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1. Introduction

In this paper we investigate some aspects of probability measures
on a large class of partially ordered sets, which satisfy a
continuity property which extends the following well-known fact
for the real line R:

X=sup(ye¢R; y<x}, ~o<X<w,
They are called continucus semi-lattices.

The extended real line (-o,»] 1is a continuous semi-
lattice and so is also the collection of all closed sets in a
locally compact second countable Hausdorff space S. The
collection of all compact sets in S 1is another example of such
a partially ordered set, and if S=Rd for some deN=(1,2,...},
also the collection of all compact and convex sets is a
continuous semi-lattice. Many sets of functions are continuous
semi-lattices too. For instance the collection of all upper
semi~continuous functions on S into R=[-»,o] and the
collection of all capacities on S.

Thus the results of this investigation has rather a wide
range of applicability. The investigation is primarily concerned
with the question of existence of probability measures on
continuous semi-lattices and continuous lattices, the latter
being a special case of the former. The related questions of
weak convergence and infinite divisibility of distributions are
treated too.

The main result of this paper characterizes the
collection of all probability measures on a fixed continuous

semi-lattice. 1In the special case of a continuous lattice the
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characterization is in terms of distribution functions. This
existence result extends a theorem of Choquet [2] identifying the
distributions of all random closed sets in a locally compact
second countable Hausdorff space. Cf Matheron {11]. By applying
it to the real line we obtain the well-known one-to-one
correspondence between distributions of random variables and
distribution functions, thereby explaining the similarity between
this fundamental fact and Choquet's existence theorem.

As noted above the collection of all compact sets in a
locally compact second countable Hausdorff space is a continuous
semi-lattice and by applying the existence theorem to this
particular partially ordered set we obtain two completely new
sets of existence criteria for distributions of random compact
sets. We furthermore obtain a new existence criterium for
distributions of random compact convex sets in Euclidean spaces.

Of course the list of applications of the existence
theorem can be made much longer. We leave this to the reader and
to forthcoming publications dealing with special cases.

All the results on weak convergence of probability
measures on continuous semi-lattices are w r t the Lawson
topology and it should be noted that there may be other natural
choices of topologies, especially when the semi-lattice under
consideration has some further structure. This is a question
that we plan to return to in a forthcoming publication.

Among other things our investigation showed that weak
convergence can be characterized by pointwise convergence of the

corresponding distribution functions on a sufficiently large
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subset. This is a well-known result for random variables. Now
we know that it holds also for many different kinds of random
sets.

We have also defined and investigated a notion of
infinite divisibility for distributions of random variables in
continuous semi-lattices. Our results here generalize those
known for random closed sets., See [1l1].

The titles of the subsequent sections are as follows:

2. Continuous partially ordered sets
3. Measurability

4. Existence and uniqueness

5. Convergence

6. Infinite divisibility

7. Applications to random set theory




2. Continuous partially ordered sets

In this section we review the notion of a continuous poset and
discuss some examples of such objects. A general reference to
continuous lattices - a slightly more narrow subject - is the
monograph Giertz, Hofmann, Keimal, Lawson, Mislove & Scott [5].
We also review some relevant but not so widely known notions from
topology.

Consider a non-empty set L endowed with a transitive,
reflexive and anti-symmetric relation <. Such a set is called a

poset, which is short for partially ordered set, and we refer to

< as the (partial) order on L. Note that any non-empty subset
of L itself is a poset under the same order. Unless otherwise
is stated directly, the order on the poset(s) under consideration
will always be denoted =.

A mapping £ between two posets is increasing (resp
decreasing) if x<y implies f£f(x)<f(y) (resp f£f(y)sf(x)). A
surjection f Dbetween two posets is an isomorphism if xc<y is
equivalent to f(x)sf(y). Two posets are isomorphic if they are
connected by an isomorphism.

Note that on L there is an opposite relation <*,

called the reverse order, defined by

Xsry iff ysx.
Of course also =<* orders L, and we write L* for the set L
endowed with the reverse order <*. The isomorphic posets L**
and L are always identified.

Let AgL. An upper bound of A 1is a member x¢L

satisfying ysx for all yeA. If there exists an upper bound 2z




of A satisfying z<x for every upper bound x of A, then it

is referred to as the least upper bound or the join of A, since

there is at most one, and denoted vA. We often write

vaXa=Vv{Xa)}. Lower bounds and greatest lower bounds or meets are

defined analogously. We write AA for the meet of A provided
it exists. We further write xn?*x 1if X1$X2%...5X=VpXpn, and
Xnvx 1if xntx in L=,

Note that, by the definition, v@=aAL if L has a least
member, a bottom, and a@=vL 1f L has a greatest member, a
top.

A poset is directed (resp filtered) if every finite non-
empty subset has an upper (resp lower) bound. A non-empty FgL
is a filter on L if it is filtered and if *xcF whenever xeF.
Here and subsequently, #x=(y; X<y}. We also write +x={y: ysx}.
By a chain we understand a poset in which xgy or ysx for
every pair (x,y) of members.

A semi-lattice is a poset in which every finite non-empty

subset has a meet. In a lattice every such subset has both a
join and a meet. A poset is up-complete if it is closed under
directed joins (i e if every directed subset has a join) and
complete if it is closed under arbitrary joins. ©Note that a
complete poset is closed under arbitrary meets too. Thus a poset
is complete iff it is a complete lattice.

Fix two members x,y of an up-complete poset L. We say
that x is way below Yy, and write x«y, 1if, whenever y<vD
for a directed DcL, we have x<z for some ze¢D. Note that, if

L is complete, then x«y iff ysvA, AgL imply x:vB for some

v - A s rS
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finite BzA.

Recall [10] that a poset L 1is said to be continuous
if it is up-complete and if (y; y«x} 1is directed with join x
for all xeL. It should be clear to the reader what we mean by a

continuous semi-lattice. However note that a continuous lattice

always is assumed to be complete.

Suppose L 1is a continuous poset. A subset UgL is
Scott open if *xzU whenever x¢U and if vDeU, DgL directed
imply DnU#@. The collection of all Scott open subsets of L is

a topology. It is called the Scott topology and denoted

Scott(L). A function on or into or between continuous posets is

called Scott continuous if it is continuous w r t all the Scott

topologies involved.
Let AgL. The reader may wish to verify that A is

Scott closed (i e AceScott(L)) iff +VxcA whenever xeA and

A 1is closed under directed meets wr t L.

A filter on L 1is called open if it is Scott open. We
write L or OFilt(L) for the collection of all open filters on
L provided with the inclusion order FisF, iff FigF2. It is
not hard to see that uDe¢L if DgL 1is directed. Hence L is
up~complete and vD=uD when D 1s as above.

Let x,ye¢elL and F,GeL. Then

(2.1) X«y 1ff yeHg?x for some HeL;

(2.2) F«G 1iff FgtrzgG for some 2zelL.

Moreover,

(2.3) xe¢F implies xeHgtzgcF for some (z,H) eLxL.

For a proof of (2.1)-(2.3) consult Lawson [10]. Here it is also




proved that I is a continuous poset and that the mapping
(2.4) X3Fx={(FeL; x¢F}
is an isomorphism between L and OFilt(L). This fact is called

the Lawson duality, and L is sometimes in the literature

referred to as the Lawson dual of L. Lawson (loc cit) also

proves that L is a semi-lattice with a top iff L 1is so.

The equivalences (2.1)-(2.3) are very important. Below
they are used often and without explicit reference.

Now suppose L is a semi-lattice, not necessarily
continuous. A member pe¢L 1is called prime if xays<p implies
Xsp or ysp. Clearly the top of L 1is prime if it exists. The
spectrum of L 1is the set of all non-top primes. It is denoted
Spec(L). By the hull of a point x¢L we understand the set

h(x) = {(peSpec(L); x<p}.
From the definition of primes we get
h(xay)=h(x)uh(y)., X,yeLl,
Moreover, if the join of AzL exists, then
h(vA)=nh(A).

We say that L 1is order-generated by primes if

x=rh(x}, xeL.
If L 1is complete then the collection Spec(L)\h(L) 1is a
topology on Spec(L) (provided Spec(L)# of course). It is

called the hull-kernel topology.

Next consider an arbitrary topological space S. Write
G for its topology, which is a poset under inclusion ¢. It is
not hard to verify that S\{s)-e¢Spec(G) for all seS. It

follows that G 1is order-generated by primes. Note that,
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whenever GG,

G={s¢S; S\(s) e¢Spec(G)\h(G)}.

Hence the mapping

(2.5) s-S\{s}":

is continuous if the latter space

topology. Cf [7].
Recall that S 1is called

implies s=t, i e if the mapping

mapping is bijective, then § is
It is well-known that all

Suppose GeSpec(G), where G 1is

Then there is some seS\G. If ¢tz

hoods G;1,G;¢G such that s¢G;
Hence G;zG or G;zG. Since the

assumption we must have t¢G.

S-»Spec(G)

is endowed with its hull-kernal
a TO space if (s}-=(t}-

If this

in (2.5) is injective.

said to be sober. Cf [8].

Hausdorff spaces are sober:
a Hausdorff topology on S.

s, choose disjoint neighbor-

while t¢G;. Then GirG2cG.

former is ruled out by

Hence G=S\(s}.

Recall [8] that the saturation of A:zS 1is the set

As="(GeG;

Moreover, A 1is called saturated

that KzS 1is compact iff K3® is

Tl space are saturated. (Since

Let us agree to say that S
implies s¢K9¢KcG for some compact KcS.

assume here that K 1is saturated.

se¢As iff

AzG).

if A=As., It is easily seen
S0. Moreover, all subsets of a
{s}-"A#¢ (5].)

is locally compact if seGeG

Clearly we may always

It is not hard to see that if

S 1is locally compact, then G 1is a continuous lattice in which

Gi«G; if GicKcGe

this case we further have

for some compact (and saturated) KgS. In

{GeG: KZG} e¢OFilt(G)
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as soon as K¢S 1is compact (and saturated).

Now suppose that S 1is both locally compact and sober.
Write K for the collection of all compact and saturated subsets
of S 1in the exclusion order . Hofmann and Mislove (8] proves
that KX 1is a continuous semi-latticg in which K;«K; iff
K2gK1°, Note that the top ® of K 1is isolated in the sense
p«@, Hence also K\{9) 1is a continuous semi-lattice.

The paper [8] also proves that the mapping
(2.6) K> {GeG; KcG); K»>O0Filt(G)
is an iscmorphism. By the Lawson duality, so is also the mapping
(2.7) G» (KeK; KcG}: G»OFilt(X).

Let us also note here that K is a continuous semi-lattice if S
only is TO. Cf [8]. However, in the absence of sobriety the
isomorphism above between K and OFilt(G) breaks down.

Any continuous poset L endowed with its Scott topology
is a locally compact sober space [10]. To see the local
compactness, suppose xXeUeScott(L). Choose yeU such that y«x.
Then xe¢{z; y«zZ}ctycU. Now local compactness follows from the
easily proved fact that *y is compact w r t Scott(L). Note
also that (*y)°=(z; y«z}. A routine compactness argument next
shows that U;j«U; iff U1;U?=1¢x1gvz for some finite sequence
X1,..¢,XneL,

Let us further say that S is guasi locally compact (8]

(16] if seGeG implies s¢H«G for some He¢G. Such spaces are
called core-compact in [6], semi-locally bounded in [9] and
spaces satisfying condition (C) in [3]. The monograph (5]

discusses them too. It is not hard to see [6] that a space is
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quasi locally compact iff its topology is continuous. Hence, if
S 1is locally compact then S is quasi locally compact too. The

converse is false, unless S is sober [7].
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3. Measurability

Here we provide our continuous posets with a canonical c¢~field.
Then we discuss necessary and sufficient conditions for
measurability.

Of course a successful discussion of probability measures
on continuous posets require some condition of countability.

Here it is convenient to assume the Scott topology to be second
countable.

Let L be a continuous poset. We say that a subset AcL
is gseparating if x«y implies the existence of some 2z¢A
satisfying xs<zs<sy. It is not hard to see that AgL is
separating iff (yeA; y«x} is directed with join x for all

XeL.

PROPOSITION 3.1: Let L be a continuous poset. The following

five conditions are equivalent:

(i) Scott(L) has a countable open base:;

(ii) Scott(L) has a countable open base;

(iii) L contains a countable separating subset;

(iv) L contains a countable separating subset;

(v) there is a countable collection B of subsets of L
such that, whenever x¢FeL, we have *tx¢cBcF for sone

Be¢B.

Proof: Suppose B fulfills the requirements of (v), which
trivially follows from (i). Whenever B,Ce¢B 1s separated in the

sense that BgF«HcC for some F,HelL, choose xgce¢lL such that
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BctxpccC. Clearly the obtained collection A={xpc¢) is count-
gble. Suppose x«y. Then *ygF«HgtzcGgtx for some F,H,Gel
and some 2z¢L. Next choose B,C¢B with *tygBgF and *tzcCcG.
Finally choose xpce¢A such that BgtxpccC. Then, obviously,
x<xpc<y. This shows (iii).

Similarly the reader may show that (iv) follows from
(iii). That (iv) implies (i) is an immediate consequence of the
fact that L 1is an open base for Scott(L).

This shows that (i), (iii), (iv) and (v) are equivalent.
In fact it shows that (ii) and (iv) are equivalent toco. QED

We write I or I for the o-field on L generated by
the sets *x, x¢L. The main result of this section gives several
equivalent conditions for measurability. In particular it says
that [ coincides with the ¢~field generated by Scott(L) if

the latter is second countable.

PROPOSITION 3.2: Let ({I,R) be a measurable space and let { bke

E——

be a mapping of N into a continugus poset L. Suppose

I

Scott (L) has a countable open base. Then the following four

conditions are equivalent:

(1) ¢ 1is measurable R/L;

(ii) {xsE)}eR, xXel;
(1ii) (x«f)eR, XeL.
(iv) (§€F)¢R, FeL.

All these conditions imply
(v) (<X} €R, XeL.

Proof: Let A and A be countable separating subsets of L and
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L, resp. Fix FeL. Clearly F=uxer?x. But if xe¢F then y«x
for some ye¢FnA. Hence
F=U{tx; xXeFnA}.
We see that (ii) implies (iv). Next fix xe¢L. If x«y then
yeF for some FeA with Fgt*x. Therefore,
{(y: x«y}=u {FeA; Fgtx}.
Moreover,
rxX=n{{2; y«2Z}; Y€EA, Y«X}.

Hence (iv) implies (iii) and (iii) implies (ii).

To see the final assertion, just note that +¥x is Scott
closed for all xeL. QED

We have not been able to prove that condition (v) of
Proposition 3.2 implies measurability of §. Indeed we believe
that this is not possible without further restrictions on L.
However a counterexample is lacking.

Simple sufficient conditions for Scott continuity are
of interest to us. The next result will be applied to

probability measures on continuous posets.

PROPOSITION 3.3: Let ¢ be a mapping between two continuous

posets which have second countable Scott topologies. If

c(xXn)?c(x) as xn?*x then ¢ is Scott continuous.

Proof: Let (xn)gl be countable and directed. Put x=wnxn. If
xe{xn} there is nothing to prove, so let us assume that x¢{Xn).
Choose n(l)>1 such that x:15Xn(1). Then choose n(2)>n(l)

such that xj<xn¢2) for 1l<is<n(l). By continuing in this manner

we obtain an increasing sequence (xn(k)} with join x. By




assumption
C(X)=viC(Xntk))sSvnC(Xn)sc(x).
Thus we have equality throughout. Now Scott continuity is easy
to prove. Cf [14]. QED
The following consequence needs no proof. Note that it
can be extended to directed and countable collections of

measurable functions.

COROLIARY 3.4: Let u be a measure, and let (A,) be a

directed and countable collection of measurable sets. Then

e R, X N e s =2

Y nAn=vV nulAn.
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4. Existence and uniqueness

i our first result discusses some continuity properties of
probability measures on continuous posets. The uniqueness
T theorem then is a simple consequence. Finally we discuss
necessary and sufficient conditions for the existence of

t probability measures on continuous semi-lattices.

By a random variable in a continuous poset L we

understand a measurable mapping of some probability space,
usually denoted (,R,P), into L. The distribution of a random
variable in L 1is the induced probability measure on (L,1I).

Let §,n be random variables in L. We write fin if the

distributions of ¢ and =01 coincide, i e if P§-t=Pn-!,

‘ PROPOSITION 4.1: Let t be a random variable in a continuous

poset L. Suppose Scott(L) has a countable open base. Then,

for al FelL,
P{teF)=voesP{feG)=vxerFP{X<E)=vxerP{X«i}.

Moreover, for each xe¢L,

P(x<t)=rype xP{ysE)=AycxP{Y«f}=AxeretP{§€F).

Proof: Let AgL be countable and separating. Fix FeL. We saw
) in the proof of Proposition 3.2 that Fm (*x; xefhA}). It is not
i hard to see that FnA 1is filtered. By Corollary 3.4,
P{§eF}=Vxern aP{xst).
If x¢F then x¢G for some Gel with G«F and, moreover, Y«X

t for some ye¢F. Now the first assertion of the proposition is

obvious.
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To see the second, first note that, for xe¢L,
"X=0yen,yex{2; Y«Z}Nyen, yexy,
where both intersections are filtered. By Corollary 3.4,
P{xsE}=Ayen, y<xP{y«f}=Ayen, ;xxP{yst}.
Moreover, if y«x then xe¢Fg?y for some Fe¢L. Now the second
and final assertion of the proposition follows at once. QED
By combining Proposition 4.1 with Proposition 3.2 we

obtain the following uniqueness result.

THEOREM 4.2: Let ¢ and =+ be random variables in a continuous

poset L. Suppose L is closed under finite non-empty joins or

meets, and that Scott(L) has a countable open base. Then the

following four statements are eguivalent.

d
(1) f=n;

(ii) P{x«f}=P{x«n}, xeL;
(1ii) P{x<i}=P{x<n}, xeL;

(iv) P{teF)=P{(ne¢F), FeL.

Proof: Of course (i) implies (ii). By Proposition 4.1, (ii)
implies (iii) and (iii) implies (iv). If L is closed under
finite non-empty meets, then Ly ¢) is closed under finite non-
empty intersections and, therefore, (iv) implies (i). But
Proposition 4.1 also shows that (ii) implies (iv) and (iv)
implies (iii). If L 1is closed under finite non-empty joins,
then the collection (*x; xe¢L} 1is closed under finite non-empty
intersections, and, therefore, (iii) implies (i). QED

We continue to discuss our existence criteria for
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probability measures on continuous semi-lattices. Suppose e is
a real-valued mapping on some semi-lattice L. Let yeL. Then
we write aye for the mapping on L defined by putting
Aye(x)=e(x)-e(xny), xeL.

Cf [2). Note that .y may be regarded as an operator on the
collection of all mappings from L to R. We will be
particularly concerned with iterates of such operators.

Let X,X1,...,Xn€elL. A simple induction procedure yields
(4.1) .\XI...Axne(x)=e(x)-21e(XAx1)+Ei<je(x/\xi/\x,-)—

et (=l)PE(X AXIA ¢« oA Xn) &

Moreover, if x<x; for some i, then

4.2 A, «.0d e(x)=0.
(4.2) )t &)
We conclude from (4.1) that the mapping era, “.Axne
1
only depends on the finite set A=(X;,...,Xn}. Accordingly we
sometimes write Aa=ay ”.A&1 We also put i =e.
N .

We furthermore conclude from (4.1) that
(4.3) are(x) =i xe(x),
where AaX=(yaX; Y¢A}. Moreover, by (4.1) and (4.2) if yax<z
for some distinct y,ze¢A then
(4.4) are(x)=anrv(yre(x).

In particular, if y<z, y#2 then aa=aa\(y).

Now let us suppose that L is closed under finite non-
empty joins (i e L* is a semi-lattice), and let A:L»R. We
define

M (xixX1)=A(X)=A(xw1), X,X1eL

and recursively for n22
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An(XiX1,e00,Xn)=An-1(X;X1e00,%Xn-1)
“An-1 (XVXniX1,+eesXn-1), X,X1,.++,%Xne€Ll.
Put e(*x)=A(X), XeL. Then, for all neN and XxX,X1,...,Xn€L,
(4.5) An(x;xx,...,xn)=3+x1...3¢x S(Tx).

To see this, it is enough to note that
rxnty=txvy, XxX,yeL.

We may now state our existence theorems.

Theorem 4.3: Let L be a continuous semi-lattice with a top,

and let c¢:L»[0,1]. Suppose Scott(L) has a courtable open

base. Then c¢ extends to a unique probability measure on (L,Z)

iff
(1) AFIH.AF c(F)20, neN, F,Fy,...,Fne¢L;
n
(ii) c(F)=limnc(Fn), F,F1,F2,...€¢L, FntF;

(iii)  e(L)=1.

We postpone the proof. 1In the special case when L is a
continuous lattice we can say more. Let us write 0 for the

bottom of L.

THEOREM 4.4: Let L be a continuous lattice and let A:I~[0,1].

Suppose Scott (L) has a countable open base. Then there exists

a unique probability measure 1 on (L,I) satisfying

WMx=A(x), xeL

iff
(1) An(X:X1,+...,Xn)20, neN, X,X1,...,%Xn€l;
(ii) Ax)=limn\(Xn), X,X1,X2,...€L, Xpt'x;
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(iii)  A(0)=1.

Before the proofs of these two existence theorems let us
note that the latter can be weakened to continuous semi-lattices
which are closed under finite non-empty joins provided condition
(iii) is replaced by
(iiiv) Ve eL M {X)=1.

To see this, suppose L 1s such a continuous poset. Add a
bottom 0 to L and put 1(0)=1l. Check that the presumptions
of Theorem 4.4 are at hand and conclude that there is a
probability measure ) on LV (0) satisfying *x=A(x), XeLuy(0}.
Then note that the family (*x; xeL} 1is directed. 1Its union is
L. By Proposition 3.4 and (iii') we now get

2 {0)=1= Vg e XM X=0.
That is, ) 1is concentrated on L.

Let us say that a mapping A:I»{0,1]) is a distribution

function if it satisfies the three conditions of Theorem 4.4.
Our proofs of these theorems are very close to Matheron's proof
of Choquet's original result [2][11]. It is given in a series of
lemmata. Proofs are given only when required by the present
higher generality.

Our first lemma discusses the necessity of condition (i)
of Theorem 4.4. 1Its proof is left to the reader. The necessity

of all the remaining conditions are obvious.

LEMMA 4.5: lLet u be a probability measure on L and write

M(x)=u?*x, xeL. Then




n
Mn(X:X1,0.0,Xn)=utX\Vi=1*xi, neN, X,X1,...,Xnel.

We proceed to discuss the sufficiency of the three
conditions of Theorem 4.4. Recall that a collection S of
subsets of L 1is called a gemi-ring. If (i) ¢es, (ii)

S1nS2¢S whenever S:,S:¢5, and (iii) §S§:1,S:2¢S, S1cS2 imply

t that S:;\S: 1is a union of a finite family of pairwise disjoint
members of S. It is a semi-field if furthermore LeS.

Let F be a collection of filters on L which is closed
under finite non-empty intersections. Then F 1is a semi-
lattice. We put
(4.6) S={A\uA; AeF, AcF finite}).

|
| LEMMA 4.6: The collection S, defined in (4.6), is a semi-ring
‘ of subsets of L. It is a semi-field if LeF.
LEMMA 4.7: Let SeS be non-empty. Then S=B\uvjAj for some
l BeF and some finite (Aj}gF satisfying
: (1) AigB for all 1i;
(ii) AjcA; for all distinct A;,A2¢{2i}.
f
Cf with (4.3) and (4.4). Any representation B\uA of a
& non-empty S¢S satisfying the conclusion of Lemma 4.7 is called a
i reduced representation.
The next two lemmata need not be commented on in the case
t discussed by Choquet [2][1l1].
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LEMMA 4.8: let B,Ce¢F and let AzF e finite. If ¢ #B\uAcC

then BgC.

Proof: Let xeB. We must prove that xe¢C. If x{uA this is
obvious, so let us assume that xe¢A for some Ac¢A. Choose
yeB\VA. Then xAyeB. If XAyeuA then yeuA. This is not

true. Hence xAyfuA. Hence xy¢C, which implies xe¢C. QED

LEMMA 4.9: Let Be¢F and let AcF be finite. If BguA then

BzA for some AcA.

Proof: Since B#0#, A must contain at least one filter. Suppose

BZA for all Ac¢A. For every Ac¢A we then choose xi¢B\A.

Since A 1is finite and non-empty, X=MmXxa¢B. But then xeA,
and therefore xp¢A, for some Ae¢A. A contradition, from which
the lemma follows. QED

Now these two lemmata are used in the proof of the

following unigueness theorem for reduced representations.

LEMMA 4.10: Let A\vA and B\uB be two reduced representations
of a non-empty member of S. Then A=B and A=B.

Proof: The conclusion A=B follows at once from Lemma 4.8. But
then we must have v A=uB too. Fix A'¢A. By Lemma 4.9, A'gB!
for some B'e¢B and, moreover, B'CA" for some A'"e¢A. But then
A'cA", Since the representations are reduced, A'=A"., We
conclude that AgB. Of course the same argument may be applied
to show BzA. QED

The next result follows at once from (4.3), (4.4) and




Lemma 4.10.

v
(D
t
)
[e)

LEMMA 4.11: Let e:FsR. If A\vA and B\.B r

|

representations of a member of S, then

Aze(A)=1pe(B).

Thus, whenever e:F»R we may define a mapping 1 on S
by putting

(4.7) YA\ uA=s1e(A), AeF, AzF finite.

LEMMA 4.12: let e:F»R. Then the mapping » on S, defined in

(4.7), is additive.

Proof: Fix S:,S2¢L such that SinSz:=9 while S1uS:=Se¢S. Of
course

(4.8) \S1US2=1S1+1S;

if S1 or S:; 1is empty, so let us assume both to be non-empty.
We further assume that A\uvaA, B\uB and C\« are reduced
representations of S;,S2 and S, resp.

By Lemma 4.8, AuWBzC. Clearly AnBgu(AuB). By Lemma
4.9, AnB 1is included in some member of A B. Let us assume
(4.9) AnBgA',
where A'¢A, and prove that this implies A=C. (Analogously the
reader may show that B=C follows from AnBguB.)

If CgB then AgB and AzA' follows by (4.9). This is
clearly impossible. Hence we may select a point xe¢C\B. 1In
order to obtain yet another contradition, suppose there is a
point ye¢C\A. Then xAye¢C. Let {(Ci} be an enumeration of (,

and choose for each 1 some Xje¢C\Cij. Then
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2=XAYAA|X|€eC\UC,
since 2¢Ci implies xieCi. It follows that zeAyB. This leads
at once to a contradiction and we conclude that CcA. Hence A=C
as claimed in the above paragraph.
But then BgA and from (4.9) we get BgA'. Let XxeS.
Then x¢C. If xe¢L\A' then xeB¢ and, therefore xe¢Si. Thus
we have S\A'c¢S:i. The reverse inclusion is obvious. Moreover,
if xeA' then xeS; and we must have xe¢S2. Hence S"A'cS;.
Again the reverse inequality is obvious. We thus have
S1=S\A'=C\U(C L{A'}):
S2=SnA'=CnA'\uC
and see
AS1+)3S2=acapre(C)+ace(CnA')=ace(C)=)S.
Thus (4.8) holds if (4.9) is at hand. The remaining case
is completely similar. QED
Below we will prove, for a suitable choice of F and e,
that ) 1is both non-negative and continuous. For this we need
the following result, which needs no proof in the case discussed

by Choquet [(2]([11].

LEMMA 4.13: Fix xe¢L and FeL. Then there are sequences

{yn},{2Zn)cL and (Gn},{Hn)}eL such that

Gi12%"Y12G22.¢..2M"%X="MGp=ntyYn;

rei1gH1g228. .. gF=Unt2Zn=UnHn.

Proof: Let AcL be countable and separating. Then the set
{YeA; y«x} 1is countable and directed. Its join equals x. Now

proceed as in the proof of Proposition 3.3 and conclude that




there is a sequence (ynl}glL, satisfying yn«yn+i1«x for all n,
with join x. Then choose ({Gn}gL such that
AYn+15Gn+15*Yn. The reader easily shows that *X=Mmtyn=MnGn,
thereby completing the proof of the first part of the lemma.
To see the second part, proceed as above and conclude
that there is a sequence (Hp)}cL fulfilling Hn«Hns+i1«F, neN,
N and VnHnpn=F. Then choose {zp)}glL such that Hng"Zn+i1gHn+1.
' QED
We now fix
(4.10) e(A)=VxerAN(X), Ac€F
and define 1 as in (4.7). The collection F will soon be
specified.
In order to complete our proof of Theorem 4.4 we need to
know that e satisfies certain continuity properties. Hence the

Lemmata 4.14-4.18.

LEMMA 4.14: Whenever A,A;,A2¢F we have

\ e(AnAy)<e(A);

‘ e(AnA1)+e(AnAz)<e(A)+e (A A1nAz).

Proof: The first assertion is equivalent to saying that e is
! increasing. It needs no proof. Now choose x;¢AnA; and
X2€AnAz2. Then x=xi1aXz¢A and XxX1vxz¢AnA;1nAz. Hence
) A1)+ (X2) =\ (XvxX1)+A (X VX2)
i SA(X)+A(XvXivX2)=A(X)+\(X1vX2)
<e(A)+e(AnA1nA2).

Now the second assertion of the lemma is obvious. QED
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LEMMA 4.15: Let A;,B;¢F, i=1,2,..., and suppose AjcB;i for

each 1i. Then, for every n=1,2,...,

n n n n
e(ni=1Bi)+li=1e(Ai)se(ni=1Aj)+Li=1€(Bi).

Proof: First suppose n=2. (The result is obvious if n=l.)

Put D=B;, D;=A; and D:=A2. By Lemma 4.14,

e(A;)+e(Az2nBy)<e(B1)+e(A1nA2).

Next put D=B2, D1=B; and D:=A;

. Then

e(B;i "Bz)+e(Az2)se(Bz)+e(A2nB1).

Add these expressions and cancel

e(A;nBi) from both sides.

Now suppose the result is true whenever nsm, m22. Then

m+l m
3( ni:lBi)+e(ni-

m+ 1 m

=1Aj)+te{An+1)

<e(nji+1Aj)+e(nji=1Bi)+e(Bn+1)

Add ¢
the supposition above:

m+l m+ 1

z1e(Aj) to both sides of this inequality and use

m

e(ni=1Bj)+li=1e(Aj)+e(ni=1A])

m+1 m+1

m
ce(ni=1Aj)+Lli=1e(Bi)+e(ni=1Aj).

Thus the result is true for n=m+l. By induction the lemma

follows. QED

The next result presumes

txeF, xe¢L. Note that then

e(t*x)=A(x), XeL.

LEMMA 4.16: Suppose ?*xe¢F, xe¢L.

AptA. Ihen

let A,A;,A2,...€¢F and suppose

e(A)=limne(An).
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Proof: For n=1,2,... choose xpeAp, with
O0<e(An)=A(Xn)Se*2-N

for some fixed ¢>0. Note that #*xncAn. Hence, by Lemma 4.15,

n
O<e(An)=A(Vi=z1Xj)<e

We now see that

e(A)SlimnE(An)=limnA(V?=1Xi)=A(ViXi)
Note that
MViXi=n jMXicNiAi=A.
Hence A(vixi)se(A). QED
The following two lemmata require that *x°Fe¢F for all
xeL and FeL. Of course this implies that Le¢F and that *™xeF,

xe¢L. Thus Lemma 4.16 is at our disposal.

LEMMA 4.17: Suppose ?*X0FgF, XeL, FeL. Let xe¢lL, FeL and let

{yn}cL. Suppose (*yn)?F. Then

e(*x"F)=limpe(*xVyn).

Proof: Since xvynetxnF,
VnA(XVyn)<e(txnF).
But if ye'x"F then xVyn<y for sufficiently large n. Hence

A(Y)sVnA(XVYn),

from which
e(*XNF)<VvaA(XVYn)

follows. QED

LEMMA 4.18: Suppose *xnFeF, x¢lL, FeL. Fix x,y¢L and FeL.

_—h o e — -



27

Let further (zn)cL and {Gn)cL. Suppose (%*zn)?F while

GnV¥(*x). Then

e(MxvynF)=limne(?yvzZnnGn).

Proof: Let us first note that
XvYvZn €tyvZnnGne?yn FnGn.
Hence
e(txvyvzn)se(?tyvznnGn)se(*ynFnGn) .
By Lemma 4.17,
limpe(*xVyvzn)=e(txVynF)
and by Lemma 4.16,
limpe (*yNFoGn)=e(*xXVy"F).
Now the conclusion of the lemma is obvious. QED
Let us now fix our collection F to be
(4.11) F={*xnF; xXe¢L, FeL}.
Of course this is a semi-lattice. The next result allows the
conclusion that 1\ (see (4.7)) is an additive mapping of S

into [0,®).

LEMMA 4.19: lLet Ae¢F and let AcF e finite. Then

= o=

aze(A)20.

Proof: Suppose A={*xinFi; l<ism)} and A=*xonFpo. For 0<i:<m
choose some sequence ({Yin)}glL such that (?yin)?F. Suppose
0eIc{0,...,m}). Then, writing Yin=VieiYin,

AYrigtyYr28. SN i eIFi=NntyiIn.
Now ajze(A)20 follows by (4.1) and Lemma 4.17. QED

Introduce
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C={*x\VA; xe¢L, AcL finite).
Note that C is closed under non-empty finite intersections.
Moreover, in the terminology of (12}, ¢ 1is a compact class of
subsets of L. This means that, whenever Cnv®, where
€1,C2,...€C, wWe have Cp=0 for n sufficiently large. To see
this, suppose Cp=*%Xn\Uldn. Then npCnp=@ only if A*vnxngun(uAn).
But “*VvnxXn 1is Scott compact. Hence *MViXng-n<m(UAn) for some
m. Our claim now comes from the fact that un<m(udn) 1is Scott
open.

Suppose @#Se¢S. Then

S=*xnF\ua,
where A={'X;inFij; l<ism). Choose sequences {yn}gL and
{Gin}gL, lsism, such that (%yn)?F while Gin¥(?xi). Write
Chn="xXVvyn\U{GinnFi; 1l<ism}
Then CnheC and, by (4.1) and the Lemmata 4.17 and 4.18,
AS=1imn\Cn.
Hence
AS=V{\C; CeC, CgS}, SelL.

Note that \L=2%0=A(0)=1l. By Proposition I.6.2 of [12]
it now follows that )\ extends to a probability measure on
(L,I). This completes our proof of Theorem 4.4

We continue to discuss the proof of Theorem 4.3. Suppose
L is a continuous semi~-lattice with a top having a second
countable Scott topology and let c:I»(0,1]) satisfy the three

conditions of this theorem. Whenever UeScott(L) we write

n
A(U)=A{c(ni=1Fi): neN, Fy;,...,FneU}.

Our aim is to show that .\ is the distribution function of some
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probability measure ) on Scott(L). Here we will use the
already proved Theorem 4.4. Then we show that ) concentrates
its mass -o OFilt(L). Our final argumentation uses the Lawson
duality.
First note that condition (iii) of Theorem 4.4 trivially
holds. Clearly A\ is decreasing. Thus if Un*U then
MU) SARA(Un)=limpA(Un) .
Suppose .\ (U)<x. Then there exist some F,,...,FneU with
c(nT=1Fi)5x. But then
UT=1*F1£U=U nUn.
Since U?=1*F; is a Scott compact subset of L, we must have
UTslﬁF;;Un, and therefore Fi,...,FneUn, for n sufficiently
large. But then AnA(Un)sc(ﬂT=1F;)sx. Hence
AMU)Y=1limn A (Un) .
That is, condition (ii) of Theorem 4.4 is at hand too.
Fix keN and Uo,U1,...,UreScott(L). For 3j=0,1,...,k
and ne¢N choose Fini,+..,Finmtn) el such that
(Hjn)otUj, 3=0,1,...,k,

where

mi{n)

Hjn=Uj=zy; *Fjnj, 3J=0,1,...,k, neN.
Let 0eJg{0,1,...,k), and write
Hjn=Uje¢sHjn, neN.
Then, for all such J's,
HyigHyeg. . QUjesUj=usHyn.

It is not hard to see that

min)
limnc(Njesni=1 Fini)=A(VjegUy)

and, therefore,
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M (UsUy,...,Ux)20.
Thus, also condition (i) of Theorem 4.4 is at hand.
We may now conclude that there is a probability measure
» on Scott(L) with distribution function JA. This concludes
the first part of our proof of Theorem 4.3.
We proceed to prove that
(4.12) \OFilt (L) = 1.

The following result is useful.

PROPOSITION 4.20: Let =+ be a random variable in Scott(L),

where L is a continuous semi~lattice. Suppose Scott(L) is

second countable. Then 1¢OFilt(L) a s iff

n n
Prniz1{Fie€n}=P{ni=1Fien}, neN, Fi,...,Fnel

Proof: The necessity is obvious. To see the sufficiency, first
note that it implies

P{Fi,¢..,Fnen, n?=1Fitn}=o, neN, Fi,...,FnelL.
Let AZL be countable and separating. It is not hard to see
that the probability of the even that

n
(4.13) Fi,...,Fnen implies nj=z1Fjen, neN, Fy;,...,Fnea

is one. By a straightforward approximation procedure it may be
seen that A can be replaced by L in (4.13). This shows that
1¢OFilt L a s. QED

Thus we must provide a proof of

n

n
(4.14) MU; Ui= ?"FicU}=\{U; *ni=1FicU}, neN, Fi,...,Fnel.
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Note that the sets (U: u?=1¢F1QU} and (U: *ﬂ?=1FiQU)
are open filters of Scott(L). Hence, by Proposition 4.1, and
some straightforward argumentation,
WU U?=1TF1;U}=V(A(U); u?=MF1QU}
=V{\(U): F1,...,FneU}=c(“?=1 Fi)
and
n n n
WU: M= FigU)=vY{\(U); ni=1FjeU)=c(ni=1Fi).
Thus (4.14) is at hand and we conclude by Proposition 4.20 that
(4.12) holds. This shows the second step of our proof of Theorem
4.3.
Let xe¢L. Then Fx={FeL; XeF)eOFilt(L). We get
x%Fx=A(Fx)=A{c(ﬁ?=1F1); neN, Fi1,...,FneFx}
=A{c(ﬂ?=1F1); neN, °?=1FiEFx}=Ax€FC(F)'
By the Lawson duality (see (2.4)) we may regard 1\ as a measure
on L. By doing so we obviously have
\x=rxerCc(F), XeL.
It is now easily seen that

\F=c(F), FeL.

This completes our proof of Theorem 4.3.
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5. Convergence

In this section we will discuss weak convergence of probability
measures on continuous semi-lattices w r t the so called Lawson
topology. We first provide our continuous posets with this
topology.

Let L be a continuous poset. By the Lawson topology on
L we understand the topology generated by the open filters of L
and the collection L\*x, xeL. It is known [8] that this
topolgoy is completely regular and Hausdorff. If Scott(L) is
second countable then so is the Lawson topology (see Proposition
3.1), and we may conclude from well-known results that L is
Polish (i e a completely metrizable second countable space) (see
e g [15]). 1In this case [ coincides with the Borel-s-field
w r t the Lawson topology.

The paper [8] also proves that the Lawson topology is
locally compact if L 1is closed under finite non-empty joins.
In this case the filter 'x 1is easily seen to be compact for
each XxeL.

Let us also note here that, if L is a semi-lattice,
then the mapping (x,y)»x*y 1is continuous in this topology.

Some of the facts quoted above follow rather easily from

the following result, which is a cornerstone in our development.

PROPOSITION 5.1: Let L be a continuous poset. Suppose

Scott (L) is second countable. Then the Lawson topology on

OFilt(L) coincides with the restriction to this set of the

Lawson topology on Scott(L).
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Proof: First note that, for xe¢L,
{FeL; xXeF}={UeScott(L); txgU}InL
while, for HeL,
{FelL; HgF}={UeScott(L); HgU}n L.
Hence the Lawson topology on L 1is included in the relative
Lawson topology.
To see the converse, let K¢l be compact and saturated
w It Scott(L). Then
K=Ks=n {UeScott(L): KcU).

Since Scott(L) has a countable open base, K=n U, for some
decreasing sequence ({Up}cScott(l). Note that if KgU, then
KcVy for some Vn«Up. Now choose for each n some finitely
many Xni,...,Xnm¢n) €L such that VpcuitxnigcUn. Note that
Kn=ui?Xn 1s compact and saturated. Clearly Kn+K. Hence

{(UeScott (L) KZUIL= n{Fel; U itXnicF}=nni{FeL; XniecF}.
Let further VeScott(L). Then V=vuqFa for some (Fal}cL. We get

{UeScott(L); VJU)nL=uq{FeL; FagdF}.
Hence the relative topology on L is included in the Lawson
topology. QED
Let ¢£,%1,%2,... be random variables in L. We write

fn:f when §n converges in distribution to §{, i e when
P§{n-1 converges weakly to P{-!, Cf [1].

We now state and prove the main result of this section.

THEOREM 5.2: Let &,%1,(2,... be random variables in a

continuous semi-lattice L. Suppose Scott(L) has a countable
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open base. Then the following three conditions are eguivalent:

d

(i) §na E7
1iminfnP{ineF}2P({§eF}, FeL,

(i1) m m
limsupnPri=1{Xi<fn)<Pni=1{Xisf}, meN, X1,...,Xmel;

(iii) m

liminfaP{x«fn)2P{x«¢t}, Xel,
[limsupnPni=1{XiSEn}SPnT=1{xisE), meN, X1,...,Xm€L;
Before the proof, let us just note that the second part
of conditions (ii) and (iii) reduces to
limsuppP{xstn}sP{xsf), XeL
if L 1is closed under finite non-empty joins.
Proof: Suppose (i). Then (iii) follows from the fact that *x
is closed while (y; x«y) 1is open for each x¢L. Cf [1]. To
see that (iii) implies (ii), note first that
P{§eF)=vxerP{x«i}, FeL.
Cf Proposition 4.1. Now fix FeéL and let ¢>0. Then
P{teF}cP(x«f}+e
for some x¢F. Hence, by the first inequality of (iii),
P{feF)sliminfnP{x«En)+e
<liminfnP{fneF}+e.
Thus (iii) implies (ii) indeed.

To see that (ii) implies (i) we first consider the case
when L is a continuous lattice. Then L is compact, which
implies that (tn) 1is relatively compact w r t convergence in
distribution.

Select a subsequence ({fntk)} and a random variable 1
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d
such that §n(x)»n. Then, since (i) implies (ii),

liminfyP{¢tn(x) €eF}2P{n¢eF}, FeL,
limsupsP{X<Enck) }SP{X<n}, xeLl.

Let AzIL be countable and separating. It is easily seen that
tX="xeGeaG. Now suppose xeGeA, and choose ye¢L and FeL such that
*xcFgtyeG. Then, by (ii),

P{teG)2P(ysf)2limsupnP{ys<én)
>limsupnP{{neF}2liminfxP{En(k) €F)}
>P(n€F}2P{X<n}.

The collection (GeA; xe¢G} 1is filtering. By Corollary 3.4,
P{x<t}2P{xsn}, XeL.
Next fix PFeL. If GeA, G«F then Ggt*xcF for some x¢L.
Hence
P{teF}2P{x<§)2P{XSn)2P(neG}.
By an other reference to Corollary 3.4,
P({¢F)2P{n¢eF}, FeL.
Moreover, by (ii),
P{{eG)<liminfnP({§neG)<liminfnP{xsén)
$limsupkP{x<Enck) }SP{XSn}<P{n¢€F},
and by yet another reference to Corollary 3.4,
P{teF)<sP{neF}, FeL.

Collect the pieces, refer to Theorem 4.2 and conclude that
Ein. By [1], En:E follows.

Let us now remove the extra assumption on L. For xe¢L write
F(x)=(FeL; x¢F). Let KcL be Scott compact and saturated. We saw in

nim)

the proof of Proposition 5.1 that there exist a sequence (Vij=i *Fnmi}

with
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nim)
(v i=1'?Fmi) vK.

Here the Fni's belong to L. It is not so hard to see that, by
(ii),
liminfnP(KCF(§n) }21liminfnP{Vi*FniCF(§n)}
=1liminfnP(éneniFmi}2P(te" iFmi)
=P{Ui'FnilF(§) }"P{KgF(£)}.
Hence, whenever K¢L 1is Scott compact and saturated,
limin€nP{KCF($n) }2P(KCF(£)}.
Next fix UeScott(L). Then U=unpF(Xn) for some countable ({xn}gL.

By (ii) we now get

limsupnP{UcF (§n) })=limsupnP n{F (Xn)cF (£n)}
<limsupnPn pcnm{Xksén)
SPok an{XkSE} VP m{Xns§ }=P{USF(£)}.
Hence, whenever UeScott(L),
limsupnP{UCF (§n) }<P{USF(§) ).
We may now conclude by the already proved special case of the theorem
that F(sn):F(E) w r t the Lawson topology on Scott(L). By
Proposition 5.1, this implies that F(En):F(g) w r t the Lawson
topology on OFilt(L). By the Lawson duality we now see that En:E-
QED
The next result shows that the collection of all pairs
(x,F) eLxl, satisfying Fg?x and P((e¢*x\F}=0 1is sufficiently

rich for many purposes (c¢f condition (v) of Proposition 3.1).

LEMMA 5.3: Suppose ¢ 1is

I

random variable in a continuous

semi-lattice L, which has a second countable Scott topology.
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Then, whenever Xx¢F, we have xe¢HctzcF for some pair

(z,H) eLxL satisfying P{zsi}=P{}eH).

Proof: Put x(1l)=x and choose x(0)¢F such that x(0)«x(l).
Then choose ({x(k*2-"); neN, k=1,2,...,2"=1}) such that
X(k+*2-")«x(l+2-m) whenever k+*2-"<l:2-m, Now put
y(t)=v{x(k:2-n); k+2-n<t}, 0O<t<l. It is easily seen that

Y(t)=vscty(s), 0<t<1l.
Hence the mapping

£(t)=P{y(t)sty}, 0<t<l
is decreasing and left continuous. Let t be a point of
continuity. Then, by monotone convergence, writing z=y(t) and
H=us>t 'y (s),

P{z:t)}=P(teH).
The reader easily verifies that HeL and that xeHgtzcF. QED
This leads directly to the following result, which

supplements Theorem 5.2.

PROPOSITION 5.4: Let ({fn} be a sequence of random variables in

a continuous semi-lattice L which is closed under finite non-

empty joins. Suppose Scott(L) is second countable. If ¢n

converges in distribution to some random variable ¢, then there

are separating subsets A and A of L and L, resp, with
(5.1) P{xst)=limpnP{x%<En}, XeA;
(5.2) P(teF)=1imnP{§neF}, FeA.

Let Be¢l be such that, whenever xeF, e have *xgBgF for some

BeB and let «c:B3[0,1] be such that, whenever ¢>0 we have
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.

1 c(B)21-¢ for some Be¢B having a lower bound. (This restriction

on ¢ is superfluous if L is a continuous lattice.) If

v

(5.3) c(B)=1limnP{fneB}, BeB,

then &, converges in distribution to some random variable ¢

satisfying
(5.4) P{x<t)}=n{c(B); BeB, *xcFgB for some FelL}, xeL:

R~ -

(5.5) P(teF}=v{c(B); BeB, BctxcF for some xe¢L}, Fel.

Thus, En:E if P{x<in)}>P{x<f} for all x in a
separating subset of L, or if P{(§{neF})>P(f(e¢F}) for all F 1in a
separating subset of L.

Proof: Suppose gn:g and let y«x. Then xe¢Fgty for some
FeL. By Lemma 5.3, there is a pair (2z,H)e¢LxL satisfying
xe¢HctzgcF and P{te?2\H}=0. By Theorem 5.2, P(zsi{n}2P{25}}.
} Hence, the set of all xe¢L for which
P{x<§)=1limnP{X<§n)
L is separating. Similarly, the reader may prove that the set of
all FeL satisfying

P{feF}=1imnP{§n€F)
i is separating.

To see the next part of the proposition, fix >0 and

choose Be¢B, yeL such that -Bgty and c(B)>l-¢. Then
P{(tfneB)>1l-¢ and, therefore, P{ystn} for n2n,, say. It follows
easily that ({f{n) is tight. Hence there is a subsequence
{¢ntk)») and a random variable ¢ such that En(k):E-

Fix xeL. If y«x then *xgBgcty for some Be¢B. Hence,

by (5.3) and Theorem 5.2,
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limsupnP{x<¢{n}<c(B)<limsupiP{y<tnck) }<sP{yst}.
By Proposition 4.1,
limsupnP{x<§}<P{x<t}, xel.
Similarly the reader may show
liminfnP({fneF}2P{teF}, FeL.
We conclude by Theorem 5.2 that $n:E-
To see (5.4), fix xe¢L and let >0 be arbitrary. By
Proposition 4.1, there exists some Fi¢L with xe¢F; and
P{xst)<P{feF1)sP{xst}+e.
But then xe¢F;cBcF; for some Fi¢L. and BeB. Of course we may
assume here that
P{{eFi)=1limnP{¢neFi}, 1i=1,2.
Now we get
P{X<E)sP{teF2)=1limnP{¢{neF;)<c(B)<limp,P{EneF2}.
This shows (5.4). The proof of (5.5) is similar and left to the

reader. QED
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6. Infinite divisibility

Here we investigate the property of having a distribution which
is infinitely divisible w r t the meet for random variables in a
continuous semi-lattice. The related question of convergence in
distribution of finite meets of independent random variables
forming a null-array is treated too. We begin by writing down
some definitions.

Let { be a random variable in a continuous semi-lattice
L. We assume that L has a top, denoted 1. Say that ¢ is
infinitely divisible if, for all neN, we have

d n
E:

M=tk
for some independent and identically distributed random variables

§1s00.,8n.

Let (tnj; neN, l<jsmn} be a triangular array of random
variables in L. (The mn's are assumed to be finite.) We say
that the ¢nj's form a null-array if they are independent for
each fixed n and if
(6.1) limpsupjP{§nj€F}=0, FeL.

Note that L 1is a base of neighborhoods of 1, which
will be regarded as the point of infinitey. Accordingly we say
that a measure u on L 1is locally finite if wuL\F<o for all
FeL.

ILet u be a locally finite measure on L. Choose
{Fn)gL such that Fp+1«Fn for all n and Fnt{l}. Then,
clearly,

uB\{1l}=limnuB\Fn, Bel.

Moreover, the measures BsunB=uB\Fn are finite and such that
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LnF=uL\ (FnFn)-uL\F, FeL.
Hence the restriction of & to L\{l}) is uniquely determined by

the values uL\F, FeL.

Our first result in this section identifies the

collection of all locally finite measures on L supported by

L\(1}.

PROPOSITION 6.1: Let L be a continuous semi-lattice with a top

and a second countable Scott topology. Suppose u« is a locally

finite measure on L. Put

(6.2) Y (F)=uL\F, FeL.

Then

(i) AF1...AE\w(F)SO, neN, F,Fi,...,FneL;
(ii) V(Fy=limny(Fn), ¥F,F1,F2,...¢L, FnptF;

(iii) Y (L)=0.

Conversely, let y:LsR;. Suppose | satisfies conditions (i)-

(iii) above. Then there exists a locally finite measure u« on

Sooll Xz oxm =2l we =X

L satisfying (6.2).

Proof: Let u be a locally finite measure on L and define y

by (6.2). Conditions (ii) and (iii) are obvious, so we only need

to prove (i). However, (i) follows from
AFI'QQAan(F)=-u'FnF1Cn ° '.nFncl

the proof of which is straightforward, hence left to the reader.

Conversely, suppose V:L»R, satisfies conditions (i)-
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(ii). Choose {Fn)gL such that Fp4+1«Fy for every n and
Fnv{l}. For neN put

cn(F)=(=ap WF))/ UFn), FeL,

Now use Theorem 4.3 to conclude that c¢n extends to a
probability measure \n on L. Put un=¥%(Fn))n. Then un is a
finite measure on L satisfying
UnLNF=Y(F)+¥(Fn)~V(FnFn), FeL.
Let us now put
uB=limnunB, Bel.

Then u 1is a locally finite measure on L satisfying (6.2).
QED

The main result in this section provides a Levy-Khinchin

representation of the infinitely divisible distributions on L.

THEOREM 6.2: Let L be a continuous semi-lattice with a top and

a second countable Scott topology. The formulae
(6.3) M=n{F¢; FeL, te¢F¢ a s}:;
(6.4) uM\H=-logP{teH), HeOFilt(M)

distributions P¢-! and the set of all pairs (M,u), where

M=vx for some xe¢L while u is a locally finite measure on M

with u({x)}=0.

Before the proof we remark that M is Scott closed,
hence a continuous semi-~lattice. 1Its Lawson dual is
OFilt (M)={F"M; FelL, F“M#@).

Note further that (eM a s and that, whenever FeL, FnM#d iff
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P{{eF)>0, As is easily seen these facts hold for all random
variables § in L. One assertion of the theorem is that if ¢
is infinitely divisible, then there is a point xe¢L satisfying
P{t(<x}=1 and such that P(y<{)}>0 whenever ye¢lL, y«X.

We also state the following results:

PROPOSITION 6.3: Let ¢ be a random variable in L, and put

(6.5) Y(F)=-logP{{eF)}, FeL;

(6.6) L,=(FeL: U(F)<a).

Then ¢ is infinitely divisible iff LW is a semi-lattice and

(6.7) AFlloo.AFn w(F)SOI an, F,F},,.-.,FnGLw.

PROPOSITION 6.4: Let y:L»[0,o) and define Lw as in (6.6).

Then there exists some infinitely divisible random variable ¢

in L satisfying (6.5) Aiff LW is a semi-lattice and,

moreover, (6.7) holds together with

(6.8) Y(F)=1limn Y(Fn), F,F1,F2,...€¢L, FntF;

(6.9) P(L)=0.

Proof of Theorem 6.2 and Propogitions 6.3 and 6.4: Let ¢t be a

random variable in L, and define y and Lw by (6.5) and
(6.6), resp. Suppose ¢ 1is infinitely divisible. Then there
are random variables §i1,f2,... satisfying
P{teF)=P{fneF)}", FeL, neN,
Note that (¢(F)<eo 1ff P{te¢F}>0, and in this case
Y(F)=1imnnP{§n{F).

Now it is easily seen that Lw is a semi-lattice and that (6.7)
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is at hand. This shows the necessity parts of Propositions 6.3
and 6.4.

Let us next suppose that L, is a semi-lattice and that
(6.7) is at hand. Clearly Lw is isomorphic to OFilt(M). We
conclude that the latter is a semi-lattice with a top. It
follows by a result of Lawson [10], recalled in Section 2, that
M must have a top. That is, M=Vx for some xc¢L.

Introduce

VYo (H)==1logP(teH}, HeOFilt(M).
If H=F'M for some FeL, then UY,(H)=V(F). Now the reader
easily shows that V¥, fulfills the three conditions of
Proposition 6.1. We conclude that there is a locally finite
measure u on M supported by M\(x) satisfying (6.4).

Thus the mapping P§-1!5(M,u), described in Theorem 6.2 is
into. Since it is clearly one-to-one, it remains to be shown
that it is onto.

For this, fix M=Vx, where x¢L and let u be a
locally finite measure on M with u({x}=0. Choose
{Hn)}gOFilt (M) such that Hpns+i1«Hn for each n and Hpv¥{x}. For
neN write

unB=uB\Hn, Belyn.
Then conclude, as in the proof of Theorem 3-1-1 in Matheron [11],
that the mapping c¢nh:OFilt(M)>»[0,1], given by
Cn (H)=exp(=unM\H), HeOFilt(M),
satisfies the three conditions of Theorem 4.3. Let us put
Cc(H)=exp(=uM\H), HeOFilt(M).

Then, as n»o, cn(H)3c(H) for all HeOFilt(M). Of course c
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satisfies the conditions of Theorem 4.3. Hence there is a random
variable § in M satisfying (6.4). Note that CIm=I.nMcl.,
since Mcfi. Hence we may regard § as a random variable in L
concentrated on M. Of course ¢ is infinitely divisible. Thus
the napping P(-!»(M,u) 1is onto., Theorem 6.2 is proved.
Clearly so is also the remaining part of Proposition 6.3.

To see the sufficiency part of Proposition 6.4, form

M=n{F¢; FeL, V(F)=o}.
Being a Scott closed subset of L, M 1is a continuous semi-
lattice. It is a routine exercise to show that
OFilt (M)=(FnM; FeL, FnM#0)}.

Moreover, FnM#® iff V(F)<o. Hence OFilt(M) and Lw are
isomorphic. Thus also the former is a semi-lattice. Since it
trivially has a top, we conclude that M has a top too [10]. We
may now conclude by Proposition 6.1 that there exists a locally
finite measure u« on M satisfying uM\F=V(F), FeL, FnM#0. By
the already proved Theorem 6.2, there exists an infinitely
divisible random variable { satisfying (6.5). QED

Now assume that L is a continuous lattice. It is not
hard to see that a measure u on L is locally finite iff
uL\*x<o for all xe¢L with x«l. In this case the set

. {xeL; uL\*"xX<o)}

is closed under finite non-empty joins. Its join is 1.

THEOREM 6.5: lLet L be a continuous lattice. Suppose Scott(L)

has a countable open base. The formulae

(6.10) x=v{yeL; P{ys<§}>0};
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(6.11) vix\ty=-logP(ys<f{}, yeL, y«x

define a bijection between the set of all infinjitely divisible

distributions P{-! and the set of all pairs (x,v), where xe¢L

and v 1is a locally finite measure on +x with v{x}=0.

PROPOSITION 6.6: Let ¢ be a random variable i L and define

(6.12) d(x)=-logP(xst}, xeL;
(6.13) L¢=(xeL; d(x)<w).
Then ¢ is infinitely divisible iff L¢ is closed under non-~

empty finite joins and

(6.14) On(x:X1,...,%¥n)S0, neN, X,X1,...,Xn€l .

PROPOSTITION 6.7: Let ¢t be an infinitely divisible random

variable in L satisfying P{xs${}>0 for all xe¢L with x«l.

Let u be the locally finite measure on L satisfying

wI\*x==~logP{x<t}, xelL.

d
Then §{=4pnt(n, where ¢i,%(2,... are the atoms of a Poisson

process on L with intensity u.

Proof of Theorem 6.5: Let § be an infinitely divisible random

variable in L and define x by (6.10). Define further M and

u by (6.3) and (6.4), resp. Fix yeL. Suppose P{yst}>o0.

If yeFeL then P({feF)2P(y<f)>0. Hence FnM#@., But ty=nyererF
and, therefore, yeM. We conclude that xeM. Next, suppose
Y«vM. Then WMe¢Fgty for some Fe¢L. Clearly P(ysE}2P(feF)}>0.

The latter inequality since FnM#@¢. This show- nat
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{y; ywM)c{y: P{ys§}>0}.
Hence VMsx, 1 e Mcix. Thus we have Vx=M.
Now fix yeL, y«x. Choose (Hn}eOFilt(M) such that
HnV(%*y). Then
uM\*y=1limnuM\Hn=1limn-logP{{ ¢Hn)=-logP(ys<t}.
We may now conclude that (6.11) defines a measure which coincides
with «. QED

Proof of Proposition 6.6: The proof of the necessity part is

analogous to the proof of the corresponding part of Proposition
6.3. It can safely be left to the reader. To see the
sufficience, suppose that L¢ is closed under finite joins and
that (6.14) is at hand. Define ¥ and Lw by (6.5) and (6.6),
resp.

Suppose F;,F2¢L . By Proposition 4.1 we may choose
yi€¢Fi with P{yis§)}>0, 1i=1,2. But yivy:¢FinF2. Hence

P{teFinF2}2P{y1vy2<§}>0.

Thus Lw is a semi-lattice.

To see that (6.14) implies (6.7), argue as in the proof
of Lemma 4.19. QED

Proof of Proposition 6.7: It is enough to note here that Xx<anén

iff there are no points of the Poisson process in the set L\'x.
The probability of the latter event is exp(-uL\'x). QED

Let us now turn our attention to the convergence in
distribution of finite meets of independent random variables

forming a null-array.

THEOREM 6.8: Let (fnj)}) be a null-array of random variables in

—l
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a continuous semi-lattice L. Suppose L is closed under finite

non-empty joins and that Scott(L) is second countable. Let ¢

be a random variable in L. Then Ajfnj»{ Aiff

limsupnljP{fnj¢F}<~logP{teF}, FeL
(6.15)
liminfaljP{xffnj)2~logP{xst}, xeL.

d
Moreover, if Ajfnj»f then ¢ is infinitely divisible and there

are separating subsets A and A4 of L and L, resp, with

(6.16) limnIjP{§njéF)==1logP{feF)}, FeA;

(6.17) 1imnLjP{xttn; )=-logP{x<§), XeA.
d
Conversely, ajénj»§f if IjP(i(njé¢F)>-logP{teF) for all F in

some separating subset of L, or if I;jP{xkfnj)}>-logP{x<t)} for

all x in some separating subset of L.

Proof: It is a routine exercise to show that P{a jinjeF}+P{{¢F)
iff IjP(Enj{F}>-logP{&e¢F) and that P(xs<Ajinj)}sP{x<t) iff
CiP{xdEnj)r~logP{xst)}. (The latter provided x«1 of course.
Note that if AL is separating, then so is A'={xeA; x«l}.) By
Proposition 5.4, this holds for all x and F in separating
subsets A and A of L and L, resp, if Ajinj:E. Suppose
this. Let FeL. Choose (Fm}cA such that Fp?F. Then
LiP{"aj dF}STjP(§ni4Fn)>=10gP(§eFn).
Hence
1imsupnIiP{knj 4F}<-10gP{§eFn)}s-1ogP{§eF).
Similarly the reader may show that
liminfnaljP{xftn:}2-logP{x<f}.
Thus, (6.15) follows from (6.16) and (6.17), which follow

d
from Ajinjsf. Conversely, the reader easily shows that
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(6.15) implies both (6.16) and (6.17). By Proposition 5.4,

d
each of these conditions imply Ajénj>f. QED
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7. Applications to random set theory

Let S be a quasi locally compact second countable space and
write G for its topology which is a continuous lattice under
inclusion ¢. It is not hard to see that any open base for G

is a separating subset provided it is closed under finite unions.
Hence G contains a countable separating subset. By Proposition
3.1, Scott(G) 1is second countable.

By a random open set in S we understand a measurable

G-valued mapping of some probability space (Q,R,P). Thus, by
Proposition 3.2, :01»G 1is a random open set iff (Ggf)eR, GeG
iff {G«f{}eR, GeG. By Theorem 4.2, the distribution of a random
open set § 1is completely determined by its distribution
function .\ (G)=P{Ggf}, GeG. Now let A:G3([0,1] be arbitrary.

Then, by Theorem 4.4, there is a random open set in S with

distribution function A 1iff (i) An(G:;Gi1,...,Gn)20 for neN
and G,Gi,...,GneG, (i1) A(Gn)»A(G) as Gn'G and (iii) A(p)=1.
d
Let (,tf1,f(2,... be random open sets in S. Then §no¢
iff

liminfnP(G«fn)2P(Gut}, GeG;

limsupnP{Ggtin)<P{GCt), GeG.

Cf Theorem 5.2. Moreover, by Proposition 5.4, EnjE if
P{GgEn)>P{Ggt) for all G in a separating subset of G.

The application of the results of Section 6 to this model
of random open sets we leave to the reader.

Let us instead suppose that S is sober. Then § |is

locally compact ([7]. Write F for the collection of all closed
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sets in S. Endow F with the exclusion order 3. Clearly
G>G¢ 1is an isomorphism between G and F. Hence (under
exclusion) F 1is a continuous lattice with a second countable
Scott topology. (Note that, for {Fal}gF, VaFa=naFa.) Write
further K for the collection of all compact and saturated sets
in its natural order c. Note that, being isomorphic to the
Lawson dual of F, K* 1is a continuous semi-lattice with top

and second countable Scott topology (cf (2.6)).

Say that an F-valued mapping of a probability space is a
random closed set in S8 if it is measurable. By Proposition
3.2, §:»F 1is a random closed set iff (§(cF)}eR, FeF 1iff
{§nK= @ eR, KeK. Clearly these conditions hold iff
{(§nG=@ eR, GeG. We see that in the particular case when S is
a Hausdorff space our notion of a random closed set coincides
with Matheron's [11]. Most of the subsequent results for random
closed sets are well-known in this particular case. Cf also [2]
[13].

Let us first note that, by Theorem 4.2, the distribution
of a random closed set % 1is completely determined by the values
P{(nG=P), GeG or P(inK#@), KeK. (The tradition invites us to
work with the function GIP{fnG=p)}, GeG rather than with the
distribution function \(F)=P{{cF}, Fe¢F.)

Let T:K»R. Then, by Theorem 4.3, there is a random
closed set | satisfying P{} K#@}=T(K), Kek 1iff
(1) Tn(K:;Ki,...,Kn)<0, neN, K,Ki,...,KneK:

(1) T(K)=1imnT(Kn), K,K1,K2,...€K, KnvK;

(iii)  o0sT<l, T(9)=0.
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In the terminology of [1l1l], (i)=-(iii) hold iff "T is an
alternating Choquet capacity of infinite order such that 0:Tsl
and T(@#)=0", Thus, as claimed in the introduction, our Theorem
4.3 extends Choquet's existence theorem for distributions of
random closed sets,

Next let Q:G65[0,1]. By Theorem 4.4 there is a random
closed set ¢ satisfying P{(${nG=0)}=Q(G), GeG iff
(i) Qn(G;G1,...,Gn)20, neN, G,Gi,...,GneG?
(ii) Q(G)=1imnQ(Gn), G,G1,G2,...€G, Gn'G;
(iii) Q(9)=1.
Also this existence result can be found in [11].

Before turning to the convergence in distribution of
randonm closed sets, let us note that the Lawson topology on F
is generated by the families (FeF; FnK=f}, KeX and
{FeF;FnG#@), GeG. Hence it coincides with Fell's topology (4].
See also ([11] [13].

let t,81,82,... Dbe random sets in S. Then, by Theorem
5.2, En:E iff

liminfanP{{nnK=0)2P{{nK=0}, KeK

limsupnP(t{nnG=0}<P{inG=@}, GeG.

By Proposition 5.4, En:E if P{tnnK#0)>P{(nK#0) for all K

in a separating subset of K* or if P{{nnG=0)}3P(inG=¢} for all
G 1in a separating subset of G. Note that Ko.gK* 1is separating
iff, whenever KcG, where Ge¢G while Kek, we have KcKocG for
some KoeKo. It is not hard to verify that the collection

Kt of all KeX with P({nK°=0)}=P{{nK=0) is a separating subset

d
of K* (use Lemma 5.3). Hence fn2¢ 1iff
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P{{nK#g }=1imnP{{nnK#@ )}, KeKt.
Cf [13].

By applying the results displayed above for random closed
sets to the case when S equals the extended real line (-o,x]
endowed with the topology with non-trivial closed sets (-o,Xx],
Xx¢R, we may obtain some very familiar existence and convergence
results for distributions of random variables. This is left to
the reader. Note that this topology on (-o,o] is not
Hausdorff. Hence Choquet's original result can not be applied.
However it is locally compact, second countable and sober. This
can be seen either directly or by noting that it coincides with
the Scott topology on (-o,o]. Note that these results for
random variables also can be obtained directly from the results
of the Sections 4 and 5.

The application of the results of Section 6 to random
closed sets is left to the reader (cf with [11) [13]).

Let us agree to say that a K-valued mapping of some
probability space is a random compact set if it is measurable
as a mapping into K*. That is §{:»K 1is a random compact set
iff (fcK)eR, KeK. By Proposition 3.2, this holds iff (§{cK%)¢R,
KeX. By Theorem 4.2, the distribution of a random compact set ¢
is completely determined by its distribution function
A(K)=P{tcK}, KeK or the values P{fgK?%), KeX.

Let <¢:G3[0,1]. By Theorem 4.3 there is a random compact
set § satisfying P(§{cG}=c(G), GeG iff
(1) A

cond C(G)zo, nGN, G,G1,..-,Gn€G,’

G, "G,
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(ii) c(G)=limnc(Gn), G,G1,G2,...€G, Gn?G;

“ (iii) c(s)=1.

1 Note the similarity with the second of the existence theorems
' displayed above for random closed sets.

Now we tighten the assumptions on S somewhat further

and suppose that S is a Hausdorff space. Then all subsets of
S are saturated and, in particular, K consists of all compact
sets in S. Note that X now is closed under all non-empty
intersections and finite unions.

Let A:K»[0,1]. Then, by the remark immediately
following Theorem 4.4, there exists a random compact set in S

satisfying P{fcK}=A(K), Kek iff

(1) AKl"'AK\A(K)ZO’ neN, K,Ki,...,Knek;
(ii) MK)=1limpnA(Kn), K,K;,K2,...€K, KntK;
» (iii) Vi exA(K)=1.
Note that if S is compact then (iii) reduces to A(S)=1l. This

second set of existence criteria for random compact sets should
l be compared with the first of the existence results for random
closed sets given above.

Let §,f1,%$2,... be random compact sets in S. By

Theorem 5.2, En:E iff

liminfaP{EngKo)}2P({{cK?}, KeK

[limsupnP{En;K)sP{ng}, KeK.
By Proposition 5.4, En:E if P{tncG)}oP{$cG) for all G in a
separating subset of G or if P{§{ncK}3P(${cK} for all K in a
separating subset of K*. It follows easily by Lemma 5.3 that

the collection of all KeX with P{icK}=P({cK°}) is a separating
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subset of K*. Hence 5n:E iff P(ingcK)aP{{cK} for all K in
this separating subset.

Let us recall here that the convergence in distribution
is w r t the Lawson topology and that this topology is generated
by the families (KeK; KcM}, MeK and ({KeX:; KcMo)}, MeK.

Let f be a random compact set in S. Then § is
infinitely divisible iff, whenever ne¢N, we have siJ?=;E1
for some independent and identically distributed §i,...,fn. Put
(7.1) Y(G)==-logP(tcG}, GeG; |
(7.2) G¢={G€G; Y (G)<>}.

By Proposition 6.3, ¢ 1is infinitely divisible iff G@ is a

semi-~lattice and

(7.3) AGln.AGnW(G)SO, neN, G,G1,...,Gneqp.

Now let :G>[0,»)] be arbitrary and define Gw by (7.2). Then
there exists an infinitely divisible random compact set ¢
satisfying (7.1) iff Gw is a semi-lattice and, moreover, (7.3)
holds together with

(7.4) Y{(G)=1limny(Gn), G,G1,G24...€G, GntG;

(7.5) y(S)=0.

Cf Proposition 6.4.

Finally we assume that S=Rd for some deN. Let C be
the collection of all compact and convex subsets of S. We
regard @ as convex. Note that non-empty intersections of
convex sets are convex. It follows, for C;,C2¢C, Ci1«C; wr t

the exclusion order iff C2¢C;°. Now it is easily seen that C*

is a continuous poset which is closed under finite non-empty
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joins. Moreover, C* is closed under finite non-empty meets
too. Since the meet of {(C;,C:2}) wr t exclusion coincides with
the convex hull of C,ucC,;.

Say that a C(C~valued mapping of some probability space is
a random convex set if it is measurable w r t C*. By
Proposition 3.2, §{:3C 1is a random convex set in S iff
{EcC)eR, CeC iff (EgC®)}eR, CeC. By Proposition 4.2, the
distribution of a random convex set is uniquely determined by its
distribution function A(C)=P{}cC), CeC or by the values
P{{cC%}, CeC. Now let A:C»(0,1] be arbitrary. Then there is a

random convex set ¢ satisfying P({gC)=A(C), CeC iff

(i) Aci...sq1A(C)20, neN, ¢C€,Ci,...,CheC;
(ii) A(C)=1impA(Ch), ¢,C1,C2,...€C, Cn¥C;
(iii) VeecA(C)=1.

See the remark after Theorem 4.4.
The Lawson topology on ¢ is generated by the two

families (CeC; CgD), DeC and (CeC; CcD°}, DeC.

Let ¢§£,§1,82 be random convex sets in S. Then, by
Theorem 5.2, En:E iff
liminfaP{{ngCO)}2P(cCO%), CeC:
limsupnP{fngC)<P{tgC), CeC
Moreover, by Proposition 5.4, En:E if 2(fngC)oP(§gC} for all ¢C
in some separating subset of (. Note that BcC is separating iff
whenever C;cC;° we have CicCcCz2 for some CeB. The collection of

all Ce¢C for which P{§gcCo)=P{}cC) is a separating class. See

d
Lemma 5.3. We may now conclude that §nsf iff P{fngC)2P{icC) for

ad o
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all CeC with P{igCo)=P{fcC}.

Note that a random convex set § is infinitely divisible
iff for each ne¢N there exists independent and identically
distributed random convex sets fi1,...,{(n such that the
distribution of the convex hull of §{iu...ufn coincides with the
distribution of §{. By Theorem 6.5, the formulae

B=n (CeC; P(§{cC)>0);
v{CeC; BgC, CgD}==-logP{tcD)}, DeC, BgDO

define a unique correspondence between the set of all infinitely
divisible distributions P{-! on C'=Cu{S}, and the set of all
pairs (B,rv), where BeC' while v 1is a locally finite measure
on ({CeC; BgClu(S} with v{(B)=0. (Since Cu{(S}) endowed with
exclusion is a continuous lattice.) Ncte in connection with this
characterization of the infinitely divisible distributions on ¢

that a random variable ¢ in C¢' is supported by ¢ iff

VeecP{§cC)=1.
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