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1. Introduction

In this paper we investigate some aspects of probability measures

on a large class of partially ordered sets, which satisfy a

continuity property which extends the following well-known fact

for the real line R:

x=sup(ycR; y<x}, -W<x5.

They are called continuous semi-lattices.

The extended real line (-w,w] is a continuous semi-

lattice and so is also the collection of all closed sets in a

locally compact second countable Hausdorff space S. The

collection of all compact sets in S is another example of such

a partially ordered set, and if S=Rd for some deN=(l,2,...},

also the collection of all compact and convex sets is a

continuous semi-lattice. Many sets of functions are continuous

semi-lattices too. For instance the collection of all upper

semi-continuous functions on S into R=[-m,w] and the

collection of all capacities on S.

Thus the results of this investigation has rather a wide

range of applicability. The investigation is primarily concerned

with the question of existence of probability measures on

continuous semi-lattices and continuous lattices, the latter

being a special case of the former. The related questions of

weak convergence and infinite divisibility of distributions are

treated too.

The main result of this paper characterizes the

collection of all probability measures on a fixed continuous

semi-lattice. In the special case of a continuous lattice the
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characterization is in terms of distribution functions. This

existence result extends a theorem of Choquet [2) identifying the

distributions of all random closed sets in a locally compact

second countable Hausdorff space. Cf Matheron (113. By applying

it to the real line we obtain the well-known one-to-one

correspondence between distributions of random variables and

distribution functions, thereby explaining the similarity between

this fundamental fact and Choquet's existence theorem.

As noted above the collection of all compact sets in a

locally compact second countable Hausdorff space is a continuous

semi-lattice and by applying the existence theorem to this

particular partially ordered set we obtain two completely new

sets of existence criteria for distributions of random compact

sets. We furthermore obtain a new existence criterium. for

distributions of random compact convex sets in Euclidean spaces.

Of course the list of applications of the existence

theorem can be made much longer. We leave this to the reader and

to forthcoming publications dealing with special cases.

All the results on weak convergence of probability

measures on continuous semi-lattices are w r t the Lawson

topology and it should be noted that there may be other natural

choices of topologies, especially when the semi-lattice under

consideration has some further structure. This is a question

that we plan to return to in a forthcoming publication.

Among other things our investigation showed that weak

convergence can be characterized by pointwise convergence of the

corresponding distribution functions on a sufficiently large
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subset. This is a well-known result for random variables. Now

we know that it holds also for many different kinds of random

sets.

We have also defined and investigated a notion of

infinite divisibility for distributions of random variables in

continuous semi-lattices. Our results here generalize those

known for random closed sets. See [11].

The titles of the subsequent sections are as follows:

2. Continuous par~tially ordered sets

3. Measurability

4. Existence and uniqueness

5. Convergence

6. Infinite divisibility

7. Applications to random set theory
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2. Continuous partially ordered sets

In this section we review the notion of a continuous poset and

discuss some examples of such objects. A general reference to

continuous lattices - a slightly more narrow subject - is the

monograph Giertz, Hofmann, Keimal, Lawson, Mislove & Scott [5].

We also review some relevant but not so widely known notions from

topology.

Consider a non-empty set L endowed with a transitive,

reflexive and anti-symmetric relation 5. Such a set is called a

Poset, which is short for partially ordered set, and we refer to

s as the (partial) order on L. Note that any non-empty subset

of L itself is a poset under the same order. Unless otherwise

is stated directly, the order on the poset(s) under consideration

will always be denoted s.

A mapping f between two posets is increasinQ (resp

decreasing) if xsy implies f(x)sf(y) (resp f(y)sf(x)). A

surjection f between two posets is an isomorphism if xsy is

equivalent to f(x)sf(y). Two posets are isomorphic if they are

connected by an isomorphism.

Note that on L there is an opposite relation 5*,

called the reverse order, defined by

xs*y iff ysx.

Of course also * orders L, and we write L* for the set L

endowed with the reverse order 5*. The isomorphic posets L**

and L are always identified.

Let A;.L. An uppe_ bound of A is a member x(L

satisfying yix for all yeA. If there exists an upper bound z



5

of A satisfying z~x for every upper bound x of A, then it

is referred to as the least upper bound or the jon of A, since

there is at most one, and denoted vA. We often write

vcx =v{x }. Lower bounds and greatest lower bounds or meets are

defined analogously. We write AA for the meet of A provided

it exists. We further write XnX if X, X25... .X=VnXn, and

XnJX if xntx in L*.

Note that, by the definition, V0=AL if L has a least

member, a bottom, and A0=vL if L has a greatest member, a

top.

A poset is directed (resp filtered) if every finite non-

empty subset has an upper (resp lower) bound. A non-empty FgL

is a filter on L if it is filtered and if tx&qF whenever xeF.

Here and subsequently, Tx={y; xsy). We also write ix={y; y~x}.

By a chain we understand a poset in which x~y or y5x for

every pair (x,y) of members.

A semi-lattice is a poset in which every finite non-empty

subset has a meet. In a lattice every such subset has both a

join and a meet. A poset is uP-complete if it is closed under

directed joins (i e if every directed subset has a join) and

complete if it is closed under arbitrary joins. Note that a

complete poset is closed under arbitrary meets too. Thus a poset

is complete iff it is a complete lattice.

Fix two members x,y of an up-complete poset L. We say

that x is way below y, and write x,,y, if, whenever y5vD

for a directed D.L, we have x~z for some zeD. Note that, if

L is complete, then x-y iff y~vA, AL imply x5vB for some
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finite BcA.

Recall [10] that a poset L is said to be continuous

if it is up-complete and if (y; y,'xl is directed with join x

for all xeL. It should be clear to the reader what we mean by a

continuous semi-lattice. However note that a continuous lattice

always is assumed to be complete.

Suppose L is a continuous poset. A subset U._L is

Scott open if x;U whenever xeU and if vDcU, DgL directed

imply DnU*0. The collection of all Scott open subsets of L is

a topology. It is called the Scott topology and denoted

Scott(L). A function on or into or between continuous posets is

called Scott continuous if it is continuous w r t all the Scott

topologies involved.

Let A.L. The reader may wish to verify that A is

Scott closed (i e ACeScott(L)) iff ix.A whenever xcA and

A is closed under directed meets w r t L.

A filter on L is called open if it is Scott open. We

write L or OFilt(L) for the collection of all open filters on

L provided with the inclusion order F15F2 iff FlgF2. It is

not hard to see that uDeL if DaL is directed. Hence L is

up-complete and vD=uD when D is as above.

Let x,yeL and F,GeL. Then

(2.1) x, y iff yeHgx for some HcL;

(2.2) F'G iff FQzgG for some zcL.

Moreover,

(2.3) xeF implies xeH&tzgF for some (z,H)eLxL.

For a proof of (2.1)-(2.3) consult Lawson [10]. Here it is also



7

proved that L is a continuous poset and that the mapping

(2.4) x4F×={FeL; xcF)

is an isomorphism between L and OFilt(L). This fact is called

the Lawson duality, and L is sometimes in the literature

referred to as the Lawson dual of L. Lawson (loc cit) also

proves that L is a semi-lattice with a top iff L is so.

The equivalences (2.1)-(2.3) are very important. Below

they are used often and without explicit reference.

Now suppose L is a semi-lattice, not necessarily

continuous. A member pcL is called prime if xAy~p implies

x~p or ysp. Clearly the top of L is prime if it exists. The

spectrum of L is the set of all non-top primes. It is denoted

Spec(L). By the hull of a point xEL we understand the set

h(x) = (pESpec(L); x~p).

From the definition of primes we get

h(xAy)=h(x)uh(y), x,ycL.

Moreover, if the join of A;L exists, then

h(vA)=nh(A).

We say that L is order-generated by primes if

x=Ah(x), xcL.

If L is complete then the collection Spec(L)\h(L) is a

topology on Spec(L) (provided Spec(L)N of course). It is

called the hull-kernel topology.

Next consider an arbitrary topological space S. Write

G for its topology, which is a poset under inclusion Q. It is

not hard to verify that S\{s)-cSpec(G) for all sES. It

follows that G is order-generated by primes. Note that,



whenever G(G,

G=(s(S; S\{s)-cSpec(G)\h(G)).

Hence the mapping

(2.5) s-S\{sl-; S-PSpec(G)

is continuous if the latter space is endowed with its hull-kernal

topology. Cf [7j.

Recall that S is called a TO space if (s}=(t}-

implies s=t, i e if the mapping in (2.5) is injective. If this

mapping is bijective, then S is said to be sober. Cf [8].

It is well-known that all Hausdorff spaces are sober:

Suppose GiSpec(G), where G is a Hausdorff topology on S.

Then there is some scS\G. If tzs, choose disjoint neighbor-

hoods GlG 2eG such that scG1 while tiG2. Then GirG2_G.

Hence G::G or G2;G. Since the former is ruled out by

assumption we must have tcG. Hence G=S\(s).

Recall [8] that the saturation of A:S is the set

As=-(GcG; A:G).

Moreover, A is called saturated if A=As. It is easily seen

that K_.S is compact iff Ks is so. Moreover, all subsets of a

T1 space are saturated. (Since scAs iff (s)--A 0 [5].)

Let us agree to say that S is locally compact if seGeG

implies sfK0 _KZG for some compact K..S. Clearly we may always

assume here that K is saturated. It is not hard to see that if

S is locally compact, then G is a continuous lattice in which

G1,,Gz if GijKjG2 for some compact (and saturated) KS. In

this case we further have

(GcG; K.G)cOFilt(G)
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as soon as KcS is compact (and saturated).

Now suppose that S is both locally compact and sober.

Write K for the collection of all compact and saturated subsets

of S in the exclusion order _. Hofmann and Mislove £8] proves

that K is a continuous semi-lattic* in which KI<K2 iff

K2gKI ° . Note that the top 0 of K is isolated in the sense

0 . Hence also K\{0) is a continuous semi-lattice.

The paper [8] also proves that the mapping

(2.6) K*{GtG; KrG}; K4OFilt(G)

is an isomorphism. By the Lawson duality, so is also the mapping

(2.7) G-(KcK; KrG}; G4OFilt(K).

Let us also note here that K is a continuous semi-lattice if S

only is TO. Cf [8]. However, in the absence of sobriety the

isomorphism above between K and OFilt(G) breaks down.

Any continuous poset L endowed with its Scott topology

is a locally compact sober space [10]. To see the local

compactness, suppose xeUEScott(L). Choose yeU such that y,<x.

Then xc{z; y-z) y .U. Now local compactness follows from the

easily proved fact that y is compact w r t Scott(L). Note

also that (fy)0={z; y<,z). A routine compactness argument next
n

shows that UlU 2 iff Ui.Ui=1t'xiU2 for some finite sequence

xl, .. ,XneL.

Let us further say that S is u locally compact [8]

£16] if scGcG implies seH,,G for some HeG. Such spaces are

called core-compact in [6], semi-locally bounded in [9) and

spaces satisfying condition (C) in £3]. The monograph £5]

discusses them too. It is not hard to see [6] that a space is
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quasi locally compact iff its topology is continuous. Hence, if

S is locally compact then S is quasi locally compact too. The

converse is false, unless S is sober (7].

P.........
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3. Measurability

Here we provide our continuous posets with a canonical a-field.

Then we discuss necessary and sufficient conditions for

measurability.

Of course a successful discussion of probability measures

on continuous posets require some condition of countability.

Here it is convenient to assume the Scott topology to be second

countable.

Let L be a continuous poset. We say that a subset A.L

is separating if x,,y implies the existence of some zeA

satisfying x~z~y. It is not hard to see that Ar.L is

separating iff (yeA; y,,x} is directed with join x for all

xeL.

PROPOSITION 3.1: Let L be a continuous poset. The following

five conditions are equivalent:

(i) Scott(L) has a countable open base;

(ii) Scott(L) has a countable open base;

(iii) L contains a countable separating subset;

(iv) L contains a countable separating subset;

(v) there is a countable collection B of subsets of L

such that, whenever xEFeL, we have txQBQF for some

BeB.

Proof: Suppose B fulfills the requirements of (v), which

trivially follows from (i). Whenever B,CcB is separated in the

sense that BaF"HIC for some F,HcL, choose XsceL such that
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BLAtxBcC. Clearly the obtained collection A=(xBc} is count-

able. Suppose x-y. Then tyjF<,HgfzcG&Qx for some F,H,GeL

and some zeL. Next choose B,CeB with fyBgF and tzQCQG.

Finally choose xBceA such that B&QxBcC. Then, obviously,

X5XHC5Y. This shows (iii).

Similarly the reader may show that (iv) follows from

(iii). That (iv) implies (i) is an immediate consequence of the

fact that L is an open base for Scott(L).

This shows that (i), (iii), (iv) and (v) are equivalent.

In fact it shows that (ii) and (iv) are equivalent too. QED

We write Z or EL for the a-field on L generated by

the sets fx, xeL. The main result of this section gives several

equivalent conditions for measurability. In particular it says

that E coincides with the a-field generated by Scott(L) if

the latter is second countable.

PROPOSITION 3.2: Let (n,R) be a measurable sace and let be

be a mapping of A into a continuous poset L. Supose

Scott(L) has a countable open base. Then the following four

conditions are ecuivalent:

(i) t is measurable R/Z;

(ii) {xi)ER, xeL;

(iii) (x,., E) R, xEL.

(iv) (UeF)eR, FeL.

All these conditions im~ly

(v) (tx)cR, xEL.

Proof: Let A and A be countable separating subsets of L and
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L, resp. Fix FeL. Clearly F=uxfFlx. But if xcF then y-x

for some ycFnA. Hence

F=U({x; xcFnA).

We see that (ii) implies (iv). Next fix xeL. If xy then

yeF for some FeA with Fgfx. Therefore,

(y; xy)=u(FeA; F&Qx).

Moreover,

fx=n((z; y,,z}; yeA, y<<x).

Hence (iv) implies (iii) and (iii) implies (ii).

To see the final assertion, just note that 4x is Scott

closed for all xeL. QED

We have not been able to prove that condition (v) of

Proposition 3.2 implies measurability of t. Indeed we believe

that this is not possible without further restrictions on L.

However a counterexample is lacking.

Simple sufficient conditions for Scott continuity are

of interest to us. The next result will be applied to

probability measures on continuous posets.

PROPOSITION 3.3: Let c be a mappinq between two continuous

posets which have second countable Scott topologies. If

c(xn)tc(x) as xnOx then c is Scott continuous.

Proof: Let (xn,}L be countable and directed. Put x=mvxn. If

xi(xn) there is nothing to prove, so let us assume that xt(xn}.

Choose n(l)>l such that xi xn(,). Then choose n(2)>n(l)

such that xi xn(2) for li~n(l). By continuing in this manner

we obtain an increasing sequence {xn(k)) with join x. By
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assumption

C(X)=V kC(Xn( k)) v nC(Xn) 5c(x).

Thus we have equality throughout. Now Scott continuity is easy

to prove. Cf [14]. QED

The following consequence needs no proof. Note that it

can be extended to directed and countable collections of

measurable functions.

COROLLARY 3.4: Let u be a measure, and let (An) be a

directed and countable collection of measurable sets. Then

u nAn--V n An.
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4. Existence and uniqueness

Our first result discusses some continuity properties of

probability measures on continuous posets. The uniqueness

theorem then is a simple consequence. Finally we discuss

necessary and sufficient conditions for the existence of

probability measures on continuous semi-lattices.

By a random variable in a continuous poset L we

understand a measurable mapping of some probability space,

usually denoted (f,R,P), into L. The distribution of a random

variable in L is the induced probability measure on (L,Z).
d

Let tj be random variables in L. We write E=j if the

distributions of t and 1 coincide, i e if P 1=P,n-'.

PROPOSITION 4.1: Let t 2e a random variable in a continuous

poset L. Suppose Scott(L) has a countable open base. Then,

for all FeL,

P{ F)=vG;P(EEG)=vxFP(x }=vxFP(x,, ).

Moreover, for each xcL,

P(X t) =A yC XP(y5 E) -A y<*P(yllt -A x (F (LP( t IEF)

Proof: Let AQL be countable and separating. Fix FeL. We saw

in the proof of Proposition 3.2 that F-w (tx; xeFbA}. It is not

hard to see that FnA is filtered. By Corollary 3.4,

P(t(F)-vx(FnlAP(X~t).

If xfF then xeG for some G(L with G,,F and, moreover, yCx

for some yeF. Now the first assertion of the proposition is

obvious.
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To see the second, first note that, for xeL,

x~n yEA,y<<C(Z; y nz=yeA,y<.0'ry,

where both intersections are filtered. By Corollary 3.4,

P(X )=^yEA,y<<XP(Yll)}AyyA, y<xP(Y5}.

Moreover, if y,,x then xfFVy for some FeL. Now the second

and final assertion of the proposition follows at once. QED

By combining Proposition 4.1 with Proposition 3.2 we

obtain the following uniqueness result.

THEOREM 4.2: Let and 1 be random variables in a continuous

poset L. Suppose L is closed under finite non-empty loins or

meets, and that Scott(L) has a countable open base. Then the

following four statements are equivalent.

d
(i)

(ii) P(x,<t}=P{x-i), xEL;

(iii) P~x t)=P(x y), xeL;

(iv) P(,F}=P(-1cF), FeL.

Proof: Of course (i) implies (ii). By Proposition 4.1, (ii)

implies (iii) and (iii) implies (iv). If L is closed under

finite non-empty meets, then Lu{$) is closed under finite non-

empty intersections and, therefore, (iv) implies (i). But

Proposition 4.1 also shows that (ii) implies (iv) and (iv)

implies (iii). If L is closed under finite non-empty joins,

then the collection (lx; xeL) is closed under finite non-empty

intersections, and, therefore, (iii) implies (i). QED

We continue to discuss our existence criteria for

I -)mmmdmm~m mi•m-m. --
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probability measures on continuous semi-lattices. Suppose e is

a real-valued mapping on some semi-lattice L. Let yeL. Then

we write Aye for the mapping on L defined by putting

Aye(x)=e(x)-e(xAy), xeL.

Cf [2]. Note that iy may be regarded as an operator on the

collection of all mappings from L to R. We will be

particularly concerned with iterates of such operators.

Let x,xi,...,xneL. A simple induction procedure yields

(4.1) A ...- e(x)=e(x)- ie(x Ax i )+Ei < je(xAxiAXj)-

..•.+ (-i)ne(x AXJ^ ... .^ Xn) .

Moreover, if x5xi for some i, then

(4.2) Ax ... A e(x)=0.

We conclude from (4.1) that the mapping e4Ax ...A e

only depends on the finite set A={x,,...,xn). Accordingly we

sometimes write AA=A ... A We also put A =e.

We furthermore conclude from (4.1) that

(4.3) AAe(x)=AA Ae(x),

where AAx=(yAx; yeA). Moreover, by (4.1) and (4.2) if y Ax z

for some distinct y,ztA then

(4.4) AAe(x)=AA\(y)e(x).

In particular, if y~z, y~z then AA=aA\cy).

Now let us suppose that L is closed under finite non-

empty joins (i e L* is a semi-lattice), and let A:L+R. We

define

.\,(x;x)=.\(x)-,\(xvx,), x,xleL

and recursively for n!2
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An(X;X1,...,Xn)=An-1 (x;xi ....,Xn-1)

-An-1(xVXn;X1,...,Xn-1) , X X t. . .,Xn eL.

Put e(tx)=A(x), xeL. Then, for all neN and x,x1,...,xneL,

(4.5) .kn(x;Xl,•••,Xn)=l xl... IX e(tx)

To see this, it is enough to note that

txnty=txvy, x,yeL.

We may now state our existence theorems.

Theorem 4.3: Let L be a continuous semi-lattice with a top,

and let c:L-[0,1]. Suppose Scott(L) has a countable open

base. Then c extends to a unique probability measure on (L,E)

iff

(i) AF1.-AFc(F)>O, neN, F,F1,...,Fn L;

(ii) C(F)=limnC(Fn), F,F1,F2,.... cL, FnOF;

(iii) c(L)=l.

We postpone the proof. In the special case when L is a

continuous lattice we can say more. Let us write 0 for the

bottom of L.

THEOREM 4.4: Let L be a continuous lattice and let .\:L.[0,1].

Suppose Scott(L) has a countable open base. Then there exists

a unique probability measure X on (L,E) satisfying

Xtx=A(x) , xeL

iff

(i) .\n(X;X1, .. ,xn) 0, nEN, X,Xl,...,xncL;

(ii) .\(x)=limn.\(Xn), X,X,,X2,.... eL, XnOX;
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(iii) A(O)=l.

Before the proofs of these two existence theorems let us

note that the latter can be weakened to continuous semi-lattices

which are closed under finite non-empty joins provided condition

(iii) is replaced by

(iii') VxCL.%(X)

To see this, suppose L is such a continuous poset. Add a

bottom 0 to L and put .\(0)=l. Check that the presumptions

of Theorem 4.4 are at hand and conclude that there is a

probability measure X on Lu(0) satisfying 0Ix=A(x), xeLu(0}.

Then note that the family (fx; xeL} is directed. Its union is

L. By Proposition 3.4 and (iii') we now get

X(0)=I- VX CLX=0.

That is, I is concentrated on L.

Let us say that a mapping .\:Ir[0,1] is a distribution

function if it satisfies the three conditions of Theorem 4.4.

Our proofs of these theorems are very close to Matheron's proof

of Choquet's original result [2][11]. It is given in a series of

lemmata. Proofs are given only when required by the present

higher generality.

Our first lemma discusses the necessity of condition (i)

of Theorem 4.4. Its proof is left to the reader. The necessity

of all the remaining conditions are obvious.

LEMMA 4.5: Let a be a probability measure on L and write

M(x)-uOx, xcL. Then
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n
Mn(x;xl,...,Xn)= X\U =1 x , neN, x,xi,...,xn4EL.

We proceed to discuss the sufficiency of the three

conditions of Theorem 4.4. Recall that a collection S of

subsets of L is called a semi-ring. If (i) 0eS, (ii)

SirS2CS whenever SI,S2cS, and (iii) SI,S2(S, S1.S2 imply

that S2\S1 is a union of a finite family of pairwise disjoint

members of S. It is a semi-field if furthermore LeS.

Let F be a collection of filters on L which is closed

under finite non-empty intersections. Then F is a semi-

lattice. We put

(4.6) S={A\uA; AeF, AF finite).

LEMMA 4.6: The collection S, defined in (4.6), is a semi-ring

of subsets of L. It is a semi-field if LeF.

LEMMA 4.7: Let ScS be non-emptv. Then S=B\uiAi for some

BEF and some finite (Ai)&.F satisfying

(i) Ai.B for all i;

(ii) A1.QA2 for all distinct A,A 2E({Ai).

Cf with (4.3) and (4.4). Any representation B\uA of a

non-empty SeS satisfying the conclusion of Lemma 4.7 is called a

reduced representation.

The next two lemmata need not be commented on in the case

discussed by Choquet [2][11].
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LEMMA 4.8: Let B,CeF and let A:F be finite. If 0 B\uAcC

then B:C.

Proof: Let xcB. We must prove that xEC. If x~uA this is

obvious, so let us assume that xeA for some AeA. Choose

yeB\uA. Then XAyeB. If xAycuA then yeuA. This is not

true. Hence xAytuA. Hence xAycC, which implies xeC. QED

LEMMA 4.9: Let BcF and let A:F be finite. If B.-uA then

BA for some AEA.

Proof: Since B 0, A must contain at least one filter. Suppose

BtA for all AeA. For every AeA we then choose xAB\A.

Since A is finite and non-empty, X=AAXAtB. But then xcA,

and therefore XAEA, for some AeA. A contradition, from which

the lemma follows. QED

Now these two lemmata are used in the proof of the

following uniqueness theorem for reduced representations.

LEMMA 4.10: Let A\uA and B\uB be two reduced representations

of a non-empty member of S. Then A=B and A=B.

Proof: The conclusion A=B follows at once from Lemma 4.8. But

then we must have UA=uB too. Fix A'EA. By Lemma 4.9, A';B'

for some B'eB and, moreover, B';A" for some A"EA. But then

A'.rA". Since the representations are reduced, A'=A". We

conclude that A&B. Of course the same argument may be applied

to show BA. QED

The next result follows at once from (4.3), (4.4) and
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Lemma 4.10.

LEMMA 4.11: Let e:F4R. If A\.A and B\-B are two

representations of a member of S, then

Ae(A)=%Be(B).

Thus, whenever e:F4R we may define a mapping X on S

by putting

(4.7) XA\uA=AAe(A), AEF, AjF finite.

LEMMA 4.12: Let e:F-R. Then the mapping X on S, defined in

(4.7), is additive.

Proof: Fix S:,S2EL such that SlnS 2= 0 while SluS2=SfS. Of

course

(4.8) S 1US2=XS 1 +XS 2

if Si or S2 is empty, so let us assume both to be non-empty.

We further assume that A\uA, B\uB and C\C are reduced

representations of $1,$2 and S, resp.

By Lemma 4.8, AuB:C. Clearly AnBru(AuB). By Lemma

4.9, AnB is included in some member of A B. Let us assume

(4.9) AnBrA',

where A'A, and prove that this implies A=C. (Analogously the

reader may show that B=C follows from AnB~uB.)

If C-B then Ac.B and A.A' follows by (4.9). This is

clearly impossible. Hence we may select a point xcC\B. In

order to obtain yet another contradition, suppose there is a

point yeC\A. Then xAyEC. Let {C1 ) be an enumeration of C,

and choose for each i some xijC\Ci. Then
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Z=XAyAAiXiEC\UC,

since zECi implies xiECi. It follows that zeAuB. This leads

at once to a contradiction and we conclude that C.A. Hence A=C

as claimed in the above paragraph.

But then B.A and from (4.9) we get BQA'. Let xES.

Then xeC. If xEL\A' then xEBc and, therefore xeS1. Thus

we have S\A'_QS,. The reverse inclusion is obvious. Moreover,

if xcA' then xeS, and we must have X(S2. Hence SA'S2.

Again the reverse inequality is obvious. We thus have

Si=S\A'=C\u(Cu{A')) ;

S2=SnA'=CnA'\uC

and see

XS1+XS2=ACAA.e(C)+Ace(CnA')=ace(C)=XS.

Thus (4.8) holds if (4.9) is at hand. The remaining case

is completely similar. QED

Below we will prove, for a suitable choice of F and e,

that x is both non-negative and continuous. For this we need

the following result, which needs no proof in the case discussed

by Choquet (2][11].

LEMMA 4.13: Fix xeL and FeL. Then there are sequences

(yn),(zn)rL and {Gn},(Hn)eL such that

G1,y1;G2;... ;_x=nnG=nn yn;

tz,_QHI Z2-Q..._QF=Utn Z=UHn.

Proof: Let AIL be countable and separating. Then the set

(yeA; yox) is countable and directed. Its join equals x. Now

proceed as in the proof of Proposition 3.3 and conclude that
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there is a sequence {Yn)i.L, satisfying yn-yn+1"X for all n,

with join x. Then choose {Gn)IL such that

tyn+1giGn+1VYn. The reader easily shows that tx=nntyn-nnGn,

thereby completing the proof of the first part of the lemma.

To see the second part, proceed as above and conclude

that there is a sequence {Hn).L fulfilling Hn,,Hn+I"F, n(N,

and vnHn=F. Then choose {zn)rL such that Hn&.Zn+ Hn+1•

QED

We now fix

(4.10) e(A)=VxEAA(X), AcF

and define X as in (4.7). The collection F will soon be

specified.

In order to complete our proof of Theorem 4.4 we need to

know that e satisfies certain continuity properties. Hence the

Lemmata 4.14-4.18.

LEMMA 4.14: Whenever A,A 1 ,A2 cF we have

e(AnAl)-e(A);

e(AnAl)+e(AnA 2)_e(A)+e(k AnA2).

Proof: The first assertion is equivalent to saying that e is

increasing. It needs no proof. Now choose XlcAnAl and

x2cAnA2. Then X=X1AX2eA and x1vx2eAnAInAZ. Hence

.%(. (x ) +.\ (X2) -. \ (xvX I) +.\(x,,x2 )

.(X) +.\(XvX v X2) i.\(X) +.%(XI vX2)

.e(A)+e(AnAlnA2).

Now the second assertion of the lemma is obvious. QED
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LEMMA 4.15: Let Ai,BeF, i=1,2,..., and suppose AigBi for

each i. Then, for every n=l,2,...,

n n n ne(n i=lBi)+Ei= le(Ai) e(n i=,Ai)+Ei=le(Bi) •

Proof: First suppose n=2. (The result is obvious if n=l.)

Put D=Bj, DI=Aj and D2-A 2 . By Lemma 4.14,

e(Aj)+e(A2nB1 )5e(Bj)+e(AinA2).

Next put D=B2, DI=B, and D2=A2. Then

e(B1 )B2 )+e(A2)5e(B2)+e(A2nBi).

Add these expressions and cancel e(A2nB1) from both sides.

Now suppose the result is true whenever n~m, m 2. Then

m+I m
e(niz= Bi)+e(n i= jAi)+e(Am i)

Th+1 I

e(ni+ 1Ai)+e(ni= 1Bi)+e(Bm+ )

Add EI= e(Aj) to both sides of this inequality and use

the supposition above:

m+1 m+1 m
e( ni=Bi)+Zj =e(Aj)+e(ni=1 Ai)

m+1 m+1 m5e(n i = Ai ) +Zji= e(Bi) e (n i=jAi) •

Thus the result is true for n=m+l. By induction the lemma

follows. QED

The next result presumes txeF, xeL. Note that then

e(fx) =.(x), xeL.

LEMMA 4.16: Suppose TxEF, xEL. Let A,A1 ,A2 ,...EF and suppose

AnA. Then

e(A)-limne(An).
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Proof: For n=1, 2,... choose XnfAn with

0-e(An) -A(Xn) -< 2- n

for some fixed c>O. Note that TXncAn. Hence, by Lemma 4.15,

n

0-e(An)-A(Vi=zxi)-<

We now see that

n
e(A)_limne(An)=limnA(vi=xi)=A(vixi)

Note that

tv ixi=n ifxigniAj=A.

Hence A(vixi)<e(A). QED

The following two lemmata require that txnFcF for all

XeL and FeL. Of course this implies that LeF and that txeF,

xeL. Thus Lemma 4.16 is at our disposal.

LEMMA 4.17: Suppose txnF .F, xeL, FcL. Let xcL, FEL and let

(yn)}L. Suppose (TYn)TF. Then

e(tx nF) =limne (txvyn)

Proof: Since xvynefxnF,

VnA(Xvyn) 5e(txnF).

But if yoxnF then XVyny for sufficiently large n. Hence

,(y) 5 VnA(XVyn)

from which

e (fxnF) 5 vnA (xvyn)

follows. QED

LEMMA 4.18: Suppose fxnFFF, XeL, FeL. Fix x,ycL and FeL.



27

Let further (Zn)lcL and (Gn)cL. Suppose (TZn)TF while

Gn4'(7x). Then

e(txvynF)=limne(tyvznnGn)

Proof: Let us first note that

Xvyvzn f tyVZnnGnCqtyn Fn Gn.

Hence

e(txvyvzn)5e(tyvznnGn)_<e(tynFnGn).

By Lemma 4.17,

limne(fxVyvzn)=e(txvyn F) l

and by Lemma 4.16,

limne(tynFnGn)=e(txvyn F).

Now the conclusion of the lemma is obvious. QED

Let us now fix our collection F to be

(4.11) F=({xnF; xEL, FELl.

Of course this is a semi-lattice. The next result allows the

conclusion that X (see (4.7)) is an additive mapping of S

into [0,w).

LEMMA 4.19: Let AeF and let AF be finite. Then

AAe(A) _O.

Proof, Suppose A={txjnF1 ; l5im} and A=txonFo. For 05im

choose some sequence {yin)cL such that (Myin)tF. Suppose

OIg.(0,...,m). Then, writing YIn=viiIYin,

1tYI i.1 YI2 ... gf i Fil=nntYIn.

Now Ae(A) O follows by (4.1) and Lemma 4.17. QED

Introduce
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C={tx\uA; xcL, A&L finite).

Note that C is closed under non-empty finite intersections.

Moreover, in the terminology of [12), C is a compact class of

subsets of L. This means that, whenever CO,, where

C,C2,...C, we have Cn=0 for n sufficiently large. To see

this, suppose Cn=fXn\uAn. Then nnCn=O only if tvnXn.Un(uAn).

But s VnXn is Scott compact. Hence fVnXni'-n~m(UAn) for some

m. Our claim now comes from the fact that un.m(uAn) is Scott

open.

Suppose 0 SES. Then

S=txnF\uA,

where A={TxinFi; lji~m}. Choose sequences {yn}.L and

{Gin.}gL, li~m, such that (fyn)F while Gin&(txi). Write

Cn= Xyn\{GinnFi; li~m)

Then CncC and, by (4.1) and the Lemmata 4.17 and 4.18,

XS=limnXCn.

Hence

XS=v(XC; CeC, CZS}, ScL.

Note that XL=0=A(O)=l. By Proposition 1.6.2 of [12]

, it now follows that X extends to a probability measure on

(LE). This completes our proof of Theorem 4.4

We continue to discuss the proof of Theorem 4.3. Suppose

L is a continuous semi-lattice with a top having a second

countable Scott topology and let c:L-+[0,1) satisfy the three

conditions of this theorem. Whenever UtScott(L) we write

n

A(U)=A(c(ni=iFi); neN, Fl,...,Fn(U).

Our aim is to show that X is the distribution function of some
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probability measure X on Scott(L). Here we will use the

already proved Theorem 4.4. Then we show that X concentrates

its mass .o OFilt(L). Our final argumentation uses the Lawson

duality.

First note that condition (iii) of Theorem 4.4 trivially

holds. Clearly A is decreasing. Thus if UOU then
.\(U) nA(Un) =limA(Un)

Suppose .\(U)<x. Then there exist some F1,...,FmEU with
M

c(ni=IFO).x. But then
m

u izitFi.U=- nun.m

Since ...iltFi is a Scott compact subset of L, we must have
Mui=-iFi.Un, and therefore Fj,...,FmfUn, for n sufficiently

m

large. But then An\(Un)<c( n j=jFj)Sx. Hence

\%(U) =limn.\ (U) .

That is, condition (ii) of Theorem 4.4 is at hand too.

Fix kcN and UO,UI,...,UkcScott(L). For j=0,1,...,k

and neN choose Fjni,...,Fjnmcn)(L such that

(Hjn) °?Uj, j=0,1,...,k,

where

m(n)Hjn=ui=* Fini, j=O,l,...,k, nN.

Let OcJ.{O,l,...,k}, and write

Hjn=UjijHjn, neN.

Then, for all such J's,

Hjij.Hj 2r.. . gu jUj-uHjn.

It is not hard to see that
m(n)

limnC(ad hJn=1fFjne)(u, ijU
and, therefore,
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\k(U;U1,...,Uk) O.

Thus, also condition (i) of Theorem 4.4 is at hand.

We may now conclude that there is a probability measure

X on Scott(L) with distribution function .A. This concludes

the first part of our proof of Theorem 4.3.

We proceed to prove that

(4.12) XOFilt(L) = 1.

The following result is useful.

PROPOSITION 4.20: Let I be a random variable in Scott(L),

where L is a continuous semi-lattice. Suppose Scott(L) is

second countable. Then IeOFilt(L) a s iff

n n

Pni=j (Fi en)=P(njtjFii )}, nEN, Fj,...,FneL

Proof: The necessity is obvious. To see the sufficiency, first

note that it implies
nP{Fj,...,Fn,), ni=jFi Y)=0, neN, Fj,...,FneL.

Let A;L be countable and separating. It is not hard to see

that the probability of the even that

n
(4.13) Fi,...,Fnfn implies n isFie , nEN, F,,...,FncA

is one. By a straightforward approximation procedure it may be

seen that A can be replaced by L in (4.13). This shows that

niOFilt L a s. QED

Thus we must provide a proof of

n n
(4.14) X(U; ui'TIFi&U)=X(U; nj=1 Fi.QU), neN, Fj,...,Fn(L.
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n n

Note that the sets (U; ui 1jFijU) and {U; tnji=FjcU)

are open filters of Scott(L). Hence, by Proposition 4.1, and

some straightforward argumentation,
n n

(U; ui=1TFjU)=V(.\(U); Li=jj FirU}
n

=V(.\(U); Fj,...,Fn(U1=c(ni-1 Fl)

and
n n n

X(U; tn=jFj_;U}=v((U); ni=jFij U}=c(nj=jF)-

Thus (4.14) is at hand and we conclude by Proposition 4.20 that

(4.12) holds. This shows the second step of our proof of Theorem

4.3.

Let x(L. Then Fx={FEL; xEF)}OFilt(L). We get
n

X Fx=.(Fx)=^(c(n i =Fi) ; ncN, Fi,...,Fn(Fx}
n n

=A(c(ni=Fi); nEN, ij=jFjEFx)=AxfFc(F).

By the Lawson duality (see (2.4)) we may regard x as a measure

on L. By doing so we obviously have

XTX=AxfFc(F) , xeL.

It is now easily seen that

XF=c(F), FeL.

This completes our proof of Theorem 4.3.
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5. Convergence

In this section we will discuss weak convergence of probability

measures on continuous semi-lattices w r t the so called Lawson

topology. We first provide our continuous posets with this

topology.

Let L be a continuous poset. By the Lawson topology on

L we understand the topology generated by the open filters of L

and the collection L\tx, xeL. It is known [8] that this

topolgoy is completely regular and Hausdorff. If Scott(L) is

second countable then so is the Lawson topology (see Proposition

3.1), and we may conclude from well-known results that L is

Polish (i e a completely metrizable second countable space) (see

e g [15]). In this case Z coincides with the Borel-a-field

w r t the Lawson topology.

The paper [8] also proves that the Lawson topology is

locally compact if L is closed under finite non-empty joins.

In this case the filter Tx is easily seen to be compact for

each xcL.

Let us also note here that, if L is a semi-lattice,

then the mapping (x,y)4xAy is continuous in this topology.

Some of the facts quoted above follow rather easily from

the following result, which is a cornerstone in our development.

PROPOSITION 5.1: Lpt L be a continuous poset. Suppose

Scott(L) is second countable. Then the Lawson topology on

OFilt(L) coincides with the restriction to this set 2- the

Lawson topologv on Scott(L).
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Proof: First note that, for XEL,

{FEL; xEF)=(UEScott(L); Tx;U}nL

while, for HEL,

(FEL; H;F)=(UEScott(L) ; HtU)nL.

Hence the Lawson topology on L is included in the relative

Lawson topology.

To see the converse, let Kr.L be compact and saturated

w r t Scott(L). Then

K=KS-={UeScott(L); K;,U).

Since Scott(L) has a countable open base, K nnU for some

decreasing sequence {Un)}QScott(L). Note that if KUn then

KNVn for some Vn-Un. Now choose for each n some finitely

many XnI,...,Xnm(n EL such that Vn9 uiXnirUn. Note that

Kn=UijXn is compact and saturated. Clearly KnJK. Hence

{UcScott(L); K:U}nL=un(FEL; uj'0Xni-F} jnni{FEL; Xni(F}.

Let further VEScott(L). Then V=umFa for some (Fa),,L. We get

{UcScott(L); VjU)nL=ua(FEL; FxF).

Hence the relative topology on L is included in the Lawson

topology. QED

Let ,tt2,.... be random variables in L. We write
d

n4 when tn converges in distribution to , i e when

Ptn - l converges weakly to Pt-1. Cf r1].

We now state and prove the main result of this section.

THEOREM 5.2: Let , be random variables in

continuous semi-lattice L. Suppose Scott(L) has a countable
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open base. Then the following three conditions are equivalent:

d

{liminfnP({ZnF)P(EF), FeL,
(ii) I m

limsupnPni=,{xitn) Pni=,(xi , meN, Xl,...,XmEL;

(liminfnP{x<,tn} P(X<,t), xcL,
(iii) InI

mimsupnPni=l(Xien} Pni={xi }, MEN, x1,...,xmeL;

Before the proof, let us just note that the second part

of conditions (ii) and (iii) reduces to

limsupnPtx ,) P(xt), xcL

if L is closed under finite non-empty joins.

Proof: Suppose (i). Then (iii) follows from the fact that tx

is closed while (y; x(<y} is open for each xcL. Cf [1]. To

see that (iii) implies (ii), note first that

P( t EF)= Vx CFP(X(1), FcL.

Cf Proposition 4.1. Now fix FeL and let c>0. Then

P(EEF} P~x<4--E

for some xcF. Hence, by the first inequality of (iii),

P{ cF}SliminfnP{x,,tn)+f

liminfnP{tncF)+e.

Thus (iii) implies (ii) indeed.

To see that (ii) implies (i) we first consider the case

when L is a continuous lattice. Then L is compact, which

implies that (tn) is relatively compact w r t convergence in

distribution.

Select a subsequence ( n(k)} and a random variable
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d
such that n(k)4y. Then, since (i) implies (ii),

liminfkP(n(k)eF}aP(jEF}, FeL,

1imsupkP{X n(k) P{x ), xeL.

Let AL be countable and separating. It is easily seen that

tX=nx EQAG. Now suppose xcGeA, and choose yeL and FeL such that

tx.FcTygG. Then, by (ii),

P{ S} P(y } limsupnP(ytn)

1imsupnP{ ncF}£1iminfkP(tn(k, F}

P(neF}aP(x~n}.

The collection (G(A; xiGI is filtering. By Corollary 3.4,

P{x HPP{x ,}, xEL.

Next fix FeL. If GiA, G,,F then GZx .F for some xeL.

Hence

P{teF} P~x P~x n) P(ncG).

By an other reference to Corollary 3.4,

P(cF} P{iYeF}, FeL.

Moreover, by (ii),

P{ eG)5liminfnP({n G} liminfnP{Xtn)

5limsupkP{X5tn(k)}5P{x5)}5P(IeF},

and by yet another reference to Corollary 3.4,

P(t F}5P(IeF}, FEL.

Collect the pieces, refer to Theorem 4.2 and conclude that
d d
=,. By [i], tnt follows.

Let us now remove the extra assumption on L. For xeL write

F(x)={FeL; xeF}. Let KrL be Scott compact and saturated. We saw in
n(m)

the proof of Proposition 5.1 that there exist a sequence {uj=, tFmi)

with
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n(m)

Here the Fmi's belong to L. It is not so hard to see that, by

(ii),

liminfnP(n~qf( n))a1iminfnP{Ui Fmi-r-F(tn))

=liminfnP(nfnjFmj}jP(cniFmi}

=P(ui Fmicf( ) )TP(KqF( ) ).

Hence, whenever KcL is Scott compact and saturated,

liminfnP(K.fF( n) )1P{K&F() }.

Next fix UeScott(L). Then U=UmF(xm) for some countable {Xm)cL.

By (ii) we now get

limsupnP(U&.F( n))=limsupnPnm(F(xm)F(tn) )

limsupnPnk!m(Xk n)

Pn k m(Xk } ) *Pn m (Xm t)=P{U7F( )

Hence, whenever UEScott(L),

limsupnP(UCF( n))P(UF(t) ).

We may now conclude by the already proved special case of the theorem
d

that F( n)4F(t) w r t the Lawson topology on Scott(L). By
d

Proposition 5.1, this implies that F(tn)-F( ) w r t the Lawson
d

topology on OFilt(L). By the Lawson duality we now see that n .

QED

The next result shows that the collection of all pairs

(x,F)cLxL satisfying Fj x and P{[Ox\F}=O is sufficiently

rich for many purposes (cf condition (v) of Proposition 3.1).

LEMMA 5.3: Suppose is a random variable in a continuous

semi-lattice L, which has a second countable Scott topologY.
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Then, whenever xcF, we have xEHcIzcF for some pai

(z,H)eLxL satisfying P(zt)}=P(tEH).

Proof: Put x(l)=x and choose x(O)eF such that x(O),,x(l).

Then choose (x(k.2-n); neN, k=l,2,...,2n-l) such that

x(k'2-n),,x(l'2- m ) whenever k.2-n<l.2"m. Now put

y(t)=v(x(k'2-n); k'2-n<t1, O<t<l. It is easily seen that

y(t)= Vs<ty(s), O<t<l.

Hence the mapping

f(t)=P~y(t)S}, o<t<l

is decreasing and left continuous. Let t be a point of

continuity. Then, by monotone convergence, writing z=y(t) and

H= us>t Ty(s),

P{z }=P{ eH).

The reader easily verifies that HeL and that xcHctzrF. QED

This leads directly to the following result, which

supplements Theorem 5.2.

PROPOSITION 5.4: Let (n} be a sequence of random variables in

a continuous semi-lattice L which is closed under finite non-

empt joins. Suppose Scott(L) is second countable. If tn

converges in distribution to some random variable t, then there

are separating subsets A and A of L and L, resp, with

(5.1) P(x }=limnP(X5Zn), xeA;

(5.2) P(tcF)=limnP{(teF), FeA.

Let BE be such that, whenever xeF, we have txQBaF for some

BeB and let c:B4[0,1] be such that, whenever c>0 we have
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c(B) l-E for some BiB having a lower bound. (This restriction

on c is superfluous if L is a continuous lattice.) If

(5.3) c(B)=limnP{tnEB}, BeB,

then n converges in distribution to some random variable

satisfying

(5.4) P{x5 )=A{c(B); BtB, tx&.FjB for some FEL), xcL;

(5.5) P{ EF)=v{c(B); BEB, B +x;F for some xeL), FeL.

d

Thus, n4 if P{X~tn}4P{XE} for all x in a

separating subset of L, or if P(tncF}4P{teF} for all F in a

separating subset of L.
d

Proof: Suppose n t and let y4,x. Then xcF&y for some

FeL. By Lemma 5.3, there is a pair (z,H)eLxL satisfying

xeHqzcF and P(tEz\H}=O. By Theorem 5.2, P{Ztn}4P(Z50.

Hence, the set of all xEL for which

P{xH)=limnP{xn)

is separating. Similarly, the reader may prove that the set of

all FEL satisfying

P{eF}=IimlP{neF)

is separating.

To see the next part of the proposition, fix e>0 and

choose BeB, yeL such that -B Qy and c(B)>l-e. Then

P{ncB)>I-e and, therefore, P{y~tn) for nan 0 , say. It follows

easily that (tn} is tight. Hence there is a subsequence
d

{tn(k)) and a random variable t such that tn(W*t.

Fix xeL. If y,,x then txQB&Qy for some BeB. Hence,

by (5.3) and Theorem 5.2,
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limsupnP(x ,})c(B)5limsupkP{ytn~k)} P(y }.

By Proposition 4.1,

limsupnP{X5t)}P(x }, XEL.

Similarly the reader may show

liminfnP(tnEF}!P(tcF}, FeL.
d

We conclude by Theorem 5.2 that tnt.

To see (5.4), fix xcL and let e>O be arbitrary. By

Proposition 4.1, there exists some FieL with xcF1 and

P(x t)5P{ Fj)5P~x t)+i.

But then xeF2cB.F1  for some F2EL and BeB. Of course we may

assume here that

P{teFi}=IiMnP(tniFj), i=1,2.

Now we get

P(X5 5P( fF2)=2.iMnP( nc, e 1 )5c(B) liMnP{ hneF2 1.

This shows (5.4). The proof of (5.5) is similar and left to the

reader. QED

L m -' ( m ii ml m A -- m m m..
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6. Infinite divisibility

Here we investigate the property of having a distribution which

is infinitely divisible w r t the meet for random variables in a

continuous semi-lattice. The related question of convergence in

distribution of finite meets of independent random variables

forming a null-array is treated too. We begin by writing down

some definitions.

Let be a random variable in a continuous semi-lattice

L. We assume that L has a top, denoted 1. Say that } is

infinitely divisible if, for all neN, we have
dn

t= A1 = 1ti

for some independent and identically distributed random variables

Let (tnj; nEN, lj5mnj be a triangular array of random

variables in L. (The mn's are assumed to be finite.) We say

that the En 's form a null-array if they are independent for

each fixed n and if

(6.1) limnsupjP({njEF}=O, FEL.

Note that L is a base of neighborhoods of 1, which

will be regarded as the point of infinitey. Accordingly we say

that a measure u on L is locally finite if uL\F<w for all

FeL.

Let u be a locally finite measure on L. Choose

(Fn)rL such that Fn+ltFn for all n and Fni(l). Then,

clearly,

uB\{(l}=imnLB\Fn, BEZ.

Moreover, the measures B*nB=uB\Fn are finite and such that
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an F=L\(nFn)- L\F, FEL.

Hence the restriction of a to L\{l) is uniquely determined by

the values aL\F, FEL.

Our first result in this section identifies the

collection of all locally finite measures on L supported by

L\(1.

PROPOSITION 6.1: Let L be a continuous semi-lattice with a top

and a second countable Scott topology. Suppose a is a locally

finite measure on L. Put

(6.2) i(F)=aL\F, FEL.

Then

M(i) l-F %n(F)O, nEN, F,Fl,...,FneL;

(ii) (F)=lim(Fn), F,F ,F2.... cL, FntF;

(iii) (L) =0.

Conversely, let q:L4R+. Suppose i satisfies conditions (i)-

(iii) above. Then there exists a locally finite measure a on

L satisfying (6.2).

Proof: Let u be a locally finite measure on L and define

by (6.2). Conditions (ii) and (iii) are obvious, so we only need

to prove (i). However, (i) follows from

.F 1 ... n (F)=-uFnFI ... nFn C ,

the proof of which is straightforward, hence left to the reader.

Conversely, suppose 4:L-,R+ satisfies conditions (i)-
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(ii). Choose {Fn)lL such that Fn+,<Fn for every n and

Fn 1{). For neN put

cn(F)=(- Fn (F)) (F n), FEL.

Now use Theorem 4.3 to conclude that Cn extends to a

probability measure Xn on L. Put Un=(Fn)Xn. Then Un is a

finite measure on L satisfying

UnL\F= (F)+ (Fn)-(FfnFn), FEL.

Let us now put

uB=limnanB, BEZ.

Then u is a locally finite measure on L satisfying (6.2).

QED

The main result in this section provides a Levy-Khinchin

representation of the infinitely divisible distributions on L.

THEOREM 6.2: Let L be a continuous semi-lattice with a top and

a second countable Scott topology. The formulae

(6.3) M=n(FC; FEL, tcFc a s);

(6.4) aM\H=-logP{tH), HcOFilt(M)

define a biiection between the set of all infinitely divisible

distributions P -' and the set of all pairs (M,u), where

M=x for some xEL while u is a locally finite measure on M

with u(x)=O.

Before the proof we remark that M is Scott closed,

hence a continuous semi-lattice. Its Lawson dual is

OFilt(M)=(FnM; FcL, FnM O).

Note further that EeM a s and that, whenever FeL, FnM 0 iff
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P(eF)>O. As is easily seen these facts hold for all random

variables in L. One assertion of the theorem is that if

is infinitely divisible, then there is a point xeL satisfying

P(t5x}=l and such that P(y }>O whenever yeL, yx.

We also state the following results:

PROPOSITION 6.3: Let t be a random variable in L, and put

(6.5) 4(F)=-logP{tEF), FeL;

(6.6) L=(FcL; 4(F)<w).

Then t is infinitely divisible iff L is a semi-lattice and

(6.7) AF ...AF 4 (F) O, neN, F,F±,...,FneL.

PROPOSITION 6.4: Let 1:L4[0,cj and define L as in (6.6).

Then there exists some infinitely divisible random variable

in L satisfying (6.5) iff L is a semi-lattice and,

moreover, (6.7) holds together with

(6.8) i(F)=limn4)(Fn), F,Fj,F2,...EL, FnTF;

(6.9) 4(L)=O.

Proof of Theorem 6.2 and Propositions 6.3 and 6.4: Let be a

random variable in L, and define p and L by (6.5) and

(6.6), resp. Suppose t is infinitely divisible. Then there

are random variables tl,t2,... satisfying

P(EF)=P(tncF}n, FeL, neN.

Note that l(F)<w iff P(EeF)>O, and in this case

(F)limnnP(tn4F).

Now it is easily seen that L is a semi-lattice and that (6.7)
c4
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is at hand. This shows the necessity parts of Propositions 6.3

and 6.4.

Let us next suppose that is a semi-lattice and that

(6.7) is at hand. Clearly L4  is isomorphic to OFilt(M). We

conclude that the latter is a semi-lattice with a top. It

follows by a result of Lawson [10], recalled in Section 2, that

M must have a top. That is, M= x for some xeL.

Introduce

Y0 (H)=-logP(teH}, HeOFilt(M).

If H=FnM for some FeL, then P0(H)=P(F). Now the reader

easily shows that 0 fulfills the three conditions of

Proposition 6.1. We conclude that there is a locally finite

measure u on M supported by M\(x) satisfying (6.4).

Thus the mapping Pt-14(M,u), described in Theorem 6.2 is

into. Since it is clearly one-to-one, it remains to be shown

that it is onto.

For this, fix M= x, where xeL and let u be a

locally finite measure on M with u(x)=O. Choose

{Hn}jOFilt(M) such that Hn+i,"Hn for each n and HnO(x}. For

ntN write

UnB=aB\Hn, BEm.

Then conclude, as in the proof of Theorem 3-1-1 in Matheron [11),

that the mapping cn:OFilt(M)4[0,1], given by

cn(H)=exp(-UnM\H), HeOFilt(M),

satisfies the three conditions of Theorem 4.3. Let us put

c(H)=exp(-aM\H), HiOFilt(M).

Then, as n-ow, cn(H)-*c(H) for all HcOFilt(M). Of course c
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satisfies the conditions of Theorem 4.3. Hence there is a random

variable t in M satisfying (6.4). Note that ZM=ZLnMIQL,

since MrZL. Hence we may regard as a random variable in L

concentrated on M. Of course is infinitely divisible. Thus

the mapping PE-14(M,u) is onto. Theorem 6.2 is proved.

Clearly so is also the remaining part of Proposition 6.3.

To see the sufficiency part of Proposition 6.4, form

M=n{FC; FeL, (F)=w}.

Being a Scott closed subset of L, M is a continuous semi-

lattice. It is a routine exercise to show that

OFilt(M)={FnlM; FEL, FnM 0}.

Moreover, FnMOO iff 4(F)<. Hence OFilt(M) and L are

isomorphic. Thus also the former is a semi-lattice. Since it

trivially has a top, we conclude that M has a top too [10]. We

may now conclude by Proposition 6.1 that there exists a locally

finite measure a on M satisfying aM\F=P(F), FeL, FnMO0. By

the already proved Theorem 6.2, there exists an infinitely

divisible random variable satisfying (6.5). QED

Now assume that L is a continuous lattice. It is not

hard to see that a measure a on L is locally finite iff

uL\tx<w for all xeL with x<<l. In this case the set

%{xeL; uL\tx<w)

is closed under finite non-empty joins. Its join is 1.

THEOREM 6.5: Let L be a continuous lattice. Suppose Scott(L)

has a countable open base. The formulae

(6.10) x=v{yeL; P(yt)>O);
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(6.11) vix\Ty=-logP(y }, yeL, y<<x

define a bilection between the set of all infinitely divisible

distributions PV-' and the set of all pairs (x,v), where xeL

and v is a locally finite measure on x with v(x}=0.

PROPOSITION 6.6: Let be a random variable in L and define

(6.12) O(x)=-logP(x ), xcL;

(6.13) L 4 ={xcL; O(x)<0).

Then is infinitely divisible iff L is closed under non-

empty finite loins and

(6.14) On(X;X1,...,Xn)0, ncN, xx1,...,xneL.

PROPOSITION 6.7: Let tbe an infinitely divisible random

variable in L satisfying P(xt}>0 for all xEL with x<(l.

Let a be the locally finite measure on L satisfying

aL\Tx=-logP{x }, xEL.

d
Then =Ann, where 1,t2,... are the atoms of a Poisson

process on L with intensity a.

Proof of Theorem 6.5: Let t be an infinitely divisible random

variable in L and define x by (6.10). Define further M and

u by (6.3) and (6.4), resp. Fix ycL. Suppose P(yt)>0.

If yeFeL then P(iF)zP(yiE)>0. Hence FnMO0. But ty=ny(FeLF

and, therefore, yeM. We conclude that xiM. Next, suppose

y,,vM. Then vMcF.Qy for some FeL. Clearly P(y ) P(tcF)>0.

The latter inequality since FnMO0. This show, aat
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(y; y-vM)c(y; P(ySt)>O).

Hence vMx, i e Mx. Thus we have x=M.

Now fix yeL, y'x. Choose (Hn}eOFilt(M) such that

HnO(ty). Then

aM\Ty=limnuM\Hn=limn-logP(tcHn)=-logP(y t).

We may now conclude that (6.11) defines a measure which coincides

with a. QED

Proof of Proposition 6.6: The proof of the necessity part is

analogous to the proof of the corresponding part of Proposition

6.3. It can safely be left to the reader. To see the

sufficience, suppose that L is closed under finite joins and

that (6.14) is at hand. Define ' and L by (6.5) and (6.6),

resp.

Suppose Fl,F2cL . By Proposition 4.1 we may choose

yicFi with Pfyif)>O, i=1,2. But ylvy2eFlnF2. Hence

P(cF1nF2)!P{y1vy25}>O.

Thus L is a semi-lattice.

To see that (6.14) implies (6.7), argue as in the proof

of Lemma 4.19. QED

Proof of Proposition 6.7: It is enough to note here that XAntn

iff there are no points of the Poisson process in the set L\Tx.

The probability of the latter event is exp(-aL\Tx). QED

Let us now turn our attention to the convergence in

distribution of finite meets of independent random variables

forming a null-array.

THEOREM 6.8: Let (tj) be a null-array of random variables in
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a continuous semi-lattice L. Suppose L is closed under finite

non-empty joins and that Scott(L) is second countable. Let

be a random variable in L. Then Ajnj4 ifff

(6.15) flimsupn~jP(tnj F)-logP(eF}, FEL
(6-15) liminfn~jP{xitni) -logP[x ), xeL.

d

Moreover, if ^jnj+) then is infinitely divisible and there

are separating subsets A and A of L and L, resp. with

(6.16) limn~jP(tfj F)=-logP(tEF), FeA;

(6.17) limn~jP{xtnj )=-logP(xM), XEA.
d

Conversely, Aj nj4 if EjP(tnj F)4-IogP{jEF) for all F in

some separating subset of L, or if ZjP{xt}nj)4-logP{xM) for

all x in some separating subset of L.

Proof: It is a routine exercise to show that P(AjtnjcF)+P(EF)

iff :jP( nj F)4-logP(EF) and that P(XAjtnj)4P{XM) iff

jP(x4Enj) -IogP(xM). (The latter provided x<<l of course.

Note that if A.L is separating, then so is A'=(xeA; x4l1).) By

Proposition 5.4, this holds for all x and F in separating
d

subsets A and A of L and L, resp, if Ajtnj4t. Suppose

this. Let FcL. Choose (Fm)}A such that FmtF. Then

EjP( njF)EjP(nj{Fm)4-logP( EFm).

Hence

limsupnEjP(tnj4F)5-logP{teFm)4-logP(E(F).

Similarly the reader may show that

liminfn~jP(Xftni)Z-logP(xM).

Thus, (6.15) follows from (6.16) and (6.17), which follow
d

from Ajtnj4t. Conversely, the reader easily shows that
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(6.15) implies both (6.16) and (6.17). By Proposition 5.4,
d

each of these conditions imply Ajtnj-t. QED



50

7. Applications to random set theory

Let S be a quasi locally compact second countable space and

write G for its topology which is a continuous lattice under

inclusion c. It is not hard to see that any open base for G

is a separating subset provided it is closed under finite unions.

Hence G contains a countable separating subset. By Proposition

3.1, Scott(G) is second countable.

By a random open set in S we understand a measurable

G-valued mapping of some probability space (S,R,P). Thus, by

Proposition 3.2, :S14G is a random open set iff {G.Q} eR, GeG

iff {G})ER, GEG. By Theorem 4.2, the distribution of a random

open set t is completely determined by its distribution

function .\(G)=P{G&Z), GcG. Now let A:G-(0,1] be arbitrary.

Then, by Theorem 4.4, there is a random open set in S with

distribution function .\ iff (i) .\n(G;Gi,...,Gn) 0 for ncN

and G,Gl,...,GnEG, (ii) .\(Gn)4.\(G) as GnTG and (iii) .\(O)=l.

d
Let ,Zt2,.... be random open sets in S. Then n4

iff

liminfnP(G<An)P(G,4}, GeG;

limsupnP(G~tn)P{G7A}, GeG.

d
Cf Theorem 5.2. Moreover, by Proposition 5.4, tn* if

P{G n)4P{GZt) for all G in a separating subset of G.

The application of the results of Section 6 to this model

of random open sets we leave to the reader.

Let us instead suppose that S is sober. Then S is

locally compact [7]. Write F for the collection of all closed
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sets in S. Endow F with the exclusion order _. Clearly

GIGC is an isomorphism between G and F. Hence (under

exclusion) F is a continuous lattice with a second countable

Scott topology. (Note that, for (Fa)},F, vmFa=naFm.) Write

further K for the collection of all compact and saturated sets

in its natural order c. Note that, being isomorphic to the

Lawson dual of F, K* is a continuous semi-lattice with top

and second countable Scott topology (cf (2.6)).

Say that an F-valued mapping of a probability space is a

random closed set in S if it is measurable. By Proposition

3.2, :R4F is a random closed set iff ({ F}eR, FeF iff

{(nK= 4cR, KEK. Clearly these conditions hold iff

{ nG= OeR, GcG. We see that in the particular case when S is

a Hausdorff space our notion of a random closed set coincides

with Matheron's [11]. Most of the subsequent results for random

closed sets are well-known in this particular case. Cf also (2]

[13].

Let us first note that, by Theorem 4.2, the distribution

of a random closed set S is completely determined by the values

P(tnG=0}, GeG or P( nKO0), KcK. (The tradition invites us to

work with the function G4P(tnG=0J, GEG rather than with the

distribution function A(F)=P({F}, FcF.)

Let T:K4R. Then, by Theorem 4.3, there is a random

closed set t satisfying P(t-K O)=T(K), KeK iff

(i) Tn(K;K ,...,Kn)0, nEN, K,K,,...,KnK;

(ii) T(K)=IimnT(K,), KKI,K2,...EK, KO K;

(iii) 05T51, T(O)=0.
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In the terminology of [11], (i)-(iii) hold iff "T is an

alternating Choquet capacity of infinite order such that 05T51

and T(0)=0". Thus, as claimed in the introduction, our Theorem

4.3 extends Choquet's existence theorem for distributions of

random closed sets.

Next let Q:G4[o,l]. By Theorem 4.4 there is a random

closed set t satisfying P({nG=0}=Q(G), GeG iff

Wi Qn(G;Gj,...,Gn) 0, neN, G,Gl,...,GcG;

(ii) Q(G)=I' imnQ(Gn), G,G1,G2,.... G, GOG;

(iii) Q(0)=I.

Also this existence result can be found in [11].

Before turning to the convergence in distribution of

random closed sets, let us note that the Lawson topology on F

is generated by the families (FeF; FnK=0), KK and

{FeF;FnG O}, GeG. Hence it coincides with Fell's topology [4].

See also [11] [13].

Let ,tt2,.... be random sets in S. Then, by Theorem
d

5.2, Zn t iff

liminfnP(tnnK=0) P(nK=0), K

limsupnP(nnG=0)}P(nG=0}, GeG.

d

By Proposition 5.4, t, if P{tnnK 0)-P(tnK 0) for all K

in a separating subset of K* or if P(nnG=0)4P{EnG-0) for all

G in a separating subset of G. Note that KojQK* is separating

iff, whenever K.G, where GEG while KeK, we have K&.Ko.G for

some KoEKo. It is not hard to verify that the collection

Kt of all KeK with P(tnK 0=-0)P(tnK-0) is a separating subset
d

of K* (use Lemma 5.3). Hence twot iff
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P( nK 0)=limnP(nKr0), KeKt.

Cf (13].

By applying the results displayed above for random closed

sets to the case when S equals the extended real line (-ww]

endowed with the topology with non-trivial closed sets (-w,x],

xeR, we may obtain some very familiar existence and convergence

results for distributions of random variables. This is left to

the reader. Note that this topology on (-w,w] is not

Hausdorff. Hence Choquet's original result can not be applied.

However it is locally compact, second countable and sober. This

can be seen either directly or by noting that it coincides with

the Scott topology on - Note that these results for

random variables also can be obtained directly from the results

of the Sections 4 and 5.

The application of the results of Section 6 to random

closed sets is left to the reader (cf with [11] [13]).

Let us agree to say that a K-valued mapping of some

probability space is a random compact set if it is measurable

as a mapping into K*. That is t:n4K is a random compact set

iff ({.K)eR, KeK. By Proposition 3.2, this holds iff ( K0 )eR,

KeK. By Theorem 4.2, the distribution of a random compact set

is completely determined by its distribution function

.\(K)=P({.K), KcK or the values P({gKO), KeK.

Let c:G-*[0,1]. By Theorem 4.3 there is a random compact

set t satisfying P({jG)=c(G), GeG iff

i) AG...A c(G)!O, neN, G,G1 ,...,G,(G;
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(ii) C(G)=limnc(Gn), G,G1,G2,.... G, GnOG;

(iii) c(S)=l.

Note the similarity with the second of the existence theorems

displayed above for random closed sets.

Now we tighten the assumptions on S somewhat further

and suppose that S is a Hausdorff space. Then all subsets of

S are saturated and, in particular, K consists of all compact

sets in S. Note that K now is closed under all non-empty

intersections and finite unions.

Let A:K[0,l]. Then, by the remark immediately

following Theorem 4.4, there exists a random compact set in S

satisfying P{tqK}=A(K), KcK iff

Mi .1K....V (K) O, ncN, K,K,...,KncK;

(ii) .\(K)=limnA(Kn), K, K1,K2,.... eK, KnOK;

(iii) v x ex.\ (K) =1.

Note that if S is compact then (iii) reduces to A(S)=l. This

second set of existence criteria for random compact sets should

be compared with the first of the existence results for random

closed sets given above.

Let ,ti,t2,.... be random compact sets in S. By
d

Theorem 5.2, tn4 iff

liminfnP(tn.QKO}P({&KO), KeK

limsupnP{tnQK)sP(e:K}, KeK.
d

By Proposition 5.4, tnt if P(tn:G)P( G) for all G in a

separating subset of G or if P({nQK)4P(trK) for all K in a

separating subset of K*. It follows easily by Lemma 5.3 that

the collection of all KcK with P{E.K}-P(tr.K0 ) is a separating
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d
subset of K*. Hence tnt iff P(tnQK)4P(t.K} for all K in

this separating subset.

Let us recall here that the convergence in distribution

is w r t the Lawson topology and that this topology is generated

by the families (KeK; KqM}, MEK and (KEK; K.M0}, McK.

Let be a random compact set in S. Then is
dninfinitely divisible iff, whenever neN, we have t--uj=jtj

for some independent and identically distributed i,-..,En. Put

(7.1) i(G)=-logP({G), GeG;

(7.2) G ={GEG; 1(G)<w).

By Proposition 6.3, is infinitely divisible iff G is a

semi-lattice and

(7.3) -G ...-% (G) O, neN, G,Gi,...,GneG
G 1  Gn

Now let 1:G4[0,m] be arbitrary and define G by (7.2). Then

there exists an infinitely divisible random compact set t

satisfying (7.1) iff G is a semi-lattice and, moreover, (7.3)

holds together with

(7.4) (G)=limn (Gn), G,Gj,G2-,...eG, GnOG;

(7.5) i(S)=O.

Cf Proposition 6.4.

Finally we assume that S=Rd for some dcN. Let C be

the collection of all compact and convex subsets of S. We

regard 0 as convex. Note that non-empty intersections of

convex sets are convex. It follows, for C1,C2EC, Cl"C2 w r t

the exclusion order iff C2&.Cl 0 . Now it is easily seen that C*

is a continuous poset which is closed under finite non-empty
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joins. Moreover, C* is closed under finite non-empty meets

too. Since the meet of {CI,C 2) w r t exclusion coincides with

the convex hull of CjuC 2 .

Say that a C-valued mapping of some probability space is

a random convex set if it is measurable w r t C*. By

Proposition 3.2, t:R4C is a random convex set in S iff

{.C)eR, CeC iff {(tC°}eR, CcC. By Proposition 4.2, the

distribution of a random convex set is uniquely determined by its

distribution function A(C)=P{tQC}, CiC or by the values

P{ tCO), CeC. Now let A:C[0,1] be arbitrary. Then there is a

random convex set t satisfying P(tLC)=A(C), CeC iff
(i) .1 .... % %(C) !0, neN, C,C,,... ,C, (C;

(ii .(C)=lim,.\(Cn), CCjC2,.... C, COC;

(iii) v C C(C) =1.

See the remark after Theorem 4.4.

The Lawson topology on C is generated by the two

families (CcC; CjQD}, DiC and (CEC; C.D0}, DeC.

Let ttit2 be random convex sets in S. Then, by
d

Theorem 5.2, t, O iff

liminfnP(tEnCO°}P1(Co}, CEC;

limsupnP{tngC) P{tQC), CEC
d

Moreover, by Proposition 5.4, t,*) if P(tnC)4P(QC) for all C

in some separating subset of C. Note that BQC is separating iff

whenever C1 &C 2 0 we have CIQCQC 2 for some CEB. The collection of

all CeC for which P{tQC0 )=P(tQC) is a separating class. See
dLemma 5.3. We may now conclude that tn-* iff P{nr.C)PP(ZC} for
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all CeC with P{t&C0)=P{tjC}.

Note that a random convex set is infinitely divisible

iff for each ncN there exists independent and identically

distributed random convex sets t,...,tn such that the

distribution of the convex hull of tuU...Utn coincides with the

distribution of . By Theorem 6.5, the formulae

B=n (C eC; P(tC)>O);

v(CeC; BjC, C .D)=-logP{t.D}, DeC, B&.D0

define a unique correspondence between the set of all infinitely

divisible distributions Pt-I on C'=Cu{S}, and the set of all

pairs (B,v), where BEC' while v is a locally finite measure

on {CeC; BC}u{S} with v(B)=O. (Since Cu(S) endowed with

exclusion is a continuous lattice.) Ncte in connection with this

characterization of the infinitely divisible distributions on C'

that a random variable in C' is supported by C iff

V c cP( jC}=l.

L mldm l m l l l l lmn m
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