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TNIUXC7'1I N

In order to illustrate the op ,t 'tiin of neuralrtut s in early visual
processing, Robson (1980) proposed the concept of a 'neural imaqe': this is a
spatial map of the nervous activity resulting from the response of the visual
system to a specific image. A very similar construct, termed a representation,
was developed by proponents of the computational arlrroach to vision (Iarr, 1982;
Horn, 1986). Marr (1982) argued that the function of a particular representation
is to make specific kinds of information e:-lict From the computational point
of view, the role of early vision is to create representations that are useful
for later stages of processing such as stereo or motion analysis (Mayhew and
Frisby, 1981; M4arr and Poggio, 1979; lijreth, 1984).

ur pronrme of research is i s tirl of h e rs'rvous systm of primates
creates anI uses representations , vi:ua] 1r]umit. n. Three co--oonents an -,
necessary in such a study. First, th., l<-a.,c- r,, r a t-hat roflocts
Visual informati : processing shol.I , -. ;u-. Ii ] he -t c'nst ucti<n
of psychophysical e:-wperinents desi tU, -. . i th. . cu ii ual pero mance
and to see whether distinct anal.si , n cn L i Ietified. Second,
neurophysiological experiments should li how mhavioural
performance is supported by particu!<I mu , !ter the id- ntif-
ication of such mechanisms, they sh, !], u ma,-, a i grea ter detail and a
formal description of their prope r t i e s 1- id rri . Thiis description can be
related back to the nature of the analyzing mechanisms obtained from psycho-
physical experiments and forward to the final qoal -f the research, which is the
creation of a formal model in the comnu]:tational s,-nse. Thu., the third stage is
for the results obtained from biolog-ical visual systems to he embodied in a
computer model and the performance of the hiolo.-i(-ualy-Ierived model to be
analysed and cormpared with models der:,r, fr-om , s -s, such as artificial
intelligence and computer vision.

Our current work consists of t)i, , .- : f" ,. h=,ive teen desiqned
within the framework of this genes i - .' : ir.,-- ;. i.mstia-
ating computable models of striat-m -- r f ,. , , Ii c: h are the
neural mechanisms responsihle for the ",II'] '.: -r, rf the visual image
at a cortical level. The second pro-t is e:t-enhi. t , m,;r:r-mnts of cortical
cells from the luminance contrast domain to include chromatic sensitivity. The
new experiments are designed to validate the model generated in the first project
and point the way to creating a computational mrdel of chromatic processiino based
on primate vision. The third project is applying the general program outlined
above to the study of a higher order perseptual process, namely the perception of
visual surfaces by human observers. In this field, there at- a number of inter-
esting computational models derived from artificial iltelliclonc , , hut there is
very little information on human porception against which to evaluate these
models.

The present state of progress on each of these p-rojectS is outlined in the
sections that follow. More detailed accounts ot the work will be submitted to
AFOSR in the form of scientific papers as the work approaches completion. An
appendix is attached giving details of work in preparation, as well as an account
of the scientific activities of the principal investicr tors during the tenire of
the grant. These three scientific projects are udendrwed by a folrth project,
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which is intended to provide a complete revis,-ion J t!-.- ar usred for the
r-eal1- ti ne acquisition of data durirni <nriqi

1. CCM>TABLE KJ.S OF' S7TRJAW GOM'T-Af IJECI*JVT [V FIEIDS

In this project, we are studyino-, the initia-l transf ormat ions of the
grey-level image that occur in primate visuial systems. This invlvevrs the creation
of a computable model of early visual processincl, based on our quantitative
measurements of the properties of single nieurons in the monkey visual cortex-. Our
work involves comparing the performance of this myodel 7iqainst those of others,,
some of which derive from eyperimental investiqations similar to our own (Wilson
and Bergen, 1979; Marceija, 1980 Punn,15; atad ora, 1934) , others
of which have been proposed as me hr-dS in csmryar vi-iw-n svfstems- (Witkin, 1983;
Yuille and Poonjlo 11)R5; Shanmuriam-, Di-k.-y aind (2 en ~ an,1933; M-rr anid
Hildreth, 108C; M1ayliow and PrI sVy lr,1).

PB-ck-or-ound

There is extensive evcoc vnin ~ :l i eP fth-
detec7tion of luminance contr-ast I,"; f i i ipl>-chan-
nel_, model (Graham and Nachgnias, 1 l'ii e 9l; the
nature of the dotection process ( I ) Iri retAr of
individual channels (Blalkemre ir C1 '"aayd

quantitatively by psychophysical m~' ' . up~~~ra
multiple-channel organization has r(,i'~ t!-71 ni 1 'v<ieti nn
the striate Corte,-, of cats and monkeys , Wh-r50 it, 1e -. -%n t_ 1 - 1 S ls are
tuned to distinctly different spatial trmi-i1,!,-r-7' r, _111"i n: V'~
when care is taken to analyse the mrrnsIc -n J!-) vi sual
field (DeValois, Albrocht arJ Th-n *l 1

However, there ars no de~>i
i call y-de rived models of d,-<nti,
on thes- f undamerm ia 1 tss. ifa,21Yi
models remnain se'fid Pv.
dif f iculIt to est imate f rom p!:ych~ i -y o-, ;Vnr,

Hertz and Hinton, 1981), whilst sl'_ ifyanq C .11- riciruiels -'r thpir
spatial distribution is even more proble~matic. A.-, a svr:i~' many o m -~ of
human vision make assumptions ab~out ths variihlc", .411 athOUn1h tl hey are
chosen shrewdly, are nonetheless unsu perterd by Ki~*' le~drC?(~trsun,
1983; Wilson and Bergen, 1979; Sakitt an I Barlow, I'-- ) 'n thnuoyh tho re Ilts
of neuro- physiological experiments can be difficult to intepret, they -ffe e-ne
possible route away from this impasse, because they p:-vid- Ti: r- direct mea1sur-
mpnts of the internal working of the viulsystem.

Current Progranre of Investigation

The re is considerable evidence to suqyest that thfe lii"Ar'i leu,,s of the chantrnels
identified in psychophysical experime~nts, is the striate corte. For the past 3
years, we have been investigating th eUtenV V~ ti 1-rfo:rmance of
51in-le neuroirns in the striate Corte:: ofOil1d Worli 'V -. s<i I human ''hs' -vors jrn

3ni.'ilThr of psycho~physical tas ks (PrJ~ke r anid . ,.A .. i Pa



1184; Pat Kor and Hawken, 1983, Hawkon ,nd Parke-, 1 ,7ibc, ! . kr and Hawken,
1987). One of the requirements of tls s invest imt: w tth, d.'eoV.,t of an
adequate model of the receptive fiel] ,)! a cortiai -,j] .- nd the ef.int ion of
the parameter values of the model f-r each cell th:-r w-is recorded. In order to
make comparison with psychophysics more exact, the t -r,.hoid contrast sensit ivity
of cells was measured by determining t- . stimllus c ri .-t reqniired to cause a
statistically significant channe in tlhe out ut c1f he iv', cell (Pc':,-r and
Hawken, 1985; Derrington and Lennjie, l9P2; Jr,it n <'n I .i r if ,, ]9P4), over the
range of spatial frequencies to wY i to u' <n I' I d e r,,ults
provide a spatial contrast sensitivit:y io jjrj:" 4,-, ,'

functions proposed for describing the it al -- is: eu ly vsul
processinq. In particular, we have tc,,dt tre 198-ja 98;
Daugman, 1985), the first differential - a a t .. is a c1ose <'IOf-i-
mation of Canny's optimal filter i(2,, frt a
Gaussian (Marr and Hildreth, 1930'; W i!.', : iii, . ri4 ;,
198). All these functions qive rat,,, r , ,n - n"-rV',; - -:c.l
cells, as illustrated by the exampl-e- a'.v , I ." .Kmly"nn
of these functions would allow the of i - I- . ii ail
simple cells.

An alternative approach is to a - w'] a-, t]" ror' i c- - Jno i
hy combinations of functions that -, kn to 1,,I-' r V I rVC;, of
receptive fields at earlier sta os i ,i i,,, '1 " and
Robscn, 1966; Rodieck, 1965) . Th IP . 4: i ffer-
once of Gaussians functions (DOGI) <:A I"
most. ale-neral case that we considered .", ' :, ,, -
spatially separated from one anoto:,- !,-! r.-nf '--. "I'- , ,
obtained by linear combinations f: s' :" : .:. -i o] .1 '.
separation of their centres) is ,nI v vr', " -

aticnial models that were t(,sted (11'l..: . -

Ore of tVh m,--in aims rf t i :.. : :: , t : . 's. .,1 r ., rr , tOof the D- th-based "nct _ .im, • f . To
.... tc nlih thii w., ,re o t T'. ii ' e<7

Vsini this aljrritiir il .. .. , I , Cl

spatial filters aqain;t- other f It ,:: I;: (V ,, I.t ,i), on
tasks such as the detection and lu- il: i i , , . :o ' . he local
orientation and curo.ature of edges and the ' ::a I I. , ,- er '!a t l eriit-
ives.

2. cuxIriC PRwE2TIFS (F SInGF. (XI'rICAI, Nim~WS

R kground

Our interest in the chromatic properties of -oriir-al cr2 is has arisen from
investigations of the functional micrstructure of iThe monkr'- 5 rI ye crte:-:. In
particular we have shown that within lamina TV there is a physioloical c-rrelate
of the differential anatomical distribution of affl-rnts from manno- and parvo-
cellular of the lateral geniculate nucleus (Hawken irnc Farker, 1084). We also
have unpublished cuantitative data on the spatial arnd r t hr pr,,V'rtips of nurons
encountered within those patches of lay1r 1 I and 'It thif stain densely for

'" 1 I r c1) oxidase (Hndrickson, IHrlt -iid Wu, ] ;{ ; II n an-I ho l, r {l) . Sco
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far, the published physiological inv-stigations of cytochrome oxidase spots
suggest that these spots consist of groups of cells with chromatic organization
of their receptive fields, including so-el]led "double-cppenent" cells, and weak
or non-xistent orientation tuning (Livingstone and Hubel, 1984).

Proposed Research

For quantitative measurements, we intend to adopt an approach derived from
the psychophysical studies of Krauskopf, Williams and Heeley (1982), which
indicates the existence of so-called cardinal directions in colour space. This
method provides an analysis of neural re}monses similar to that of Rushton's
method of silent substitution and has been used tr considerable effect by
Derrington, Krauskopf and Lennie (1984) to study th. chromatic properties of
neurons in macaque LGN. The stimuli consist of spatial .iiioseidal waveforms whose
modulations can be represented in a thJ colo;u d.iii,,'.-nal ,:pace, two dimens-
ions of which correspond to a plane rr i', ent mn th, '.. 'hrma icity diair-mn and
the third representing the famili.-r dr.,nsicn .,r::',s ccn _.]ot

Initial experiments will include in invotiqation of the chromatic proper-
ties of neurons in layer IV. A detailed invest iqait i-r will 1e mado of the cells
in IVc in an attempt to verify our previis .... u-is (Hawken and Parker, 1984)
based on the study of properties with ]umincice *st r.st alone. We will also
record from cells in other layers in tLe striat, ,'rt,:- and eventually extra-
striate cortex, especially those regior); ef layers II and III in areas Vl and V2
rich in cytochrome oxidase enzyme activity, in order.- to compare the chromatic and
spatial organization of the receptive fields from these anatomically differen-
tiated zones. It is possible that- ind, penont processing of chromatic and
non-chromatic information seen at the lovol of the IhIl is preserved through
several higher levels of visual processing, even tn<ucih bot! typs of cells,

chromatic and luminance-sensitive, ay ac,{wirf nw,, ,,.(rF: rties at the cortical
level, such as orientation sper-'tivi a;'1.rsr:t.hwvr.r, ekis work in
V4 (Zeki, 1980) su'lqests that s t, t .- , .ic -v ,ccnnts of
LGN signals eventually takes place.

Hawken and Parker (19187) des--ii, i n, w c. t ia cf the spatial
organization of the receptie field < ,il icrti-al Q. 11 s. (;,ifi ,s of extendinq
the testing of this model is to nrmte the tror int,,rlationhips that exist
between luminance contrast sensitivity and chromatic ccnt rast sensitivity in the
L9 N (Wiesel and Hubel, 1965; Derrinjtcrn et al., 1984). These interrelationships
must leave their mark on cortical procasinr and imply that models, such as ours,
which are based on discrete inputs from UIJ, receptive fields to the receptive
subunits of cortical cells, will exhibit a deoree oi spatial organization of
chromatic sensitivity that is diffr,,nt from that in the If;1N. However, the
DOG-based models do imply that the chromatic sensitivity of cortical cells and
their luminance contrast sensitivity should be related in a unified manner.
Work in Progre s

A computer-driven pattern generator has been constructed to provide indep-
endent signals to each of the three channels of a colour CRT monitor. The
principle of the design is close to that used on many coMputer graphics systems
currently available and consists of somy RAM and colour look-up tables that can
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be loaded from the computer, as well ms t he sy&Il.cni ti siqn,-s and output
stages necessary to drive the colour monitor. Thte main difference from commerc-
ially available systems is that output from the device can be specified with
12-bit accuracy (1 part in 4096) on all three colour channels. This is necessary
in order to achieve a wide dynamic range of contrast, as well as using the
look-up tables to correct for any nonlinearity in the performance of the colour
monitor. This generator can be programnid to store bars, step-edges, sinusoidal
gratings or other 1-dimensional spatial profiles as a list of numbers, whose
values can be interpreted as locations on an effectively continuous contour in
tridimensional colour space. The software to control this device will be integra-
ted into the general-purpose real-time control software that is being written for
our research group by the Department's Computer Officer (Mr K. Stratford), who
has been partially supported by AFOSR during the course 7f this grant.

3. OOW? AIriGNAL STUIES Op Im PRc~T(ioN OF VISUAL SUHFNJ.S

There is a relative scarcity of e:erimental i vsti-iations of how human
observers abstract information about the geometric pro(-_Frtics of visual surfaces.
In order to elucidate the important gecme-trical factors in surface perception we
are currently performing a series of psychophysical e:-.p-riments. This knowledge
is a prerequisite to evaluation of computational models of surface perception and
to the design of neurophysiological experiments to irvostcioate the neural
populations responsible for this aspect of hu'man r>.ceotiin.

A. Sensitivity for the Fundamental -1om1tric Proe-rties of Surfaces

Several computational schemes assume it. is relativ-<iy easy for the system to
comp ute some simple intrinsic properties of the d-th r. For e:-mle, in order
to find discontinuities, Ponce and Fri's (])95) pro -f',lur- first sinocths the
surface with Gaussian filters of virious spat-, cr-Itnts and corutes the
principal dir,ctions and curvatures over tlw ' - f ttw, marks zero-cros-
sings and extrema of the dominat! cr"Iatu .- 'A (°i@ e-periments
hdve been carried out using surfac,; onl, 11 ,. ' , storec pairs to
measure the sensitivity of observ.-r , ( , (N) p-incipal
values of normal curvature, (c) for e- ,: :ir -cir-il ciir',a-
tures. Initial results indicate that himari v-' to differences
of the curvature of surfaces, independent of oth -r r nin: uI r, ri ndino cues such
as surface extent and gradient (Johrstoni and Parker, l9 ,') .

B. Detection and Identification of Discontinuities in Visual Surfaces

Packoround

In psychophysical studies of human vision, proceu.ires such as adaptation,
masking and sub-threshold surmmation are used to reveal mechanisms tuned to
specific regions of the stimulus domain (Braddick et al., YA78). Adaptation
(Tyler, 1975; Schumer and Ganz, 1979a), masking (Tyler arid Julesz, 1978) and
sub-threshold summation (Schumer and Ganz, 1979a) have already been used to study
stereoscopically generated surfaces that were modulated sinusoidally in depth.
However, an important point made by Ponce and Brady (1985) is that knowledge of
thp qualitative type of a surface discontinuity is highly significant in later
processing. This suggests that it may be more revealing to study a task where the
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observer is required to identify a stimujlus as well ais d'tcct it. Such a task was
used by Krauskopf and Srebro (luh5) to study c.lour rechanisms, by Watson and
Robson (1981) to study spatial and temporal channels a.nd by Watson et al. (1980)
to study motion sensitivity. The basic presupption of this al-proach is that if
two stimuli are each at their own detection threshold ani if they can be reliably
identified or discriminated, then they are beiriq detected by separate and
independent mechanisms. By studyinq a ranvge of stimuli e:-Laustively, one can
obtain a parsimonious estimate of the number and ty] of analysing mechanisms
possessed by human observers.

Work in Proqress

Random-element stereo-pairs containing these patterns defined as changes in
disparity are qenerated (Julesz, 1971). A two-alternative forced-choice (2AFC)
procedure is used to measure the detectability of these stimuli: (i) as a
function of the size of the discontinuity (i.e the chanue in surface heiqht in
the case of a step), (ii) as a function of the contrast required to detect a
given fluctuation in the surface and (iii) as a function of the dearadation of
stereo information when random non-corresponding elements are added to the stereo
pair. During the detection task, stimuli belonging to two or more classes of
discontinuity can be randomly interleaved from trial to trial and observers will
classify the stimulus after each detection decision. By way of example, if the
detectability of, say, step stimuli of fixed height were measured as a function
of contrast, observers would be asked to discriminate between just detectable
stimuli of different height but the same disparity sign; if they can do so, this
would imply separate analysing mechanisms for different sizes of discontinuity,
as suggested by the adaptation experiments of Blakemore and Julesz (1971). On the
other hand, an ability to discriminate only crossed vs. uncrossed disparities
regardless of size would support the ccntention of Richards (1971) that there is
a limited number and distribution of disparity dtectors. Usin-i these techniiques,
preliminary results suggest that surf- ceS C 4 -.31. -1,- J -ajtd negative Gaussian
ourvature are analysed indr-p-ndcrv ly I c'.I- ::: :'FlI5.r..

C. Disparity Averaqlin,_ and :7.rfay - T:.' .' i.

There are several studies indicatin thIt:, in !,,inlu st,,ro vision, low
spatial frequency sinusoidal variations in depth are hah.ed .',parately from high
frequency ones; the filter shape for each "depth channel" would correspond
roughly to a difference-of-Gaussians (DOG) function (Tyler, 1975; Tyler and
Julesz, 1978; Schumer and Ganz, 1979a). This may be an analog of the multi-resol-
ution methods for surface interpolation proposed by Terzopoulos (1984), who,
however, pointed out that smoothing of surfaces with DOG filters must be care-
fully controlled in the vicinity of discontinuities, otherwise crucial inform-
ation will be smoothed away altogether. This suggests that the space constant for
smoothing may depend on the characteristics of the surface.

One phenomenon that we are exploiting to estimate the space constant of a
smoothing process is disparity averaging (Kaufman et al., 1973; Foley, 1976;
Julesz and Schumer, 1981). A random-dot stereo-pair is created in which alternate
rows or columns of dots are used to define different visual surfaces. Schumer and
Ganz (1979b) report that a composite figure consistinn of a planar surface at
zero disparity plus a sinusoidal modulation of dirpth is indistinquishable at



threshold from a single surface si rmcoidai y ] :-.Jdo -I f h the arTp]itude of
,depth variation. Our data extend those results to -(--_)'rehoid stimu li such as
pairs of simple planar surfaces, both font<paraillAe .d tiltwd, at a variety of
disparities relative to the backoround (Yang and Parker, 1987) . In future
experiments, the surfaces will be a plane and a strn-d'e by ma kin the plane
terminate at various distances from the discontirnity at the step-odle, the
spatial edge-weighting function for disparity averaging can be measured. Similar
measures will be carried out for other types of discontinuity. A alternative way
of measuring the space constant of the pooling process is to substitute for the
plane a stimulus consisting of the first differential of a Gaussian with its
zero-crossinq located at the step-edge. Discrimination can be measured as a
function of the space-constant of this Gaussian.

D. Current Organization of the Project

This work is partially support.ed by a UKact frm 'c- h cience and Engin-
eering Research Council to A.SP. This oranit hens provid,-: a ?"2-3 ccmputer work-
station to carry out this rescoacrch. Ccncrid'-abl • H.ne -::tcc.ive comutino
facilities have been provided by a grant from the We11cane Trust. Since Brady is
now basing his work in Oxford around U'-' computer systom s, the computational
modelling part of the project will be carried out usino this system. E:,periments
can be carried out either with the SUN system or with the display system provided
by this grant. More recently, a grant has been awarded from funds supplied by
central government to the University of Oxford for apparatus to monitor human eye
movements during the inspection of visual surfaces. Experiments on detection and
identification of surface properties will be carried cut by Ms F. Johnston as
part of her project work for her D.Phil degree. E:-.priments on disparity averag-
ing are being carried out by ATP and Ms Yan.7 Yuedp (nunported by a Fellowship
from the Wellcome Trust).

The dir+ction of this work changed durino th- : of the previous USAF
grant. In that proposal, it was sijrio nted o.at i cl i hj stV should focus on
depth cjes from luminance and I te-:v- been set
aside temporarily in order to c-n-1.' ,. 1h nro'ion of
surfaces in the domain of st, "• c (Sulen:, ]971)
give relatively pure cues t- ,: ::,t manipul-
ation of those cues. Asn, th.:, r!' i : :i,.' ,Tbs <ej in
stereo vision can be used as an e:-:mriment, ii m t ind how loca:l depth
measurements are be combined to yield an intra-at d r roent of a surface in
depth. Finally, computational models f_ r reomverirn ourfaco properties from
luminance gradients (e.g. Pentland, 1982) regoaire the m-asurement of the second
directional derivative of a Gaussian filtered version of the croy-level image. It
would be natural to suppose that orient-Ition-specific neurons in the striate
cortex would fulfil this role in the primate visual system. However, a quanti-
tative analysis of our recordings from foval striatp cortex. in monkeys shows
that hardly any cells are accurately described as s-patial filters with a deriv-
ative of a Gaussian characteristic (Hawken and Parker, 1987).

4. RFAL.-TIM M(IPF2AI.'AI, (XW 1, 9FOI'VSMT,.

A computer-based system for the control and monitcrino of neuirophysioloqical
aund psychophysical e.periments in ral-time has b 'p",ified. The followino



description of the current state of this proJ h.ro Ict'n ,.r-pared by Mr. K.
Stratford, who has been employed part-tie- on thi s arant. The sigriificant feature
is that differences amongst computer systems by usinq a sys ,.' configuration file
to define the hardware interfaces, as wll as a sy}stem shl] to define the user
interface. Both WIMP and menu-driven shells ilave been irmplemented on an IBM PC AT
under MS-DOS, while preliminary code has been written f .. a PDP 11/34 iundr RTll.

In order that the system be useful to users of various levels of e-ertise,
various levels of access are available into the system. Th, e-'peft user specifies
an experiment using a combination of native C routines ard a state-control
language (SCL) which facilitates the definition of the pri 1lr pot o. to be
adopted. A formal granmar for the SCL has been defined, and the recursive-descent
compiler for it is presently in the pseudocode Stage. intermdiate users may use
an ep.periment composer to define a aroun of pre-coir pi] ,d CI, r ,-,monts as forming
an ep-,oeriment. At this stage, the syst,,m also reopir a -cification of the
format of the output data stream and tI e prespecificat-icn of any fi-ed variables
for this experiment. An elementary version of the composer is wnplemented on the
IBM. Novice users may access the library of p in order to
execute them using the Run-Time E:ecutive. Each choice is verified against the
system configuration file before r-unning to ensure no unspecified hardware
accesses. The data structures for both the selector and Run-Time E;:ecitive have
been defined.

All the data and library files, as well as the data structures used within
the suite of programs, have been defined and simulated. All programs within the
suite exist at least in functional specificatin fomn and mostly in pseudocode
form. The suite can be activated from a WIPP sholl on the !BM AT, with the
analysis program at prototype stage and preliminary versions of the composer and
library manager implemented.
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ABSTRACT

Contrast sensitivity as a function of spatial frequency was determined for 138
neurons in the foveal region of primate striate cortex. The accuracy of three models
in describing these functions was assessed by the method of least squares. Models
based on difference of Gaussians (DOG) functions were shown to be superior to those
based on the Gabor function or the second differential of a Gaussian. In the most
general case of the DOG models, each sub-region of a simple cell's receptive field
was constructed from a single DOG function.

All the models are compatible with the classical observation that the receptive
fields of simple cells are made up of spatially-discrete "on" and "off" regions.
Although the DOG-based models have more free parameters, they can account better for
the variety of shapes of spatial contrast sensitivity functions observed in cortical
cells and, unlike other models, they provide a detailed description of the
organization of sub-regions of the receptive field that is consistent with the
physiological constraints imposed by earlier stages in the visual pathway. Despite
the fact that the DOG-based models have spatially-discrete components, the resulting
amplitude spectra in the frequency domain describe complex cells just as well as
simple cells. The superiority of the DOG-based models as a primary spatial filter is
discussed In relation to popular models of visual processing that use the Gabor
function or the second differential of a Gaussian.

L _ -
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INTRODUCTION

A major contribution to our understanding of early visual processing, mainly
originating from psychophysical studies in humans, is that the initial stages of the
spatial analysis of a visual scene can be considered as a consequence of the
operation of a set of spatial bandpass filters on the retinal image (Campbell &Robson 1968; Braddick et al. 1978 for review). A number of models of detection and
discrimination judgements in human visual perception have incorporated spatial
bandpass filters as crucial components (Wilson & Bergen 1979; Watson 1983; Watt &
Morgan 1985). The implementation of procedures for image processing (Marr & Hildreth
1980; Yuille & Pogglo 1985) is often based on bandpass mechanisms similar to those
proposed in psychophysical models. It is generally thought that the neural
mechanisms underlying such a set of bandpass filters are provided by cells in the
primary visual cortex(Cooper & Robson 1968; Blakemore & Campbell 1969; Robson 1975;
Marr & Hildreth 1980; Sakitt & Barlow 1982; Robson 1983; Watson 1983).

Hubel & Wiesel (1962, 1968) discovered that the majority of neurons in the
primary visual cortex of cat and monkey are selectively sensitive to the orientation
of edge or bar stimuli and they catagorized them into two main classes: 'simple' and
'complex'. Characteristically, simple cells show discrete sub-reglons in their
receptive fields (Hubel and Wiesel 1962) and linear spatial summation (Movshon et al.
1978a). Complex cells, on the other hand, do not have spatially separated "on" and1off" regions in their receptive fields (Hubel & Wiesel 1962) and show non-linear
spatial summation (Movshon et al. 1978b). Both classes generally exhibit bandpass
characteristics as a function of spatial frequency in their responses to drifting
gratings and their sensitivity to the contrast of such patterns (Movshon et al.
1978a,b; DeValois et al. 1982) but the linear properties of simple cells would seem
to make them better candidates for the spatial filtering of the image (Robson 1975;
Marr 1982).

The primary visual cortex receives its principal afferent input from the dorsal
lateral geniculate nucleus (LGN), the cells of which have roughly
concentrically-arranged receptive fields with spatial antagonism between the centre
and the surround (Hubel & Wiesel 1961; Wiesel & Hubel 1966). Hubel and Wiesel (1962)
proposed that a cortical simple cell with an even symmetric receptive field could be
made up of inputs from a row of geniculate cell receptive fields flanked by rows of
Inputs from geniculate cell receptive fields of the opposite sign. It seems
reasonable to suppose that cortical cells showing linear spatial summation are
primarily influenced by neurones also showing linear summation. The major classes of
geniculate relay neurones in the primate with this property are linearly-summating
'X-cells' in the parvocellular and the magnocellular layers of the LGN (Blakemore &
Vital-Durand 1981; Shapley et al 1981; Derrington & Lennie 1984).

In this paper we attempt to find a suitable model for describing the spatial
properties of the receptive fields of neurons in the primary visual cortex. A
satisfactory model should allow an accurate estimate of the bandwidth, peak spatial
frequency, cut-off spatial frequency and peak sensitivity of the neuron's spatial
contrast sensitivity function, as well as reflecting the structural organization of
the receptive field as conventionally plotted. We needed such an accurate model of
cortical receptive fields to allow us to compare the contrast thresholds of single
neurons with those determined psychophysically for human observers (Parker & Hawken
in preparation). Initially, we chose the Gabor function to provide a smooth fit to
the spatial contrast sensitivity functions of cortical neurons because it had been
used successfully to describe the spatial frequency tuning functions of neurons in
the cat's visual cortex (Marcelja 1980; Kulikowski & Bishop 1981; Kulikowski et al.
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1982) while also being the basis for some models of visual processing (Sakitt &
Barlow 1982; Watson.1983; Daugman 1984). However the Gabor model produced generally
inaccurate estimates of the shape of the sensitivity function, most notably the
height and location of the peak of the fitted function usually differ from those of
the data. We also tried functions based around the second differential of a
Gaussian, which have been used extensively in computer vision programs that find
edges In images (Marr & Hildreth 1980). The imperfections of these two models led us
to the quantitative formulation of a different model, based on the likelyorganization of the physiological inputs to the visual cortex, which was
qualitatively outlined by Hubel and Wiesel (1962). Here we show that this scheme,
which is physiologically plausible but requires many parameters, gives much betterfits to the spatial contrast sensitivity functions than mathematically simpler
functions, derived from computational analyses of visual processing, such as theGabor or second differential of a Gaussian. Next we describe the new model, as well
as the others, in detail.

MODELS

For simple cells, which show linear spatial summation, the spatial contrast
sensitivity function will be the amplitude portion of a Fourier representation of the
receptive field profile. The shapes of the spatial frequency tuning function and the
spatial weighting function are thus directly related (Movshon et al. 1978a; Andrews
& Pollen 1979; Dean & Tolhurst 1983), although phase information is required for a
complete representation (e.g. Enroth-Cugell et al. 1983). In fact aqy
well-specified model of the receptive field profile must make some prediction of the
characteristic shape of the spatial contrast sensitivity function. Even fornon-linear complex cells, at least in the cat, the inverse transform of the spatial
frequency tuning function relates quite accurately to the 'sub-unit' structure of theoverall receptive field determined by measurements of local summation within the
field (Movshon et al. 1978b) and may provide an accurate measure of the spatial
filtering of the receptive field, even though the output is highly non-linear.

In 1966 Enroth-Cugell and Robson showed that the spatial contrast sensitivity
function of X-cells in the cat's retina could be well described by the difference of
two Gaussian weighting functions, a model that was proposed initially by Rodleck
(1965). This approach, relating the space and spatial frequency domains, has been
widely used in quantitative analyses of visual processing. The difference ofGaussians function, as usually applied to retinal ganglion cells and lateral
geniculate neurones, is a rotationally symmetrical Function with a single spatialvariable, the distance r from the receptive field centre, although deviations fromrotational symmetry have been noted (Levick & Thibos 1980; Dawis et al. 1984; Soodak
1986).

Many cortical neurons have receptive fields that are elongated In the central
excitatory region (correlating with their selectivity for orientation), thusforfeiting the condition of rotational symmptry. But in the direction orthogonal to
the elongated axis or preferred orientation, the receptive fields of simple cells
have spatially segregated sub-regions of opposite sign. This is the sub-structuregiving them their bandpass characteristics in spatial frequency. The individual
sub-units of complex cells may have similar properties (Movshon et al. 1978b;
Spitzer & Hochstein 1985a,b). Therefore by constraining the comparison of cells and
models to the dimension orthogonal to the preferred orientation, the bandpass nature
of the cell's receptive field can be investigated.



Page 5

Figure 1 illustrates the general form of some hypothetical spatial weighting
functions, in the direction orthogonal to the preferred orientation, of receptive
fields with even symmetry (figure 1b), intermediate symmetry (figre i) and oddsymmetry (figure ld). These all have the same bandpass spatial contrast sensitivity
functions (figure la) in the frequency domain. All realistic models must allow the
receptive fields of cells to attain the general shapes of either pure even symmetric,
pure odd symmetric or somewhere between the two, as shown in figure 1 (Kulikowski &
Bishop 1981). The rest of this section is devoted to describing, in detail, the
models that are evaluated in this paper.

Text figure 1 near here

Models based on difference of Gaussians (DOG) Functions

The first model treats each sub-region of a simple cell's receptive field as if
it were derived from a single lateral geniculate neuron with a difference of
Gaussians (DOG) profile for its receptive field (Rodieck 1965; Enroth-Cugell & Robson1966; Derrington & Lennie 1984). Consider, for example, a hypothetical simple cell
receptive field with a discrete central "on" sub-region and two flanking "off"
sub-regions, equally spaced either side of the central region. Such a conventional
"hand-plotted" receptive field is shown in figure 2a.

Text figure 2 near here

The underlying sensitivity profile of the "on" region In the hand-plot is itself
a DOG (the weighting function of an on-centre LGN cell giving excitatory input to
this simple cell), whose centre component responds to an increment in brightness andwhose surround component is of opposite sign. The flanking "off" sub-regions of the
hand-plot are also each a DOG, but of opposite configuration to that comprising the
"on" sub-region (e.g. the weighting functions of off-centre L.GN cells). The peaksof the Gaussians forming the flanking "off" sub-regions are spatially separated from
ones forming the central "on" sub-region. The second row in figure 2a gives the
spatial profile of each of the separate Gaussians, which make up the receptive field
shown in the third row of figure 2a. An alternative form of this model may have just
two sub-regions, corresponding to an odd symmetric receptive field, as illustrated infigure 2b. A receptive field intermediate between pure even and pure odd symmetry,
with unbalanced flanking regions, can also be created with this model, by varying the
relative amplitudes of the flanking DOGs.

Each component Gaussian in this model must he specified by three parameters: the
peak amplitude, spatial location of the peak amplitude and the space constant of the
Gaussian. It is mathematically convenient to place the origin of the spatial
co-ordinate system at the location of the peak of the central sub-reglon. This
sub-region can therefore be specified by 4 parameters: the space constants of the
Gaussians (x and x ) and their amplitudes (k and k ). In
general, a flaiking sub-tegion must be specified by fite paramaters, four of which
are equivalent to those describing the centre subregion (x , x , k ,
ks ) and a fifth, which is the separation (S) of the peai o?2 the2 flanking
sul-region from the peak of the centre sub-region. Thus nine parameters would be
sufficient to describe an odd-symmetric receptive field composed of two sub-regions
as shown in figure 2b.
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Rather than adding a further set of 5 parameters to describe a receptive field
with 3 sub-regions as in figure 2a, we constrained the model so that both flanking

sub-regions had the same spatial properties. With this constraint, the introduction
of a symmetry parameter (g) allows a description of the full range of behaviour from

pure even symmetry to pure odd symmetry as illustrated in figure 1. When g is 0.0,

the model has only one flanking sub-region. When g is 0.5, the model depicts a

receptive field with two identical flanking sub-regions. When g is 0.25, there are

two flanking sub-regions with identical space constants, but the amplitude of one is

greater than the other in a ratio of 2:1.

For a purely bandpass spatial contrast sensitivity function, with no reponse at
all below a certain low spatial frequency, the sensitivity of the central sub-region
(k C - k ) minus the sensitivity of the flanking sub-regions
(kfi - k 1) should be zero (i.e. the centre and the flanks of the receptive
fied should be balanced). On the other hand, for a bandpass spatial contrast

sensitivity function with a significant lowpass component, (k - k ) will
he greater than (k - k ). Because most neurons show banass %patial
contrast sensitivit functions, without a large lowpass component, we imposed a final

constraint on this model such that the combined sensitivity of all stib-regions summed

to zero. This means that the receptive field should give zero response to changes in

the overall illumination level. This has the advantage of reducing the number of
free parameters in the model from ten to nine (see appendix: equation I). For a cell
with a significant lowpass component in the spatial contrast sensitivity function,
the model obviously should not be constrained in this manner.

We have called this model, with nine parameters, d-DOC-s (the difference of the
difference of Gaussians with separation). Although the choice of parameters almost
certainly under-represents the actual one-dimensional organization of the receptive
field, even this large number of parameters makes the model complicated and difficult
to test. Fortunately, the d-DOG-s model can he well approximated by functions that
are subsets of this model and have a reduced number of parameters:
(i) The simple DOG model. In this case the cortical receptive field is modelled with
a single DOG function, specified by four parameters: the space constant (xc) and
amplitude (k ) of the centre Gaussian and the space constant (x ) and amplitude
(ks ) of the surround Gaussian, where the peaks of the cpntre and surround space
constants are spatially co-incident (see appendix: equation 3). In this simplified
model, the flanking sub-regions of the receptive field are formed by the extremities
of the surround Gaussian because of the difference in spatial extent of the centre
and surround components. This is the mlqimal vprqion of the d-DOG-s model that
retains the spatial bandpass characteristic required to model cortical cells. It is
also easy to compare quantitatively with the Gahor model hecauqe they both have four
parameters (see figure 14). The DOG has been proposed previously as the basis of a
model of cortical neurons (Rose 1979). An example of the hand-plotted receptive
field, the component Gaussians and the resultant spatial weighting function of the
difference of two Gaussians is illustrated in figure 3a. In the form used here, this
model is always of even symmetric form.

Text figure 3 near here

(ii) The DOG-s model. In order to test the importance of the parameter (S) that

specifies the separation of the peaks of the centre and flanking sub-regions of the
receptive field, we stripped as many parameters as possible from the d-DO;-s model
whilst retaining the characteristic behaviour associated with the separatirn

parameter. This resulted in the DOG-s model, which is the even symmetric form of tht
d-DOG-s model with only the centre components of the DOWs (xCIO kCIO xc2'

c1  1'C

• . .-_. - + - - . .. . .. . .. .
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k ) and the separation parameter (S) retained (see appendix: equation 2).

Fiure 3b shows that this leaves 3 Gaussian mechanisms, where each sub-region of the
receptive field is served by a single Gaussian. The two Gaussians specifying the
flanking sub-regions were constrained to have the same space constants and
sensitivity parameters. This constraint is similar to that applied to the d-DOG-s
model. To the extent that the surrounds of LGN neurons are weak, particularly in the
parvocellular layers, the DOG-s model (which simply lacks the components due to these
LGN surrounds) retains the significant features of the general case.

This function reduces to the simple DOG when the separation parameter is zero.
Indeed the DOG-s model can be considered as a rearranged version of the DOG model,
where the surround has been split into two Gaussians and the peaks of the two halves
have been relocated at distances +S and -S from the peak of the centre mechanism
(figure 3b). For this reason, the notation of the DOG model has been followed in
describing the DOG-s model and the parameters of the flanking regions are therefore
designated by ks for sensitivity and xR for the space constant. On the other
hand, in terms of the d-DOG-s model, these parameters associated with the flanking
sub-regions would be k and x

c2  c

The sub-units of the DOG models can most easily be considered as derived from
individual geniculate cells with a centre/surround receptive field organization. In
order to preserve the relationship between the values of the space constants and
amplitudes of the centre and surround mechanisms of LGN neurons and those obtained
from the fitting of DOG models to the cortical data, bounds were imposed on the
parameters during the fitting procedure. Thus the peak contrast sensitivity and
space constant of the centre mechanism were constrained to he within the bounds of
values found for geniculate neurons (Kaplan & Shalpey 1982; DerrIngton & Lennie
1984). Most often the choice of parameter values to give the best-fitting function
did not reach the bounding constraints because the selected values fell naturally in
the range found for geniculate cells. Of course, the imposition of constraints on a
parameter puts the constrained version of a model at a disadvantage with respect to
the unconstrained version. However, in the case of the DOG-based models, this
disadvantage is outweighed by the fact that the parameter values can be given a
direct functional interpretation (see Discussion).

The Gabor Model

The Gabor function has been proposed as a model for the rpceptive field profiles
of simple cells (Marcelja 19R0; Kulikowski et al. 1982; Daugman 1985; Field &
Tolhurst 196), and for psychophysically-defined channels (Watson 1983; Daugman
1994). If one wishes to represent an image in terms of space and spatial frequency,
the Gabor representation Is optimal In terms of compactness, minimizing the
uncertainty associated with localizing a signal simultaneously in space and spatial
frequency. This fact has been considered to be of potential significance for the
efficient processing of visual information (Marcelja 1980; Daugman lqR4, 1985). The
function Is the product of a sinusoid with a single Gaussian envelope (see appendix:
equation 4) and Is defined by four parameters: the space constant of the Gaussian
(x ) and its amplitude (k ), the frequency of the sinusoid (f ) and the phase
of the sinusoid (p) wIt respect to the Gaussian. Spatial weighting profiles given
by this function, for two cells, are shown in figure qa,b and can be seen to have
roughly the shape required for the hypothetical spatial weighting of a bandpass
filter shown in figure 1.

~---P
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The Differential of a Gaussian Model

The Laplacian of a Gaussian fG) was introduced by Marr & Hildreth (1980) as

a model of the concentrically organized receptive fields of retinal ganglion cells,

to support a representation of the image based on zero-crossings- We have considered

a one-dimensional version of this, the second differential of a Gaussian (D
2 G), as

a model of cortical cells. This function has two parameters, the space constant of

the Gaussian (xc) and a scaling constant (k c ) (see appendix: equation 5). Figure

10a,b illustrates two examples of the spatial weighting profile. A particular

constraint imposed by this function is that the low frequency portion of the

predicted spatial frequency tuning function is a straight line with a slope of two in

logarithmic co-ordinates. Marr & Hildreth (1980) pointed out that the Laplacian of a

Gaussian can be approximated by a circularly symmetric DOG function, provided that

the ratio of the surround space constant to the centre space c nstant is 1.6:1 or

smaller. Such a relationship would also clearly be true for the D G model and the

DOG model disc ssed earlier. It is important to appreciate that the DOG function is

equivalent to D C only if this constraint applies. In the results presented here

applying this constraint would result in the mistaken conclusion that the DOG model

is a poor description of the spatial contrast sensitivity functions because the ratio

of surround to centre space constants Is seldom less than two.

We have also considered a model comprised of two D2G functions of opposite

sign, spatially separated by 2x , since this function has been given prominence as

a specific model for simple celis in computational theories of vision (Marr &

Hildreth 1980; Marr & Ullman 1981; Marr 19R2). This model, however, produced 9ven

less satisfactory fits to the spatial contrast sensitivity functions than the D G

function, so the detailed results have not been included.

METHODS

Physiological experiments were performed on 9 adult Old-World monkeys (7 Macaca

fascicularis and 1 Cercopithicus aethiops) weighing between 3.3 and 5.5 Kg.

Preparation

Animals were anaesthetized with i.m. Ketamine for venous canntilation and then

maintained on i.v. steroid anaesthetic (Saffan) for the ensuing surgery. All

incisions were infiltrated with long-lasting local anaesthetic (Marcain) and any

pressure points were treated with topical anaesthetic (Tronothne). For recording,

animals were anaesthetized with barbiturate (SagatAl; 6 mg kg ), and paralysed

with pancuronium bromide (Payulon; 0.2 mg kg- ); then both the anaesthetic

(Saiatal; 1.2 - 3.0 mg kg hr ) and muscle relaxant (Pavulon; 0.2 mg kg

hr ) were continu Tusly Infused intravenously, in a solution of i0% glucose in 0.9%

NaCl at 5.6 ml hr , to maintain anaesthesia and paralysis. The electrocardiogram

(e.k.g) and electroencephalogram (e.e.g) were monitored continuously and the

anaesthetic state was judged to be satisfactory if there was almost continuous

slow-wave e.e.g. activity and if mildly noxious stimuli produced no change in e.e.g

or heart rate. Supplementary anaesthetic doses were administered, if necessary, to

maintain the anaesthetic state. Animals were artificially hyperventilated with room

air to which CO 2 was added to maintain end-expiratory CO 2 at 4.5 - 5.5%. Rectal

temperature was monitored continuously and maintained at 37.5 - 38 *C.

The pupils were dilated by topical application of atropine sulphate and

zero-power contact lenses were fitted to protect each cornea. The animal viewed the
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visual display through 3 mm artIfical pupils and additional spherical correcting

lenses. The refractive state of each eye was Initially judged by direct

ophthalmoscopy and further checked at intervals throughout the experiment by

determining the highest spatial frequency that evoked a response just greater than

the background firing of a neuron and adjusting the lenses if necessary.

Recording

Glass-coated tungsten micro-electrodes (Merrill & Ainsworth 1972) with 4-8/Km

exposed tips were lowered to the cortical surface, through a small craniotomy and

durotomy, under visual control and the exposure was sealed with 2% agar In 0.9%

saline. The whole area was covered with a mixture of paraffin oil and vaseline to

prevent drying. Action potentials were amplified and the Individual spikes of

well-isolated neurons selected by a level discriminator that triggered a standard TTL

pulse as output to a computer. Successive traces of the recording were superimposed

on a storage oscilloscope triggered by the level discriminator, to allow monitoring

of the waveform of the action potential and to assess whether the recording was from

a single cell.

Visual stimuli

Receptive fields were plotted by hand with lines, bars or spots back-projected

on a tangent screen 171 cm from the animal. The projections of the foveae were

marked on the tangent screen by using an ophthalmoscope with a reversing prism

(Eldridge 1979); repeated determinations of the projection of the same retinal

position were always within 0.5 deg. and most often 0.25 deg. or less. From the

hand plots of receptive fields we determined the eccentricity, an initial

classification of cell type (simple or complex), the ocular dominance (Hubel &

Wiesel, 1962) and some indication of the colour preference using broad-band Wratten

filters. The simple/complex categorization was further analysed, quantitatively,

using a test of linearity of spatial summation. For quantitative assessment of

responses to visual stimuli, gratings varying stnusoidally in luminance profile were

displayed on a cathode-ray 5ube (Joyce Electronics), 30cm x 22cm with a white (P4)

phosphor (luminance: 280 cd m- ), positioned 342 or 456 cm in front of the animal.

The bars of the grating could be restricted in height, to produce a strip of grating

flanked by uniform areas of the same mean luminance, so as to optimize the

stimulation conditions for cells with end-stopped receptive fields (Hubel & Wiesel

1965; Bishop et al. 1971; Gilbert 1q77), for which elongated bars were relatively

ineffective.

Measurement of response properties

Spatial frequency response tuning.

The magnitude of the response to a range of spatial frequencies presented in

pseudo-random order at a contrast of 0.7 was measured for between 10 and 20

presentations of each stimulus sequence, consisting of at least 2 cycles of a

drifting grating. The orientation, drift rate and direction of motion were optimized

by listening to the responses before the tuning function was determined.

Orientation tuning.

The response of the unit was determined at a number of orientations for both

directions of drift, the steps in orientation varied between 2.50 for the most

sharply tuned cells and 200 for cells with little or no preference for orientation.

The spatial frequency of the grating used was that which gave the largest response

?,
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during measurement of spatial frequency tuning and the contrast wps always 0.7. Each
stimulus was presented between 5 and 20 times in pseudo-random order.

Spatial summation.

The response to stationary, contrast modulated gratings was determined at 12

phase angles, covering 3600 (the dimension of one full cycle of the grating) in 30*
steps. Each phase was presented for 2 temporal cycles, the contrast being modulated
sinusoidally between zero and 0.7 at the optimal temporal frequency for the cell.
Each stimulus was presented 10-20 times with all phases selected in a pseudo-random
order. During the analysis of data after the experiment, we determined the spatial
frequency at the peak of the response function. Because there are some cortical
cells that appear to be predominantly linear at low spatial frequencies but
non-linear at high spatial frequencies (Movshon et al. 1978 a,b), only those cells
for which the spatial frequency of the test grating on the summation test was 0.7
times the peak spatial frequency or greater are included here.

Contrast sensitivity

To determine the contrast sensitivity of neurons, we used a staircase method
similar to that described by Derrington and Lennie (1982). For gratings of various
spatial frequencies covering the range over which the cell responded (determined from
the spatial frequency response tuning) we measured the contrast sensitivity of the
cell using this staircase method. Initially, the mean and the variance of the
background discharge of the cell were determined, with the receptive field of the
cell centred on the display with no grating present. The mean was calculated over 16
periods, each period equal in duration to the period for which the grating stimulus
would be presented. Then a drifting grating was presented (without change in mean
luminance) and the spikes elicited during the presentation were accumulated,
discounting the duration corresponding to the first half cycle of the grating to
avoid temporal transients. Following this there was a pause, equal to the
presentation time of the grating, then a further period during which another single
measurement of the background firing was made, before the next grating was displayed.
An on-line running estimate of the mean and variance of the background was determined
using the values collected in the 16 most recent periods of measurement. Following
the presentation of each stimulus, the number of spikes occurring during that
particular trial was compared with a statistical criterion (two standard deviations
greater than the background mean for these experiments). If the evoked response
exceeded the criterion, the contrast was reduced on the next trial at that particular
spatial frequency; if not, the contrast was increased. The staircase was run at each
spatial frequency until the computer had accumulated at least 8 reversals (in later
experiments, 24 reversals) at a step size of 0.0125 log unit, or until there was no
response greater than the criterion at the highest possible contrast (0.7). The
order of presentation of spatial frequency was chosen randomly by the computer.
Using this method, we could obtain a complete spatial coutrast sensitivity function
for each cell at its optimal orientation. This took between 15 and 45 minutes,
depending on the number of spatial frequencies, the rate of convergence of the
staircase and the other stimulus parameters.

For all measures, other than the staircase determination of contrast
sensitivity, the computer accumulated on-line perl-stimulus time histograms
(p.s.t.h's) for each stimulus condition and for a blank period. In addition the
total number of spikes elicited on each stimulus presentation was stored along with
an estimate of the magnitude of the fundamental component of the response, at the
temporal frequency of the drifting grating (Derrington & Lennie 1982).
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Histology

The position of the tip of the electrode was marked at regular intervals by
making small electrolytic lesions (2-3,*A for 2-3 s, tip negative). At the end of
the experiment the animal was killed with an overdose of anaesthetic. The methods
used in perfusion, histological reconstruction of penetrations and assignment of
laminar position for each cell has been described previously (Hawken & Parker 1984).

RESULTS

Cell classification

Some cells could be clearly classified as simple: the hand plot of their
receptive fields revealed spatially segregated "on" and "off" sub-regions that were
mutually opponent; on the test of spatial summation, they produced modulated
responses in phase with the temporal modulation of the stimulus at some spatial
phases, while showing clear null positions (no response despite modulation of the
grating) at f/2 radians from the phase that gave the biggest response; with drifting
sinewave gratings, the responses at all spatial frequencies were strongly modulated
at the temporal frequency of the stimulus.

Other cells showed all the characteristics of classical complex cells: they gave
"on/off" responses at all positions in their receptive fields to a flashing bar; they
produced a clear second harmonic response at all spatial phases on the test of
linearity of spatial summation; with drifting gratings, they showed little or no
response modulation at the temporal frequency of the stimulus but responded with an
increase in the mean discharge. However, there were cells that did not fall clearly
into either of these categories. For example, some cells which in most respects
appeared simple, gave an indication of a second harmonic response at the expected
null position, especially for spatial frequencies on the high frequency limb of the
spatial frequency tuning function. But these cells showed modulated responses to
drifting grating stimuli. Although some of the anomalies could be attributed to slow
drifts of the eyes or pulsations due to cardiovascular or respiratory movements,
experience in the cat, where the receptive fields are larger and these mechanical
problems not so severe, suggests that there are cells that genuinely show a mixture
of linear and non-linear behaviour at many spatial frequencies.

To obtain a quantitative indication of the degree of linearity of spatial
summation, the response of each cell was determined, for a set of spatial phases
covering covering the full 2 j1 radians of phase angle in steps of r/6 radians. The
details of the test are presented in the METHODS section. For retinal ganglion cells
and for lateral geniculate neurons, the ratio of the mean of the second harmonic
responses (f2) to the peak amplitude of the fundamental response (fl) has been used
as an index of linearity of spatial summmation (Hochstein & Shapley 1976; Derrington
& Lennie 1984).

Text figure 4 near here

Figure 4 shows that the distribution of f2/fl ratios is weakly bimodal for the
total sample of cortical cells (cf. Dean & Tolhurst 1983). DeValois et al (19R2)
used the ratio of the fundamental to DC response (fl/fO) for drifting gratings to
classify cells in the macaque striate cortex. They found a more clearly bimodal
distribution of the fl/fO ratio and distinguished their population on the basis of
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this test. In this paper, simple cells have been classified as those with a f2/fl
ratio less than one for stationary modulated gratings, which indicates that the
fundamental component dominates over the second harmonic. Complex cells have been
classified as those with f2/fl ratios of greater than one, which indicates a dominant
non-linear component. Based on the f2/fl index, we have 77 simple and 61 complex
cells. These percentages of simple and complex cells based on the f2/fl index are
very similar to those found by DeValois et al. (1982), which is to be expected since
both the tests define simple cells as those having a prominent fl component.

Measurements of contrast sensitivity

For each cell, the measurement of contrast sensitivity was obtained at spatial
frequencies of about one third of an octave apart, using the staircase procedure
described in the METHODS. In order to determine the correct transformation of the
data to use in fitting the curves to the data by the method of least squares, the
relationship between the mean and variance of the contrast sensitivity measurements
was investigated. In three of the eight animals, we collected 24 reversals (rather
than the normal 8) on the staircase measure of contrast sensitivity. This gives 12
independent measures of threshold at each spatial frequency and from these the
variance of the mean contrast threshold was estimated (Wetherill & Levitt 1965).
There is a clear positive relationshipbeween the arithmetic mean and variance of
linear contrast values (variance = k*mean ; see figure 5). Because the exponent
of the power function relating the mean and variance was almost two, a logarithmic
tranformation of the contrast sensitivity values was taken to make the data
homoscedastic. For models specified in equations 1,2,3 and 4 a general purpose
minimization routine was used (STEPIT: Chandler, J.P.) to find the best-flttlng
functions, whereas a logarithmic transformation makes equation 5 linear, so for this
model the best fit was obtained by direct solution of the normal equation.

Text figure 5 near here

Evaluation of models

In each figure that shows contrast sensitivity as a function of spatial
frequency (e.g. figure 6) the mean contrast sensitivity at each spatial frequency is
shown by the open circles (t one SD). The contrast sensitivity measurements obtained
for two simple cells are shown in the left panels of figures 6-10, with the smooth
curves being the best-fitting versions of the amplitude spectra of the models:
d-DOG-s (figure 6a,b), DOG-s (figure 7a,b), DOG (figure 8a,b), Gabor (figures 9a,b)
and D2G (figure lOa,b). The two examples were chosen because they 1) had
relatively high sensitivities (allowing the models to be discriminated from one
another), 2) had intermediate bandwidths for our sample of cells, 3) came from
different laminae in the region of the cortex devoted to foveal vision and 4) showed
relatively low variance over the data points (again allowing the models to be most
readily discriminated). Figure 13 shows a wider variety of sensitivity functions,

including some of the most extreme forms. The two examples are shown in each of the
five figures (6-10). The right panel shows the spatial weighting function associated
with the sensitivity function shown in the corresponding left panel.
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Text figures 6,7 and 8 near here

For each model the Rprameters were chosen so t~at they minimized
(log(model) - log(data))

In order to provide an estimate of the deviation between the measured values of
contrast sensitivity and the best fitting function from each model, the above
quantity was divided by the number of data points to give the mean error per data
point (Linsenmeier et al. 1982). The mean error allows a comparison between cells
with different numbers of values making up the spatial contrast sensitivity function.
For the cell whose sensitivity function is illustrated in the top of figures 6-10,
the mean error for the best fitting version of each model is given in table la, while
the error associated with each model for the cell illustrated in the lower half of
figures 6-10 is given in table lb.

Text figures 9 and 10 and table I near here

Both on visual inspection of the fits to the spatial contrast sensitivity
functions and in terms of the mean error per data point, models based on the
difference of Gaussians provide a much more accurate description of the spatial
tuning than do the Gabor or the second differential of a Gaussian. An F-test for
lack of fit of a model, using the standard procedures for linear regression, can be
obtained by comparing the estimates of variance measured during the experiment with
the residual sum squares deviation of the fitted function from the data.
Unfortunately, this procedure is 2nly exactly valid for models that can be made
linear in their parameters, such as D G. It is not well established that the other
four models can be treated in this way, because they are nonlinear in their
parameters. Nonetheless, although the exact values of F-ratios should be interpreted
conservatively, they do provide a useful measure of comparative performance (Draper
and Smith 1966, page 282, page 299). With the number of degrees of freedom for the
data in table 1, even F-ratios as small as 6 would be associated with a significance
level of 40.001. All the firm conclusions we wish to draw concerning these models
are supported by, F-ratios of 60 or greater.

The results of the F-ratio test are clear for D 2G, which is linear in its
parameters: both cells in figure 10 show significant lack of fit (see table 1). The
values of the F-ratio for the Gabor model (figure 9) are also very large. Thus, both
these models can be confidently rejected.

Two aspects of the inability of the Gabor and D2G functions to match the shape
demanded by the data points in figures 9 and 10 are particularly striking. First,
the low frequency limb of the tuning curve is poorly described. Second, a
consequence of the attempt by the fitting procedure to accommodate the low frequency
limb is that the peak spatial frequency of the model functions is far removed from
the peak defined by the data (half to one octave too high). The attempt to fit the
low frequency limb of the tuning curve also explains why the fitting procedure
arrived at a purely odd symmetric version of the Gabor function. Any purely odd
symmetric receptive field necessarily has zero response at zero spatial frequency.
Hence selection of the odd-symmetric version of the model by the fitting procedure
allows the steepest possible low frequency roll-off in the amplitude spectrum, but
even this choice is inadequate.

The DOG-s and DOG models differ only in the inclusion of a separation parameter
(S) for the DOG-s model. This parameter is an additional complication but has some
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particularly attractive interpretations in terms of receptive field organization and

its possible anatomical substrate (see Discussion), so it is important to assess

quantitatively the case for its inclusion. A partial F-test (Draper and Smith 1966,

pages 67-72) can be applied to examine whether a particular parameter significantly

improves the fit of a model. The F-ratio is again very large: F(1,134) - 74.8 for

the cell in the upper half of figures 6-10, F(1,124) - 74.1 for the cell in the lower

half of figures 6-10. These results argue strongly for the inclusion of the
separation parameter.

Spatial weighting functions

Each model and its parameters have associated with them a characteristic spatial

weighting function. Since the spatial contrast sensitivity measurements that define

the amplitude spectra place quite strong constraints on the shape of the best-fitting

function and the parameter values associated with the function, it is informative to

compare the shapes of the spatial weighting functions derived from each of the

models. The right hand columns in figures 6-10 show the associated spatial weighting

functions for each of the amplitude spectra in the left-hand column. Although these

weighting functions were not derived from independent experimental measures, the
difference in their shapes illustrates how the choice of a DOG-based model as opposed
to a Gabor function or second differential of a Gaussian would result in different
predictions for the spatial organization of the receptive field.

A second important feature of the spatial weighting functions is that they show

that some parameters of the receptive field are robustly defined. The space
constants of the centre Gaussian mechanisms for the three DOG-based models applied to
the contrast sensitivity function of the cell, shown in the upper half of figures

6-8, are almost identical (2.22, 2.21, 2.38 min arc for d-DOG-s, DOG-s and DOG
respectively), while a similar close correspondence holds for the cell in the lower
half of each of these figures (2.23, 2.19, 2.45 min arc). In the case of DOG-s,
which we have argued is a very reasonable approximation to d-DOG-s, those parameters

that are common to both models have values that are within 20%, for the two cells in
figures 6 and 7. The DOG-based models also allow realistic comparisons to be made
between cells in the striate cortex and those in the lateral geniculate nucleus. In
general, the sensitivities and space constants of the centre mechanisms of cortical
cells derived from the DOG-based models fall very nicely in the range of values found
for the centre mechanisms of neurons in the LGN (Derrington & Lennie 1984).

Comparison betwern models for the entire sample of neurons

Figure 11 shows the mean error per data point plotted against the variance per
data point, also calculated on logarithmically transformed contrast values. Each
panel shows the analysis of one of the models, with simple cells indicated by open
symbols and complex cells by filled symbols. The diagonal line on each graph is

where mean error per data point is equal to variance per data point. For points
above this line, error is greater than the variance. The points for the d-DOG-s

model are distributed roughly evenly around the diagonal line (figure Ila), while the
remaining graphs (figure llb-e) have been arranged in order of increasingly poor fits
of the models to the data points. Data from simple cells and complex cells are
similarly distributed throughout each plot. Hence, neither the variance of contrast
sensitivity measurements, nor the error associated with the fit of any of the

functions, would help to distinguish these two groups of cells. The order of quality
of fit, from best to worst, indicated by figure 11 b-e is DOG-s, DOG, Gabor and

D2 G. Thus, for the whole sample of cells studied, the DOG-based models (figure

Ila-c) provide a better description of spatial contrast sensitivity functions than
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the Gabor function (figure lid) or the second differential of a Gaussian (figure

lie).

Although there are a few relatively large errors, greater than 0.02, for the
sensitivity data fitted by the d-DOG-s model, these are almost Invariably due to
single individual data points that are far removed from the fitted curve. Whether
these are truly characteristic of the particular spatial contrast sensitivity
function or whether they represent statistical outliers could be decided only by
making repeated measurements on the same cell.

Text figure ii near here

The distribution of error with respect to variance gives a good overall picture
of the abilities of each model to describe the spatial contrast sensitivity function,
but it does not show whether there is an exclusive subset of cells for which a single
model provides the optimal description, even though that model might be inappropriate
for the majority of cells. To examine whether there was any clustering of neurons on
the basis of the quality of fit, the errors associated with the application of two
models were compared. Figure 12 shows the results of this comparison for each cell
for the DOG-s, DOG, Gabor and D2 G (figure 12 a,b,c,d respectively) plotted against
the d-DOG-s model. It can be seen that the d-DOG-s model fits the contrast
sensitivity measurements of all cells at least as well as or better than any of the
other models.

Text figure 12 near here

Further examples of spatial contrast sensitivity functions that are well
described by the d-DOG-s model are shown in the upper six panels of figure 13. These
illustrate the wide variety of shapes found for cortical cells and the flexibility of
the d-DOG-s model in accounting for them. The values of the parameters for the
best-fitting version of the d-DOG-s model are shown in table 2. The lowest two
panels show examples of cells for which the simple DOG model (figure 13g) or indeed a
single Gaussian (figure 13h) are adequate to describe the data. The sensitivity
function shown in figure 13b is one of the most narrowly tuned that we have
encountered; as can be seen, its sensitivity function is well described by the
d-DOG-s model and the associated spatial weighting function would have multiple
antagonistic zones (Kulikowski & Bishop 1981; Kulikowski et al. 1982).

Text figure 13 & table 2 near here

It is obviously to be expected that the d-DOG-s model will be as good as or
better than the DOG-s and DOG functions, because elimination of some of the
parameters from the d-DOG-s model produces the equations of DOG-s and DOG (i.e.
DOG-s and DOG are straightforward reductions of d-DOG-s). Comparisons between
d-DOG-s and the Gabor model (figure 12c) and d-DOG-s and the second differential ?f a
Gaussian (figure 12d), indicates that there are no cells for which the Gabor or D G
models provide a better description of the data than d-DOG-s. Of course, It should
be remembered that t e number of free parameters in the d-DOG-s model is greater than
both the Gabor and D G. However, both the DOG function and the Gabor function, as
implemented, have four free parameters and therefore a simple comparison between them
is justified.

f
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Text figure 14 near here

In figure 14d we have explicitly compared these two models. The mean error

associated with the best-fitting Gabor is plotted on the abscissa while the error for

the DOG is shown on the ordinate. Cells whose sensitivity functions were equally

well fitted by either the Gabor or the DOG would lie on the solid diagonal. Points

below this line signify that the DOG produces a better fit than the Gabor, while

those above the line favour the Gabor fit. While the DOG model provides a better
description of the majority of cells, there are some for which the Gabor function has
a lower error than the simple DOG. For the neuron illustrated in figure 14, the
Gabor function (figure 14a) fits the measured contrast sensitivity values very well,
having mean error of 0.0028. For comparison, the DOG fit (shown in figure 14b) has a
mean error of 0.0131, about five times greater than that of the Gabor. This is, in
fact, the largest difference in favour of the Gabor of all the cells that we have
tested. However, the DOG-s model (figure 14c) has a slightly lower error than the

Gabor. Again, the addition of the separation parameter to the basic DOG model

considerably improves the fit.

DISCUSSION

It is clear that, of the models considered in this paper, the d-DOG-s model can

account most accurately for the spatial contrast sensitivity functions of cortical
neurons. Therefore, In spite of the its many parameters, the d-DOG-s can be
considered as preferable for the determination of characteristics of tuning
functions, such as bandwidth, peak spatial frequency, peak sensitivity and acuity,
that are often quoted in comparison with those derived from psychophysical studies or
in computational theories of early visual processing. For many cells, the reduced
DOG-based models provide fits that are indistinguishable from the d-DOG-s model
(figure 12a,b) and therefore provide simpler yet adequate descriptions of the spatial

tuning. For a few cells, the Gabor function gives excellent fits to their spatial
contrast sensitivity functions (e.g. figure 14a), but over 5he whole sample of cells
It is poorer than the DOG-based models (figures 12c,14d). D G is just poor overall
(figures lle,12d).

It is probably not surprising, that the few explicit models of cortical

receptive field structure previously considered, based on the the Gabor (Marcelja
1980), the DOG (Rose 1979) or on a restricted version of the d-DOG-s (Heggelund 1981;
Soodak 1986) have all been deemed to be adequate, because they do, qualitatively,

attain the general shape of a bandpass device. It is only when quantitative measures
from a large sample of cortical neurons are examined comparatively that the

differences between the various models become evident.

Receptive field organization

Comparison of DOG-based models

Although the d-DOG-s and DOG-s models give better overall fits to the spatial

contrast sensitivity functions than the simple DOG, their improved performance is at

the expense of the introduction of extra free parameters, most significantly the

separation parameter (S) that distinguishes the DOG-s and DOG models. However, it is
possible to give an appealing functional interpretation of the separation parameter

in terms of receptive field organization. This is illustrated in figure 15, which
shows the component Gaussians of the DOG (figure 15a) and the DOG-s (figure 15c),
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plotted with contrast sensitivity and spatial frequency on linear axes (dashed lines,

centre mechanism; dotted lines, surround mechanism). The resultant combined

functions, shown as solid lines in figure 15 a,c are replotted in figure 15 b,d, but
in the more familiar log-log co-ordinates. The DOG function, with spatially
co-incident peaks of the centre and surround mechanisms, obviously must have an
individual Gaussian for the centre mechanism with a sensitivity that is greater than
the peak of the resultant DOG. The sensitivity of the centre mechanism of the DOG is
represented by the dashed line in figure 15b. In contrast, the DOG-s function, by

virtue of the separation parameter, can attain the same peak sensitivity in the

combined curve using Gaussians whose peaks are lower than their combination.

Text figure 15 near here

The centre Gaussian of the DOG-s function (figure 15d, dashed line) has a peak

amplitude of 29, while the DOG-s function has a peak sensitivity of 43. This is

because the effect of the surround Gaussian adds to that of the centre Gaussian at
some spatial frequencies, owing to the difference in spatial phase introduced by the
separation parameter (figure 15c,d). The two flanking regions forming the surround
in the DOG-s model remain in even symmetric, cosine phase just like the single
Gaussian mechanism forming the surround in the DOG model. Thus the Fourier transform
of the DOG-s function has real parts only, which are illustrated in figure 15 c & d.
This fundamental effect of the separation factor would help the visual system, using
the DOG-s configuration, to create spatial contrast sensitivity functions with
relatively narrow bandwidths, but without the attendant loss of sensitivity
associated with narrow-band DOG functions (Marr & Hildreth 1980). These comments
apply with even more force to the d-DOG-s model. Moreover, the addition of the
spatial separation between centre and surround mechanisms, accounts for much of the
improvement in the ability of the d-DOG-s and DOG-s models to fit the spatial
contrast sensitivity functions, when compared with the DOG function. This is
especially so, when the sensitivities of the individual Gaussians mechanisms have
been constrained, as in the implementation of all three DOG-based models described in
this paper. As will be seen later in the Discussion, the upper limit on the
amplitude of the individual Gaussians is reasonable when consideration is given to
the properties of lateral geniculate cells that must, directly or indirectly, provide
input to the cortical cells.

As shown in figure 1, for the hypothetical spatial contrast sensitivity

function, the inverse transform of the amplitude portion of the function can give
spatial weighting profiles ranging from pure even symmetric to odd symmetric.
Therefore it should be stressed that the best-i'tting d-DOG-s functions do not
uniquely specify the phase of the Fourier spectrum and therefore the relative
strengths of the flanking regions. This point is exemplified in figure 16, which
shows the versions of the d-DOG-s model that provide the best fit to the contrast
sensitivity data of the cell shown in figures 6-10a, where the phase parameter (g)
has been constrained to give a pure even symmetric (figure 16a), intermediate (figure
16b) or almost purely odd symmetric (figure 16c) profile. It can be seen, that
although the relative amplitude and spatial organization of the surround component in
the spatial weighting functions changes, the resultant amplitude spectra are almost

identical.
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Text figure 16 near here

Sub-units of cortical cell receptive field

A major advantage of the DOG-based models is that they can be interpreted in

terms of the organization of the components of the receptive field. As mentioned in

the section describing the DOG-based models, in order to maintain the parameters of

these models within reasonable bounds, quite strong constraints were imposed during
the curve-fitting procedures. For example, the maximum sensitivity of the individual
Gaussians was constrained to be no greater than 1.5 times the greatest sensitivity
recorded for each cell. Although the exact value of this limit is somewhat arbitary,
the principle of setting a limit is very important. Otherwise, it would be possible
for the DOG model to give a deceptively plausible description of a narrow-band
spatial contrast sensitivity function, such as that in figure 13b. If the fitting
procedure were allowed to hypothesize very high sensitivities (>250) for each
Gaussian mechanism, the difference of the two would indeed be a high sensitivity,
relatively narrow-band function, but the existence of single Gaussian mechanisms of
very high sensitivity as real single entities in the nervous system is
physiologically implausible and certainly not experimentally verified (Kaplan &
Shapley 1982; Derrington & Lennie 1984).

In general, with the well-fitting DOG-s and d-DOG-s models, the parameters

selected by the fitting procedure were well away from the bounds imposed by the
constraints. In fact, the parameters selected by these models are highly compatible
with the properties of lateral geniculate inputs (Kaplan & Shapley 1982; Derrington &
Lennie 1984). For example, the centre mechanism space constants are in the range of
0.5 to 8.0 minutes of arc, for cells with receptive field centres within one degree
of the fovea, and this range shifts systematically with eccentricity. Even for the
small range of eccentricities studied in this work, the shift is evident and is
similar to that seen for geniculate cells. Although these measures are derived from
the application of a model, it should be stressed that they would be difficult to
extract by other means. For example, the models separate out the differences in the
sensitivities of the individual mechanisms from the differences in their spatial
sizes. Further, use of the model gives some insight into how mechanisms could be
combined to produce the overall receptive field profile. For example, figure 15
illustrates how inputs derived from parvocellular LGN cells, even though they
generally have peak sensitivities lower than 25, could be used to build cortical cell
receptive fields with a sensitivity higher than 25 at some spatial frequencies.
Another mechanism for enhancing sensitivity in the cortex could be summation along
the axis of preferred orientation. Finally, it is encouraging that some of the
parameters of the receptive field are robustly defined even when results from
different models are compared (see figures 6,7 and 8).

One of the remarkable features of our data is that no distinction can be drawn
between simple and complex cells on the basis of the models describing their spatial

contrast sensitivity functions. However, in terms of line weighting functions, there
is a marked difference between the two cell classes in the cat cortex (Movshon et al.
1978a,b). There are several lines of evidence that suggest that complex cell
receptive fields are made up of the non-linear combination of sub-units, which

themselves show linear spatial summation (Movshon et al. 1978b; Spitzer & Hochstein
1985a,b). If these linearly summating sub-units have characteristics rather like

simple cells in nearby areas of cortex, then it would be expected that no major

differences between simple and complex cells would be found, in terms of their
spatial contrast sensitivity functions. The similarity of simple cells and the
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linearly summating sub-units of complex cells argues that they may have common

sources of input from the LGN.

Anatomical considerations

A consequence of a relatively simple yet accurate model of the spatial weighting
of striate neurons is that it allows some of the parameters to be tested against the
anatomical distribution of inputs to cells. An intriguing feature suggested by the
d-DOG-s and DOG-s models is that the peaks of some of the surrounds (or flanking
regions) of receptive fields are separated from the centre mechanism by about 10
minutes of arc for cells with receptive fields within a degree of the foveal
representation. A value of 10 minutes of arc with a magnification factor of

15mm/degree, which is perhaps a conservative estimate (Dow et al. 1981), Indicates
possible interactions, based on strict topographic order, over distances of 2-3mw
across the cortex. Thus, there could well be a correlation between the orderly
distribution of patch-like lattices seen in the anatomical arrangement of

intra-cortical connections (Rockland et al. 1982) and the structure of the receptive
fields. This would eliminate the need for any ill-defined concepts such as long
range inhibitory influences or global 'pools' of non-specific inhibition in which
cortical cells supposedly sit. Rather, the long-range connections can be seen as
providing the anatomical basis for the straightforward, classically-defined and well
documented features of receptive field organization.

Implications for visual processing

Cortical neurons display a wide variety of selectivities other than those
defined in the models studied here. Thus the overall picture of cortical cell
receptive fields provided by the models is incomplete, in that selectivity for
direction and speed of motion, orientation, chromaticity or disparity is currently
not included in the models. Despite the restricted nature of the models, some
general conclusions about visual mechanisms can be made.

One consequence of using a poorly fitting model to process our results would be
that the extraction of parameters of the function, such as bandwidth and peak
frequency, would, in many cases, represent the data inaccurately. This might have
serious consequences for the performance of a theoretical model of subsequent visual
function that used the Gabor or D G for preliminary filtering. Furthermore, since
a number of theoretical models of early visual processing underpin their use of the
Gabor function by appealing to its property of minimizing conjoint uncertainty in
space and spatial frequency, the failure of the Gabor function to match actual data
from cortical cells suggests that this property is of limited significance for visual
processing in the primate striate cortex. Whether the receptive fields of neurons in
the extra-striate visual areas adhere to the Gabor shape or whether the
characteristics of some cells in the striate cortex are close enough in shape to the
Gabor function for its optimizing property to be adequately retained are mattIrs for
further experimental investigation. Rather similar points apply to D G and
modifications of it (Marr & Hildreth 1980; Marr & Ullman 1981).

Our preferred models for cortical cell receptive field profiles are

obviously not In accord with 2ny previously proposed principles of computational
vision (unlike, say, the use ofl G functions to find zero crossings). The first
stage in the application of such principles to a biological visual system must be an
accurate model of the elements of the system. It is therefore worth considering what

are t e most marked differences between the shapes of filters, such as d-DOG-s, Gabor
and D G. In the spatial frequency domain, two features are apparent. First,
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cortical cells tend to have spatial contrast sensitivity functions that are roughly
symmetric whe2 plotted on a logarithmic frequency axis rather tlan a linear one.
Gabor and D G functions are closer to symmetry on a linear frequency axis. A
related feature is 1hat the low-frequency cut of cortical cells is much steeper than
either Gabor or D G would predict. Nonetheless, the bandwidths of cortical cells

are not very r. rrow (DeValois et al. 1982). So appealing to a more narrowly tuned
function, such as a higher order differential would not produce a significant
improvement.

In the space domain, these features imply that the spatial extent of the
receptive field, particularly Its "inhibitory" flanking region, is greater than would
be predicted from a Gabor or D G function. Prior to Marr and Hildreth's work on
edge detection, the majority of edge detectors in computer vision systems worked on
quite small regions of support (typically 3-6 pixels in linear extent). Marr and
Hildreth (1980) Introduced filters with considerably larger regions of support
(approximately 30 pixels In linear extent). Adopting the d-DOG-s model suggests that
the size should be bigger still for efficient edge detection and localization.
Moreover, even when receptive fields have quite small centre mechanisms, they may
have quite large "inhibitory- flanking regions.

The suitability of cortical receptive fields for edge detection and localization

is euiphasised by observations we have presented elsewhere. Localization thresholds
for simple cells are in the hyperacuity range, both when measured directly or derived
from calculations based on the DOG model of the receptive field (Parker & Hawken
1985), indicating that performance of individual neurons is well within the range
found for human psychophysical observers. This is a case where the experimental
determination of a spatial contrast sensitivity function followed by the application
of a straightforward model of the receptive field results In testable predictions of
the cell's behaviour.

Finally, it is obvious that the DOG-based models discussed here are similar, in

many ways, to the original models of simple cells proposed by Rubel & Wiesel (1962).
It has been suggested (DeValois et al. 1985) that the investigation of cortical
cells with grating stimuli has revealed additional forms of receptive field
organization that invalidate the Hubel & Wiesel model. It is ironic that the
quantitative analysis presented here favours simple modifications of Hubel & Wiesel's
model rather than schemes, such as the Gabor filters, that have been specifically
inspired by the frequency domain approach to visual processing.
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APPENDIX

This appendix documents the equations used to describe the models end gives

some guidance on the interpretation of the parameters associated with the

models. The Fourier transform of these models is, in general, complex and the

amplitude portion of the Fourier transform was used to fit the measured

spatial contrast sensitivity function. However, because the line-weighting

function indicates the structure of the models much more clearly, the equation

specifying each model is the line-weighting function.

Models based on difference of Gaussian functions

These models consist of the algebraic sum of a number of Gaussian terms,

each of which is specified by a scaling factor (kc, ks etc.) and a space

constant (xc, Xs, etc).

Units

X, Xc, Xs, S, etc. are reasured in degrees of visual angle;

f is measured in cycles/degree;

kc, k s etc. are reasured in the units: sensitivity deg.- 1 (see figures 6-10

right hand graphs).

The terms kcJfXc etc., which appear in the Fourier transform, can be

usefully considered as a single constant with units corresponding to the

conventional measure of contrast sensitivity for grating stimuli. For

convenience, in the figure legends 6-10 the sensitivity constants are

expressed as a single value (e.g. A,B) in this way. The equivdlences

between these two notations are indicated with the equations stating the

line-weighting function for each model.



Difference of difference of Gaussians with separation (d-DC-S)

(1) kc exp (- (x/xc )2) - ks exp - (x/x s )2) -

g {kc exp ( ((x+S)/xc 2)2) exp (- ((x+S)/x )2) 
21-g) 2c s

(1I g) k 2exp (- ((x-S)/Xc )2) - k2exp (- ((x-S)/xs2)2) 3

where the constraint

(kc  - ks ) - (kc  -k s
1 1 2 2

is applied and the equivalences to Figure Legend 6 are

Al = kc f xc A, ks r x. ; A3 ,kc I x c2 A4 = ks rrx s1 1 1 1 2 2 2 2

Difference of Gaussians with separation (DOC-S)

(2) kc exp (- (xx c ), - 0.5 ks exp (- ((x+S) xs )) -

0.5 k5 exp (- ((x-S)/x )2)

where the equivalences to Figure Legend 7 are

B1 - kcTI Xc; '82 , ks4 x.

Difference of Gaussians (DOG)

(3) kc exp (- (x'x c )2) - ks exp (- (x/xs )2 )

where the equivalences to Figure Legend 8 are

C1 = kc xc; C2 = ks x.

Fourier transforms

The Fourier transform of the sum of a number of functions is simply the sum

of the Fourier transforms of those functions. The difference of Gaussian

models can therefore be treated by examining the contribution of Individual

terms to the overall transform.

Terms of the form:

kc exp ( (X/Xc) 2

L . a a h ,U - - - .,, j a lnuh l lnl h-- n I



have Fourier transforms of the form:

k . exp (- 11f2x2)
Terms of the form:

0.5 k. exp (- ((x+S)/x,)
2) + 0.5 k8 exp (- ((x-S)/x,)2)

have Fourier transforms of the form:

k5JR x. exp C- f lx.2) . cos (2 fS)

An example of this behaviour is shown in figure 14.

Terms of the form:

0.5 k. exp (- ((x+S)/xs)2) - 0.5 ks exp (- ((x-S)/xs)
2)

have Fourier transforms of the form:

ks4 x s exp (- IT f2x) . sin (2WrfS)

Gabor function

The Fourier transform of a Gabor function (a sinusoid multiplied by a

Gaussian envelope) is a pair of Gaussian spectra centred at the frequency

(f9 of the sinusoid, one at +fc' the other at -fc" The relative signs of

these spectra depend on the phase (p) of the sinusoid. If both are positive

or both are negative, then the sinusoid is in cosine phase relative to the

peak of the spatial Gaussian envelope. If one is positive and the other is

negative, then the sinusoid is in sine phase. Note that this latter

arrangement guarantees that a receptive field with this characteristic will

have a zero sensitivity at zero spatial frequency.

(4) kc exp (- (x/xc)2) cos (2lTfcX + p)

The constant D, in figure legend 9 simply scales the height of the Gaussian

spectra in the frequency domain, but it does not have a simple structural

interpretation as do the constants for the DOG-based models.

Second differential of a Gaussian

The Fourier transform of this function can be understood most easily by



noting that a differentiation in the space domaln is equivalent to

multiplying the frequency spectrum by the complex quantity 21TJf. The

Fourier transform of the second differential of a Gaussian is therefore

dominated by a quadratic term at low spatial frequencies and a Gaussian

term at high spatial frequencies. The constant EI in figure legend 10 is

simply a scaling factor.

(5) (2k/x2). ( - 2x2/x2). exp (- (x/xc )2)

c
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Table 1. The mean log. error per data point and F-ratio 
for the best-fitting version of each

model to the spatial contrast sensitivity functions 
shown in figures 6 2- 10.

d-DOG-s DOG-s DOG GABOR D G

--- --- - ------------------------------------------------------------

log. error 0.0013 0.0032 0.0097 0.0448 0.0933

F-ratlo 4.5 4.69 12.5 60.6 94.9

(4,134) (8,134) (9,134) (9,134) (11,134)

B.
log. error 0.0018 0.0025 0.0053 0.0312 0.0591

F-ratio 15.7 9.3 17.4 84.7 152.7

(3,124) (7,124) (8,124) (8,124) (10,124)
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--upper graph (a) shows a bandpass function relating contrast sensitivity and

spatial frequency, which is typical of the spatial contrast sensitivity functions
found for most neurons in the striate cortex. The lower graphs show three possible
inverse Fourier transforms of the amplitude spectrum in the upper graph, indicating
the variations of receptive field organization consistent with this amplitude
spectrum when no phase information is available. Left to right: purely even symmetry
(b), intermediate (c) and purely odd symmetry (d).

Figure 2
Schematic representation of the individual Gaussian components and their

combination for a receptive field model based on the difference of difference of
Gaussians with separation (d-DOG-s, appendix: equation I). Each sub-region of a
receptive field is described by a difference of Gaussians function. Thus for a
purely even symmetric field, with three sub-regions, there are six Gaussians
altogether. For an odd symmetric field, with two sub-regions, there are only four
Gaussians.
(a) Purely even symmetric field. The upper row shows an idealized 'hand-plotted'
receptive field, with "on" centre (+) and "off" surround (-) sub-regions. The second
row illustrates the individual Gaussians of each of the DOGs that make up the
sub-regions of the d-DOG-s. The third row gives the spatial weighting function of
the receptive field based on the linear combination of the three DOGs in the second
row. (b) Odd symmetric receptive field. The upper row shows the hand-plotted
receptive field with "on" and "off" sub-regions. The second row shows the individual
Gaussians that make up the DOGs corresponding to the "on" and the "off" sub-regions
in the upper row. The third row shows the form of the spatial weighting function
that is the resultant of the two DOGs in the second row. It should be noted that the
individual Gaussians of the "on" and "off" sub-regions do not necessarily have the
same space constants and sensitivities. Consequently the resulting function, shown
in the bottom row, need not be exactly odd symmetric.

(a)-Schematic representation of the difference of Gaussians (DOG, appendix:
equation 3), where the peaks of the two Gaussians are spatially co-incident. In this
case the flanking sub-regions of the receptive field are formed by the spatial
extremities of the surround Gaussian. The first row is the hand-plotted receptive
field, the second row shows the component Gaussians of the centre ("on") region and
the surround ("off") regions, while the third row gives the spatial weighting
function based on the linear combination of the Gaussians in the second row. (b)
Representation of the difference of Gaussians with separation (DOG-s, appendix:
equation 2). The three rows are in the same sequence as described above for (a).
This is equivalent to the purely even symmmetric version of the d-DOG-s model, where
each sub-region is modelled by a single Gaussian rather than a DOG.

Figure 4
The distribution of 138 neurons on a test of the linearity of spatial summation.

The receptive field of each neuron was stimulated with a temporally-modulated
sine-wave grating at 12 different spatial phases. The amplitude of the second
harmonic component of the impulse discharge (at twice the frequency of the temporal
modulation) was averaged over all spatial phases to give the value f2. The value of
fl was determined at the spatial phase that gave the greatest fundamental response at
the same frequency as the temporal modulation. Cells with f2/fl ratios of less than



1 were considered to have a dominant linear component and have been classified as
simple (77 cells), while those with f2/fl ratios greater than 1, showing a dominant
non-linear response, have been classified as complex (61 cells).

Figure 5
Relationship between mean contrast sensitivity and variance of measures of

contrast sensitivity. The mean values of contrast sensitivity and the associated
variance were obtained from 12 estimates using the staircase procedure described in
the METHODS. For each cell, the mean and variance were calculated at every spatial
frequency that yielded a significant response. Initially, the calculations were
based on the assumption of a linear contrast scale (arithmetic mean and variance).
The figure shows all these measurements pooled together. There is a positive
relationship between arithmetic mean and variance with a slope of 1.85 as indicated
by the solid line on the graph. A slope of 2 would indicate equal variance for
logarithmically transformed values of contrast sensitivity.

Figure 6
The d-DOG-s model (appendix: equation 1) fitted to the contrast sensitivity

functions (left) of two simple cells. The derived spatial weighting functions are
shown on the right. Each determination of contrast sensitivity (unfilled circles) is
the mean of 12 estimates from a staircase procedure; the error bars indicate +/- one
standard deviation from the mean. The neuron whose sensitivity function is shown in
(a) was recorded in layer VI of the striate cortex; the centre of the receptive field
was located 1.2 degrees from the fovea. The neuron whose sensitivity function is
shown in (b) was recorded in layer II in the same penetration. The values of the
parameters of the best-fitting function are:
(a) AI = 43, A2 = 43, A = 41, A4 = 41, x = 2.22 mins arc, x =
15.36 mnns arc, x = 4.97 mins arc, x ff= 1h41 mins arc, g = O.IS, S - 8.23
mins arc. (b) IL = 16, A2 f 16, A 3 S9 10, A 4 = 10, x = 2.23 mins arc,
x8, . 16.10 mins arc, x = 4.41 mins arc, x 2146 mins arc, g f
0. , S = 8.29 mins arc. 2  2

Figure 7
The DOG-s model (appendix: equation 2) fitted to the contrast sensitivity

functions of the same two cells as shown in figure 6. The details of the procedure
and of the cells are given in figure 6. The values of the parameters of the
best-fitting function are:
(a) B - 42.1, B2= 45.2 x = 2.21 mins arc, x - 4.58 mlns arc, S = 7.38
mins arc. (b) 1= 15.0, 2 = 16.6, x = 2.J9 mins arc, x = 5.25 minsarc, S - 7.92 mins arc.

Figure 8
The DOG model (appendix: equation 3) fitted to the contrast sensitivity functions

of the same two cells as shown in figure 6. The details of the procedure and of the
cells are given in figure 6. The values of the parameters of the best-fitting
function are:
(a) C1 : 58.5, C2 - 61.4, x - 2.38 mins arc, x - 10.14 mins arc.
(b) C 1  20.7, C2 - 22.8, x c 

= 2.45 mins arc, x. - 11.54 mins arc.

Figure 9
The Gabor model (appendix: equation 4) fitted to the contrast sensitivity

functions of the same two cells as shown in figure 6. In almost all cases, the
observed functions were more nearly symmetrical than the Gabor function plotted on
logarithmic axes. The details of the procedure and of the cells are given in figure
6. The values of the parameters of the best-fitting function are:



(a) D1 M 41.8, x - 1.94 mins arc, fc - 2.92 c/deg., p - 90. (b) D
23.8, x = 2.04 mins arc, f = 3.16 c/deg., p = 900.

c C

Figure 102
Te--DG model (appendix: equation 5) fitted to the contrast sensitivity

functions of the same two cells as shown in figure 6. Like the Gabor function
(figure 9), D2G is not as symmetric as the data on logarithmic axes. The details
of the procedure and of the cells are given in figure 6. The values of the
parameters of the best-fitting function are:
(a) E - 6.48, xc - 3.49 mins arc. (b) E1 - 2.87, xc . 3.90 mins arc.

Figure 11
Relationship between the mean error per data point and the mean variance per data

point for each of the models fitted to every cell in our sample. The filled symbols
represent measurements from 77 simple cells, while the unfilled symbols are from 61
complex cells. The solid line in each graph, with a slope of 1, indicates where the
error is equal to the variance. A point below the diagonal line indicates that the
error in fitting the model to the data is less than the variance associated with the
sensitivity measurements for that cell. Conversely points above the line indicate
that the error was greater than the variance; such points indicate cells that are
relatively poorly fit by the model. We have arranged the models from best to worst,
based on the number of data points aboye the line of equality; the order is d-DOG-s
(a), DOG-s (b), DOG (c), Gabor (d) and D G (e).

Figure 12
The mean error per data point for the best-fitting version of the d-DOG-s model

(ordinate) is plotted against the mean error per data point for the other four
models. Deviations below the solid line of equal error indicate a failure of the
model represented on the abscissa to account for the spatial contrast sensitivity
function as well as the d-DOG-s model. The filled and unfilled symbols indicate
simple and complex cells respectively, as in figure 11.

Figure 13
Panels (a-f) show the d-DOG-s model (appendix: equation 1) fitted to the contrast

sensitivity functions of six neurons, in order to illustrate the variety of shapes of
these functions and the ability of the model to describe them. The lowest two panels
show examples of cells that were well fitted by the DOG model (g) and by a single
Gaussian (h). Details of the parameters are given in table 2. The open circles
indicate the mean value of contrast sensitivity and the error bars indicate +/- one
standard deviation from the mean. Cells in a,b,c,e had receptive fields between 1.0
and 1.5 degrees from the fovea; receptive fields of cells in d,f,g were within 0.5
degrees of the fovea; receptive field of cell in h was 3.0 degrees from the fovea.

Figure 14
The upper two graphs show the contrast sensitivity function from one of the few

neurons for which the Gabor (a) shows a significantly better fit than the simple DOG
(b). The mean error associated with the Gabor fit is 0.0028 and with the DOG 0.0131.
However, the DOG-s model (c) can fit the data with a similar error to the Cabor,
0.0023. The cell was classified as simple, with a receptive field 0.4 degrees from
the fovea, and was recorded in layer IVc . (d) Comparison of the mean error obtained
from the best-fitting versions of the DOG and the Gabor functions for all cells. The
details are the same as for figure 12.
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a) The centre (dashed line) and surround (dotted line) Gaussians of a DOG
function plotted on linear spatial frequency and contrast sensitivity axes. Because
the peaks of the centre and surround Gausslans are spatially co-incident, they
subtract at all spatial frequencies. Therefore, to obtain a DOG of a given
amplitude, the centre mechanism's sensitivity must be greater than the maximum
sensitivity of the DOG. The combination of the centre and surround is shown by the
solid line in (a). In (b) the solid line shows the same DOG as in (a), but on the
more familiar log-log axes, while the centre mechanism is shown by the dashed line.
In c) the centre (dashed line) and surround (dotted line) Gaussians of a DOG-s
(solid line) function are shown on linear axes. The same DOG-s function as seen in
(c) is shown in Cd) on log-log axes. Note that the surround Gaussian is of the same
sign as the centre Gaussian at some spatial frequencies (see Appendix). Thus the two
Gaussians combine their sensitivities at these spatial frequencies with the result
that the peak sensitivity attained by the DOG-s function, shown by the solid line in
(c and d), is greater than the centre component alone (dashed line in c and d).

Figure 16
The graphs show the versions of the d-DOG-s model that fit best to the contrast

sensitivity data of the cell in figure 6a, where the model varies from: (a) pure even
symmetry, the symmetry parameter g = 0.5; (b) through intermediate symmetry, g =
0.26; (c) to almost pure odd symmetry, g - 0.0. (See figure legend 3.) All the other
parameters were free to vary. The figure shows that, within the constraints of the
d-DOG-s model, the relative amplitudes and spatial organization of the flanking
sub-regions may change without any marked change in the amplitude spectrum. It is
worth noting that the separation parameter stays almost constant, at around 8 mins.
of arc, in all three fits despite the change of symmetry of the flanking regions.
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2-D STRUCTURE OF CORTICAL MECHANISMS FOR CONTRAST DETECTION
Andrew Parker A Mike Hawken, Physiology Dept., Oxford, UK

The shapes of receptive fields of neurons in the primate
striate cortex suggest that they could be the mechanisms
underlying the spatial channels identified in psychophysical
contrast detection experiments. Analysis of the spatial
contrast sensitivity functions of striate neurons shows that the
most comprehensive description of their behaviour is given by a
2-dimensional model, consisting of the algebraic sum of up to 3
difference-of-Gaussian (DOG) functions in the axis orthogonal
to the preferred orientation of the cell and a single Gaussian
function in the direction parallel to this axis. For simple
cells, each major excitatory or inhibitory zone of the
receptive field is served by one DOG function. The space
constants of the smallest %centre' mechanisms are in the range
I to 8 min arc for eccentricities of 1.5 degrees or less. Even
when the 3-DOG model is restricted to only 4 or 5 free
parameters, it gives significantly more accurate descriptions
of contrast sensitivity functions than either the Gabor
function or the 2nd differential of a Gaussian. The space
constant of the single Gaussian describing the axis parallel to
the preferred orientation can be derived from the orientation
selectivity of the cell. The values fall in the range 3 to 35
min arc, but are more conveniently specified as a ratio
relative to the overall width of the receptive field, measured
from the extremities of the flanks of the receptive field. The
modal value of this ratio is about I and nearly all cells fall in
the range 0.25 to 4.0.
(Supported by the MRC and AFOSR)




