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TNTRODUCTTON

In order to illustrate the op« ion of neural structures in early visual
processing, Robson (1980) proposed the concept of a ‘neural image’: this is a
spatial map of the nervous activity resulting from the response of the visual
system to a specific image. A very similar construct, termed a representation,
was developed by proponents of the computational approach to vision (Marr, 1982;
Horn, 1986). Marr (1982) arqued that the function of a particular representation
is to make specific kinds of information esplicit. From the computational point
of view, the role of early vision is to create representations that are useful
for later stages of processing such as stereo or moticn analysis (Mayhew and
Frispby, 1981; Marr and Pog3io, 1979 Hildreth, 1984).

Our programme of research is a stwd, of how the norvous system of primates
creates and uses representations -t vimal information. Three corpenents are
necessary in such a study. First, the tehavional porformanse that reflects
visual informati-n processing should tes peosured. Thin fooonlves the construction
of psychephysical erperiments desiarcdd to tind the limits of visual performance
and to see whether distinct analysing moohaniam be identified. Jecond,
neurcphysiological experiments should i+ carried onr o examim - how behavioural
performance is supported by particuliar neural me tradoms. After the identif-
ication of such mechanisms, they should be charactc riced in agreater detail and a
formal description of their properties chould v made. This descripticen can be
related back to the nature of the analyzing mechaniems obtained from psycho-
physical experiments and forward to the final goal ~f the research, which is the
creation of a formal model in the computational sonse. Thuo, the third stage is
for the results obtained from biclogical visual systems to be embodied in a
computer model and the performance of the bhiolorically-derived model to be
analysed and compared with models derived from rtlsr s urces, such as artificial
intelligence and computer viaion.

Our current work consists of throe spesific ven vt e vhye have boon designed
within the framework of this aqeneral poro gropee. The Dhrrt predect je dnenstig-
ating computable models of striate o pticy! rnowsptives Cicisie, which are the
neural mechanisms responsible for the oarlicet trancioimetion of the visual image
at a cortical level. The second project is cxterciling the moasiurements of cortical
cells from the luminance contrast domain to include chromatic sensitivity. The
new experiments are designed to validate the model generated in the first project
and point the way to creating a computational model of chromatic processing based
on primate vision. The third project is applying the aeneral program outlined
above to the study of a higher order perceptual process, namely the perception of
visual surfaces by human observers. In this field, there are a nurber of inter-
esting computational models derived from artificial intellicence, but there is
very little information on human perception asainst which to evaluate these
models.

The present state of progress on «ach of these proijects is ocutlined in the
sections that follow. More detailed accounts of the work will be submitted to
AFOSR in the form of scientific papers as the work apprcaches completion. An
appendir is attached giving details of work in preparaticn, as well as an account
of the scientific activities of the principal investiaators dnuring the temre of
the grant. These three scientific projects are underpiuned by a fourth project,
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which is intended to provide a conpleto revicien of the coftware used for the
real-time acquisition of data during erporiments.

1. COMPUTABLE, MODELS OF STRIATE CORTICAL RECFPTIVE FIFIDS

In this project, we are studying the initial transformations cof the
grey-level image that occur in primate visual systems. This involves the creation
of a computable model of early visual processing, based on our quantitative
measurements of the properties of sinqgle neurons in the monkey visual cortex. Our
work involves comparing the performance of this model against those of others,
some of which derive from experimental investigaticns similar to our own (Wilson
and Bergen, 1979; Marcelija, 1980; Daummin, 1985; Watt and Morgan, 1984), others
of which have been proposed as methnds in compiter vision systems (Witkin, 1983;
Yuille and FPogaio 1985; Shanmuaam, Di~keny and Greoen, 1979 Canny, 1983; Marr and
Hildreth, 1980; Mayhew and Frisby, 19R1).

Backaround

There is extensive evidence favouring a nnifﬁ*w—NPULw' mxinl of the
detection of luminance contrast by humen choorvers, Tho newed for oa malt iple-chan-
nel model (Graham and Nachmias, 19'1; Trabem, oo it atmins, 1978), the
nature of the detection process (Froe-r and Srdian, 17=1) and the parameters of
individual channels (Blakemore and Camplsil, P90 foece all been analyzed
quantitatively by psychophysical «<nperviments. Farther support for a
multiple-channel organization has come trom neursabyoiclaaical dnveasrigations in
the striate cortex of cats and morkeys, where It Las bevn chewn that oolls are
tuned to distinctly different spatial trevpesncies (70 rer angd Foboon, 190, evep
when care is taken to analyze the nengrons cvrsin: o onf ros losion in rhe v:sual
field (DeValois, Albrecht and Thorell, 1oy,

However, there are no detailsd Stordle o o omr o0 i et o e o binloa-
ically-derived models of detect o, with il e T w PR ittt ions,

on these fundamental tasks. In fa, Dttt v b the B vical

models remain unspe~ified. Fuen ;s:vw' : Ve b dwiboi b e very
difficult to estimate from psychri iy Seerite o (g, 1977 tenning,

Hertz and Hinten, 1981), whilst Q}W“Lf}qu che oliges ot channels ~r their
spatial distribution is even more problematic. As a consepence, many models of
human vision make assumptions about tlese wvariables, which, althouth they are
chosen shrewdly, are nonetheless unsupgpwrted by e:yrerimental evidence (Watson,
1983; Wilson and Bergen, 1979; Sakitt and Barlow, 1982). Even thouah the results
of neuro- physiclogical experiments can be difficult to interpret, they offer one
possible route away from this impasse, because they provide more direct measure-
ments of the internal working of the visual system.

Current Programme of Investigation

There is considerable evidence to suggest that the nearal Iocus of the channels
identified in psychophysical experiments is the striate cortox., For the past 3
years, we have been investigating the relationship t«tweon the performance of
single neirons in the striate cortes of Old World morie s and homan chsorvers in
a numdwr of psychophysical tacsks (Parker and Hawken, 1985 Hawken and Parker,




1984; Patker and Hawken, 1983, Hawken and Parker, 1757abz, Uarker and Hawken,
1987). One of the requirements of these investigations was the dovelopment of an
adequate medel of the receptive field of a cortical ~oll and the estinmation of
the parameter values of the model for each cell that was recerded. In crder to
make comparison with psychophysics more exact, the threrheld contrast sensitivity
of cells was measured by determining th» stimulus contrast reqired to cause a
statistically significant change in the outrmt of the nerve coll  (Parker and
Hawken, 1985; Derrington and lernie, 19€2; Derrinaton ard Lennio, 1984), cver the
range of spatial frequencies to which the neurn recponded, Thero recults
provide a spatial contrast sensitivity runction aviings which we can test varions
functions proposed for describing the spatial boe f os filters in early visual
processing. In particular, we have tostod the Gaie urrtion (Mareedga, 1980,
Daugman, 1985), the first differential -f a Couccia, which is a close approxi-
mation of Canny’s cptimal filter (Cunmy, 1983), i coctnad differential of a
Gaussian (Marr and Hildreth, 198C¢; W end Moroay, 1050 Mohew and Frishy,
1981). All these functions give raths: poor decm iyt i o moot mopkey oortica)
cells, as illustrated by the examples in the attoa~iead naonersrict o Sertainly, none
of these functicns would allow the adortion of a4 civerde mod-l doncritina all
simple cells.

An alternative approach is to ask how woll are tiw cortical oolls doescr ibed
by combinations of functiens that nre kntwn to doscorite the nropersies of
receptive fields at earlier stags in the wiesndl oystem (et h=-Trwell and
Rcobsen, 1966; Rodieck, 1965). There{ors, we hase o pwitvd nodels based -~ diffor-
once of Gaussians functions (DOG) andd lineewr
most aeneral case that we considered crroist s or W AT R W e peake are
spatially separated from one anottw:r, In moct s, thee hencrive forg of e data
obtained by linear combinations of sintie Do fipo i o ormill sparial
separation of their centres) is sianificu'ly terror vhony eltier of the oyt

corgetr e s UG ancttne, The

aticnal models that were toested (Hawke: wd P, )

Trie of the main aims ~f this o o0 T 0 el s Ty P mer is
of the DOG-based functions as the b ooe oo e L o vislon. To
accomplish thin wo e omtre o 0oy o o bn sl Tmanes,
Usina this algovithm will enable v o0 oy e v o e ot Dovsmhased

spatial filters against other £iltvvs prope v d 1 1 b tindinor (v 73, Dabwy), on
tasks such as the detection and Iocalision of codnr, mecrement of the local
orientation and curvature of edges and the corrat icn ~f cther spatial primit-

1ves,

2. CHROMATIC PROPERTIES OF SINGIF CORTICAI, NFURONS
Background

Our interest in the chromatic preperties of cort.ical cells has aricen from
investiagations of the functional micrastructure of the monkey ctriate ~~rtex. In
particular we have shown that within lamina 1V there ic a physioloaical correlate
of the differential anatomical distribution of afferents from maano- and parvo-
cellular of the lateral geniculate nucleus (Hawken and Farker, 1984). We also
have unpublished quantitative data on the spatial and ot her properties of neurons
enconntered within those patches of layers IT and 111 that stain densely for
cytochreme oxidase (Hendrickson, Hant and Wa, 17981 0 rton aned imbed, 19810 5o
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far, the published physiological investigations of cytochrome oxidise spots
suggest that these spots consist of groups of cells with chromatic organization
of their receptive fields, including so-cilled "dmuble-opponent' cells, and weak
or non-existent orientation tuning (Livingstone and Hubel, 1984).

Proposed Research

For quantitative measurements, we intend to adopt an approach derived from
the psychophysical studies of Krauskopf, Williams and Heeley (1982), which
indicates the existence of so-called cardinal directions in colour space. This
method provides an analysis of neural responses similar to that of Rushton's
method of silent substitution and has been used tn considerable effect by
Derrington, Krauskopf and Lennie (1984) to study the chromatic properties of
neurons in macaque LGN. The stimuli consist of spatial sinuscldal waveforms whose
modulaticns can be represented in a three colour Jdircncicnal space, two dimens-
ions of which correspond to a plane representing the CTh chromaticity diaqram and
the third representing the familiar dirsnsion of laminge contrast,

Initial experiments will include an investigation of the chromatic preper-
ties of neurons in layer IV. A detailed investiqation will be made of the cells
in IVe in an attempt to verify our previeus —conelusions (Hawken and Darker, 1984)
based on the study of properties with luminance contrast alene, We will also
record from cells in other layers in the ctriate ~7rtex and eventually extra-
striate cortex, especially those reagions cof layers 11 and III in areas V1 and V2
rich in cytochrome oxidase enzyme activity, in order to compare the chromatic and
spatial organization of the receptive fields from these anatcomically differen-
tiated zones. It is possible that ind-pendent processing of chromatic and
non-chromatic information seen at the level of the LN is preserved through
several higher levels of visual procensing, even though both types of cells,
chromatic and luminance-sensitive, may acriire new properties at the cortical
level, such as orientation selectivity and Lincoalurity, Howeuer, Zoki’s work in
V4 (Zeki, 198D) suggests that aome transiormwat o0 0 b chironat 1o caponents of
LGN signals eventually takes place,

Hawken and Parker (1987) descriibs o4 mew copy et i nal modol of the spatial
organization of the receptive fields of cortical oolls, rne means of extending
the testing of this model is to note the streng interrelationships that exist
between luminance contrast sensitivity and chrematic contrast sensitivity in the
LGN (Wiesel and Hubel, 1965; Derrington et al,, 1934). These interrelaticnships
must leave their mark on cortical procecssing and imply that models, such as ours,
which are based on discrete inputs from IGN receptive fields to the receptive
subunits of cortical cells, will erhibit a dearee of gpatial organization of
chromatic sensitivity that is different. from that in the IGN. However, the
DOG-based models do imply that the chromatic sensitivity of cortical cells and
their luminance contrast sensitivity should be related in a urified manner.

Work in Progress

A computer-driven pattern generator has been constructed to provide indep~
endent signals to each of the three channels of a colour CRT monitor. The
principle of the design is close to that used on many computer graphics systems
currently available and consists of some RAM and colour look-up tables that can
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be loaded from the computer, as well as the apynchonication signals and output
stages necessary to drive the colour moniter. The main difference from commerc-
ially available systems is that output f{rom the device can be specified with
12-bit accuracy (1 part in 4096) on all three colcour channels. This is necessary
in order to achieve a wide dynamic range of contrast, as well as using the
look-up tables to correct for any nonlinearity in the performance of the colour
monitor. This generator can be programmed to store bars, step-edges, sinusoidal
gratings or other l-dimensional spatial profiles as a list of nurbers, whose
values can be interpreted as locations on an effectively continuous contour in
tridimensional colour space. The software to control this device will be integra-
ted into the general-purpose real-time control software that is being written for
our research group by the Department’s Computer Officer (Mr K. Stratford), who
has been partially supported by AFOSR during the course cf this grant.

3. COMPUTATIONAL STUDIES OF THE PFRCFPTION OF VISUAL SURFACES

There is a relative scarcity of experimental investisations of how human
observers abstract information about the gecmetric propertics of visual surfaces.
In order to elucidate the important geametrical factors in surface perception we
are currently performing a series of psychophysical experiments. This knowledge
is a prerequisite to evaluation of computational madels of surface perception and
to the design of neurophysiological experiments to investigate the neural
populations responsible for this aspect of human porception,

A. Sensitivity for the Fundamental Gecmetric Properties of Surfaces

Several computational schemes assune it is relativeldy easy for the system to
compute some simple intrinsic preperties of the depth rap. For example, in crder
to find discontinuities, Ponce and Brady’s (1985) procerdure first smocths the
surface with Gaussian filters of varicus space corrstants and computes the
principal directions and curvatures cver the aurface .3 then marks zero-cros-

sings and extrema of the dominart carvatures. 24T dircrimination esperiments
have been carried out using surfaces cenbodded in roani r—eloment stereo pairs to
measure the sensitivity of observere v () vpresiane cneeotine, (D) principal
values of normal curvature, () orientaticn ot the ares of the principal ourva-
tures. Initial results indicate that human obhzervers are censitive to differences
of the curvature of surfaces, independent of other possible confrunding cues such

as surface extent and gradient (Johnston and Parker, 1987)),

B. Detection and Identification of Discontinuities in Visual Surfaces

Rackqground

In psychophysical studies of human vision, procodures such as adaptation,
masking and sub~threshold summation are used to reveal mechanisms tuned to
specific regions of the stimulus domain (Braddick ot al., 19%78). Adaptation
(Tyler, 1975; Schumer and Ganz, 197%9%), masking (Tyler and Julesz, 1978) and
sub-threshold summation (Schumer and Ganz, 1979a) have already been used to study
stereoscopically generated surfaces that were modulated sinusoidally in depth.
However, an important point made by Ponce and Brady (1985) is that knowledge of
the qualitative type of a surface discontinuity is highly significant in later
processing. This suggests that it may be more revealing to study a task where the
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observer is required to identify a stimuius as well as detect it. Such a task was
used by Krauskopf and Srebro (11405) %o study colour mechanisms, by Watson and
Robson (1981) to study spatial and temporal channels and by Watson et al. (1980)
to study motion sensitivity. The basic presumpticn of this approach is that if
two stimuli are each at their own detection threshold and if they can be reliably
identified or discriminated, then thoy are being dote~ted by separate and
independent mechanisms. By studying a range of ztimuli erhaustively, one can
~btain a parsimonious estimate of the number and type of analysing mechanisms
possessed by human observers.

Work in Progress

Random-element stereo-pairs containing these patterns defined as changes in
disparity are generated (Julesz, 1971). A two-alternative fecrced-choice (2AFC)
procedure is used to measure the detectability of these stimuli: (1) as a
function of the size of the discontinuity (i.e the change in surface height in
the case of a step), (ii) as a functicn of the contrast required to detect a
given fluctuation in the surface and (iii) as a function of the degradation of
stereo information when random non-cerresponding elements are added to the stereo
pair. During the detecticn task, stimuli belonging to two or more classes of
discontinuity can be randomly interleaved from trial to trial and observers will
classify the stimulus after each detection decision. By way of example, if the
detectability of, say, step stimuli of fixed height were measured as a function
of contrast, observers would be asked to discriminate between just detectable
stimuli of different height but the same disparity sign; if they can do so, this
would imply separate analysing mechanisms for different sizes of discontinuity,
as suggested by the adaptation experiments of Blakemore and Julesz (1971). On the
other hand, an ability to discriminate only crossed vs. uncrossed disparities
regardless of size would support the centention of Richards (1971) that there is
a limited number and distribution of digparity detectors. Using these techniques,

preliminary results suggest that surfices of pocitive and negative Gaussian
arvature are analysed independeont 1y Yoo boaroey vop hevineioal boorvers,
C. Disparity Averaqing and Surface Trteosel ot ieg
There are several studies indicating that, in boman stored vision, low

spatial frequency sinusoidal variations in depth are haniled coparately from high
frequency ones; the filter shape for each "depth channel" would correspond
roughly to a difference-of-Gaussians (DOG) function (Tyler, 1975; Tyler and
Julesz, 1978; Schumer and Ganz, 1979a). This may be an analog of the milti-resol-
ution methods for surface interpolation proposed by Terzopoulos (1984), who,
however, pointed cut that smoothing of surfaces with DOG filters must be care-
fully controlled in the vicinity of discontinuities, otherwise crucial inform-
ation will be smoothed away altogether. This suggests that the space constant for
smoothing may depend on the characteristics of the surface.

One phenomenon that we are exploiting to estimate the space constant of a
smoothing process is disparity averaging (Kaufman et al., 1973; Foley, 1976;
Julesz and Schumer, 1981). A random-dot stereo-pair is created in which alternate
rows or columns of dots are used to define different visual surfaces. Schumer and
Ganz (1979%) report that a composite fiqure consistina of a planar surface at
zero disparity plus a sinusoidal modulation of depth is Indistinguishable at




threshold from a single surfare sinuzoidally moednlateod o0 half the amplitude of
depth variation. Our data extend these results to suprathreshold stimuli such as
pairs of simple planar surfaces, both frentoparallel and tilted, at a variety of
disparities relative to the backaround (Yana and Parker, 1987). In future
experiments, the surfaces will be a plane and a stop-edie; by making the plane
terminate at various distances from the discontirnity at the step-edie, the
spatial edge-weighting function for disparity averaging can be measured. Similar
measures will be carried out for other types of discontimiity. An alternative way
of measuring the space constant of the pooling process is to substitute for the
plane a stimulus consisting of the first differential of a Gaussian with its
zero-crossing located at the step-edge. Discrimination can be measured as a
function of the space-constant of this Gaussian.

D. Current Organization of the Project

This work is partially surported Ly a arant from the UK Science and Engin-~
eering Research Council to AJD. This arant has pm\wiwi a ’”N 3 coemputer work-~
station to carry out this rescarch. Connddorably wore cxtensive computing

facilities have been provided by a grant from the Wellcoome Tmst. Since Brady is
now basing his work in Oxford around SUN computer cystems, the computational
modelling part of the project will be carried out using this system. Experiments
can be carried out either with the SUN system or with the display system provided
by this grant. More recently, a grant has been awarded from funds supplied by
central government to the University of Oxford for apparatus to monitor human eye
movements during the inspection of visual surfaces. Esperiments on detection and
identification of surface properties will be carried cut by Ms E. Johnston as
part of her project work for her D.Phil degree. Experiments on disparity averag-
ing are being carried out by AJP and Ms Yany Yuede (maported by a Fellowship
from the Wellcome Trust).

The direction of this work changed durina the couree of the previcous USAF

grant. In that proposal, it was suaested that an init i1 stady sheould focus on
depth cues from luminance and testure aradionta, Taeee st ions have been set
aside temporarily in order to conoort e cnocuio aniin ot the porception of
surfaces in the domain of steren by foocine P o0 e (Julens, 1971)
give relatively pure cues to curface orivoroo i o o corne nlent manipul-
ation cf those cues. Alss, the phen owensa of cdicg wricy overaning chaerved in

stereo vision can be used as an experimental ;"'w 0 fwni ~ut how local depth
measurements are be combined to yield an intejrated percert of a surface in
depth. Finally, computational model.s for recovering surface properties from
luminance gradients (e.g. Pentland, 1982) require the measuroment of the second
directicnal derivative of a Gaussian filtered version of the arey-level image. It
would be natural to suppose that orientation-specific neurons in the striate
cortex would fulfil this role in the primate visual system. However, a quanti-
tative analysis of our recordings from foveal striate cortex in monkeys shows
that hardly any cells are accurately described as ecpatial filters with a deriv-
ative of a Gaussian characteristic (Hawken and Parker, 1987).

4. REAL-TIMFE. FEXPERIMENTAL CQONTROL, SOFTWARF,.

A computer-based system for the centrol and monitcorina of nenrophysiological
and poychophysical esperiments in real-time has been pecified. The fellowina




description of the current state of this project has been propared by Mr, K,
Stratford, who has been employed part-tiwe on this grant. The sianificant feature
is that differences amongst computer systems by using a oystr 1w confiquration file
to define the hardware interfaces, as well as a system shell to define the user
interface. Both WIMP and menu-driven shells have been implemented on an IBM PC AT
under MS-DOS, while preliminary code has been written for a PDP 11/34 under RT11.

In order that the system be useful to users of varicus levels of erpertise,
various levels of access are available into the system. The expert user specifies
an experiment using a combination of native C routines and a state-control
language (SCL) which facilitates the definition of the particular protocol to be
adopted. A formal grammar for the SCL has been defined, and the recursive-descent
compiler for it is presently in the pscudocode stage. Intermediate users may use
an experiment composer to define a aroup of pre-compiled SCI, seaments as forming
an experiment. At this stage, the system alcs recguire s a cpecification of the
format of the output data stream and the prespecificati-n cf any fixed variables
for this experiment. An elementary versicn of the composer is implemented on the
I8M. Novice users may access the library of erperiments conposed in order to
execute them using the Run-Time Executive. Each choice is verified against the
system configuration file before running to ensure no unspecified hardware
accesses. The data structures for beth the selector and Run-Time Executive have
been defined.

All the data and library files, as well as the data structures used within
the suite of programs, have been defined and simulated. All programs within the
suite exist at least in functional specificatirn form and mestly in pseudocode
form. The suite can be activated from a WIMP shell con the IBM AT, with the
analysis program at prototype stage and preliminary versions of the composer and
library manager implemented.
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ABSTRACT

Contrast sensitivity as a function of spatial frequency was determined for 138
neurons in the foveal region of primate striate cortex. The accuracy of three models
in describing these functions was assessed by the method of least squares. Models
based on difference of Gaussians (DOG) functions were shown to be superior to those
hased on the Gabor function or the second differential of a Gaussian. In the most
general case of the DOG models, each sub-region of a simple cell's receptive field
was constructed from a single NDOG function.

All the models are compatible with the classical observation that the receptive
fields of simple cells are made up of spatially-discrete “on” and "off" regions.
Although the DOG-based models have more free parameters, they can account better for
the variety of shapes of spatial contrast sensitivity functions observed in cortical
cells and, unlike other models, they provide a detailed description of the
organization of sub-regions of the receptive field that is consistent with the
physiological constraints {mposed by earlier stages in the visual pathway. Despite
the fact that the DOG-based models have spatially-discrete components, the resulting
amplitude spectra in the frequency domain describe complex cells just as well as
simple cells. The superfority of the DOG-based models as a primary spatial filter is
discussed in relation to popular models of visual processing that wuse the Gabor
function or the second differential of a Gaussian.
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INTRODUCTION

A major contribution to our understanding of early visual processing, mainly
originating from psychophysical studies in humans, {is that the initial stages of the
spatial analysis of a visual scene can be considered as a consequence of the
operation of a set of spatial bandpass filters on the retinal image (Campbell &
Robson 1968; Braddick et al. 1978 for review). A number of models of detection and
discrimination judgements in human visual perception have incorporated spatial
bandpass filters as crucial components (Wilson & Bergen 1979; Watson 1983; Watt &
Morgan 1985). The implementation of procedures for image processing (Marr & Hildreth
1980; Yuille & Poggio 1985) {s often based on bandpass mechanisms similar to those
proposed in psychophysical models. It 1is generally thought that the neural
mechanisms underlying such a set of bandpass filters are provided by cells 1in the
primary visual cortex(Cooper & Robson 1968; Rlakemore & Campbell 1969; Robson 1975;
Marr & Hildreth 1980; Sakitt & Barlow 1982; Robson 1983; Watson 1983),

Hubel & Wiesel (1962, 1968) discovered that the majority of neurons {in the
primary visual cortex of cat and monkey are selectively sensitive to the orientation
of edge or bar stimuli and they catagorized them into two main classes: 'simple' and
'complex’'. Characteristically, simple cells show discrete sub-regions in their
receptive fields (Hubel and Wiesel 1962) and linear spatial summation (Movshon et al.
1978a).  Complex cells, on the other hand, do not have spatially separated "on" and
"off” regions in their receptive fields (Hubel & Wiesel 1962) and show non-linear
spatial summation (Movshon et al. 1978b). Both classes generally exhibit bandpass
characteristics as a function of spatial frequency in their responses to drifting
gratings and their sensitivity to the contrast of such patterns (Movshon et al.
1978a,b; DeValols et al. 1982) but the linear properties of simple cells would seem

to make them better candidates for the spatial filtering of the image (Robson 1975;
Marr 1982).

The primary visual cortex receives its principal afferent fnput from the dorsal
lateral geniculate nucleus (LGN), the cells of which thave roughly
concentrically-arranged receptive fields with spatial antagonism between the centre
and the surround (Hubel & Wiesel 1961; Wiesel & Hubel 1966). Hubel and Wiesel (1962)
proposed that a cortical simple cell with an even symmetric receptive field could be
made up of inputs from a row of geniculate cell receptive fields flanked by rows of
inputs from geniculate cell receptive fields of the opposite sign. It seems
reasonable to sguppose that cortical cells showing 1linear spatial summation are
primarily influenced by neurones also showing linear summatinn. The major classes of
geniculate relay neurones {n the primate with this property are linearly-summating
'X~cells' in the parvocellular and the magnocellular layers of the LGN (Blakemore &
Vital-Durand 1981; Shapley et al 1981; Derrington & Lennie 1984).

In this paper we attempt to find a suitable model for describing the spatial
properties of the receptive fields of neurons in the primary visuval cortex. A
satisfactory model should allow an accurate estimate of the bandwidth, peak spatial
frequency, cut-off spatial frequency and peak sensitivity of the neuron's gpatial
contrast sensitivity function, as well as reflecting the structural organization of
the receptive field as conventionally plotted. We needed such an accurate model of
cortical receptive fields to allow us to compare the contrast thresholds of single
neurons with those determined psychophysically for human observers (Parker & Hawken
in preparation). Initially, we chose the Gabor function to provide a smooth fit to
the spatial contrast sgensitivity functions of cortical neurons because it had been
used successfully to describe the spatial frequency tuning functions of neurons in
the cat's visual cortex (Marcelja 1980; Kulikowski & Bishop 1981; Kulikowski et al.
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1982) while also being the basis for some models of visual processing (Sakitt &
Barlow 1982; Watson .1983; Daugman 1984). However the Gabor model produced generally
inaccurate estimates of the shape of the sensitivity function, most notably the
height and location of the peak of the fitted function usually differ from those of
the data. We also tried functions based around the second differential of a
Gaussian, which have been used extensively in computer vision programs that find
edges in images (Marr & Hildreth 1980). The imperfections of these two models led us
to the quantitative formulation of a different model, based on the 1likely
organization of the physiological inputs to the visual cortex, which was
qualitatively outlined by Hubel and Wiesel (1962). Here we show that this scheme,
which is physiologically plausible but requires many parameters, gives much better
fits to the spatial contrast sensitivity functions than mathematically simpler
functions, derived from computational analyses of visual processing, such as the
Gabor or second differential of a Gaussian. Next we describe the new model, as well
as the others, in detail,

MODELS

For simple cells, which show linear spatial summation, the spatial contrast
sensitivity function will be the amplitude portion of a Fourier representation of the
receptive field profile. The shapes of the spatial frequency tuning function and the
spatial weighting function are thus directly related (Movshon et al. 1978a; Andrews
& Pollen 1979; Dean & Tolhurst 1983), although phase information is required for a
complete representation (e.g. Enroth-Cugell et al, 1983). In fact any
well-specified model of the receptive fileld profile must make some prediction of the
characteristic shape of the spatial contrast sensitivity function. Even for
non-linear complex cells, at least in the cat, the inverse transform of the spatial
frequency tuning function relates quite accurately to the 'sub~unit' structure of the
overall receptive field determined by measurements of local summation within the
field (Movshon et al, 1978b) and may provide an accurate measure of the spatial
filtering of the receptive field, even though the output is highly non-linear.

In 1966 Enroth-Cugell and Robson showed that the spatial contrast sensitivity
function of X-cells in the cat's retina could be well described by the difference of
two Gaussian weighting functions, a model that was proposed 1initially by Rodieck
(1965, This approach, relating the space and spatial frequency domains, has been
widely used in quantitative analyses of visual processing, The difference of
Gaussians function, as usually applied to retinal ganglion cells and lateral
geniculate neurones, is a rotationally symmetrical function with a single spatial
variable, the distance r from the receptive field centre, although deviations from
rotational symmetry have been noted (Levick & Thibos 1980: Dawis et al. 1984; Soodak
1986).

Many cortical neurons have receptive fields that are elongated 1in the central
excitatory region (correlating with their selectivity for orientation), thus
forfeiting the condition of rotational symmetry., But in the direction orthogonal to
the elongated axis or preferred orientation, the receptive fields of simple cells
have spatially segregated sub-regions of opposite sign. This 18 the sub-structure
giving them their bandpass characteristics in spatial frequency. The individual
sub-units of complex cells may have similar properties (Movshon et al. 1978b;
Spitzer & Hochstein 1985a,b). Therefore by constraining the comparison of cella and
models to the dimension orthogonal to the preferred orientation, the bandpass nature
of the cell's receptive field can be investigated.
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Figure 1 1llustrates the general form of some hypothetical spatial weighting
functions, in the direction orthogonal to the preferred orientation, of receptive
fields with even symmetry (figure 1b), intermediate symmetry (figure lc) and odd
symmetry (figure 1d). These all have the same bandpass spatial contrast sensitivity
functions (figure la) in the frequency domain. All realistic models must allow the
receptive filelds of cells to attain the general shapes of either pure even symmetric,
) pure odd symmetric or somewhere between the two, as shown in figure 1 (Kulikowski &
Bishop 198}1). The rest of this section is devoted to describing, in detail, the
models that are evaluated in this paper,

Text figure 1 near here

Models based on difference of Gaussians (DOG) Ffunctions

The first model treats each sub-region of a simple cell's receptive field as 1f
1t were derived from a single lateral geniculate neuron with a difference of
Gaussians (DOG) profile for its receptive field (Rodieck 1965: Enroth-Cugell & Robson
1966; Derrington & Lennie 1984). Consider, for example, a hypothetical simple cell
receptive field with a discrete central “on" sub-region and two flanking “off"
sub-regions, equally spaced either side of the central region. Such a conventional
"hand-plotted” receptive field is shown in figure 2a.

Text figure 2 near here

r The underlying sensitivity profile of the "on” region in the hand-plot is itself

a DOG (the weighting function of an on-centre LGN cell giving excitatory input to
this simple cell), whose centre component responds to an increment in brightness and
whose surround component is of opposite sign. The flanking "off" sub-regions of the
hand-plot are also each a DOG, but of opposite configuration to that comprising the
"on” sub-region (e.g. the weighting functions of off-centre LGN cells). The peaks
of the Gaussians forming the flanking “off"” sub-regions are spatially separated from
ones forming the central ‘“on" sub-region., The second row in figure 2a gives the
spatial profile of each of the separate Gaussians, which make up the receptive fleld
shown in the third vow of figure 2a, An alternative form of this model may have just
two sub-regions, corresponding to an odd symmetric receptive field, as illustrated in
figure 2b. A receptive field intermediate between pure even and pure odd symmetry,
with unbalanced flanking regions, can also be created with this model, by varying the
relative amplitudes of the flanking DOGs.

; Each component Gaussian in this model must he specified by three parameters: the
b peak amplitude, spatial location of the peak amplitude and the space constant of the
Gaussian. 1t is mathematically convenient to place the origin of the spatial
co-ordinate system at the location of the peak of the central sub-region. This
sub-region can therefore be specified by 4 parameters: the sgpace constants of the
Gaussians (x and x_ ) and their amplitudes (k and k )., In

general, a flgiking subgtegion must be specified by ffve para%tters, four of which
are equivalent to those describing the centre subregion (xC s X, kc ,

ks ) and a fifth, which is the separation (S) of the pealk of2 thé2 flanking
sub-region from the peak of the centre sub-region. Thus nine parameters would be
sufficient to describe an odd~symmettric receptive field composed of two sub-regions

| as shown in figure 2b,

o N ... el NP -t
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Rather than adding a further set of 5 parameters to describe a receptive fleld
with 3 sub-regions as in figure 2a, we constrained the model so that both flanking
sub-regions had the same spatial properties. With this constraint, the introduction
of a symmetry parameter (g) allows a description of the full range of behaviour from
pure even symmetry to pure odd symmetry as illustrated in figure 1. When g 1is 0.0,
the model has only one flanking sub-region., When g is 0.5, the model depicts a
receptive fleld with two identical flanking sub-regions. When g is 0.25, there are
two flanking sub-regions with identical space constants, but the amplitude of one is
greater than the other in a ratio of 2:1.

For a purely bandpass spatial contrast sensitivity function, with no reponse at
all below a certain low spatial frequency, the sensiti{vity of the central sub-region
(ke - kg ) minus the sensitivity of the flanking sub-regions
(k -8 l) should be zero (i.e. the centre and the flanks of the receptive
f162d shddld be balanced). On the other hand, for a bandpass spatial contrast
sensitivity function with a significant lowpass component, (k_ - kg ) will
be greater than (k_ - kg ). Because most neurons show bangﬁass $patial
contrast sensitivit#® func!ions, without a large lowpass component, we imposed a final
constraint on this model such that the combined sensitivity of all sub-regions summed
to zero. This means that the receptive field should give zero response to changes in
the overall illumination level. This has the advantage of reducing the number of
free parameters in the model from ten to nine (see appendix: equation 1). For a cell
with a significant lowpass component in the spatial contrast sensitivity function,
the model obviously should not be constrained in this manner.

We have called this model, with nine parameters, d-DOG-s (the difference of the
difference of Gaussians with separation). Although the choice of parameters almost
certainly under-represents the actual one-dimensional organization of the receptive
field, even this large number of parameters makes the model complicated and difficult
to test. Fortunately, the d-DOG~s model can be well approximated by functions that
are subsets of this model and have a reduced number of parameters: ---

(1) The simple DOG model. 1In this case the cortical receptive field is modelled with
a single DOG function, specified by four parameters: the space constant (x_ ) and
amplitude (k_) of the centre Gaussian and the space constant (x_.) and amplitude

(k ) of the surround Gaussian, where the peaks of the rPntrP and surronund space
conqtants are spatially co-incident (sce appendix: equation 3). 1In this simplified
model, the flanking sub-regions of the receptive field are formed by the extremities
nf the surround Gaussian because of the difference in spatial extent of the centre
and surround components. This is the minimal version of the d-DNG-s model that
retains the spatial bandpass characteristic required to model cortical cells, It s
also easy to compare quantitatively with the Gahor model because they both have four
parameters (see figure 14). The DOG has been proposed previously as the basis of a
model of cortical neurons (Rose 1979). An example of the hand-plotted receptive
field, the component Gaussians and the resultant spatial weighting function of the
difference of two Gaussians is illustrated {n figure 3a. 1In the form used here, this
model 18 always of even symmetric form.

Text figure 3 near here

(11) The DOG-s model. 1In order to test the importance of the parameter (S) that
specifies the separation of the peaks of the centre and flanking sub-regions of the
receptive field, we stripped as many parameters as possible from the d-DOG-s model
whilst retaining the characteristic behaviour assoctated with the separati- n
parameter. This resulted in the DOG-s model, which is the even symmetric form of the

d-D0G-s model with only the centre components of the DOGs (xc . kc v Xeos
1 2
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k ) and the separation parameter (S) retained (see appendix: equation 2).
ngure 3b shows that this leaves 3 Gaussian mechanisms, where each sub-region of the
receptive field 1s served by a single Gaussian. The two Gaussians specifying the
flanking sub-regions were constrained to have the same space constants and
sensitivity parameters, This constraint is similar to that applied to the d-D0G-s
model. To the extent that the surrounds of LGN neurons are weak, particularly in the
parvocellular layers, the DOG-s model (which simply lacks the components due to these
LGN surrounds) retains the significant features of the general case.

This function reduces to the simple DOG when the separation parameter 1{s zero.
Indeed the DOG-s model can be considered as a rearranged version of the DOG model,
where the surround has been split into two Gaussians and the peaks of the two halves
have been relocated at distances +S and -S from the peak of the centre mechanism
(figure 3b). For this reason, the notation of the DOG model has been followed in
describing the DOG-s model and the parameters of the flanking regions are therefore
designated by k_ for sensitivity and x_ for the space constant. On the other
hand, 1in terms of the d-DOG-s model, these parameters associated with the flanking
sub-regions would be k  and x .

€2 €2

The sub-units of the DOG models can most easily be considered as derived from
individual geniculate cells with a centre/surround receptive field organization. In
order to preserve the relationship between the values of the space constants and
amplitudes of the centre and surround mechanisms of LGN neurons and those obtained
from the fitting of DOG models to the cortical data, bounds were 1imposed on the
parameters during the fitting procedure, Thus the peak contrast sensitivity and
space constant of the centre mechanism were constrained to be within the bounds of
values found for geniculate neurons (Kaplan & Shalpey 1982; Derrington & Lennie
1984). Most often the choice of parameter values to give the best-fitting function
did oot reach the bounding constraints because the selected values fell naturally in
the range found for geniculate cells. Of course, the imposition of constraints on a
parameter puts the constrained version of a model at a disadvantage with respect to
the unconstrained version. However, in the case of the DOG-based models, this
disadvantage {s outweighed by the fact that the parameter values can be given a
direct functional interpretation (see Discussion).

The Gabor Model
The Gabor functfon has heen proposed as a model for the receptive field profiles
of simple cells (Marcelja 1980; Kulikowski et al. 19R2; Daugman 1985; Field &
Tolhurst 1986), and for psychophysically-defined channels (Watson 1983; Daugman
1984) . If one wishes to represent an image i{n terms of space and spatial frequency,
the Gabor representation 1s optimal {in terms of compactness, minimizing the
uncertainty associated with localizing a signal simultaneously in space and spatial
frequency. This fact has been considered to be of potential significance for the
efficient processing of visual information (Marcelja 1980; Daugman 1984, 1985). The
function 18 the product of a sinusoid with a single Gaussian envelope (see appendix:
equation 4) and 1{s defined by four parameters: the space constant of the Gaussian
(x_) and its amplitude (k ), the frequency of the sinusoid (f ) and the phase
of  the sinusoid (p) with respect to the Gaussian. Spatial weighting profiles given
by this function, for two cells, are shown in figure 9a,b and can be seen to have
roughly the shape required for the hypothetical spatial weighting of a bandpass
filter shown in figure 1.
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The Laplaclan of a Gausslan (‘FG) was introduced by Marr & Hildreth (1980) as
a model of the concentrically organized receptive fields of retinal ganglion cells,
to support a representation of the image based on zero-crossings. We have cgnsidered
a one-dimensional version of this, the second differential of a Gaussian (D°G), as
a model of cortical cells. This function has two parameters, the space constant of
the Gaussian (Xc) and a scaling constant (k_) (see appendix: equation 5). Figure
10a,b illustrates two examples of the spatial weighting profile. A particular
constraint imposed by this function is that the low frequency portion of the
predicted spatial frequency tuning function is a straight line with a slope of two in
logarithmic co-ordinates. Marr & Hildreth (1980) pointed out that the Laplacian of a
Gaussian can be approximated by a circularly symmetric DOG function, provided that
the ratio of the surround space constaat to the centre space cgnstant is 1.6:1 or
smaller. Such a relationship would also clearly be true for the D°G model and the
DOG model discassed earlier. It is important to appreciate that the DOG function is
equivalent to DG only if this constraint applies. In the results presented here
applying this constraint would result in the mistaken conclusion that the DOG model
is a poor description of the spatial contrast sensitivity functions bhecause the ratio
of surround to centre space constants is seldom less than two.

We have also considered a model comprised of two n2G  functions of opposite
sign, spatially separated by 2x_, since this function has bheen given prominence as
a specific model for simple celfs in computational theories of vision (Marr &
Hildreth 1980:; Marr & Ullman 1981; Martr 1982). This model, however, produced gven
less satisfactory fits to the spatial contrast sensitivity functions than the DG
function, so the detailed results have not been included.

METHODS

Physiological experiments were performed on 8 adult 01d-World monkeys (7 Macaca
fascicularis and 1 Cercopithicus aethiops) weighing between 3.3 and 5.5 Kg.

Preparation

Animals were anaesthetized with t.m. Ketamine for venous cannulation and then
maintained on 1{1.v, steroid anaesthetic (Saffan) for the ensuing surgery. All
fncisions were infiltrated with long-lasting 1local anaesthetic (Marcain) and any
pressure points were treated with topical anaesthetic (Tronothane). For recording,
animals were anaesthetized with barbiturate (Sagatg}; f mg kg ), and paralysed
with pancuronium bromidg1 (ngulon; 0.2 mg kg '); then both the anaesgretic
(Sagatal; 1.2 - 3.0 mg kg hr ') and muscle relaxant (Pavulon; 0.2 mg kg
hr™ ') were continuYusly infused intravenously, 1n a solution of 10% glucose in 0.9%
NaCl at 5.6 ml hr ', to maintain anaesthesia and paralysis. The electrocardiogram
(e.k.g) and electroencephalogram (e.e.g) were monitored continuously and the
anaesthetic state was judged to be satisfactory 1f there was almost continuous

slow-wave e.e.g. activity and 1f mildly noxious stimuli produced no change in e.e.g
or heart rate. Supplementary anaesthetic doses were administered, {f necessary, to

maintain the anaesthetic state. Animals were artificially hyperventilated with room
air to which CO, was added to maintain end-expiratory CO, at 4.5 - 5.5%. Rectal
temperature was monitored continuously and maintained at 37.5 - 38 °C.

The pupils were dilated by topical application of atropine sulphate and
zero-power contact lenses were fitted to protect each cornea. The animal viewed the
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visual display through 3 mm artifical pupils and additional spherical correcting
lenses. The refractive state of each eye was initfally judged by direct
ophthalmoscopy and further checked at ({ntervals throughout the experiment by
determining the highest spatial frequency that evoked a response just greater than
the background firing of a neuron and adjusting the lenses if necessary.

Recording

Glass-coated tungsten micro-electrodes (Merrill & Ainsworth 1972) with 4-8 /ﬂtm
exposed tips were lowered to the cortical surface, through a small craniotomy and
durotomy, under visual control and the exposure was sealed with 2% agar in 0.9%
saline. The whole area was covered with a mixture of paraffin oil and vaseline to
prevent drying. Action potentials were amplified and the individual spikes of
well-isolated neurons selected by a level discriminator that triggered a standard TTL
pulse as output to a computer. Successive traces of the recording were superimposed
on a storage oscilloscope triggered by the level discriminator, to allow monitoring
of the waveform of the action potential and tc assess whether the recording was from
a single cell,

Visual stimuli

Receptive fields were plotted by hand with lines, bars or spots back-projected
on a tangent screen 171 cm from the animal. The projections of the foveae were
marked on the tangent screen by using an ophthalmoscope with a reversing prism
(Eldridge 1979); repeated determinations of the projection of the same retinal
position were always within 0.5 deg. and most often (.25 deg. or less. From the
hand plots of receptive fields we determined the eccentricity, an {nitial
classification of cell type (simple or complex), the ocular dominance (Hubel &
Wiesel, 1962) and some indication of the colour preference using broad-band Wratten
filters. The simple/complex categorization was further analysed, quantitatively,
using a test of 1linearity of spatial summation. For quantitative assessment of
responses to visual stimuli, gratings varying sinusoidally in luminance profile were
displayed on a cathode-ray Eube (Joyce Electronics), 30cm x 22cm with a white (P4)
phosphor (luminance: 280 cd m “), positioned 342 or 456 cm in front of the animal.
The bars of the grating could be restricted in height, to produce a strip of grating
flanked by uniform areas of the same mean luminance, so as to optimize the
stimulation conditions for cells with end-stopped receptive fields (Hubel & Wiesel
1965; Bishop et al. 1971; Gilbert 1977), for which elongated bars were relatively
ineffective.

Measurement of response properties

Spatial frequency response tuning.

The magnitude of the response to a range of spatial frequencies presented 1in
pseudo-random order at a contrast of 0.7 was measured for between 10 and 20
presentations of each stimulus sequence, congisting of at 1least 2 cycles of a
drifting grating. The orientation, drift rate and direction of motion were optimized
by listening to the responses before the tuning function was determined.

Orientation tuning.

The response of the unit was determined at a number of orientations for both
directions of drift, the steps 1in orientation varied between 2.5° for the most
sharply tuned cells and 20° for cells with little or no preference for orientation.
The spatial frequency of the grating used was that which gave the largest response
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during measurement of spatial frequency tuning and the contrast was always 0.7. Each
stimulus was presented between 5 and 20 times in pseudo-random order.

Spatial summation.

The response to stationary, contrast modulated gratings was determined at 12

phase angles, covering 360° (the dimension of one full cycle of the grating) in 30°
steps. Each phase was presented for 2 temporal cycles, the contrast being modulated
sinusoidally between zero and 0.7 at the optimal temporal frequency for the cell.
Each stimulus was presented 10-20 times with all phases selected in a pseudo-random
order. During the analysis of data after the experiment, we determined the spatial
frequency at the peak of the response function. Because there are some cortical
cells that appear to be predominantly 1linear at 1low spatial frequencies but
non-linear at high spatial frequencies (Movshon et al. 1978 a,b), only those cells
for which the spatial frequency of the test grating on the summation test was 0.7
times the peak spatial frequency or greater are included here.

Contrast sensitivity

To determine the contrast sensitivity of neurons, we used a stalrcase method
similar to that described by Derrington and Lennie (1982). For gratings of various
spatial frequencies covering the range over which the cell responded (determined from
the spatial frequency response tuning) we measured the contrast sensitivity of the
cell using this staircase method. 1Initially, the mean and the variance of the
background discharge of the cell were determined, with the receptive field of the
cell centred on the display with no grating present. The mean was calculated over 16
periods, each period equal in duration to the period for which the grating stimulus
would be presented. Then a drifting grating was presented (without change 1in mean
luminance) and the spikes elicited during the presentation were accumulated,
discounting the duration correspondirg to the first half cycle of the grating to
avoid temporal transients. Following this there was a pause, equal to the
presentation time of the grating, then a further period during which another single
measurement of the background firing was made, before the next grating was displayed.
An on-line running estimate of the mean and variance of the background was determined
using the values collected in the 16 most recent periods of measurement. Following
the presentation of each stimulus, the number of spikes occurring during that
particular trial was compared with a statistical criterion (two standard deviations
greater than the background mean for these experiments). If the evoked response
exceeded the criterion, the contrast was reduced on the next trial at that particular
spatial frequency; if not, the contrast was increased. The staircase was run at each
spatial frequency until the computer had accumulated at least 8 reversals (in later
experiments, 24 reversals) at a step size of 0.0125 log unit, or until there was no
response greater than the criterion at the highest possible contrast (0.7). The
order of presentation of spatial frequency was chosen randomly by the computer.
Using this method, we could obtain a complete spatial contrast sensitivity function
for each cell at its optimal orientation. This took between 15 and 45 minutes,
depending on the number of spatial frequencies, the rate of convergence of the
staircase and the other stfmulus parameters.

For all measures, other than the staircase determination of contrast
sensitivity, the computer accumulated on-line peri-stimulus time histograms

(p.s,t.h's) for each stimulus condition and for a blank period. In addition the
total number of spikes elicited on each stimulus presentation was stored along with

an estimate of the magnitude of the fundamental component of the response, at the
temporal frequency of the drifting grating (Derrington & Lennie 1982).
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Histology

The position of the tip of the electrode was marked at regular intervals by
making small electrolytic lesions (2-3 for 2-3 s, tip negative). At the end of
the experiment the animal was killed with® an overdose of anaesthetic. The methods
used in perfusion, histological reconstruction of penetrations and assignment of
laminar position for each cell has been described previously (Hawken & Parker 1984).

RESULTS

Cell classification

Some cells could be clearly classified as simple: the hand plot of their
receptive fields revealed spatially segregated "on” and "off"” sub-regions that were
mutually opponent; on the test of spatial summation, they produced modulated
responses 1in phase with the temporal modulation of the stimulus at some spatial
phases, while showing clear null positions (no response despite modulation of the
grating) at /2 radians from the phase that gave the biggest response; with drifting
sinewave gratings, the responses at all spatial frequencies were strongly modulated
at the temporal frequency of the stimulus.

Other cells showed all the characteristics of classical complex cells: they gave
"on/off" responses at all positions in their receptive fields to a flashing bar; they
produced a clear second harmonic response at all spatial phases on the test of
linearity of spatial summation; with drifting gratings, they showed little or no
response modulation at the temporal frequency of the stimulus but responded with an
increase in the mean discharge. However, there were cells that did not fall clearly
into either of these categories. For example, some cells which in most respects
appeared simple, gave an indication of a second harmonic response at the expected
null position, especially for spatial frequencies on the high frequency limb of the
spatial frequency tuning function, But these cells showed modulated responses to
drifting grating stimuli. Although some of the anomalies could be attributed to slow
drifts of the eyes or pulsations due to cardiovascular or respiratory movements,
experience in the cat, where the receptive fields are larger and these mechanical
problems not so severe, suggests that there are cells that genuinely show a mixture
of linear and non-linear behaviour at manv spatial frequencies.

To obtain a quantitative indication of the degree of lfnearity of spatial
summation, the response of each cell was determined, for a set of spatial phases
covering covering the full 29 radians of phase angle in steps of W /6 radians. The
details of the test are presented in the METHODS section. For retinal ganglion cells
and for lateral geniculate neurons, the ratio of the mean of the second harmonic
regponses (f2) to the peak amplitude of the fundamental response (fl1) has been used
as an index of linearity of spatial summmation (Hochstein & Shapley 1976; Derrington
& Lennie 1984),

Text figure 4 near here

Figure 4 shows that the distribution of £2/f1 ratios is weakly bimodal for the
total sample of cortical cells (cf. Dean & Tolhurst 1983), DeValois et al (1982)
used the ratio of the fundamental to DC responge (fl1/f0) for drifting gratings to
classify cells in the macaque striate cortex. They found a more clearly bimodal
distribution of the f1/f0 ratio and distinguished their population on the basis of
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this test. In this paper, simple cells have been classified as those with a f2/fl
ratio less than one for stationary modulated gratings, which 1indicates that the
fundamental component dominates over the second harmonic. Complex cells have been
classified as those with f2/fl ratios of greater than one, which indicates a dominant
non-linear component. Based on the £2/f] index, we have 77 simple and 61 complex
cells. These percentages of simple and complex cells based on the f2/fl index are
very similar to those found by DeValois et al. (1982), which is to be expected since
both the tests define simple cells as those having a prominent fl1 component,

Measurements g£ contrast sensitivity

For each cell, the measurement of contrast sensitivity was obtained at spatial
frequencies of about one third of an octave apart, using the staircase procedure
described in the METHODS. In order to determine the correct transformation of the
data to wuse {In fitting the curves to the data by the method of least squares, the
relationship between the mean and variance of the contrast sensitivity measurements
was investigated. In three of the eight animals, we collected 24 reversals (rather
than the normal 8) on the staircase measure of contrast sensitivity. This gives 12
independent measures of threshold at each spatial frequency and from these the
variance of the mean contrast threshold was estimated (Wetherill & Levitt 1965).
There 1s a clear positive relationshiplbggween the arithmetic mean and variance of
linear contrast values (variance = k*mean *°~; gee figure 5). Because the exponent
of the power function relating the mean and variance was almost two, a logarithmic
tranformation of the contrast sensitivity values was taken to make the data
homoscedastic. For models specified in equations 1,2,3 and 4 a general purpose
minimjzation routine was used (STEPIT: Chandler, J.P.) to find the best-fitting
functions, whereas a logarithmic transformation makes equation 5 linear, so for this
model the best fit was obtained by direct solution of the normal equation.

Text figure 5 near here

Evaluation gi models

In each figure that shows contrast sensitivity as a function of spatial
frequency (e.g. figure 6) the mean contrast sensitivity at each spatial frequency is
shown by the open circles (t one SD), The contrast sensitivity measurements obtained
for two simple cells are shown in the left panels of figures 6-10, with the smooth
curves being the best-fitting versions of the amplitude spectra of the models:
d—DOGES (figure 6a,b), DOG-s (figure 7a,b), DOG (figure 8a,b), Gabor (figures 9a,b)
and D°G (figure 10a,b). The two examples were chosen because they 1) had
relatively high sensitivities (allowing the wmodels to be discriminated from one
another), 2) had intermediate bandwidths for our sample of cells, 3) came from
different laminae in the region of the cortex devoted to foveal vision and 4) showed
relatively low variance over the data points (again allowing the models to be most
readily discriminated). Figure 13 shows a wider variety of sensitivity functions,
including some of the most extreme forms. The two examples are shown in each of the

five figures (6-10). The right panel shows the spatial weighting function associated
with the sensitivity function shown in the corresponding left panel.
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Text figures 6,7 and 8 near here

(log(model) - log(data))

In order to provide an estimate of the deviation between the measured values of
contrast sensitivity and the best fitting function from each model, the above
quantity was divided by the number of data points to give the mean error per data
peint (Linsenmeier et al. 1982). The mean error allows a comparison between cells
with different numbers of values making up the spatial contrast sensitivity function.
For the cell whose sensitivity function is illustrated in the top of figures 6-10,
the mean error for the best fitting version of each model is given in table la, while
the error associated with each model for the cell illustrated in the lower half of
figures 6-10 is given in table lb.

For each model the g{rameters were chosen so tEat they minimized

Text figures 9 and 10 and table 1l near here

Both on visual inspection of the fits to the spatial contrast sensitivity
functions and in terms of the mean error per data point, models based on the
difference of Gaussians provide a much more accurate description of the spatial
tuning than do the Gabor or the second differential of a Gaussian. An F-test for
lack of fit of a model, using the standard procedures for linear regression, can be
obtained by comparing the estimates of variance measured during the experiment with
the residual sum squares deviation of the fitted function from the data.
Unfortunately, this procedure is nly exactly valid for models that can be made
linear in their parameters, such as D°G. It is not well established that the other
four models can be treated in this way, because they are nonlinear in their
parameters. Nonetheless, although the exact values of F-ratios should be interpreted
conservatively, they do provide a useful measure of comparative performance (Draper
and Smith 1966, page 282, page 299). With the number of degrees of freedom for the
data in table 1, even F-ratios as small as 6 would be associated with a significance
level of &£ 0.001. All the firm conclusions we wish to draw concerning these models
are supported by F-ratios of 60 or greater.

The results of the F-ratio test are clear for ch, which is linear in {ts
parameters: both cells in figure 10 show significant lack of fit (see table 1). The
values of the F-ratio for the Gabor model (figure 9) are also very large. Thus, both
these models can be confidently rejected.

Two aspects of the inability of the Gabor and ch functions to match the shape
demanded by the data points in figures 9 and 10 are particularly striking. First,
the low frequency 1limb of the tuning curve fis poorly described. Second, a
consequence of the attempt by the fitting procedure to accommodate the low frequency
limb is that the peak spatial frequency of the model functions is far removed from
the peak defined by the data (half to one octave too high). The attempt to fit the
low frequency limb of the tuning curve also explains why the fitting procedure
arrived at a purely odd symmetric version of the Gabor function. Any purely odd
symmetric receptive field necessarily has zero response at zero spatial frequency.
Hence selection of the odd-symmetric version of the model by the fitting procedure
allows the steepest possible low frequency roll-off in the amplitude spectrum, but
even this choice is inadequate.

The DOG-8 and DOG models differ only in the inclusion of a separation parameter
(S) for the DOG-s model. This parameter is an additional complication but has some
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particularly attractive interpretations in terms of receptive field organization and
its possible anatomical substrate (see Discussion), so it is important to assess
quantitatively the case for its inclusion. A partial F-test (Draper and Smith 1966,
pages 67-72) can be applied to examine whether a particular parameter significantly
improves the fit of a model. The F-ratio is again very large: F(1,134) = 74.8 for
? the cell in the upper half of figures 6-10, F(1,124) = 74.1 for the cell in the lower

half of figures 6-10. These results argue strongly for the inclusion of the
separation parameter.

Spatial weighting functions

Each model and its parameters have associated with them a characteristic spatial
weighting function. Since the spatial contrast sensitivity measurements that define
the amplitude spectra place quite strong constraints on the shape of the best-fitting
function and the parameter values associated with the function, it is informative to
compare the shapes of the spatial weighting functions derived from each of the
models. The right hand columns in figures 6-~10 show the associated spatial weighting
functions for each of the amplitude spectra in the left-hand column. Although these
weighting functions were not derived from independent experimental measures, the
difference in their shapes illustrates how the choice of a DOG-based model as opposed
to a Gabor function or second differential of a Gaussian would result in different
predictions for the spatial organization of the receptive field.

A second Important feature of the spatial weighting functions is that they show
that some parameters of the receptive field are robustly defined. The space
constants of the centre Gaussian mechanisms for the three DOG-based models applied to
the contrast sensitivity function of the cell, shown in the upper half of figures
6-8, are almost identical (2.22, 2.21, 2.38 min arc for d-DOG-s, DOG-s and DOG
respectively), while a similar close correspondence holds for the cell in the lower
half of each of these figures (2.23, 2.19, 2.45 min arc). In the case of DOG-s,
which we have argued is a very reasonable approximation to d-DOG-s, those parameters
that are common to both models have values that are within 20%, for the two cells in
figures 6 and 7. The DOG-based models also allow realistic comparisons to be made
between cells in the striate cortex and those in the lateral geniculate nucleus. In
general, the sensitivities and space constants of the centre mechanisms of cortical
cells derived from the DOG-based models fall very nicely in the range of values found
for the centre mechanisms of neurons in the LGN (Derrington & Lennie 1984).

Comparison betwern models for the entire sample of neurons

Figure 11 shows the mean error per data point plotted against the variance per
data point, also calculated on logarithmically transformed contrast values. Each
panel shows the analysis of one of the models, with simple cells indicated by open
symbols and complex <cells by filled symbols. The diagonal line on each graph is
where mean error per data point is equal to variance per data point. For points
above this 1line, error is greater than the variance. The points for the d-DOG-s
model are distributed roughly evenly around the diagonal line (figure 1la), while the
remaining graphs (figure l1b-e) have been arranged in order of increasingly poor fits
of the models to the data points. Data from simple cells and complex cells are
simfilarly distributed throughout each plot. Hence, neither the variance of contrast
sensitivity measurements, nor the error associated with the fit of any of the
functions, would help to distinguish these two groups of cells. The order of quality
of fit, from best to worst, indicated by figure 11 b-e is DOG-s, DOG, Gabor and
DZgG. Thus, for the whole sample of cells studied, the DOG-based models (figure
11a-c) provide a better description of spatial contrast sensitivity functions than
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the Gabor function (figure 11d) or the second differential of a Gaussian (figure
lle).

Although there are a few relatively large errors, greater than 0.02, for the
sensitivity data fitted by the d-DOG-s model, these are almost invariably due to
single individual data points that are far removed from the fitted curve. Whether
these are truly characteristic of the particular spatial contrast sensitivity
function or whether they represent statistical outliers could be decided only by
making repeated measurements on the same cell.

Text figure 11 near here

The distribution of error with respect to variance gives a good overall picture
of the abilities of each model to describe the spatial contrast sensitivity function,
but it does not show whether there is an exclusive subset of cells for which a single
model provides the optimal description, even though that model might be inappropriate
for the majority of cells, To examine whether there was any clustering of neurons on
the basis of the quality of fit, the errors associated with the application of two
models were compared. Figure lzzshows the results of this comparison for each cell
for the DOG-s, DOG, Gabor and DG (figure 12 a,b,c,d respectively) plotted against
the d-DOG-s model. It can be seen that the d-DOG-s model fits the contrast
sensitivity measurements of all cells at least as well as or better than any of the
other models.

Text figure 12 near here

Further examples of spatial contrast sensitivity functions that are well
described by the d-DOG-s model are shown in the upper six panels of figure 13. These
i1lustrate the wide variety of shapes found for cortical cells and the flexibility of
the d-DOG-s model in aeccounting for them. The values of the parameters for the
best-fitting version of the d-DOG-s model are shown i{n table 2. The lowest two
panels show examples of cells for which the simple DOG model (figure 13g) or indeed a
single Gaussian (figure 13h) are adequate to describe the data. The sensitivity
function shown 1in figure 13b 1is one of the most narrowly tuned that we have
encountered; as can be seen, its sensitivity function is well described by the
d-DOG-s model and the associated spatial weighting function would have multiple
antagonistic zones (Kulikowski & Bishop 1981; Kulikowski et al. 1982),

Text figure 13 & table 2 near here

It is obviously to be expected that the d-DOG-s model will be as good as or
better than the DOG-8 and DOG functions, because elimination of some of the
parameters from the d-DOG~s model produces the equations of DOG-s and DOG ({i.e.
DOG-8 and DOG are straightforward reductions of d~DOG-s). Comparisons between
d-DOG-8 and the Gabor model (figure 12c) and d-DOG-s and the second differential Qf a
Gaussian (figure 12d), indicates that there are no cells for which the Gabor or D“G
models provide a better description of the data than d-DOG-s. Of course, it should
be remembered that tEe number of free parameters in the d-DOG-s model is greater than
both the Gabor and D"G. However, both the DOG function and the Gabor function, as
implemented, have four free parameters and therefore a simple comparison between them
is justified.
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Text figure 14 near here

In figure 14d we have explicitly compared these two models. The mean error

associated with the best-fitting Gabor is plotted on the abscissa while the error for
the DOG is shown on the ordinate., Cells whose sensitivity functions were equally
well fitted by either the Gabor or the DOG would lie on the solid diagonal. Points
below this line signify that the DOG produces a better fit than the Gabor, while
those above the 1line favour the Gabor fit., While the DOG model provides a better
description of the majority of cells, there are some for which the Gabor function has
a lower error than the simple DOG. For the neuron illustrated in figure 14, the
Gabor function (figure l4a) fits the measured contrast sensitivity values very well,
having mean error of 0.0028. For comparison, the DOG fit (shown in figure 14b) has a
mean error of 0.0131, about five times greater than that of the Gabor. This 1s, in
fact, the largest difference in favour of the Gabor of all the cells that we have
tested. However, the DOG-s model (figure l4c) has a slightly lower error than the
Gabor. Again, the addition of the separation parameter to the basic DOG model
considerably improves the fit.

DISCUSSION

It is clear that, of the models considered in this paper, the d-DOG-s model can
account most accurately for the spatial contrast sensitivity functions of cortical
neurons. Therefore, in spite of the {its many parameters, the d-DOG-s can be
considered as preferable for the determination of characteristics of tuning
functions, such as bandwidth, peak spatial frequency, peak sensitivity and acuity,
that are often quoted in comparison with those derived from psychophysical studies or
in computational theories of early visual processing. For many cells, the reduced
DOG-based models provide fits that are indistinguishable from the d-DOG-s model
(figure 12a,b) and therefore provide simpler yet adequate descriptions of the spatial
tuning. For a few cells, the Gabor function gives excellent fits to their spatial
contrast sensitivity functions (e.g. figure l4a), but over Ehe whole sample of cells
it is poorer than the DOG-based models (figures 12¢,14d). D“G is just poor overall
(figures lle,12d).

It is probably not surprising, that the few explicit models of cortical
receptive field structure previously considered, based on the the Gabor (Marcelja
1980), the DOG (Rose 1979) or on a restricted version of the d-DOG-s (Heggelund 1981;
Soodak 1986) have all been deemed to be adequate, because they do, qualitatively,
attain the general shape of a bandpass device. It is only when quantitative measures
from a large sample of cortical neurons are examined comparatively that the
differences between the various models become evident.

Receptive field organization

Comparison of DOG-based models

Although the d-DOG-s and DOG-s models give better overall fits to the spatial
contrast sensitivity functions than the simple DOG, their improved performance is at
the expense of the introduction of extra free parameters, most significantly the

separation parameter (S) that distinguishes the DOG-s and DOG models. However, it is
possible to give an appealing functional interpretation of the separation parameter

in terms of receptive field organization. This is {llustrated in figure 15, which
shows the component Gaussians of the DOG (figure 15a) and the DOG-s (figure 15¢),
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plotted with contrast sensitivity and spatial frequency on linear axes (dashed lines,
centre mechanism; dotted 1lines, surround mechanism). The resultant combined
functions, shown as solid lines in figure 15 a,c are replotted in figure 15 b,d, but
in the more familiar log-log co-ordinates. The DOG function, with spatially
co-incident peaks of the centre and surround mechanisms, obviously must have an
individual Gaussian for the centre mechanism with a sensitivity that is greater than
the peak of the resultant DOG. The sensitivity of the centre mechanism of the DOG is
represented by the dashed line in figure 15b. In contrast, the DOG-s function, by
virtue of the separation parameter, can attain the same peak sengitivity in the
combined curve using Gaussians whose peaks are lower than their combination.

Text figure 15 near here

The centre Gaussian of the DOG-~s function (figure 15d, dashed line) has a peak
amplitude of 29, while the DOG-s function has a peak sensitivity of 43. This is
because the effect of the surround Gaussian adds to that of the centre Gaussian at
some spatial frequencies, owing to the difference in spatial phase introduced by the
separation parameter (figure 15c,d). The two flanking regions forming the surround
in the DOG-s model remain 1in even symmetric, cosine phase just like the single
Gaussian mechanism forming the surround in the DOG model, Thus the Fourier transform
of the DOG-s function has real parts only, which are illustrated in figure 15 ¢ & d.
This fundamental effect of the separation factor would help the visual system, wusing
the DOG-s configuration, to create spatial contrast sensitivity functions with
relatively narrow bandwidths, but without the attendant loss of sensitivity
associated with narrow-band DOG functions (Marr & Hildreth 1980). These comments
apply with even more force to the d-DOG-s model. Moreover, the addition of the
spatial separation between centre and surround mechanisms, accounts for much of the
improvement in the ability of the d-DOG-s and DOG-s models to fit the spatial
contrast sensitivity functions, when compared with the DOG function. This is
especially so, when the sensitivities of the individual Gaussians mechanisms have
been constrained, as in the implementation of all three DOG-based models described in
this paper. As will be seen later in the Discussion, the upper 1limit on the
amplitude of the individual Gaussians is reasonable when consideration is given to
the properties of lateral geniculate cells that must, directly or indirectly, provide
input to the cortical cells,

As shown 1in figure 1, for the hypothetical spatial contrast semnsitivity
function, the inverse transform of the amplitude portion of the function can give
spatial weighting profiles ranging from pure even symmetric to odd symmetric.
Therefore it should be stressed that the best-{ tting d-DOG-s functions do not
uniquely specify the phase of the Fourlier spectrum and therefore the relative
strengths of the flanking regions. This point is exemplified in figure 16, which
shows the versions of the d-DOG-s model that provide the best fit to the contrast
gsensitivity data of the cell shown in figures 6-10a, where the phase parameter (g)
has been constrained to give a pure even symmetric (figure 16a), intermediate (figure
16b) or almost purely odd symmetric (figure 16c) profile, It can be seen, that
although the relative amplitude and spatial organization of the surround component in
the spatial weighting functions changes, the resultant amplitude spectra are almost
identical.
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Text figure 16 near here

Sub-units of cortical cell receptive field

A major advantage of the DOG-based models is that they can be 1interpreted in
terms of the organization of the components of the receptive field. As mentioned in
the section describing the DOG-based models, in order to maintain the parameters of
these models within reasonable bounds, quite strong constraints were imposed during
the curve-fitting procedures. For example, the maximum sensitivity of the individual
Gaussians was constrained to be no greater than 1.5 times the greatest sensitivity
recorded for each cell. Although the exact value of this limit is somewhat arbitary,
the principle of setting a limit is very important. Otherwise, it would be possible
for the DOG model to give a deceptively plausible description of a narrow-band
spatial contrast sensitivity function, such as that in figure 13b. If the fitting
procedure were allowed to hypothesize very high sensitivities (%250) for each
Gaussian mechanism, the difference of the two would indeed be a high sensitivity,
relatively narrow-band function, but the existence of single Gaussian mechanisms of
very high sensitivity as real single entities in the nervous system is
physiologically implausible and certainly not experimentally verified (Kaplan &
Shapley 1982; Derrington & Lennie 1984).

In general, with the well-fitting DOG-s and d-DOG-s models, the parameters
selected by the fitting procedure were well away from the bounds imposed by the
constraints. In fact, the parameters selected by these models are highly compatible
with the properties of lateral geniculate inputs (Kaplan & Shapley 1982; Derrington &
Lennie 1984). For example, the centre mechanism space constants are in the range of
0.5 to 8.0 minutes of arc, for cells with receptive field centres within one degree
of the fovea, and this range shifts systematically with eccentricity. Even for the
small range of eccentricities studied in this work, the shift is evident and is
similar to that seen for geniculate cells. Although these measures are derived from
the application of a model, it should be stressed that they would be difficult to
extract by other means. For example, the models separate out the differences in the
sensitivities of the 1individual mechanisms from the differences in their spatial
gizes. Further, use of the model gives some insight into how mechanisms could be
combined to produce the overall receptive field profile, For example, figure 15
illustrates how inputs derived from parvocellular LGN cells, even though they
generally have peak sensitivities lower than 25, could be used to build cortical cell
receptive fields with a sensitivity higher than 25 at some spatial frequencies.
Another mechanism for enhancing sensitivity in the cortex could be summation along
the axis of preferred orientation. Finally, it 1is encouraging that some of the
parameters of the receptive field are robustly defined even when results from
different models are compared (see figures 6,7 and 8).

One of the remarkable features of our data is that no distinction can be drawn
between simple and complex cells on the basis of the models describing their spatial
contrast sensitivity functions. However, in terms of line weighting functions, there
is a marked difference between the two cell classes in the cat cortex (Movshon et al.
1978a,b). There are several 1lines of evidence that suggest that complex cell
receptive filelds are made up of the non~linear combination of sub-units, which
themselves show linear spatial summation (Movshon et al. 1978b; Spitzer & Hochstein
1985a,b). If these linearly summating sub-units have characteristics rather like
simple cells 1in nearby areas of cortex, then it would be expected that no major

differences between simple and complex cells would be found, in terms of their
spatial contrast sensitivity functions., The similarity of simple cells and the
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linearly summating sub-units of complex cells argues that they may have common
sources of input from the LGN.

Anatomical considerations

A consequence of a relatively simple yet accurate model of the spatial weighting
of striate neurons is that it allows some of the parameters to be tested against the
anatomical distribution of inputs to cells. An intriguing feature suggested by the
d-D0G-s and DOG-s models 1is that the peaks of some of the surrounds (or flanking
regions) of receptive fields are separated from the centre mechanism by about 10
minutes of arc for cells with receptive fields within a degree of the foveal
representation. A value of 10 minutes of arc with a magnification factor of
15mm/degree, which is perhaps a conservative estimate (Dow et al. 1981), indicates
possible interactions, based on strict topographic order, over distances of 2-3mm
across the cortex. Thus, there could well be a correlation between the orderly
distribution of patch-like 1lattices seen 1in the anatomical arrangement of
intra-cortical connections (Rockland et al. 1982) and the structure of the receptive
fields. This would eliminate the need for any 1ill-defined concepts such as long
range inhibitory influences or global 'pools' of non-specific inhibition in which
cortical cells supposedly sit. Rather, the long-range connections can be seen as
providing the anatomical basis for the straightforward, classically-defined and well
documented features of receptive field organization.

Implications for visual processing

Cortical neurons display a wide variety of selectivities other than those
defined in the models studied here. Thus the overall picture of cortical cell
receptive fields provided by the models 1is 1incomplete, in that selectivity for
direction and speed of motion, orientation, chromaticity or disparity is currently
not included in the models. Despite the restricted nature of the models, some
general conclusions about visual mechanisms can be made.

One consequence of using a poorly fitting model to process our results would be
that the extraction of parameters of the function, such as bandwidth and peak
frequency, would, in many cases, represent the data inaccurately. This wmight have
serious consequences for the pergormance of a theoretical model of subsequent visual
function that used the Gabor or DG for preliminary filtering. Furthermore, since
a number of theoretical models of early visual processing underpin their use of the
Gabor function by appealing to its property of minimizing conjoint uncertainty 1in
space and spatial frequency, the faflure of the Gabor function to match actual data
from cortical cells suggests that this property is of limited significance for visual
processing in the primate striate cortex. Whether the receptive fields of neurons in
the extra-striate visual areas adhere to the Gabor shape or whether the
characteristics of some cells in the striate cortex are close enough in shape to the
Gabor function for its optimizing property to be adequately retained are matters for
further experimental {nvestigation. Rather similar points apply to D°G and
modifications of it (Marr & Hildreth 1980; Marr & Ullman 198i).

Our preferred models for cortical cell receptive field profiles are

obviously not 1{n accord with gny previously proposed principles of computational
vision (unlike, say, the use of11 G functions to find zero crossings). The first
stage 1in the application of such principles to a biological visual system must be an
accurate model of the elements of the system. It is therefore worth considering what
are t?e most marked differences between the shapes of filters, such as d-DOG-s, Gabor
and D°G. 1In the spatial frequency domain, two features are apparent. First,
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cortical cells tend to have spatial contrast sensitivity functions that are roughly

symmetric wheB plotted on a logarithmic frequency axis rather than a linear one.
Gabor and D°G functions are closer to symmetry on a linear frequency axis. A
related feature is that the low-frequency cut of cortical cells is much steeper than
either Gabor or D°G would predict. Nonetheless, the bandwidths of cortical cells
are not very r. rrow (DeValois et al. 1982). So appealing to a more narrowly tuned
function, such as a higher order differential would not produce a significant
improvement.

In the space domain, these features 1imply that the spatial extent of the
receptive field, particularly {ts "i{nhibitory” flanking region, is greater than would
be predicted from a Gabor or D“G function. Prior to Marr and Hildreth's work on
edge detection, the majority of edge detectors in computer vision systems worked on
quite small regions of support (typically 3-6 pixels in linear extent). Marr and
Hildreth (1980) introduced filters with considerably larger regions of support
(approximately 30 pixels in linear extent). Adopting the d-DOG~s model suggests that
the size should be bigger still for efficient edge detection and localization.
Moreover, even when receptive fields have quite small centre mechanisms, they may
have quite large "inhibitory” flanking regions.

The suitability of cortical receptive fields for edge detection and localization
is ewphasised by observations we have presented elsewhere. Localization thresholds
for simple cells are in the hyperacuity range, both when measured directly or derived
from calculations based on the DOG model of the receptive field (Parker & Hawken
1985), indicating that performance of individual neurons {s well within the range
found for human psychophysical observers. This 1s a case where the experimental
determination of a spatial contrast sensitivity function followed by the application
of a straightforward model of the receptive field results in testable predictions of
the cell's behaviour,

Finally, it is obvious that the DOG-based models discussed here are similar, 1in
many ways, to the original models of simple cells proposed by Hubel & Wiesel (1962).
It has been suggested (DeValois et al. 1985) that the {investigation of cortical
cells with grating stimuli has revealed additional forms of receptive field
organization that invalidate the Hubel & Wiesel model. It 1s {ronic that the
quantitative analysis presented here favours simple modifications of Hubel & Wiesel's
model rather than schemes, such as the Gabor filters, that have been specifically
inspired by the frequency domain approach to visual processing.
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APPENDIX
This appendix documents the equations used to describe the models 22ad gives
some guidance on the interpretation of the parameters associated with the
models. The Fourier transform of these models is, in general, complex and the
amplitude portion of the Fourier transform was used to fit the measured
spatial contrast sensitivity function. However, because the line-weighting
- function indicates the structure of the models much more clearly, the equation

specifying each model is the line-weighting function.

Models based on difference of Gaussian functions

These models consist of the algebraic sum of a number of Gaussian terms,
each of which is specified by & scaling factor (k. , kg etc.) and a space

constant (xc, Xg» etc).

Units

X, X b4 S, etc. are measured in degrees of visual angle;

c* 7s?
f is measured in cycles/degree;

kc, ks etc. are measured in the units: sensitivity de;z.-1 (see figures 6-10
right hand graphs).

The terms kc 11 X. etc., which appear in the Fourier transform, can be
usefully considered as a single constant with units corresponding to the
conventional measure of contrast sensitivity fer grating stimuli. For
convenience, in the figure legends 6-10 the sensitivity constants are
expressed as a single value (e.g. A,B) in this way. The equivalences

between these two notations are indicated with the equations stating the

line-weighting function for each model.
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Difference of difference of Gaussians with separation (d-DC7-S5)

(1) ke exp (= (x/x, )2) - kg exp (- (x/xg )2) -
1 1 1 1

2y . ] 2,73 -
g . {kcz exp (- (o) xe DD = by exp (- (OxrS)/xg ) X

1 -g . ikcz exp (- ((x-S)/xcz)z) < kg e (- ((x-s>/x52)2> }

where the constraint

is applied and the equivalences to Figure Legend 6 are

Ap = kclﬁ xcl; Ay = kslﬁ xsl; Az = kc:2 v Xcz; Ay = kszln' xsz;

Difference of Gaussians with separation (DOG-S)

(2) k. exp (- (x/xc):) - 0.5 kg exp (- ((x+S)fxs)2) -
2.
0.5 kg exp (= ((x=8)/x )"

where the equivalences to Figure Legend 7 are

Bl = kCﬁ XC; Bz = ksﬁ Xg

Difference of Gaussians (DOG)

(3) k. exp (- (x/xc)z) - kg exp (- (x/xs)z)

where the equivalences to Figure Legend 8 are

C, = k41T x5 C, -ksﬁxs

Fourier transforms

The Fourier transform of the sum of a number of functions is sizply the sum
of the Fourier transforms of those functions. The difference of Gaussian
models can therefore be treated by examining the contribution of individual
terms to the overall transform.

Terms of the form:

k. exp (- (x/xc)z)
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have Fourier transforms of the form:

kcﬁ x. exp (= ﬂlfzx‘z:)

Terms of the form:

0.5 kg exp (- ((x+5)/xs)2) + 0.5 kg, exp (- ((x-S)/x')z)
have Fourier transforms of the form:

ksﬁ xg exp (- ﬂ"‘fzxi) . cos (29[£S)

An example of this behaviour is shown in figure l4.
Terms of the form:

0.5 kg exp (= ((x+8)/x5)%) = 0.5k, exp (- ((x-5)/xz)%)
have Fourier transforms of the form:

3
ksﬁxs exp (- W fzxg) . sin (2T£S)

Gabor function

The Fourier transform of a Gabor function (a sinusoid multiplied by a
Gaussian envelope) 1s a pair of Gaussian spectra centred at the frequency
(fc) of the sinusoid, one at +fc' the other at -fc.The relative signs of
these spectra depend on the phase (p) of the sinusoid. If both are positive
or both are negative, then the sinuscid is in cosine phase relative to the
peak of the spatial Gaussian envelope. If one is positive and the other is
negative, then the sinusoid is in sine phase. Note that this latter
arrangement guarantees that a receptive field with this characteristic will
have a zero sensitivity at zero spatial frequency.

(4) k. exp (- (x/xc)z) . cos (21chx + p)

The constant D; in figure legend 9 simply scales the height of the Gaussian
spectra in the frequency domain, but it does not have a simple structural

interpretation as do the constants for the DOG-based models.

Second differential of a Gaussian

The Fourier transform of this function can be understood most easily by




-

noting that a differentiation in the space domain 1s equivalent to
multiplying the frequency spectrum by the complex quantity 21 Jjf. The
Fourier transform of the second differential of a Gaussian 15 therefore
dominated by a quadratic term st low spatial frequencies and a Gaussian
term at high spatial frequencies. The constant E} in figure legend 10 1s
simply a scaling factor.

(5 @k /x2. (- 2x2/x2) L exp (- (x/x)P)
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Table 1. The mean log. error per data point and P-ratio for the best-fitting verslon of each
model to the spatial contrast gensitivity functions shown in figures 62- 10.
d-DOG-8 DOG-8 DOG GABOR D°G

A.

log. error 0.0013 0.0032 0.0097 0.0448 0.0933

F-ratio 4.5 4.69 12.5 60.6 94.9
(4,134) (8,134) (9,134) (9,134) (11,134)

B.

log. error 0.0018 0.0025 0.0053 0.0312 0.0591

F-ratio 15.7 9.3 17.4 84.7 152.7
(3,124) (7,124) (8,124) (8,124) (10,124)
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Figure 1

The upper graph (a) shows a bandpass function relating contrast sensitivity and
spatial frequency, which is typical of the spatial contrast sensitivity functions
found for most neurons in the striate cortex. The lower graphs show three possible
inverse Fourier transforms of the amplitude spectrum in the upper graph, indicating
the varfations of receptive field organization consistent with this amplitude
spectrum when no phase information is available. Left to right: purely even symmetry
(b), intermediate (c) and purely odd symmetry (d).

Figure 2

Schematic representation of the individual Gaussian components and their

combination for a receptive field model based on the difference of difference of
Gaussians with separation (d-DOG-s, appendix: equation 1). Each sub-region of a
receptive field is described by a difference of Gaussians function. Thus for a
purely even symmetric field, with three sub-regions, there are six Gaussians
altogether. For an odd symmetric field, with two sub-regions, there are only four
Gaussians,
(a) Purely even symmetric field. The upper row shows an didealized 'hand-plotted'’
receptive field, with "on" centre (+) and "off" surround (-) sub-regions. The second
row illustrates the individual Gaussians of each of the DOGs that make up the
sub-regions of the d-DOG-s. The third row gives the spatial weighting function of
the receptive field based on the linear combination of the three DOGs in the second
row. (b) 0dd symmetric receptive fleld. The upper row shows the hand-plotted
receptive field with "on" and "off” sub-regions. The second row shows the individual
Gaussians that make up the DOGs corresponding to the "on" and the "off" sub-regions
in the upper row. The third row shows the form of the spatial weighting function
that is the resultant of the two DOGs in the second row. It should be noted that the
individual Gaussians of the "on" and "off" sub-regions do not necessarily have the
same space constants and sensitivities. Consequently the resulting function, shown
in the bottom row, need not be exactly odd symmetric,

Figure 3

a) Schematic representation of the difference of Gaussians (DOG, appendix:
equation 3), where the peaks of the two Gaussians are spatially co-incident. 1In this
case the flanking sub-regions of the receptive field are formed by the spatial
extremities of the surround Gaussian., The first row is the hand-plotted receptive
field, the second row shows the component Gaussians of the centre (“on") region and
the surround ("off"”) regions, while the third row gives the spatial weighting
function based on the linear combination of the Gaussians in the second row. (b)
Representation of the difference of Gaussians with separation (DOG-s, appendix:
equation 2). The three rows are in the same sequence as dJdescribed above for (a).
This 18 equivalent to the purely even symmmetric version of the d-DOG-s model, where
each sub-region is modelled by a single Gaussian rather than a DOG.

Figure 4

The distribution of 138 neurons on a test of the linearity of spatial summation.
The receptive field of each neuron was stimulated with a temporally-modulated
sine-wave grating at 12 different spatial phases. The amplitude of the second
harmonic component of the impulse discharge (at twice the frequency of the temporal
modulation) was averaged over all spatial phases to give the value f2, The value of
fl was determined at the spatial phase that gave the greatest fundamental response at
the same frequency as the temporal modulation. Cells with £f2/f]1 ratios of less than
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1 were considered to have a dominant linear component and have been classified as
simple (77 cells), while those with f2/fl ratios greater than 1, showing a dominant
non-linear response, have been classified as complex (61 cells).

Figure 5

Relationship between mean contrast sensitivity and variance of measures of
contrast sensitivity. The mean values of contrast sensitivity and the associated
variance were obtained from 12 estimates using the staircase procedure described 1in
the METHODS. For each cell, the mean and variance were calculated at every spatial
frequency that yielded a significant response. Initially, the calculations were
based on the assumption of a linear contrast scale {arithmetic mean and variance).
The figure shows all these measurements pooled together. There is a positive
relationship between arithmetic mean and variance with a slope of 1.85 as indicated
by the solid line on the graph. A slope of 2 would indicate equal variance for
logarithmically transformed values of contrast sensitivity.

Figure 6

The d-DOG-s model (appendix: equation 1) fitted to the contrast sensitivity
functions (left) of two simple cells. The derived spatial weighting functions are
shown on the right. Each determination of contrast sensitivity (unfilled circles) is
the mean of 12 estimates from a staircase procedure; the error bars indicate +/- one
standard deviation from the mean. The neuron whose sensitivity function is shown in
(a) was recorded in layer VI of the striate cortex; the centre of the receptive field
was located 1.2 degrees from the fovea. The neuron whose sensitivity function 1is
shown in (b) was recorded in layer II in the same penetration. The values of the
parameters of the best-fitting function are:

(a) A = 43, A =43, A, = 41, A4 =41, x = 2.22 mins arc, x_ =

15.36 mins arc, x. = 4.97 mins arc, x_. = 17141 mins arc, g = 0.93, § = 8.23
mins arc. (b) “ = 16, A, = 16, A g 10, A, =10, x_ = 2,23 mins arc,

Xep = 16.10 mins™ arc, x, = 4.41"mins arc, X, = 27146 mins arc, g =
0.4, S = 8.29 mins arc. 2 2

Figure 7

The DOG-s model (appendix: equation 2) fitted to the contrast sensitivity
functions of the same two cells as shown in figure 6. The details of the procedure
and of the cells are given in figure 6. The values of the parameters of the
best-fitting function are:

(a) B, = 42.1, B, = 45.2, x_ = 2.2]1 mins arc, x_ = 4.58 mins arc, S = 7.38
mins arc. (b) B, = 15.0? B, = 16.6, x = 2.79 mins arc, x_ = 5.25 mins
arc, $ = 7,92 mins arc. 2 ¢ s

Figure 8

The DOG model (appendix: equation 3) fitted to the contrast sensitivity functions
of the same two cells as shown in figure 6. The details of the procedure and of the
cells are given {n figure 6, The values of the parameters of the best-fitting
function are:
(a) C, =5
(b) C1 =2

= 61.4, x, = 2.38 mins arc, x = 10.14 mins arc.
= 22.8, x, = 2.45 wins arc, x, = 1.54 mins arc.

8.5, C2
0.7, C2
Figure 9

The Gabor model (appendix: equation &) fitted to the contrast sensitivity
functions of the same two cells as shown in figure 6. In almost all cases, the
observed functions were more nearly symmetrical than the Gabor function plotted on
logarithmic axes. The details of the procedure and of the cells are given in figure

6. The values of the parameters of the best-fitting function are:




(a) D, = 41.8, x = 1.94 mins arc, f = 2.92 c/deg., p = 90°. (b) Dl =

23.8, x_'= 2,06 min§ arc, £ = 3.16 c/dSg., p = 90°.
c c
Figure 192
The DG model (appendix: equatfion 5) fitted to the contrast sensitivity
) functions of_ the same two cells as shown in figure 6. Like the Gabor function

(figure 9), DG 1s not as symmetric as the data on logarithmic axes. The details
of the procedure and of the cells are given 1In figure 6. The values of the
parameters of the best-fitting function are:
(a) E, = 6.48, x_ = 3.49 mins arc. (b) E, = 2.87, x = 3.90 mins arc.
Figure 11

Relationship between the mean error per data point and the mean variance per data
point for each of the models fitted to every cell in our sample. The filled symbols
represent measurements from 77 simple cells, while the unfilled symbols are from 61
complex cells. The solid line in each graph, with a slope of 1, indicates where the
error is equal to the variance. A point below the diagonal line indicates that the
error in fitting the model to the data 1s less than the variance associated with the
sensitivity measurements for that cell. Conversely points above the 1line indicate
that the error was greater than the variance; such points indicate cells that are
relatively poorly fit by the model. We have arranged the models from best to worst,
based on the number of data points aboye the line of equality; the order is d-DOG-s
(a), DOG-s (b), DOG (¢), Gabor (d) and DG (e).

Figure 12
The mean error per data point for the best-fitting version of the d-DOG-s8 model

(ordinate) 1is plotted against the mean error per data point for the other four
models. Deviations below the solid line of equal error indicate a fallure of the
mode]l represented on the abscissa to account for the spatial contrast sensitivity
function as well as the d-DOG-s model. The filled and unfilled symbols indicate
simple and complex cells respectively, as in figure 11.

Figure 13

Panels (a-f) show the d-DOG-s model (appendix: equation 1) fitted to the contrast
sensitivity functions of six neurons, in order to illustrate the variety of shapes of
these functions and the ability of the model to describe them., The lowest two panels
show examples of cells that were well fitted by the DOG model (g) and by a single
Gaussian (h). Details of the parameters are given in table 2. The open circles
indicate the mean value of contrast sensitivity and the error bars indicate +/- one
standard deviation from the mean. Cells in a,b,c,e had receptive fields between 1.0
and 1.5 degrees from the fovea; receptive fields of cells in d,f,g were within 0.5
degrees of the fovea; receptive field of cell 1in h was 3.0 degrees from the fovea.

Figure 14

The upper two graphs show the contrast sensitivity function from one of the few
neurons for which the Gabor (a) shows a significantly better fit than the simple DOG
(b). The mean error assoclated with the Gabor fit is 0.0028 and with the DOG 0.0131.
However, the DOG-s model (c) can fit the data with a s{milar error to the Cabor,
0.0023, The cell was classified as simple, with a receptive field 0.4 degrees from
the fovea, and was recorded in layer IVc . (d) Comparison of the mean error obtained
from the best-fitting versions of the DOG and the Gabor functions for all cells. The
details are the same as for figure 12.
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Figure 15

(a) The centre (dashed line) and surround (dotted 1line) Gaussians of a DOG
function plotted on linear spatial frequency and contrast sensitivity axes. Because
the peaks of the centre and surround Gaussians are spatially co-incident, they
subtract at all spatial frequencies. Therefore, to obtain a DO5 of a given
amplitude, the centre mechanism's sensitivity must be greater than the maximunm
sensitivity of the DOG. The combination of the centre and surround is shown by the
solid line in (a). In (b) the solid line shows the same DOG as in (a), but on the
more familiar log-log axes, while the centre mechanism is shown by the dashed line.
In (c) the centre (dashed line) and surround (dotted 1line) Gaussians of a DOG-s
(solid 1ine) function are shown on linear axes. The same DOG-s function as seen in
(c) is shown in (d) on log-log axes. Note that the surround Gaussian is of the same
sign as the centre Gaussian at some spatial frequencies (see Appendix). Thus the two
Gaussians combine their sensitivities at these spatial frequencies with the result
that the peak sensitivity attained by the DOG-s function, shown by the solid line in
(c and d), is greater than the centre componeut alone (dashed line in ¢ and d).

Figure 16
The graphs show the versions of the d-DOG-s model that fit best to the contrast

sensitivity data of the cell in figure 6a, where the model varies from: (a) pure even
symmetry, the symmetry parameter g = 0.5; (b) through intermediate symmetry, g =
0.26; (c) to almost pure odd symmetry, g = 0.0. (See figure legend 3.) All the other
parameters were free to vary. The figure shows that, within the constraints of the
d-DOG-s model, the relative amplitudes and spatial organization of the flanking
sub-regions may change without any marked change in the amplitude spectrum. It 1is
worth noting that the separation parameter stays almost constant, at around 8 mins.
of arc, in all three fits despite the change of symmetry of the flanking regions,
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arities, such stixuli are perceived as two separete surfaces, one
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Elizabeth Johnston and Andrew Parker
University Laboratory of Physiology, Oxford, England.

Current models in computational vision make use of differential
geometry to describe the properties of three dimensional surfaces.
These psychophysical experiments with Julesz random dot stereogram:
were designed to measure the stereoscopic sensitivity of human
observers to changes in the curvature of three dimensional surface:s
A 2AFC technique was used to determine curvature thresholds for
surfaces of zero Gaussian curvature (portions of cylinders). With
a 50 min.arc radius (curvature 0.02 rad/min.arc), the 75%
discrimination threshold was a 13 min.arc change in radius. With
larger radii discrimination was poorer. To use Gaussian curvature
to analyse the shape of a surface observers must possess a basic
sensitivity to the principal axes of curvature. This was tested
using a 2AFC paradigm, in which subjects decided which of the two
principal axes of curvature on a surface with positive Gaussian
curvature had the higher curvature. This corresponds to discriminat
ing an ellipsoid from a sphere. Thresholds obtairned for this task
were highly similar to those measured in experiment one. Thus, the
values of the principal axes of curvature are available to subjects
within the limits of curvature acuity. For surfaces with negative
Gaussian curvature (hyperbolic paraboloids) thresholds were at leas
8 min.arc higher at each radius tested. Further differences in
sensitivity to surfaces with different sign of Gaussian curvature
were noted in the third experiment, in which a masking paradign
was used to obtain detection thresholds for a number of surfaces.
Surfaces of positive Gaussian curvature toleratec much greater
noise perturbation than surfaces with negative Gaussian curvature.
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LOCAL CIRCUIT NEURON ORGANIZATION IN INFRAGRANULAR LAYERS OF MONKEY
STRIATE VISUAL CORTEX. J.S. Lund, M.J. Hawken* and A.J. Parker*.
Department of Psychiatry, University of Pittsburgh and *Department

of Physiology, Oxford.

Layers 5 and 6 of striate cortex contain all the subcortically
projecting efferent neurons of this region plus neurons providing
important efferent projections to extrastriate visual cortex. The
local circuit (LC) neurons of these layers (characterized by their
smooth or sparsely spined dendrites and predominantly GABAergic
nature) must play a vital role in determining the outflow of visual
information and intrinsic patterning of activity in these deep
layers. We have studied the organization of the LC neurons using
Golgi impregnations in infant monkey cortex where the interlaminar
axon projections of the LC neurons can be traced; myelination in
older animals prevents silver impregnation of these relays. We
find a rich variety of LC neurons; each variety has highly specific
patterns of axon distribution - both within and between divisions
of the infragranular layers 5 and 6 and in projections to both
supragranular layers and thalamic recipient divisions of lamina 4.
These relays illustrate important pathways by which layers 5 and 6
interact and influence activity more superficially in the cortex.
The patterns of these relays can be compared to the internal axon
distribution of pyramidal neurons of layers 5 and 6 and it is clear
that there is considerable relationship in the pattern of relays
by these excitatory and inhibitory neuron groups.
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2-D STRUCTURE OF CORTICAL MECHANISMS FOR CONTRAST DETECTION
Andrew Parker & Mike Hawken, Physiology Dept., Oxford, UK

The shapes of receptive fields of neurons in the primate

striate cortex suggest that they could be the mechanisms
underlying the spatial channels identified in psychophysical
contrast detection experiments. Analysis of the spatial

contrast sensitivity functions of striate neurons shows that the
wmost comprehensive description of their behaviour is given by a
2~-dimensional wodel, consisting of the algebraic sum of up to 3
difference-of-Gaussfan (DOG) functions in the axis orthogonal

to the preferred orientation of the cell and a single Gaussian
function in the direction parallel to .this axis. For simple
cells, each major excitatory or inhibitory zone of the

receptive field is served by one DOG function. The space
constants of the smallest “centre' mechanisms are in the range

1 to 8 min arc for eccentricities of 1.5 degrees or less. Even
when the 3-DOG model is restricted to only 4 or 5 free
parameters, it gives significantly more accurate descriptions

of contrast sensitivity functions than either the Gabor

function or the 2nd differential of a Gaussian., The space
constant of the single Gaussian describing the axis parallel to
the preferred orientation can be derived from the orientation
selectivity of the cell. The values fall in the range 3 to 35
min arc, but are more conveniently specified as a ratio

relative to the overall width of the receptive field, measured
from the extremities of the flanks of the receptive field. The
modal value of this ratio is about ! and nearly all cells fall in
the range 0,25 to 4.0.
(Supported by the MRC and AFOSR)







