
-A179 276 UC - A PROGRESS REPORT(U) CALIFORNiIA UWIl IERICELEV k-P? I
OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
R WILENSKV ET AL JUL 86 N89839-84-C-8089 9UNCLSSIFIED 0/ 9/2 M

mhhhhmmmmhmhl

111111.2 __ 2

MICOCPY ESLUTONTES CAR

LE A D, Q12A

1111 1.
liil N"o1

A111.5Ltll .

AD-A179 276 REPORT DOCUMENTATION PAi"
lb. RESTRICTIVE MARKINGS

uncidaM., 10U
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

• unlimitted
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

* 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION.The Regents of the University (N appicable)

of California SPAWAR

6c. ADDRESS (Cty, State, and ZIP code) 7b. ADDRESS (City. State, and ZIP Code)
Berkeley, California 94720 Space and Naval Warfare Systems Command

Washington. DC 20363-5100

Ba. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

7. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Oassification)

UC - A Progress Report

12. PERSONAL AUTHOR(S) Robert Wilensky/et al

13a. TYPE OF REPORT 1i3b. TIME COVERED 14. DATE OF REPORT (YearMonth, Day) jS. PAGE COUNT
technical FROM TO * r . * hR

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

Enclosed in paper.

DTIC
ELECTE

APR 2 1"1P

20. DISTRIBUTIONIAVAILAILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION*UNCLASSIFIEDUNLIMITED 0- SAME AS RPT. DTIC USERS unclassifi.ed ,'

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473,4 MAR S3APRedJonmaybeuseduntileshausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

-. .

I.:,,

Productivity Engineering in the UNIXt Environment

UC - A Progress Report

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, . -
of the Defense Advanced Research Projects Agency or the U.S. Government."

Acession For

Contract No. N00039-84-C-0089 14TIS O"A&DTIC TAB

August 7, 1984 - August 6, 1987 unatounced 0 .d.

By .. rn

Arpa Order No. 4871Cde -------[A ai6 ad/or _,

Dist Specsl

% ,% 'UNIX is a trademark of AT&T Bell Laboratories"

87 %% .u _

UC - A Progress Report*

Robert Wilensky
James Mayfield
Anthony Albert
David N. Chin
Charles Cox
Marc Luria

James Martin
Dekai Wu

Division of Computer Science
Department of EECS

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

uc is an intelligent natural language interface that allows naive users to learn about
the UNIX operating system.t uc was undertaken because the task was thought to be both
a fertile domain for Artificial Intelligence research and a useful application of Al work in
planning, reasoning, natural language processing and knowledge representation.

The current implementation of uc comprises the following components: A
language analyzer, called ALANA, that produces a representation of the content contained
in an utterance; an inference component called a concretion mechanism that further
refines this content; a goal analyzer, PAGAN, that hypothesizes the plans and goals under
which the user is operating; an agent, called UCEgo, that decides on uc's goals and pro-
poses plans for them; a domain planner, called UCtanner, that computes a plan to address
the user's request; an expression mechanism, UCExpreu, that determines the content to be
communicated to the user, and a language production mechanism, UCGes, that expresses
uc's response in English.

uc also builds a model of the user that represents uc's assessment of the user's
knowledge state with respect to UNIX. Another mechanism, UCTeacher, allows a user to
add knowledge of both English vocabulary and facts about UNIX to Uc's knowledge
base. This is done by interacting with the user in natural language.

All these aspects of uc make use of knowledge represented in a knowledge
representation system called KODIAK. KODIAK is a relation-oriented system that is
intended to have wide representational range and a clear semantics, while maintaining a
cognitive appeal. All of uc's knowledge, ranging from its most general concepts to the
content of a particular utterance, is represented in KODIAK.

*This research was sponsored in part by the Defense Advanced Research Projects Agency (DoD), ARPA order No. 4871,
monitored by Space and Naval Warfare Systems Command Command under contract N00039-84-C-0089, by the Office of
Naval Research under contract N00014-80-C-0732, and by the National Science Foundation under grant MCS79-06543.
tUNIX is trademark of Bell Laboratories

.2c,

I'm n

~ "' ~ K ~' - - -. ' - . *' - -...

Acknowledgements

In addition to the authors of this paper, several other people have made significant
contributions to the UC project and to this report. Richard Alterman played a major role
in the overall design, organization, and execution of this project. He also made many
specific contributions to its individual components, especially UCGen and UCEgo, and was
involved in many of the technical discussions upon which this work was based. Peter
Norvig wrote the original KODIAK interpreter, and contributed significantly to the
development of this representation language. Eric Karlson built the graphic interface
program used to enter and edit KODIAK diagrams. James Mayfield took charge of coor-
dinating and integrating the components of this report into a single document. Other
members of our group who contributed to this effort include Yigal Arens, Michael
Braverman, Margaret Butler, Paul Jacobs, Dan Jurafsky, Lisa Rau, and Nigel Ward.

iII

•I,

%. %, "R " " " " p ." ." t" "' ,*" " "" "" % ' "- "- ". " " " p " % " " % % " " '
"

" % -" " " " m' .' * " - "b
"

"" " " "• " -"
•

Table of Contents

1. Introduction to the UNr onutntzQPrjc - 1
2. KODIAK..1I1
3.Ile Analyzer ... 16
4. The Concretion Mechanism ... 21

5. T7he Goal Analyzer... .30

.6. The Ego Mechanism ... 37
7. The Planner ... 49

8. The Expression Mechanism ... 61
9. The Generator .. 67
10. Knowledge Acquisition .. 72
11. Problems... 77
12. Appendix: UC KODIAK Diagrams ... 80

p.13. References... 115

1. Introduction to the UNEK Consultant (UC) Project
Several years ago, we began a project called UC (UNIX Consultant). UC was to

function as an intelligent natural language interface that would allow naive users to learn
about the UNI~t operating system by interacting with the consultant in ordinary English.
We sometimes refer to UC as "an intelligent 'help' facility" to emphasize our intention
to construct a consultation system, rather than a natural language front end to an operat-
ing system. Whereas front-ends generally take the place of other interfaces, UC was
intended to help the u lr1arn how to use an existing one,

* We had two major motivations for choosing this task. These can be summarized by
saying that we believed the task to be both interesting and doable. It seemed to us that
much natural language work, indeed, much of Al research, has fallen into two largely
non-intersecting categories: On one hand, there are quite interesting and ambitious pro-
jects that have been more the fertile source of exciting speculations than of useful tech-
nology. In contrast, there are projects whose scope is severely limited, either to some int-

- rinsically bounded real world task or laboratory micro-world. These projects result in
much excitement by the production of a "working system" or successful technology.
But such projects have rarely produced much in the way of progress on fundamental
issues that comprise the central goals of Al researchers.

Our hope was that the consultation task would requires us to address fundamental
problems in natural language processing, planning and problem solving, and knowledge I

representation, all of which are of interest to us. We believe this to be the case because
(1) the domain of an operating system is quite large and complex, (2) users' conceptions
of computer systems are often based on other domains, particularly space and contain-%
ment, and (3) the structure of a consultation session requires the consultant to understand
the user's language, hypothesize his intentions, reason about the user's problem, access
knowledge about the topic in question, and formulate a reasonable response. In sum, vir-
tually all the problems of language processing and reasoning arise in some fashion.

While the task is interesting, it is nevertheless limited. Arbitrary knowledge of the
world is generally not required, as it may be in other natural language tasks, such as text
processing. Even knowledge about the domain might be limited in ways that do not
compromise the overall integrity of the system. Since the system is a 'help' facility, it
need not be capable of handling every task put to it to serve a useful function. This is
probably less true of systems that are intended to be interfaces. In their case, failure to
process a request by the user correctly leaves the user with little recourse. However, a
consultant may be quite useful even if it cannot help all the time. 4

Similarly, there are strategies that might be employed in a consultant task that
further reduce the degree of coverage required by the system. For example, if asked a
very specific question, it is not unreasonable that a consultant respond by telling the user
where to look for the information. Thus the degree of expertise of the consultation sys-

-A',temn may be circumscribed.
We did not feel that it was necessary or appropriate to produce a product that could

'A actually be used in a real-world setting in order for our system to be considered a success.
However, we did feel we should show that one could develop such a system along the

tUNDC is tmdmnak of Mel Labooees

A-.,

-2-

lines our research suggested. This would be accomplished by developing an extendible

LL UC Old and New
We initially built a prototype version of UC consisting largely of "off the shelf"

components [Wilensky, Arens, and Chin 1984]. While this system seemed to suggest
that our goal was feasible, it was deficient in many ways. There were whole components
that needed to be included that were not. For example, the initial system made few infer-
ences, and was not capable of planning its own actions. In addition, each individual
component was in need of much refinement.

Probably the most important deficiency was in the area of knowledge representa-
tion. The initial prototype of UC was implemented in PEARL [Deering, Faletti, and
Wilensky 1981]. PEARL is an Al language and data base management package that sup-
ports frame-like structures similar to those employed by other representation languages,
with perhaps some more attention given to efficient retrieval However, we found that
our underlying representational system was inadequate. Unfortunately, the problems
with our system were not unique to it, but shared by most other efforts to represent and
organize knowledge.

uhof knwlde represnaon. our citiquehs beo existin knod reprtesentaronmMuch of the focus of our recent work has been to address and rectify these problems

schemes, along with our new prescription for these deficiencies, can be found in Wilen-
sky [1986]. That report contains a description of KODIAK, the knowledge representation
system that our work has led us to, and upon which our current implementation of the
UNIX Consultant is based.

Since one's knowledge representation is generally fundamental to the structure of
most of the modules of one's systems, developing a new one means redesigning each
component around a new representational system. This report is a description of a new
prototype of UC so designed.

The structure of this report is as follows. First we present an outline of the structure
of the current version of our consultation system. We follow this with a brief description
of KODIAK. The next sections constitute the bulk of this report, and are essentially a
detailed description of a trace of a rather simple sentence through UC's components. In
doing so, the mechanism of each component is described. Finally, we conclude with
some discussion of the deficiencies of our current design.

1.2. The Structure of UC
The current version of uc involves a number of components that are invoked in a

more or less serial fashion. Each of these is now briefly described:

(1) Language Analysis (ALANA)
Language analysis is that component of the understanding process that computes a

representation of the content of an utterance. ALANA, written by Charles Cox, produces a
KODIAK representation oi the content of an utterance. This representation generally con-
tains only what can be determined from the words and linguistic structures present in the
utterance.

-- • 0.A|

% "" " ' ' " " ' ' " "" ' "" " " " " " '" " " ' " ' -" " " "" " " %"q " " " % " ', % "" % " " "- " % % % " " I" '

-3-

We call such an analysis of an utterance its primal content. The concept of primal
content is related to what is usually described as the fiteral meaning or sentence meaning
of an utterance. However, unlike literal meaning, the primal content of an utterance
involves certain idiomatic interpretations (L e., it is not necessarily composed from words
and general grammatical constructions). Also, the primal content of an utterance may be
rather abstract, perhaps so much so that it may not be a suitable candidate for a meaning.
For example, the literal meaning of "The cat is on the mat" is generally taken to be a
conventional situation in which a cat is resting upon a mat. However, the primal content
of this sentence would be more abstract, where the contribution of "on" is identical to
that in the primal content of "The light fixture is on the ceiling" or "The notice is on the
bulletin board." Presumably, this conveys some sort of support relation. Note that such
an abstract content appears never to be in itself the meaning of such an utterance.

In contrast to primal content is the acuaw content of an utterance. The actual con-
tent is context-dependent, generally requires some amount of inference based on world
knowledge, and is a suitable candidate for the meaning of an utterance. For example, the
actual content of "The cat is on the mat," without a further context specified, is what the
literal meaning of this sentence is generally taken to be. Computing this content from the
primal content requires pragmatic knowledge about the kind of support relation a cat and
mat are likely to be in, and requires making an inference that cannot be justified by the
meanings of the terms and the grammatical constructions present in the utterance.

(2) Inference (Concretion Mechanism)
The particular kind of inference needed to go from a primal content to an actual

content sometimes involves a process known as concretion [Wilensky 1983]. Concre-
tion is the process of inferring a more specific interpretation of an utterance than is
justified by language alone. Concretion may involve finding a more specific default
interpretation, or some other interpretation based on the context. For example, in the
"cat is on the mat" example above, the actual content computed is the default support
relation between a cat and a mat. In some compelling context, a quite different actual
content may be computed from the same primal content.

(There are other possible relations between primal and actual content besides the
latter being a more specific interpretation of the former. For example, a conventionalized
metaphor might have a primal content that more closely resembles its literal interpreta-
tion, but an actual content resembling its metaphoric interpretation. Thus, one analysis
of sentences like "John gave Mary a kiss" will have as its primal content an instance of
giving, but as its actual content an instance of kissing. We will not pursue further the
details of the primal/actual content distinction here. This is largely because, in UC, the
need for concretion is widespread, and our handling of other kinds of primal/actual con-
tent computations is more haphazard).

In UC, concretion is needed primarily because we need to organize knowledge about
more specific interpretations of utterances than can be arrived at through linguistic
knowledge alone. For example, if UC is asked the question "How can I delete a file?",
ALANA can represent that this is a question about how to delete a file. But it would not
have any reason to assume that deleting a file is a specific kind of deleting. Determining
that this is so is likely to be important for several reasons. For example, knowledge

' . about how to delete a file will be found associated with the concept of "file deletion,"

A..=

-4-

say, but not with the concept of deletion in general. Thus UC must infer that "deleting a
file" refers to the specific kind of deletion having to do with computer storage to perform
subsequent tasks like finding plans for accomplishing the user's request.

In UC, concretion is the function of a special mechanism designed specifically for
that purpose by Dekai Wu. The output of the concretion mechanism is another KODIAK
representation, generally one containing more specific concepts than that produced by
ALANA.

(3) Goal Analysis (PAGAN)
Having computed an actual content for an utterance, UC then tries to hypothesize

the plans and goals under which the user is operating. This level of analysis is performed
by PAGAN (Plan And Goal ANalyzer), written by James Mayfield. PAGAN performs a
sort of "speech act" analysis of the utterance. The result of this analysis is a KODIAK
representation of the network of plans and goals the user is using with respect to uc.

Goal analysis is important in many ways for UC. As is generally well-known, an
analysis of this sort is necessary to interpret indirect speech acts, such as "Do you know
how to delete a file,', or "Could you tell me how to delete a file?" Furthermore, goal
analysis helps to provide better answers to questions such as "Does ls -r recursively list
subdirectories?" An accurate response to the literal question might simply be "no."
But a better response is "No, it reverses the order of the sort of the directory listing, Is -R
recursively lists subdirectories." To produce such a response, one needs to realize that
the goal underlying the asking of this question is either to find out what Is -r does, or to
find out how to recursively list subdirectories It is the job of the goal analyzer to recog-
nize that such goals are likely to be behind such a question.

(4) Agent (UCEo)
Having hypothesized what the user wants of the UNIX Consultant, UC must now

decide what its own goals should be. Generally, we would expect a system like UC to do
what the user requested. But this is not always appropriate. For example, if the user
asked how to crash the system, it would be inappropriate for a consultant to give the user
the superuser password in order to help. This is inappropriate because a consultant prob-
ably has other goals, such as maintaining the integrity of the system.

To deal with such situations, UC is constructed as an agent. This agent reacts to
users' requests by forming goals and acting on them. The central mechanism of UC is
called UCEgo, and has been developed by David Chin.

In a typical transaction, UCEgo will adopt the goal of helping the user by finding out
what the user wants to know, and then telling it to the user. As the example above illus-
trates, UCEgo must also detect conflicts between such goals and other goals it may have.
As another example of such an interaction, UC also attempts to be educational. Thus, if
the user asks UC to actually perform some request, such as telling the user who is on the
system, UC should decide to tell the user how to perform such a function himself, rather
than do what the user requested. UC needs to have some notion of its own goals to decide
how best to perform some action other than what the user requested.

S.L

. :5/ - , , - ., . . , , -.. ,- . . . , , , , . .

,.5," % % % % "F% % % t '. "q. . " ". """""". " " ,% % """" . " . " . " . " ."

-5-

UCEgo is one important way in which UC differs from systems designed to be inter-
faces. While interfaces are generally thought of as passive conduits through which infor-
mation flows, UC is best thought of as an agent. The agent listens to the user, and is gen-
erally helpful. But the agent has its own agenda, and the requests of the user are merely a
source of input to the agent.

(5) User Model
Several of UC's components may need information about the user to make an effec-

tive choice. For example, an expert user certainly knows how to delete a file. Thus, such
a user uttering "Do you know how to delete a file?" is unlikely to be asking for this
information - more likely he is testing the consultant's knowledge.

Assessing the knowledge state of the user is the function of the user model. The
user model is built up by UCEgo, primarily because they were designed by the same indi-
vidual. It is exploited by several components, including the Expression Mechanism
described below.

(6) Domain Planner (UCPlanner)
Typically, UCEgo tries to help the user. This usually requires determining a fact that

the user would like to know. This task is accomplished by UCPlanner. UCPianner is a
"domain planner" developed by Marc Luria. While UCEgo infers its own goals, and
plans to act on them, UCPlaner is given a task by UCEgo of determining how to accom-
plish what the user wants to accomplish. UCllmner tries to determine how to accomplish
this task, using knowledge about UNIX and knowledge about the user's likely goals.
UCPlanner returns a plan, represented in KODIAK. For example, UCEgo may give
UCPlanner the task of determining how to move a file to another machine, if this is some-
thing the user wants to know. Here, UCPlanner would come up with the plan of copying
the file to the target machine, and then deleting the original.

(7) Expression Mechanism (UCExprm)
Having gotten UCPtaner to compute a plan for the user's request, UCEgo now tries

to communicate this plan to the user. To do so, it must determine which aspects of the
plan are worthy of communication, and how best to communicate them. For example, if
it is likely that the user knows how to use commands in general, it might be sufficient just
to specify the name of the command. In contrast, it might be helpful to illustrate a gen-
eral command with a specific example.

UCExpres is an "expression mechanism" written by David Chin. It edits out those
parts of the conceptual answer returned by UCPlaaner that, for some reason, it appears
unnecessary to communicate. UCExpres may also choose to illustrate an answer in
several formats. For example it might illustrate a general answer by generating a specific
example.

The result of UCExprm is an annotated KODIAK network, where the annotation
specifies which part of the network to be generated.

01A

-6-

(8) Language Production (UCGem)

Once UC has decided what to communicate, it has to put it into words. This is done A,
by a generation program called UCGea. UCGen is a simple generator, programmed by
Anthony Albert and Marc Luria. It takes the marked KODIAK network produced by
UCExprem, and using knowledge of English, produces sentences to complete the uansac-
tion with the user.

(9) Learning Mechanism (UCTeaher)

Since it is intended that UC be an extensible system, a mechanism has been
developed to add new knowledge to the system by talking to it in natural language. This
mechanism, called UCTeacber, is the work of James Martin. UCTeacher has capabilities to
extend both UC's knowledge base of UNIX facts, as well as its knowledge of English
vocabulary. Ft

Note that several UC components deal with goals and plans, but in rather different ways.
To minimize confusion, we emphasize the different tasks that these programs perform.
PAGAN hypothesizes goals of the user with respect to UC; UCEgo reacts to the user by
forming goals of its own and then trying to accomplish them; UCPanner is given the goal
of solving some underlying UNIX problem. Thus PAGAN is a goal analyzer, that is, a
program that attempts to determine someone else's goals, while UCEgo and UCPlanner are
planners, i. e., programs that determine and produce plans for their own goals. -,

UCEgo and UCPlanner exist as two separate programs primarily for pragmatic reasons. It
may be possible that a single planner could accomplish the tasks of both UCEgo and
UCPlanner. Such an integration will have to await a revision of our system.

1.3. UC Examples

The following interactions illustrate the scope of the current UC prototype. They by
no means exhaust the capabilities of the system. Instead, they are intended to show the
kind of requests the system can handle, as well as its scope.

Each sentence below preceded by the prompt "User." is supplied by the user. The
rest of the text is a computer generated response.

%UC

Welcome to UC (Unix Consultant) version 2.7

To a UC '#' prompt, please type in your questions about Unix in English.

To leave, just type a '0' or '(exit)'.

User: Can you tell me how to move a file?

Use my.

For example, to move the file named foo to the file named fool,

type 'mv foo fool'.

Id User: Do you know how to delete a file named dekai?

Type 'rm dekai'.

: 4K.

~-7-

User: Do you know how to delete a file?

Use rm.
For example, to delete the file named foo, type 'rm foo'.

F

User: How can I delete the file charlie?
Type 1rm charlie'.

User: How can I delete the file named tony?
Type rm tony'.

User: How can I get rid of the file named boob?
Type 'rm boob'.

User: I want to delete a file named peter.

Type 'Irm peter'.

User: I want to delete a file.

Use rm.

For example, to delete the file named foo, type Irm foo'.

User: I want to delete the file dave.

Type 'rm dave'.

User: How can I add read permission to a file?
Use chmod.

For example, to add individual read permission to the file named

fco, type 'chmod u+r foo'.

User: How can I add the owner execute permission to a file?

Use chmod.
For example, to add individual execute permission to the file

named foo, type 'chmod u+x foo'.

User: How can I change the group execute permission of a file?
Use chmod.
For example, to add group execute permission to the file named

foo, type 'chmod g+x foo'.

For example, to remove group execute permission from the file
named foo, type 'chmod g-x foo'.

User: How can I change the group read permission of a file?

Use chmod.
For example, to remove individual read permission from the file

named foo, type 'chmod u-r foo'.

User: How can I remove the group write permission from the file named bimbo?

Type 'chmod g-w bimbo'.

%*W "C

-8--

User: How do I change the protection of a file?

Use chmod.

For example, to remove individual read permission from the file

named foo, type 'chmod u-r foo'.

User: How can I compact a file?

Use compact.

For example, to compact the file named foo, type 'compact foo'.

User: How can I create a directory?

Use mkdir.
For example, to create the directory named foo, type 'mkdir foo'.

User: How can I find a file?

Use whereis.

For example, to find the file named foo, type 'whereis foo'.

User: How can I find out how much disk space I am using?

Type 'du'.

- * User: How can I find out who is using the system?
Type 'finger'.

User: How can I find out wilenaky's phone number?

Type 'finger wilensky'.

User: How can I list a directory?
Use 1s.
For example, to list the directory named foo, type '13 foo'.

User: How can I logout?
A.. .Type Ilogout'.

User: Tell me how to leave.

Type 'logout'.

User: How can I move a file to the file named blah?
Use my.
For example, to move the file named foo to the file named blah,

type 'mv foo blab'.

User: How can I move the file junk?
Use mv.
For example, to move the file named junk to the file named foo,

type 'my junk foo'.

User: How do I move a file?

%* %

"£,

-9-

Use mv.
For example, to move the file named foo to the file named fool,

typo 'mv foo fool'.

User: How do I change my directory?

Use cd.
For example, to connect to the directory named foo, type Icd foo'.

User: How do I copy a file?

Use cp.

For example, to copy the file named foo to the file named fool,
type Icp foe fool,.

User: How do I copy the file foo to the file blah?

Type Icp foo blah'.

if User: How do I create a directory?

Use mkdir.
For example, to create the directory named fo0, type Imkdir foo'.

User: How do I print a file named info?
Type 'ilpr info'.

User: I want to print a file.

Use lpr.
For example, to print the file named foo, type 'ilpr foo'.

User: I want to change my working directory.

Use cd.
For example, to connect to the directory named foo, type 'cd foo'.

User: I want to copy the file named rick.

Use cp.

For example, to copy the file named rick to the file named foo,

type cp 'rick foo'.

User: I want to delete a directory.

Use rmdir.

For example, to delete the directory named foo, type 'rmdir foe'.

User: I want to remove a directory.

Use rmdir.
For example, to delete the directory named foo, type 'rmdir foo'.

User: What's the best way to delete a directory?

Use rmdir.-j For example, to delete the directory named foo, type 'rmdir foo'.

1.

' ,Iall

I . '6

%3." - 10 - i.

User: I want to display a file.

Use more.

For example, to display the file named foo, type 'more foo'.

User: I want to edit a file.

Use vi.

For example, to edit the file named foo, type 'vi foo'.

User: I want to find out Joe's address.

Type 'finger Joe'.

User: I want to remove a directory named junk.

Type 'rmdir junk'.

User: What's the command to compact a file?

AUse compact.

For example, to compact the file named foo, type 'compact foo'.

.

,%%

4N

V..

.4 A.

2. KODIAK
The knowledge used by UC is represented in KODIAK, as are the various stages of

the processing of an utterance. KODIAK (Keystone to Overall Design for Integration and
Application of Knowledge) was developed to address certain weaknesses of other
representational systems. In particular, an attempt was made to make the interpretation
of the objects in one's representation a bit clearer. To do this, we found it necessary to

make KODIAK relation-oriented rather than object-oriented, and to eliminate the
frame/slot or node/link distinction found in frame-based and semantic network-based
systems, respectively. In their place is introduced a new distinction, called the

aspectuallabsolute distinction.

To motivate this distinction, consider how facts are stored in frame-based systems.
Typically, a frame for "person," say, will have a slot for name, one for age, and one for
address. Similarly, a frame for "physical-object" may have a slot for color, size, weight,
etc. However, what these slots mean is not represented. That is, there is nothing in the
representation system that captures the fact that age, for example, is the amount of time
between the creation of something and some reference point in time, or that objects have
colors in a different way than people have addresses. Moreover, there appears to be no
principle to determine which slots belong to which frames. Similar arguments can be
made for the nodes and links of semantic network systems.

In KODIAK, rather than start with objects with slots, we begin with relations. For
example, we might posit a "dwelling-has-address" relation. This relation would take
two arguments, which we might call a "dwelling-with-address" and the "address-of-
dwelling." That is, we might say that the idea of a place with an address involves a par-
ticular kind of relation between something playing the role of a dwelling and something
acting as an address. We call concepts like "dwelling-with-address" and "address-of-
dwelling" aspectuals, since they are meaningful only in relation to some other idea (in
this case, to the relation "'dwelling-has-address"').

To make these concepts meaningful, we need to connect them to other concepts.
For example, we need to specify that, in general, whatever is in the "dwelling-with-
address" role must be some sort of location. Similarly, we need to specify that objects in
an "address-of-dwelling" position should be "address"-type objects. These objects in
turn have a certain sructure, for example, one type of address has a state, city and street

address, etc.

Moreover, we might introduce another relation, one we could call "person-dwells-
at-residence." This might hold between a "dweller" and a "dwelling." Thus, in
KODIAK, saying that something is the address of a person would be represented as some-
thing equivalent to "some address object plays the 'address-of-dwelling' role to some
location playing the 'dwelling-with-address' role. This same location plays the 'dwel-
ling' role to some person's 'dweller' role."

As another example, consider the idea of being a part of something. It seems there
is a concept "being a part," but it is only meaningful with respect to something it can be
a part of (i. e., something just can't be a part, period). In KODIAK, we would say that
"part" and "whole" are aspectuals of a "part-whole" relation. In most other
languages, one says that some object has a slot for some kind of part, for example, that an

engine has a part slot for crankshaft. In KODIAK, we would say that a part-whole relation

• /..- ., -r-,-.. r. . . ., ,, .' ."st:- . .-

-12-

holds between the objects, that is, that the general concept "engine" and "crankshaft"
were in a part-whole relation.

Concepts that seem to be meaningful without respect to some other concept are
called absolutes. Relations themselves are absolutes, as are most objects.

We diagram relations and their aspectuals using the following notation:

y- In these diagrams, absolutes, including relations, are represented as boxes, and aspectuals
as circles. The labeled arrows represent various KODIAK epistemological relations, that
is, relations known to the KODIAK interpreter. In this example, the links labeled a indi-
cate the aspectuals of a relation. We sometimes say that an aspectual manifests its
aspectuals.

We represent the fact that some particular dwelling has a particular address by
creating a new relation with new aspectuals. This new relation represents an individual
fact, and is connected to the generic relation using an Instantiate (1) and role/play (R/P)
links. For example, we could represent such a fact as follows:

Dw,

4 a

To include in our representation the particular objects in this relation, we connect them to
the aspectuals of the particular fact using Value (V). Thus we might elaborate the above

to include the following:

Zft.

-13-

-w I 1

Furthermore, Loci and Addressl would be represented as instances of the appropriate
object categories: Ilk

LocadamAddnn

* I "
,4,

More details would be included using additional relations. For example, Addressl might
be in a City-of-Addressl relation to Berkeley, which would be an instance of a city.

Generally, a relation in KODIAK will be a subtype of another relation. This is
represented using a Dominate (D) link. We differentiate the aspectuals of such relations
by constraining them, using a Constrain (C) link. This means that an individual version
of the relation must have its aspectuals played by aspectuals whose values conform to the
constraint.

For example, in KODIAK we posit a Causal-Event relation that holds between the
aspectuals Cause and Effect. The idea of killing is represented as a kind of causing in
which the thing caused is a kind of death event. This is depicted in Figure 1. This exam-
ple uses an abbreviated notation, which we will use throughout this paper. Once we have
defined a relation with aspectuals, we can represent role-play links by labeling a link with -,
an aspectual name. For example, in Figure 1, the link labeled Effect that connects ,,
Kill-effect with Kill is just an abbreviation for a role-play link. It should be interpreted
as saying that (1) Kill-effect is an aspectual of Kill, and (2) Kill-effect plays the role of
Effect with respect to the dominating Causal-event concept.

Figure 1 should be interpreted as follows: A killing (i. e., Kill) is a kind of causing
(i. e., Causal-event) in which the thing caused (the Effect) is constrainted to be a kind of
death event. This particular death event (namely, Kill-death-event) is not distinguished
from the general death event (i. e., Death-event) except that it is a death resulting from
killing. A death event is a kind of state change (State-change) in which a person (the

A I.LE

-14-

dier) goes from an initial state of being alive (represented by the statement
Dier-is-alive) to the final state of being dead (represented by Dier-is-dead).

This figure also makes use of another KODIAK relation, called EQUATE (=). This
is really a bidirectional link between two aspectuals, meaning that instances of the con-

p. cepts manifesting these aspectuals must have corresponding aspectuals that have the
same value. In Figure 1, for example, EQUATE links are used to state that the fellow
who started out alive and the fellow who ended up dead are the same fellow, namely, the
dier of the death event.

KODIAK has many additional features that are not described herein. The reader is
referred to Wilensky [1986] for a more complete description.

In the following sections, we briefly describe each component of UC. Each com-
ponent is illustrated on the processing of the sentence "Do you know how to print a file
on the imagen*?" In some cases, a module may be capable of doing a great deal more

*than is required for this example. However, the example is useful for illustrating the kind
of processing that is performed for a typical request.

* da ado

_'p1

• pk. p..i, ,da sie

. 5" " " """"" . , . . - -"p." , - -p-""""""""""""" .- , / ,
"

""" ' "" ""'" . ' - ""- '' .'"-- " " . ' ."

-15-

4D Dd ~

4&A

sum

Is-div,.oboba

IIIS

.,. ' el

Vie

Kil

Km-viatk. Sea CamseI

'vp.Figure)I

KODIAK Representation of Kiling

P91

Or

-16-

3. The Analyzer

A conceptual analyzer maps a string of words into a meaning representation.
ALANA (Augmentable LANguage Analyzer), the conceptual analyzer for UC, takes as
input a sentence typed by a user, and builds a conceptual representation using the
KODIAK knowledge representation language. ALANA constructs the "primal content" of
the input utterance. The primal content is the interpretation that can be computed from
grammatical and lexical knowledge; it is generally rather abstract. ALANA's results are
further interpreted and refined by other parts of the system, such as the concretion
mechanism to produce an "actual content," and the goal analyzer, to produce a represen-
tation of the intentions underlying the utterance.

ALANA is a descendent of PHRAN [Wilensky and Arens 1980], the front-end natural
language component for the original UC [Wilensky, Arens and Chin 1984]. Like PHRAN,
ALANA reads the user's input and forms a concept that the other uc components can use
for their tasks. Also like PHRAN, ALANA uses as its primitive knowledge unit the
Pattern-Concept Pair, which relates a natural language structure to a conceptual struc-ture.

ALANA differs from PHRAN in its generality. ALANA generalizes on the idea of
pattern-concept-pair analysis, while making it easier than it was with PHRAN for a
knowledge-adder to add new patterns to the system. More detailed criticisms of
PHRAN'S implementation and how they are addressed in ALANA can be found in Cox
[1986].

3.1. ALANA's Knowledge Representation

First, we will look at what ALANA's knowledge looks like. Then we will examine
in detail how the actual analysis is done and how representations get built.

The main idea behind ALANA is that pattern knowledge is used to aid in the syntac-
tic analysis, which takes place at the same time as semantic analysis. ALANA uses these
patterns to suggest parses.

All pattern matching knowledge, from the individual word up to syntactic rules, are
handled as Pattern-Concept-Test triples. The triple consists of: A pattern, which is
matched against a parse chart, an optional test, which is called once the pattern is
matched to determine if the associated concept should be instantiated and asserted, and
the concept itself, which is a declarative representation of the meaning of the phrase that
makes use of the patterns that have already been matched.

For example, consider some of the patterns used to analyze the question "Do you
know how to print a file on the imagen?" These include <Aux> <NP> <VP>, whose
associated concept denotes a question, and <Print> <NP 1 > <on> <NP2 >, whose concept
denotes a printing event in which the destination of the object to be printed (NP 1) is
NP2

Tests are used to check for such things as subject-verb agreement and nominal case. N

The concept part of the triple is written in a notation that describes what KODIAK
structures should be built and how they should be connected. For example, the concept
associated with the pattern <print> is -,'

O.

94

-p% * " , % , " . , - - % • % . , % , • - %-"""e"- . " . ', '," ". - . '"" " - " o " ..
'

- 17 -

(builds (i PRINT-ACTION
witha pr-effect (i PRINT-EFFECT))))

The form (i PRINT-ACTION ...) specifies the creation a new instance of PRINT-
ACTMON (a KODIAK relation defined in the general UC knowledge base). Should this pat-

". tern be chosen, a new relation, say PRINT-ACTION3, would be created and made an
instance of PRINT-ACTION. The 'witha aspectual, value.' inside the i expression
specifies the creation of new instance aspectuals for thtis new relation and calls for role-
play links to the corresponding definitional aspectuals (i.e., those aspectuals of the rela-
tion of which this new relation is an instance). Similarly, the (i PRINT-EFFECT) calls
for the creation of a new instance of PRINT-EFFECT.

A more complicated pattern, <Print> <NP> is associated with the concept

(builds
(1 HAS-PRINT-OBJECT

witha pr-obj-obj (get-value-of pr-effect (concept-of Print))

witha pr-object (concept-of NP))

(concept-of Print)))

The forms (concept-of NP) or (concept-of Print) refer to pointers to the KODIAK
structure that were built and/or returned at the time the Print or NP patterns were being
instantiated. This is how previously built concepts are linked to those currently being
built. The effect of the above builds expression can be seen as part of the KODIAK

representation in Figure 2.

3.2. ALANA's Processing

ALANA processes a sentence one word at a time, left to right. As it processes each d

word, it simultaneously builds a chart representing the syntactic information as well as a
KODIAK network representing the meaning of the input utterance. Thus inferences are
being formed and rejected before clauses end. It is this idea of integrating grammatical
processing with other semantic and reasoning processing that gives ALANA efficiency
and speed (in understanding) over syntax-first parsers.

When a pattern has been selected by ALANA, the anticipation of the next word of the
linguistic component of that pattern serves as an expectation. For example, seeing a
Wh-word such as How, ALANA anticipates a question, because there is a question pattern .1.

whose first word is How. To completely integrate such analysis at "question-read" time,
ALANA should ideally run as a coroutine. If so, during the reading, the other components
could signal to ALANA that a hypothesis or a pattern should be rejected or that another
hypothesis should be considered. Although ALANA is capable of this sort of hypothesis
rejection, the functionality is currently unused in UC. The current implementation of UC
is organized as a pipelined process with ALANA acting as the front end.

A

~~~~. .. . . . ..... ' ' ' . . . . . . '. ... '-.... ,. ... . . ,.- . , ... ,. . . . . . . . .. . .
.. . .. . . '., .' , . ..* .. . .. . . .. . , . . . ' . . ..*. . . . a . . . ... ,** . * * ,* .. . . , , ,, ,- . . , . . . ,



W r<Y -r-w- - .- !-- ~ r ~ r ~ - s ~ r

3.2.1. Chart Parsing
The pattern matching method used in ALANA is designed to match simultaneously

all levels of patzerns, ranging from individual words and morphemes (stored as patterns)
to the more abstract linguistic constructions such as questions of the form <Wh-word> :%
<Auxiliary> <Sentence>. To allow simultaneous parallel parses of the input sentence,
the pattern-matcher keeps the matched patterns organized as a chart. The chart ALANA
uses represents all possible parses of the input along with all possible parses of sub-
strings. r

3.2.2. Pattern Storage

As with PHRAN, patterns in ALANA are stored in a discriminaon net. The discrimi-
nation net is used to store the concepts and tests with the pattern components acting as an
index to them. As the matcher matches a pattern, it follows the path in the discrimination
net by matching each pattern element with a link in the net. When it finds that a particu-
lar discrimination net node has information attached, it either builds an instance of the
associated concept, calls a test for feasibility, sets a global variable, or some combination
of the above.

3.2.3. Open and Closed Patterns
To keep pattern matching as general as possible, we need a way to match com-

ponents no matter where they begin or end in an input sentence. The structure of the
parsing chart itself gives us the ability to point to any position in the input. Combined
with the ability to point anywhere in the pattern discrimination net, we are able to have a
special data structure called an open-panern, which ties the discrimination net to the
parsing chart. Such a data structure keeps track of where a pattern match began in the
input, where it ends, and the matchings of edges to pattern component labels.

I.l 3.2.4. Spelling Corrector
Any time a new word is entered, we expect at least one open-pattern to advance. If

none can advance, we have an unknown or misspelled word. ALANA does allow wild-
cards in its patterns, which expect unknown or arbitrary words at certain points; open-
patterns containing such wildcards in their patterns would automatically advance. Thus
if no open pattern can advance, we truly have an unknown word at a place we did not
expect to find one. Such an unknown word is likely to be misspelled. If the correct spel-
ling could be known, we could insert the correct word into the chart and try to match
against it.

ALANA makes use of a spelling corrector implemented by James Mayfield, based on
the algorithm used in DWIM [Teitelman 1978]. When ALANA is stopped at a word where
no open-pattern can advance, it calls the spelling corrector with the unknown word and
the list of expected words, drawn from the patterns that have already started matching.

.-- The corrector then returns a list of valid candidates from the list of possibilities. All the
". possibilities are entered into the chart at the point where the misspelled word is located.

0Ip: :4

'4 .



l -19-

3.2-5. Example
We now present a simplified trace of ALANA'S actions while reading "Do you know

how to print a file on the imagen?"
Read do you

ALANA recognizes do as an Auxiliary and you as a pronoun, matching the begin-
ning of the question pattern that handles questions of this type, where the subject
and the auxiliary are inverted. The next item in this pattern is a verb-phrase. This
information is then put on the parsing chart. Nothing yet gets built into KODIAK.

Read know
ALANA now expects an S with which to build an instance of the KODIAK KNOW
concept, and assert a VP on the parsing chart (which will then fulfill the expected
VP from above).

Read how
ALANA expects a how-question.

Read to print
ALANA has a several patterns specific to print. These patterns have concepts that
describe PRINT-ACTIONs and PRINT-EFFECTs. At this point, ALANA adds to its
list of expectations an object associated with the PRINT-EFFECT.

Read a file
This fulfills the expectation of a file for the PRINTing (pr-object in Figure 2).
ALANA instantiates this to a NP. We note that at this point, in reading from left to
right, an entire question has just been completed, namely "Do you know how to
print a file?" Since ALANA does all the processing it can before reading the next

word, it indicates in the parsing chart that a question has been asked. It is
prevented, however, from using this question as its final interpretation because there
are words remaining in the input. The remaining words will form a longer and more
specific question, which will be returned by ALANA. ALANA favors the longer,
specific patterns over the shorter abstract patterns.

Read on the imagen

Two patterns are matched here. One is the general <NP > <on> <NP2 >. The other
pattern is part of the <Print> <NP 2> <on> <NP 2>. The latter pattern builds a
KODIAK structure indicating a destinition for the print object, the imagen.

Now that we have read all the words in the sentence, the structure built so far is included
in another KODIAK structure indicating that it is part of an ASK with a QUESTION whose
what-is is the KNOW of that structure. ALANA's complete output is shown in Figure 2.

4

*~ V % ~ ~. ' ~ -~' - . .4 *--. j,"



-20-

PFAM9

;'i "Figure 2
",'-"ALANA'S output for "Do you know how to print a file on the ImagenT"

4

- . - -

(a L~

.- .A .'. . , . .., . . _ , - . . . , . . .. " . - ....- .. .., . . .- ' - - ., q .. . ., . .: . - , .
A';-- ' -- -" -- ".. ." -" -" : " -d'r : ' -" -(

t
' ' " -" - ' ' - ' e_ - ,. ' . _,' :. '_., ' ,_., _ ' - , #. -a

'



-21-

4. The Concretion Mechanism

4.1. Introduction

A Concretion inference is a kind of inference in which a more specific interpretation
of an utterance is made than can be sustained on a strictly logical basis [Norvig, 1983]
[Wilensky, 1983]. Examination of contextual clues provides the means to determine
which of many possible interpretations are likely candidates. An example of a simple
type of concretion inference occurs in understanding that "to use a pencil" means to I
write with a pencil, whereas "to use a dictionary" means to look up a word.

Concretion theory differs from traditional classification theories such as that of KL-
ONE [Schmolze and Lipis 1983, Brachman and Schmolze, 1985] in that a concretion

* inference may be inconect. Ordinarily, "to use a pencil" implies writing, however, in a
particular context, it may refer to propping a door open with a pencil. Nevertheless, in 1
the absence of compelling evidence to the contrary, the natural interpretation is writing.

A process that performs concretion is called a concretion mechanism A concretion
mechanism attempts to find clues in a set of general concepts to generate concepts that
are more specific. Writing, for instance, is a specific type of using, in which the tool
being used may be a pencil. The use of such a mechanism permits a straightforward
approach to manipulating hierarchical knowledge structures. The initial interpretation of
an utterance may include concepts too general for the utterance to be considered under-
stood. Such general concepts embody the common features of their descendent concepts,
but for some reason insufficiently specify the meaning of the utterance. Thus, the con-
cretion mechanism is responsible for making an appropriate interpretation of a concept I
by selecting one of its sub-concepts, found lower in the hierarchy.

In deciding when concretion operations should be performed, it is critical to con-
sider how specific a concept's representation must be to be "understood." Different lev-
els of categorization are considered adequate from situation to situation. For instance, it
is perfectly acceptable in most circumstances to leave the interpretation of "eating" as I'
"eating some food." However, in a context involving picnics, a more specific interpreta-

tion is likely to be made. This illustrates the following point: in cases where a more
specific category than "usual" is requisite, often some feature of the prototype of the

supercategory is violated, resulting in a higher probability of selecting a subcategory _

where this feature is accommodated. _

It is important that the mechanism be able to recognize from a wide variety of clues
when there is sufficient evidence to concrete, as well as when an ambiguity needs to be

P resolved. A uniform method of representing the rules by which a concretion may be
made is required. Naturally, wrong inferences can occasionally be made and some6"
means must therefore be provided to find and correct them when contradictory facts are
learned.

4.2. Concretion in UC
A prototype concretion mechanism has been developed based on the KODIAK

knowledge representation language. It is being used in the UNIX Consultant system as
part of the interpretation mechanism, thereby reducing the number of specific patterns

IL,



-22-

needed for language analysis. For example, the use of this mechanism delays semantic
analysis that the language analyzer would otherwise accomplish by creating patterns for
specific verb-object relations (such as "delete file"). Were the language analyzer to
have specific linguistic patterns for every possible object of "delete," the resulting proli-
feration of patterns would not only require increased memory space but would fail to
capture the generalization that all "delete"-object patterns share a common linguistic
structure.

The mechanism concretes by using information about inheritance and value con-
swaints, as well as by considering relation information between concepts. A concept that
may be overly general is passed to the mechanism as a possible concretion target. Its eli-
gibility for membership in a more specific subcategory is determined by its ability to
meet the constraints imposed on the subcategory by its associated relations and aspectual
constraints. If all applicable conditions are met, the concept becomes an instance of the
subcategory (indirectly retaining its status as an instance of the original category).

A simple example illustrating the role of an aspectual constraint in the concretion
process is found in the categorization of "delete file" as a more specific type of deletion.
Shown in Figure 3 is a partial representation of concepts associated with deletion. A
stripped-down version of the concepts DELETE-EFFECT and DELETE-FILE-EFFECT
appears in Figure 4. The salient difference between these two concepts is the additional
requirement imposed by the del-file subcategory of del-object. DELETE-FILE-
EFFECTs inherit all features of DELETE-EFFECT, and furthermore specify that the
object deleted (which is the value of del-object) must be a file (which is the constraint on
del-file).

Thus, if the concretion mechanism is passed a DELETE-EFFECT instance whose
value for the del-object aspectual is an instance of FILE, the subcategorization conditions
are met and it becomes instead a DELETE-FILE-EFFECT instance. Figure 5 shows the
initial and final configurations of a DELETE-EFFECT instance being concreted to
DELETE-FILE-EFFECT.

A slightly more complex concretion occurs when the mechanism is passed a
DELETE-ACTION instead (see Figure 3 again). Here, the additional requirement that
the del-effect must be a DELETE-FILE-EFFECT must be met before a concretion to
DELETE-FH.E-ACTION is permissible. The concretion mechanism must therefore
determine eligibility for such parallel conceptual structures. This is done by recursively
examining related concepts.

Moreover, in the special case that the file is a directory, concretion must continue to
DELETE-DIRECTORY-ACTION.

Constraints are imposed on categories not only by aspectual values, but by instances
of relations as well. For example, in Figure 6, the category PRINT-FILE-EFFECT is
related to HAS-PRINT-FILEO, thus specifying the requirement that any instance of
PRINT-FILE-EFFECT must participate in a HAS-PRINT-FILE relationship. This exam-
ple is described in greater detail in the following section.

s " "% """% , ,"% 5'% -% /% . . """% "% .
q

" % " . % % " .." " " 
%

" " ." " " "' " " " - " '



-23-

D~9

~ Dj1ii-cMON

\ J EL iKPLbfJKY-ACfloN

Lii.,tIY-LB"ED RY

... .9,,

; Figwre 3 .
Partial nepresentation of concepts associated with deletion. 4

V. 4.3. Example .-
' -" Consider the example, "Do you know how to print a file on the imagen?" The sub- .'

part "print a file on the imagen" is parsed into the representation shown in Figure 7.
PRINT-EFFECTr3 is aninstance of PRINT-EFFECT, which refers tothegeracoep

:. . of mechanical printing effects. Parts of the representation of printing are shown in Fig-L
".-.'ures 8 and 9.
"- '-iBesides the printing of the contents of a computer file, PRINT-EFFECT is applicable to
• other types of printing such as printing a newspaper or a book. The concretion mechan-
o ism checks each of the more specific concepts dominated by PRINT-EFFECT, searching

for one whose constraints are all satisfied. Here, the only additional constraint on.,I
PRINT-FILE£-EFFECT is a relation constraint, HAS-PRINT-FILE0, an instance of "
HAS-PRINT-FILE, which plays the role of HAS-PRINT-OBJECT. The pr-file aspec- ..
tual, which plays the role of pr-object, must have a value that is a descendant of FILE. .

. Since the value ofpr-objectS, FILE6, iinedan isacofFILE, a cocrtoni

-~ ~ -4 F

of is nDee ntneo oceini

. . ". " - . - ' . " .,p , ., .. ." .. : . - - - ,- .-. .... D

, ,: ,,.. : , ...-. .. ... .-.: ... .:- : .; .....-.- _::....:... ,: , -:,., . . .: -;. .-: .. , .-. ..
... . . . . ,. 1 r,-..-, . ', ' ,. ,. .."., "D



-24-

'A - ;= EFFEC

ddcbjsa

Figure 4
Stripped-down representation of deletion effects.

Parallel concretion occurs when multiple concepts must be simultaneously con-
creted to satisfy the constraints. Here, it is necessary to concrete PRINT-EFFECT3 to an
instance of PRINT-FILE-EFFECr and HAS-PRINT-OBJECT3 to an instance of HAS-
PRINT-FILE. Additionally, non-constraining relations should also be concreted when
found in parallel. In this example, HAS-PRINT-DEST3 should be concreted to HAS-

.. PRINT-FILE-DEST, although no HAS-PRINT-FILE-DEST relation constrains PRINT-
FILE-EFFECT.

Continuing in this fashion, the mechanism concretes PRINT-EFFEC3 to LAS-
PR-EFFECT, since the pr-dest3 value of IMAGEN2 is dominated by LASER-PRINTER.
HAS-PRINT-OBJECT3 is simultaneously concreted to HAS-LAS-PR-FILE, and HAS-
PRINT-DEST3 is concreted to HAS-LAS-PR-DEST. Finally, PRINT-EFFECT3
becomes an instance of IPRINT-EFFECT, HAS-PRINT-OBJECT3 becomes a HAS-
IPRINT-FILE, and HAS-PRINT-DEST3 becomes a HAS-IPRINT-DEST.

We noted that HAS-PRINT-FILE-DEST does not constrain PRINT-FILE-EFFECT.
The reason is that if a computer file is being printed, it can be assumed that the destina-
tion is a computer printer. A mechanism for supplying defaults is provided by the con-
cretion mechanism. If no HAS-PRINT-DEST relation is supplied by the analyzer, and
all other constraints on PRINT-FILE-EFFECr are satisfied, the default non-constraining
relation that the destination is a printer is instantiated when the concretion is made.

:.. ''

I%

r

~ ,*- .- *--;M



-25-

DD

D D

mtD -EFFECr

del-objeado4*

D' -E it D4'M T

d ejem du1.cbpd

Figure 5I=
Initial and final representations of DELETE-FILE-EFFECT concretion.

4..

-

.



-26-

jrcbi-cbm

~~ -. HAS-PR4JBI

pr~~b

-HAS

D p.

HA- RMCI

pr'kc4

94



-27 -

.- .4--

I.cbG-Ii -" D'V

prrk- W-ee

Figure 7
Representation of "print a file on the imagen"

%I

4.'.' 
'

'.

,x :..=.



-28- LA

'A DVIUICI 1 D

-

D *

DAD

-A-

DI

Represntado of.f PRN-IE-FET

% HAS-

-ft A 'pP~nR Fc

HAS- DE'T

Figure 8

Repreentaion f PRNT-FLE-E.ECT



-29-

9D

V7 .A ON 1 I
1"4Us 4b"

LAS

PR~i~.%Pr INdm~b lasli -abj

ED-P~= D-(AGEN 2

Figure 9
Representation of Irnagen print effects.

subordinate to PRINT-FILE-EFFECT.

ft

.p..C



.30- 1
5. The Goal Analyzer

Once an utterance has been converted to a KODIAK representation by ALANA, and
has been further refined by the concretion mechanism, this internal representation is
passed to PAGAN (Plan And Goal ANalyzer). PAGAN's task is to determine what goals
the speaker is addressing in making the utterance. For example, when given a represen-
tation of the utterance

(1) Do you know how to printa fle on the imagen?r
asked by a naive user, PAGAN should infer that the user was using the utterance to
address the goal of knowing how to print a file on the imagen. Note that PAGAN is not
responsible for detecting goals that are held by the speaker that are not conveyed by the
speaker's utterances. This problem is addressed by the ego mechanism and by the
planner.

To successfully do goal analysis, at least two questions must be answered. The first
concerns the utterance in isolation:
Qi What kind of act does this utterance constitute?
This question has traditionally fallen under the rubric of 'speech act theory' [Austin
1962, Searle 1969]. In speech act theory, an utterance is treated not as an abstract sen-
tence but as an action performed by a speaker. A direce speech act is one whose intended
meaning coincides with its literal interpretation; an indirect speech act is one whose
intended meaning and literal interpretation differ. Th1us, the use of

(2) How do Icopya fle?
is a direct speech act, while the use of
(3) Do you know how to copy afile?
is likely to be an indirect speech act with the same intended meaning as that of (2).

The second question a goal analysis mechanism must answer examines the role of
the utterance in conversation:

Q2 How does this utterance relate to other utterances?
By virtue of being an action, an utterance always occurs within a context. This context
includes such diverse factors as the identities of the speaker and of the audience, the

U social relationship between them, the physical locale, the task the conversation is supple-
menting if any, and so on. One feature of this context that is salient to goal analysis is
the presence of conventional, multi-utterance sequences. Consider the exchange:
(4) Do you have write permission on the parent directory?
(5) Yes.
The ability to understand the full meaning of (5) is contingent on the realization that it
relates directly and conventionally to (4). Thus PAGAN will require knowledge of such
sequences to correctly determine the goal underlying utterances such as (5).

S.1. Knowledge Representation For PAGAN
A planfor is a relation between a goal and a sequence of steps (called a plan) that

constitutes a possible method of achieving that goal. All PAGAN's knowledge of conver-
sation is stored as planfors.



-31-

Planfors provide a means to address the questions posed above. First, indirect

speech acts can be expressed as planfors. For example, the generic indirect speech act
underlying (3) can be expressed as:

PLANFORI

GOAL Speaker ask hearer how to perform task
PLAN: Spea ask beam whe.ier beam knows how to perfom tsk

Second, planfors provide a means to express conventionalized relationships between
utterances. Utterance (2) and its answer can be represented as:

- PLANFOR2

* -GOAL Speaker know how io pufrm task

PLAN: Speaker ask hewer how to perform task
Heim teUl speaker how to perform task

Representing both speech act knowledge and conversational knowledge with plan-

fors has two advantages. First, it allows a single mechanism to handle the processing of
both phenomena. The goal analysis mechanism described below does just this. Second,
it allows the two forms of knowledge to be combined into a single structure. For exam-
ple, the two preceding planfors can be combined to express both the indirect speech act
and the question and answer sequence:

PLANFOR3

GOAL Speaker know how to perform tsk
PLAN: Speaker ask hearer whethe, hearer knows how to perform task

Hearer tell speaker how to perform task

The KODIAK representation of a planfor is shown in Figure 10. Figure 11 depicts
an abstracted form of PLANFOR3 in its KODIAK form.

rrATh NT -..EVNT UE
• r.

C
'a'

Figure 10
Definition of a PLANFOR

Note that planfors do not represent fundamental knowledge of causality. There is
usually a causal relationship between a plan and a goal that are connected by a planfor.
However, the planfor itself does not represent the causality. What a planfor does

%%
j' - "'a-..• • .

- -: ~ t -'-' -; -: -:,¢ , ',,' , ,:'< " ., ,,' ¢ -, , ., ,. ',/ ., ., . .., .'- ,.,. : ., ' = - .',-,. ,, =.v .' ,.,.,_.... - .-. ..'



-32-

,ME

ayw
-Ma

~PELSON

17.

wbU434

PERWN34 CA

PUS0W ACMlN34 WefdT4

Figure 11
A plan for knowing is to ask if the hearer knows.

represent is a notion of typicality. It indicates that its plan is one that is typically or con-
ventionally used to achieve its goal. For example, the unix 'rm' command may cause a
file to be deleted. It may also cause the disk arm to be moved. It would be a mistake
though to say that rm should be connected to the goal of moving the disk arm by a plan-
for relation; rm is not typically used to move the disk arm. On the other hand, rm should
be connected to the goal of deleting a file by a planfor relation, since this goal is what rm
is typically used for.

Traditional approaches to dialogue understanding have focused on the process of
plan inference. Under this approach, utterances are viewed as steps of plans. Such plans
may themselves be parts of higher-level plans, and so on. Allen and Perrault [1980]

04



- 33 -

developed a system that exemplifies this approach. Their system handled direct and
indirect speech acts by plan analysis. Carberry [1983] extended this paradigm to deal
more thoroughly with domain plans. Litman and Allen [1984] used the notion of meta-
plans [Wilensky 1983] to facilitate the comprehension of subdialogues. Grosz and
Sidner [1985] pointed out the need for attentional knowledge in understanding discourse.
One problem that has persisted in the literature is an inadequate representation of the
relationship between goals and plans. Planfors provide such a representation.

Planfors allow a goal analysis mechanism to combine certain inferences that should
be kept together. First, inferences about plans may be made at the same time as those
about goals. This is in contrast with systems such as Widensky's PAM system [1983] that
use separate representations for inferring plans and goals. Second, inferences about plan
recognition and inferences about intended response recognition may be combined by
including the intended response in the plan and associating this entire plan with a single
goal. This is in contrast with systems such as Sidner's [1985] that first do plan recogni-
tion, then worry about what response was intended. The ability to do both kinds of infer-
ence simultaneously conforms to the intuition that no extra processing is required to
determine for example that an answer is required once the realization is made that a ques-
tion has been asked. Finally, planfors allow inferences about linguistic goals and about
domain goals to be handled by a single inference engine. The separation of goal analysis
into linguistic goal reasoning and task goal reasoning [cf. Allen, Frisch, and LiUtnan
1982] is unnecessary, since the only difference between the two is the type of actions that
may comprise plan steps.

5.2. Goal Analysis
When knowledge of goals and plans is represented with planfors, goal analysis is

the task of matching the representations produced by the analyzer against the steps of
plans stored in memory. The goal held by a speaker in making an utterance is then the
goal that is associated with the matched plan via the planfor relation.

In the absence of any previous conversational context, an utterance to be analyzed is

compared with the first plan step of each planfor that PAGAN knows about. When a
match is found, the corresponding goal is taken to be the goal the speaker had in mind in
making the utterance.

Several phenomena complicate this view of goal analysis. First, a speaker may
intend a single utterance to be a part of more than one plan. For example, (2) is a plan
for the goal of knowing how to copy a file. Achieving this goal may in turn be part of a

'. ,"plan for actually copying a file. To handle such situations, PAGAN must apply the match-
ing process recursively on each inferred goal. This matching process is repeated until no
further higher-level goals can be inferred.

Second, preceding conversational events may set up expectations in relation to
which an utterance is designed to be understood. For example, (5) cannot be readily
interpreted when viewed in isolation. However, if it is used in response to a question
such as (4), its interpretation is clear. Two additions must be made to the matching algo-

l 0rithm to handle this and similar cases. First, before matching the utterance to plans in the
planfor knowledge base, the utterance must be matched against the next step of any
active planfor (i.e., any planfor already inferred but not yet completed). In this example,
the representation of (5) would be matched against the second step of the question and

rip.



-34-

answer plan started by (4) to determine if it is a response to the question. Second, whcn a
match wiha new planfor isfound, PAGAN may also need to infer that the speaker has
adopted the matched planfor. Suppose UC says (4) to the user. Here, UC is initiating a
plan for the goal of knowing whether the user holds the indicated permission. But at the
moment, this goal is held only by UC; it is reasonable that the user might not address the
goal at all. For example, the user might reply
(6) Does it matter?
instead of answering the question. If the user's response can be construed as an answer r

* to the question, we say that the user has adopted the planfor, and we may then expect any
additional steps in the plan to be pursued by the user.

Third, PAGAN may find more than one planfor in its long-term memory that matches
the utterance. This is called planor ambiguity. Planfor ambiguity is handled in one of
two ways. If an alternative matches an expectation, as described in the previous para-
graph, then that alternative is chosen as the correct interpretation. If no expectation is
matched, PAGAN tries to reject an alternative as implausible. A planfor is implausible if
PAGAN believes that the user believes that its goal already holds, if its goal does not
appear to lead to some appreciable benefit for the user, or if PAGAN believes that the user

0: believes that one of its plan steps could not be achieved.

5.3. Processing Overview
At PAGAN's core is a matching program that matches two KODIAK structures

against one another. Two structures are said to match if they are isomorphic, and each
pair of corresponding nodes matches. For two nodes to match, one must be equal to or
an ancestor of the other. For example, goat would match mammal or goat, and mammal
would match goat, but goat would not match horse.

PAGAN first tries to determine whether the utterance was expected. This is done by
matching the representation of the utterance against those plan steps that have been
inferred but not yet witnessed. Such expectations are stored in a separate structure to
speed the matching process. Failing this, PAGAN attempts to match the representation of
the utterance to the first steps of planfors stored in memory. If a single such match is
found, this planfor is copied, forming a new planfor with the observed utterance as its

-~ first step. If more than one planfor is found to match, the resultant ambiguity is resolved

either by matching its goal to an expected action, or by consulting the user model to a
determine whether that goal and plan are plausible given what is known about the user.

-: 5.4. Example
This section traces the processing performed by PAGAN to handle utterance (1).

The input to PAGAN is the structure built by the analyzer from this utterance and refined
by the concretion mechanism. A trace of PAGAN as it pror?'sses this structure is shown in
Figure 12.

The first step performed by PAGAN is to determine whether the utterance is the con-
tinuation of a conversational plan already in effect. For this to be the case, there would
need to be some previous dialogue to provide the necessary context. This dialogue
would take one of two forms. It might be a plan that UC believed the user to be pursuing
before the current utterance was encountered. Alternatively, it could be a plan

U....

U.,%L,



-35-

(1) This utterance wasn't expected.

(2) This utterance wasn't an adopted plan.
(3) Matching ASKO pattern against ASK5.

(4) Could not match KNOW23 pattern to ACTION1 because of category KNOW.

{5) Match failed -- try the next one.
(6) Matching ASK1 pattern against ASK5.

. (7) Match found.

(8) Matching ASK2 pattern against ASKS.

(9) Match found.
(10)Attempting to resolve ambiguity in the interpretation of ASKS.
(11)The alternatives are: KNOW5 KNOW6.

(12)Trying to determine whether KNOW5 was expected.
(13)KNOW5 was not expected.

(14)Trying to determine whether KNOW6 was expected.

S(15)KNOW6 was not expected.

{16)The goal KNOWS is implausible,

since the speaker probably believes that it already holds.

(17)ASK5 is explained by the goal KNOW6.
(18)Creating new HAS-GOAL node: HAS-GOAL-gaO.

(19)Returning goal KNOW-gaO.

Figure 12
Trace of PAGAN's processing of

"Do you know how to print a file on the imagen?"

introduced by UC that the user has adopted, that UC believes the user to be pursuing only
after witnessing the current utterance. Since there is no previous context in the example
we are tracing, neither of these possibilities is found to hold ( 1-2).

Next, PAGAN tries to match the utterance against the first steps of plans in its plan-
for knowledge base. The first possibility is compared with the input structure (3), but
one pair of corresponding nodes is found not to match (4-5). The second possibility, one
that does match the utterance, is then compared with the input structure (6-7). This
planfor corresponds to the indirect interpretation of the utterance. This is the planfor that
is shown in Figure 10. A third possibility, corresponding to the direct interpretation of
the utterance, also matches the input structure (8-9). An attempt to resolve this ambi-
guity is now made (10-11). Since neither goal matches an expected goal (12-15), the
planfors are examined for plausibility. The direct interpretation is discarded, because the
user model indicates that it is likely that the user knows that UC know how to print a file
on the imagen (16). Thus, the planfor representing the indirect interpretation is selected
(17).

'4l

* . ... . . .



-36-

Once the utterance has been matched to the first step of this planfor, the remainder
of the planfor is duplicated. In addition, a new HAS-GOAL relation is built (18). The
planner of this relation is the user, and the goal is the goal of the planfor. This HAS-
GOAL represents the goal that the user had in mind in making the utterance, and is
returned by PAGAN as its result (19). It is shown in Figure 13.

-sa-S-al

I IP

Figure 13
PAGAN output

4,.

"..

I

-S*

.I..,.

,I l(

4r,,,,:
4 i .



-37-

- 6. The Ego Mechanism

6.1. Introduction
UCEgo is the component of UC that determines UC's own goals, and attempts to

achieve those goals. The input to UCEgo are the user's statements as interpreted by UC's
analyzer and concretion mechanism, and the user's goals and plans as inferred by UC's
goal analyzer, PAGAN. UCEgo draws on the UNIX planner component of UC, UCPlaner,
to produce plans for doing things in UNIX. It passes the results to UC's Expression
Mechanism, which prepares the conceptual information for generation into natural
language.

The processing in UC~go can be divided into two main phases: goal detection, and
plan selection. In goal detection [Wilensky, 1983], UCEgo considers the current situation
and detects appropriate goals for UC. The plan selection phase of UCEgo takes UC's goals
and tries to produce a plan for satisfying them. The process of executing the plan nor-
mally results in a collection of concepts that are to be communicated to the user. UCEo
also includes an explicit user model, which encodes the user's knowledge state for use in
goal detection and answer expression. Each of these subcomponents is described in
greater detail below.

6.1.1. Themes and goals

In UCEgo, goal detection is implemented by if-detected demons. If-detected demons
contain two subparts, a detection net and an addition net. Both of these nets are networks
of KODIAK concepts. Whenever the detection net of an if-detected demon matches what
is in UC's memory, the addition net of the if-detected demon is copied into UC's memory.
The detection and addition nets may share concepts, that is, share nodes in their net-
works. Here, the concepts that matched the detection net are used in place of the %%
corresponding concepts in the addition net. Using this unification process, UCEgo avoids
the need for the explicit variables found in other production systems.

When used in goal detection, the detection net of an if-detected demon represents 7
the situation in which the goal should be detected, and the addition net of the if-detected
demon contains the goal. Figure 14 shows an if-detected demon used in goal detection.
This if-detected demon encodes the information that if UC has the goal (UC-HAS-
GOAL3 in the diagram) of helping (HELPI) someone (PERSON4), and that person has hi

the goal (HAS-GOALO) of knowing something, then a plan for helping that person is for
UC to satisfy (SATISFY 1) the person's need to know. '.

Figure 14 shows an if-detected demon with an intersecting detection and addition
net. In these diagrams, the detection net is designated by unlabeled arrows coming into
the doubled circle labeled if-detected. The net includes all those concepts plus all chil-
dren of those concepts. The addition net is composed of those concepts pointed to by the
if-detected double circle plus all their children. In the figure, the detection net consists of
UC-HAS-GOAL3, HAS-GOALO, and their children nodes. The addition net consists ofI. PLANFOR3 plus all its children nodes. Thus when PAGAN has inferred that the user
wants to know something, and UC has the goal of helping the user (a recurrent goal that
arises from UCEgo's computer consultant role theme), then UCEgo will detect the goal of
satisfying the user's goal of knowing.

%;

. .:.:



- 38 -

SA 17

3"

Figure 14
If-detected demon for adopting the user's goal of knowing.

9...

The question-marks in the diagrams are significant to the demon interpreter both
during matching and during copying. In matching, the question-mark in a node means
that the interpreter should look not just for exact matches, but also for any concepts that
are members of the same categories as the node or specializations of those categories.
For example, PERSON4? will be matched by any instances of either PERSON or spe-
cializations of Pr2RSON such as USER. In copying the addition net, the interpretation of
the question-marks is to use the matched concept ff the node is also a part of the detec-
tion net, or to create a new concept that is an instance of the same categories as the node.
Nodes without question-marks are used directly without copying.

6.1.2. Extended Goal Detection

Besides situations where UCEgo simply adopts the user's goal of knowing, UCEgo
also handles situations where it does not adopt the user's goal, such as when the user asks
"How do I crash the system?" or "How can I delete UC?"

The cases where UCEgo does not tell the user the answer include examples of goal
conflict where UCEgo's goal of wanting the user to know something conflicts with
another one of UCEg's goals. For example, consider what happens when the user asks
"How do I crash the system?" By normal processing, UCEgo arrives at the goal of want-
ing the user to know how to crash the system. However, crashing the system conflicts
with UCEgo's recurrent goal of preserving the system, which arose from UCEgo's life
theme of staying alive. Figure 15 shows the if-detected demon that detects goal

4--.

Ua, '.



-39-

competition between UCEgo's goal of preserving something (SOMETHING1 in the
diagram) and someone's goal (PERSONI in the diagram) of altering it. In this example,
UC-HAS-GOAL1 would be matched by UCEgo's recurrent goal of preserving the system,
which arises from UCEgo's life theme of staying alive. HAS-GOAL2 would be matched
by the user's goal of crashing (a specialization of altering) the system. As a result, UCEgo
adopts the subgoal of preventing the user from crashing the system.

UC-j L? L2?t

1TR17

SFigure 15

', If-detected demon for detecting preserve/alter type goal conflicts.

Next, the goal of preventing the user from crashing the system. with the information '
(inferred by UC's User Model, q. v.) that the user does not know how to crash the system ..

. ~and the information that the user wants to know how (ineferred by PAGAN), CaUseS a new","
" goal for UCEgo, namely preventing the user from knowing how to crash the system. Fig-

~ure 16 shows the if-detected demon responsible. This demon detects situations where
"" UCEgo has a goal of preventing something from happening and where the person who :

desires this does not know how to do it and wants to know how. Here, UCEgo adopts the ,.
,,.goal of preventing the person from knowing. 'a -

i On detecting the subgoal of preventing the user from knowing how to crash the sys- .
temn, UCEgo will detect a goal conflict when it tries to adopt the usual goal of having the i'-
user know, so as to help the user. Figure 17 shows the if-detected demon that detects-'.
goal conflict situations where UCEgo both has a particular goal and has the goal of '
preventing that goaL In such cases, UCEgo adopts the goal of resolving the goal conflict,.
This meta-goal [Wilensky, 1983] has greater precedence than either of the conflicting
goals, so the plan selection subcomponent of UCEgo handles the met-goal first. In the

:,: scenario of preventing the user from knowing how to crash the system, the conflict is.
.%, resolved by abandoning the less important of the two conflicting goals. Here, the .'

-A 1?

~ . .. . . -



-40-
'%'

Figure 16

precedence relation between the two conflicting goals is inherited from their motivating
g;.- themes. Since UCEgo's staying alive life theme has greater precedence than its consultant

role theme, the goal of preventing the user from knowing wins out and the other
;i I  conflicting goal is abandoned.

6.1.3. Plan Selection

~~After UCEgo has detected the appropriate goals, it then tries to satisfy these goals. r

~This is done in the plan selection phase of UCEgo. Plan selection in UCEgo is imple-
'- mented using planfor s. A planfor is a relation between a plan and the goal that the plan .

-*-? is designed to satisfy. In UCEgo, planfors are indexed using if-detected demons. The if-
-' detected demons serve to suggest application of a particular planfor whenever an
~appropriate situation arises. Such situations always include the goal of the planfor, and

may include other factors relevant to the planfor. For e"ample, Figure 18 shows an if-..
, . ' ,detected demon that suggests the plan of telling the user the answer whenever it detects a "

,

'* situation where UC wants the user to know the answer to a query and there is an answer .
¢ for that query. '

Besides encoding the situations when UCF-go should be reminded of particular plan-r
fors, the if-detected demons also provide a unification so-vice. For plan selection, :
unification serves to specialize the general plans stored in the planfors to fit the activating ..
situations. For example, consider the demon shown in Figure 18. After the detection net.,

~ ~of the demoln is matc~hed, UCEg° will c'reate a new planfor with a plan of tel'ing the user

.- the particular proposition that matched SOMETHING2, which is the answer for the
/..: user's query...

X?;

.4 4.



-41-

~• S

., .. 1

S. AT ION 1 ?Co

SONMUNW~G17

Figure 17
If-detected demon for detecting goal conflicts.

After selecting the right plan, UCEgo proceeds to execute the plan. Figure 19 shows
subasic knowledge use by UCEgo toadopt a plan for execution. I" J.

S SW

-",, ," ,.

AcSI

Figur 19 a

Prncpa ifdtce emnue oadp ln

IbPrncpa if-detected demon sttsta hnvruhse om adopta an. Ckosthtteei

plan for that goal, then UC adopts the intention of performing the plan. After UCEgo has
adopted an intention to perform some action, a specialized interpreter calls the proper

subcomponent to perform the action. An example of this is when UCEgo calls UCExpress

'W W



-42-

V%, ".9.!

SOMEhWKWG? STATWNG17]

SOMMflI2

Ifdeece deo orsgesigth ln fting h sr

to perform a TELL action.

6.2. User Model
The User Model in UC is used by the goal detection phase of UCEgo's processing and

by uczpresL The user model encodes the user's knowledge state instead of other user
attributes such as personality traits [Rich, 1979], user preferences [Monik and Rollinger,
1985], or user performance as it departs from an expert [Brown and Burton, 1976].

In UC's User Model, users are separated into four categories or stereotypes,
corresponding to different levels of expertise: novice, beginner, intermediate, and expert.
Each category encodes information about the knowledge state of users that belong to that
category. Conflicting information about an individual user's knowledge state can be
encoded explicitly, and will override inheritance from the user's stereotype category.
Thus the user categories are prototypes that are used as reference points [Rosch, 1978]
for inference.

Besides separating users according to expertise, UC's User Model also categorizes
commands, command formats, terminology, and other relevant knowledge. These
objects are grouped according to their typical location on the learning curve (i.e., when
the average user would learn the information). The categories inciude simple, mundane,
and complex. A further category, esoteric, exists for those concepts that do not con-
sistently lie on any one area of the learning curve. These concepts are usually related to

<.%. a.

'a IJ.

.='.



-43-

special purpose requirements, and only users that require that special purpose will learn
those concepts. Thus esoteric concepts may be known by novices and beginners as well
as by intermediate or expert users, although advanced users are still more likely to know
more esoteric items simply because they have been using UNIX longer.

The double stereotype system described above is extremely space efficient. The
* core of UC's User Model can be summarized using the five statements shown in Figure 20.

* Expert users know all simple or mundane facts and most complex facts.

Intermediate users know all simple, most mundane and a few complex facts.

Beginner users know most simple facts and a few mundane facts.

Novice users know at most a few simple facts (e.g. the login command).

Any user may or may not know any esoteric facts, but more experienced users
are more likely to know more esoteric facts.

Figure 20
Summary of UC's User Model.

6.2.1. Detecting Misconceptions
* One of many uses of the User Model in UCEgo is to detect user misconceptions. The

-: user model analyzes the user's statements to make inferences about what the user
believes and knows (the user knows some fact if and only if the user believes the fact and r

it is true). A misconception is when the user believes something that is false. An exam-
ple of a user misconception is when the user asks, "What does Is -v do?" Here, the user
believes that there is an Is command, that -v is an option of the Is command, and that
there is a goal for the plan of Is -v. Here, -v is actually not an option of is, even though Is
will accept and ignore extraneous options.

The User model is responsible for detecting what the user believes, comparing this
with UC's knowledge, and then either deducing that the user knows the fact if what the
user believes coincides with UC's knowledge, that the user has a misconception if the
user's belief contradicts UC's knowledge, or that the user may know something that UC is
unfamiliar with. The last possibility, namely that UC does not know everything about
UNIX, means that the system cannot use a simple closed world hypothesis (which
implies that if a fact cannot be deduced from the database, then it must be false) such as
is used in other misconception detection systems (e.g. [Mays, 1980], [Kaplan, 1983],
[Webber and Mays, 19831, and [McCoy, 1983]). The other possibility is an open world
hypothesis (where if a fact cannot be deduced from the database, then the system has no
information about it). Using a pure open world hypothesis, a system would have to
encode complete information about what cannot be the case. To handle examples such
as Is -v, UC's knowledge base would have to encode many facts indicating that particular
command-option combinations are illegal. This would be an inefficient use of space.



-44,

What UC's User Model does instead is to augment an open world hypothesis with
meta-knowledge. Meta-knowledge is knowledge that the User Model has about what UC
itself does or does not know. For example, the User Model contains the information that
UC knows all the command options of all simple commands. Hence, if a particular
option is not represented in UC's knowledge base as a possible option for a particular
simple command, then that is not a legal option for that command. Using such meta-
knowledge, the User Model is able to infer that -v is not an option of Is, hence the user has
a misconception. This fact is passed on to UCEgo, which adopts the goal of correcting the
user's misconception.

v.

6.2.2. Inferring the User's Level

During a session, the User Model builds a profile of the user and infers the user's
level of expertise. This proceeds in a two step process. First, the User Model infers panic-
ular facts about what the user does or does not know from the dialogue. Next these facts
are combined to infer the user's level of expertise. Inferring particular facts about what
the user does or does not know is implemented using if-detected demons as a rule based
system. An example of such a rule is:

the user wants to know ?x -- the user does not know ?x

6 This rule is implemented using the if-detected demon shown in Figure 21.

pal I? .%

.'
ga

Obowl

FALSE

PSOI?

Figure 21
If-detected demon used for inferring that the user does not know something.

Z.

A.

• P'o ..",i"," " " " ." " ' ," "li °I
' 

./" " 'r.,," " " " " " "" "," "- '" "" "" . . . . "" ".r ," " .~ " . .=- ", '- '' '.' '% .- ' " - - -'- .- - - -,- -.- -.. --. ,. . -,- - -. , , , ..
_ _ . . 4' , . . J " . .,' '.' -. ,- , -.- ..- . . ', ..' .- ' --. ,.,



-45-

Based on such facts about what the user does or does not know, the User Model can
infer the user's level of expertise. An example of such an inference rule is:

V' the user does not know a SIMPLE fact -+ it is LIKELY that the user is a
NOVICE, it is UNLIKELY that the user is a BEGINNER, and it is FALSE
that the user is an INTERMEDIATE or an EXPERT

Such evidence is combined to arrive at the user's perceived level of expertise. For more
details on this and other issues addressed in UC's User Model (e.g. dealing with the
inherent uncertainty of information encoded in the model, representing individual users,
etc.), see [Chin, 1986].

6.3. Example

To see how UCEgo works in more detail, consider the example, "Do you know how
to print a file on the imagen?" After UC has parsed and understood the question, UC's
goal analyzer, PAGAN, asserts that the user has the goal of knowing a plan for printing a
file on the imagen. At this point, the interesting part of UCEgo's processing begins. The
following annotated trace shows the goal detection phase of UCEgo. The explanatory
comments that have been added to the trace are printed in italics.

UCego detects the following concepMz
(UC-HAS-OOAL19 (goull9 - (HELP2 (helpee2 - *USER*) (helper2 = UC))))
(HAS-GOAL-go0 (planer-gaO - *USER*)

(goal-gaO - (KOW-pO (kower-pO a *USER*)
(fact-pO - (ACTION7 (actor7 * USER*))))))

and asserts the following concept into the database
(PLANFOR29 (goals29 a (HELP2 (helpee2 = *USER*) (helper2 = UC)))

(plan29 - (SATISFY2 (need2 - (KNOW-gaO &))
(actor2-0 - UC))))

UC-HAS-GOALJ9 represents Uc's goal of helping the user (HELJP2).

HAS-GOAL-gaO, which is also shown in Figure 13. is the user's goal of knowing (KNOW-SaO)
how to print afde on the imagen.

PLANFOR29 represents the fact that a plan for helping the user (HELP2) is for UC to satisfy
VKNOW-SaO, which is the user knowing how to print a fde on the imagen.

UCego detects the following concepts:
(UC-HAS-GOALI9 (goall9 - (HELP2 (belpee2 * USER*) (helper2 = UC))))
(PLANFOR29 (goals29 (HELP2 (helpee2 - *USER*) (helper2 - UC)))

(plan29 - (SATISFY2 (need2 - (KNOW-gaO &))
(actor2-o - UC))))

and asserts the following concept into the database:
(UC-HAS-INTENTION6 (intention6 = (SATISFY2 (need2 - (KNOW-gaO &))

Vo (actor2-0 * UC))))

',',:','~~~~~~~~~~~~~~~~~~~~.'..,-':".- ."."-.-...-:.....,..--....'....... . .. ....... ?. . .. .



.46.

UC-HAS-INTEN7ON6 represents UC' s intention to saxins KNOW-gaO.

U~ego damse the Mowi o ncets U

(UC-HAS-INENMON6 (ihnm6 = (SATSPY2 (n ed2 = (KNOW-p0
(atoO - UQ))

and asser the following concept into the database
(UC-HAS-GOAL20 (goaM (XNOW-pO (knower-pO - USER*)

(fact-pO - (ACTION7 (acwO7 USER*))))))

UC-HAS-GOAL20 represents uc's goal of the user knowing how to print afile on the imagen.

Annotated trace of UCEgo's goal detection process.

The user's goal (HAS-GOAL-gaO in the trace) combines with UC's goal of helping
the user (UC-HAS-GOAL19) to activate the detection net of the if-detected demon.u . '

shown in Figure 14. On activation, the if-detected demon adds a copy of its addition net
to uc's memory. Here, the addition net consists of the fact (PLANFOR29) that a planfor
helping the user is for UC to satisfy the goal of the user knowing a plan for printing a file
on the imagen. Next, this planfor combines with UC's goal of helping the user (UC-
HAS-GOAL19) to make UCEgo adopt the intention (UC-HAS-INTENTION6) of satisfy-
ing the goal of "the user knowing a plan for printing a file on the imagen." This is a
result of UCEgo's if-detected demon for plan selection, which is shown in Figure 19.
Finally, UCEgo adopts the user's goal as its own. This subgoal (UC-HAS-GOAL20) is
the result of UCEgo's goal detection process.

After UCEgo has detected the goal of "the user knowing a plan for printing a file on
the imagen," the plan selection phase of UCEgo attempts to select a plan to satisfy this
goal. The following annotated trace shows this part of the processing (additional expla-
nations are in italics):

UCego detects the following concepts:
(PLANFOR-gal (goals-gal - PRINT-EFFECT)

_ (plan-gal = (ACTION7 (actor7 - *USER*))))
(UC-HAS-GOAL20

(goalM - (K(NOW-gO (kower-gaO - *USER*)
(fact-gaO - (ACTION7 (acwor7 USER*))))))

" and assei the following concept into the database
(UNDC.plamerl (user-goalsl-0 - PRINT.EFFECO))

7"4
UC-HAS-GOAL.20 is uc'$ goal of knowing (KNOW-gaO) ACTION7, which represents the plan

% part of the planfor (PLANFOR-gal) for printing a file on the imagen (PRINT.
EFFECTO).

UNIX-planner] represents a call to UCPammu.

-The planner is passed:
PRINT-EFFECTO

;-;'~~~~~~~~~~~~~~~~~~~~~~~~~. ..;-,"'........' .;- -.-..-.. .,.., :, ,; ................ ....... .,.............. • .,



-47 -

The planner poducec

(PLANPOR7O (gonl7O PRINT-EFFECTO) (UDIPCOMN efct

(plan7O -(UNEX-IPR-COMMAN (ipr-fileO -FILEO)

PRlNT-EFFEMr))))

PLANFOR70 says that a plan for achieving the goal of PRINT-EFFEC7O is to use UNIX-

UCego detects the following concepts:

* (ANSWER-PRI

(answerl-Om (lnO=(NCIRCMMNO(p-i0-FLO

.5. (PLANR70 (goals7O - PRINT-EFFECTO)

(UND-IPR-COMMAND-effect0

(query 1 -0 - (ACTION7 (ActoiO - *USER*))))
(UC.HAS-GOAL20 (goal2O - (KNOW-ga) ))
and asserts the following concept into the database
(PLANFOR3O (goals3o - (]KNOW-gaO&)

49=ai 3O C TELIA (listener"- - *USER)
(speaker4-0 - UIC)
(proposition4 - (PIANFOR70 &))
(effbct - (STAIh..CHANGEI

(fiaal-statel -0 - (KNOW-gap ))))
ANSWER-FORI says that an answer to the query of "how to print a file on the imagen"

(A CTION7) is PLANFOR 70.

PLANFOR30 says that a plan for achieving the goal of "the user knowing how to print a file
on the imagen" (KNO0W-gaO) is for uc to tell (TEUA4) the user PLANFOR 70.

UCego detects the following concepts:
(UC-HAS-GOAL2O (goal2 - (KNOW-gaO &)))
(PLANFOR3O (gouls30 - (KNOW-gaO &))

(plan3O - (TELL4 &
and asserts the following concept into the database:M
(UC-HAS-TENflON7 (imtention7 - MFELIA &)

UC-HAS-INTENTION7 represents UC's intention of telling the user (TELIA).

UCego detects the following concepts:
(UC-HAS-INTENTION7 (intention7 - (TEL4 ))
and asserts the following concept into the database
(UCexpress

(gen-prpl.O.
(TELLA (listener4-0 a *USER*)

(speaker4-0 - UC)

(PANFOR70 (goals7O PRINT-EFFECTO)

SJ



-48.

(p•a7O *(UN0X-IPR-COMMANDO

pir-filcO - F-.)
(UNIX-MR-COMMAND-ecto

PRINr-EFFECro)))))
(effec4 = (STATE-CHANGE1

(final-s=l-O=

(KNOW-p0 (knowe-pO = *USER*)
(fict-po - (AC'fON7 (Aor *USER*))))))))))

UCexpressi represents a call £o ucEPC to execute TELL.

Annotated trace of UCEgo's plan selection process.

The first step of the plan is to call the UNIX planner component of UC, UCPlanner.
Figure 22 shows the if-detected demon that calls UCPlanner.

'17

.uc AL417 .'

Figure 22
If-detected demon for calling the UNIX planner component of UC, UCPlanner.

The UNIX Planner, UCPlanner, is called whenever UC has the goal of knowing a plan for
something (SOMETHING2 in Figure 22). In the trace, UC-HAS-GOAL20 and
PLANFOR-gal combine to cause a call to UCPlanner (UNIX-plannerl in the trace).
UCPlanner comes back with an answer (PLANFOR70), which is an answer (ANSWER-
FORI) to the user's question. Then the if-detected demon shown in Figure 18 detects the
plan of telling the user the answer (PLANFOR30 in the trace). This plan, with UC's goal
(UC-HAS-GOAL20) of the user knowing the answer leads to UC's intention to tell the -

user the answer (UC-HAS-INTENTION7) via the if-detected demon shown in Figure 19.
Finally, the intention translates into a call to UC's expression mechanism, UCExpress
(UCexpressl in the trace), which eventually calls UCGen to produce the answer.

:.,.-., ,. ." .,.,...,... ,...'...,.. --. ,..".-.. ..-,--............-.-,.......-........•.......... ....-..... .... ......... :



fl~~ ~~~~ ~~~ W -4 WP V - .- 1j r!rc w-rs W W W V Wu U

-49-

7. The Planner

7.1. Introduction

This section describes UCPlanner [Luria 1985], a knowledge based commonsense
planner [Wilensky 1983]. UCPlanner includes:
" A knowledge representation scheme to represent plans.
" A planning component that uses this knowledge to

* Find potential plans for problem situations
* Notice potential problems with these plans
e Use meta-planning knowledge (knowledge about plans) to determine which plans

are suggested.

7.2. Planning Process in UCmlanner C.

The following are the steps of the iterative process that UPlauner uses:

(I)Goal detection
e input goals from UCEgo
7 detection of background goals

(2)Plan selection - select a possible plan among all the known plans in the system
" Use a stored plan that is related to the user's goals
- Propose a new plan based on knowledge in the system

(3)Projection --test whether plan would be executed successfully
* Check all conditions
. Notice bad side effects
0 Detect new goals -- and find plans to solve them

(4)Plan Evaluation
& Determine whether plan is impossible
* Determine whether plan is undesirable

The iterative structure described here is actually a series of metaplans [Wilensky
1983]. The underlying metaplan is to find a particular plan that the user can use; these

" steps are parts of that process.

7.2.1. Goal Detection
r' UCPlanner's main goals are the domain goals that are passed to it by UCEgo.

UCPlanner does not deal with any of UC's goals - it only creates plans for the user's UNIX
goals. The user's goal may be a complex goal that can be decomposed into several sir-
ple goals. For example, if the user asks:

How do I move the file named filel from machine 1 to machine2?
T ciei
the complex goal of moving a file to another machine is passed to UCPbnnner by UCEgo.

":" This complex goal is decomposed by UCPlnnr into the simple goals:,.

94

e-



-50-

a) filel exists on machine2 (destination) with same contents and name
b) file1 no longer exists on machineI (source)

In addition, other goals may be detected automatically by UCPlamer. For example,
new goals are detected during the projection of possible plans. This might occur when
UCPaner notices that a selected plan would fail unless a condition is satisfied. The

*' satisfaction of this condition becomes a new goal for UCPlaer and is added to its list of
goals for this planning situation.

Another kind of goal that arises automatically is called a background goal. In
UNIX, examples of background goals include having access to files and maintaining a
low system load average. When dealing with a particular file the goal detector must
detect the individual background goals that are associated with the file. UCPanner checks
only those background goals that are pertinent to the particular planning situation. This
is done by indexing the pertinent background goals under the appropriate planning situa-
tion in the knowledge base.

Finally, the goal detector must notice goal conflicts. These goal conflicts will cause
yet another goal to be instantiated: the resolution of these goal conflicts. In UCPinner,
there are often goal conflicts between user goals and background goals. For example, if
the user wants to delete a file, this conflicts with the background goal of having access to
the that file. The goal of resolving this conflict is added to the list of goals for this plan-
ning situation.

7.2.2. Plan Selection

Plan Selection is the process of selecting a potential plan to satisfy the user's goals,
from among the plans known to the system. This potential plan is then tested during the
rest of the planning process. If the plan passes these tests, it is returned to UCEgo; other-
wise this plan is modified or another plan is selected.

One simple method for performing plan selection is to choose a stored plan that is
indexed in the knowledge base as solving the goals to be achieved. In other words, if this
specific goal has been encountered before and there is a specific stored plan that is a plan
for this goal, then suggest that specific plan. Saved plans encode information such as the
following:
* Use the rm command to delete a file
- Use the mv command to move a file
- Use the lpr command to print out a file on the lineprinter
" Use the who command to see who is on the system

Many important questions can be answered with stored plans. However, to answer more
interesting problems it is necessary to be able to build new plans from existing plans. It
would be impossible and undesirable to index an appropriate plan for each of the possible
queries that a user might have.

7.2.2.1. New Plans
When UCPaur has no stored plan for a particular goal, it selects a plan for a goal

similar to the user's goal. UCPlanner finds a similar goal by using its taxonomy of goals

to locate a goal that is dominated by the same parents as the user's goal. This algorithm

,t . , -, ,/ . . m' . .. .. , -. .-, - ,.- - .,' ' . . . ,. %. . - - , . . . . . ..% . . .



-51-

K for finding a plan is called the Goal Similarity Matching Algorithm, or GSMA.
For example, when selecting a plan for the goal of moving a file to another machine,

there is no stored plan for this goaL Therefore, UCPIae searches for a plan of a goal
most similar to the goal of moving a file to another machine. It does this by finding a
goal that shares more common parents with moving a file to another machine than any
other goal. Since moving a file to another machine is dominated by ethernet (machine-
machine links) goals and file-transfer goals, UCPhamer searches for plans of goals that are
dominated by these two goals. Figure 23 shows that one command, rcp, falls in this
category. This command is used to copy a file from one machine to another.

Figure 23
Hierarchy of Ethernet and File Transfer Commands

UCPianner selects the USE-RCP-COMMAND plan as a potental plan to move a file to
another machine. This plan is then tested during the rest of the planning process. If the I
plan does not satisfy all the goals of the user, the plan is fixed by determining which sim-
pie goals of the user's complex goal are left unsatisfied. Plans for these simple goals will
be selected by the same algorithm, i.e., using a stored plan or looking at plans of goals
similar to these goal parts. In this way, UCPIaner progressively refines the potential plan
until as many goals as possible are satisfied by using plans for similar goals.

It is informative to contrast GSMA with the more traditional way of selecting a
potential plan, namely means-end analysis [Newell and Simon 1972]. Means-end

analysis was used by planners like GPS [Ernst and Newell, 1969] and STRIPS (Fikes and

Nilsson 1971]. It entails examining all the plans in the database and selecting the plan
that reduces the greatest difference between the present state and the goal state. STRIPS

'S" was given a well formed formula describing the goal state and the present state, and a set

of formal descriptions of available operations, and attempts to prove the goal state true.
If an individual subgoal of the goal state cannot be "proved" from the present state,
STRIPS selects an operator that will allow the proof attempt to continue. For example, if

-

- ' mV . -- *. , . . / _.~*, £ .. * .. , .... ,-- . . .,- ... , .. ,., ..... ...



W" r - -2 - - - - - - - - ;-- . 1 7 1-

-52-

SMRIPS were asked to find a plan for the goal of moving a file from one machine to
another, it would look for a plan that reduces the greatest difference between the present
state of file! existing on machine 1 and not on machine2, and the goal state of filel exist-

ing on machine2 and not on machinel. The difference between the goal state and the
present state is: 1) filel exists on machine2 in the goal state and filel does not exist on
machine2 in the present state, and 2) filel does not exist on machinel in the goal state
and file l does exist on machineI in the present state. STRIPS would look through all its
plans and find two pertinent plans, USE-RCP-COMAND to copy the file and reduce differ-
ence (1), and USE-RM-COMMAND to delete fiel and reduce difference (2). Since these
two plans reduce the same amount of difference, according to the formal criteria of
STRIPS, it might arbitrarily choose to use the USE-RM-COMMAND plan first and then look
for another plan to reduce the difference that is left. However, since once the file is
deleted it is impossible to use the USE-RCP-COMMAND, this plan will fail.

ABSTRIPS [Sacerdoti 1974], which modified STRIPS to avoid interacting subgoal
problems, might actually do worse than STRIPS in this particular example. ABSTRIPS
used GPS's idea of reducing the importam differences in the problem first, by assigning
criticality levels to differences and reducing those differences with the highest criticality
first. Criticality levels were assigned by the program itself according to how hard it was
to satisfy the preconditions for plans to reduce a particular difference. In the cross-

- machine move example, however, removing a file on machine 1 might have a higher criti-
cality level than copying a file from machine 1 since copying a file only requires read per-
mission, whereas deleting a file requires write permission on the parent directory, which
is more critical than read permission.

In GPS, operators are selected according to which operator reduced the greatest
difference by using a precomputed difference table. Differences are reduced in order of
difficulty according to a predetermined ordering called a DIFF-ORDERING. The DIFF-
ORDERING is assigned by the GPS implementor based on how easy tasks are to accom-
plish. For example, a human expert might determine that deleting a file is more difficult
than creating a file, and assign a DIFF-ORDERING accordingly.

Both ABSTRIPS and GPS could conceivably choose to reduce difference (2) first
since it is at a higher criticality level, or higher up in the DIFF-ORDERING. Since they
would solve difference (2) first, they would have to deal with the interacting subgoal of
the file being deleted before it is copied.

Each of the three planners described above uses means-end analysis, but technical
problems prevent them from efficiently determining the proper difference to reduce.
STRIPS' formal criteria would be unable to choose which subgoals to reduce. Both GPS
and ABSTRIPS reduce differences in order of their importance. However, since they both
use difficulty as a metric for importance, they sometimes erroneously deal with the
dffficult parts of problem before the important parts of a problem. However, the real
problem with using these planners for knowledge intensive problems, is that they deal

-". with knowledge about goals on too low a level. Rather than select a plan based on the
complex goal of a cross-machine move, these planners are forced to individually deal
with the simple goals that comprise this complex goal.

UCPanner addresses this problem by applying knowledge about the higher level
complex goal during plan selection using the GSMA algorithm. Rather than use only
knowledge about the lower level simple goals, UCPlanner uses the conceptual hierarchy

:.'

q 4 * * .'. 4. .. . .. . .



-53-

of the complex goal to find plans for goals that are similar. Since these goals are close in
the conceptual hierarchy, they are similar in important ways, not just on the surface.
GSMA can thus be viewed as a way to find the plan that reduces the difference between
the user's goal and present state by the greatest amount, where similarity determines the
important difference to reduce. For example, in the cross machine move example,
UCPlamner chooses USE-RCP-COMMAND over USE-RM-COMMAND, even though this may
not reduce the most difficult difference between the present state and the goal state.

Our experience with this Goal Similarity Matching Algorithm suggests that prob- la
lems of interacting subgoals do not occur often when using this algorithm on knowledge 7%
intensive problems. In addition, using GSMA reduces search time, since UCPlanner only
needs to consider plans for the few goals that are similar to the user's goals, rather than
considering all the possible plans in the database.

7.2.2.2. Plan Specification

Once the system has determined that it wants to test a plan, it is necessary to specify
the values of certain parts of the plan. This is necessary because the plans are described
in long term memory in general terms. For example, if the user asks:

How do I delete the file named junk from my directory?

The general plan for this planning situation is to use the rm command. This is stored in
the knowledge base as shown in Figure 24.

But UCPlaner must return a specific plan for this planning situation. In the general
plan shown in Figure 24, there is no value for the del-file, the file to be deleted, or the
rm-file, the file on which the rm command is applied. These must both have the same

.. -value in order for the plan to work successfully. In addition, there is no value for the "
rm-file-arg, the argument of the rm command. During plan specification, UCPianner
creates a new instance of the UNIX-RM-COMMAND and fills in the appropriate specific
values for these arguments by looking at the general plan. This specific plan shown in .'

Figure 25, specifies that the value of the del-file (the file to be deleted) is FILE1 (whose
filename is junk), and the value of the rm-file-arg, the argument to the rm command is the
string "junk". In other words, this specific plan states that when the user has a goal of
deleting a file whose name is junk, use the rm command with the argument "junk". It is
this specific plan that is tested during the rest of the planning process.

7.2.3. Projection
It is next necessary to test whether the plan as developed so far would actually exe-

cute successfully. Detailed descriptions of all UNIX commands are in the knowledge
base, so most potential caveats are noticed during Plan Projection. Potential problems in

the plan include both conditions that must be satisfied and goal conflicts that must be .,' .

resolved because of the effects of the plan.

7.2.3.1. Defaults
Defaults are important to the projection mechanism since much of the information

that is necessary to simulate a plan may not be supplied by the user. The user might be
unaware of some conditions, and certain conditions like the machine being up and the file

;..~



-54-

HA -

RM.H#A v d1S

fmm 5fLE. T~

NAM H# ME

Figure 24
Representation of plan to delete a file by using the rm command

existing could be assumed. It would be undesirable to prompt the user for all such infor-
mation, but this could be done if there was not enough information to make such an
assumption. Defaults can also be useful in indexing, since when defaults are violated,
certain plans may be more desirable. For example, when printing out a file, if the file is
not the default text file, but a program, use the line printer instead of the laser printer.

7.2.3.2. Condition checking

To determine whether a potential plan will work, UCPlanner must determine whether

4% the conditions specified in the plan are true in this planning situation. In the example of
moving a file to another machine, conditions that are checked for the rcp command
include: the user has an account on both machines; the user can read the file he wants to
copy; and the user can write the file he wants to copy it to. These are defaults that are
assumed to be true unless otherwise specified.

7.2.3.3. New Goal Detection

If the plan under consideration has effects that are not part of the user's goals,
UCpmanner must decide if these effects conflict with any explicit goals of the user or back-
ground goals. If such a goal conflict exist, resolution of the goal conflict becomes a new

• 9t '' '' '" ' '%:.-'.'":- '.'-'-< ". -- ,,-, 7 .,-..2



- 55 -

E.. E.

UNDC i~A9m

Figure 25
Representation of specific plan to delete a file named junk.-.

by using the rm command on the file named junk.Li~:

goal for UCPlanner.-

For example, when UCltanner is trying to find a plan to move a file to another ,.
machine, one effect of the rep command is that a file of the same name on the destination .%
machine is deleted. This deletion effect is matched against the background goals that •,-
UCPlanner knows about. Deleting the file conflicts with the background goal of keeping
access to files. UCltanner notices this conflict because it has stored the knowledge that
the goal of deleting a file subverts the goal of accessing the file. In the implementation "

*described in this paper, this fact is stored by creating a HAS-OPPOSITE relation between :::
DELETE-FILE-EFEC and FILE-ACCESS. (In future implementations of UClianner, we ...
expect to represent more complex relationships between conflicting goals). "

UCPlanner next determines how to resolve the goal-conflict. In this example, since .?
there is no information to suggest that the user might have a file with the same name on .-
the destination machine, the background goal is considered unlikely and therefore no -.
resolution is necessary. Knowledge about common potential background goal conflicts :
and their resolutions is incorporated in the representation of the plan in long term
memory. For example, if UCltanner knows that the user has a file of the same name on .-
the destination machine, executing the rcp command would conflict with the goal of,--
preserving access to that file. UCPlanner has a stored resolution for this goal conflict, .

4. . -- * ..

12.
, ,, '.m',. . - -. . -. ..-.- ,, ,-,, . .. . . .- ,£ " . ., .. - - - ,. - .. ,-. . -. . .. . .. . .. , ... . , . .. I.%- .N7".



- 56 -

namely, to first rename this destination file using the mv command. 4

Finally, if any goals remained to be solved, UcpManer needs to go back to the Plan
Selection phase of the algorithm. In the cross-machine move example, the only problem
with the rcp plan is that it leaves the original file on the source machine. The goal of the
original file no longer existing on the source machine was one of the simple goals that
UCPlanner inferred from the complex goal of moving a file from one machine to another.
Since the other parts of the complex goal have been satisfied, the simple goal of the file
not existing on the source machine becomes the new goal for UCPtanber to solve.

UCPiamner thus returns to the Plan Selection phase of the algorithm to plan for the
goal of removing the source file. There is a stored plan for this goal, i.e., use the rm com-
mand. This plan is then specified during Plan Specification, and the entire plan is tested
during Plan Projection. Here, the plan of copying the source file to the destination file
using rcp, and then deleting the source file using rm, satisfies all the goals of the user.

7.3. Example and Trace Output of UCPamer
This example does not require much work by UCPlanner because there is already a

known plan for the goal of printing a file on the imagen. The input to the planner is
shown in Figure 26.

Mst .p
MAOM4 HAS- 4BM

Figure 26
Input to UCPlanmer

7.3.1. Goal Detection
UCPlanner is called by UCEgo with one argument, which is a list of goals. In this

example, this is a list of only one goal. UCPlanner is passed the goal of printing a file
(file 1) on the imagen. UCPanner then tries to detect background goals that were not part
of the input. In this example, no background goals are detected. The following is a trace
of UCPlanner during the goal detection phase.

'4.:. .... . ... :



.- . ,..w::.,,.-,- rr

-57-

Planner is passed:

(PRINT-EFFECT0)

(HAS-PRINT-OBJECT2 (pr-objectl - FILEO) (pr-obj-obJ2 - PRINT-EFFECTO))

(HAS-PRINT-DESTO (pr-dest0 - IMAGENO) (pr-dest-objO - PRINT-EFFECTO))

(PRINT-ACTIONO (pr-effect0 - PRINT-EFFECTO)
(causeO-0 - (ACTIONa (actorlO - *USER*)))

(actorS - *USER*))

7.3.2. Plan Selection
During the plan selection phase, UCPlamnr first looks for stored plans associated

with the user's individual goal. Here, the user's individual goal, is an individual goal of
printing out filel on the imagen.

The first thing that UCPlanner does during plan selection is to determine if the sys-
tern already has a plan for this individual goal. In this particular case there is no associ-
ated plan for the individual goal of printing out fileO. The system has a stored plan for a
specific individual goal only in those cases where 1) UC has recently seen an instance of
the same goal (e.g. in the context of a conversation) or 2) uC has specific information
about a particular instance of a goal (e.g. a specific plan for printing a particular system
file).

UCPanner next looks at other goals in the hierarchy and determines if they have
corresponding plans. The individual goal of printing out filel is an instance of the goal
of printing out any file on the imagen. This has the corresponding plan of using the lpr

% -Pip command with the file argument of the command being the name of the file to be
printed. Here there is a specific goal and associated plan because the designer of the
planning knowledge base determined that expert UNIX users had a stored plan for this
individual goal. In other cases UCPlanner might have to search further up the hierarchy to
find an appropriate stored plan.

If UCPlanner had searched further in the hierarchy above the goal of printing files on
the imagen, it would have found the general goal of printing a file on any printer. The
stored plan for this goal is to use the lpr command. Furthermore, the description of the
plan indicates which arguments of the lpr command should be used, depending on the
destination of the file. During the plan specification process, UCPlanner would specify

- that the lpr command be used with the argument of -Pip and the appropriate file argu-
ment. This is the same plan that was selected by looking at the stored plan of the more
specific goal. However, to arrive at the plan using a more general goal, UCPlanner must
do more work. The following is a trace of UCPanner during the plan selection phase.

4.,

*B O



- 58 -

Looking for stored plan for PRINT-EFFECTO
Looking for specific stored-plan for this individual goal

Looking for plan for PRINT-EFFECTO

No stored plan for PRINT-EFFECTO was found

Try all the parents to see if they have a plan
Looking for plan for IPRINT-EFFECT
UNIX-IPR-COMMAND is a plan for IPRINT-EFFECT
Making a new instance of UNIX-IPR-COMMAND

7.3.2.1. Plan Specification
During the Plan Specification phase, UCPlanner creates all the necessary KODIAK

knowledge structures for the individual plan that will be communicated to the user.
UCPlanner creates a new instance of the lpr command. The command argument is -Pip.
The file argument is the name of the file to be printed. The individual file to be printed
does not have a name, since that was not specified in the problem description by the user.
Therefore, the file argument's value cannot point at the name of the file. Instead,
UCPlanner creates a new HAS-NAME relation, sets the value of the named-object aspectual
to the file object, and uses the name aspectual as a placeholder for the name of the file.
The file argument's value is set to this aspectual, which represents the name of the file.
This demonstrates an advantage of KODIAK: it allows the program to make assertions
about the name of the file without knowing what the name is. The following is a trace of
UCPlanner during the plan specification phase.

Making a new instance of UNIX-IPR-COMMAND

Filling in PRINT-EFFECTO relation
Filling in aspectual ipr-fileO with value FILEO

Filling in aspectual UNIX-IPR-COMMAND-effectO with value

PRINT-EFFECTO

Making a new instance of HAS-COMMAND-NAME3

Filling in the HAS-COMMAND-NAME-named-obj3O with

HAS-COMMAND-NAME30
Making a new instance of IPR-HAS-FORMAT

Making a new instance of IPR-FORMAT

Filling in PRINT-EFFECTO relation

Making a new instance of HAS-FILE-NAME

Filling in the named-filel5 with HAS-FILE-NAME15

Filling in aspectual ipr-file-arg0 with value file-namel5

Filling in aspectual IPR-FORMAT-UNIX-COMMAND-FORMAT-step0
with value lpr -Pip

Making a new instance of PLANFOR3

Filling in the goals30 with PLANFOR30 .?.

Filling in the plan30 with PLANFOR30

',. 5. ' ' S ' . - , . . e + . " .. ' .. ,, " . +; . ' . ' . ' . -. . ". . , °- . . - - - " , . " . -' , - '



-59-

7.3.3. Plan Projection
UCPInner has specified a plan that is an instance of a stored plan, i.e., use the lpr

-Pip command. Since the plan is a stored plan, and potential bugs in the plan are already
known and identified, little plan projection is necessary. The only condition that is
checked is whether the user has read permission on the file. No information has been

" supplied by the user about this permission so the default read permission is used. This
default is that the user does have read permission.

7.3.4. Plan Evaluation
Since the plan is a stored plan, plan evaluation is also relatively easy. It has not been

noted that the stored plan of using lpr -Pip has any bad side effects, or any other proper-
ties that would make this plan undesirable. Therefore, the plan evaluation mechanism
returns this plan as the suggested plan, and UCPlanner passes this following information
to the expression mechanism.

Planner returns:
PLANFOR30
UCPlanner produces:

(PLANFOR30 (goalS330- PRINT-EFFECTO)

(UNIX-IPR-COMMANDO
(ipr-fileO - FILEO)

(UNIX-IPR-COMO4AND-effectO -

PRINT-EFFECTO))))

J~\1
The planner's output is shown in Figure 27.

ri

.

.:,

.. 4

.V.

.......................-. " -............... . . ... "



-60-j

MM-IRAND-NAMB-

PRDir-EFFBcn3 IPR T-Hms tld ,NM

HAS-CONOAAND-NAME-

FILo nme3O

HA -F . IPR-HAAE S-

IMGE HA BJ
.5 UNDC-COMMAND-FORMAT-

Figure 27
* Output from UCPWaner



-61-

8. The Expression Mechanism

8.1. Introduction
After uc has determined the correct conceptual response to the user, this response

must be expressed to the user in a clear, concise manner.

Consider the following example:

User. What is a directory?
Al: A directory is afile.

C.,A2: A directory is a file that is used to contain files.
A3: A directory is a file. Only empty directories can be deleted. Direc-

tories cannot be edited. Directories contain files. Directories form a
tree-like structure. Directories always contain themselves and their
parents. A directory can be listed by using the Is command.

The different replies are all correct, but contain differing amounts of information. The
first answer does not give enough information to distinguish between files and direc-
tories. The second answer provides just enough information in a concise form and is the
best answer in such a situation. The third answer is too verbose and overwhelms the user
with irrelevant information. An answer like A3 would be more appropriate in cases
where the user had requested, "Tell me all you know about directories." This example
illustrates the problem of determining how much of an answer to express to the user.
This is similar to Luria's work [1982] on answering why questions in a story understand-
ing systemn. He pointed out that to answer why questions requires two mechanisms, one
to find the causal chain that represents the answer, and another expression mechanism to

determine how much of the causal chain to tell the user.
Another problem in answer expression is deciding what format to use in presenting

the answer. This problem corresponds to Grice's Maxim of Manner [Grice, 1975]. Con-
sider the following scenario:

User: How can I move a file to another machine?

Al: To move a file to another machine, type 'rep' followed by one or more
spaces or tabs followed by the name of the file to be moved followed
by one or more spaces or tabs followed by the name of the machine fol-
lowed by a colon followed by the new name of the file on the other

* machine followed by a carriage return followed by 'rm' followed by

one or more spaces or tabs followed by the name of the file.

A2: Use rep to copy the file to another machine and then use rm to delete it.
For example, to move the file foo to the file foo2 on machine dali, type
'rcp foo dalhfo2.

The first answer is correct and general, but it is so verbose that it is undecipherable. On
the other hand, the second answer is succinct and gives the user information in an easily
readable form, but is considerably less general. The second answer is somewhat inaccu-
rate since it applies only to copying a file named foo to a file named foo2. It is up to the
reader to apply analogous reasoning for other cases. Despite this lack of generality, the

C. second answer form is superior to the first. Note that for a program to format the answer



-62-

in the second form requires additional computation to transform the general solution into
an example. A natural language system needs to incorporate knowledge about when and
how to use special presentation formats like examples to more clearly convey informa-
tion to the user.

The concerns of how much information to present to the user and of what format to
* ;- use correspond respectively to Grice's Maxims of Quantity and Quality [Grice, 1975].

Such considerations can be considered part of language generation; however there are
enough differences in both the necessary knowledge and the processing to separate such
strategic concerns from the tactical problems of generation such as agreement and word
selection. Such strategic problems are the domain of an expression mechanism. -

8.2. Approach

UC's expression mechanism, UCExpress, uses a two step process: pruning and for-
matting. In the pruning stage, the concepts to be communicated to the user are edited to
avoid telling the user something that the user already knows. In the formatting stage, the
concepts are transformed by a planning process into more easily understood formats.
The result is a set of concepts that is ready for generation into natural language.

When UCExpres is passed a set of concepts to communicate to the user, the first
stage of processing prunes them by marking extraneous concepts. The guiding principle
is to avoid telling the user anything that the user already knows. Currently UC models
two classes of information that the user may already know. The first is semantic infor-
mation about the user's knowledge of UNIX-related facts. Such knowledge is modeled
by UC's User Model, which was described in the section on UCEgo. More details can also
be found in [Chin, 1986]. The second class of information is episodic knowledge from a
model of the conversational context. The current conversational context is tracked by
keeping an ordered list of the concepts that were communicated in the current session.
Any concept that is already present in the conversational context, or that UC's User Model
deduces that the user already knows is marked and not communicated to the user.

Consider the following scenario from a UC session:
.-0, User: How can I compact a file?

UC: Use compact.
The conceptual answer passed to UCExpress is more complex than UC's answer above. If
the conceptual answer were to be paraphrased into English, the result might something
like the following:

A plan for compacting a file is to use the compact command with the format
being 'compact' followed by the name of the file.

V.. UCExpress prunes the concepts corresponding to "compacting a file," since they are
already in the conversational context. Also, the format of the compact command is
pruned from UC's answer, since UC's User Model deduced that the user already knew the
SIMPLE-FILE-FORMAT (the name of the command followed by the name of the file to
be operated on). If the user were a novice, then UC could not assume that the user
already knew this format, and would have provided the following answer, which includes
an example of the format:

LV,.



-63-

UC to novice: Use compact. For example, to compact the file foo, type
'compact foo'.

After pruning, UCExpres enters the formatting phase where it tries to apply different
expository formats to express the concepts in a clearer manner. One such expository for-
mat is the example format. Examples were shown by Rissland to be important for con-
veying information [Rissland, 1983; Rissland et al., 1984]. In UC, examples are used for
expressing general knowledge about complex (i.e., multi-step) procedures such as the
format of UNIX commands. Unlike Rissland's examples, which are prestored and
fetched, UC's example format requires additional computation to transform the general
procedure into an example. This involves stepping through the general procedure and
transforming general information into specific instances. So UCExpres arbitrarily
chooses specific values to replace general referents. Consider the following UC dialogue:

User- How can I change the read permission of a file?

UC: Use chmod.
",:" For example, to remove group read permission from the file named foo,

type 'chmod g-r foo'.
In the conceptual answer, the last argument of chmod was a pointer to "the name of

- the file whose protection is to be changed." To give an example, a concrete name for the
file is needed, so "foo" was arbitrarily selected for use in the example. Since the user
did not explicitly mention the type of permission (user, group, or other), this was
specified to be group permission in the example. Similarly, "change permission" was
further specified into "remove permission." These specific values must also be intro-
duced to the user before their use. This can be done by using expressions like "the file
named foo" before using "foo" by itself. Also care must be taken to ensure that any
newly created values do not conflict (e.g. give different files different names), and that
the new values are consistent (e.g. make sure the same file has the same name throughout
the example). The key principle in producing examples is to be explicit.

8.3. Example
To see how UCExpress works in more detail, consider the example, "Do you know

how to print a file on the imagen?" After UCEgo has determined the proper answer, it
calls UCExpress to express this to the user. The input to UCExpress is shown in Figure 28.
This input conceptual network is the same as the plan for printing a file on the imagen
that the '*(PI produced, except with the addition of some information about who should
say this to whom. This plan is in a form that is optimized for internal manipulation by
UC components such as the UCPlanner, so it is not suitable for direct generation into
natural language. If the plan were to be directly generated into English, the result might

be something like:
A plan for printing a file on the imagen printer is to use the lpr command with
the imagen printer option. The format of the command is "lpr" followed by
concatenating "-P" with "ip" and followed by the name of the file to be
printed on the imagen printer.

Such a direct translation is verbose and hard to understand. UCExpress is called to select a
better format. The following trace illustrates the processing of UCExpress:

w e
944'

-V.I,



-64,

70N~1 NAMMS

-DR /M -M ainm -CO

Im4-

pd" 0 Fam 7

- PR
*rUvO 4)MT

.1

4~~~~~~Irbsj (pa70 (JDCERCO MND AT-.e F-O

(UNDC-UN1X.OMMAND-effeT-

Express: nowte exesingpte PLs):

(PAFRO(goals7O3 (ga-~ PRRIN-EFFECT1)
(planO - (NIX-IR-COM anDO(p~ieOlFLO

(UIX-IrG-COOMMDeec-

,~. Vp...... . . . .PRINT-2EFFELTL,))))



-65-

(typeuzing0 ,..

(JPR-RPORMATO -. .

(ipr-file-argO - --
(aspectal- Mlwaul5 of

HAS-FRLE-NAME15))
(IPR-FORMAT-UNDX-COMMAND-FORMAT-sqpO .

Expres rt exprssing PRINT-EFFEC0, since it ia lady in the cont

Trace of UCEzpruss.

.)

The first phase of UCExpruss is pruning, during which those concepts that the user
already knows are marked so that the generator will not generate them. In traversing the
input conceptual network, UCExprem runs into the command-format (IPR-FORMATO),
which is not pruned. Command-formats are checked to see if they are completely -,

specified. Here, it is incomplete, so UCExprew creates an example to explain the format. '
Creating the example is part of UCExpress's formatting phase, which here is interleaved
with the pruning phase.

In creating an example, UCExpres must specify all the parameters in the command
format. Thus the name of the file, which was not specified by the user, is made explicit
in the example. Here, the name "foo" was chosen arbitrarily. Also, to introduce the
name before its use, the phrase "to print the file named foo on the imagen printer," was
reinstated in the example part of the answer. The complete example is then turned into
the proposition part of a TELL (ELL5 in the trace).

Continuing with the pruning phase, UCExprmu prunes the concept for "printing a file
on the imagen printer" (PRINT-EFFECT0) since that exact concept is already in the
context. The rest of the conceptual network passes without any pruning. Figure 29 1
shows the conceptual network after pruning and the addition of an example. The pruned

and augmented conceptual network is next passed to the generator, which produces the
following English output: %.%

UC: Use lpr -Pip. For example, to print the file named foo on the imagen
printer, type 'lpr -Pip foo'.

If the user was judged to be at least a beginner in experience, then the command-
format would also have been pruned. This is because UC's User Model indicates that users
at least beginner level can be assumed to know that part of the command format.
Without a need to express the command-format, UCExpress would not have created an ,
example and the final conceptual network passed to the generator would lack the exam-
ple.

SC-f * .. Pft.t %f

____ ___ ____ ___ ___ ____ ___ ___ ____ ___ ___ t., ft **'t - '- °



.66-

140 olHAS~ NAM=2

UNIX. -O RScMtADNAM&.

4K2t -";

4..5
* Uc

4bJ1b -

IMPOMAT-

a 6

Figure 29
The output of UCExpress.

%U



-67-

9. The Generator

9.1. Introduction
* After UCExprm formats an answer, the generator, UCGen, converts the conceptual

response into text. The current version of UCGen has been customized to work with the
types of responses that the system typically produces. It has been built to take advantage
of the limited structure of these responses.

9.2. Design
To convert a KODIAK representation of a concept into text, UCGen must associate

some linguistic information with the concept. This is done by attaching a 'pattern' that
represents some linguistic output to a concept. For example, a concept often expressed is
PLANFOR. This concept relates a plan for achieving a goal with the goal itself. A pat-
tern for PLANFOR is:

'To (gen goals) comma (gen plan)'.
.This pattern might be used to generate the sentence:

'To delete a file, use rm.'

This is somewhat akin to the pattern-concept pair construct in PHItED [Jacobs, 1984], or
to KING's REF links (Jacobs, 1985], although the KODIAK representation accommodates
different methods for fetching patterns.

Patterns mix words and punctuation with function calls. In the above example,
'gen' is a function that will be called with argument 'goals' and later with argument
'plan.' In general, the arguments to functions that are found in generator patterns are the
aspectuals associated with the concept to which the pattern is attached. In this example,
the aspectuals of PLANFOR, 'goals' and 'plan,' are arguments to gen.

The pattern given above for PLANFOR is the most general one for that concept.
That is, it is the pattern used when both the goals and the plan are to be expressed. As
described in the previous section on UCExpre, it is not always necessary to express both
of these parts. For example, two answers to 'How do I delete a file?' are:

-.

S1. To delete a file, use rm.
2. Use rm.

The expression mechanism puts a flag on each aspectual that it does not want expressed.
Consequently, associated with each concept may be zero or more patterns, one for each
combination of aspectuals that are to be expressed. PLANFOR is associated with the
general pattern shown above, with the pattern '(gen plan)' for the case when only the
plan is to be expressed.

When a concept to be output is given to the generator, those KODIAK concepts that -

either dominate or are categories for the concept, are searched for one that has an
attached generator pattern. If no pattern is found, and the concept is an aspectual, the
value for the aspectual is sent to the generator. The first pattern found is applied to the
concept to be expressed to produce an English sentence. Words in the pattern are outputIas is. Punctuation and function calls must go through further processing. For example, in

_VY
a, .. o

.P .* ¢c : '.::,.:. :,, -,.....,, ..- . . -...-. .. ,... .'--,... . -. ,-...,-.



-68-

the pattern, 'To (gen goals) comma (gen plan),' the word 'To' is output directly, whereas,
the (gen ...) function calls must be evaluated, and the 'comma' will be converted to a ','.

This generator is easy to understand and extend, and is well integrated with the rest
of UC; it shares the KODIAK Representation and concepts used by the rest of the system.
Some weaknesses are that the overall structure is top down; i.e., only those concepts that
are expected to exist are expressed. In general, a generator should be able to handle arbi-
trary permutations of conceptual relationships. Also, this generator uses little linguistic K,
knowledge. With more complicated utterances, the simple pattern strategies employed
so far would become inadequate.

9.3. Example

This section describes how the output is delivered by UC in response to the question,
'Do you know h,)w to print a file on the imagen?' A diagram of the relevant knowledge

structure is given in Figure 30. A trace produced while generating this output is given in
Figure 31.

The expression mechanism of UCEgo first passes TELLA to the generator. Only the
proposition part of the TELL will be expressed, so its value, PLANFOR70, is passed to
the generator's main routine, 'gem.' PLANFOR is a category for PLANFOR70, so the
pattern for PLANFOR is retrieved. Since goals7O is marked to be omitted from the
response by the expression mechanism, only the plan will be expressed. The pattern
found is '(gen plan).' The plan aspectual for PLANFOR70 is plan7O. Its value, UNIX-
IPR-COMMANDO, is sent to 'gen.' The pattern for this concept is found under
EXECUTE-FILE-COMMAND and is 'use (name-of-con).' This pattern causes the gen-
erator to look for a name for the concept being generated, here UNIX-IPR-
COMMANDO. It does this by looking for a relation that has the concept as a value for an
aspectual dominated by 'named-obj.' It then finds the name as the value of the 'name'
aspectual of the relation. Here, HAS-COMMAND-NAME15 is the relation, and the
value found is 'lpr -Pip.' The first response is therefore:

Use lpr -Pip.

Next, the generator is passed TELL5. Once again, only the ".position is to be
expressed, so EXAMPLEO is to be generated. The pattern, found under EXAMPLE, is
'for example comma (gen example).' This sets up a recursive call to gen with the value
of exampleO as argument. This value is PLANFOR31.

Once again, a PLANFOR is to be generated. This time, however, both the plan and
goals will be expressed. The pattern is 'to (gen goals) comma (gen plan).' The 'goals' is
PRINT-EFFECTl. The pattern is found under LAS-PR-EFFECT, and is 'print (rel-obj
HAS-D-OBJECT) on the (rel HAS-PRINT-DEST).'

The rel-obj causes the generator first to find a relation that 1) is below HAS-D-
OBJECT in the hierarchy, and 2) has an aspectual whose value is the concept being gen-
crated. The concept being generated is PRINT-EFFECT1, and the relation found is
HAS-PRINT-OBJECT4. Then rel-obj causes the generator to generate the value of the
other aspectual of this relation, and generate it as an object. The value here is FILEO. In



-69-

- KMl~- '.1%T*~ MIVT HIJMn

Pt Fig re HA 0A-

"4

HASC~bO A~iDW~U.HAS- - FIA3cr

NAM==

~mmma

Figure 30
Knowledge state for example question.

generating a concept as an object, it is determined if the concept has a name; if it does,
something of the form 'the x named y' is output. Otherwise, something of the form 'an x'
is output. Here, FILEO has the name 'foo.'

The other part of the 'goals' to be output is from the second half of the pattern: 'on
the (rel HAS-PRINT-DEST).' Rel is like rel-obj except the concept to be output is not
treated as an object. Here, the relation found is HAS-PRINT-DESTI and the value is
IMAGENO. The pattern for IMAGENO is just 'imagen.'

The value of the 'plan' aspectual for PLANFOR31 is TYPE-ACTIONO. The pattern
for this concept is from TYPE-ACTION and is 'type Iquote (gen type-string) rquote.'
The value for the type-string aspectual of TYPE-ACTIONO is IPR-FORMAT0. The pat-
tern is from SEQUENCE, and is '(gen step) (gen next).' Here, the step is 'lpr -Pip,' and
the next is the name of the file, 'foo.' The output for this call to the generator is:

9.%



-70-

Pattern for PLANFOR70 is: ((jen plan))
Value for plan is: UNIX-IPR-COMMANDO
Pattern for UNIX-IPR-COMMANDO is: (use (name-of-con))
Phrase derived from (name-of-con) is: (lpr -Pip)
Phrase derived from (gen plan) is: (use lpr -Pip)

Use lpr -Pip.

Pattern for EXAMPLEO is: (for example comma (gen example))
Value for example is: PLANFOR31
Pattern for PLANFOR31 is: (to (gen goals) comma (gen plan)) F
Value for goals is: PRINT-EFFECTI
Pattern for PRINT-EFFECTI is:
(print (rel-obj HAS-D-OBJECT) on the (rel HAS-PRINT-DEST)) +,
Value for HAS-D-OBJECr is: FILE'
Pattern for FILEO is: (file)
Phrase derived from (rel-obj HAS-D-OBJECT) is: (the file named foo)
Value for HAS-PRINT-DEST is: IMAGENO
Pattern for IMAGENO is: (imagen)
Phrase derived from (rel HAS-PRINT-DEST) is: (imagen)
Phrase derived from (gen goals) is:
(print the file named foo on the imagen)
Value for plan is: TYPE-ACTIONO
Pattern for TYPE-ACTIONO is: (type (gen type-string))
Value for type-string is: IPR-FORMATO
Pattern for IPR-FORMAT0 is: ((gen step) (gen next))
Value for step is: lpr -Pip
Pattern for lpr -Pip is: (lpr -Pip)
Phras, derived from (gen step) is: (Ipr -Pip)
Value for next is: foo
Pattern for foo is: (foo)
Phrase derived from (gen next) is: (foo)
Phrase derived from (gen type-sring) is: (lpr -Pip foo)
Phrase derived from (gen plan) is: (type lpr -Pip foo)
Phrase derived from (gen example) is:
(to print the file named foo on the imagen comma type lpr -Pip foo)

For example, to print the file named foo on the imagen,
type 'Ipr -Pip foo'.

Figure 31
UCGe trace for the example question.

I'N



-71 -

For example, to print the file named foo on the imagen,
type 'lpr -Pip foo.'

• ,,

:-.



-72-

10. Knowledge Acquisition

10.1. Introduction
UC is knowledge dependent. It is the task of the knowledge acquisition system to

facilitate the construction and subsequent extension of the knowledge base. The tradi-
tional approach to knowledge acquisition has been to provide the system implementors
with special purpose software tools such as text editors, form systems and graphic net-
work editors. [van Melle, 1981]

These approaches require that the person adding the knowledge have detailed Kp'.
knowledge of the knowledge representation language being used, and of the overall
design of the system. The typical situation, however, is that the people with the domain
knowledge do not have the knowledge necessary to add information to a complex
knowledge base. The system builders must therefore extract the information from the F,

experts and then program it in themselves. This is a tedious, error-prone process, that is
only viable as long as the system builder is in contact with the program. If the system is
in use in a real environment the knowledge-base is essentially frozen.

10.2. Our Approach
Our solution to this problem is to provide a mechanism to allow the interactive

transfer of knowledge from the domain expert to the knowledge-base using natural
language. This is similar to the approach taken in the Nano-KLAUS system [Haas and ."-

Hendrix, 1980]. UCTeacher [Martin, 1985] is the system being built to provide this facil-
ity for UC. In this report we will focus exclusively on UCTeacher's acquisition of UNIX
domain knowledge. The UNIX expert can engage UCTeacher in a mixed-initiative dialo-
gue to add more information to the UC's knowledge base. The following are some work-
ing examples from UCTeaher:

User:. There is a new command.

UCT: What is its name?
User: sort

UCT: What is it used for? A

User:. It is used to sort files.

UCT: You mean that typing 'sort filename' will sort the file filename.

User: Yes.
2)

User: Use the rm command to delete files.

UCT: You mean that typing 'rm filename' will delete the file named filename.

User: Yes.

9j

.', .....



------- --r - - -

-73-

3 3)
User. Use compact to compress a file.

UCT: You mean that typing 'compact filename' will compress the file named
filename.

User: Yes
The above examples illustrate that UCTeacher has access to and is using much knowledge
to guide the acquisition dialogue. UCTehacer has three main sources of knowledge: the
user's utterance, the contents of UC's knowledge-base and a store of meta-knowledge
associated with concepts in the knowledge-base. This meta-knowledge will be described
in more detail in the next section. This use of knowledge plus meta-knowledge makes the
knowledge acquisition process a knowledge-based task. This approach to knowledge
acquisition was first used by Davis [1976] in his TEIRESIAS system.

The system uses these three sources of knowledge to acquire all the necessary infor-
marion from the expert in as natural a dialogue as possible. In example (1) we see the
system generating appropriate questions to acquire information that the expert has not
initially provided. This ability frees the expert from having to know all the relevant
information that must be provided. The system will prompt for all the necessary things.
Examples (2) and (3) show the system making full use of the expert's utterance to avoid
asking redundant questions.

10.3. A Detailed Example
Consider the following sequence of interactions:

4)
User: How can I print a file?

UC: I'm sorry, I didn't understand what you said. Could you please rephrase
that?

At this point UC does not know how to print a file. In the following dialogue an expert
enters UCTeacher and provides the necessary information.

User. There is a new command.

UCT: What is its name?

User. lpr
UCT: What is it used for?

User: It is used to print files.

UCT: Where does the output go?

User: the lineprinter

UCT: You mean that typing 'lpr filename' will print the file filename on the
lineprinter.

User: Yes.

The system can now give a correct response to the user's query.

V,,

N%



-74-

User How can I print a file?

UC: To print a file use lpr. For example, to print the file named foo, type lpr
foo.

ALANA is used to parse the initial utterance by the expert An instantiation of the
concept EXECUTE-UNIX-COMMAND is then passed to UCTeacher. The main opera-
tion that UCTeacher performs is the instantiation of relations connected to the concept
being learned. Therefore, the first step that must be performed is to collect from the
inheritance hierarchy of UC's knowledge base all the relations that EXECUTE-UNIX-
COMMAND participates in. Here, the following relations are found: HAS-
COMMAND-NAME, EFFECT, OPERATED-FILE and HAS-FORMAT. Figure 32
illustrates some of the knowledge used by UCTeacher to learn about commands.

NAlt HON D

M f I7
C a-

., ,.. 1A-1

of"te'prolferatinof oncpseand ations

l s rel a rensa directly related to the concept beig learned. Some imorat factsaerelated only indirectly to the main concept. An example of this is the HAS-FILE-NAME

relatdon connected to the OPERATED-FILE. The possibility of wide distribution of

1.*rli cnto; th-*-.--,.. ... E-. .p f .wid distribut.o of



-75-

concepts in the network led to the development of the Minimal Aspectual Set (MAS).
The MAS constitutes the minimal set of concepts that must be present for a concept to be
considered complete by UCTeacher. UCTeacher uses the MAS for the concept being
acquired to limit its search through the knowledge-base. A relation not directly con-
nected to the main concept being acquired is only followed if it connects to a concept
that is present in the MAS.

The system's first question in this example is an attempt to find a value for the rela-
tion HAS-COMMAND-NAME. This is an illustration of the use of meta-knowledge.
The piece of meta-knowledge used here is that the only way to fill in the value of a
EXECUTE-UNIX-COMMAND-NAME is to ask the user. This fact can not be inferred
from anything else about the command. Therefore in order for UCTeacher to be able to fill
in a concept it must have an acquisition method associated with it. Asking the user is one
such method; others are using defaults and inferring values from other concepts. These

- ~will be illustrated below. In the case where asking the user is the method, a partial phrase
that is appropriate is included as part of the meta-knowledge of that concept. Here the
name is read, instantiated and connected to the HAS-COMMAND-NAME relation. At
this point UCTeacher calls the concretion mechanism to see if it is possible to concrete

* based on the information just acquired. An attempt to concrete is made after each new
relation is instantiated. Here no concretion is made.

The second question from UCTeacher is an attempt to instantiate the EFFECT rela-
tion from the EXECUTE-UNIX-COMMAND concept. Again the user is queried and the

-' relation instantiated and given the value PRINT-FILE-EFFECT. Again a concretion is
attempted. Here the concretion is successful; EXECUTE-UNIX-COMMAND is con-
creted to EXECUTE-PRINT-FILE-COMMAND. At this point UCTeacher searches for
any new relations that have been inherited because of the concretion and adds them to the
list of relations to learn. It also recomputes the MAS that it is using based on any addi-
tions from the concretion. This leads to the attempt to fill in the HAS-PRINT-FILE-
DEST relation by asking the last question.

The next relation that gets instantiated is the HAS-FORMAT relation. Note that
UCTeacher does not query the expert for the argument format. This is because the meta-
knowledge about this relation specifies that the relation can be defaulted to SIMPLE-
FILE-FORMAT based on the value of the EFFECT relation. This reflects the fact that
the argument format of a command can in general be inferred from its effect, which is
already known. The rest of the relations are inferred in a similar manner.

The next operation UCTeacher performs is to generate a statement reflecting what it
has just learned. This gives the expert the opportunity to correct any incorrect inferences
made by the system. An example of this might be a simple file command that did not take
the usual argument format. UCTeacher would default the format. At this point the expert
could correct it.

The final phase of UCTeacber'S processing is to make the changes permanent. Each
absolute, relation and aspectual that has been instantiated is converted to a linear tuple
form and printed to a file containing UC's knowledge base. In the current version of UC
the linguistic knowledge used by the parser and generator are kept in two separate non-
KODIAK forms. This poses a problem for UCTeacher, which requires a rich knowledge
representation system to function properly. As a temporary solution, templates are
attached to concepts that have linguistic counterparts (such as command names); these

0t

-e"



-76-

templates are instantiated and witten out to the appropriate files during the final phase of

processing. Thi will be necessary until all linguistic knowledge is represented in
KODIK

.4



-77-

11. Problems

As the preceding sections describe, there are many technical problems yet to be
resolved for each component of UC. However, several problems appear to be more per-
vasive.

One general problem is the integration of the components of the system. Control
flows unidirectionally throughi UC. However, there are several cases in which this control
structure is unsatisfactory. One such problem is the relation of language analysis and
inference. Most likely, it is cognitively correct that these components function con-
currently to produce an interpretation of an utterance, whereas in UC they function seri-
ally.

For example, consider again the process of understanding the sentence we have
been using in our extended example: "Do you know how to print a file on the imagen?"

* This utterance is syntactically ambiguous in the attachment of the prepositional phrase
"on the imagen." Syntactically, this may modify "you" or "a file" as well as "print."

uc does not deal with this ambiguity because one Of ALANA's patterns for "print"
specifically looks for "on" followed by a device. However, a more elaborate analyzer

0 would probably not include specific information that relates this preposition to the verb,
but rather would try to relate them on more general principles. In such a system, the
ambiguity would be a more difficult problem,

Our current approach is to build such a system and use a kind of marker-passing
algorithm to help suggest which syntactic combination to try. For example, our
knowledge about printing is such that a path between printing and a device designed for
printing should be easy to find. In contrast, there would be a less obvious connection
between imagen and file, or imagen and the referent of "you." This "conceptual close-
ness" would suggest trying to relate printing and the imagen with a grammatical pattern,
so the correct interpretation would be arrived at without other interpretations being
tested.

Properly done, such a marker-passing scheme would effect concretion as well. For
example, to arrive at the connection between printing and the ixnagen, it is probable that
one needs to access the node for "computer-printing." Thus it seems that concretion
should not be a separate inference process, but one of several kinds of inference that are
performed by a marker-passing mechanism. We are currently attempting to reform the
analyzer and the inference mechanism in the direction described.

-.1 It seems that the sort of unidirectional architecture we have employed has draw-
backs elsewhere in the systemn. There arm situations in which it seems that one com-
ponent should be allowed to fail, and the failure be piopagated back to another comn-
ponent. For example, consider processing the following query:

How can I edit Joe's fle?

Initially, the goal analyzer may interpret this request literally. Then the planner may fail,
U because the file may be protected from just such an action. It seems reasonable, how-

ever, for a consultant to suggest copying the file and editing the copy. For this to happen,
control must be returned to the goal analyzer, which needs to hypothesize yet another
goal underlying the goal it may have suggested initially. We are attempting to design a



-78-

v," control structur that accommodates this flow of control.

The concretion mechanism and the goal analyzer also appear to interact in impor-
tant ways. For example, consider the following question:

What does Is -v do?

This question is problematic because a "literal" response to it might be "It lists the con-
tents of the current directory." This response is possible because there is no "-v" option
to the "Is" command, and it is a characteristic of this command that it ignores options it
does not recognize.

-PIN A much better response would be "There is no -v option to the s command." To
produce this response, the system must recognize that the intent of the question is some-
thing like "Tell me the conventional function of the command Is -v," and not "Tell me V-1
what actually happens when we type Is -v." One way to phrase this is that "conven-
tional function" and "effects occurring from" are two kinds of "doing." There are cer-
tainly other kinds as well. For example, the same form may refer to the steps of a pro-

* cess.
Therefore, it would appear to be the job of the concretion mechanism to select the

appropriate interpretation. However, it seems that the concretion mechanism cannot
choose this interpretation without some knowledge of typical user goals. For example, if
a user is debugging a program, it would probably be appropriate to interpret the question
as referring to the steps incurred in the process rather than to the process's purpose. But
reasoning about the user's goals is the job of the goal analyzer, which normally is not
invoked until the concretion mechanism has completed its task.

"::.:*. This example illustrates the need to have more communication between the concre-,-

non mechanism and the goal analyzer. Put more strongly, the example suggests that
these distinctions between language analyzer, concretion mechanism and goal analyzer
are somewhat artificial At this stage of our work, it is difficult to determine whether we
simply want modules that interact more, or a more radical control structure that
integrates all these functions.

There are several other more specific deficiencies of which we are aware. As we
discussed previously, patterns were built into ALANA on an "as needed" basis. We are
attempting to produce a more accurate language specification as we develop the infer-
ence component. Also, a mechanism for doing ellipsis, which ran in a previous version
of uc, has yet to be integrated into this one.

One important deficiency of our current system is that it still doesn't participate in
real conversations. It is our intention that UC function as a consultant, and not as a front
end to a data base of facts about UNIX. But our current system performs little more than

this. Much of the machinery is in place, in UCEgo and PAGAN in particular, to accommo-
date some conversational situations. We expect much of our further development to be
in this direction.

Finally, although we have found that our current representation is advantageous,
rhere ame many representational issues that remain unresolved. In particular, it is difficult
, express certain aspects of quantification in KODIAK. In UC one often wants to

-vresent facts like "all files have names" or "most directories are not empty." We are

.4.

• • " "e ,,"e % o ,'. % % • • *I.-

S .S.4VA *



- 79 -- '

currently working oe extending KODIAK to be able to represent such notions in a cogni-".'
. tively plausible way.

p...

'

.. °.

* U.

4.-.
.,.,.- .-

,U !



-80-

12. Appendix: UC KODIAK Diagrams od se

This appendix contains a small sample of the KODIAK diagrams used to define
representations in UC. Some of these diagrams define very general concepts such as
EVENTs and STATEs; other diagrams describe concepts which are very specific to UC, 1.
such as file protection, and specific UNIX commands.

Each of the diagrams includes a short description of what it represents. Most of the
concept names in UC's version of KODIAK are reasonably mnemonic, so the reader
should be able to decipher the diagrams that describe them.

Note that the meaning of the arcs in the diagrams is context sensitive. This ambi-
guity is not a problem in the implementation of UC since the interpretation of an arc is
clearly determined by its context. In fact, the KODIAK representations in UC are entered
as diagrams using a graphic editor, which translates them into an internal form.

The meanings of nodes and arcs in the diagrams that follow is summarized in the
translation legend below.

.J77

. I

4, *,
-St

.Zh >

4'-

.' 4,'

4.. .,.d. : 2 - ., , - . , , - . .. . , . - ., . . . . . . . . . . - - , - .. . . . . . ..



-81 -

NODES

REPRESENTATION MEANING

rectangle an ABSOLUTE
small box a RELATION
circle an aspectual
double-circle special meanings
conce tN , N an integer conce tN is an instance ofc oner

2 ARCS
.4'-

The following is priority ordered (i.e. use first match for meaning): :

0 -a-+ 0 Ois an aspectual of 0
dominated, -D-+ dominator dominator dominates dominated
[in ce -I- cate o instance is an instance of
O-C-+ 0constraint is constrained to be of staint'i-tl
0-v-+ [ the value of aspecual value

instrancN-aspecataaN--+ alu aspectwalN is an aspectual of linstanceN]; the
value of aspectualN is [valu ; and
aspecnalN plays the role of aspectual which
must be defined as an aspectual of some

relation dominating [i ceN

instanceN--aspectual-.+ vau where aspectual is an aspectual of some .
relation dominating [instanceN the
corresponding.aspectual ofinstanceN has
the value val-jel,

0 -aspectal-+ 0 0 is an aspectual of EX and 0 plays the role
of aspectual which must be defined as an
aspectual of some relation dominating 0

0 -aspectual-- valu-e where aspectual is an aspectual of some
relation dominating 0. the corresponding

aspectual of E3 has the value -.." "e

Translation Legend

---,. -- . . ._ , .. -. ....-. .-. .. ,., -.+. • . .. . .. ,, • ",. *~ ....- -,*. .. . . , .,.

' " 'J"" ""'" €' "-.," '" " " " • " " ""." -~ "" ". " ." . -' . .'- . . ." ",. ", "-"



-82-

SOMEINGDDLS M IIIO == D=-=- ANIMATR ."

D ClD

a az -AU
C a

F**-

This diagram defines the concepts EVENT, STATE, STATE-CHANGE, and CAUSAL-

EVENT.

A STATE has aspectuals object and value.

An EVENT has a participant aspectual which is constrained to be filled by an ANI-
MATE.

A STATE-CHANGE is an EVENT with an initial-state and a final-state. A subtype of
EVENT is CAUSAL-EVENT which has a cause and an effect.

An example of STATE is EXISTS in which the object is an exist-object and the value is
existence.

I..','.

5%; - j

'S

..',,..+...,.:,-,,..,.'.- ,. , -. . .. .- +. .. .. . . . ... .. - % .% + ' 1%.



-83-

S

TC

The notion of a SEQUENCE is defined here.

A SEQUENCE has two aspectuals, step and next. The next must be a SEQUENCE in its
own right. A specialization of SEQUENCE is a CONCAT which is used to represent
concatenations.

N!,



-84-

ANAM

ooAL~AL1

Uc-4AL

uc

This diagram defines goals and GOAL-SEQUENCEs.

HAS-GOAL is a type of mental possession where the possessor is the planner and the
possessed is the goal. A goal is an aspectual of the HAS-GOAL relation since a goal
cannot exist independently of the ANIMATE that has the goal.

A GOAL-SEQUENCE is a type of SEQUENCE where the goal-step is constrained to be
something which plays the role of a goal.

UC-HAS-GOAL is a type of HAS-GOAL in which the planner is UC.

%6

.,,",-

" . ., •,'.. " ". ,.' ". "- ",. "..-" .','.- -.. " ". ", . . . . . .e" ,." ,. e €. , € P ," ,t.1



-85.

Poo"R

This diagram describes the concepts EVENT-SEQUENCE, PLANFOR, SATISFY, and
., ,. HELP.

A PLANFOR is a relation with the aspectuals plan and goals.

A plan is constrained to be an EVENT (actually a HYPOTHETICAL EVENT since the
EVENTs in plans generally have not occurred in actuality).

41 An EVENT-SEQUENCE is both a SEQUENCE and an EVENT where both the event
step and the next-event are constrained to also be EVENTs. '

HELP and SATISFY are types of TRANSITIVE-ACTIONs, which are defined in a later
diagram.

It.
P ?.

i'ft

.N
'ftf-f



-. ~~~~~~~ -. - - -' - - -, -, --- -~r -t -. u- -r r r

-86-

4-...m

.,.
°"e'-

-abil Noo1aS w bnad'e
I'NU3ff&N

FI 0~FA CUCAim c

FcmahadMq

_]1Y

'V4

i iE sO CONTAINS) and

FUNCTION.Y

AFLisa CNAERaaMENTAL-OBJECT.

The function of a CONTANER is to serve as the container of a CONTAINS. The func-

tion of a FILE is as the container for TEXT, CODE, or GROUPs of FILEs.

A DIRECTORY is type of FILE which has the function of only containing GROUPs of- '- .iFILEs.

j *1
:::.:-

14 ',, -'4'i ':'":"g . , . ".","' " -.'' .''. ',,",". ' . '- -.- - .,- ''" ...- ,2.b'



-87.

F -c I UER I

This diagram describes what a USER is.

A USER is a type of PERSON, for example UC and *USER*.

A PERSON is a type of ANIMATE which is a type of OBJECT.

:
"'S

[- •

S..

"p'-. " *%"% * .. .I

-!,: .-. % ..L .S . -' .*',



-- 88

NAME

u" I -

~HAS

nomabj

This diagram describes the relation between objects and names.

HAS-NAME is a type of STATE in which the value is name and the object is a named-
object. The name is constrained to be a NAME which is a type of MENTAL-OBJECT.

- -" A subtype of HAS-NAME is HAS-FILE-NAME where the named-object is a named-file
and the name is a file-name which can only be filled by a FILE.

',",

" Jq" .. w

.

.1.

€ " :'. -. ..- .- .. ... . - .... . - .. . . . .. . . . . . . . . .. 5.-



.99p.

,,N'

-VF,

FM-p

This diagram defines ownership.

HAS-OWNER is a type of STATE where the owner is constrained to be an ANEIMATE
and the owned-obj is constrained to be an OBJECT. Note that owner is only an aspectual
since an owner does not make sense except in relation to an object that the owner owns.
A subtype of HAS-OWNER is FILE-HAS-OWNER in which the owner is constrained to
be a USER and the owned-file is constrained to be a FILE.

-J

"77

Mme

,...

- i-

N,.q

U"



~-90.

A N

M_ D

HAS- O

-.. STATUS fect

b. uum

TRUE

Herein is described the ideas of mental-possession, action, intention, and knowing.

M-POSSESS is a STATE which describes the possession by a possessor of the possessed
object with value (the status aspectual) TRUE or FALSE. The generic M-POSSESS, M-
POSSESS-gi, has the status TRUE. A mbtype of M-POSSESS is KNOW where the pos-
sessed is a fact and the possessor is the knower.

An AM-ION is a type of CAUSAL-EVENT where the participant is an actor.

HAS-INTENTION is a type of M-POSSESS where the intender is constrained to be an
actor and the intention is constrained to be an ACTION. A subtype of HAS-
INTENTION is UC-HAS-INTENTION where the intender is UC.

A

.- ..

,..- .. ... .. . -. . .. .. ... . .. ... . ... .. . ... . .... . . . . . . ..



-91 -

D

MANi AMCON

D a

-., This describes different types of ACTIONs including TELLs.

"-'A TRANSITIVE-ACTION is an ACTION with a patient. A subtype of TRANSITIVEACTION is a TRANSrrIVE-ACTION+RECIPIENT which also has a recipient

"'-An ILLOCUTIONARY-ACTION is a kind of TRANS ITIVE-ACTION+RECIPIENT
,.. ":where the recipient is a listener, the patient is a proposition, and the ,,ctor is a speaker.
::'. Examples of ILLOCUTIONARY-ACTIONs include TELLs, ASKs, and ORDERs. In

'2,N the ASK, the proposition is an asked-for which is constrained to be a QUESTION (a tr.pc
7. of MENTAL-OBJECT).

,

4..

raqu

I _Wtl

','.,'; ,'- " ';V - - ,-'," . ".r

4l Il Wbl48 c llll m olIN m m nn n m num - . .



OF ELECTRICAL ENGINEERING AND COMIPUTER SCIENCES
R WILENSKY ET AL JUL 86 N88839-84-C-0089

UNCLASASI SEF/G 9/2 U

IIIIIIIIIIIIIIIImommmomo



lEl
U. L'1.~1111 ~12

- .1
4 II1.2 III111 IL!A -

11I 2 1.41___III

MICROCOPYf RESOLUTION IESY CHARI

V 
-~ %

v 0 l 0 . 4m.,

% Z

% % % %



-92-

DI

(~'5 DELE1-* RY-AMh0N
STAT.O3 

__-f

"4

This defines deleing.

DELETE-ACTION is a kind of TRANSITIVE-ACTION where the del-effect must be

filled by a DELETE-EFFECT. A type of DELETE-ACTION is DELETE-FILE-

ACTION where the del-effect is constrained to be a DELETE-FILE-EFFECT.

A DELETE-EFFECT is a STATE-CHANGE where the initial-state is an EXISTS and
the final-state is a does not EXISTS. The exist-objects of the EXISTS are required to be,,

the patient of the DEL.ETE-EFFECT. A type of DELETE-EFFECT is DELETE-FILE-
EFFECT with the del-objet constrained o be a FILE.

DELETE-DIRECTORY-ACTION and DELETE-DIRECTORY-EFFECT are analogous
concepts for DIRECTORYs instead of FILEs.

ATwps

ZI

A'

I 
hi1.

x 
.



-93.

TWO

DJ c

This diagram has the definitions for EXAMPLE, FORMAT and TYPE-ACTION.

An EXAMPLE is a MENTAL-OBJECT that has an example.

A FORMAT is both a type of MENTAL-OBJECT and a type of SEQUENCE. A sub-
type of FORMAT is UNIX-COMMAND-FORMAT.

TYPE-ACTION is a TRANSITIVE-ACTION where the patient is a type-string that is
constrained to be a FORMAT.

ii.6 .5.
[-':.."'



-94.

DD

OL~CT

HAS-FfiME flN

This diagran describes changing file protecions.

A CHANGE-ACTION is a TRANSITIVE-ACTION with the ch-effect constrained to be
a CHANGE-EFFECT. A subtype of CHANGE-ACTION is CHANGE-PROT-ACTION
where the ch-prot-effem must be a CHANGE-PROT-EFFECT.

A CHANGE-EFFECT is a type of STATE-CHANGE with a change-obj aspectual. A
subtyp of CHANGE-EI 'ECT is CHANGE-PROT-EFFECT wher the change-file must ,

be a FILE and the change-prot must be a FILE-PROTECTION. Also, the change-file
and the change-prot in the CHANGE-PROT-EFFECT are required to be related by a
HAS-FILE-PROTECTION relation.

. q

. . . . . . .. .. • o g ".K , - - . . . .
77



-95 -

C

D C

Here is defined the idea of connecting to something.

A CONNECT-TO-ACTION is a type of TRANSITIVE-ACTION with the connect-effect
constrained to be a CONNECT-TO-EFFECT. A subtype of CONNECT-TO-ACTION is
a CONNECT-TO-DIRECTORY-ACTION where the connect-dir-effect is constrained to
be a CONNECT-TO-DIRECTORY-EFFECT.

A CONNECT-TO-EFFECT is a STATE-CHANGE with the patient being a connect-to-
object. A subtype of CONNECT-7 3-EFFECT is CONNECT-TO-DIRECTORY-
EFFECT where the connect-to-directory is constrained to be a DIRECTORY. .

:J?4

1i~

- .1 2



-96-

D~h LIn L
DD

DD

jEU-objb D--b

I7O p.AS
S .- ~ :,

D.J

prITUm
STAT'% 

I'

Th exhreDiarm decbprtng

D c,

PRINT-AO, RNTFLEATONRITEFETadPRN-FL-EFC

Ile dfned thre. Evegrym PesriNTeFFC ipreaedtiap-ojetbyaHA-RIT

OBJECT relation. In the case of a PRINT-FILE-EFFECT, this pr-file must be a FILE.



-9"77.

AS-V MS. 439

HAS-1

This diagram describes the different subtypes of HAS-PRINT-FILEs, PRINT-FILE-
EFFECrs, and HAS -PRINT-FILE-DESTs for different kinds of printers: VARIAN,
VERSATEC, and LINE-PRINTR.

R w J

vr e. 'm j. Ir



-98-

D

D - F

--,

:'

'p'

PR4-

D -.

H"U-D~I HAS-N4.4

This diagram describes printing on a LASER-PRNTR and in particular on the

IMAGEN laser-printer. See the previous diagram for definitions involving other types of

prntrs



.99.

!m

Fcin

tam
.ID

UNIX commands and simple command formats are defined here.

EXECUTE-UNIX-COMMAND is the ACTION of using a command. EXECUTE-
FILE-CONAND is a subtype which deals with FILEs.

HAS-COMMAND-NAME relates an EXECUTE-UNIX-COMMAND to its

COMMAND-NAME. HAS-FORMAT relates an EXECUTE-UNIX-COMMAND to its
UNIX-COMMAND-FORMAT.

The UNIX-COMMAND-FORMAT is a SEQUENCE where the step is the
COMMAND-NAME and next are the args.

Specializations of UNIX-COMMAND-FORMATS include FILE-FORMATs and

SIMPLE-FILE-FORMATs. The SIMPLE-FILE-FORMAT has a single argument, the
file-arg, which is constrained to be a FILE-NAME.

LL &L U



-oDC~a

as

EXECUTE -CA T -p

-~ TWO-

AHAS- S-AnI

kswg c---I FILUNAMRJ..

This diagram describes commands with two file arguments.

Z:

S. . j

I.*



low -.FFECr

HASSt"O

WRM.HMA

MOLE. FORA

ANA

This diagram describes the rm command which is the plan for deleting a file.

$5% %



.102.

HAS AS-o

This diagram describes the nndlir command which is the plan for deleting a directory.



-103-

EXECU1S.

.kdardir v
N. ~~*mdie .R A

fomtSIPLE#EFORMAT

j ~> T HA AMM1

NAME-a MI

This diagram describes the mkdir command which is the plan for creating a directory.

w1.



.104-

UrAUSAcION

4.D."

MOV

S-4'

MM

This diagram describes the my command which is the plan for moving a file.

- .4



-. ACTION

DbD

HASS

CP,,~vco

S'S.

HA-

M.5-

T a e I

• . .".i "."D This' diagra"," m describes. th pcmmn hc is the. plan-.".'."-' for"'".".' copyin a"fil........'"...'"," ."'''.

'iS~. " , i,~~ ,l i . , . . , , - ., . ,. - .,v , . ,, , , . . , .. ,., ,.@ ,.. .w



.106-

U AM

DU--

p a

T7his diagram describes the du command which is the plan for finding out the quantity of
disk space that a user has.

,15



1,'*..107-

wd~mAM

'VM"

oT-ATHsW W R A S. ~

This describes UNIX file protection modes.I

HAS-FILE-PROTECT7ION is a relation between FILEs and FILE-PROTECTIONs. A
FILE-PROTECTON is described by three inds of HAS-PROTECTION-TYPE rela-
tions, HAS-USER-TYPE, HAS-ACCESS-TYPE, and HAS-PROT-VALUE.



.106-

UNUTv
comeo-s

4,D

RAS

This~~~~CDD diga esrbsth ho ommadwihi h lnfrcagn h rtc
tion ofa file

Cj~ap

9:L&S

vanq



-109.

A

2-1-s.

PR Ia
d oA i4 h

L tZx
AinmOaqS

L~E~LE

A.niW6

-U
A plan for the goal of knowing how to perform some action isto ask how to doit, then be
told how to do it. This planfor is used by PAGAN.

41 .,

-79.



M.-

PSIS

IM

OE-"

KI am=hoftZin 5J

.J.

ACIM .WM

IM ?MN

A plan for the goal of knowing how to performi some action is to indicate to the hearer
that you wmnt to doit, then be told how to do it. This plafor is used by PAGAN.

V.V



GA-
Ji- 111 -

."

faaa=
gmM

MP

A E

PERSONM 36M

?d-

A plan for the goal of knowing how to perform some action is to indicate to the hearer .

that you want to know how to do it, then be told how to do it. This planfor is used by 1.4,
PAGAN.

'a,

0i



-112-

/

... I mmmr ImL14 \ .

MROM /=M I jn ?I'"

I -I4 I-

Q~~~N34CAUsAyr3

A plan for the goal of knowing how to perform some action is to ask if the heare knows .how to do it, then be tid how to do it. Ths planfor is used by PAGAN.

ins34

fa,~ '-...,

, **.. .

~.4-..'



_ - 113.-

GA-

kinws4-34 4 D .O34 "sS-

rr
was-em 4DFqO~O3

Hm

p.- 
3- 4

A plan for the goal of knowing a definition of some concept is to ask what it is, then be
told what it is. This planfor is used by PAGAN.

.1"

gj:4

-



35GD0m I QU~T

HAS-D~ MN

HAS.~fULYS HAS_

L di"ky difsib

tkdiflmy ULY HASt5ULTY

SIML~JI~RMT A-OMUNDANE a aohSIMPLE(7)(5
W Isoruic k

~D
fa~ faESOTERIC

K2O4mDWKFZ ~ 11Ka[~1

This~~~~~~~~~koe shwkh ai eiiiosfrU-sUe oe
1.92

M-9-

4" NEMDAEd E3NRNVC

m%
C C 

S

Thisshos te min dfintios fr UCs Uer ode



-1I15- .,

13. References

Allen, J. F., Frisch, A. M and Litman, D. J. 1982. ARGOT: the Rochester dialogue sys-
tem. In Proceedings of the National Conference on Ar'ficial Intelligence. Pitts-
burgh, PA. :'

Allen, J. F. and Perrault, C. R. 1980. Analyzing intention in utterances. Artificial Intelli-
gence Volume 15, pp. 143-178.

Austin, J. L. 1962. How To Do Things With Words. Cambridge, MA: Harvard Univer-
sity Press

Brachman, R. and Schmolze, J. 1985 An overview of the KL-ONE knowledge represen-
tation system. In Cognitive Science, Volume 9, pp. 171-216.

Brown, J. S. and R. R. Burton 1976. A tutoring and student modelling paradigm for
gaming environments. In the Symposium on Computer Science and Education, pp
236-246. Anaheim, CA.

Carberry, S. 1983. Tracking user goals in an information-seeking environment. In
Proceedings of the National Conference on Artificial Intelligence. Washington,
DC.

Chin, D. N. 1986. User modeling in UC, the UNIX consultant. In Proceedings of the

CHI-86 Conference, Boston, MA, April.

Cox, C. A. 1986 ALANA: Augmentable LANguage Analyzer Computer Science Division,
University of California, Berkeley, Report No. UCB/CSD 86/283.

Davis, R. 1976. Applications of Meta Level Knowledge to the Construction, Mainte-
nance and Use of Large Knowledge Bases. Stanford CS Report, STAN-CS-76-552,
Stanford, CA 1976

Deering, M., Faletti, J., and Wilensky, R. 1982 Using the PEARL Al Package Computer 4..'

Science Division, University of California, Berkeley, Memorandum No. UCB/ERL
M82/19

Ernst, G. and Newell, A. 1969. GPS: A Case Study in Generality and Problem Solving
New York: Academic Press. ..

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, Vol. 2, No. 3-4, pp.
189-208.

, . i~t-".

. € "". , " ',. 2'"".,.." <."'2 ,,.:€ . ,'..''. ,'",,..'..' .'' . " ". ....""' < """" " " "" . -""""" " '""" .. ..""""""' " "' " ,."""""" .c.'€_ i, '-'''""""



-116-

Grice, H. P. 1975. Logic and conversation. In Studies in Syntax, Vol. I, pp. 41-58,
edited by P. Cole and J. L. Morgan. Seminar Press.

Grosz, B. and Sidner, C. L 1985. The Structures of Discourse Structure. Center for the
Study of Language and Information Report No. CSLI-85-39

Haas, N. and Hendrix, G. 1980. An approach to acquiring and applying knowledge,
Proceedings of the National Conference on Artificial Intelligence, pp. 235-239,
Stanford, Ca.

Jacobs, P. S. 1984. PHRED: A Generator for Natural Language Interfaces Computer
Science Division, University of California, Berkeley, Report No. UCB/CSD 84/189.

Jacobs, P. S. 1985. A Knowledge-Based Approach to Language Production. Ph.D.
thesis, University of California, Berkeley.

* ~ Kaplan, S. J. 1983. Cooperative Responses from a Portable Natural Language Database
Query System. In Compuational Models of Discourse, edited by Brady and

* - Berwick. MIT Press, Cambridge, MA.

Litman, D. J. and Allen, J. F. 1984. A plan recognition model for clarification subdialo-
gues. In Proceedings of the Tenth International Conference on Computational
Linguistics, Palo Alto.

Luria, Marc. 1982. Dividing up the question answering process. In the Proceedings of
National Conference on Artificial Intelligence, pp. 71-74, Pittsburgh, Pennsylvania.

Luria, M. 1985. Commonsense planning in a consultant system, Proceedings, 1985
IEEE International Conference on Systems, Man, and Cybernetics. pp. 602-606,
Tucson, Arizona.

Martin, J., 1985. Knowledge acquisition through natural language dialogue, Proceedings
of the 2nd Conference on Artificial Intelligence Applications, Miami, Florida.

Mays, E. 1980. Failures in Natural Language Systems: Applications to Data Base
Query Systems. In Proceedings of 1980 National Conference on Artificial Intelli-
gence, Stanford, CA.

McCoy, K. F. 1983. Correcting Misconceptions: What to Say when the User is Mis- Itaken. In Proceedings of the CHI'83 Conference, pp. 197-201. Boston, MA.

Morik, K. and C-R Rollinger. 1985. The real estate agent -- modeling the user by uncer-
tain reasoning. In At Magazine, Vol. 6, No. 2, pp. 44-52.



-117-

Newell, A., and Simon, H. A., 1972. Human Problem Solving. Prentice-Hall, Engle-
wood Cliffs, N. J.

Norvig, P. 1983. Frame Activated Inferences in a Story Understanding Program. In
Proceedings of the Eighth International Joint Conference on Artificial Intelligence,
pp. 624-626.

Rich, Elaine. 1979. User modeling via stereotypes. In Cognitive Science, Vol. 3, pp.
329-354.

Rissland, E. L. 1983. Examples in Legal Reasoning: Legal Hypotheticals. In Proceed-

ings of the Eight International Joint Conference on Artificial Intelligence, Vol 1.,
pp. 90-93.

Rissland, E. L., E. M. Valcarce, and K. D. Ashley. 1984. Explaining and Arguing with
Examples. In Proceedings of the National Conference on Artificial Intelligence, pp.
288-294.

Rosch, Eleanor. 1978. Principles of categorization. In Cognition and Categorization,
edited by E. Rosch and B. B. Lloyd. Lawrence Erlbaum. Hillsdale, N. J.

Sacerdoti, E., 1974. Planning in a hierarchy of abstraction spaces, Artificial Intelligence
Vol. 5, pp. 115-135.

S,:hmolze, J.G. and Lipkis, T.A. 1983. Classification in the KL-ONE knowledge
representation system. In Proceedings of the Eighth International Joint Conference
on Artificial Intelligence. Karlsruhe, West Germany.

Searle, J. R. 1969. Speech Acts; An Essay in the Philosophy of Language. Cambridge:
Cambridge University Press.

Sidner, C. L. 1985. Plan parsing for intended response recognition in discourse. Compu-
tational Intelligence 1, pp. 1-10.

Teitelman, W., et. al., 1978. The Interlisp Reference Manual. Xerox PARC.

van Mede, W., 1980 A Domain Independent System That Aids in Constructing
Knowledge-Based Consultation Programs. Heuristic Programming Project Report
No. HPP-80-22, Computer Science Department, Stanford University, CA.

Webber, B. L. and E. Mays. 1983. Varieties of User Misconceptions: Detection and
Correction. In the Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, Vol. 2, pp. 650-652. Karlsruhe, West Germany.

.wwl,. . • ° . . % % . . . % - , . % .. . , . . ° . . o. % . . .°.°.



-118- "

Wilensky, R. 1983. Planning and Understanding: A Computational Approach to Human
Reasoning. Addison-Wesley, Reading, Mass.

4 Wilensky, R. 1986. Some Problems and Proposals for Knowledge Representation.
Computer Science Division, University of California, Berkeley, Report No.
UCB/CSD 86/294.

Wilensky, R., and Arens, Y. 1980. A Knowledge-based Approach to Natural Language
Processing. University of California, Berkeley, Electronic Research Laboratory
Memorandum No. UCB/ERLM80/34.

Wilensky, R., Arens, Y., and Chin, D. 1984. Talking to Unix in English: an overview of
UC. Communications of the Association for Computing Machinery, June.

.•

-...-
- a



4.
4.

4.

I
I

-I

"p.-.
.1's,

'p.,

V

e

-4
'V

~1~* ~

4.

'p

* 'S


