
Productivity Engineering in the UNIXf Environment

OTIC FILE copy

CM
oo

<
i

Q
<

A Shared Object Hierarchy

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

nrr
x T-j^l *•«" Lm. &UH v.*.'1 i u~~ 'lap'«&

APR 2 2 1987 I f

tUNIX is a trademark of AT&T Bell Laboratories This documant has been approved
lot public release and sale; its
distribution is unlimited.

»7 4 8, 010

■.\ .VAV,V^:>\V.\^\VVVV-V^^^ «-.-/^

A Shared Object Hierarchy*

Lawrence A. Rowe

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

Presented at the
International Workshop on Object-Oriented Database Systems

September 23-26, 1986, Pacific Grove, California

Accost Ion Fas
ms" ö;U..*I
DTIC TAB

Justification

By__

.Distribution/

Availability Codes

Avail and/or
Special

ä:N':N-:^<<<<:w.;<--.: :v^m*i imzw.<m&<^mmzm^-:v:v\<v<-c-'C-yv.:-^^^-y; .yc:.

Abstract

This paper describes the design and proposed implementation of a
shared object hierarchy. The object hierarchy is stored in a relational data-
base and objects referenced by an application program are cached in the
program's address space. The paper describes the database representation
for the object hierarchy and the use of POSTGRES, a next-generation rela-
tional database management system, to implement object referencing
efficiently. The shared object hierarchy system will be used to implement
Object FADS, an object-oriented programming environment for interactive
database applications that will be the main programming interface to
POSTGRES.

1. Introduction
Object-oriented programming has received much attention recently as a

new way to develop and structure programs [GoR83,StB86]. This new pro-
gramming paradigm, when coupled with a sophisticated interactive pro-
gramming environment executing on a workstation with a bit-mapped
display and mouse, improves programmer productivity and the quality of
programs they produce.

A program written in an object-oriented language is composed of a col-
lection of objects that contain data and procedures. These objects are organ-
ized into an object hierarchy. Previous implementations of object-oriented
languages have required each user to have his or her own private object
hierarchy. In other words, the object hierarchy is not shared. Moreover, the
object hierarchy is usually restricted to main memory. The LOOM system
stored object hierarchies in secondary memory [KaK83], but it did not allow
object sharing. These restrictions limit the applications to which this new
programming technology can be applied.

There are two approaches to building a shared object hierarchy capable
of storing a large number of objects. The first approach is to build an object
data manager [CoM84,Dee86,Kim86,Lin86,Mae85,Ste86]. In this approach,
the data manager stores objects that a program can fetch and store. The
disadvantage of this approach is that a complete database management

t This research was supported by the National Science Foundation under
Grant DCR-8507256 and by the Naval Electronics Systems Command Contract
N0039-84-C-0089.

'•.•-.'«.-•/•.■ .•■/•.-•,-r^'rv-. v■ v.:.-.-.':-v-^viv^v-^•^.<w:'S.^<-s-.\<:<tä^

system (DBMS) must be written. A query optimizer is needed to support
object queries (e.g., "fetch all /bo objects where field bar is such-and-such").
Moreover, the optimizer must support the equivalent of relational joins
because objects can include references to other objects. A transaction
management system is needed to support shared access and to maintain
data integrity should the software or hardware crash. Finally, protection
and integrity systems are required to control access to objects and to main-
tain data consistency. These modules taken together account for a large
fraction of the code in a DBMS. Proponents of this approach may argue
that some of this functionality can be avoided. However, we believe that
eventually all of this functionality will be required for the same reasons
that it is included in conventional database management systems.

The second approach, and the one we are taking, is to store the object
hierarchy in a relational database. The advantage of this approach is that
we do not have to write a DBMS. A beneficial side-effect is that programs
written in a conventional programming language can simultaneously access
the data stored in the object hierarchy. The main objection to this approach
has been that the performance of existing relational DBMS's has been
inadequate. We believe this problem will be solved by using POSTGRES as
the DBMS on which to implement the shared hierarchy. POSTGRES is a
next-generation DBMS currently being implemented at the University of
California, Berkeley [StR86]. It has a number of features, including pro-
cedure data types, precomputed procedures, and alerters, that can be used to
implement the shared object hierarchy efficiently. A group at Intellicorp is
also pursuing this approach [AbW86]. However, they do not store the com-
plete object hierarchy in the database as we are planning to do.

Figure 1 shows the architecture of the proposed system. Each applica-
tion process is connected to a database process that manages the shared
database. The application program is presented a conventional view of the
object hierarchy. As objects are referenced by the program, a run-time sys-
tem retrieves them from the database. Objects retrieved from the database
are stored in an object cache in the application process so that subsequent
references to the object will not require another database retrieval. Object
updates are propagated to the database and to other processes tha+ have
cached the object.

This paper describes how a shared object hierarchy can be implemented
efficiently on POSTGRES. The POSTGRES mechanisms used to implement
the shared object hierarchy are described in another paper in these proceed-
ings [Sto86]. The remainder of the paper is organized as follows. Section 2

lÖü^iöWW^mWMMÖMtöö^

Application
Process

Application
Process

Application
Process

Object
Cache

POSTGRES
Server

Database

Figure 1. Process archiVcture.

MmWMWKMmH^^ /"VV

describes the database representation for the object hierarchy. Section 3
describes the design of the object cache including strategies for improving
the performance of fetching objects from the database. Section 4 discusses
object updating and transactions. Section 5 describes the support for select-
ing and executing methods. And lastly, section 6 summarizes the paper.

2. Object Hierarchy Database Design
This section describes the object hierarchy model and explains how it is

represented in a POSTGRES database.

Every object has a name, a type (called the object class), one or more
parent classes (called superclasses), a set of local variables (called instance
variables), and a set of procedures or methods that operate on the object
(called instance methods). In an object-oriented system, the class of an
object (i.e., the object type) is represented at run-time by an object. For
example, figure 2 shows an example object hierarchy with two object classes.
Box and BorderBox. The superclass of each class is indicated by a bold solid
line with an arrow pointing to the parent class (e.g., Box is the superclass of
BorderBox). By convention the class Object is at the top of the superclass
hierarchy.

The example figure also shows class instances. There are two instances
of Box (labeled Box-1 and Box-2) and three instances of BorderBox (labeled
BorderBox-1, BorderBox-?., and BorderBox-3). The class of each instance is
indicated by a normal width line with an arrow that points at the class
object for the instance. This relationship is also called the instance-of rela-
tionship. Since classes are represented by objects, they must also have a
type or class (called the classes' metaclass). In most cases, the metaclass of
a class object (e.g.. Box) is an object named Class. For completeness and
consistency, the Class object has a class named MetaClass which is its own
class.

Since the object that represents a particular class is a normal object, it
may have its own local variables. These variables, called class variables,
are global to all instances of the class. They can be used to store data that
is constant for all instances, that is computed from the instances (e.g., keep-
ing a count of the number of instances), or that is used to pass data between
instances.

Figure 3 shows object definitions for Box and BorderBox. Objects
inherit the procedures and data defined in their superclasses. In this exam-
ple, BorderBox inherits the instance variables Origin, HorzLen, and
VertLeng and the class variable NumberBoxes. It also inherits the methods

SöJÖÄMW^^MWMM^^

Figure 2. Example of an object hierarchy.

>M<t^s'<to:s^:^^ mtittm& >

Box

MetaClass Class

Superclasses (Object)

Class Variables
NumberBoxes

Instance Variables
Origin
HorzLen
VertLen

Instance Methods
Move(NewOrigin)

/* number of boxes created */

/* origin of upper left corner */
/* horizontal length of box */
/* vertical lenjth of box */

/* move box */
Reshape^NewOrigin, NewHorzLen, NewVertLen) /* reshape box */
Shade(NewShade) /* shade the interior of the box */
Draw()

BorderBox

MetaClass Class

Superclasses (Box)

Class Variables

Instance Variables
BorderSize

/* draw the box */

3(a): Box object definition.

/* size of border */

Instance Methods
SetBorderfNewBorderSize) /* set border size */
Reshape(XewOrigin, NewHorzLen, NewVertLen) /* reshape box */
EraseBorderO /* erase the border */
DrawBorderO /* draw the border */

3(b): BorderBox object definition.

Figure 3. Example object definitions.

*&A&&^£&^uwy^^

Move, Shade, and Draw. The method Reshape is not inherited from Box
because a new definition for that method is given in BorderBox.

The database representation for this hierarchy requires three catalog
relations (OBJECTS, SUPERS, and METHODS) and a relation for each
object class. The OBJECTS relation keeps track of all objects:

OBJECTS(objid, name, owner, created,
modified, instance-of, objrep)

where

objid

name

owner

created

modified

instance-of

objrep

is a unique identifier for the object.

is the name of the object.

is the object creator.

is the date/time when the object was created.

is the date/time when the object was last modified.

is the objid of the class object of this instance.

is a cached version of the memory representation of the
object (described below).

The superclass relationship is represented in the SUPERS relation:

SUPERS'class, superclass, seqno)

where
class is the objid of the class object.

superclass is the objid of the parent class object.

seqno is a sequence number that specifies the inheritance order
in the case that a class has more than one superclass.

The superclass relationship is stored in a separate relation because an object
can inherit variables and methods from more than one parent (i.e., multiple
inheritance).

The sequence number in the SUPERS relation is needed to determine
which variable or method should be inherited when more than one super-
class has a variable or method with the same name. The inherited variable
or method is determined by a precedence list of superclass objects. Different
object models use difference precedence rules [StB86]. We plan to follow the
CommonLoops model which defines a default rule for determining the pre-
cedence list, but allows the user to modify the rule [Boe85].

8

X^^V\-:%V,:-/:-,\^S\\VS"C.^S<N'.:%-:.;X'.;-.: D«^www Vö.:<.<■%■\<<".:-r.:-\:<.\; :<v/ ;■ ■<',x<^-.v

Methods are represented in the METHODS relation:

METHODS(objid, name, proc)

where

objid is the identifier of the class object to which this method
belongs.

name is the name of the method.

proc is the code for the method.

Methods are associated with class objects because they are the same for all
objects in the class.

Instances of object classes are represented by tuples in a relation
created for the class. The relation has an attribute for each instance vari-
able. For example, the instance variables for the Box class are stored in the
BOX relation: v

BOX(objid, Origin, HorzLen, VertLen)

The creation of a Box instance causes a tuple to be appended to the
OBJECTS and BOX relations.

Class variables are somewhat more difficult to represent. The straight-
forward approach would be to define a relation CVARS that contained a
tuple for each class variable:

CVAR(objid, name, value)

where objid and name uniquely determine the class variable and value
represents the current value of the variable. This solution requires a union
type mechanism because values in different tuples have different types.
POSTGRES does not support union types because they violate the relational
tenet that all values in a column have the same type. One possible
representation for class variables is to define a separate relation with a sin-
gle tuple that holds the current values of the class variables. For example,
the following relation would be defined for the Box class:

BOX-CVAR(objid, NumberBoxes)

This solution works but it introduces some representational overhead (the
extra relation) and requires another join to fetch the definition of an object.
Moreover, it does not take advantage of database system features that can
be used to update the count automatically.

POSTGRES has a mechanism, namely, virtual fields, that may provide
a better solution. Virtual fields are not stored with each tuple in a relation

9
i

but appear to the user as if they were stored [Sto85]. The following com-
mand defines a virtual field that automatically recomputes the number of
boxes for the Box class variable:

REPLACE DEMAND BOX(
NumberBoxes = COUNT(BOX.boxid)

)

Any reference to BOX.NumberBoxes will execute the COUNT aggregate to
determine the current number of boxes. Thus, the database maintains the
correct count. The disadvantage of this representation is that the COUNT
aggregate is executed every time the variable is referenced. A better
approach is to define a registered procedure that contains a query to retrieve
the count. The POSTGRES precomputable procedures mechanism can then
be ;ised to cache the answer to this query so that it does not have to be
recomputed every time the virtual field is referenced.

Class variables that are not computable from the database can be
represented by a virtual field that is assigned the current value as illus-
trated in the following command:

REPLACE DEMAND BOX(
x = " ...current value... "

)

Given this definition, a reference to BOX.x in a query will return the
current value of the class variable. The variable can be updated by
redefining the virtual field. We plan to experiment with both the single
tuple relation and virtual field approaches to determine which provides
better performance.

This section described the object hierarchy model and a database design
for storing it in a relational database. The next section describes the front-
end process object cache and optimizations to improve the time required to
fetch an object from the database.

3. Object Cache Design
The object cache must support three functions: object fetching, object

updating, and method determination. This section describes the design for
efficiently accessing objects. The next section describes the support for
object updating and the section following that describes the support for
method determination.

The major problem with implementing an object hierarchy on a rela-
tional database system is the time required to fetch an object. This problem

10

1 ' U ■ M '-:**• 4.t^!<

arises because queries must be executed to fetch and update objects and
because objects are decomposed and stored in several relations that must be
joined to retrieve it from the database. Three strategies will be used to
speed-up object fetch time: caching, precomputation, and prefetching. This
section describes how these strategies will be implemented.

The application process will cache objects fetched from the database.
The cache will be similar to a conventional Smalltalk run-time system
[Kae81]. An object index will be maintained in main memory to allow the
run-time system to determine quickly if a referenced object is in the cache.
Each index entry will contain the OBJECTS relation tuple and the memory
address of the object. All object references, even instance variables that
reference other objects, will use the object identifier assigned to the object in
the database (i.e., the objid attribute in the OBJECTS relation) to point to
an object. These soft object pointers may slow the system down but they
avoid the problem of mapping addresses when objects are moved between

main memory and the database.1 The object index will be hashed to speed-
up object referencing.

Object caching can speed-up references to objects that have already
been fetched from the database but it cannot speed-up the time required to
fetch the object the first time it is referenced. The implementation strategy
.ve will use to solve this problem is to precompute the memory representa-
tion of an object and to cache it in the OBJECTS relation. Suppose we are
given the function RepObject that takes an object identifier and returns the
memory representation of the object. A front-end process could execute
RepObject and store the result back in the OBJECTS relation. This
approach does not work because the precomputed representation must be
invalidated if another process updates the object either through an operation
on the object or an operation on the relation containing the object represen-
tation. For example, a user could run the following query to update all
values of the variable BorderSize in instances of the object BorderBox

REPLACE ßORDERBOX(
BorderSize = new-value

)

Most Smalltalk implementations use a similar scheme and it does not appear
to be a bottleneck.

11

This update must invalidate all precomputed BorderBox's.2

The other approach is to have the DBMS process execute RepObject and
invalidate the cached result when necessary. POSTGRES supports precom-
puted procedure values that can be used to implement this approach.
POSTQUEL commands and procedures can be stored as values of a relation
attribute. A query that calls RepObject to compute the memory representa-
tion for the r' ;vt is stored ' •> the objrep attribute of the OBJECTS relation.
For example, L— following query is stored in objrep:

RETRIEVE (rep = RepObject($objid))

$objid refers to the object identifier in the tuple in which this query is
stored (i.e., OBJECTS.objid). To retrieve the OBJECTS tuple and memory
representation for the object named /bo, the following query is executed:

RETRIEVE (o.objid, o.name. o.created, o.modified,
o.instance-of, obj = o.objrep.rep)

FROM o IN OBJECTS
WHERE o.name = "foo"

The nested dot notation {o.objrep.rep) accesses values from the result tuples
of the query stored in objrep. Executing the query causes RepObject to be
called which returns the object memory representation.

This representation by itself does not alter the performance of fetching
an object. The performance can be changed by instructing the DBMS to
precompute the query in objrep (i.e., to cache the memory representatu-n of
the object in the OBJECT tuple). If this optimization is performed, fetching
an object turns into a single relation, restriction query which can be care-
fully optimized to be very efficient. POSTGRES supports precomputation of
values of type procedure or POSTQUEL. A POSTQUEL value marked as
precomputable causes the database process to evaluate the command off-

line and cache the result in the tuple.3 Moreover, any database values
retrieved by the POSTQUEL commands will be marked so that if they are
updated, the cached result can be invalidated. This mechanism is described

2
BorderBoSs cached in this process or other processes must also be invalidat-

ed. Object updating, cache consistency, and update propagation are discussed in
the next section.

3
The back-end checks that the command does not update the database and

that any procedures called in the command also do not do updates so that precom-
puting the command will not introduce side-effect errors.

12

eflDMaBDBOQMüaiC«^^

in greater detail elsewhere [StR86].

The precomputabk attribute of a procedure or POSTQUEL value can
be turned on or off for each object (i.e., it is an attribute of the value not the
type). Co> 3equently, the performance of the object run-time system can be
tuned so that only frequently accessed objects are precomputed. And,
because this attribute can be changed dynamically, precomputation of object
representations can be modified at run-time depending on how the object is
being used (e.g., is the object being edited or browsed).

The last implementation strategy to speed-up object referencing is pre-
fetching. The basic idea is to fetch an object into the cache before it is refer-
enced. The HINTS relation maintains a list of objects that should be pre-
fetched when a particular object is fetched:

HINTS(fetch-object, hint-object)

When an object is fetched from the database, all hint-objects for the object
will be fetched at the same time. For example, after fetching an object, the
following query can be run to prefetch some other objects:

RETRIEVE (o.objid, o.name, ©.created, o.modified,
o.instance-of, obj = o.objrep.rep)

FROM o IN OBJECTS, h IN HINTS
WHERE o.objid = h.hint-object

AND h.fetch-object = fetched-object-identifier

If the prefetched objects have also been precomputed, this query will load a
set of objects in one transaction.

We believe that with these three strategies object retrieval from the
database can be implemented efficiently. Our attention thus far has been
focussed on speeding up object fetching from the database. We will also
have to manage the limited memory space in the object cache. An LRU
replacement algorithm will be used to select infrequently accessed objects to
be removed from the cache. We will also have to implement a mechanism
to "pin down" objects that are not accessed frequently but which are critical
to the execution of the system or are time consuming to retrieve.

This section described strategies for speeding up object fetching. The
next section discusses object updating.

4. Object Updating and Transactions
This section describes the run-time support for updating objects. Two

aspects of object updating are discussed: how the database representation of
an object is updated (database concurrency and transaction management ^

13

aad how the update is propagated to other processes that have cached the
object.

The run-time system in the front-end process specifies the desired
update mode for an object when it is fetched from the database into the
object cache. The system supports four update modes: local-copy, direct-
update deferred-update, and object-update. Local-copy mode makes a copy
of the object m the cache. Updates to the object are not propagated to the
database and updates by other processes are not propagated to the local
copy. This mode is provided so that changes are valid only for the current
session.

Direct-update mode treats the object as though it were actually in the
database. Each update to the object is propagated immediately to the data-
base. In other words, updating an instance variable in an object causes an
update query to be run on the relation that represents instances of the
object. A conventional database transaction model is used for these updates
Wnte locks are acquired when the update query is executed and they are
released when it finishes (i.e., the update is a single statement transaction).
Note that read locks are not acquired when an object is fetched into the
cache^ Updates to the object made by other processes are propagated to the
cached object when the run-time system is notified that an update has
occurred. The notification mechanism is described below. Direct-update
mode is provided so that the application can view "live data."

Deferred-update mode saves object updates until the run-time system
explicitly requests that they be propagated to the database. A conventional
transaction model is used to specify the update boundaries. A begin tran-
saction operation can be executed for a specific object. Subsequent variable
accesses will set the appropriate read and write locks to ensure transaction
atomicity and recoverability. The transaction is committed when an end
transaction operation is executed on the object. Deferred-update mode is
provided so that the application can make several updates atomic.

The last update mode supported by the system is ooject-update This
mode treats all accesses to the object as a single trPnsaction. An intention-
to-wnte lock is acquired on the object when -t - first retrieved from the
database Other processes can read the object, but they cannot update it
Object updates are propagated to the database when the object is released
trom the cache. This mode is provided so that transactions can be expressed
m terms of the object, not the database representation. However, note that
this mode may reduce concurrency because the entire object is locked while
it is in the object cache.

14

Thus far, we have only addressed the issue of propagating updates to
the database. The remainder of this section will describe how updates are
propagated tb other processes that have cached the updated object. The
basic idea is to propagate updates through the shared database. When a
process retrieves an object, a database alerter [BuC79] is set on the object
that will notify the process when it is updated by another process. When
the alerter is trigger by another process, the process that set the alerter is
notified. The value returned by the alerter to the process that set it is the
updated value of the object. Note that the precomputed value of the object
memory representation will be invalidated by the update so that it will
have to be recomputed by the back-end. The advantage of this approach is
that the process that updates an object does not have to know which
processes want to be notified when a particular object is updated.

The disadvantages of this approach are that the database must be
prepared to handle thousands of alerters and the time and resources v

required to propagate an update may be prohibitive. Thousands of alerters
are required because each process will define an alerter for every object in
its cache that uses direct-, deferred-, or object-update mode. An alerter is
not required for local-copy mode because database updates by others are not
propagated to the local copy. POSTGRES is being designed to support large
databases of rules so this problem is being addressed.

The second disadvantage is the update propagation overhead. The
remainder of this section describes two propagated update protocols, an
alerter protocol and a distributed cache update protocol, and compares them.
Figure 4 shows the process structure for the alerter approach. Each user
process (UP) has a database process called its POSTGRES server (PS). The
POSTMASTER process (PM) controls all POSTGRES servers. Suppose that
UP- updates an object in the database on which K ^ N UP's have set an
alerter. Figure 5 shows the protocol that is executed to propagate the
updates to the other UP's. The cost of this propagated update is:

2K +1 process-to-process messages

1 database update

1 catalog query

1 object fetch

The object fetch is avoidable if the alerter returns the changed value. This
optimization works for small objects but may not be reasonable for large
objects.

15

User User
Process Process

i ' 2 »

POST GRES POST 6RES
Server Server

1 2

• • •

• • •

Figure 4. Process structure for the alerter approach.

16

;■---^v^jvivv^^^vv .^v-^^^^^ .: .^AV>.»:\:V:VV%, .->."-^^-^/^.Ov-^^

1. UPj updates the database.

2. PSj sends a message to PM indicating
which alerters were tripped.

3. PM queries the alerter catalog to determine
which PS's set the alerters.

4. PM sends a message to PS- for each alerter.

5. Each PS- sends a message to UP. indicating
that the alerter has been trippea.

6. Each PS- refetches the object.

Figure 5. Propagated update protocol for the
alerter approach.

The alternative approach to propagate updates is to have the user
processes signal each other that an update has occurred. We call this
approach the distributed cache update approach. The process structure is
similar to that shown in figure 4, except that each UP must be able to
broadcast a message to all other UP's. Figure 6 shows the distributed cache
update protocol. This protocol uses a primary site update protocol. If UP
does not have the update token signifying that it is the primary site for the
object, it sends a broadcast message to all UP's requesting the token. The
UP that has the token sends it to UR. Assuming that UP- does not have
the update token, the cost of this protocol is:

2 broadcast messages
1 process-to-process message
1 database update
1 object fetch

One broadcast message and the process-to-process mp sage are eliminated if
UPj already has the update token. The advantage of this protocol is that a
multicast protocol can be used to implement the broadcast messages in a
way that is more efficient than sending N process-to-process messages. Of
course, the disadvantage is that UP's have to examine all update signals to
determine whether the updated object is in its cache.

17

1. UPj acquires the update token for the
object.

2. UPi updates the database.

3. UPj broadcasts to all UP's that the object
has been updated.

4. Each UP. that has the object in its cache
refetches it.

Figure 6. Propagated update protocol for the
distributed cache approach.

Assume that the database update and object fetch take the same
resources in joth approaches and that the alerter catalog is cached in main
memory so the catalog query does not have to read the disk in the alerter
approach. With these assumptions, the comparison of these two approaches
comes down to the cost of 2 broadcast messages versus 2K process-to-process
messages. If objects are cached in relatively few UP's (i.e., K < < N) and
broadcast messages are efficient, the distributed cache update appears
better. On the other hand, if K is larger, so the probability of doing 2
broadcasts goes up, and broadcasts are inefficient, the alerter approach
appears better. We have chosen the alerter approach because an efficient
multicast protocol does not exist but the alerter mechanism will exist in
POSTGRES. If this approach is too slow, we will have to tune the alerter
code or implement the multicast proto

This section described the mec or updating shared objects. The
last operation that the run-time sys. ust support is method determina-
tion which is discussed in the next section.

5. Method Determination
Method determination is the action taken to select the method to be

executed when a message is sent to a particular object. The message con-
tains the name of the method to be executed, called the method selector.
The algorithm for selecting the method is to look for a method with the
same selector name in the object to which the message was sent. If the

18

method is not defined locally, the method is looked for in the superclasses of
the object. This process continues until either the method is found or the
Object object is reached which indicates the method does not exist.

Conventional object-oriented systems implement a cache of recently
called methods to speed-up method determination [GoR83]. The cache is
typically a hash table that maps an object identifier of the receiving object
and a method selector to the entry address of the method to be executed. If
the desired object-selector pair is not in the table, the standard look-up algo-
rithm is invoked. In memory resident Smalltalk systems, this strategy has
proven to be very good because high hit ratios have been achieved with
modest cache sizes (e.g., 95% with 2K entries) [Kra83].

We will adapt the method cache idea to the database environment. A
method index relation will be computed that indicates which method shouM
be called for each object-selector pair. The data will be stored in the DM
relation defined as follows:

DM(use-obj, method-name, def-obj)

where
use-obj is the receiving object.

method-name is the name of the method.

def-obj is the object in which the method is defined.

Given this relation, the method to be executed can be retrieved from the
database by the following query:

RETRIEVE (m.proc)
FROM m IN METHODS, d IN DM
WHERE m.objid = d.def-obj

AND d.use-obj = "...receiving object..."
AND d.method-name = "...message selector..."

As mentioned in section 2, both the source and binary representations of a
procedure are stored in the proc attribute in the METHODS relation.

Method code will be cached in the front-end process so that the data-
base will not have to be queried for every procedure call. Procedures in the
cache will have to be invalidated if another process modifies the method
definition or the inheritance hierarchy. Database alerters will be used to
signal object changes that require invalidating cache entries. We will also
support a check-in/check-out protocol for objects so that production programs
can isolate their object hierarchy from changes being made by others doing

19

development rKat83],

The DM relation can be precomputed for all objects in the hierarchy
and incrementally updated as the hierarchy is modified. Depending on the
rules used for multiple inheritance, the computation of DM could be a single
query or a more complicated sequence of queries.

This section described a shared index that can be used for method
determination.

6. Summary
This paper described a proposed implementation of a shared object

hierarchy in a POSTGRES database. Objects accessed by an application
program are cached in the application process. Precomputation and pre-
fetching are used to reduce the time to retrieve objects from the database.
Several update modes were defined that can be used to control the con-
currency allowed. Database alerters are used to propagate updates to copies
of objects in orher caches. A number of features in POSTGRES will be
exploited to implement the system, including: procedure and POSTQUEL
data types, precomputed procedures and queries, database alerters, and vir-
tual fields.

20

References

[AbW86] R. M. Abarbanel and M. D. Williams, A Relational
Representation for Knowledge Bases, Unpublished manuscript,
Apr. 1986.

[Boe85] D. B. Bobrow and et.al., "COMMONLOOPS: Merging Common
Lisp and Object-Oriented Programming", Intelligent Systems
Laboratory ISL-85-8, Xerox PARC, Aug. 1985.

[BuC79] 0. P. Buneman and E. K. demons, "Efficiently Monitoring
Relational Databases", ACM Trans. Database Systems , Sep.
1979, 368-382.

[CoM84] G. Copeland and D. Maier, "Making Smalltalk a Database
System", Proc. 1984 ACM-SIGMOD Int. Conf. on the Mgt. of
Data, June 1984.

[Dee86] N. P. Derrett and et.al., "An Object-Oriented Approach to Data
Management", Proc. 1986 IEEE Spring Compcon, 1986.

[GoR83] A. Goldberg and D. Robson, Smalltalk-80: The Language and its
Implementation, Addison Wesley, Reading, MA, May 1983.

[Kae81] T. Kaehler, "Virtual Memory for an Object-Oriented Language",
Byte 6, 8 (Aug. 1981).

[KaK83] T. Kaehler and G. Krasner, "LOOM - Large Object-Oriented
Memory for S:nalltalk-80 Systems", in Smalltalk-80: Bits of
History, Words of Advice, G. Krasner (editor), Addison Wesley,
Reading, MA, May 1983.

[Kat83] R. Katz, "Managing the Chip Design Database", Computer
Magazine 16, 12 (Dec. 1983).

[Kim86] W. Kim, Personal communication., 1986.

[Kra83] G. Krasner, ed., Smalltalk-80: Bits of History, Words of Advice,
Addison Wesley, Reading, MA, May 1983.

[Lin86] M. Linton, Personal communication., 1986.

[Mae85] D. Maier and et.al., Development of an Object-Oriented DBMS.
Unpublished manuscript, June 1985.

[Ste86] M. Stefik, Personal communication., 1986.

[StB86] M. Stefik and D. G. Bobrow, "Object-Oriented Programming:
Themes and Variations", The AI Magazine 6, 4 (Winter 1986;,

21

MM3*&Mj£yCto&K^^

[Sto85J

[Sto86]

[StR86]

40-62.

M. Stonebraker, "Triggers and Inference in Data Base Systems"
/Toe. Islamoora Conference on Expert Data Bases, Feb. 1985 To'
appear as a Springer-Verlag book.

M. R. Stonebraker, Object Management in POSTGRES Using
Procedures, Submitted to the OODBS Workshop, June 1986.

M. R. Stonebraker and L. A. Rowe, The Design of POSTGRES"
Proc. 1986 ACM-SIGMOD Int. Conf. on the Mgt. of Data, June'

22

^>;:.':^y\ >:y:v:y^

