quite low With an
"::I\ exchange period of 3 seconds. load information updates cost from one to a few percent of
X CPU time on Sun-2 workstations. The delay due to remote execution is hardly perceivable
DAY by an interactive user. and is very small compared to the average job response time. which
- is in the range of a few tens of seconds
ol
R 3. EXPERIMENT DESIGN
E:M' Before we discuss our experiments. we need to describe the performunce index used to
assess and compare the performance of different systems or algorithms., Since we ure
__\.;‘i interested in an interactive computing environment, the mean response time of all the jobs
:-*'f.' executed during a measurement session seems to be an appropriate performance index.
e, However. the response times of jobs executed remotely in the background turned out to be
’.}-; difficult to obtain in our implementation. Instead, we made use of the system accounting
i ‘ facility to obtain the response times of all the processes executed during a measurement
;“\ session, and used the mean process response time as our performance index. For the execu-
AN tion of most of the jobs, only one process is created. so the two indices are the same, except
.b:::: for the command line processing in the C-shell, which is not accounted for in the process
sty response time. For a few commands (namely. cc. lint, and ditroff). however, several 2
,‘_;—_ processes are created. and their response times are all considered in computing the mean. s
.::;.:: The overhead of load balancing is accounted for by measuring it during the experiment run ‘f-,
:(:-f': and adding it to the process response times. Another important concern in system perfor- ;
::'“:: mance usually is the predictability of the process response times. In many cases, making T
e the response time more predictable is at least as important as reducing the mean. We use =
the standard deviation of the process response times as a measure of predictability. N
N
o
T
el

\"'

o - —w W Y~
s A0 aam aas aie als ade atd ol adl-aid ekl ol PP Prr T TRy o TR TR w ki L ek dat Bl Il Nal ot Jal]

-11- i
R

g TV ‘

RS
t‘ We identify four major factors that affect the performance of a load balancing system. :T.:'.j}'
. First, load indices that capture the current load conditions and are, preferably, capable of :;::f::
X predicting host load in the near future are of crucial importance. A poor load index may &
I cause job transfers that do not contribute to balancing the load of the system, and might AN
E: even make things worse. Secondly, the algorithm used for load balancing determines the :::E:;
i cost of distributing load information, and the quality of job transfers. Thirdly. the perfor- '.::::::
K mance improvements due to load balancing are dependent also on the workload the system o
is subjected to. The workload will be characterized along two dimensions, which will be V=
s considered as independent factors: that of its intensity, i.e., its magnitude. and that of its .{‘?\
& mobility, i.e., the fraction of the workload ‘as defined in Section 5.2/ that can to be executed .:\:.':
&’ remotely. Lastly, the underlying implementation of the load balancer certainly impacts '_:\u“
load balancing performance, but since the implementation is fixed in our case. our measure- Y A
ment experiments only explore the remaining three dimensions. More specifically. we vary r*‘
one factor at a time and study its influence. A number of levels or values are assigned to ﬂ_
each of the factors, as listed below. :::':;7‘:
-:‘J:’\::
* Load index: instantaneous CPU queue length g
time-averaged CPU queue length 3‘:?‘_:'
linear combination of averaged CPU. paging'swapping. and [O f.-‘__:.-
queue lengths averages of different intervals :l
» Algorithm: NoLB. DISTED, GLOBAL. CENTRAL. LOWEST, RANDOM D
each algorithm has a number of adjustable parameters ::-\:*
o
« Workload intensity: each host uses one of three types of artificial workloads: %
light (L). moderate (M. and heavy H:. ::;(:
A system workload is a combination of the host workloads So. for i ;"
a system of six hosts. we studied the following combinations: ';E'_:l
2H. 2M. 2L canonical worklvad: 3H: 6M: 6L _:;:f
A
+ Workload mobility: several values of the immaobidity factor see Section 3.2 :ﬂ::
3
The problems concerning load indices are very important. [n Ferrari36}. a linear ?{
combination of resource queue lengths, with the corresponding job resource consumptions \::
as coefficients, is proposed as a load index based on mean value analysis. and an experi- ::'_:
mental evaluation of that index is presented. That work is carried forward in ‘Ferrang7, ;:,:
where 2 measurement-based evaluation of a wide range of load indices using the implemen- [)
tation described in this paper is presented. Instead of repeating the results of that :.{?
research. we shall just use the load index that we found to be among the best. that is. the ;‘q
sum of the process queue lengths of the CPU, the paging system, and the ['O system. aver- At
aged over a 4 second period. Note that this equals the total number of processes ready to o
run and executing, being paged'swapped. and doing file 'O, respectively We have T;Er
described the algorithms we study in Section 2, and Section 4 will present the resuits using Ly
the canonical workload. :.
e
-
-,

P I P T Nty \:,_..'
A AT ST Al B A LT L L ol
PR AT P I 2 R AN LAl A

% - e St e e e T g, R S) PP
e YOI P R I A e e A -_'...-_ AT, ‘.Nf \'ﬂ.
» ,'-_..._-.\ '-}_.J"‘.h.‘. ”;". .4\-1‘ J'.._ AN SE n, . .-« "

A 12 -

The construction of workloads accounted for most of our efforts in the design of the
experiments. On the one hand, since a high degree of repeatability of the experiments was
felt to be absolutely necessary., we used artificial workloads. On the other hand, we want
these workloads to represent real workloads reasonably well. so that we can have
confidence in the realism of the results. We traced a production VAX-11780 running
under the Berkeley UNIX 4.3BSD system [Joy83, McKusick85] for an extended period of
several months and analyzed the types and frequencies of the commands executed by the
system. On the basis of such an analysis, we selected a number of frequently executed com-
mands, as listed in Table 2, and used them to construct scripts, i.e, streams of commands.

Table 2. Commands used in scripts and their eligibilities for remote execution

command elig. function command elig. function
: cat N ciew a file ls N directory listing
;
! ec Y C compiler it man Y manual page viewing
.
! cp N file copving muv N move a file
|
| date N current tume nroff Y text formater
: df N file system usage ps N process checking
o ditroff Y text formater pwd N current directorv
‘ . : l
' du N disk usage rm N delete a file '
‘-::: egrep Y text pattern search | sore N file sorting : N
"~ + — o
:':-: eqn Y equation formater Y| spell Y spelling checker \’ N
AR . R Rl K B *
= fgrep Y text pattern search | thl Y tahle formater
finger N Ner npormation Jl troff Y text formater .;:J
- | i _ - ‘, o
grep Y text pattern search ; uptime N Svstem uptime 5 ‘_3
—_ - - e ————e— s s s I.
grn Y graph printing Y users N list of current users "ﬂ
lint Y C program checker || wc N word count (n a file &
. ! '.‘v
Ipq N printer queue check | who N user nformation | -
o o . . “.
To obtain various levels, or intensities, of load, such as those characterizing multi-user sys- %
tems. we ran a variable number of the jobs in the background. Also. we simulated user -
think times by the “sleep” command. The scripts are classified into three levels: light. >
moderate, and heavy, with a number of distinct scripts constructed for each level so that >
hosts subjected to the same level of workload can use different scripts. The ranges of CPU N
utilizations and mean load index values of the three levels of scripts are shown in Table 3. i
Each script runs for about 30 minutes on a Sun-2 workstation. Job and system perfor- =
.r,_.-‘, mance statistics, such as resource demands, response times. resource utilizations. and <
.'.Q:- resource queue lengths, were measured throughout each run. ‘3
o .
e .
-f'..-" "

c e PR
e g Wt . _-".(‘-..

- .V e v o e’ a -
LR IREYR e Iy .)

L aA aa. daw ma. s ies A old Sh Eob 4 e el A A8 e e Al B Abe gus ke Al Ak _seeo o ARe it ol abld e

-13.

Table 3. Characterization of the workload levels

type CPU utilization | average load index
light 30-45% 0.3-0.7
moderate 60-70% 1.0-1.8
heavy 70-85% 1.8-3.0

As in any measurement experiment, we must consider the variability of the experi-
mental environment, and, therefore, that of the measurement results. [n dynamic load
balancing, the placement of each job may vary from one run of the experiment to the next,
because of the unavoidable variations in the timings of the events. (This problem was
further complicated in our experiments by the fact that we had to share the file server and
the network with other parts of the research community. We tried to minimize this impact
by running the experiments during the night.) Thus, we repeated the same experiment a
number of times ‘typically 6), and computed the mean and the 90 confidence interval {CD
of the performance indices over these replications.

4. COMPARISONS OF ALGORITHMS

We first compare the performances of the algorithms, then study the effects of the
adjustable parameters for the algorithms.

t.1. Basic Comparisons

To compare the performances of the five algorithms described in Section 2. we applied
each of them to a system of six Sun-2 workstations running the canonical workload
described in Section 3 With this workload. two of the six workstations were subjected to
heavy job scripts. two to moderate scripts. and the remaining two to light scripts. For each
of the algorithms. we varied the adjustable parameters tconsidered as secondary factors:.
such as the local load threshold T-, the load exchunge period P for the periodic policies. and
the probe limit L, for the non-periodic policy {LOWEST . in order to achieve the best per-
formance under that algorithm. For algorithm, Table 4 shows the mean response time and
its 907~ confidence interval, the percentage improvement in response time relative to the
NoLB case. the standard deviation of the response times and its percentage improvement,
and the values of the adjustable parameters used in the run.

The first observation one can make about the results in Table 4 is that load balancing
can indeed improve system performance substantially. The canonical workload was con-
structed to reflect a loading situation commonly observed in production environments: some
workstations are loaded. while others are not. By transferring jobs from heavily loaded
hosts to lightly loaded ones, the mean job response time can be improved. Comparing the

* All confidence intervals in the tables and figures of this paper have been computed with a 90%
confidence level

S

ja f

3 :'.':.’,-

.
-
¢

TREAER

g {3

el
PRI 1

L
P I SN

2
o

'.."] .

e
Roaie o 8 00
Fhy R

5l

s

et Y s

RN

vyl §

e

r e

.‘ “
%he
-—

" ‘.4'
S S,
' e ii
< A
- -t
Ay 4.‘:_.
N o
> Table 4. Performance of the algorithms (all times are in seconds) ::.__-:

N replication count: 6
', total number of jobs per run: 501 R‘H
* total number of eligible jobs per run: 254 (50.7%) rj::-::

- total number of processes per run: 766 (1.53 processes/job) {:;E::
ﬁ-. average process execution time: 7.45 o
. approximate average CPU utilization for NoLB case: 60% -
h Y -"':.

o Algorithm | Resp. Time | Improv. | Std. Dev. | Improv. Parameters ::::
s O
; NoLB 53.3 £0.83 0.0% 90.1 0.0% - .ﬁ
DISTED 36.4 £0.09 31.7% 50.6 43.8% P=15T-,=08 B
A
. GLOBAL 32.6 £0.67 38.9% 43.6 51.7% P=5T-=08 :{'.:
2 CENTRAL | 337 £054 | 36.8% 485 46.8% P=10, T,=08
o LOWEST | 318 £0.37 | 40.3% 428 52.5% Pr=4,T,=08 7
b RANDOM | 399 121 | 252% 62.0 31.2% Tr=1.0 e
- [y
-)
L Ly
! -

improvements in mean response time and those in the standard deviation of the response
o times, we notice that the latter is reduced more substantially. This means that the job ’
response times are more predictable with load balancing than without.

:.:: The performances of the algorithms, except that of RANDOM, are quite close to each ':§'_;
f. other. In Section 2, we described the algorithms and pointed out that, in the periodic algo- "\.;“j
.- rithms, the information is ready when a job is to be placed, and the “best” host in the sys- b

. tem is selected. However, the periodic updates incur higher computation and communica- Lo
e tion overhead than the polling method used by LOWEST, and the load information used in ':{‘.1
": placements tends to be less current than that in LOWEST. Comparing DISTED and GLO- :-;::;
W\ BAL, we see the adverse effect of the excess use of broadcast messages, as the two algo- \)
f'!. rithms are the same except that, in GLOBAL, a master is used to collect and distribute &.:
" load information. As a result, only the master has to handle N messages per period P, .
; where N is the number of hosts, while all the other hosts need only to send one message "3
j: and receive one during each period. For more discussion of the overheads of distributed o
j_ and centralized load information exchanges, the reader is referred to {Zhou86]. :ZT;S
' A complete evaluation of the qualities of the algorithms cannot be done using a sys- W

tem of only six hosts. However, since our measurements agree well with our simulation
n results {Zhou86], we feel confident about those results. We simulated systems with 7, 14,
- 21, 28, 35, 42, and 49 hosts, and found that the scalability of the GLOBAL and CENTRAL
algorithms is very good. Their performances are comparable to that of LOWEST
throughout the range of system sizes. On the other hand, the performance of DISTED

Al B

becomes worse as the system grows larger, since, in DISTED, the information exchange f_:

- overhead per host is linear in the number of hosts. :j:

R LAY

o "
.. {

N

o Tl
T

k.. T
Y o

:" - Sy o w,.'.‘
R P A T R R T P R N PR LR LRl A AT YRR YR WS - N SRR I T PN » .

S S R O R R S e e A R e R 2

p— Ll - Ty Mo A s S o B h as Bl b gag aod anit Ais Coo da gt do. ga - T WY wW

,'-:“’ -~
-_:: _?. (]
¢ 3 - 15 - r (]
': p 04
Y 4.2. Adjustable Parameters _ ';}
30 The performance of load balancing is dependent on the parameters used in the algo- :j
.) rithms. While it is impractical to explore all the possible variations, or even to present in %
. this paper all the experiments we performed, we show the effects of the three most impor- k-
. At
- tant parameters, namely, the load exchange period P, the local load threshold T, and the e
~ -
:-. probe limit Ly, on three of the algorithms, GLOBAL, RANDOM, and LOWEST, respec- A
oy tively. For all cases, the canonical workload is applied to the six-host system, and the -.::'.
¥ brackets around the data points show the 90% confidence intervals. E'
j The mean process response times of GLOBAL ysing various values of P is shown in e
<) : Fig\ll’e 2. :::*_‘
%, ' “wo '::
i 1 2
M GLOBAL -
e | i
a Y Tt = 0.8 .
~] 00 4 AL
P v e
W R =
~ e o
5 b e
A o
‘-': n .-:'.'
_'..:' [] ..\- .
N e E
o . X
i i =
b m <ot
\.,‘V ¢ u+ _
s (=
X s -
e ~rs
- [200 -
- o o
2 d ~
19 __-'
‘::i’. 0 v v v — . N
:: 20 80 W WO @0 o oo (Nal2) :-‘. -
:3 Load Exchange Period (second) =y
N "

Figure 2. Mean process response time under various load exchange periods P

M

‘_‘: (Canonical workload, GLOBAL, T-=0.8).

{E When the exchange rate is too high, the overhead outweighs the benefit of up-to-date infor- e
> mation. On the other hand, if the rate is too low, the information may get too stale, and Y
- performance suffers. The optimal exchange rate is also dependent on the workload. t
'::: Specifically, the rate should be higher if the job arrival rate is high and the average N

: :: resource demands of the jobs are low. This is the case in our simulation studies for multi-
::: user time-sharing systems. It is remarkable, however, that substantial performance gains N
are still achieved with an exchange period as long as 60 seconds. At that point, it becomes '
Y. quite possible that multiple jobs are transferred during the period to a host that used to be =3
j:: lightly loaded, and actually make it overloaded. This form of system instability is called i:::
N host overloading (Zhou86). The message here seems to be that a load balancing system can _;
2 3
e
R R
A ..-‘-
B S e e o

v waw L ant and atid old

- La san ane - Aae ade e - 2 Soaad -
LN LA abh otk o Ui an o dav e aio ma el acs S ek sk Sal Sk Ak Aol A

LY -16 -

T
4
m,

tolerate a certain level of host overloading without suffering substantial performance

\4"
E:'f- degradation.
e o
0
M
)
e)
e s ©
o n
) R
e
s
p 4
)
B
s @0
e
T e,
i
m
¢ o
(
8 o0
: 1 RANDOM
o
n %04
d
)
” v v v v v
(7] ol ¥ J ¥] L0 a8

Local Load Threshold

Figure 3. Mean process response time under various local load thresholds T~
(Canonical workload, RANDOM).

Similarly, there are conflicting requirements for the local load threshold 7. On the
one hand, a sufficient number of jobs have to be transferred between the hosts in order to
balance their loads. On the other hand, however, an excessive amount of job transfers will
increase system overhead, and may even cause severe host overloading. This tradeoff is
illustrated by Figure 3, which shows the relationship between the mean response time and
the local load threshold for the RANDOM algorithm, which uses T as its sole parameter.
Again, the optimal threshold is dependent on the load level of the system. If all the hosts
are subjected to heavy workloads, T+ should be set relatively high to avoid unproductive job
transfers.

We also studied the performance of LOWEST with various values of the host probe

limit L,. The results are displayed in Figure 4, which shows a minimum like those in Fig- ol
ures 2 and 3.

ety
e .

e From Figures 2, 3, and 4, it is clear that the parameter values of the algorithms
- should be dynamically adjusted as the system load conditions change over time, in order to
keep obtaining most of the performance gains of load balancing. Load balancing algo-
rithms that dynamically adjust their parameters may be called adaptive algorithms. Such
adjustments require system wide load information. It seems likely that the algorithms that

]
Taa

(]
’

AR

- q
"

OO ~
~ N
) N
: R

[
.

L

mmmfa S R S R R e e

........

..q..n
.JL\;A;.L.

USRS ATl
‘J.'\ n.u{n...u& L\AA;_:LL' L.,‘..-(L‘L. -~ _{A&J

- we e 2 Ao g LAz Ll Bat Ao Aac dat a4 . dos pavy o 2. _das Sa. Sa. aac Bat et that Ll SRS _olihs ahhe il il
F—--r- w el Aos ok aon aos) 4ol e Lana

- -17-
0!
®«o,
~l
y M
¢ 04
N 2
o4
) R
o e
W s 04
» P
n (-]
'y n ™
s
) e
‘.. . 04
i & l
; i
3 ¢
I (ao,
p s
., e R0 4
‘. ¢
- o
; 8 mag
W)
m v v v Ad ad
o 1] 2 ‘. '
- Probe Limit
\ Figure 4. Mean process response time under various probe limits L,
i {Canonical workload, LOWEST, T-=0.8).
__‘. actively exchange such information among the hosts will be better capable of making
:‘ parameter adjustments. Furthermore, the introduction of a central agent should facilitate
: this task. as parameter adjustment decisions can be made by the central agent quickly and
. effectively, and propagated to the other hosts. In this regard, GLOBAL and CENTRAL
seem to be more suitable for adaptive lvad balancing than LOWEST and DISTED.
" 5. PERFORMANCE UNDER DIFFERENT WORKLOADS
Y
":. The previous section compared the performance of the algorithms using the canonical
2 workload. In this section, we study load balancing performance under different workloads.
We first study workloads of different intensities, then study those with different levels of
> mobility. The GLOBAL algorithm was chosen for this part of the study.
- 5.1. Different Intensities
? Tables 5, 6, and 7 show the values of the performance indices and their improvements
. relative to the NoLB case when all hosts in the system are subjected to heavy, moderate,
K and light load. respectively. Although the load level is the same for all the hosts,
\ separately constructed scripts are used so that no synchronization effect will occur.
i Load balancing can provide performance gains due to two factors: long-term system
; load imbalances and short-term load imbalances. For the canonical workload, significant
1
. differences in host loads over the entire run (long-term imbalances) exists, so the
)
£ v
N '.);‘ d
'- A SR O R U N R PO N Py PRI < BT Ty T Ty Ty PRI :‘ ‘-Q'.-!'."\ () ﬁ* I.N \H"
\":\"‘. ‘ ““ '\-'\-' ~(\"-q q'v v‘ v‘i’ (. \{-‘-‘.-.- lf‘ 1- .~'(" .Q.'.._-‘\ -' -~ < -' “"".! 3 ‘.’0‘.’!\ & J

. (2 ata ane afer STE ST SVEIPE 'S JlRal L S
g y——y s & ma A Sbcaln it at s A e Afe Areiais oot 4c e Di Ak et et ot et i TR T T 2=
e b aae vy v "

s
)

~

A

—“
~

g

TSV
AN
AN

5
»

s '..ﬁ.-‘l

.
st el

P

¥

;a
s

R

'
.”A‘v"
A"‘

lr' ‘,’ '1..'1

-
.

,
,l .‘ ". ... "

LA AR
.l %y 'D ‘. 4,
A

R
S

... .\ -.. -" ... -\'

&

E X

4
.

L A S
»
.

. %

AN
rzv

A R R At L Y TS A
IO IR ML eI) R ARG

-18 -

Table 5. Five hosts with heavy loads P = 10.0 sec. Tr= 1.0

‘iAlgorithm E Response Time | Improvement \ Std. Dev. | Improvement
=

(=]

v

NoLB | 87.0 x2.03 0.0% 121.4 0
GLOBAL

59.4 £0.15 31.7% 75.9 3

-3

91}

c

N

I

Table 6. Six hosts with moderate loads (P = 10.0 sec, Tr= 0.8)

!

(Algorithm Response Time | Improvement || Std. Dev.TImprovement

NoLB 49.5 £0.27 0.0% 72.4 0.0% |
. —
GLOBAL L 394 £0.44 20.5% 37.5 20.6% ‘
A |

Table 7. Six hosts with light loads (P = 10.0 sec, Tr= 0.6
i' Algorithm | Response Time | Improvement || Std. Dev. Improvemeﬂ
. |
I 7T H pA 38 7 <, |
1 NoLB 28.7 £0.65 0.0 38.7 0.0]
| GLOBAL | 2522052 1226 | 314 18.9¢ |

performance gains can be easily explained For the workloads used in this section, how-
ever. the hosts are similarly loaded. yet sizable reductions in response times are observed
for the heavy and moderate workload cases. These gains can only be attributed to the
short-term host load imbalances. At any particular point in time. some hosts are likely to
be significantly less loaded than others. hence transferring jobs to them will reduce the
overall mean job response ttme The distinction between senders and receivers 1s not clear

here: a host may be overloaded at one time and transfers jobs out. and underloaded later
and receives jobs from other hosts.

A comparison between the response time reductions in the three cases show that the
higher the system load, the greater performance improvement may be expected This is
intuitive. but also highly desirable. Also, it should be noted that the reductions in the
standard deviation of the process response times when the hosts are evenly loaded are not
as large as in the long-term unbalanced case in Section 4.

The reader may have noticed that. while six workstations were used for the moderate
and light workloads. only five are used for the heavy workload. This is because in the
latter case the file server was heavily congested by file requests. [n our system. all the
workstations get their files. and all but two of the workstations do remote paging and swap-
ping. from a single file server. which is also shared by other workstations. and is simply
another Sun-2 workstation configured with disks When the six workstations are active.
the load on the file server becomes higher than that on the workstations. even for the
moderate workload case. With a heavy workload. the file server can be overwhelmed with

4y 8

file access and paging requests, with its average load index going up to 6 and over. Our
experience agrees well with the results of a performance study of diskless workstations by
Lazowska et al.. in which the authors concluded that the file server’'s CPU tends to be the
first resource in the system to saturate (Lazowska34]. With the file server's CPU being the
focus of contention, the system is no longer correctly configured, and the potential benefits
of load balancing are overshadowed by the negative impact of a major [/O bottleneck. We
conjecture, therefore, that greater performance gains are possible if more powerful and’or
multiple file servers are provided. A load index value of 3 is considered to represent a
heavy load in our workstation environment, but may be considered quite normal in com-

."; - "‘-’ A

L S
RS 3

]

4

ts 2o

i pute servers or time-sharing systems. With the possibly higher loads in those types of ‘::::
::\' environment, the utility of load balancing should be greater. }::}
N R

s

5.2. Different Mobilities

< TP,
R I

In any computer system, there exist jobs that perform local services and:or require

e -
;: local resources, and hence cannot or should not be transferred by the load balancer. Exam- T
;»‘, ples include system servers. login sessions, mail and message handling programs. and 2
) highly interactive jobs such as command interpreters and text editors. These jobs are

1ar

bound to have an adverse impact on load balancing performance. as the choice of jobs to be
transferred is now limited. [n {Zhou86], we studied this problem and defined as immobulity
factor f the percentage of jobs that cannot be transferred. In this paper, however. we find it
more convenient and accurate to define the immobility factor as the percentage of CPU
time consumed by the immobile jobs over all jobs. The impact of immobile jobs on the
] mean response time is depicted in Figure 5. The different values of the immobility factor
shown in the graph were obtained by changing the list of eligible jobs in the configuration
file, as we can easily measure the total amount of CPU times consumed by each type of
jobs. and compute their respective percentages of the total. Note that the canonical work-
load used in all the previous sections corresponds to an immobility factor of 0.17 As we

PR % S b
.- l‘ "".‘l‘

‘l-' .‘ .‘ K ." .

;. have observed in {Zhou36] using trace-driven simulation, the curves ure distinctively con-
N cave. Even when the immobility factor is as high as 0.3 1i.e.. 307 of the workload 15 1immo-
-,) . . .

‘. bile'. most of the performance gains of load balancing are still retained. This seem=s to sug-

.
]

gest an characteristic of load balancing: only a small percentage of the jobs need to be
transferred among the hosts to achieve effective load balancing. For a wide range of immeo-

oS iRy

- bility factor values and other adjustable parameters, we have observed that only less than
,- half of the eligible jobs are actually transferred.

I.’

.: 6. EFFECTS ON INDIVIDUAL HOSTS AND JOB TYPES

:g In the above two sections, we have studied the influences of the two major factors,
v namely. the algorithms and the workloads, on load balancing performance. We go into
:'f. more detailed studies in this section by examining the impact of load balancing on the load-
: ing and performance of the individual hosts and on the response times of each type of jobs.

%

AN AN

& RO N .".“..E-k'.‘; ._.“:'.’.-_‘_ . ,_. _:.-‘;;,{.\ ”.:'«_: “? -
s f.ﬁ.”dﬁs‘fa.mtx RPN AN NIRRT

FAN
L)
LG LA

wecrerr K

"'-}‘- ;r.,

A%

>

I,

P o A
BN

¥
14

p S

“
.

S
.

'-":"':"', .‘.‘ Er',;

.
- .' '.‘-'

44 8

4
P
.

IA‘
2
«

Zatey - A

1

*

.
LA
¥

o N N S
'f\' S

L

¥x) Lrvrooats Moigeod

%

—AaBonee—~ 6f-+) eapovesW UeoX

—AaBonse~ wof-+) ewDOUesM =0 Own

L] A J w L . m L
o os e os s 10 0 2 a4 Y Y
Immobility Factor * Imu::bility F?:ctor ™ .
5.1. Respoanse time vs. immobility factor. 5.2. Standard deviation of response times

vs. immobility factor.
Figure 5. The influence of immobile jobs (Canonical workload, GLOBAL).

6.1. Effects on Individual Hosts

Although it is now clear that load balancing can improve system-wide performance,
its impact on the loading of individual hosts is equally important, especially in a worksta-
tion environment. Figure 6 shows the average load index value of each host throughout a
run, and with different values of the immobility factor f. We see a significant reduction in
the loads of all the hosts except those that were originally very lightly loaded. This is a
confirmation of the reduction in the average response times we observed, and is in agree-

ment with the Little’s result. We also notice a strong equalization of the hosts' loads: as

the immobility factor goes from 1.0 down to 0.17, the hosts’ loads are compressed into a 'ﬂ
narrow range. Thus the term “load balancing” is truly appropriate in our case, even :-_‘i:
though none of the algorithms we studied takes it as its explicit objective. ::'.'%‘

The fact that the loads of the hosts tend to become balanced on the average does not 3
necessarily mean that they are balanced during shorter intervals, which would be highly '. 3
desirable though. Indeed, this is shown not to be the case by Figure 7, where the 20 second o
average load index (instead of the 4 second average used earlier in this paper) is plotted as ;.j-]
a function of the time during a run. Several comparisons may be made using the plots. ;:-:‘:
Comparing the loads of the hosts without load balancing, we see significant differences in ﬁ
loads. These differences are substantially reduced by load balancing. However, there still '3
exist load fluctuations in each host. Our load balancer operates at the job level, and several ::::
processes may be created by a single job. As long as those processes are treated as an Ef::

®f == 1.0 (NoLB)

HOoOAD -~ PO oAP~O <>

TN P)

v v

3 4

Host Number

Figure 6. Loads on hosts, with various immobility factors
(Canonical workload, GLOBAL, P = 10.0 sec, Tr= 0.8).

inseparable group. temporal fluctuations in load seem unavoidable. Since smoothing the
hosts’ load over time is highly desirable, we conclude that load balancing at the job level
using initial placement only has the drawback of not being able to eliminate temporal
fluctuations. On the other hand, it is questionable whether the performance gains due to
further reductions in temporal load fluctuations provided by load balancing at a finer
granularity will more than offset the additional communication and computation overhead.
More research is called for here.

N
N
\-
"~
~
o

¥/

. - ot .
B.5VHES Y oL R AT R R

6.2. Effects on Each Type of Jobs

The conjecture could be made that, while the mobile jobs will generally benefit from
load balancing, the immobile jobs will not benefit much, or not at all. Our measurements
contradict this conjecture. Table 8 lists the mean response times of each type of jobs exe-
cuted during the runs with and without load balancing. All times are in seconds, and the

percentage improvements are provided following the response times for the load balancing
case.

s W v B Bl

The average response times of all types of jobs are reduced, and, with only a few
exceptions (cp, date and finger), the reductions are uniform across the board. There is no
clear difference in improvements between different classes of jobs, big or small, mobile or
immobile. While the response time of a job to be transferred will improve because it will be
executed on a more lightly loaded host, those of the jobs already running on the initial host

- g e

Fala e la N

L "e]

Py

. . e et et an . ' . . L B S NN
o AT At Al &; HERELS \':’-. 1 At e p R :(,\‘___.
Y N W VR O ORIV N AR X e WY n ol NIEANE TN p > e -

.22-

(80 =41 '0°01 =d ‘PeEOPIIom [Bdiuour)) "1ygQTD)) dutdue(rq pro|
(1°L) YOYI11m pue (Z'L) Yt speoj sysoy ayj jo swwadeip aunr, -2, aindiy

4T Yi!m 8pBO| 8I80H 'L

(pumens) omyy,

@71 (0) peerg o woyy "

e} oy,

P

a1 '(n) poor] ¢ woy

(powmes) omyy

L L L L LI LXK X X NI
St "

\J

I
deew

1) peor) 14 woyy

adese

(povess) oy,

a1'(n) peo b woyy

(pana) omy,
L L L K X K X N N N N NN}

3
weee

;4| .3&3 TP woyy

(poness) omy,

€1 '(N) peo1 OF w0y

Ll)

deoew

g1 oYM sperO| 8IS0} 1°L

(posnset vy,

EON ‘(1) poor] 9 woi{™

(o) sy

seew

]
doon

{povees) ey,

]
dese

R

EON ‘(1) Poo] p wopl”

(povem) smy

|

L]
deve

aoN () Peo] Th 1

(o) ey,

ﬂ...z..-.!!...n.#.

..A...q..-l....-ff.-.- 47

e

.
S

-
LA

'-'r;'ﬂ!

(
\}

_‘J -(‘

X

" T A
g)
MW (N

0

asle " s
N

Table 8. Average response time of each command type with and without LB
(Canonical workload. GLOBAL with T:= 0.8, P= 5 sec).

cmd elig. count NoLB LB cmd elig. count NoLB LB
cat N 33 5.19 3.53(32.0%) || Is N 53 52.7 30.3 (42.5%)
ce Y 54 89.1 53.8 (39.6%) || man Y 8 20.2 6.78(66.4%)
cp N 3 234 230(1.7%) || mo N 2 361 1.72(52.4%)
date N 22 1.81 1.46 (19.3%) || nroff Y 17 181 102 43.7%) |
df N 9 6.22 3.61(42.0%) || ps N 23 225 14.1137.3%
ditroff Y 7 324 194 (40.1%) || prod N 18 426 3.02(29.1%
du N 6 82.6 55.1(33.3%) | rm N 0 - -
egrep Y 7 221 6.0772.5% || sort N 30 105 66.8 36.4%)
eqn Y 5 103 64.2 (37.8%) || spell Y 45 117 73.6(37.1%)
fgrep Y 10 19.2 119 (38.0%) || ¢b! Y 2 109 55.9 (48.7%)
finger N 25 92.6 80.4 (13.27%) || troff Y 12 110 65.8 (40.2%)
&rep Y 3 12.1 6.56 (45.87) || uptime N 34 7.85 4.18 146.8%)
grn) 4 1 277 158 143.0%) || users N 4 7.08 3.20 154.8%)
lint Y 24 78.6 42.0 146.6"/) || we N 15 123 "5.18(583%) |
e N 12 298 15.249.0% || who N 11 478 22952.1% |

will also improve because they will not have to compete with the new-comer.

7. CONCLUSIONS

In this paper, we described the design and implementation of a load balancer for a
loosely-coupled distributed system, and presented some of the results of a large number of
measurement experiments performed on the system. On the basis of our findings, we
believe that transparent, flexible load balancing at the job level can be achieved at low cost,
and without modifying either the system kernel or any of the existing application pro-
grams. Our design emphasizes a clear separation between the mechanism and the policies
for load balancing, thereby allowing the particular load balancing algorithm, along with its
adjustable parameters (e.g., the load exchange period, the local load threshold, and the
probe limit) to be dynamically changed in response to changing system load conditions.

Measurements show that load balancing can indeed significantly reduce the mean pro-
cess response time, and that the corresponding reduction in the standard deviation of pro-
cess response times is usually even greater. Furthermore, the improvements are largely
uniform over all classes of jobs, big or small, mobile or immobile, and most of the

P ————

B B O o e B b e

S At et

e e S5 S B

]
2 e i ; & O T) q 58 B LRPE BP0 SFP BRE. TI8 AVE | ﬂ-nnw;msn.j
DN AF SN TANEEN G Tl T TP Db TP 5 B L B DS BlB S i L T8 Lol S S S L D L KL A0 W Od T i 0 0 T 0 O N8 0 KM

T

w

el

o
LA

g

=
-

o g

X3 Y %y
SANRS

e

2 ¥ 3
*
Ak

<.I'..I o

&
ah

.r'lr

1)

7%

4

Ny
] o g LG A - L M .
R T T st e T e S Om T A O

improvements can still be retained when up to 30% of the workload cannot be transferred
between the hosts. While we observed that load balancing has strong equalization effects
on the individual hosts’ loads over the entire measurement runs, there still exist temporal
fluctuations in host loads. We attribute this drawback to the fact that several processes
may be created by a single job, and suggest that load balancing at a finer granularity be

studied to see whether this conjecture is correct, and whether such fluctuations can be
advantageously reduced.

Five source-initiated load balancing algorithms were studied that used different
methods to distribute load information and perform job placement. We find that algorithms
using periodic load exchanges and those acquiring such information on demand provide
comparable performances. For the former class of algorithms. the use of a central agent to
collect and distribute load information reduces the computation and communication over-
head. and hence provides better performance. The centralized algorithms are also better
suited for adaptive load balancing, in which the algorithm and or its parameters may be
changed dynamically. On the other hand. distributed algorithms such as LOWEST gen-
erally impose lower overhead. scale better, and are more reliable. We also find that the

performance of load balancing is, to various degrees, sensitive to the algorithms' parameter
values.

As well as load balancing algorithms and their parameters. workloads also have a
strong impact on performance. Generally speaking, the higher the load, the greater the
imbalances in the hosts’ loads (both long-and short-term), the greater the performance
improvements that may be expected. Short-term imbalances can be as profitubly exploited
as long-term imbalances, as demonstrated by the performance gains when all the hosts are
subjected to similar levels of loads.

ACKNOWLEDGEMENTS

The authors are grateful to Harry Rubin and Venkat Rangan for making their load
balancing C shell available to us. Sincere appreciation 15 due to Keith Sklower and Joan
Van Horn for tirelessly explaining the system to us and repairing software and hardware
problems in the system. We are also indebted to the research community at Berkeley for
tolerating the additional loads we managed to generate on the file servers and the network
unproductively. Last, but not least, we thank our six workstations. Bluefairy, Dopev, Jim-
tny, Joshua, Lampuwick, and Thumblina, for all the sleepless nights they spent compiling
programs that will not be run and formatting papers that will not be published. We will
soon forget all the miseries they caused us by crashing at the most inconvenient moments.

REFERENCES
‘Barak34]

A. Barak and A. Shiloh. "A Distributed Load Balancing Policy for a Multicomputer,”

Technical Report, Department of Computer Science, The Hebrew University of
Jerusalem, 1984.

(Berskad85]
B. Bershad. “"Load Balancing with Maitre d.” Tech Report, UCB/.CSD 85276,

A N e e SR AT s T

T At Al Ak Bof 2.8 & e & 4 anh adi b oi oh 0 ahs obe aad e oid ittt oo tial Aeh Tt ded S

.28 -

Computer Science Division. University of California, Berkeley. December 1985.
(Bokhari79]
S. H. Bokhari, "Dual Processor Scheduling with Dynamic Reassignment,” [EEE
Trans. Soft. Eng.. Vol. SE-3. No.4. pp. 341-349. July 1979.
‘Bryant3l]
R. Bryant and R. Finkel, “A Stable Distributed Scheduling Algorithm.” Proc. 2nd
International Conf. on Distributed Computing Systems, pp. 314-323, 1981
(Cabrera86]

L. F. Cabrera, "The Influence of Workload on Load Balancing Strategies.” Proc. 1986
Summer USENIX Conference, Atlanta. GA, pp. 446-458, June 1936.

(ChowT79]
Y. Chow and W. Kohler, "Models of Dynamic Load Balancing in a Heterogeneous
Multiple Processor System.” [EEE Trans. Comp. Vol. C-28. No.5, pp. 354-361. May
1979.
(Eager86a]
D. Eager. E. Lazowska, and J. Zahorjan, "A Comparison of Receiver-Initiated and
Sender-Initiated Dynamic Load Sharing.” Performance Evaluation, Vol6, No 1. pp.
53-68. April 1986.
[Eager36b]
D. Eager. E. Lazowska, and J. Zahorjan, "Dynamic Load Sharing in Homogeneous
Distributed Systems,” IEEE Trans. Soft. Eng.. Vol.SE-12. No.5. pp. 662-675, May
1986.
(Ezzat36]
A. Ezzat, "Load Balancing in NEST: A Network of Workstations.” Proc. 1936 Fall
Joint Computer Conference, Dallas. TX, pp. 1133-1149. November 4-6.
Ferrarid6)
D. Ferrari and S. Zhou. "A Load [ndex for Dynamic Load Balancing.” Proc. 1936 Fall
Joint Computer Conference, Dallas. TX. pp. 634-690. November 4-6
‘Ferrarid7|
D. Ferrari and S. Zhou. "An Empirical [nvestigation of Load [ndices for Load Balanc-
ing Applications’. to be submitted. 1937,
_Hagmanns6]
R. Hagmann. "Process Server: Sharing Processing Power in a Workstation Environ-
ment.” Proc. 6th International Conf on Distributed Computing Systems. ("ambridge.
MA. pp. 260-267. May 1986,
‘Hwangs2;
K. Hwang, W. Croft. G. Goble. B. Wah, F. Briggs. W Simmons. and ((oates. "A
UNIX-based Local Computer Network with Load Balancing.” [EEE Computer. Vol 13.
No.4, pp. 55-66. April 1982
~Johnston36]
W Johunston and D. Hall, "UNIX Based Distributed Printing in a Diverse Environ-
ment,” Proc. 1986 Summer USENIX Conference. Atlanta. GA. pp. 514-523. June 1986.
Joy30!
W. Joy. "An Introduction to the C Shell,” Computer Science Division. University of
California. Berkeley, November 1980.
“Joy33,
W. Joy, E. Cooper, R. Fabry, S. Leffler. K. McKusick. and D. Mosher, "4 2BSD System

Manual.” Computer Systems Research Group, University of California. Berkeley. July
1983.

fa Ul b

ARE

P A

)
>

:'-";'.‘;-‘"'
vov e ’
LA e

Rk g

DRI
ST,

T A’ f’ -..

Y »
. LINLP
'
- v o

e
[
e

Al

. .
o

RIS
|

L T
R
a aalw

b',"';: 'f

e TN

..n'; 5' .‘.'..
2 AL

AR

a3
b

7
S

ds W

_

P

U o s sa s ah e n e 4 s aa e e Siie B b et i dg A ac A st i A i A AC A Aui AL At L ais add o odd aid-uSt ol sl A aas me)

"ﬁ?-.} .

.26 - ﬁ

N {Lazowska36] :::53

::\ E. Lazowska, J. Zahorjan. D. Cheriton. and W. Zwaenepoel, “File Access Performance e

.-:; of Diskless Workstations.” ACM Trans. on Computer Systems, Vol.4, No.3, pp. 238- ::-::
- 268. August 1986. he¥
) Leland86] 3
o W. Leland and T. Ott. "Load-balancing Heuristics and Process Behavior.” Proc. Perfor- w
N mance ‘86 and ACM SIGMETRICS Conf on Measurement and Modelmg of Computer o
::;-' Systems. pp. 54-69. May 1986. sl
‘Livay82] i
M. Livoy and M. Melman, “Load Balancing in Homogeneous Broadcast Distributed é"

" Systems.” Proc. ACM Computer Network Performance Symposium, pp. 47-55, April b

7w 1982. o

o .'-‘

rly 'MuKusick35] -

. K. McKusick. M. Karels. and S. Leffler. "Performance Improvements and Functional 4_-.
o Enhancements in 4.3 BSD.” Proc. Summer USENIX Conference, June 1985, Portland. ;‘z
OR. pp. 519-331. o

N (Rama33] o
ol K. Ramakrishnan and A. Agrawala, “A Resource Allocation Policy using Time Thres- e
o 4 "

S holding,” Proc. Performance '83, pp. 395-413, May 1983. ey
Lo ‘Stone77] o
H. S. Stone. "Multiprocessor Scheduling with the Aid of of Network Flow Algorithms"”, ~

A 4
e, [EEE Trans. Soft. Eng., Vol SE-3, No.l, January 1977, pp. 85-93. 'f
A9 g
~ ‘Stone78] N
=4 H. S. Stone, "Critical Load Factors in Two Processor Distributed Systems”, [EEE N
:: Trans. Soft. Eng., Vol.SE-4, No.3. pp. 254-253. May 1978. pp. 47-55. =

) "Theimer35}

) M. Theimer. K. Lantz. and D. Cheriton. "Preemptable Remote Execution Fucilities for
7. the V-System.” Proc 10th SIGOPS Symp. on Operating Systems Principles. Orcas -
" [sland. WA, pp. 2-12. December 1935, R
S "“Wang35, 2
Y Wang and R Morris. "Load Balancing in Distributed Systems.” [EEE Trans. Comp. pW

) Vol C-34. No 3. pp 204-217, March 1935,)
T Wus0! 3
L S. Wu and M. Liu. "Assignment of Tasks and Resources for Distributed Processing.” o
.. Proc. COMPCON Fall 1930, pp. 633-662. ot
:;:'_:- 'Zhou36] i
‘ S. Zhou. “A Trace-Driven Simulation Study of Dynamic Load Balancing.” Tech. Rept "
hos No. UCB CSD 87305, September 1986. also submitted for publication. ™
v o
o -:'-:
A" u-s:J
o i
v'b] T:
:
- .
Y N
K0 N
W
- 7
g <
e
~ “h

.l e
2 ne

N ":

P X
x' - . - - . . - - - ~ %

