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INCORPORATING REDUNDANCY CONSIDERATIONS INTO STOCKAGE MODELS

1. INTRODUCTION

1.1 Objective.

This paper is concerned with evaluating the impact on weapon system
availability of component and assembly redundancy. The evaluation must be
efficient, and it must be possible to integrate the evaluation into multi-
echelon stockage models whose objective is to find the least cost mix of
stockage consistent with the availability goals for weapon (or other type)

systems.

The structural representation of a system to be supported is
illustrated in Figure 1, wherein each component of the same type is assigned
the same number. The type "5" components are in parallel, so that if either
component is up, the system is up. Components 7-8-9 constitute an assembly.
If exactly one component 7 and one component 8 as well as both component 9s
are up, the system item is up if and only if the operating component 7 and
operating component 8 belong to the same assembly. Component 1 is a redundant
component in a redundant assembly, the assembly consisting of components 1 and
2. (Component 1 is shown more for its pedagogical value than its realism).

A multi-echelon supply system is illustrated in Figure 2 wherein
only one base is shown. When a component is removed from the system, it is
the responsibility of site supply to provide a replacement. This replacement
is unlikely to be the component just removed, unless the site happens to have
a zero stockage level for that component and the component can be repaired at
the site.

AThe mathematics to be discussed here provides a rigorous solution to
the evaluation problem when there is only a single supply echelon; there can
be upper echelon repair, but not supply, unless the supply is from a "perfect"
supplier, always in stock. For the more general multi-echelon case, approxi-
mate approaches are presented.

1.2 Assumptions.

a. Time to component failures is exponential.

b. All components of the same type have the same failure rate.

They are subject to failure so long as they are installed in the system, this
i is referred to as "warm Etandby," and are also subject to failure during

installation.

c. Component failures are independent of each other.

d. Component and assembly redundancy is of the "k of n" type; that
is, k of n components or assemblies in parallel must function for the system
to be up.

e. Components within assemblies are replaced as they fail, the
failure being identified by built in test equipment. There is no
cannibalization of components and components are replaced in order of failure.

i
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f. The disposition of a failed component, whether it can be repaired
at all, and at which echelon, is determined in accordance with a series of

Bernoulli trials.

g. The times to procure new components are independent and
identically distributed for all components of the same type; repair times are

also i.i.d, but may differ by echelon; installation times are deterministic,
but may depend on the component type, and ship times are also deterministic.

h. All supply points, except perhaps the supplier at the top
echelon, use a one for one ordering policy, i.e., they order each time they
get a failure they cannot repair.

i. Suppliers fill backorders on a first come, first served basis.

j. The performance objective of interest is the steady state
expected value of the number of systems operational.

The set of assumptions described are consistent with the SESAME
multi-echelon stockage model used by the U. S. Army [14], as well as with
other implemented stockage models which are descendants of the METRIC model
[11]. However, for convenience, such models have generally replaced
assumption b, above, with the infinite source assumption that the failure rate
experienced by a supplier does not depend on the number of components
installed, and so is unaffected by backorders. At the site level, for
parallel redundancy of two components, the finite source effect was found to
be important [Kaplan, 1979].

1.3 Related Work. In the 1960's, Amster and Morra [] working at Bell
Laboratories developed a single echelon inventory model for redundant
components, assuming each supplier supported a single system. A steady state
difference approach was used, so that consistent with this approach, repair, I
resupply, and installation times were all assumed to be exponential.

Gross, Miller, and Soland [4] extend the steady state difference
approach to model a multi-echelon system with finite repair capacity and
finite source demand on the supplier. Their work could be adapted to
redundant components and assemblies. However, the original article treated
only one bottom echelon site, and computational efficiency is a major problem
with added sites. Gross and Miller report some success in modelling transient
behavior in the more general case [5) and additional research is underway.

2. COMPONENT REDUNDANCYIn this section, and the next on assembly redundancy, we will assume that

inventory theory can provide us with the steady state distribution of

backorders at the site supply point. We will then examine that assumption
more closely.

Let

M: number of systems supported by a site.

C: number of components (of a given type) per system.

4
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I: installation time.

f: failure rate per component

B(x;s,m): the probability that a random variable with binomial
distribution, probability of success s, and m trials,
realizes the value x.

bt: number of'backorders at time t at a site.

zt: total non-operating components (of a given type) at time t
t at a site.

Let t be a random point in time. If we look at the components in a
system at time Ct-I), then they can be in one of three states: operating;
being installed; missing because of a site backorder. Those components which
are operating or being installed at time (t-I) will be operating at time t,
unless they fail in the interim. If they do fail, there will not be
sufficient time to complete installation of a replacement. Likewise, those
components missing at time t-I cannot be obtained and operating by time t.

In accordance with the assumptions numbered a-c, if there are m
components either operating or being installed at time t-I, the probability
that x will fail is B(x; s,m) where s l-e-f . Then, if there is only one
system supported by a site,

Pr(zt=z) = b_ r(bt-=b) B(z-b; -e - f l , C-b) (2.1)
b=0

If there is k of n redundancy for a component type, the probability it is not
a cause for the system to be down is the probability zt <n - k.

When there are M systems supported by a site, the hypergeometric
distribution describes the probability that exactly b of x total missing
components are missing from a particular system i:

i(M1 Cb X(M-)C
(M-IC~b )b x-b

P (b ti=b) = . Pr(bt=x) (2.2)x=b 11x
x

Use of the hypergeometric is justified by assumptions a-c and e which make all
assignments of backorders to systems equally likely. The upper bound on the
summation in (2.2) arises because (M-l)(C) is the number of components, and
therefore the maximum number of backorders, on systems other than "i".

Once the distribution for the number of missing components on asystem chosen at random is found, the multi-system case reduces to the single

system case. Pr(bt.l,i=b) is substituted for Pr(btl.b) in equation (2.1).

There is an obvious analogy between the approach underlying equation7
(2.1), and the approach used to calculate the distribution of on hand assets

5
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at time t in steady state single echelon inventory models (cf Hadley and
Whitin). Such models look at total assets including due-in at time t-L, where
L is procurement lead time. Demand in the lead time plays a role in inventory
theory comparable to failure in the installation time here.

Note that although components fail independently (assumption c),

stockage introduces correlation between the operational status of components
of the same type; for example, in Figure 1, the operational status of the two
component "5s" is correlated. We will discuss why in more detail later.
This correlation is implicit in the backorder distribution used in calculating

the zt in equation (2.1). Because of correlation, neither component nor
assembly redundancy can be modelled by the simpler approaches possible when
the status of all components is independent (cf Barlow and Proschan).

3. ASSEMBLY REDUNDANCY

Let

M: number of systems supported.

A: number of assemblies of a given type per system.

zi: number of component type i not operating at a random point

in time (time subscript is suppressed).

Y: number of component types in the assembly; that is, for the
example of Figure 1, for the assembly made up of components
7-8-9, Y = 3.

Renumber the component types in the assembly beginning with 1, so

that if Y = 3, the component types are numbered 1, 2, 3. Define:

ai: number of assemblies at a random point in time which would
not be operational even if all components of types i + 1 to
Y were functioning.

ay is the number of assemblies not operating at a random point in
time. For k of n assembly redundancy, the assembly is not a cause of the
system being down if ay < n - k. The distribution of ay is calculated
recursively: Thus, a,+, = j if am = w, w < j, and component type m + 1
accounts for exactly j - w additional assemblies to be down. When there is
one system supported per site, the equations are:

* Pr(al=j) = Pr(zl=j) (3.1)

Pr a M+.,= 0 Pr(a = _ Pr(zm+i=k)'Allocatin (kj-w)
Nm

* where Allocation (k,j-w) is the probability that the k non-operating

components of type m + 1 account for exactly j - w additional assemblies to be
down.

Allocation (k,j-w)= (-W)k-( w)

6



The denominator is the total number of ways of assigning k non-operating
components of type m + 1 to the A assemblies; e.g. if k = 3 and A = 5, one way
would be that component type (M + 1) was inoperable on assemblies 1, 4, and 5.
The numerator is the total number of ways of assigning the k components while
satisfying the criterion that exactly j - w of the k are assigned to the (A-w)
operating assemblies.

The generalization of (3.1) to multiple systems per site is handled

by first calculating ay without distinguishing which system the assembly is
on.97

a. The zi used in (3.1) are defined as the number of components of
type i inoperable on all systems. There are (M)(A) components of type i per
site. Hence, (M)(A) is substituted for C in equation (2.1) to get these zi .

b. In the calculation of Allocation (k,j-w), (M)(A) is substituted
for A.

c. ayi is defined as the number of assemblies not operating on
system i. The distribution of ayi, conditional on the value of ay, is
hypergeometric :

(M-1)A+j (A)((I)A)
r(ayij) =~r(ay=w) (3.2)

w=J MA
w

4. BACKORDER DISTRIBUTION, SINGLE ECHELON

Let

S: stockage level.

v: number of components in repair or due-in from procurement
(of a particular type, at a random point in time).

b: number of components backordered.

N: number of components at the site subject to failure when

backorders are 0.

f: failure rate per component.

r: resupply rate per component (reciprocal of mean resupply
time to the site).

g(v): probability mass function for v.

In the current context, resupply refers to all sources of due-in to
the site supply point, whether from site repair, higher echelon repair, or I
1The thorough reader will note this is not true for component 1 in Figure 1,

but the methodology discussed is readily generalized to that case also.
7 , .
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procurement. Based on assumptions f and g, the resupply distribution is a
mixture of the distributions for resupply time from each source, and is i.i.d.

The stockage level is, by definition, the sum of on hand plus due-in
minus backorders. It is a constant. When the system is fielded all S units
are on hand; thereafter each demand debits on hand or increases backorders,
while also increasing due-in, in accordance with assumption h.

By definition, then,

b = max (0, S - v) (4.1)

The distribution of b is computed from the distribution of v. The
number in resupply, v, corresponds to a finite state, birth - death process
with state dependent arrival and service rates, exponential interarrival time

and general service distribution. Demands are births, and completion of
resupply are deaths. The state is the number in resupply. Sherbrooke, [10]
drawing on earlier proofs by others, showed that the steady state distribution

of v is the same for general service as it is for exponential service
distributions.

In particular then, (cf Gross and Harris),

g(v) = g(0) R f4-2 !=l r i (4.2)
j=1 r.

where ri is the resupply rate and fi the arrival rate when v =i:

r i =(i)(r)

fi= N'f i < S

fi= [N - (i-S)]f i > S

f i > S, shows the effects of the (i-S) backorders on the arrival rate.
Note that fi-l' not fi' appears in the numerator of (4.2). g(0) is a
normalizing constant so that the probabilities sum to 1.

Equation (4.2), after substituting for ri and fi-l' and letting X =

fir, becomes:

g(v) = g(0) XVNv v <(4 S3
V! (4.3)

g(v)= g(0) XvNS N! S + 1 < v < N + S Lit.]
V! (N-v+S)!

In the computer implementation the g(v) are computed without reference to
g(O), and are never revised; instead, g(0) is factored directly into (2.1),
outside the summation. Computational efficiency is also obtained by computing
and storing factorials once per computer run.

8



5. SPECIAL CASE: NO STOCKAGE

As mentioned earlier, stockage introduces correlation into the operatingI status of different components of the same type. Intuitively, if a component
is backordered, this means the supplier is out of stock, which makes it more
likely a second component, failing independently, will also be backordered.
When there is no stockage, the supplier is always out of stock, so that the
status of one component has no implications for others.

Thus for the case of zero stockage, there are two approaches to

computing the probability of z non-operating components: the approach of
Section 2, and the classical approach using the binomial probability
distribution (cf Barlow and Proschan). We will not bore the reader here with
all the algebra necessary to show the two approaches are equivalent, the
algebra is in the Appendix, but two aspects are of at least academic interest
and are discussed here.

5.1 Probability a Component is Not Operating.

Given assumptions a-c and g of Section 1, we derive the probability
that a component chosen at random is not operating.

Let

f: failure rate

r: resupply rate

F: mean time between failures (equals 1/f)

R: mean time to resupply (equals l/r)

I: time to install, if component does not fail during

installation.

p: probability of a failure during installation.

E: expected time to failure during installation, given that a
failure occurs.

T: mean total down time after a failure.

D: expected fraction of time a component is down (not
operating).

Then

D T

T+F (5.1)

T = R + (l-p) I + p (E+T) (5.2)

9 p



E fJtfe-ft
E "0

Sf f [-e e - f I)]

p f2

Using, p I-e - f l , E reduces to

E = - (5.3)

Substituting (5.3) into (5.2),

T = (_ [R + (l-p) I + p (- P)

(5.4)

-_ [R +
1-p f

Substituting (5.4) into (5.1), and defining X = f/r,

=R+p/f fR+p L4? (55)

R+p/f+(l-p)F fR+1 X+1

5.2 Calculation of the Normalizing Constant.

In Section 4 we noted that the number in resupply corresponded to

the state of a finite source birth-death process. For such processes it is
usually not possible to compute the normalizing constant, g(O) in our
notation, without first computing the entire distributions (cf Gross and
Harris). When stockage is 0, however, it turns out g(0) can be obtained very

easily, as we will now show.

When S 0 equation (4.3) reduces to

g(v) = g(0) v (N) 0< v <N (5.6)

Hence,

N
1() (5.7)

V=0

7" The following identify is in Riordon [9]:

n=0 (n) x = (l+x) n

n- k (1)

10
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Rewriting (5.7) and then applying the identify with x = 1/X:

-N N N-vI _N (N, -1= (()N ) 1:
g(O) X -- X v)(^V

g(O=O C + 1 )(5.8)
N(_)N it ) =(X+,)N  ,-

, g(0) =(X + 11-N  (5.91) i

6. DISTRIBUTION OF BACKORDERS, MULTI-ECHELON

In the multi-echelon case, resupply times to the bottom echelon sites are
not independently distributed, and as a result the number in resupply at the
bottom echelon, the v of Section 4, are not Poisson.

Ignoring for a moment the implications of finite source, the

required site backorder distribution may be determined exactly [8], or by a
very good and efficient computational approximation proposed independently by
Slay [121 and Graves [2]. This approximation, called Varimetric by Slay, is
utilized by the U. S. Army [141 in its standard multi-echelon stockage model.
The approximation involves computing the mean and variance of v exactly, and

using the Negative Binomial with this mean and variance as the (approximate)
distribution of v.

Now, how can we adjust Varimetric for finite source? Our concern q
N focused on the base (bottom echelon) where the adjustment would intuitively

seem to be most critical.

Now equation (4.3) may be rewritten as

g(v) =k p(v;N!X) V < S_

g(v) =k p(v;N'X) a(N,v,S) S + 1 <v <N+S

where k is a normalizing constant, p(v;N'X) is the Poisson probability mass
function with parameter (N'X), and a(N,v,s) is a finite source adjustment
function.

We posited that use of the same function, a(N,v,S), would work
reasonably well in adjusting the distribution of v in the multi-echelon case
wherein the infinite source distribution of v is approximated as Negative
Binomial. Specifically, if n(v;-,-) is the Negative Binomial probability mass
function, with parameters appropriate to the infinite source case,

4V I
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g(v) k- n(v;-,-) v < S

g(v) k-n(v;-,)-a(N,v,s) S + 1 < v < N + S (6.2)

N!N
S

a(N,v,S) -NN

(N-v+S)! Nv

Note, of course, that the normalizing constant in (6.2) does not have the same

value as it would in (6.1).

Zmurkewycz tested the approximation in a two-echelon simulation with
a depot (upper echelon supplier) and four bases. The depot supply process and
the base supply process for one base, the base of interest, were simulated in
detail. The other three bases collectively generated demands on the depot,
but otherwise did not figure in the simulation.

In this simulation, the depot experienced demand as if demands were
from an infinite source, while the base of interest generated demand

M reflecting the finite source implication. Specifically, there were two
components at each base, so that when the mean time between failure (MTBF) was
l/d, demands on the depot were generated at a rate of 8/d, 8 being the total
number of components (4 bases, 2 components per base). However, when a demand
was generated, it was assigned to the base of interest with probability c/8,
when c was the number of operating components there at the time the demand was
generated. (c takes on the values 0, 1, or 2).

Thus, any discrepancies between analytic projections using (6.2) and
simulation results would be due in small measure to use of Varimetric, and
otherwise to use of the a(N,v,S) adjustment functions.

Simulated results were compared to analytic projections for varying
MTBFs and varying stock levels. The base stock level was set at 0 or 1, while
the depot stock level was set at the mean number in resupply to the depot,
rounded, with a minimum value of 1. If the depot has 0 stock, the multi-
echelon case reduces to a single echelon, and the analytic projections are
exact; this fact was used in testing the simulation computer code. There were
six days to get a component from depot to base and 30 days to resupply the
depot. Base repair was not simulated, since base repair reduces the impact of
the problem being investigated; with 100 percent base repair, the analytical
projections are exact.

Table 1 shows the results of the simulation work. The analytic
projections of mean and variance of bickorders, as developed from equation
(6.2), are presented ("E-3" means 10- as in FORTRAN; 3 significant digits are
shown in the table). Contrasted to these projections are the simulation
results, and analytic projections made without any adjustment for finite
source. The precision of the simulation reported relates to mean backorders
only. It represents the estimated standard deviation of mean backorders
output by the simulation as a percent of the mean. Average backorders were
computed for each year of the simulation after a 2-years warmup, and the
sample standard deviation of these yearly observations was used to develop the

12
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estimate of precision. The number of years the simulation was run was
proportional to the MTBF; it was as high as 250,000 years for an MTBF of 640 77

days.

Summarizing Table 1, the contrast between (approximate) finite
source and infinite source projections is most pronounced for the lower MTBF, 4A
and more pronounced for the variance than the mean. The approximation worked
well for the lower MTBFs and about equally well for mean and variance; the
approximation did not improve, and tended to become worse, for the higher
MTBFs where the total correction necessary was not great. The approximation

tended to "under correct".

It should be noted that MTBFs less than 360 days are rare for the
repair parts we deal with. Also, it is only for redundant components that the
number of systems down depends on the variance as well as the mean of the
backorder distribution.

In addition to the results reported in Table 1, the simulation was
run for an MTBF of 420 days and 10 components at each base. Results were
consistent with those in Table 1 with the simulation mean and variance
differing from analytical by +0.3% and +0.4% when base stock was 0, and -2.0%

and -1.9% when base stock was 1.

7. SPECIAL CASE: NO BASE STOCKAGE

No attempt was made in Section 6 to adjust for the finite source .
implications at the depot level. Fortunately, there is one case where a good
adjustment can be made, and this is precisely the case wherein the depot
supply performance has the most direct impact on the base: when base stock is
zero. Base stock of 0 is a common output of the optimization process for
reliable redundant components.

We have noted previously that when depot stock is zero, the multi-
echelon reduces to the single echelon case; this is almost true when depot

stock is positive and base stock is zero. The first thing we observe is that
when base stock is zero, each depot backorder equates directly into a
component missing from a system. Our next observation is that when base stock
is zero, the only distinction from a modelling viewpoint between ship time
from depot to base and installation time is that by assumption b a component
may fail during installation, but not during shipment.

The approximation is to assume that components may fail during

shipment. The algorithm is:

a. Determine depot backorders using the results of Section 4 with

"N" being the number of components at all sites, and "r" referring to the

resupply rate from outside supplier and/or depot repair to depot supply.

b. Determine total non-operating components at a site by using
Section 3 with "I" being set to the sum of installation time plus ship time

from the depot, "M" being the number of systems supported by the depot, "bt"
referring to backorders at the depot.

14



8. CONCLUSION

For some systems redundancy is important, and this report demonstrates
that it is quite possible to incorporate it into a multi-echelon stockage
model. The approach taken fully utilizes inventory theory implemented for

- . non-redundant components.

ElElI
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APPENDIX

EQUIVALENCE OF APPROACHES

This appendix shows that for the case of zero stockage, the approach of

Section 2 reduces to a simple Binomial. For case of exposition, we assume one

system per site. Specifically then, we show the RHS of (2.1), with C equal to

N, the number of components per site, reduces to B(z;D,N) where B(z;D,N) is

the Binomial probability mass function with parameters D and N, and D is the

expected fraction of time a component is not operating. We repeat from

Section 5 two equations we will need (equations 5.5 and 5.6).

D = X+P 2.
X+- (A.1)

vNig(v) = g(O) A (v) 0 < v <N (A.2)

g(v) as defined in A.2 is the probability mass function for the number of

components in resupply when the component is not stocked. When the component

is not stocked, number of components in resupply equals the number of

backorders, so that equation (2.1) may be written:

Z
Pr(zt=z) = g(v) B(z-v;!-e -fN-v) (A.3)

V=O

Sv=Using A.2 and letting p represent l-exp(-fI),

z n-v
er(zt=z) = g(O) Xv (N)(zv) pZ-V( 1.p)Nz

v=O (A.4)

z -v
(0) N! ~ z 1 N-z 1 1 Xvg()(--)' p (-p)N-

(- v=0 v (z-v)! P

W-VMultiplying by l/z! outside the summation, and z! inside the summation,

Pr(zz) g)1 () X (A.5)I
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