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ABSTRACT

This memorandum discusses basic concepts relating to analytic
signal generation and envelope detection by discrete-time methods.
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I. INTRODUCTION

Often when one is analyzing band-pass data, it may be
desirable to look at only the envelope of the signal. This is
certainly the case for communication systems using pulse
amplitude modulation, where all the necessary information is
contained in the envelope of the signal. For data such as
crosscorrelations or autocorrelations, often much can be learned
from only the envelope of the resulting correlation function.

This short note will discuss the calculation ,of the envelope
of a real bandzpass signal using an analytic signal
representation of the signal. Analytic signal representations are
common in the development of radar_[l', sonar-{2Y, and more
recently, geophysical signal processing techniques [3],[41.

II. ANALYTIC AND PHYSICAL SIGNALS

The analytic signal representation of a real signal is a
complex signal. As with any complex signal, there is a magnitude
only envelope that is modulated by a complex exponential.
However, as will be discussed subsequently, there is a special
relationship between the real and imaginary parts of an analytic
signal that separates analytic signals from the general class
of complex signals.

Given a real, band-limited, discrete-time signal, x(n), the
analytic signal representation of x(n) is defined as:

R(n) = x(n) + j-X(n) ( )

where (n) is the Hilbert Transform of the sequence x(n). This is
the relationship that distinguishes analytic signals from signals
that are simply complex.

In polar notation, Eq.(1) can be expressed as:

je(n)
1(n) = a(n) e (2).

From (1) and (2), it is apparent that:

a(n) = [x(n) 2 1/23),

and: e(n) = arctan( (n)/x(n) ) (4).
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The physical signal (i.e., the real positive valued envelope) is
given by Eq.(3). The phase of the analytic signal is given
by Eq. (4).

The phase can be rewritten as:

e(n) - %(n) + nw c  (4a)

where we is the "carrier" or center frequency of the band-limited
signal. (Note that frequency variable is an angular frequency,

w = 21rf/f. , where f. is the sampling frequency.) Using Eq.
(4a), the analytic signal can be expressed as:

jq(n) jnc
x(n)= [ a(n)e le (la).

The quantity within brackets of Eq. (la) is usually referred to
as the low-pass complex envelope of the real band-limited signal.
It is easily shown that the real and imaginary parts of the
low-pass complex envelope are the inphase and quadrature
components of the quadrature demodulation of x(n). The important
point is that whether the physical signal is calculated from the
analytic signal or from the quadrature demodulated signal the
results are equivalent. In order for the phases to be equal
the analytic signal must be demodulated by ejnuc

Ill. DISCRETE HILBERT TRANSFORMATIONS

Because of the special relationship between a signal and its
Hilbert Transform found in the analytic representation of the
signal, some properties of the discrete Hilbert Transform will
be discussed.

For the purpose of this discussion, the discrete Hilbert
Transform of the sequence x(n) will be considered to be the output
of a linear discrete time system with x(n) as the input. This
implies that the Hilbert Transform of a signal can be obtained by
convolving the signal with a particular filter impulse response:

'(n) = x(n) * h(n) (5),

where * denotes discrete-time convolution and h(n) is the pulse
response function.

Equivalently, there is a frequency domain representation of
the system. The frequency domain transfer function that char-
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acterizes this system is shown in Fig. I and is expressed as [5:

H(e3 ) -j 0 <W W = 1 (6).
j -17 W < 0

As can be seen from Eq. (6),.t e transfer function operates as a
90 phase shifter (ie., j = eJ ).

H(e 3j')

A

-I -Jr

Figure 1. Transfer function for discrete Hilbert Transform.

The unit pulse response corresponding to the above transfer
function can be shown to be:

sin 2 (nw /2)
h(n) = (7a),

(nw /2)

or equivalently:

S2/nw n odd
h(n) = ~ /w nod(7b).

h 0 all other n

The Hilbert Transform pulse response (Eq. (7)) is shown in Figure
2.
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1 23 4...

Figure 2. Hilbert Transform impulse response.

As can be seen from Eq. (7), the Hilbert Transform system
pulse response is noncausal and belongs to a class of responses
known as infinite impulse response (IIR) filters. Because the
response is not realizable and because of ripple caused by the
discontinuities in Eq. (6), (i.e., the Fourier Transform of (7)
approaches (6) only in a least squares sense because of Gibbs'
phenomena), the ideal discrete-time Hilbert Transform is similar
to the ideal low-pass filter; more useful for theoretical
considerations than as a computational tool. Realizable filters
which closely approximate the ideal Hilbert Transform (without
the undesirable ripple) are easily designed and implemented
[5],[61,[7].

IV. LINEAR SYSTEM REPRESENTATION OF ANALYTIC SIGNALS

Using Eq. (1) and the linear system representation of the
Hilbert Transform (Eq. (5)), an analytic signal can be considered
to be the output of the linear discrete-time system shown in
Figure 3. The pulse response of this system can be obtained
directly from the system representation (Fig. 3) by noting that:

g(n) = 6(n) + jh(n) (8a),

1 n = 0
2j/nw n odd (8b).
3 all other n

Again as was the case for the discrete Hilbert Transform, the
desired filter response is not realizable. Approximations to the
desired response may be implemented by techniques such as
pulse response truncation or windowing and frequency sampling.
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I I

G~n X(n)

Figure 3. Linear discrete-time system to generate an
analytic signal.

The frequency domain representation of the filter which
generates the analytical signal is:

GWeJ') = 2(0<
10 -t< W < 0

it is in the frequency domain (see Fig. 4) that we see why the
analytic signal representation of a real signal is so convenient.
The analytic signal does not contain any of the "negative"
frequency components of the original signal and has simply
doubled the "positive" frequency components. This property is
very useful in reducing the sampling required for band-pass
signals [21,[61,[7].
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G~ejW)

2

Figure 4. Transfer function for the linear system which
generates an analytic signal (see Fig. 3).

V. IMPLEMENTATION BY FREQUENCY SAMPLING

In order to actually implement the linear discrete time system
which generates an analytic signal, the transfer function:

G• jW 2 0 < w <V(9

10 -V < W < 0

must be approximated with a realizable filter. One general
technique for this type of filter design is known as "frequency
sampling" [51,[6]. Essentially, the desired transfer function is
sampled at N equi-spaced points on the unit circle and then the
Discrete Fourier Transform (DFT) is used to generate an N point
finite impulse response (FIR) filter.

For the case considered here, the sampling is particularly
easy, giving:

S=2 k=0,1,2, ... ,N/2 - 1(k) =(10).

k=N/2, ... , N-I

From this sampled version of the transfer function, it can be
shown that the resulting complex N point inverse DFT is:

1 n=0
g(n) = (1+jcot(nw /N )N 0< n odd : N-i (11).

0 0< n even5 N-i
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The magnitude of Eq. (11) is shown in Figure 5. Note the
circularity that is implicit in the use of the DFT.

I11)I

I,

0 31 23- N N-1

Figure 5. FIR pulse response for frequency sampling filter
(note periodicity outside 0 to N-i).

The sequece g(n) is an N point approximation to the infinitely
long sequence g(n) (i.e., the exact inverse transform of G(eJW)).
Because of the sampling done in the frequency domain, (n) is
a time aliased version of g(n):

§(n) = E g( n + mN) (12)

It is interesting to note from Eq. (11) that, since for small
values of x, tan(x) a x, then:

2(1 + jcot(ni /N)) 2j
lim N--o of = - (13).

N ni

Both Eqs. (12) and (13) show that §(n) is a good approximation of
g(n) for large N.

Basically there are two ways that an FIR filter can be
implemented numerically; in the time domain as a linear
discrete-time convolution or in the frequency domain (via the
FFT) by multiplication. To properly use Eq. (11) in a time domain
convolution, g(n) must first be circularly rotated by (N-1)/2
points so that the peak of the pulse response is at it's center.
This can be thought of as the delay necessary to realize the
filter g(n).
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In the frequency domain, it is tempting to use G(k) directly
and simply "zero out" the DFT/FFT components of X(k) for
indices N/2 < k : N-I. However, this actually results
in a circular discrete-time convolution of §(n) with x(n), not
the desired linear convolution. The wraparound problem can be
overcome by zero padding the input signal and using a larger FFT
size.

Even though G(ej') is the exact system to generate the
analytic signal, it may be desirable to implement a slightly
different system. This. is due to the discontinuities in the
transfer function G(e Jw ) at w = 0 and w = It which will cause
ripple in any realization of the system. In fact as is the case
for the Hilbert Transform and the ideal low pass filter, the
inverse Fourier Transform of the "exact filter" g(n), only
converges to G(eJ 3 ) in a least squares sense. For an
approximation such as §(n), there is always undershoot and
overshoot at the discontinuities. This ripple can be forced to
occupy an arbitrarily small band by increasing N, however this is
a large computational price to pay. A much better.solution to the
problem is to eliminate the discontinuties in G(e)") by using
transition bands [5],[6]. Actually as a practical consideration,
ripple may not be as troublesome of a problem as indicated above
if the energy of a band-limited signal is centered about w = 7/2
and there is little energy near the band edges ( w = 0 and
w = i) where the ripple is most severe.

Finally, it should be pointed out that there are many other
techniques that could be used to design and implement this
particular nonrealizable system. Most of these techniques use
efficient ways to calculate the Hilbert Transform required [7).

Vt. SUMMARY

The connection between the analytic signal, the discrete
Hilbert Transform, quadrature demodulation and the physical
signal for band-limited discrete-time signals has been reviewed.
For the purposes of this work the analytic signal has been
considered to be the output of a nonrealizable linear system.
Some details of a frequency sampling filter approximation of this
system have been discussed.

8



TM No. 861161

REFERENCES

[1] A. W. Rihazek, Principles of High Resolution Radar, McGraw
Hill, 1969.

[21 L. R. LeBlanc, 'Narrow-Band Sampled-Data Techniques for
Detection via the Underwater Acoustic Communication Channel,'
IEEE Transactions on Communication Technology, Vol COM-17,
No. 4, August 1969, pp. 481-488.

[3] T. J. Ulrych & C. Walker, 'Analytic Minimum Entropy Decon-
volution,' Geophysics, Vol 47, No. 9, Sept. 1982, pp. 1295-
1302.

(4] S. Levy & D. W. Oldenburg, 'The Deconvolution of Phase Shifted
Wavelets,' Geophysics, Vol 47, No. 9, Sept 1982,pp. 1285-
1294.

[51 A. V. Oppenheim & R. W. Schafer, Digital Signal Processing,
Prentice Hall, 1975, Chaps. 5 & 7.

[61 S. A. Tretter, Discrete-Time Signal Processin, John Wiley &
Sons, 1976, Sections 2.5,8.8, and 8.10.

(71 B. Gold, A. V. Oppenheim & C. M. Rader, 'Theory an Implemen-
tation of the Discrete Hilbert Transform,' in Digital
Signal Processing L. R. Rabiner & C. M. Rader Eds., ZEEE
Press, 1972, pp. 94-109.

9



ENVELCPE DETECTION CF DISCRETE-TIIE
EANE-LIM:ITED SIGNALS USING ANALYTIC
SIGNAL REPRESENTATIONS
J. Matthew Tattersall
Environmental Acoustic Research &

Application Division
Surface Ship Sonar 5epartment
TM No. 861161
LISTRIBUTION STATEMENT "A"
UNCLASSIFIED

f;TSTRIBUTICN LIST

External
NADC (Code 5C33, L. Allen; 5C31, F. St-inberc; 5C29,

R. Fosko)
ARL/UT (J. Shooter, P. Vidmar)
DARPA (C. Stuart)
DIA
DTIC
CON.NAVSEASYSCCM (SEA 63E, CER E. Graham)
NOSC (Code 732, C. Persons)
NRL (Code 5120, L. B. Palmer; Code 516C, F. Eoclittle)
NSWC (Code U21, F . Williams, E. Hein)
PSI (S. R. Santaniello)

Internal
Codes: C2111 (A. Lctrinc)

021311 (Ne6 London) (2)
C21312 (Newort) (2)

I0
33
33A (B. Cole, F. Tompkins)
33A3 (F. hersteir)
33E (F. Scccoll)
331 (F. Fcivin)
3312 (". Ricciuti)
;14 (G. Carter, C. Sheldon, ?'. Hallisey,

I. Cohen, A. Nuttall)
333
3331 (E. Ercwning, F. Christian, R. Dullea,

W. Hauck, P. Y'aciejewski, J. Vonti,
P. Nielsen, J. Syck, J. Tattersall
(3))

3332 (E. Jensen, E. Potter)
3321 (P. Koenics)
3211 (J. C'Sullivan, P. Parnikel)
3212 (J. lanniello)
63 (J. Dlubac)

Total: 52



DAT

IFILMi


