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Preface

The purpose of this study was to evaluate the Tersoff

silicon potential for use in Molecular Dynamic simulations.

There has been a great deal of interest in silicon modeling

in recent years, but a successful, general purpose

temperature independent silicon potential has so far eluded

researchers. Although the focus of this work was looking

toward melting/annealing studies to model the reversible

crystal/amorphous transition, a general purpose silicon

potential would be useful in modeling the thin-layer plating

of silicon (for electrical component design) and a host of

other interesting characteristics.

While the results of this particular study were not

favorable, the general feeling among many researchers is

that the Tersoff style of potential holds a great deal of

promise. Since a molecular dynamic/static computer code

already exists, I hope this study is continued by following

students. The two appendices included at the end of this

report should help following students to understand the

specifics of the code begun by Paul Thee in his thesis.

Three people have provided invaluable aid in the

completion of this research. The first is Capt. Michael

Sabochick, who was always willing to set aside other equally

important projects to explain, discuss, or brain-storm

various aspects of this project. A second indespensable
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source of aid was Dr. Jerry Tersoff, the creator of the

potential evaluated in this study. He provided much-needed

insight into the potential function and the results of

static runs he had completed, and has expressed an interest

in continuing the research dialogue begun with this study.

The third, and possibly most important source of aid was my

wife Sue, who provided support and understanding while

single-handedly managing a very busy household. My heart-

felt gratitude goes out to all three.

William D. Metzler
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Abstract

The goal of this research was to provide an initial

testing of a new silicon potential proposed by Tersoff.

Molecular Dynamic (MD) simulations were performed at four

temperatures below the melting point of silicon to evaluate

the new potential's ability to reproduce the characteristics

of diamond-Si. A constant enthalpy ensemble composed of 64

atoms was used for the evaluation.

Although the Tersoff potential does identify the diamond

structure as the lowest energy crystal at absolute zero,

problems were noted at higher temperatures. At all

temperatures above zero, the calculational cell showed a

marked decrease in volume. The amount of system shrinkage

increased with increasing simulation temperature. Because

of this shrinkage, the Tersoff potential is unusable in MD

simulations.

Several attempts were made to isolate and identify the

cause of the shrinkage, but were unsuccessful. It was noted

that as the bonding environment became more favorable

(stronger bonding), the bonding radius of minimum energy

decreased. Since the potential relies primarily on

coordination number to stabilize the diamond structure,

it is postulated that there exists an as-yet unidentified

four-bond configuration that provides a lower energy and as

a result has a shorter rest bond length than the tetrahedral

diamond structure.
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EVALUATION OF TERSOFF'S REVISED SILICON POTENTIAL

IN A MOLECULAR DYNAMIC SIMULATION OF SOLID SILICON

I. Introduction

Background

Since its inception in 1959 (i), molecular dynamics

(MD) has become a very popular research tool for the study

o' material properties (3 - 5, 7, 11, 14). Unlike Brownian

dynamics or Monte-Carlo techniques, MD solves Newton's

equation of motion to produce a strictly deterministic

simulation of the trajectories of the individual atoms in

the model volume. Monitoring the movement of each atom as

i, i-teracts with neighboring atoms through a pre-

eshaisted interatomic potential permits researchers to

st~c. te e-:hanics of effects observed in the laboratory,

a-3r c .es i-ormation unavailable from traditional

-e~reme.- e~:s i1:799). Additionally, MD offers

ee ccr-t' of the environment, allowing the user to

-nse-.e materia. behavior under conditions that would be

'iz it or impossible to create in a laboratory (8:1).

Before this powerful tool can be used to simulate a

actual svstem, however, an accurate interatomic potential

function for the material must be determined. Past studies

hae relied heavily on pair potentials (6, 7, 9, 11). The

S



Figure 1: Diamond Structure for Silicon

advantage of pair potentials is that they are rekatively

simple and computationally less demanding than more general

potential functions, but still allow accurate modeling of

noble materials. However, one common feature of all pair

potentials is spherical symmetry. This makes them

unsuitable for modeling materials that display directional

covalent bonding, such as silicon. Pair potentials fail to

stabilize the diamond crystalline structure observed in

natural silicon (Figure 1), and degeneration to a hexagonal

close pack (HCP) structure is observed (3:2001).

A significant amount of research effort has been

expended in the development of an accurate interatomic

potential function for silicon. Several new potentials have

22 .



2" been devised, with most being three-body potentials (3, 13,

15). These three-body potentials provide stability to the

diamond crystal structure, but required calculations for

3most three-body interactions scale as N , where N is the

number of particles. The resulting computational demand

limits the practical size of systems that can be studied.

The Biswas and Hamann potential is an exception, because the

separable form of their function allows N 2 scaling (3:2001).

The Tersoff silicon potential offers a notably

different approach to the problem of silicon modeling.

Tersoff has avoided explicit three-body terms in the

potential, resulting in a hybrid two-body potential in which

the attractive term is modified by the bonding environment.

Because the Tersoff potential is basically a two-body

potential, the bond calculations scale as N 2 rather than

N . Since processor time is a major limitation in MD

studies, this is a very attractive feature. In addition,

this potential includes structural information that may

allow its use in studies where silicon structures other than

diamond are to be examined. The specifics of the Tersoff

potential are discussed in Chapter II.

To date, Tersoff has proposed two different silicon

potentials, the second representing a modification of the

original. Tersoff's initial silicon potential (16) was

evaluated in a molecular dynamic simulation by Thee (18).

One major problem with the original potential identified in

Thee's work was that the atom density increased with

3
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increasing temperature up to 1000 K, contrary to known

behavior of silicon (19). As a result, the original

potential was deemed unusable in MD simulations. Tersoff's

modified potential function (17) was investigated in this

work.

Problem Statement

The purpose of this research was to determine the

usefulness of the new Tersoff potential for MD simulations.

This represents an initial step toward the ultimate goal of

simulating the melting and annealing behavior of silicon

undergoing pulsed laser heating. The melting/annealing of

silicon is of particular interest to the military as a

survivable means of mass information storage. Because of

its annealing characteristics, silicon has been widely used

as an optical storage medium. Advantages of optical storage

include very high data density (> 108 bits/cm ), faster

access time, and resistance to EMP (electromagnetic pulse -

a nuclear blast effect), unlike the magnetic storage media

now in wide useage. By studying the mechanics of silicon

annealing, better optical storage designs may be possible.

Scope

This work was limited to an initial examination of the

new Tersoff silicon potential. Other current potentials

were not evaluated, and no melting/annealing behavior was

tested. Because this represented only a "proving" of the

4
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potential, the simulation was limited to 64 atoms to

expedite the results, and periodic boundary conditions were

used to arrive at bulk properties. Therefore edge effects

and boundary phenomenon were not examined.

Assumpt ions

As with any simulation, numerous assumptions and

approximations were required to make this problem

manageable. Rather than being identified in this section,

required simplifications are discussed in the relevant

portions of the following chapters, where the accompanying

discussion should provide the reader with a better

understanding of their effects.

Round-off errors are the single exception. The

majority of experimental runs completed in this research

effort were performed on a Cray X/MP computer. This

machine uses 14 significant digits in single precision, more

than sufficient to keep round-off errors negligible, even

over thousands of time-steps. The remaining runs were

completed on a VAX 11/780 in double-precision mode. This

provided 16 significant digits in the numerical calculation,

but the increased processing time made it impractical to use

the VAX computer for the majority of the tests run.

General AD2roac

This research effort was completed in four stages. The

first stage, consisting primarily of computer coding,

involved modification of Thee's existing molecular dynamics

5
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code (14) to include the new Tersoff potential and

appropriate derivatives. Once coding was completed, several

test runs were performed to insure the potential and

positional derivatives (forces) were correct. This

validation of the code comprised stage two of the research.

Stage three included the full-scale tests of the silicon

model at temperatures below melting to evaluate the ability

of the simulation to reproduce the physical behavior of

solid silicon in a diamond configuration. Study and

analysis of the changes in lattice structure as a result of

heating concluded the research.

Segquence of Presentation

The final report on this research effort is divided

into six chapters. Chapter I is the introduction, which

presents a brief history of the development of the silicon

potential and outlines the research procedure. Chapter II

describes in detail Tersoff's new potential. Computational

techniques used to perform the simulation and procedures

used to calculate the material properties are described in

Chapter III. Chapter IV contains the results of both the

test runs used to validate the code and the evaluation runs,

which were completed at four selected temperatures well

below the melting point for silicon. Behavioral analysis of

the potential is undertaken in Chapter V. The conclusions

resulting from this work and recommendations for future

efforts are the subject of Chapter VI.

6
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II. Tersoff's Modified Silicon Potential

Interatomic Potentials (General)

In developing an interatomic potential, it is generally

assumed that the potential energy at any point in space can

be expressed as a sum of contributions from individual x-

body interactions. For a system containing N identical

atoms, the total potential energy U for the system could be

written (15:5262)

U(l ... ,N)Zu(r )+ u2(rl,r

i<j

+ u (r ,r ,r ) . uN(rl,r ,. .. ,r N )
i,j,k 3 i u 2
i<j<k

where ri is the position vector for atom i, and u is the

potential energy due to x-body interactions, which is a

function of the position of the x atoms. The first term on

the right hand side of (1) describes the potential due to

the external environment, and is of no concern in this work.

Therefore the first applicable term in equation (1) is the

pair potential u 2 , which is summed over all atom pairs. The

u term describes the potential energy due to all possible
3

three body interactions, and additional terms are necessary

for the higher order interactions. The final term uN

describes the energy due to the single arrangement involving

all N atoms of the system.

7



%. incorporating both the two- and three-body terms of equation

(1). The basic weakness in these potentials is that they

are generally fit specifically to the diamond structure of

silicon, and have very limited application in simulating

other silicon structures (5:7363).

The Tersoff potential, on the other hand, explicitly

accounts for the bonding environment, relying on control of

the coordination number as described below to stabilize the

diamond structure. This approach offers the possibility of

a much more widely applicable silicon potential.

Tersoff's New Silicon Potential

The form of the Tersoff potential was motivated "by

intuitive ideas about the dependence of bond order upon the

local environment" (16). The general form of the potential,

as previously mentioned, is a modified pair potential very

similar to the Morse potential (16). Tersoff's proposed

two-body potential is

U=Z u 2 (rj) = 1/2 .Z u 2 (r j) (2)
i,j i,j
i<j j

where the pair potential u 2 is a function of the separation

distance r j between atoms i and j such that

u2(r j) = fc(rj)[A exp(-,i r j) - B jexp(-2 r j)] (3)

The f (r ) term is the cut-off function used to limit the

range of the potential, and B~j contains the bonding

9



A Table I: Parameter Values for Tersoff's Silicon Potential

Variable Value Variable Value

A 3264.65 (eV) n 22.9559

a 0  95.3727 (eV) R 3.0 (A)

b 1.40949E-11 D 0.2 (A)

c 4.83810 3.23940 (/A)

d 2.04167 2  1.32583 (/A)

h 8.80498E-6 A 3.23940 (/A)

environment information as defined below. The variables A,

x ,and A were chosen to provide correct bond energy and '2
bond length for silicon diamond, FCC, and simple cubic

structures, as well as other static properties not

specifically identified by Tersoff in his communique. The

values reported by Tersoff for these variables (and others

to be introduced later) are recorded in Table I.

Cut-off Function f . The cut-off function provides a
C

dual service. It limits the range of the interaction to a

reasonable distance and simultaneously provides for

continuous spatial derivatives so that forces can be

calculated (see Figure 2). The particular form of the

cut-off function used by Tersoff is

r < R- D
S(r - R)

f(r) 5- .5sinC ---------- , R - D < r ' R + D (4)
, 2D

O, r > R + D

10
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1.0

0

2.7 2.8 2.9 3.0 3.1 3.2 3.3

Separation Distance r (Angstroms)

Figure 2: Cut-off Function vs. Separation Distance

where r is the distance in angstroms separating the atoms of

interest. The selected values for R and D are included in

Table I. For a lattice constant of 5.4312 angstroms (solid

silicon at 300 degrees K), the 3.2 angstrom cut-off radius

falls between the nearest neighbor distance (2.35 angstroms)

and the next-nearest neighbor distance (3.84 angstroms).

Environmental Factor 8 i" The environmental effect on

bond strength is reflected in the B i  term. This term was

the focus of Tersoff's modification of his original silicon

~I



4 potential (16). Only the modified potential which was the

basis of this study will be discussed here. Interested

readers are referred to the original article to compare the

two potentials.

The value of Bij for any bonded i-j pair is found by

B = B (1 + bz )-/(2n) (5)

Values for B 0 , b, and n can be found in Table I. The z j

term contains the bonding environment information, and is

defined by

z = Z fc (rik )g(O)exp{_[3 (r - rl J )]
3 ) (6)

where the summation is over all k atoms for the given i-j

pair. The cut-off function f is as previously defined andC

the g(e) function contains the angular dependence in the

potential.

2 2c c

g(O) = i + 2 - 2 (7)
d + [cos(0) + h]

Theta is the angle between the i-k and i-j bonds, and the

values of the empirical parameters X , c, d, and h are
3

contained in Table I.

The calculation of B1 j presents a possible problem in

computer simulations. For configurations where r >> r I
the value of zj can become quite large (on the order ofi8
108). When this is then raised to the n-th power (n f 23)



for the computation of Bi,, the capabilities of the computer

may be exceeded. This can be avoided by noting that when

zij becomes large, equation (5) can be simplified to

B = B b-1/(2n) z-1/2 (5a)

ij 0 ij

with negligible loss of accuracy. This approximation was

used to evaluate j for large values (> 5) of z *

Figure 3 gives a visual representation of the effect of

changing environment on bond strength. Two trends should

be noted in Figure 3. First, the larger the Bij term is,

the lower the bond energy (stonger bonding) for any

separation distance. Second, as Bj decreases, the most

favored (lowest energy) bond length increases. Therefore

both bond energy and preferred bond length are functions of

the bonding environment.

Coordination Number vs. Bond Strength. The competition

between coordination number and bond strength is of primary

importance in determining the bond environment as

represented by the Bij term. Increasing coordination

requires more i-j bonds, each of which contributes to the

overall system energy. Since bond energies are negative,

a greater number of bonds equates to a lower (greater

negative) energy and therefore a more stable configuration.

This is the case with ordinary pair potentials. In

Tersoff's potential, however, increasing coordination number

also increases the number of terms in the summation of z ,".'

13
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Figure 4: B vs. zii

wich increases zjj and decreases Bij (see Figure 4). The

decrease in Bj results in a weaker (less negative) bond

energy for each individual i-j bond, therby countering the

effect previously discussed. This attempt to model the

response of silicon-silicon bonding to changes in the

environment provides the major differentiation between the

Tersoff potential and other potentials.

4Dguiar Deqendence. The angular dependence seems to

have only a marginal effect on the bond strength. The rapid

increase in z wLth increasing coordination number is the

15
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2.0.

1.5

1.0
0 30 60 90 120 150 180

Bond Angle 0 (degrees)

Figure 5: Angular Dependence of g(8)) Function

primary tool used to stabilize the diamond structure within

Tersoff's potential. The weak dependence of g(O) on the

bonding angle e (see Figure 5) is a result of Tersoff's

empirical fitting of the potential to several statiz crystal

structures, and offers the possibility of a potential

aoplicable to many different silicon structures.

.6
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III. Molecular DynamLc Model

The purpose of this chapter is twofold: 1) to provide

the reader with a brief overview of the process of molecular

dynamic simulation to allow better understanding of the

results reported; and 2) to explain briefly the calculations

required to convert the results of a MD simulation into the

material properties reported in the following chapters.

If a further explanation of MD or statistical mechanics is

desired, the reader is referred to texts 8 and 10 listed in

the Bibliography.

Overview of Molecular Dynamics (MD)The purpose of the molecular dynamic simulation is to

solve Newton's equation of motion for each particle in the

simulation volume, providing a time-history of each

particle's position and velocity over the period of the

simulation. For a system of N identical atoms, this

requires the solution for each time step of a set of N

differential equations of the form

d d
mi -- (v ) = F = ---- [U(r ) ()d t i dr

where m. , v i , and r i  are the mass, velocity, and position

of atom i, respectively, U(r N ) is the total potential energy

of the system as a function of the N atomic positions, and

F is the total force on atom i.

l.
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Analytical solution of the set of differential

equations described by (8) above would be impossible in a

practical sense. Instead, the Gear Predictor-Corrector

Algorithm as described by Haile (8:17) was used to provide

a numerical solution. Because this calculation is the heart

of the MD simulation, a brief explanation of the procedure

will be presented here.

Gear Predictor-Corrector Algorithm (GPCA). Given the

-() (2)positions r i and first five time derivatives r ,r )I 1 '

-(3) -(4) ,5and r(5 for each of the N atoms at a given time

to 0the GPCA determined the atom positions at the next

incremental time t' = t + dt through a three step process

of prediction, evaluation, and correction.

Prediction. A fifth order Taylor expansion was

used to predict the position and first five time derivatives

for each atom at time t' based on the values at t The0

predicted value of the n-th time derivative of the position

vector for atom i at t' was calculated by

) -5-n dtk
(n) 5- -(n+k) d

pr (t') - r (t (9)r k=O 0 k!

where pr(t') was the predicted derivative value, dt

was the time step size, and r( ) (t0) was the n-th time
1 0

derivative of the position vector for atom i at t J
0

Evaluation. Once the position of each atom was

predicted for t', the resultant potential energy and the

18



force on each atom was calculated using Tersoff's potential

function (see Appendix A for derivation of forces). The

calculated atomic forces were divided by the atomic mass to

determine the actual acceleration r (t') of each atom.

The evaluation of forces was the most computationally

demanding section of the MD simulation, and several time-

saving techniques were included in the model to minimize the

number of required calculations. The computer code used in

this work was a modification of the code used by Thee, whose

thesis provides a detailed explanation of these techniques

(18). The explanation will not be repeated in this work.

Correction. As a result of the evaluation step,

the actual acceleration of each atom at t' was known. The

difference between the predicted and actual accelerations

for each atom defined N error terms dr )(t') by

dr(2)(t') = r(2)(t,) p r(2)(t') (10)

These error terms were then utilized to correct the

predicted positions and remaining four time derivatives of

each atom according to the relationship

r(n)(t') = pr(n) (t,) + a dr ( n ) (t') (11)

i i n i

The a n coefficients in equation (11) provide numerical

stability to the solutions of the differential equations and

vary with the order of the predictor. Coefficients for the

.fifth order Taylor expansion used in this study are listed

19
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Table II: Values of Coefficients for 5th Order GPCA

Coefficient Value Coefficient Value

a0  3/16 a1 251/360

a2  1 a3  11/18

1/6 a 1/604 5

in Table II. The corrected atomic positions and derivatives

as calculated from equation (11) then became the initial

values for the next time increment, and were stored to

provide the time-history needed for property calculations.

Boundary Conditions and Selection of N. The selection

of the size of the calculational cell (number of atoms N)

used in the MD simulation represented a compromise between

the greater realism of a system containing a large number of

atoms and the lighter computational requirements (faster run

times) of a smaller system. With small systems, however,

only a fraction of the atoms experience the normal 4-atom

coordination. As a result, edge effects would have

overwhelmed the bulk properties of interest without

compensation for the under-coordinated atoms.

Periodic boundary conditions were used to eliminate

these edge effects, as is common in MD simulations of this

type. By surrounding the calculational cell with exact

images of itself, the proper coordination was provided

for each atom in the cell. Figure 6 shows a two-dimensional

20
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Figure 6: Two Dimensional Periodic Boundaries and Image
Interaction (arrows indicate velocities) (18)

example of periodic boundaries, indicating the interaction

of an atom in the calculational cell with one image of

another atom. The presence of these "images" set a lower

limit on the size of the calculational cell. To provide

stability, the calculational cell had to be large enough to

prevent any atom from simultaneously interacting with more

than one "image" of any neighboring atom. A more complete

explanation of the implementation of periodic boundary

conditions is available in Thee's previous work (18), and
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interested readers are directed there for more detail. For

the purpose of this research, 64 atoms in a 2x2x2 array of

diamond lattices was selected as an optimum size for the

calculational cell. This kept run times acceptable, yet was

large enough to remain stable.

Running the Simulation. The actual operation of the MD

simulation was divided into four time phases.

1. Initialization

2. Scaling Steps

3. Resting Steps

4. Property Calculation Steps

Each time phase will be discussed separately.

Initialization. To begin a run, the 64 atoms

comprising the computational cell were assigned positions

corresponding to the lattice sites in a diamond crystal,

and three random velocities (one for each directional

component) were generated for each particle. The random

velocities were scaled so that the linear momentum of the

system was zero to prevent net translational motion from

causing erroneous temperature calculations. The computer

code used in this work also allowed the user to save the

positions and velocities from one run and use them as the

initial conditions for a following run, minimizing the

initial shock to the system when runs at high energy

(temperature) are performed. This option was seldom used,

and the results from runs begun in this manner will be so

annotated. After assigning random velocities, the remaining
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time derivatives were initially set to zero. This caused

errors in the initial steps of the GPCA, but the derivatives

qu.7kly corrected themselves as the simulation progressed.

Scaling Steps. The purpose of the scaling steps

was to establish the desired energy level in the system.

Since temperature is related to the kinetic energy of the

constituent atoms, the simplest method of controlling the

energy was to scale the velocities of the individual atoms

so that the desired temperature was achieved. The

progression of the simulation then partitioned the resulting

total energy between potential and kinetic components. The

number of scaling steps required to stabilize the system

depended on both the amplitude and the level of accuracy

desired in the final temperature, but normally a few tens to

a few hundred steps were sufficient.

Resting Steps. Abrupt termination of scaling

subjects the system to a mild shock (8:28). The purpose of

the resting steps (generally a few tens to a few hundred)

was to allow this shock to dissipate before property

calculations were begun.

eroperty Calculation Steps. The property

calculation steps generated the actual data from the MD

simulation. The instantaneous property values over several

thousand time steps provided the data base necessary to

calculate the bulk properties of the silicon model. The

actual calculations required to transform the instantaneous

values into bulk properties will be presented later.
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Ensembles Used and Time Ste@ Size dt. In describing a

system of atoms, the six state variables of density,

pressure, volume, temperature, enthalpy, and internal energy

can all be calculated if any three are known. MD

simulations are generally identified by the three fixed

state variables. In this study, two types of ensembles were

used, and each will be described separately. The choice of

ensembles was found to effect the size of time step that

could be used in a simulation. Ideally, one would like to

use as large a time step as possible to simulate the longest

period of real time in the shortest number of time steps.

However, at some maximum allowable time step size, the

numerical solution to the differential equations become

unstable and the model fails. Time stop size and acceptance

criterion for each ensemble is discussed below.

(!N1 VjE Ensemble. The traditional use of MD was

limited to a "micro-canonical" ensemble where atom number,

volume, and total energy were held constant. During the

course of the simulation, kinetic energy (or instantaneous

temperature) and potential energy should both fluctuate

around average values out of phase with one another, so that

the total energy remains constant. The acceptable amount of

variation in the total energy was selected to be 1 part in

l 0 over 3000 time steps. To achieve this consistency, 1 x

l0- 3 picoseconds was determined to be the maximum allowable

time step for temperatures up to 1200 K, and this step size

was used in most of the (N,V,E) ensemble runs.
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The primary use of the (N,V,E) ensemble was to verify

that the Tersoff potential and positional derivatives

(forces) were correctly coded in the model. As a secondary

tool, the (N,V,E) simulation provided a cross-check of

results observed in the (N,P,H) ensemble described below.

The results of these cross-checks are discussed in Chapter

V.

(N 1 P 1 H) Ensemble. Since most laboratory

measurements are conducted in a constant pressure/constant

enthalpy environment, it is difficult to directly compare

the results of traditional (N,V,E) MD simulations with

effects observed in the laboratory. Fortunately, a

simulation method proposed by Anderson (2) and later "
modified by Parrinello and Rahman (12) allows simulation of

an (N,P,H) ensemble. For a detailed explanation of the

development of this method, the reader is refered to the

cited articles. The Parrinello and Rahman, or P&R, method

was used extensively in this work, and a brief discussion

follows.

To allow the calculational cell to change shape, the

cell boundaries were defined by a set of mutable basis

vectors a, b, and c, which made up the columns of a

transformation matrix H (Figure 7). The atom positions were

then described by a set of reduced position vectors s so

that

r H s (12)
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Figure 7: Basis Vectors of Computational Cell
for (N,P,H) Simulation (14:62)

The components of the reduced position vectors s range from

0 to 1. The volume 1i of the computational cell is simply

the determinant of the H matrix.

=IHI (13)

Changes in the structure of the computational cell are then

accomplished by altering the elements of the H matrix in

response to the difference between the calculated internal

pressure and the constant external pressure. All runs for

this work were completed with no applied external pressure.

Al
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The Hamiltonian for this system as derived in the P&R

article is merely the enthalpy of the system plus a term to

include the kinetic energy of the walls of the computational

cell. As pointed out in the reference article, the wall

energy term is negligible, so that the enthalpy is a

conserved quantity in this ensemble.

The P&R article describes the transformations necessary

to solve Newton's equations in the reduced space, and to

repeat the explanation here would provide no new insight.

The interested reader is referred to the article listed in

the Bibliography.

The desired consistency in the constant enthalpy

A simulation was set at 1 part in 104 over 3000 time steps.

This was nearly achieved with a time step size of 2 x 10- 4

picoseconds at 1200 K, and this time step size was used for

the majority of the (N,P,H) ensemble runs.

Calculation of Properties

Many physical parameters, such as temperature,

pressure, and internal energy, are dependent only on atomic

positions and velocities. Therefore each possible atomic

configuration (as defined by a unique set of N position

vectors and N momentum vectors) has an associated set of

these properties. Statistical mechanics calculates overall

ensemble properties from expectation values based on the

probability associated with each atomic configuration of the

ensemble. However, the probability distribution function

27



for each of the infinite number of possible configurations

must be known to perform these calculations.

Fortunately, the ergodic hypothesis equates the

ensemble "average" properties (expectation values) to the

time average of the ensemble properties taken over many

time steps (ideally # of steps approaches w, but in practice

several thousand steps is sufficient). Therefore if a
A

sufficiently large data base exists, ensemble properties can

be calculated from a time-history of the atomic positions

and velocities, without knowing anything about the

associated configurations. The MD simulation provides the

needed time-history data to perform these calculations.

The instantaneous values of the temperature T, pressure

2, internal energy U and total energy E can be calculated

from the atomic positions and velocities as follows: (8,14)

m
T = - v ,'ev (14)

3Nk i

NkT 1 dU

P =----- - -- r --- (15)
V 3V i -

.0

U = u(ri) (16)
iN

m

E - vv i + U (17)
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In equations (14 - 17), k is Boltzmann's constant, V is

volume, and m is the mass of the particles. All other

variables are as previously defined.

Using the instantaneous properties calculated from the

above equations, the ergotic hypothesis allows calculation

of the ensemble "average" over L time steps by

1 L
<Property> = I Property(t ) (18)

L n=1

where Property(t ) is the instantaneous value of then

property at the end of the n-th time step.

The summation term in equation (15) is called the

virial. This is a term that appears often in the

statistical mechanic calculations. Because of it's

significance, Appendix B provides the derivation of the

calculational form used in this computer simulation.
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IV. Results of MD Runs

The MD runs completed in the course of this research

can be separated into test runs, which were used to validate

the coding of the potential and its positional derivatives,

and primary runs, conducted to evaluate the performance of

the potential. The results of both types of runs are

presented in this chapter.

Results of Test Runs

The first set of tests performed were static

evaluations (a single time step) conducted at 00 K to

reproduce the bond energies for the rest bond lengths

reported by Tersoff (17) for the dimer, diamond, simple

cubic, and FCC structures. This was accomplished by setting

the lattice constant in the model code so that the nearest

neighbor distance matched the bond length associated with

the structure under study. The number of atoms in the

calculational cell was then adjusted to prevent undesired

interactions with the 'images" created by the periodic

boundarv conditions. The system energy was calculated by

the MD program, and the value was divided by the number of

atoms in the system to arrive at the energy per atom. Test

run results are compared to Tersoff's values in Table III.

The variance noted in the energy for the diamond structure

is believed to be a result of a slight disagreement (about

.0016 angstroms) in the rest bond length for that structure.
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Table III. Calculated Bond Energy and Rest Bond Lengths for
Dimer, Diamond, Simple Cubic, and FCC Structures

Bond Energy
Structure Rest Bond Length (eV/atom)

(Angstroms) Current

Work Tersoff

Dimer 2.3132 -1.3117 -1.3117

Diamond 2.3518* -4.6305 -4.6298

Simple Cube 2.5007 -4.2871 -4.2871

FCC 2.7296 -4.0818 -4.0818

* it is believed Tersoff's used a slightly smaller value

The bond lengths in Table III were found by calculating the

value of B,f or each structure, then differentiating the

pair potential to determine the bond length of minimum

energy. Moreover, all other values match exactly,

confirming the correct installation of Tersoff's potential

in the model code.

Static calculations could not be used to validate the

force calculations in the model, so a single (N,V,E) run at

3000 K with a time step of I x 10 - 3 picoseconds was

performed. A very small system (4 atoms) was used to

decrease the chance of fortuitous cancellation of errors,

and the simulation was performed for 5000 time steps. The

temperature, internal energy, and total energy are shown in

Figure 8. As predicted, the temperature and internal energy

are seen to oscillate about a mean value out of phase with
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Figure 8: Temperature, Internal, and Total Energy vs. Time
(Instantaneous Values for 4 Atom N,VE Ensemble
at 300 degrees K, dt = 1 femtosecond)

each other, and the total energy remains constant. This

provides very convincing proof of the correct evaluation of

the atomic forces, because only an exact balance of the

internal and kinetic energies will provide the consistency

observed.

Primary Simulation Runs

Four primary runs were conducted using the constant

enthalpy (N,P,H) ensemble to evaluate the applicability of
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Table IV: Identification Number/Characteristics
of Primary MD Runs

ID # Desired Final Scaling Resting Property
Temp Temp Steps Steps Steps

(0K) (0 K)

1 300 303.3 200 500 2500

2 600 612.7 200 50 3000

3 900 853.2 50 150 2800

4 1200 1135.8 50 150 2800

the Tersoff potential in a molecular dynamic simulation.

All four runs were conducted at temperatures well below the

known melting temperature of silicon in a diamond structure

(16850 K), so that only solid silicon was modeled.

To facilitate the discussion of the results, each run

will be assigned an identification number. The identifying

number and characteristics of each run are recorded in Table

IV. All the runs were completed using a time step of 2 x

10 picoseconds. The differences in the number of scaling

and resting steps are a result of attempted optimization and

do not effect the final results.

In general, the results of the evaluation runs show the

Tersoff potential to be a well-behaved function. The state

variables of pressure, temperature, and internal energy show

random fluctuations about their respective mean values over

the period of simulation, as demonstrated by Figures 9 - 11.

The enthalpy values remain relatively constant, as expected,

and the instantaneous values are shown in Figure 12. Only

33

' ° ° % ". - - ° ° .. . . - . °. . ° ° ° o. -. . • . . °. . -. . . . .. . - o • ° . •



Leoend
3.0-+ Run 1

O Run 2
A Run 3

Run 4

2.0-

1.0--

a4

0.

U,

-3.0-

(b

,, ,II ,I ,I ,I
0 1.0 2.0 3.0 4.0 5.0

Simulation Time (psec)
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Figure 14: Final Average Volume vs. Final Temperature
of Primary Runs

the volume behaves in an unacceptable manner. From

experimental work, it is known that crystalline silicon

undergoes expansion when heated, until melting occurs (19).

A quick glance at Figure 13 makes it clear that this model

produces unrealistic behavior as the temperature is

increased, showing a marked decrease in the system volume as

the model is heated. To emphasize the temperature

dependence of this behaviour, Figure 14 shows the average

volume (after .56 psec simulation time) vs. the final

temperature with a spline fit connecting the data points.

The volume is seen to drop with increasing temperature, and
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the slope of the volume vs. temperature curve becomes

increasingly negative. Investigation of this behavior is

the topic of Chapter V.
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V. Investigation of Heat-Induced Shrinkage

The system shrinkage noted in the previous chapter is

even more severe than that reported by Thee on investigation

of Tersoff's earlier silicon potential (18). Thee reported

a similar decrease in system volume up to about 10000 K, at

which point the trend reversed itself and the system began

to expand. In this work, the volume loss showed no such

reversal over the temperature range examined (300 - 1200

degrees). The purpose of this chapter is to report the

results of tests run to verify the shrinkage problem and to

attempt to determine the cause of the shrinkage.

Confirmation of Problem

This research effort utilized a molecular dynamic

simulation code based on Thee's MD program. Therefore the

initial efforts to ascertain the cause of the shrinkage were

focused on confirming the problem; that is, insuring that

the calculational cell was indeed trying to shrink and that

the observed behavior was not due to a problem in the

computer code. If the shrinkage were caused by an error in

the (N,P,H) simulation portion of the code, repeating the

principal runs using (N,V,E) simulation should show a

positive pressure, indicating the system's desire to expand.

On the other hand, if the (N,V,E) simulation showed a

negative pressure, the inclination toward smaller volume

would be confirmed.
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To test this hypothesis, a series of constant volume

(N,V,E) runs were completed at 0, 300, and 12000 K using a

range of lattice constants. The runs consisted of 1000

scaling steps for the 300* runs and 3000 scaling steps for

the 1200* runs (2 x 10 psec time step). The initial atom

positions and velocities for the 3000 runs were the final

values from the 3000 principal run (Run #1), but the 1200 °

runs and the 00 runs were begun from normal lattice

positions with appropriately scaled random velocities.

Temperature scaling was applied each time step to insure the

final temperatures would be as close as possible to the

desired value so that the total energies could be compared.

The results of these runs are shown in Figures 15 and

16. The comparison of the final average pressures of the

runs confirm the shrinkage displayed by the (N,P,H)

principal runs. The final average total energies of many of

the runs were too similar to allow conclusions to be drawn,

even with the statistical base from 3000 time steps. It was

determined that statistically significant energy differences

would require unacceptably long runs, so no further attempts

were made to determine the resultant energy differences.

Investigation into Cause of Shrinkage

In the Tersoff potential, the z term is a complicated

combination of environmental details that effect the bond

strength. Differences in bond lengths, bonding angles, and

total number of bonds all appear in the calculation of zjj .
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Figure 15: Final Average Pressure vs. Lattice Constant
for 0, 300, and 1200 Degree (N,V,E) Runs
(solid symbols annotate NP,H result)
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Figure 16: Final Average Total Energy vs. Lattice Constart
for 0, 300, and 1200 Degree (N,V,E) Runs
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In an effort to determine the cause of the shrinkage

IV.
phenomenon, these factors were examined individually in a

series of tests that will be discussed in this section.

Difference in Bond Lengths. The difference in the

length of the i-j bond compared to the i-k bond appears

cubed in an exponent. As a result, one would expect this

term to play a major role in determining the value of zjj.

To test the importance of this term, a (N,V,E) simulation at

600 degrees was performed with X -0, which effectively3-

calculation. The run consisted of 500 scaling steps, 100

resting steps, and 4000 property steps with 2 x 10 psec

time step. The results were compared with an identical run

made with A 3.2394. The final average pressure of both

runs were identical (-0.59 GPa), and the final average total

energies showed only a 0.2% difference. The small changes

noted indicate that the differences in bond lengths must

remain fairly small in the course of the simulation, so that

removal of the term in an exponent has negligible effect.

The bond length difference does not appear to be the driving

force for the observed unrealistic behavior.

ngugar Dependence of Bond Strength. The effect of the

angle defined by the competing bonds was examined by

calculating the value of z for a single j-i-k triplet and

the corresponding i-j bond energy for bonding angles between

) - lO degrees. The result is a surprisingly flat curve

over a wide range of bonding angles (Figure 17). Caution
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Figure 17: Dependence of Single Bond Energy
on Bonding Angle

must be applied when estimating the importance of this

result, however. Figure 17 shows only the change in a

single bond energy as a result of a single bond angle. In a

tetrahedrally bonded material (silicon in a diamond

lattice), change in any single bond angle effects the other

bond angles, and therefore the bond energies. The result of

this test does reinforce earlier statements concerning

Tersoff's dependence on coordination number rather than bond

angle to stabilize the diamond structure. In addition, the

results also hint that the relative insensitivity to bond
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Figure 18: Hypothetical Two-Dimensional Pair Potential
(arrows show direction of restoring force)

angle may be part of the problem. This possibility will be

discussed further in the final subsection on the unexplored

possibilities.

Effect of Constraining One Bond length. One final

series of tests was completed to examine the effect on the

total energy and volume of the calculational cell when one

single bond length within the cell is constrained to a given

value. Before discussing the results of this test, a brief

explanation of the method of contraining one bondlength

is in order.

To understand the atom constraint, consider a two-

dimensional parabolic pair potential centered on some rest

separation distance between two atoms. If an atom is

displaced from this rest position, it experiences a force

attempting to return it to the rest distance (Figure 18).
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If an artificial parabolic energy curve centered on the

desired position is added to the pair potential, the atom no

longer experiences a restoring force and the bond distance

will be maintained (Figure 19). This is in essence the

technique used in these tests. The bond length between two

of the atoms is thus constrained, and the other atoms in the

computational cell are allowed to "relax" to find the lowest

energy state. The artificial energy is then removed and the

energy is calculated. The mechanics for this atomic

restraint method are outlined in Sabochick's dissertation,

and interested readers are referred there for more

information on the technique (14).

This series of tests was performed for a range of

restrained bond lengths and a variety of lattice constants. 2 047S



Table V: Minimum Energy (eV) of a 64 Atom System with a

Single Constrained Bond

Lattice Constant (Angstroms)
Constrained

Bond Length
(Angstroms) 5.41 5.42 5.4312 5.44 5.45

2.117 -296.007 -296.037 -296.041 -296.024 -295.981

2.234 -296.202 -296.237 -296.248 -296.236 -296.199

2.352 -296.250 -296.291 -296.307 -296.298 -296.266

2.469 -296.200 -296.242 -296.261 -296.254 -296.224

2.587 -296.112 -296.159 -296.183 -296.180 -296.155

As one atom in the calculational cell is moved closer to a

neighboring atom, the moved atom should draw its other

neighbors with it, causing a slight decrease in the volume.

Conversely, as two atoms are held slightly apart, a slight

increase in the overall volume is expected. The data in

Table V shows the model behaving properly, with a slight

decrease in the lattice constant corresponding to the lowest

energy for constrained bond lengths less than the normal

2.352 Angstroms and a slight increase in the minimum energy

lattice constant for constrained bond lengths greater than

2.352 Angstroms. This tendency is more apparent in Figure

20, where a spline fit to the data for the constrained bond

lengths 2.117, 2.352, and 2.587 Angstroms shows the minimum

energy lattice constants to be approximately 5.427, 5.431,

and 5.435 Angstroms, respectively. Therefore the shrinkage

does not appear to be a result of an erroneous response by

48

*~ °.,



-295.9-- Legend

o 2.117 A0 2Constrained
O2.352 A Ibond length
A2.587A]

-296.0-

c -296.1

A -296.2

5.41 5.42 5.43 5.44 5.45

Lattice Constant (A)

Figure 20: Internal Energy vs. Lattice Constant with
Constraint of a Single Bond Length
(64 atom system)

the secondary neighbors to a change in separation distance

between two bonded atoms.

Unex2lored Possibilities. While the evaluation tests

discussed in this chapter failed to positively identify the

cause of the observed shrinkage, they are by no means

exhaustive. The most promising clue to the weakness in the

potential lies in the relative unresponsiveness of the bond

energy to the bond angle, as discussed previously. A review

of the role of the z term will help explain one possible
ij

cause of the shrinkage.
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Table VI: Coordination Number, z11, and Minimum Energy

Separation Distance for Diamond, Simple Cubic,
BCC, and FCC Structures

Structure Coordination z 1j r min (Ang)
Number

Diamond 4 3.4373 2.3518

Simple Cube 6 6.0865 2.5007

BCC 8 8.9611 2.6018

FCC 12 14.628 2.7298

As pointed out in Chapter II, the bond strength is

modified by the bonding environment through a changing B

value. This changing Bij value is driven by a zI value

that is determined by the surrounding environment. For

periodic structures where all bond lengths are equal, it is

fairly simple to calculate the resulting z,, value. Table

VI shows the coordination number and z value associated

with the diamond, simple cubic, BCC, and FCC structures.

By taking the derivative of the Tersoff potential with

respect to the bond length rij while holding zij constant,

the minimum energy bond length for each value of z can be
ij

calculated from

AS

In

AB
min-i (19)

, . A- A2
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These minimum bond lengths are recorded in Table VI. From

equation (19) and the known relationship between z j and

Bij developed in Chapter II, it is apparent that a smaller

value of zij equates to a larger Bij and a therefore smaller

minimum energy bond distance. Said more simply, the smaller

z becomes, the more compact the system becomes. This I
offers a possible explanation for the observed shrinkage, as

explained below.

Consider a system containing four atoms. It. the

absence of directionally favored bonding, the atoms would be

expected to occupy a planar arrangement with bond angles of

120 degrees and all bonds of equal length. This structure

gives a zij value of 2.3139 and a corresponding rmin of

3.5172 Angstroms. If the structure is changed so that all

three bonds are mutually orthogonal, the value of z dropsij

to 2.0 and r becomes 2.3132 Angstroms, thereby allowingij

the system to shrink.

In a similar manner, it may be that the tetrahedral I
structure with identical bond lengths is not the structure

corresponding to the lowest value of z . Because of theiJ

extreme sensitivity of the z term to coordination number,

it is unlikely that any structure containing more than four

nearest neighbors is energetically favored, but a different

combination of bond angles and bond distances for the four

neighbors of an atom may give a lower zij value. The

existance of such a structure could easily be responsible

for the shrinkage noted.

5
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VI. Conclusions and Recommendations

Conclusions

The directional covalent bonding nature of silicon is

very difficult to model accurately. Three-body potentials

such as those proposed by Stillinger and Weber and Biswas

and Hamann have shown some successful applications, but the

strong dependency on the diamond structure limits their

usefulness. The approach used in the new silicon potential

proposed by Tersoff, explicit modeling of the bond

environment, seems to be a more widely applicable model.

The purpose of this research effort was to evaluate this new

potential in a molecular dynamic study of solid silicon.

The Tersoff potential accurately reproduced the correct

bonding lengths and bond energies for the diamond, simple

cubic, and FCC structures of silicon in a static simulation

(0 K). However, as the system was heated in a flexible

boundary simulation, the volume decreased. This behavior is

not observed in real silicon. Subsequent constant volume

simulations confirmed that decreased volume yielded lower I
energy of the model when the simulation temperature was

increased.

Investigative runs were completed in an effort

to isolate the cause of the problem. The effect of unequal

bond lengths, varying bond angles, and changing the length

Il
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of a single bond in a 64 atom system were examined, but

none provided definitive identification of the source of the

problem. The results of the bond angle tests suggested the

possibility that, while Tersoff's potential accurately

reproduces a most stable configuration having four nearest

neighbors, the tetrahedral diamond structure may not be the

lowest energy configuration.

Because of the unrealistic behavior under heating, the

current Tersoff silicon potential is unusable for dynamic

simulation.

Recommendations.

The generality of the Tersoff potential vis-a-vis the

t S&W three-body potential makes continued investigation of

the Tersoff style of potential worthwhile. Two possible

avenues of continued study are readily identified. The

first is to experiment with the values of the 10 variables

in the Tersoff potential by fitting the potential to dynamic

properties such as the thermal expansion coefficient.

Additional parameters may need to be added to accomplish

this fitting. Indeed, simply increasing the cut-off radius

slightly, say to 3.6 Angstroms (still less than the second-

nearest neighbor distance in the diamond structure), might

help prevent the shrinkage. Such a move would strengthen

the angular dependence by limiting the distance one neighbor

could move before interacting with, and subsequently raising

the coordination number of, another neighboring atom.
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A second possible extension would be to use the

potential as it currently exists to perform a series of

melting/annealing runs. The atom positions could be savI,d

after each run in an attempt to identify low-energy

configurations that might be responsible for the observed

shrinkage. Dr. Tersoff has expressed interest in pursuing

this action.

Throughout the course of this research, dialogue was

maintained with the author of this potential. Continuing

this interactive relationship offers an ideal opportunity

for follow-on researchers to play a significant role in the

development of a tool long awaited in the field - a general

purpose silicon potential.

4r'N
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A2endix A: Derivation of Forces

The force F on any atom n is simply the negative

derivative of the internal energy U with respect to the

position of atom n, or

d
F = -- U (20)

n
drn

Although the vector notation has been omitted, equation (20)

actually represents three scalar equations, one for each

directional component. Since the form of each component

equation is identical, only one component is shown in this

appendix. The reader is expected to remember that parallel

equations apply to the other components.

While equation (20) appears simple enough, applying it

to Tersoff's potential can become confusing because of the

annotation method used. Therefore, before the derivatives

are discussed, an explanation of the terminology used in the

potential might be beneficial.

The basic geometry of the bond triad used in the

calculation of the bonding energy is shown in Figure 21.

The central premise of the Tersoff potential is that the

strength of the bond between any atoms i and j is affected

by the proximity to i of another atom k. Therefore for each

i-j-k bonding triad, there are positional derivatives and
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II

Figure 21: Geometry of Bonding Atoms in Tersoff's
Potential (18)

consequent forces acting on each of the three atoms.

Due to the lack of symmetry caused by the third body (k)

term, all three derivatives must be solved for separately.

The annotation used in the Tersoff potential may cause

some confusion in identifying the atoms. The "i-j-k"

designation of the potential must not be confused with the

"n" designation of equation (20). No single atom in the

system is just an i, j, or k atom; rather, all atoms are

all three, depending on which bond is being considered.

Figure 22 shows the dual annotation applied to the six

possible bonding triads for any three given atom positions.

For convenience, atoms 1, 2, and 3 were selected. Across

the top row of triads, atom 1 is atom i, atom j, and then

atom k, respectively. Therefore when the force on atom 1 is
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333

3j kj

2 22

Figure 22: Six Bonding Triads Formed by Three-Atom
System

calculated, it must be the sum of contributions from all the

triads involved, so that

d d d
F = u + I --- u +I --- U (21)

n,jk dr i,n,k dr i,j,n drk

where the first summation is over all triads where n is atom

i, the second sum when n is atom j, and the third when n is

atom k.

In the actual code, each triad is considered once, the

dr , dr and dr derivatives are evaluated, and the

resulting forces are added to the previous forces for the
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appropriate atom. Before each new time step begins, the

forces are reinitialized to zero.

The form of the Tersoff potential is

u(r ) = f c(r j)EAexp(-1 r) - B ijexp(- 2rij)] (3)

I r < R - D

r(r - R)
f c(r) = .5 -. 5sin[ --------- R - D < r < R + D (4)

2D

0 r > R+ D

Bij = B O ( + bzj)-/(2n) (5)

Z fc(rlk) g(e) exp(-[ (rik rij)33) (6)
i.J k~ci , j

g(1) = 1 + c 2 /d 2 - c 2 /Ed 2 + (cos 9 + h) 2 ]  (7)

Successive application of the chain rule can be used to find

d d dr d dr
U = --- U 4 + --- U

dr dr dr dr dr
i ij i ik i

d d dr d dr
u = --- u --- 4 + --- u -- 4I

dr dr dr dr drJ iJ J Jk J

d d dr d dr
u = u ___Ik + --- u __4k

dr dr dr dr dr
k ik k J k k
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These three equations can be simplified somewhat by

reverting to component annotation and recalling that

S (r-r )+ (r2 r2)2 + (r- rj

Ij J j I j

In terms of the x component, it is apparent that

X
dr dr r x

dr x drX r

1 i ij

and that similar equations apply to the other derivatives,

giving

dr dr rx
_ _ __k = __J_

drX drX r
i k Jk

and

dr dr r

drX drX r
Sk jk

Therefore only the three potential derivatives remain to be

determined.

Before proceeding with the derivatives of U directly,

it miaht be more convenient to get rid of the theta term.
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Using the Law of Cosines, the angle can be related to the

distances separating the atoms to give

r2 2 + r 2

2rj r 1k

Taking the required derivatives gives

d cos 6
- .5[1/r k r r2 / r2 /(r 2  ]r=dr5 I/rk - 1rk/ +J Jk iJ r1k

dij

d cos 9 2
-. 5[1/r r /r2  + r2 /(r r )]

drik j ij ik Jk ij ik

dcos0
- - r jk/(rj r k)

jk

Continuing along these lines, the chain rule can be used to

determine the desired derivatives of the g function, giving

dg(O) dg(O) d cos 0

dr d cos 9 drij ij

with similiar functions for the r and r derivatives.1k Jk

The second term of these parallel equations is already

known, and the first term is simply

sdg( - 2c 2 (cos 0 + h)/[d 2 + (cos G + h) 2 2

d cos
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The product of these terms removes the theta variable from

the calculations, leaving the derivatives of the g function

with respect to rLj, rik, and r k.

Returning now to the derivatives of the potential, the

differentiation of a product can be applied to give

d d
U = f c(rj)[Aexp(-A r ) - Bijexp(-A2rlj)]

drij drij

+ f (r )[-AAexp(-AIrij) + A2B iexp 2-Arij)c 13 111J13 2 1

d
--- ij exp (-A2 r )3
dr

d d
dr -- U = - fc (r ..).-- Bijexp(- 2 r ij)

ik ik

d d
U = - f (r ) ---- B exp(-A r

dr c U dr 1J 2 1J
Jk Jk

Looking first at the derivative of the cut-off function,

d i
--- f ) = -- cos[---(r - R)/D)

dr C D
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Determining the derivative with respect to r j is simply a

matter of inserting the value of r., into the equation for r

and solving.

The derivatives of Bj are somewhat more involved, since

Bj is a function of all three variables. Once again the

chain rule is applied, yielding

d d d
Bij -Bij ziJ

dr j dz j dr j

d d d
B =- - Bij d- k - i j

dr ik jdr

d d d
B =--------- B-j -- -ziJ

drjk dzj drjk

Again the first term in all three equations is equivalent.

Solving for this derivative of B gives13

d B = B (-(1 + bzn ) 1+1/(2n) /2) bz(nl)
dz 1J 0 1J 1J

iJ

Only the derivatives of z remain to be solved for. One13

final time the chain rule is applied to give
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d -- z ex [ (r -~ r (33 d -gO

dr j j k3i j3 ik r j dr i

+- f C(r ik) g(9) expc-[A 3(r ik- r ij)33)

* 3 A3 'A3(rik- r jj )321

where all terms on the right side of the equation are

included in the summation over k. Likewise for the r and
1Ik

rIi derivatives,

d -ZiJ 2: Z.fC(rlk expC-A(rlk- rjj)3 3 ) d geik (-A3 I
drik k*j,j dr ik

+f C(rik ) g(9) exp(-tA 3 (r ik- r 1j) 33>

* -3\A (Ar~k rjj)] 2 ]
d3

+ --- f (r g()exp(-[*\ (r - r J)3]}
dr i k 3 1k 1

and

dZ~ f ( exp (-[A (r rlk3 d -ge

dr jk kaeIv 3 cj dr j

At this point all the values are knownp and back

substitution can be used to obtain the forces on each atom
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of a triad. When these forces are summed over all the

triads an atom is involved in, the result is the total force

experienced by that atom.
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Appendix B: Calculation of Virial Term

Kittel defines the virial term used in the pressure

calculation as (10:223,224)

VT= F ri. i

For the Tersoff potential, this can be expressed as

VT r Fi + r FJ + r Fk
I iJk iJk k iJk

kati,j

where F1  is the force on atom i due to the ijk bond triad,
ij k

FJ is the force on atom j, and Fk is the force on atom
ij k ij k

k. The summation is then over all bonding triads. Note

that vector notation has been repressed for convenience.

This may look like a more complex form, but it can be

converted to a form that is independent of translation.

This is accomplished by application of Newton's third law,

according to which the total forces in the bonding triad

must equal zero, or

F + Fj  + Fk = 0
ijk iJk iJk

Multiplying the above equation by r , subtracting the

product from the virial term, and repeating these steps for

every ijk bonding triad gives
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(IPVT I (r -r ) F +' (r - r )FkI
i Ij~ei j i ijk k i ijk
kr-i, j

This is the calculational form used in the MD program.I

Notice that the position vectors have been replaced by a

difference, which removes the translation dependence.I
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A modified silicon potential proposed by 'lersoff was
evlute3 in a moeu aynamici lio of diamrc silI oCr,(

at temrperatures well belowv. the meltirng yoint. Four temperature:
bc tween ") Ko andi 1202 K w -i( -re j n'le I U_7~ a cInsan erijt;.ly
Uliseemble of 64 atons.

At all temperatures above 0 K, thu simu-lation, d'splayeQd
increasinC atomr. density with increasinC, te m 1cra-,ture.Tris
behavior is phy-sically unrealistic an,"mke the Tersoff
potential unsuitable for molecular dyna ic simulation.

A variety cf tes-ts were performed using: both constant
volumre and constant enthalpy ensembles in an effort tc deter-m1itrs
th-e charaeteristic of" the Tersoff potential responsible fori
thermal 1ly- inducedj shrinkaLge, but results were neg-ative.
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