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Section 1 -

Introduction

A dominant mode of response in metal cylindrical shells under impulsive
pressures is dynamic pulse buckling into high order buckle modes with
short wavelengths. The dominant modes typically have 20 to more than-
100 waves around the circumference, depending on the material and radius-

* to-thickness ratio of the shell. These mode numbers must be determined
as part of the solution to buckling response. In closed form analyses', they
have been found by calculating response in a sequence of modes to find
the most amplified mode. Critical impulses for threshold buckling are then
estimated by representing the actual motion, which takes place in many
amplified modes, by motion in only the most amplified mode.

With this procedure it is not necessary to provide a detailed description
of the imperfections that trigger buckling. It is enough to assume that ran-
dom imperfections are present in all the modes, so that the buckle motion
can selectively amplify the critical mode into which the shell buckles. Im-
perfections are then represented by an equivalent single imperfection in this
mode. However, for more complex shell geometries and loadings, solutions
must be found by numerical methods. In the finite element method with
the shell descritized around the circumference, some other means must be
used to specify imperfections so the response analysis can yield the buckle
shape and critical impulse.

1H. E. Lindberg and D. L Anderson, "Dynamic Pulse Buckling of Cylindrical Shells
Under Transient Lateral Pressures," AIAA 3., 6, (4), pp. 589-598, April 1968.

1H. E. Lindberg and A. L. Florence, Dynamic Pulse Buckling-Theory and Ezpertment,
DNA 6503H, Defense Nuclear Agency Press, Washington DC, February 1983.
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In this report, it is proposed that the imperfections be taken as a nearly
white noise perturbation from a perfectly circular shape. This perturbation

is described by a Fourier series with random coefficients, each having a
Gaussian distribution in amplitude with zero mean value and standard

deviaion c(n). The proposed form for o is a = Chn - 1 2 , where C is

I parameter determined in the report by comparison with experimental
rfe-uits and h is wall thickness. This form of departure from true white

noise, in which a is constant for all wave numbers, is shown to describe
;mperfections that are proportional to an appropriate combination of the
wal thickness and the wavelength of each buckling mode.

This specification gives imperfection coefficients that decrease conserva-
tivelv slowly with increasing n as compared with measurements on a limited
number of shells, and is more physically reasonable than a pure white noise

description, which gives a divergent series for the perturbation shape. The

n decrease in standard deviation results in a nearly convergent series for
. -the mean square deviation of the imperfection shape; the exponent -1/2

is the separator between convergent and divergent series.

Buckle shapes resulting from this imperfection description are calcu-
lated analytically at a sequence of increasing times. The resulting buckle

shapes are compared with imperfection shapes found by truncating the im-
perfection series at a sequence of bandwidths ranging f: )m a small fraction
of the bandwidth of the dynamic buckling amplification function to several
times this bandwidth These examples give a physical feel for the imper-
fection form, the nature of its convergence, and how it is modified by pulse
buckling amplification.

Buckle forms are then calculated for a large number of random imperfec-
tion shapes to determine the statistics of the amplitudes and wavelengths of
the buckles. It is shown that good estimates of the statistics of the universe
of buckle shapes can be obtained by calculating the statistics of the buckles
in a single calculation. This is an important result for use in finite element

calculations, in which Monte Carlo calculations for buckle statistics would
-. .. be expensive and time consuming.

1l.;
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Section 2

White Noise and Single-Mode
Imperfections

2.1 Buckling from White Noise Imperfections -.,

A mathematical analysis of random noise currents in electrical communi-
cation, described by Rice 3 , is closely analogous to the analysis of buckle
shapes in long shells under radial impulse uniform around the circumfer-
ence. We consider a shell with a random shape imperfection given by

.P

ui (O) ,[an cosnO + 3 sin nO] (2.1)

* where 0 is angle around the circumference, n is mode number, the coef-
ficients a, and /3, are random variables, each normally distributed with
zero mean value and standard deviation o, and N is an upper limit to be
determined by the buckling analysis. For clarity, we consider first that a

-- is constant for all n, just as in Reference 3. This is called 'white noise,' by
analogy to the electrical case in which u, would be current and 0 would be
time. Example imperfection shapes from Eq. (2.1) are given in Chapter 3. .-.-.

3S. 0. Rice, "Mathematical Analysis of Random Noise," in Selected Papers on Noise p
and Stochastic Processes, Nelson Wax, ed., Dover Publications, New York, NY, 1954, pp.
133-294.

3

.%'%
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The resulting buckle shape is given by

N

u(0,r) = uo(r) + [a.(r) cosn 0 + bn(r)sinnO] (2.2)
n=2

where r is a dimensionless time. The first term is the symmetric inward
motion from the symmetric impulse. The remaining terms are the growing
flexural modes. The term for n = 1 is omitted because to the accuracy of
the buckling theory given in References 1 and 2 this term is a rigid body
translation. Example buckle shapes from Eq. ( 2.2) and their growth with
time are given in Chapters 3 and 4.

For the present, it is not necessary to be concerned with the details of
any particular buckling analysis except for the fundamental result that the
buckle shape coefficients a,,(r) and bn(r) are expressed by the form

an (r) = an G(nr), bn (r) = On G(n,r) (2.3)

where G(n,r) is an amplification function which, at times when buckle
amplitudes are observable, has significant values only over a band of modes
in the range 2 < n < N. Thus, in Eqs. (2.1) and (2.2) we have used an
upper limit N because higher modes have no significant growth. This is a
crucial step in specifying the imperfections in Eq. (2.1).

The mean square of the deformed shape (averaged over 0 at fixed r) is

N
U 2(7-) E IT[,(r) Cos 2 n# + Tn(r) sin 2 nOj

ni=2

o r2 j 2 (nr) (2.4)
n=2

This result follows from the independence of a, and b, and the identity of VW
their distributions. From the central limit theorem for the sum of many
independent random variables, the distribution of u is also random normal
with zero mean. This suggests that experimental determination of the
mean square of the deformed buckle shape, u2(r), would give a statistical
description of the deformed shape. 9

Note that the series in Eq. (2.4) converges because of the finite band- -
width of the amplified modes. A similar series for the mean square of the
initial imperfection with o constant for all modes (white noise) does not

4
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converge as N -+oo. In the next chapter we suggest a physically motivated
variation of or with n that gives a convergent series for the imperfections
themselves.

2.2 Specification of Random Imperfections
For finite element calculations, we propose that Eq. (2.1) be used to gen-
erate an unstressed initial deformation. The values for at, and 0", are to

-- be selected from a population of random numbers with zero mean value
and standard deviation or. Then the series is summed to generate ui(O).

* . Element displacements are then chosen to approximate this initial shape.
We have already mentioned that to specify random imperfections in

the form given by Eq. (2.1) we must specify the value of N to be used in
truncating the series. In a finite element analysis, this selection goes hand
in hand with the selection of the element sizes such that the buckle wave-
lengths can be resolved. Both depend on prior knowledge of the buckle
wavelengths to be expected. The calculation itself will select the buckle
wavelengths that are amplified, so one could simply take N large enough

* . and the element size small enough to allow for any possible wavelengths.
However, the time and cost of the calculation increases rapidly with the
number of elements, so careful choices are necessary for N and the num-
ber of elements required to resolve the corresponding wavelength. These
choices can be based on the solutions in Reference 2 for simple loading and
geometry.

The other quantity to be specified is the magnitude of or. The choice of
this magnitude quantity in analogous to the choices made in Reference 2 for
equivalent single-mode imperfections in the most amplified mode. In both
cases, the most reasonable approach is to base the choice on observed buckle
deformations rather than on an attempt to measure the actual imp erfec-
tions. These imperfections are extremely small and essentially impossible
to measure. Also, in practice these are 'equivalent' initial shape imperfec-
tions, that account for a range of imperfection sources, including those in
wall thickness, material properties, prestresses, and so forth.

5
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2.3 Relationship Between White Noise and
Single-Mode Imperfections

In Reference 2 it was found that observed impulse thresholds for buckling
in shells, over a range of radius-to-thickness ratios from 20 to 200, were
reasonably well predicted by taking equivalent single-mode imperfections,.
in the most amplified mode equal to 1% of the wall thickness. The critical
impulses for buckling are relatively insensitive to the exact value of this im-
perfection because of the exponential growth of the buckles with increasing
impulse.

The value to be used for o in Eq. (2.1) can be made to correspond to
this single-mode imperfection by means of the statistical analysis by Rice.
Thus, for imperfections concentrated in a single mode we have

u,(e)=0 6 sin nO (2.5)

4 .' The buckle deformation is then simply

u (0,r) = bnGm(r)sinnO (2.6)

in which Gma, is the maximum amplification found as described above. The
mean square of this deformation is

2 (m) = 52G(•r) • sin 2 nO d(nO)

.':...(,r . 1 ,:...
= bn2GM~r. (2.7)2

The choice for o can now be made such that this mean square is the
same as the mean square given by Eq. (2.4) for random imperfections, with g
the result

N 62

or. G (n, T) --. '
or2 2 m.-

"or 
nGm.(r)

[2 EN= G2 (n, r)1.-"2(2.8)--

The above procedure assumes that the observed buckle statistic is the
root mean square of the deformation. The correspondence between theory

'.. .-....-.-

°.. -
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and experiment in Reference 3 was actually based on the measured thresh-
old plastic bending or plastic flow buckle deformation at the largest peaks
in response. Thus, we should base the comparison between single-mode
and random imperfections on the distribution of peaks rather than on the
mean square deformation.

Monte Carlo calculations in Chapter 4 give the distribution of peak-
to-peak amplitudes of buckle shapes. Based on this distribution, a peak "
value selected from a relatively large sample size (from 10 to 50 waves were
typically observed in each experiment) would be equal to about three times
the rms value of deformation. If we choose this value for comparison with
the single-mode theory, then

N 1/2

UMx = 3a L:__G2(n,r)] (2.9)
kn=2 I

For the single-mode imperfection, um, 6,nGm. These peak deformations
are equal for

_n ,. (r)= ~~(2.10)-'-'.3 [FN. 1/2
3z'n=2 G2 (n, r]12I.U

2.4 Analytical Example

To determine the relationship between o and 6, according to Eq. (2.8) or
(2.10), we must now specify the amplification function G(n,r). Results
given in Reference 2 demonstrate that the shape of this amplification as %. %
a function of mode number is very nearly the same for both elastic and
plastic-flow buckling over a wide range of shell radius-to-thickness ratios. %Y
For our purpose here, we use the equations from plastic-flow buckling in
relatively thick-walled shells, for which the amplification function is given
by a simple analytic expression.

The equations of motion for this case, following an initial radial impulse
uniform around the shell, were derived by Abrahamson and Goodier4 and
also in Reference 2, with the result

u"' +(1+ s)u"+ s 2 u + =-s(a/h + u, + u') (2.11)

'G. R. Abrahamson and J. N. Goodier, "Dynamic Plastic Flow Buckling of a Cylindrical
Shell from Uniform Radial Impulse," Proc. Fourth U.S. Nat. Congress of Appl. Mech.,
Berkeley, California, pp. 939-950, June 1962.

7
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where .p2..

u = w/h, u, = w,/h, f = cpat/a (2.12)

C, = , = a,/Et 2  a2 = h2 /12a 2  (2.13)

in which w(O,t) is radial deformation, positive inward, wi(O) is an initial
unstressed imperfection shape, t is time, f is a dimensionless time, cp is
plastic wave speed, Et is the material tangent modulus, assumed for now to
be constant beyond yield, p is density, a. is yield stress, h is wall thickness,
and a is shell radius. Note that the dimensionless displacements u and W

u, are normalized by the wall thickness rather than by the radius as in
References 2 and 4. Primes indicate differentiation with respect to 0 and
dots with respect to f.

Substitution of the series expansions
t

N
u,(0) = -(acos nO + sin nO) (2.14)

n=2

N
u(0, r) = ao(r) + Z[an(f) cosno + bn(f) sin nO] (2.15)

into equation of motion (2.11) gives

- 2 (a.Sa0 +s + ao) = 0 (2.16)
hI

A iilr an + [n4  n2 (1 + s2) + S2 ]an = s 2(n 2 
-1)an (2.17)

' .A similar equation results for b,. Pulse buckling modes have n2 > 1, So
Eq. (2.17) can be simplified to

an + 8 277( -1I)a = S4 2 an (2.18)

where q = n/s. ,
The solution to Eq. (2.18) with initial conditions u(0,O) = ti(O,0) = 0

is an [cosh  ]"
an(r)- 1-r72 cos pT- -1 (2.19)

- - in which we have introduced a new dimensionless time r and an argument
parameter p, defined by

.= 2rf, = l 77211/2 (2.20)

8
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The cosh functions are taken for 7 < 1 and the cos functions for Y7 > 1.
The function multiplying ac, in Eq. (2.19) is called the amplification

function. Figure 2.1 gives an example of this function plotted against mode
number n for r = 6 and mode number parameter s = 20.67. This value re- ri
sults for an aluminum 6061-T6 (av/Et = 0.5) shell with radius-to-thickness
ratio 8.4. This is a thicker shell than normally of interest, but the value of
s is convenient for numerical results given later in the report.

An important feature of the amplification function is that at values of
r large enough for significant amplification, a band of modes are amplified 14

with mode numbers ranging from somewhat below to somewhat above the
value s. Neither very low nor very high order modes are amplified signif-

icantly. Also, the shape of the amplification function is independent of 5,
as can be seen from Eq. (2.19); amplification depends only on 17 and r.
Furthermore, even in thinner shells, which buckle during elastic or elastic-

plastic radial motion, and for which the amplification function must be
found by numerical integration, the resulting amplification function when

plotted against a normalized wave number has essentially the same shape
as that of the analytical result here.

These two properties of the amplification function have important impli-
cations for the work this report. The finite lower and upper mode number

bounds and the universal shape, taken together, allow a convenient defi-

nition (in Chapter 3) of random imperfections that are proportional to an
appropriate combination of wall thickness and buckle wavelengths. The
universal shape allows Monte Carlo calculation of buckle waveform statis-

tics that can be applied quite generally.
The relationship between white noise and equivalent single-mode imper-

fections can now be calculated quite generally from Eqs. (2.10) and (2.19).
With G(rt,r) from Eq. (2.19), the G terms in Eq. (2.10) can be expressed

as
N j, /2

Gm:-T) [ G' (7r, 7) s 1 / 2R(r) (2.21). ,Gm(r) -:=".I

* where

R1r _____ 72 1 cosh I 71/(222
1R[ (__) / (7 p(T)-1d 7  (.2

Gm(r) [J . 1- 72 cos ,-/ _

. -in which we have used dr = An/s 1/s so that the sum can be replaced by
an integral (s is typically large enough that 17 can be treated as a continuous

9
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variable). Numerical integration of Eq. (2.22) shows that R(r) depends
weakly on r. In the range 5 < r < 11, R(r) varies from 0.640 to 0.521.
Since in this range Gmr, varies from 14 to 272, thresholds for buckling
will certainly occur in this range. We therefore take R = 0.60 and the

*.1' relationship between single-mode and random imperfections in Eq. (2.10)
becomes

0- = 0.556 6bs- ' / '  (2.23)
3s1/2R(r)

Thus, the standard deviation of white noise imperfections to be used
in finite element calculations decreases as s - 1/ 2 and hence as the inverse
square root of the number of modes in the amplified range. This result
occurs because we are adding each mode as a random variable and the
deviation of the sum increases in a root-mean-square fashion. If we are

*] to relate this deviation to experimental results based on equivalent single-
mode imperfections, as indicated in Eq. (2.23), we must therefore know the
bandwidth of the modes of buckling, which is part of the solution.

This bandwidth can be estimated on the basis of the same analytical
solution used to obtain G(7, r) in the above discussion. From the results
given in Reference 2, pages 145 to 149, for representative aerospace metals
at thresholds of pulse buckling, the material property parameter in the
definition of s in Eqs. (2.13) is given by

4 .'- a" , 1 i/ h ,. ."

:8 I -a(2.24)

In this more general theory, instantaneous stress a rather than yield stress
a. is used, and both a and Et are assumed to vary with compressive strain -

;" -according to a stress-stain relationship characterized by the yield strain and
a shape factor K. The right hand side of Eq. (2.24) gives the value of the
material property ratio at the final compressive hoop strain imparted by
the critical impulse for buckling, which depends on the radius-to-thickness

. ratio of the shell as given in the formula. Substitution of Eq. (2.24) into
Eq. (2.13) gives

s = 12 8K1a - = (384 K) /2 a (2.25)

With this value for s, Eq. (2.23) becomes
(a)~ - 1/4b

=0.264 K 1  (2.26)

10
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In Reference 2, equivalent single-mode imperfections of &,, 0.01 h are
shown to give reasonable agreement between experiment and theory for
critical impulses at thresholds of observable buckles. The corresponding
standard deviation of white noise imperfections from Eq. (2.26) for K
15 (an appropriate value for hardened alloys of aluminum, titanium and
magnesium) and a/h = 100 is 0.00060 h.

For finite element calculations, the magnitude of imperfections to cor-
relate theory and experiment are expected to be larger than this value
because of neglect in the airalytical theory of the decrease in hoop thrust IF*

with increasing buckle growth. Thus, near and beyond the threshold of
~: ~: significant buckling, in the analytical theory the buckle amplitudes growunrealistically with increasing time and hence increasing impulse.

"4k.
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Section 3

Random Imperfections
Proportional to Wallpm Thickness and Buckle

Wavelengths

The white noise imperfections discussed in the previous chapter are physi-
cally unsatisfying because the resulting Fourier series for the imperfections
does not converge. It was nevertheless possible to use this form because
the finite bandwidth of the series for the buckle shapes gave truncated and
hence bounded series for buckle shapes. However, this puts a premium on
specification of the bounding mode number N to be used in calculating
response with finite element methods. If N is made conservatively large,
the imperfections have large amplitude components at short wavelengths
that may be difficult to treat numerically even though they are eventually
suppressed in comparison with the dominant shape of the buckled form,
which grows with time.

It is therefore useful to explore other forms of random imperfections
that are better behaved and are based on expectations for imperfections to
be found in actual shells. One such form is explored in this chapter. Other
forms may be appropriate for specific applications in which information is
available about the manufacturing processes that introduce imperfections.

in the remainder of this chapter we first give example imperfection
shapes to demonstrate the difficulty with white noise imperfections dis-

13
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cussed above. Then we describe the proposed alternative form of random
imperfections and show how this form relates to single-mode imperfections.
Example imperfection shapes with this form are compared with the white
noise shapes for the same set of random numbers. Then the buckle shapes

that result from these imperfections are given at a sequence of increasing V
times, to show how the buckling process greatly modifies the imperfection
shape and increases its amplitude.

3.1 White Noise Imperfection Shapes

Figures 3.1 through 3.7 give imperfection shapes calculated with Eq. (2. 1)
V for random coefficients a,, and /3,, having a Gaussian distribution and a

constant standard deviation of unity. In each figure, the series is truncated

at N, with N ranging from 5 in Figure 3.1 to 60 in Figure 3.7.
teIf we assume that buckling is to be investigated for a problem having
teamplification function in Figure 2.1, then the modes of most concern

range from about 10 to somewhat less than 30. However, in a finite element
calculation we have little apriori knowledge of this function except th-at its
general shape will be similar to that in Figure 2.1. We would therefore have
to take N conservatively large to ensure that the significantly amplified

* components are included in the calculation.
Without extensive experience, it is unlikely that one would know the

dominant wavelengths to within a factor of two, so even a value of N =60
would fucinot trsbe too otconservative tehvtoin a calculation badfor gvwhich inthe Fiuamplification

parison of the white noise imperfection shapes in Figures 3.4 and 3.7 for
N = 30 and N = 60, respectively, shows a substantial difference in both
shape and amplitude. With N = 30, few peaks have amplitudes larger
than 10, while with N = 60 there are many peaks with amplitudes near 20.
Also, the wavelengths associated with these peaks are about a factor of 2

shorter than with N =30.
Thus, while the buckle motion will not amplify these short wavelengths,

they tend to dominate the imperfection shape and hence require accuracy
in the calculation at these wavelengths. The imperfection form described
in the following paragraphs relieves this accuracy requirement while better

- representing physically expected forms of imperfections.

4j 14
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3.2 Adaptation of Imperfection Formula from
Static Buckling

Near the turn of the century, hundreds of experiments were performed on
static axial buckling of columns to determine values of imperfections to
be used in design. The approach in those experiments was the same as -.

that used in Reference 2 for dynamic pulse buckling, namely that, because
the imperfections were too small and diverse to measure, equivalent im-
perfections were calculated on the basis of observed buckling deformations
interpreted with the theory to be used in design analysis.

Although the imperfections scattered widely, the general trend sug-
gested use of the following formula in column design:

r2  L 1 L)a4 = 0.1 - + - (h +  (3.1)C 250 60 12.5'('

in which a, is the coefficient of an equivalent imperfection in the half
sinewave shape sin 7rx/L of the Euler column of length L, r is the radius of
gyration of the cross section and c is the distance from the neutral axis to
an extreme fiber. This is Eq. (2.2.24) from Reference 2. In the second ex-
pression the formula is applied for the specific case of a rectangular column
of depth h.

The essential observation used in suggesting Eq. (3.1) was that column
imperfections are expected to have two components, one proportional to
its depth and the other proportional to its length. It is reasonable to take
a similar approach for pulse buckling of shells. In this case, the length is
the half wavelength of each buckling mode. We therefore take the standard
deviation of the random imperfection coefficients in the form

C h Ch 1+ 1Cn Oh (1 (3.2)

While this form is more physically reasonable than pure white noise, in
that the coefficients become 6maller at shorter wavelengths, the constant
term, proportional to shell thickness, gives a component that is white noise
and hence gives a Fourier series for the imperfections that does not converge.
It is therefore useful to replace this expression by a function that converges
while giving approximately the same values for a as from Eq. (3.2) over the
bandwidth of concern for pulse buckling.

15
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One such function is
a=Bhn-2  (3.3)

This is a convenient form that matches the values from Eq. (3.2) to within
20% and more frequently within 10% for all shells of interest. A good match
is obtained because the exponent -1/2 is midway between the exponents
0 and -1 in Eq. (3.2). Also, this exponent is the separator between im-
perfections series that do and do not converge; an expression analogous to
Eq. (2.4) shows that the terms for the variance of the imperfection shape
decrease as 1/n, which is the harmonic series.

An exact match between Eqs. (3.2) and (3.3) is forced at the peak of
the amplification function, which gives

B =Cn/ 2 1 + a (3.4)

where nc, is the mode number of the most amplified mode, which from
• .. Eq. (2.25) is given by

.
.°

ncr - - (96 K)'/ 4  
/ 6 - (3.5)

In the last expression we have taken K = 15, for which (96 K)'! 4 -6.16.
With this value for nr, substitution of Eq. (3.4) into Eq. (3.3) yields

the desired expression for imperfection deviations:

= 1 + /hn1 2  (3.6)

Over the bandwith of significantly amplified modes, from 0.5 ne,. to 1.5 nr
see Figure 2.1, deviations from Eq. (3.6) match those from Eq. (3.2) to

.. within 10% for a/h > 100. The match improves with increasing a/h. At
a/h = 10, the thickest shell of interest, -he match is within 20%. These
accuracies are far better than our knowledge of imperfection amplidudes,
so Eqs. (3.2) and (3.6) are essentially equivalent. *f_
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3.3 Relationship with Single-Mode Imper-
fections

With a now varying with n as given by Eq. (3.6), Eq. (2.4) for u-(r) becomes F ""

u2(.r) A2 I G'(n, r) (3.7)

n=2 n

where

A = Cvi 1 + N h (3.8)

Substitution of n = 7s and d77 = 1/s into Eq. (3.7) gives

2(7-) = A 27i-'' 2(77, r) dri (3.9)

If we relate single-mode and random imperfections by setting three times
the root-mean-square buckle deformation equal to the peak deformation
with a single-mode imperfection, as was done for Eq. (2.10), we obtain

[f 23A 7r-G2(,, r) d77 =b6Gm" (3.10)

from which 1-
A 1 (3.11) p

where 1 2 1/2

R, (r) = ...x() I i2G(j, r) drj (3.12)

Integration to find Ri(r) gave values from 0.705 to 0.605 for 7 in the
range of interest from 5 to 11. The small change in R, reflects the nearly

constant shape of the amplification function in this range. If we take R, =

0.65, then _ I
A 3(0.65) 0.516, (3.13)

The expression depending on a/h in the definition of A in Eq. (3.8) evaluates

to values from 2.51 to 4.48 for a/h in the range 20 to 100 where most of

17
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the experiments reported in Reference 2 were performed. We take a value
* . of 3 to solve for C from Eqs. (3.8) and (3.13), which gives

C -0.5 1 6, . 17(.4
3h hWN

Assuming b, 0.01 h, as was done in Chapter 2, substitution of Eq. (3.14)
into Eq. (3.6) results in the following expression for the standard deviations
of random imperfections:

a= 0.0017 (j) 1 24khJ (3.15)

When used in the analytical theory in Reference 2, these deviation mag-
nitudes will result in random buckle shapes comparable in magnitude to
those for single-mode imperfections. However, as pointed out in Chapter 2
for white noise imperfections, the magnitude of imperfections to be used
in finite element calculations are probably larger than these from the an-
alytical theory because of neglect in the analytical theory of hoop thrust
reduction as the buckles grow.

3.4 Example Imperfection and Buckle Shapes

The improved behavior of random imperfection shapes with Fourier coef-
ficients proportional to n-'/' is demonstrated in Figures 3.8 through 3.14.
These were calculated with Eq. (2.1) using coefficients from Eq. (3.3) with

* Bh = 1 and the same set of 120 random coefficients used to calculate the
truncated white noise imperfection shapes given in Figures 3.1 through 3.7.
The truncation numbers N are also the same in both sets of figures, so the
sets can be compared figure by figure. -

The first observation is that, with a n-1  variation in standard devia-
tion, peak amplitudes change only from about 3.5 with N = 5 (Figure 3.8)
to 7 with N = 60 (Figure 3.14). In fact, all but two peaks with N = 60 are
less than 4.5. The same comparison for white noise imperfections shows an
increase in peak amplitudes from 5 with N = 5 (Figure 3.1) to more than
20 with N = 60 (Figure 3.7).

Also, since this change in amplitude is from higher mode numbers, with
white noise coefficients the shape with N = 60 is dominated by short wave-
lengths while with n-1

/
2 coefficients the character of the longer wavelengths

18



remains dominant with N =60. Thus, the longer wavelength features with
N = 30 (Figure 3.11) are still apparent with N = 60 (Figure 3.14). in
a similar comparison for white noise, the long wavelength features with
N = 30 (Figure 3.4) are barely detectable with N = 60 (Figure 3.7). Other
comparisons can be made for other trunctation modes with the same result.

It is also instructive to observe how the initial imperfection shape trans-
forms into a buckled shape under the influence of pulse buckling amplifica-
tion. Figures 3.15 through 3.20 give a series of snapshots of buckle shapes
at dimensionless times from rT 0 through 10. These were calculated with

the imperfection shape in Figure 3.14 using an amplification function given
by Eq. (2.19). The vertical scale is the same in all the plots except for
the last plot at r = 10, at which the amplification is larger than generally 4

of interest. The plot at r = 0 is of the itentical imperfection shape as in
* Figure 3.14 except for the scale change.

The quantity plotted is the 'total' buckle shape, consisting of the sum of
the imperfection and the buckle deformation. This is done to illustrate that
by r = 6 there is no evidence of the imperfection shape in the total buckle

* shape even though the maximum peak has increased by only a factor of
7. It also shows graphically how the short wavelength features essentially
disappear with increasing time. At r = 2 and 4, there is much short

* wavelength activity. By r = 6 this activity has ceased and a dominant
* buckle form has been established.

Beyond r = 6 the main change with time is simply an increase in the
amp litude of this established shape. This occurs even though the theory is

* linear. In a finite element calculation, which will include plastic yielding in
the form of hinges at the buckle peaks, the wavelengths also become fixed
as time increases. Thus, this simple theory contains many of the features
of a more complete analysis.

%£
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The standard deviation of x is found from

1/2
= 2p~x)dx (4.2)

where the probability density function p(x) = 1 for the unit interval.
From the central limit theorem, random numbers with a Gaussian dis-

tribution are obtained by adding M values of x.

M M M: y = E x, = E RND -- (4.3) "

The standard deviation of M independent random variables is

O.2 =Mo (4.4)

The desired random numbers with zero mean value and unit standard de-
viation are therefore obtained with

z RND -2 M(4.5)!

Several tests were run to demonstrate the uniformity of the RiD func-
tion. Results from one such test are given in Figure 4.1, which is a screen
dump from a raster size of 200 x 640. Each point in the scatter diagram
was obtained by two calls to RND, one of which was multiplied by the
screen width and the other by the screen height. The points are uniformly
distributed over the screen, as desired, and were uniformly distributed
throughout the calculation as the screen filled with points.

The Gaussian distribution function in Eq. (4.5) was checked for M = 10
by creating a histogram from 1000 calls to the function. The resulting
histogram is given in Figure 4.2. The diagram is biased a half bar width
to the right because of the graphics generation method. The distrubution
is a good approximation to a Gaussian distribution.

4.2 Statistics of the Universe of Buckle Shapes

Population statistics of a universe of buckle shapes were approximated by
calculating 16 buckle shapes with the amplification function in Figure 2.1
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[Eq. (2.19) with s = 20.671. In these calculations, and all the calculations
. in this report, a Gaussian parameter value M = 10 was used in Eq. (4.5).

Imperfections for this statistical study were taken in white noise form with
Fourier coefficients having unit standard deviation. This was done so as not
to specialize to any particular variation of Fourier coefficients with mode
number n. Although use of the n - 1/2 variation suggested in this report looks
promising, other forms may be proposed in the future based on knowledge
or measurements of imperfections for particular manufacturing methods.

The resulting shapes are given in Figures 4.3 through 4.18. The entire P#1
sequence is given because it is useful to scan through the figures to see the
range of buckle shapes that are members of the same population. Some of
the shapes are fairly regular, and one can easily imagine approximating the
shape with a single buckle mode, as in Figure 4.7, for example. Others are
quite irregular and deviate substantially from a single-mode representation,
as in Figure 4.15. The most frequently occuring buckle shape has buckles at
nearly constant wavelength beating against modes of nearby wavelengths,
resulting in an undulating amplitude. This is most clearly demonstrated by
Figure 4.6. The beat wavelength depends on the separation. between groups
of mode numbers that happen to have large imperfection coefficients.

The statistics of peak-to-peak amplitudes were obtained by calculating
negative-to-positive and positive-to-negative amplitude differences of all the
peaks in the 16 buckle shapes. A histogram of the resulting values is given
in Figure 4.19. The histogram is sufficiently filled in that it is taken to
represent the distribution of the universe of buckle shapes. It has a fairly
well-defined maximum probability near 140 units of magnitude and a finite

* "probability at zero magnitude, reflecting the many small wiggles seen in
Figures 4.3 through 4.18. The average amplitude is 152 units and the
standard deviation is 83 units.

4.3 Estimates of Buckle Wave Population
Statistics

The isolated vertical tic marks labeled 152 and +83 at the top of Figure 4.19
are drawn at the average amplitude and at one standard deviation above
and below the average. The bars drawn just below the 152 and - 93 tic
marks give the range of average values and standard deviations calculated

32
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for the individual buckle shapes, as given on the plots in Figures 4.3 through
4.18. These demonstrate that statistics calculated from buckle waves in a
single buckling calculation give reasonably good estimates for the statistics
of the universe of buckle waves. Thus, in finite element analysis, it appears 1

that one or two calculations should give good estimates for buckle statistics.
Figure 4.20 gives the distribution of wavelengths for the collection of

16 buckle shapes. The distribution has a pronounced maximum near 19
degrees. Nearly all the wavelengths lie between 10 and 30 degrees. An
explicit formula for the mean wavelength as a function of time is given in
Reference 2.
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Figure 4.3: Buckle shape from white-noise imperfections, .s =20.67, r 6,
case 1.
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Figure 4.5: Buckle shape from white-noise imperfections, s = 20.67, r = 6,
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Figure 4.6: Buckle shape from white-noise imperfections, s 20.67, r = 6,
case 4.
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Figure 4.7: Buckle shape from white-noise imperfections, s =20.67, r =6,

case 6.
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Figure 4.9: Buckle shape from white-noise imperfections, s = 20.67, r 6,
case 7.
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Figure 4.10: Buckle shape from white-noise imperfections, s = 20.67, r 6,
9.,case 8.
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Figure 4.11: Buckle shape from white-noise imperfections, s =20.67, r =6,
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Figure 4.12: Buckle shape from white-noise imperfections, s =20.67, r =6,
case 10.
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Figure 4.13: Buckle shape from white-noise imperfections, s =20.67, 7-= 6,
case 11.
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Figure 4.15: Buckle shape from white-noise imperfections, s =20.67, 1- 6,
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Figure 4.19: Histogram of buckle amplitude distribution, s =20.67, r 6,
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