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Abstract 

This paper describes the design and proposed implementation of a 
shared object hierarchy. The object hierarchy is stored in a relational data- 
base and objects referenced by an application program are cached in the 
program's address space. The paper describes the database representation 
for the object hierarchy and the use of POSTGRES, a next-generation rela- 
tional database management system, to implement object referencing 
efficiently. The shared object hierarchy system will be used to implement 
Object FADS, an object-oriented programming environment for interactive 
database applications that will be the main programming interface to 
POSTGRES. 

1. Introduction 
Object-oriented programming has received much attention recently as a 

new way to develop and structure programs [GoR83,StB86]. This new pro- 
gramming paradigm, when coupled with a sophisticated interactive pro- 
gramming environment executing on a workstation with a bit-mapped 
display and mouse, improves programmer productivity and the quality of 
programs they produce. 

A program written in an object-oriented language is composed of a col- 
lection of objects that contain data and procedures. These objects are organ- 
ized into an object hierarchy. Previous implementations of object-oriented 
languages have required each user to have his or her own private object 
hierarchy. In other words, the object hierarchy is not shared. Moreover, the 
object hierarchy is usually restricted to main memory. The LOOM system 
stored object hierarchies in secondary memory [KaK83], but it did not allow 
object sharing. These restrictions limit the applications to which this new 
programming technology can be applied. 

There are two approaches to building a shared object hierarchy capable 
of storing a large number of objects. The first approach is to build an object 
data manager [CoM84,Dee86,Kim86,Lin86,Mae85,Ste86]. In this approach, 
the data manager stores objects that a program can fetch and store. The 
disadvantage of this approach is that a complete database management 

t This research was supported by the National Science Foundation under 
Grant DCR-8507256 and by the Naval Electronics Systems Command Contract 
N0039-84-C-0089. 
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system (DBMS) must be written. A query optimizer is needed to support 
object queries (e.g., "fetch all /bo objects where field bar is such-and-such"). 
Moreover, the optimizer must support the equivalent of relational joins 
because objects can include references to other objects. A transaction 
management system is needed to support shared access and to maintain 
data integrity should the software or hardware crash. Finally, protection 
and integrity systems are required to control access to objects and to main- 
tain data consistency. These modules taken together account for a large 
fraction of the code in a DBMS. Proponents of this approach may argue 
that some of this functionality can be avoided. However, we believe that 
eventually all of this functionality will be required for the same reasons 
that it is included in conventional database management systems. 

The second approach, and the one we are taking, is to store the object 
hierarchy in a relational database.  The advantage of this approach is that 
we do not have to write a DBMS.  A beneficial side-effect is that programs 
written in a conventional programming language can simultaneously access 
the data stored in the object hierarchy.  The main objection to this approach 
has been that the performance of existing relational DBMS's has been 
inadequate.  We believe this problem will be solved by using POSTGRES as 
the DBMS on which to implement the shared hierarchy.   POSTGRES is a 
next-generation DBMS currently being implemented at the University of 
California, Berkeley [StR86].   It has a number of features, including pro- 
cedure data types, precomputed procedures, and alerters, that can be used to 
implement the shared object hierarchy efficiently.  A group at Intellicorp is 
also pursuing this approach [AbW86].   However, they do not store the com- 
plete object hierarchy in the database as we are planning to do. 

Figure 1 shows the architecture of the proposed system. Each applica- 
tion process is connected to a database process that manages the shared 
database. The application program is presented a conventional view of the 
object hierarchy. As objects are referenced by the program, a run-time sys- 
tem retrieves them from the database. Objects retrieved from the database 
are stored in an object cache in the application process so that subsequent 
references to the object will not require another database retrieval. Object 
updates are propagated to the database and to other processes tha+ have 
cached the object. 

This paper describes how a shared object hierarchy can be implemented 
efficiently on POSTGRES. The POSTGRES mechanisms used to implement 
the shared object hierarchy are described in another paper in these proceed- 
ings [Sto86].  The remainder of the paper is organized as follows.  Section 2 
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describes the database representation for the object hierarchy. Section 3 
describes the design of the object cache including strategies for improving 
the performance of fetching objects from the database. Section 4 discusses 
object updating and transactions. Section 5 describes the support for select- 
ing and executing methods.  And lastly, section 6 summarizes the paper. 

2. Object Hierarchy Database Design 
This section describes the object hierarchy model and explains how it is 

represented in a POSTGRES database. 

Every object has a name, a type (called the object class), one or more 
parent classes (called superclasses), a set of local variables (called instance 
variables), and a set of procedures or methods that operate on the object 
(called instance methods). In an object-oriented system, the class of an 
object (i.e., the object type) is represented at run-time by an object. For 
example, figure 2 shows an example object hierarchy with two object classes. 
Box and BorderBox. The superclass of each class is indicated by a bold solid 
line with an arrow pointing to the parent class (e.g., Box is the superclass of 
BorderBox). By convention the class Object is at the top of the superclass 
hierarchy. 

The example figure also shows class instances. There are two instances 
of Box (labeled Box-1 and Box-2) and three instances of BorderBox (labeled 
BorderBox-1, BorderBox-?., and BorderBox-3). The class of each instance is 
indicated by a normal width line with an arrow that points at the class 
object for the instance. This relationship is also called the instance-of rela- 
tionship. Since classes are represented by objects, they must also have a 
type or class (called the classes' metaclass). In most cases, the metaclass of 
a class object (e.g.. Box) is an object named Class. For completeness and 
consistency, the Class object has a class named MetaClass which is its own 
class. 

Since the object that represents a particular class is a normal object, it 
may have its own local variables. These variables, called class variables, 
are global to all instances of the class. They can be used to store data that 
is constant for all instances, that is computed from the instances (e.g., keep- 
ing a count of the number of instances), or that is used to pass data between 
instances. 

Figure 3 shows object definitions for Box and BorderBox. Objects 
inherit the procedures and data defined in their superclasses. In this exam- 
ple, BorderBox inherits the instance variables Origin, HorzLen, and 
VertLeng and the class variable NumberBoxes.   It also inherits the methods 
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Figure 2. Example of an object hierarchy. 
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Box 

MetaClass Class 

Superclasses (Object) 

Class Variables 
NumberBoxes 

Instance Variables 
Origin 
HorzLen 
VertLen 

Instance Methods 
Move(NewOrigin) 

/* number of boxes created */ 

/* origin of upper left corner */ 
/* horizontal length of box */ 
/* vertical lenjth of box */ 

/* move box */ 
Reshape^NewOrigin, NewHorzLen, NewVertLen)   /* reshape box */ 
Shade(NewShade) /* shade the interior of the box */ 
Draw() 

BorderBox 

MetaClass Class 

Superclasses (Box) 

Class Variables 

Instance Variables 
BorderSize 

/* draw the box */ 

3(a): Box object definition. 

/* size of border */ 

Instance Methods 
SetBorderfNewBorderSize) /* set border size */ 
Reshape(XewOrigin, NewHorzLen, NewVertLen)   /* reshape box */ 
EraseBorderO /* erase the border */ 
DrawBorderO /* draw the border */ 

3(b): BorderBox object definition. 

Figure 3. Example object definitions. 

*&A&&^£&^uwy^^ 



Move, Shade, and Draw.   The method Reshape is not inherited from Box 
because a new definition for that method is given in BorderBox. 

The database representation for this hierarchy requires three catalog 
relations (OBJECTS, SUPERS, and METHODS) and a relation for each 
object class. The OBJECTS relation keeps track of all objects: 

OBJECTS(objid, name, owner, created, 
modified, instance-of, objrep) 

where 

objid 

name 

owner 

created 

modified 

instance-of 

objrep 

is a unique identifier for the object. 

is the name of the object. 

is the object creator. 

is the date/time when the object was created. 

is the date/time when the object was last modified. 

is the objid of the class object of this instance. 

is a cached version of the memory representation of the 
object (described below). 

The superclass relationship is represented in the SUPERS relation: 

SUPERS'class, superclass, seqno) 

where 
class is the objid of the class object. 

superclass    is the objid of the parent class object. 

seqno is a sequence number that specifies the inheritance order 
in the case that a class has more than one superclass. 

The superclass relationship is stored in a separate relation because an object 
can inherit variables and methods from more than one parent (i.e., multiple 
inheritance). 

The sequence number in the SUPERS relation is needed to determine 
which variable or method should be inherited when more than one super- 
class has a variable or method with the same name. The inherited variable 
or method is determined by a precedence list of superclass objects. Different 
object models use difference precedence rules [StB86]. We plan to follow the 
CommonLoops model which defines a default rule for determining the pre- 
cedence list, but allows the user to modify the rule [Boe85]. 
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Methods are represented in the METHODS relation: 

METHODS(objid, name, proc) 

where 

objid    is the  identifier  of the  class object to which  this  method 
belongs. 

name   is the name of the method. 

proc     is the code for the method. 

Methods are associated with class objects because they are the same for all 
objects in the class. 

Instances of object classes are represented by tuples in a relation 
created for the class. The relation has an attribute for each instance vari- 
able. For example, the instance variables for the Box class are stored in the 
BOX relation: v 

BOX(objid, Origin, HorzLen, VertLen) 

The creation of a Box instance  causes a tuple to be appended  to  the 
OBJECTS and BOX relations. 

Class variables are somewhat more difficult to represent. The straight- 
forward approach would be to define a relation CVARS that contained a 
tuple for each class variable: 

CVAR(objid, name, value) 

where objid and name uniquely determine the class variable and value 
represents the current value of the variable. This solution requires a union 
type mechanism because values in different tuples have different types. 
POSTGRES does not support union types because they violate the relational 
tenet that all values in a column have the same type. One possible 
representation for class variables is to define a separate relation with a sin- 
gle tuple that holds the current values of the class variables. For example, 
the following relation would be defined for the Box class: 

BOX-CVAR(objid, NumberBoxes) 

This solution works but it introduces some representational overhead (the 
extra relation) and requires another join to fetch the definition of an object. 
Moreover, it does not take advantage of database system features that can 
be used to update the count automatically. 

POSTGRES has a mechanism, namely, virtual fields, that may provide 
a better solution. Virtual fields are not stored with each tuple in a relation 
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but appear to the user as if they were stored [Sto85]. The following com- 
mand defines a virtual field that automatically recomputes the number of 
boxes for the Box class variable: 

REPLACE DEMAND BOX( 
NumberBoxes = COUNT(BOX.boxid) 

) 

Any reference to BOX.NumberBoxes will execute the COUNT aggregate to 
determine the current number of boxes. Thus, the database maintains the 
correct count. The disadvantage of this representation is that the COUNT 
aggregate is executed every time the variable is referenced. A better 
approach is to define a registered procedure that contains a query to retrieve 
the count. The POSTGRES precomputable procedures mechanism can then 
be ;ised to cache the answer to this query so that it does not have to be 
recomputed every time the virtual field is referenced. 

Class variables that are not computable from the database can be 
represented by a virtual field that is assigned the current value as illus- 
trated in the following command: 

REPLACE DEMAND BOX( 
x = " ...current value... " 

) 

Given this definition, a reference to BOX.x in a query will return the 
current value of the class variable. The variable can be updated by 
redefining the virtual field. We plan to experiment with both the single 
tuple relation and virtual field approaches to determine which provides 
better performance. 

This section described the object hierarchy model and a database design 
for storing it in a relational database. The next section describes the front- 
end process object cache and optimizations to improve the time required to 
fetch an object from the database. 

3. Object Cache Design 
The object cache must support three functions: object fetching, object 

updating, and method determination. This section describes the design for 
efficiently accessing objects. The next section describes the support for 
object updating and the section following that describes the support for 
method determination. 

The major problem with implementing an object hierarchy on a rela- 
tional database system is the time required to fetch an object.  This problem 
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arises because queries must be executed to fetch and update objects and 
because objects are decomposed and stored in several relations that must be 
joined to retrieve it from the database. Three strategies will be used to 
speed-up object fetch time: caching, precomputation, and prefetching. This 
section describes how these strategies will be implemented. 

The application process will cache objects fetched from the database. 
The cache will be similar to a conventional Smalltalk run-time system 
[Kae81]. An object index will be maintained in main memory to allow the 
run-time system to determine quickly if a referenced object is in the cache. 
Each index entry will contain the OBJECTS relation tuple and the memory 
address of the object. All object references, even instance variables that 
reference other objects, will use the object identifier assigned to the object in 
the database (i.e., the objid attribute in the OBJECTS relation) to point to 
an object. These soft object pointers may slow the system down but they 
avoid the problem of mapping addresses when objects are moved between 

main memory and the database.1 The object index will be hashed to speed- 
up object referencing. 

Object caching can speed-up references to objects that have already 
been fetched from the database but it cannot speed-up the time required to 
fetch the object the first time it is referenced.  The implementation strategy 
.ve will use to solve this problem is to precompute the memory representa- 
tion of an object and to cache it in the OBJECTS relation.  Suppose we are 
given the function RepObject that takes an object identifier and returns the 
memory representation of the object.   A front-end process could execute 
RepObject  and  store  the result  back  in  the  OBJECTS relation.    This 
approach does not work because the precomputed representation must be 
invalidated if another process updates the object either through an operation 
on the object or an operation on the relation containing the object represen- 
tation.   For example, a user could run the following query to update all 
values of the variable BorderSize in instances of the object BorderBox 

REPLACE ßORDERBOX( 
BorderSize = new-value 

) 

Most Smalltalk implementations use a similar scheme and it does not appear 
to be a bottleneck. 
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This update must invalidate all precomputed BorderBox's.2 

The other approach is to have the DBMS process execute RepObject and 
invalidate the cached result when necessary. POSTGRES supports precom- 
puted procedure values that can be used to implement this approach. 
POSTQUEL commands and procedures can be stored as values of a relation 
attribute. A query that calls RepObject to compute the memory representa- 
tion for the r' ;vt is stored ' •> the objrep attribute of the OBJECTS relation. 
For example, L— following query is stored in objrep: 

RETRIEVE (rep = RepObject($objid)) 

$objid refers to the object identifier in the tuple in which this query is 
stored (i.e., OBJECTS.objid). To retrieve the OBJECTS tuple and memory 
representation for the object named /bo, the following query is executed: 

RETRIEVE (o.objid, o.name. o.created, o.modified, 
o.instance-of, obj = o.objrep.rep) 

FROM o IN OBJECTS 
WHERE o.name = "foo" 

The nested dot notation {o.objrep.rep) accesses values from the result tuples 
of the query stored in objrep. Executing the query causes RepObject to be 
called which returns the object memory representation. 

This representation by itself does not alter the performance of fetching 
an object.   The performance can be changed by instructing the DBMS to 
precompute the query in objrep (i.e., to cache the memory representatu-n of 
the object in the OBJECT tuple).  If this optimization is performed, fetching 
an object turns into a single relation, restriction query which can be care- 
fully optimized to be very efficient.  POSTGRES supports precomputation of 
values of type procedure or POSTQUEL.   A POSTQUEL value marked as 
precomputable causes the database process to evaluate the command off- 

line and cache the result in the tuple.3 Moreover, any database values 
retrieved by the POSTQUEL commands will be marked so that if they are 
updated, the cached result can be invalidated.  This mechanism is described 

2 
BorderBoSs cached in this process or other processes must also be invalidat- 

ed. Object updating, cache consistency, and update propagation are discussed in 
the next section. 

3 
The back-end checks that the command does not update the database and 

that any procedures called in the command also do not do updates so that precom- 
puting the command will not introduce side-effect errors. 

12 
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in greater detail elsewhere [StR86]. 

The precomputabk attribute of a procedure or POSTQUEL value can 
be turned on or off for each object (i.e., it is an attribute of the value not the 
type). Co> 3equently, the performance of the object run-time system can be 
tuned so that only frequently accessed objects are precomputed. And, 
because this attribute can be changed dynamically, precomputation of object 
representations can be modified at run-time depending on how the object is 
being used (e.g., is the object being edited or browsed). 

The last implementation strategy to speed-up object referencing is pre- 
fetching. The basic idea is to fetch an object into the cache before it is refer- 
enced. The HINTS relation maintains a list of objects that should be pre- 
fetched when a particular object is fetched: 

HINTS(fetch-object, hint-object) 

When an object is fetched from the database, all hint-objects for the object 
will be fetched at the same time. For example, after fetching an object, the 
following query can be run to prefetch some other objects: 

RETRIEVE (o.objid, o.name, ©.created, o.modified, 
o.instance-of, obj = o.objrep.rep) 

FROM o IN OBJECTS, h IN HINTS 
WHERE o.objid = h.hint-object 

AND h.fetch-object = fetched-object-identifier 

If the prefetched objects have also been precomputed, this query will load a 
set of objects in one transaction. 

We believe that with these three strategies object retrieval from the 
database can be implemented efficiently. Our attention thus far has been 
focussed on speeding up object fetching from the database. We will also 
have to manage the limited memory space in the object cache. An LRU 
replacement algorithm will be used to select infrequently accessed objects to 
be removed from the cache. We will also have to implement a mechanism 
to "pin down" objects that are not accessed frequently but which are critical 
to the execution of the system or are time consuming to retrieve. 

This section described strategies for speeding up object fetching. The 
next section discusses object updating. 

4. Object Updating and Transactions 
This section describes the run-time support for updating objects. Two 

aspects of object updating are discussed: how the database representation of 
an object is updated (database concurrency and transaction management ^ 
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aad how the update is propagated to other processes that have cached the 
object. 

The run-time system in the front-end process specifies the desired 
update mode for an object when it is fetched from the database into the 
object cache. The system supports four update modes: local-copy, direct- 
update deferred-update, and object-update. Local-copy mode makes a copy 
of the object m the cache. Updates to the object are not propagated to the 
database and updates by other processes are not propagated to the local 
copy. This mode is provided so that changes are valid only for the current 
session. 

Direct-update mode treats the object as though it were actually in the 
database.  Each update to the object is propagated immediately to the data- 
base.  In other words, updating an instance variable in an object causes an 
update query to be run on the relation that represents instances of the 
object. A conventional database transaction model is used for these updates 
Wnte locks are acquired when the update query is executed and they are 
released when it finishes (i.e., the update is a single statement transaction). 
Note that read locks are not acquired when an object is fetched into the 
cache^ Updates to the object made by other processes are propagated to the 
cached object when the run-time system is notified that an update has 
occurred.   The  notification mechanism is described below.   Direct-update 
mode is provided so that the application can view "live data." 

Deferred-update mode saves object updates until the run-time system 
explicitly requests that they be propagated to the database. A conventional 
transaction model is used to specify the update boundaries. A begin tran- 
saction operation can be executed for a specific object. Subsequent variable 
accesses will set the appropriate read and write locks to ensure transaction 
atomicity and recoverability. The transaction is committed when an end 
transaction operation is executed on the object. Deferred-update mode is 
provided so that the application can make several updates atomic. 

The last update mode supported by the system is ooject-update This 
mode treats all accesses to the object as a single trPnsaction. An intention- 
to-wnte lock is acquired on the object when -t - first retrieved from the 
database Other processes can read the object, but they cannot update it 
Object updates are propagated to the database when the object is released 
trom the cache. This mode is provided so that transactions can be expressed 
m terms of the object, not the database representation. However, note that 
this mode may reduce concurrency because the entire object is locked while 
it is in the object cache. 
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Thus far, we have only addressed the issue of propagating updates to 
the database. The remainder of this section will describe how updates are 
propagated tb other processes that have cached the updated object. The 
basic idea is to propagate updates through the shared database. When a 
process retrieves an object, a database alerter [BuC79] is set on the object 
that will notify the process when it is updated by another process. When 
the alerter is trigger by another process, the process that set the alerter is 
notified. The value returned by the alerter to the process that set it is the 
updated value of the object. Note that the precomputed value of the object 
memory representation will be invalidated by the update so that it will 
have to be recomputed by the back-end. The advantage of this approach is 
that the process that updates an object does not have to know which 
processes want to be notified when a particular object is updated. 

The disadvantages of this approach are that the database must be 
prepared  to  handle  thousands  of alerters  and  the  time  and  resources v 

required to propagate an update may be prohibitive. Thousands of alerters 
are required because each process will define an alerter for every object in 
its cache that uses direct-, deferred-, or object-update mode. An alerter is 
not required for local-copy mode because database updates by others are not 
propagated to the local copy. POSTGRES is being designed to support large 
databases of rules so this problem is being addressed. 

The second disadvantage is the update propagation overhead. The 
remainder of this section describes two propagated update protocols, an 
alerter protocol and a distributed cache update protocol, and compares them. 
Figure 4 shows the process structure for the alerter approach. Each user 
process (UP) has a database process called its POSTGRES server (PS). The 
POSTMASTER process (PM) controls all POSTGRES servers. Suppose that 
UP- updates an object in the database on which K ^ N UP's have set an 
alerter. Figure 5 shows the protocol that is executed to propagate the 
updates to the other UP's. The cost of this propagated update is: 

2K +1       process-to-process messages 

1 database update 

1 catalog query 

1 object fetch 

The object fetch is avoidable if the alerter returns the changed value. This 
optimization works for small objects but may not be reasonable for large 
objects. 

15 
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Figure 4. Process structure for the alerter approach. 
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1. UPj updates the database. 

2. PSj sends a message to PM indicating 
which alerters were tripped. 

3. PM queries the alerter catalog to determine 
which PS's set the alerters. 

4. PM sends a message to PS- for each alerter. 

5. Each PS- sends a message to UP. indicating 
that the alerter has been trippea. 

6. Each PS- refetches the object. 

Figure 5. Propagated update protocol for the 
alerter approach. 

The alternative approach to propagate updates is to have the user 
processes signal each other that an update has occurred. We call this 
approach the distributed cache update approach. The process structure is 
similar to that shown in figure 4, except that each UP must be able to 
broadcast a message to all other UP's. Figure 6 shows the distributed cache 
update protocol. This protocol uses a primary site update protocol. If UP 
does not have the update token signifying that it is the primary site for the 
object, it sends a broadcast message to all UP's requesting the token. The 
UP that has the token sends it to UR. Assuming that UP- does not have 
the update token, the cost of this protocol is: 

2 broadcast messages 
1 process-to-process message 
1 database update 
1 object fetch 

One broadcast message and the process-to-process mp sage are eliminated if 
UPj already has the update token. The advantage of this protocol is that a 
multicast protocol can be used to implement the broadcast messages in a 
way that is more efficient than sending N process-to-process messages. Of 
course, the disadvantage is that UP's have to examine all update signals to 
determine whether the updated object is in its cache. 
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1. UPj acquires the update token for the 
object. 

2. UPi updates the database. 

3. UPj broadcasts to all UP's that the object 
has been updated. 

4. Each UP. that has the object in its cache 
refetches it. 

Figure 6. Propagated update protocol for the 
distributed cache approach. 

Assume  that the  database update  and  object fetch  take the  same 
resources in joth approaches and that the alerter catalog is cached in main 
memory so the catalog query does not have to read the disk in the alerter 
approach.   With these assumptions, the comparison of these two approaches 
comes down to the cost of 2 broadcast messages versus 2K process-to-process 
messages.   If objects are cached in relatively few UP's (i.e., K < < N) and 
broadcast  messages  are  efficient,  the  distributed  cache  update  appears 
better.   On the other hand, if K is larger, so the probability of doing 2 
broadcasts goes up, and broadcasts are inefficient, the alerter approach 
appears better.   We have chosen the alerter approach because an efficient 
multicast protocol does not exist but the alerter mechanism will exist in 
POSTGRES.   If this approach is too slow, we will have to tune the alerter 
code or implement the multicast proto 

This section described the mec or updating shared objects.  The 
last operation that the run-time sys. ust support is method determina- 
tion which is discussed in the next section. 

5. Method Determination 
Method determination is the action taken to select the method to be 

executed when a message is sent to a particular object. The message con- 
tains the name of the method to be executed, called the method selector. 
The algorithm for selecting the method is to look for a method with the 
same selector name in the object to which the message was sent.   If the 
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method is not defined locally, the method is looked for in the superclasses of 
the object. This process continues until either the method is found or the 
Object object is reached which indicates the method does not exist. 

Conventional object-oriented systems implement a cache of recently 
called methods to speed-up method determination [GoR83]. The cache is 
typically a hash table that maps an object identifier of the receiving object 
and a method selector to the entry address of the method to be executed. If 
the desired object-selector pair is not in the table, the standard look-up algo- 
rithm is invoked. In memory resident Smalltalk systems, this strategy has 
proven to be very good because high hit ratios have been achieved with 
modest cache sizes (e.g., 95% with 2K entries) [Kra83]. 

We will adapt the method cache idea to the database environment. A 
method index relation will be computed that indicates which method shouM 
be called for each object-selector pair. The data will be stored in the DM 
relation defined as follows: 

DM(use-obj, method-name, def-obj) 

where 
use-obj is the receiving object. 

method-name    is the name of the method. 

def-obj is the object in which the method is defined. 

Given this relation, the method to be executed can be retrieved from the 
database by the following query: 

RETRIEVE (m.proc) 
FROM m IN METHODS, d IN DM 
WHERE m.objid = d.def-obj 

AND d.use-obj = "...receiving object..." 
AND d.method-name = "...message selector..." 

As mentioned in section 2, both the source and binary representations of a 
procedure are stored in the proc attribute in the METHODS relation. 

Method code will be cached in the front-end process so that the data- 
base will not have to be queried for every procedure call. Procedures in the 
cache will have to be invalidated if another process modifies the method 
definition or the inheritance hierarchy. Database alerters will be used to 
signal object changes that require invalidating cache entries. We will also 
support a check-in/check-out protocol for objects so that production programs 
can isolate their object hierarchy from changes being made by others doing 
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development rKat83], 

The DM relation can be precomputed for all objects in the hierarchy 
and incrementally updated as the hierarchy is modified. Depending on the 
rules used for multiple inheritance, the computation of DM could be a single 
query or a more complicated sequence of queries. 

This section described a shared index that can be used for method 
determination. 

6. Summary 
This paper described a proposed implementation of a shared object 

hierarchy in a POSTGRES database. Objects accessed by an application 
program are cached in the application process. Precomputation and pre- 
fetching are used to reduce the time to retrieve objects from the database. 
Several update modes were defined that can be used to control the con- 
currency allowed. Database alerters are used to propagate updates to copies 
of objects in orher caches. A number of features in POSTGRES will be 
exploited to implement the system, including: procedure and POSTQUEL 
data types, precomputed procedures and queries, database alerters, and vir- 
tual fields. 
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