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I MaN of fymbols

A - average area of the External Tank

a - semi-major axis of an orbit

C, - optimization coefficient for tether tension profile

D - distance between the shuttle and the ET

D0 - initial separation between the shuttle and the ET

- orbital energy of the shuttle

0.- orbital energy of the shuttle for the nominal tether force

D - force of air drag on the external tank

F D - magnitude of air dra on the external tank

ET - tension force on the tether

FT - magnitude of the tension force on the tether

h - height above the surface of the Earth

hm - reference value for use in atmospheric model

- asagian for the system dynamics

3, Y, Z - unit vectors in an inertial geocentric frame

me - Mass of the Space Shuttle

n - mass of the external tank ( ET )

Q - Lagrangian notation for the generalized forces acting on the system

j- Lagrangian notation for the generalized coordinates

RIC -radius of the Earth

,R_ - position vector for the reference orbit
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Itf - magnitude of the position vector for the reference orbit

R., - position vector for the shuttle expressed in the relative frame

R" - magnitude of position vector for the shuttle

-R. - position vector for the tank expressed in the relative frame

Ru. - magnitude of position vector for the tank

S- kinetic energy of the two body system

,- gravitational potential energy

V - inertial velocity of the shuttle expressed in the relative frame

Vd. - magnitude of inertial velocity of the shuttle

_Vud - inertial velocity of the ET expressed in the relative frame

Vtm - magnitude of inertial velocity of the ET

'TOT - Total potential energy of two body system

X - column vector of tether tension coefficients

U SIX - column vector of corrections for tether tension coefficients

Sr - radial coordinate direction for relative coordinate frame

0 - downtrack angular coordinate direction for relative coordinate frame

.r, - relative radial measurement for the external tank

Br. - relative radial measurement for the space shuttle

a9. - relative downtrack angular measure for the space shuttle

89 - relative downtrack angular measure for the external tank
S.*

pi - atmospheric density at the ET altitude

- mass density of tether connecting the ET and shuttle

p0 - reference value for the atmospheric density in the

exponential model

e - gravitational parameter for the Earth

£1 - angular velocity of reference orbit of relative coordinate frame
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Abstract
!K

The possible use of tethers in space has been proposed for the last

hundred years. While much work has been done recently on the use of

tethers for towed satellites from the Space Shuttle, little has been done to

determine the possible benefits of using tethers as propulsive devices to

supplement or replace rocket engines for boost from Low Earth Orbit. This

project attempts to determine one method of using tethers to improve the

performance of the Space Shuttle. Orbit insertion parameters such as

-' velocity and final altitude for the space shuttle are limited by operational

constraints on the possible delta V that can be supplied from the engines.

The possibility of increasing the performance of the shuttle exits by use of

an inter-connecting tether to serve as a momentum transfer device between

the External Tank and the Shuttle. This added momentum would widen the

possible orbit options presently available by boosting the shuttle to a higher

orbit. This project derives the equations of motion for a three-body

connected dynamical system to include the Shuttle, the external tank, and

the cable in orbit around a spherical Earth. Due to current material

limitations the tether length will be limited to 100 kilometers. The possible

envelope of orbital changes is investigated, and this program determines

through an optimization routine the tension profile in the cable, and the

initial separation distance to apply that tension that results in the maximum

altitude gain for the shuttle. "
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OPTIMAL SHUTTLE ALTITUDE CHANGES

USING TZTERS

I. Istroduction

In the year 1895, the great Russian scientist Tsiolkovsky ( 23:165 )

first proposed connecting large masses in space by long cables to exploit the

weak gravity gradient forces that exist in orbit, and thus establish "towers"

in space. These large towers would reach from near the ground to out

beyond geosynchronous altitude, and would be supported by the tension

generated by excess centrifugal force on the higher portions of the structure

" that would extend beyond geosynchronous. An Earth-based version of this

,*1 idea that would reach to low-earth orbit would require a super-strength

material such as diamond ( or other perfect crystals ). However, the idea of

*4 using tethers to lift or propel objects in space does not require these super-

materials. Space tethers made of such substances as Kevlar or stainless

steel, could augment or even replace rockets for the transfer of payloads from

low earth orbits to orbits farther out. The basic mechanism for this process

is the simple exchange of momentum between the two bodies attached at the

ends of the tether, one of them a carrer and the other the desired payload.

If two objects are connected by a long tether and placed into an orbit that
i .
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is roughly circular, the minimum energy configuration for this dumbbell

shaped system Is with the tether aligned along the local vertical. In this

N arrangement, the tether supports the lower object ( which moves with sub-

orbital velocity ) and retards the higher object ( which moves with supra-

aorbital velocity ). Momentum can be transferred between the two end

bodies by lengthening or shortening the tether length from some nominal

&initial value. This change in tether length generates Coriolis forces that

temporarily tilt the system away from the local vertical ( see Fig. I ). The

end result is that one mass of the system is decelerated while the other one

is accelerated. The factor that determines which body is accelerated and

which is decelerated is whether the tether is lengthened or shortened from

STeher Terisi om .1

Id

,;.

Acc2lerm.4or_
era+iamn

Figure I Displacement from Local Vertical
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the original value. If the tether length increases after initial deployment of

the tether, then the higher object will be accelerated when tension is applied

to the cable and the lower body will be slowed down. Thus, the momentum

of the lower body is transferred to the higher one to maintain the tether

alignment along the local vertical.

An example of this momentum "toss" would be an exchange through a

connecting tether between the shuttle and the external tank with the tank

serving as the carrier and the shuttle serving as the payload. At the normal

separation point, the shuttle is detached from the tank and acquires about an

additional 20 fps of velocity. The increasing radius of the shuttle from this

velocity increase causes it to appear to fall behind the external tank as it's

.. elliptical path carries it into a higher orbit. The difference in angular

velocities between the lower, faster moving tank, and the higher, slower

moving shuttle cause this apparent relative velocity to occur. As the shuttle

moves away and behind the jettisoned external tank, the connecting tether

cable will pay out. Any displacement of the tether cable away from the

local vertical when tension is applied to it will tend to create a force at the

ends of the tether that try to realign it with the local vertical. When the

system is aligned along the local vertical, the shuttle and tank have the same

angular velocity, but the shuttle has a higher linear velocity due to it's

larger orbital radius. When the tether length is increased from it's original

value, the two end bodies will tend to move farther apart and the path of

the orbital center of mass does not change. Yet, due to the coriolis forces

that are generated the tether will s.iil tend to align itself along the local

vertical. As a direct result of this, the shuttle would gain in altitude, and

the tank would lose altitude when the tether cable length was changed from

A
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it's original value. When the cable is discarded or cut, the end bodies will

drift apart into different elliptical orbits. Since the linear velocity of the

shuttle at the moment of release is higher than that required for an orbit at

the same altitude, the orbit that it enters will be elliptical with the perigee

at the release point, and the apogee at the opposite side of the earth.

In order to have a controllable tether system that uses these benefits

of tether behavior, it is usually necessary to have a tether deployer,

controller, and retriever. A tether system has been developed for use on the

Space Shuttle, not for a tether toss as described above, but to deploy and

retrieve small scientific satellites ( 3,13,20,23 ) for use on low Earth orbit.

The idea of flying scientific payloads suspended below the Space Shuttle has

been developed by G. Columbo ( 12 ) of Italy for tethers up to 100 km

long. The primary purpose of this satellite and cable system is to allow for

* the towing of satellites in the Earth's upper atmosphere for research into

upper atmospheric physics. An extremely simple disposable tether "toes"

system is under development at Energy Sciences Lab in San Diego,

California, that would fit into a Getaway Special container in the Shuttle's

cargo bay ( 23:168 ). The system has almost no moving parts with the

tether unwinding from a stationary spool The tension between the Shuttle

and the deploying tether is maintained by inflatable gas bags that squeeze

the line between flaps during deployment. A meter measures the amount of

line deployed and a cutter severs the tether when the right amount of line

has been released. According to studies performed, this would allow the

deployment of a 350 pound payload using a ten kilometer long tether. In a

simple case as described above the retriever portion of the package may be

deleted.

4
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Since the tension in the tether cable is proportional to the length of

the tether, the limiting factor in the use of tethers becomes the amount of

tension the material strength of the cable can withstand. The limiting load

of the tether is determined by the properties of the material, as well as the

diameter of the cable material being used. Thus if the tether needs to be

stronger to withstand the loads imposed during the I ther "tos", one method

of solution is that of brute force. Simply increase the diameter of the cable

until it can withstand the imposed loads. Increasing the diameter of the

tether does not always solve this material limitation because the tether must

pstill support itseil, and since the weight of the tether increases linearly with

the length of the tether it will eventually reach a point where the cable

could not support itself for the lengths required. f the cable tether was

made of Kevlar, the maximum length due to material properties of a tether

is apprmximately 480 kilometers in Low Earth Orbit ( LEO ) ( 23:168 ).

When the tether exceeds this length, the mass of the tether alone causes it

to exceed the material strength of the cable using only a nominal safety

factor. It s possible to partially work around the physical limitations of the

tether by using a tether that is tapered at the ends. When the tether is

tapered the portion of the tether near the endpoints only needs to be strong

enough to support the forces on the end bodies. However, the portion of

cable at the dumbbell-type system's center of man must still be strong

enough to support the forces generated at the endpoints as well as the mass

of the tether.

For a simple tether deployment system between the shuttle and the

external tank, the tether retrieval portion may by discarded from the tether

control system. This project will attempt to determine the optimum tension

,u.
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profile to maintain in the tether cable as it is deployed between the external

3 tank and the shuttle so as to maximize the orbital altitude gain of the

shuttle from the momentum Otoss. Several simplifying assumptions will be

U made to limit the scope of this problem. These assumptions are:

1. Two Body motion - the two end bodies are in

orbit around a spherical homogenous earth, and the

gravitational field is the field of the central body.

In addition,the two bodies are assumed to be small

enough that there is no mutual attraction.

2. Orbital Motion - for simplification, orbital

i motion of the two bodies is constrained to remain

in the orbit plane. The reason is that the tension

forces from the tether will remain almost entirely

within the plane of the initial orbit and there are

no other perturbing forces acting out of the plane.

3. Tether Tension - this will be the control

parameter for the optimization process. For this

reason, the tension will be modeled as an N-

dimensional polynomial of the form

.-:I T  I C, DI

where 'T is the magnitude of the tension, D is the

distance between the ET and the Shuttle, and the C,'s

I ° 6
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are the optimized coefficients that maximize the

altitude gain for the shuttle. In addition, the

tension generated in the cable during the tether

"toes* will be treated as a generalized force rather

than as being generated by a potential similar to

the gravitational energy.

4. Tether Length - to avoid problems of

overstressing available material limits, the

tether length will be limited to a maximum of 100

kilometers. In addition, although many materials

are suitable for use this project will use Kevlar

as the material of choice for the cable.a
5. Air Drag - the force of air drag will be

included in the physical model of the tether

system and it will be modeled as being of the

of the general form

FD = 1/2 CD A p V2

where the atmospheric density, p , is determined

from an exponential atmosphere model. The coefficient

of drag, CD and the cross-sectional area, A , of the

bodies are averages for the external tank and the

shuttle. The model will ignore the small effect of

drag on the tether since it has a very small cros

sectional area normal to the velocity. Since the

7



separation point of the shuttle from the tank is at

5the normal apogee of the tank's orbit, a further

simplification of the drag problem is that the

shuttle will be assumed to be above the atmosphere

for the portion of the flight which involves the use

of the tether, and the air drag forces will only be

considered as acting on the external tank.

The equations describing the motion of the system are derived using

the classical Lagrangian Procedure. The tension force in the tether is

represented as a generalized force, and serves as the control used during the

optimization process to maximize the altitude gain by the Shuttle during a

"toss" from the External Tank. The determination of the air drag forces

I that act on the system are included under the generalized forces acting on

the system. The derivation of the equations of motion for this dumbbell

shaped two body mass in the next section describes in more detail the above

listed assumptions, and later sections of this report will further explain the

optimization concept used.

V.8
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IL Dei'atl of

.qatlons of Moin

Consider a physical system of the Space Shuttle and the External

Tank having mas.es m. and m , respectively, which are connected by a

tether that has ma.. density, p., and the entire system is in orbit around

a perfectly spherical and homogeneous Earth. In the most general case, the

orbit of the two body system around the Earth is Keperian and the two end

bodies may be represented as idealized point mases with relative position

vectors in a 8r, 0 local co-ordinate frame centered around a mean circular

orbit of radius R The local coordinate frame is defined with the or

axis pointing outward along a line from the origin of the geocentric frame to

the location of mean circular reference point ( this is aligned with the vector

Lj ), and with the 89 axis at a right angle to this in the direction of the

orbital velocity and in the plane of the orbit. Both of these unit vector

directions are in the orbit plane, and all motion is assumed to remain in the

plane of the orbit. The two end bodies will be located by the vectors R

for the shuttle, and A., for the external tank both of which are

measured in the relative reference frame. Since the typical separation

9



Fdstancs mtween the tank and shuttle are measured in kilometers, the

tother's cram section ( measured in centimeters, or fractions thereof ) is very

small when competed to it's length and so bending and torsional stiffness

I fore resulting from the diameter of the tether cable will be very small, and

the effects of those forces may be neglected since they contribute little to the

dynamics of the system. For the purpose of evaluating the motion of the

shuttle and external tank tether connected system, the contributions of the

tether maw with respect to the system's potential and kinetic energies will

be accounted for by adding part of the tether's mw to each of the end

bodies. This will reduce the three component system ( shuttle, external

tank, and tether ) to a lumped two point mass model simplifying the

tethered system dynamics without reducing the accuracy o the solution.

The development of the tethered system equations of motion will be done

using the classical Lagrangian development method summing the contributions

of each individual part of the system to the total kinetic and potential

energies. The Lapangian development of the equations of motion for this

two body tethered system used in this determination of the optimum tether

tension profile rest on the following assumptions:

(1) the geocentric equatorial reference frame is an

inertial one;

(2) the earth's gravitational field is uniform, and
the center of the attracting field is the center of

the geocentric co-ordinate frame;

a.

10
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(3) the earth is a perfectly spherical body;

(4) the atmospheric density of the earth's atmosphere,

p. , is dependent only on the altitude, h , above the

surface of the Earth, and is related to a nominal

value, p., , by an exponential relationship;

(5) the atmosphere rotates with the Earth like a

rigid body about the Z axis of the geocentric

co-ordinate frame; and

(6) the relative motion of the end bodies remains

in the orbital plane, which is initially defined by

the positions and velocities of the shuttle and

external tank just prior to initial separation.

This model assumes that the tether mass is distributed uniformly

along the straight line between the location of the two end body point

masses, i.e. - along the vector R - R - as in lFgure 2. From

this, it is obvious that the tether must have a uniform mass density, p, "

throughout it's length and the cross sectional area is assumed to be constant. %

In addition, the tether is assumed to have uniform deformation along the line

between the two end bodies within the material limitations of the tether.

11



f~gare 2 Tether Position along vector R

The simplification of the system dynamics as outlined in these

I assumptions is realistic as long as the tether lies along the line between the

two bodies, but if the tether does not there may be significant deviations

from this idealized model of the mass distributions. Nevertheless, the kinetic

9. and potential energies that am~ calculated from these assumptions should be
*1? very representative of the actual values as a mean.

The attitude motion of the system out of the orbit plane will have

very little effect on the orbital motion. Hence the relative orbital equations

of motion of each piece can be determined using the classical Lagrangian

formulation for the orbital motion of a point mass. The Lagrangian of a

system is determined from the sum of the kinetic and potential energies of

the system's parts. The kinetic energy (5 ) of this system is determined

by the motion of the two point masses as foiows:

12
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Y5 M /2InsVU2 + 1/2 MV2 (1

Where m. is the mass of the space shuttle, and V., is the magnitude

of the inertial velocity of the shuttle expressed in the local 8 , 0 relative

coordinate system. Similarly, m, and V. are the mass and relative

velocity of the external tank in the relative coordinate system. However, the

;. velocity terms, V.. and Vt. , in the above expression may be

expressed as the time derivative of their respective position vectors ( i.e. -

V = d R /dt ), and this expression for the velocity wili be substituted in

the kinetic energy expression. The potential energy of the system consists of

the sum of the gravitational potential energy of the two end bodies, and may

be represented as:

TT V +V,(2)

Where V, represents the potential energy of the shuttle, and V,

represents the potential energy of the external tank. Thus, using the

assumptions listed previously for the definition of the coordinate frames and

assuming a spherical homogeneous Earth with a uniform gravitational field,

the gravitational potential energy of the two parts of the system may be

expressed as follows:

13



u s = p-.= m. I . + B-) (3)

and

P, -. n i t + I )( 4 )

Where Is. is the earth's gravitational parameter, and the terms (Rw

+ ar. ) and ( Rd + rt ) are the distance of the shuttle and external

tank in the radial direction from the center of the geocentric coordinate

rame. Thus, the total potential energy of the system may be expressed as:

V toM -. (nit/l +8r) +m,/l(]l,+8.)) (5)

Then combining the expressions for the potential and kinetic energies, the

Lagrangian for this system is: %

1 - I m V.' + 1/2m Vt

+, -+m+ B(6)

Where the magnitudes of the velocities in the above equation may be

expressed in terms of their components as follows:

14
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Vs -- [= d Ir, /dt )2 +I ( 11 + d 80s /dr )2 ( Rrd + jes )2 ]I/2 (7)

and

V, (d 8r,/dt)2 + (fl + d /dt )I ( R + art)2 ]'/2  (8)

In the above expressions, 01 is the angular velocity of the mean

circular orbit used as a reference point, and RM is the magnitude of the

radius vector of the mean circular orbit expressed in the geocentric

coordinate frame. Using these expressions for the velocity, the expression for

the Lagrangian may be expressed in terms of the components of the position

and velocity vectors. Thus, making these substitutions the complete

expression for the system's Lagrangian is expressed as:

1= 2 m. (d B. /dt )2 + ( fl+ d 8. /dt )2( R + ar. )2

+ 1/2 m, d 8r, /dt )2 + (il + d 8 t /dt )2 ( Rr + B't )2

" (9)

The external generalized .orces that will be acting on the system will

be limited to two, those of air drag and the tension force of the tether. The

tension in the tether will be considered under the heading of the generalized

forces because the tension profile used during the reel-in maneuver process is

the control variable used to optimize the altitude gain of the space shuttle.

15



For modeling purposes in this report, the tension force in the tether will be

represented as an Nth degree polynomial of the form:

T =CID + C2 D2 + CsD + C4D 4 ..... + CID' (10)
,%

or in short hand notation,

..

FT CID (i=1,n) (11)

The following assumptions on the tether's behavior were made in this

simulation to maintain a simple model:

(1) The resultant force from the strain energy of

the tether acts only in the axial direction due to the

small cross section of the tether, and is negligible

compared to other forces acting on the system;

(2) The tether has a uniform mass density per

unit length, ot , and a ccnstant cross sectional

area throughout it's length; .f

.. 5
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(3) The tether lies along the straight line

connecting the point mass representations of the

shuttle and the external tank;

(4) There is uniform deformation along the tether

within the material limits of the tether.

These simplifications for the tether are sufficiently realistic when the

tether is stretched between the two bodies. For the time periods when the

tether is slack, there may be significant deviations from the assumed mass

distribution. However, the answers that are generated should still be fairly

representative of the mean values for the forces involved.

The force of air drag will be very small for objects at the 200+ km

altitude of the shuttle's planned orbit when compared to the attraction of

gravity and the force of tension from the tether. Thus, air drag in the

model will be considered as acting only on the external tank with it's lower

orbit causing the tank to spend more of it's time in the atmosphere. In

general, the force of air drag on the tank may be represented as:
P7W

FD = 1/2 CD A p VTf 2  (12)

Where the variable CD is the coefficient of drag ( averaged ) for
D0

the tank, A is the cross sectional area of the tank, p is the atmospheric

17
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density, and VTnj is the magnitude of the inertial velocity of the tank

expressed in the relative frame. The force of air drag is parallel to the

velocity vector, YTd , but in the opposite direction thus opposing the

motion of the external tank. The magnitude of the velocity, VTw , is

measured with reference to the geocentric frame. Since the density of the

atmosphere can vary considerably with altitude, sun spot activity, and many

other factors a simple method of modeling this variable was chosen. One of

the simplest models for determining the air density is an exponential model

using a scale height, and reference value for the air density. For this type

of model, the variations in the density, p , is calculated from the formula:

p = p, exp(h/hftf) (13)

The reference density, p,', is determined for conditions at the

reference altitude, and in this case the value used was 1.2321 x 10-10

kg/ma ( 20:192 ). The scale height, href , is the altitude used that gives

the best density match for the altitude range in question. The value used

was for this program was href = 2 x 106 meters ( 20:192 ). The height, h

of the external tank is determined by h = RT - R1 E with both vectors

being expressed in the geocentric coordinate frame.

In general, the equations of motion are determined using the

Lagrangian formulation are of the form:

18



* d/dt(&t/8jJ - (AI/Oj) - Q, =o (14)

where . is the Larangian for the system, q, and are the generalized

Lagrangian coordinates and their first derivatives, and the Q's are the

generalized forces acting on the system for that generalized coordinate

direction. For this two body tethered system, the generalized a a

*! coordinates we as follows:

s-- are -- 3d . /dt

ass d al /dt

ar't d ar, /dt

80t  d U t /dt

The generalized forces acting on the system are air drag forces on the

external tank, and the tether force acting on the external tank and the

I .shuttle. Using the classical Lagrange method of determining the generalized

forces for each of the generalized coordinate variables, they may be expressed

I

- 19
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a

3 Where the generalized force in the equation is expressed as Qk , the

forces acting on the system as Vj, p is the number of forces acting on

the system, and a is the number of generalized coordinates. Since the

forces acting on the system are air drag and the tension force of the tether,

the result of evaluating equation 15 for each of the coordinate directions is

as follows:

Q1 M ( 'rD + FrT )dn, .t (16)

.2 = ( D + rT )de,,,v, (17)

I Q8 M ( rD + frT )d. (18)

Q4 ( D + 'T )dtk.&. (19)

Where the respective Q,'s are for the forces on the shuttle in the 3r

direction ( Q1 ), the forces on the shuttle in the MS direction ( Q2 ), the

forces on the tank in the 3r direction ( Q8 ), and the forces on the tank in

the * direction ( Q4 ). However, since the air drag term is negligibly small

on the shuttle, !D may be assumed to be zero on equations 16 and 17

thus further simplifying the equations of motion. Then using the definitions

for the Lagrangian coordinates, the general definition of the equations of

20
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motion from Eq. 14, and the generalized force definitions from Equations 16

through 19 it is a simple matter to express the equations of motion as:

For O.

m d2 Bra /dt 2 - ms( Rr + Se. )( l + d B, /dt )2 +

(LOm, ) / ( + ir )2 - FT, = 0 (20)

For W.~

2 il d3. /dt (Rm + r) + d2 89,/dt2 (R+ J.) 2

+ 2 d 8. /dt d8r /dt (Rrd+ Be)

-FTaef ( R. + r)/ ms = 0 (21)

For 8r,

mt d2 8rt /dt 2 - mt( Rf + rt )( 0+ d 8 t /dt )2 +

(Ie Mt )/(Rd + rt )2 _ FTaak - FDrtwk = 0 (22)

For Bet

2 fl d Or. /dt (Rmf+ ar,) + d2 8 t /dt 2 (Rd+ Or,)2

+ 2dlt /dt dBr./dt (R +r,)

-Ft + Fvtbe"")(Rrf + art ) / o (23)
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By expanding the gravity potential terms of equations 20 through 23

using the binomial theorem, it is possible to eliminate the gravitational

parameter, p. , from the equations. During the expansion, in order to

linearize the equations of motion the second order terms that contained Br

and N were ignored as they were many magnitudes smaller than the terms

containing R . In addition, the terms that were of the form 8r / Rr

and 0 / Rd were ignored since the result was more than three orders of

magnitude less than many of the other terms. Since the ultimate objective

is to determine the motion of the two end bodies as a function of time, the

accelerations in each of the coordinate directions must be determined and

then integrated twice to yield the position vectors. Thus simplifying the

equations further by combining terms and dropping the higher order terms

involving Br and U , it is possible to solve equations 20 through 23 for

the accelerations along the ar and 0 component axis. When the forces

of air drag and tension are broken down into their components along the

relative coordinate axis, the resulting set of equations is:

For 8r,

d2 Sr /dt 2= 3 s, Wl2 + 2 Rd d 80. /dt fl + FT./m ,  (24)

For 80.

~d2 . /dt2 - -( 2 l d Br. /dt )/Rd + FTtht. Rrf m,)

- (B. FTt, /(eR 2 m.) (25)

.'2
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For ar

d2 &' /dt 2  3 rt f 2  + 2 Rgda t /dt 0

+ ( FTnk+ FDn~.mk (28)

For Mt

d2 Mt /dt 2  - (2 ldk', /dt ) / IL+ (FTthe, + FDhe ) / ( R.0 t n)

-(r, FT.,.m., + FDA.,..k 11/ P1 m, (27)

Then, using the above expressions for the accelerations in each local

coordinate direction, determining the motion of the two bodies will require

the double integration of each of these equations ( 24 to 27 ) of motion.

With the linearized expressions for the acceleration described in equations 24

to 27, it is possible to solve for the motion of the two end bodies using a

state space representation of the dynamics. For this process to work in this

program let XI = , , X2 = M,, X3 = d ar/dt , X 4 = d M. /dt,

X5 =f Br , XG = 89t , X7 = d t /dt , and X8 = d Ot /dt . Using this

representation, the equations of motion are consolidated into a set of

equations and integrating the system of linearized equations with a numerical

23 .0
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integrator, such as Hinwhg, in relatively easy to accomplish. The

3 determination of the tether force from it's idealized coefficients is the only

input to this set of equatios of motion that is subject to control xteml

3 to the basic physics of the system. Thus, the current choice of the N

coefficients will determine the altitude gain the shuttle achieves for this set of

Z* parameters. The determination of what are the best choice for the optimized

coefficients, and what is the most efficient method of finding them is an

optimization problem of great difficulty. The next chapter will develop in

Vdetail the method of maximizing the altitude gain of the space shuttle by

correctly choosing these coefficients.

I
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13L Do v hmsm of the00 Rilnsto outin.

The purpose of this research is to develop a method for Ing

the altitude gain of the Space Shuttle from a tethered exchange of

momentum with the External Tank. The altitude gained may be determined

g by arbitrarily picking a nominal set of coefficients, determining the apogee of

that orbit ( and hence the altitude ) by numerically integrating the orbit

from the point of tether release, then using the computer driven optimization

routine to incrementally improve the choice of coefficients and then re-

.integrating the "new' orbit to determine the altitude gain from the "better'

guess. However, it would be much simpler to be able to determine the

performance of the program by comparing the change from the reference

orbit to the new orbit by the change in classical orbital elements a , e , i

and S . It is much more computationally effective to determine the

altitude gain by determination of the orbital energy, S , from the radius

and velocity vectors, R and V , at the time of tether detachment than

numerically integrate the entire poet-release orbit to determine the maximum

altitude.

25
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Since altitude is related to the orbital radius, an equally effective :%

alternative to altitude, h , might be the semi-major axis, a . This

increase in a is easy to measure, and allows a quick determination of the

performance of the tether "toes". However, the added momentum from such

a "toss* would show immediately in the orbital energy of the shuttle, 8,
since it measures the kinetic and potential energy of the shuttle at any point

and is a constant for a closed orbit ( i.e. - a circle or an ellipse ) with no

dissipative forces involved. Since the classical parmeters require less

computation time, the change in the energy, 8, will be used to determine

the performance of the tether maneuver. The shuttle's orbital energy, 89,
is related to the semi-major axis, a , of the shuttle's orbit by the formula:

I.'

a 2=-3 (28)

This variable can be directly related to the altitude gain of the

maneuver since a - ( Rz + RP )/2 , where R. is the radius of the orbit

at apogee and R is the radius of the orbit at perigee. Thus, if the

orbital energy was increased, the semi-major axis ( and orbital altitude )

would also be increased. As a review of what the magnitude of orbital

M energy relates to, for a parabolic orbit the orbital energy is equal to zero,

and the energy of a hyperbolic orbit is greater than zero. Since the shuttle

is equipped for earth orbit, closed form orbits ( ellipse or circle ) are the

only ones of interest, and for these orbits the orbital energy, 8., is always

negative. Thus, the maximum altitude gain (in a closed orbit ) for a
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momentum 'ton would be when the orbital energy is increased to just less

3 than zero. However, if the increase in altitude is on the order of 100

kilometers, the increase may well be worth the extra complexity and weight

of the added tether equipment.

Since the only control variable in the development of the equations of

motion in Section 1I was the tension force in the tether, the orbital energy

may be expressed as a function of the tether tension coefficients, or

1= (;I' C2 1C3 1. .. . . . . . C11 (29) a,

Then expanding the expression for the orbital energy in equation 29

by using a second order Taylor series approximation allows the expression of

the shuttle's orbital energy as follows:

(3 + I(.C. IC, + 1/2 bC. T &ACS/aC2 8C1 I-1 (30) *

X.

Where (90 is the value of the orbital energy for some nominal set

of tether tension coefficients, n is the number of coefficients used in the

tether tension polynomial, 8C, is the change made to the coefficient for this

perturbation, and /JiC and OR/OC1 2 are the first and second

derivatives of the orbital energy with respect to the coefficient being

perturbed.
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Since this equation is a summation over the number of coefficients

being used ( variable n ) to model the tether tension, it is more convenient

to re-write equation 29 in a matrix format that allows the expression to

represent the entire set of variables being used. If we let X be the

column matrix of tether tension coefficients, C1's, then the summation of the

first and second derivatives of the orbital energy per change in the

coefficients may be expressed as A4 and 0 3 /4. These partial

derivatives are evaluated at a set of conditions picked arbitrarily at the start

of the optimization process. Then, using the matrix definition of X for the

tension coefficients, BI would be the small perturbations of the coefficients

around the nominal value used for the analysis. With these definitions, the

second order Taylor expansion of the orbital energy, 3. , from equation 30

may be expressed in matrix form as:

= o _,, + ,, IX + 1/2 ,o, 98/WI &X (31)

Thus with a method of relating the orbital energy ( and hence the

altitude ) to the change in coefficients, the question now becomes how to

chose the optimum set of coefficients. In order to determine if the current

values for the coefficients in the expression for the energy actually establish

the maximum value, the classical tests for determination of maximums and

minimums are adapted to matrix form. If the current set of coefficients is a

maximum, the first derivative, . /iXI nom , should be equal to zero, and
the sign of the second derivative, ?,/(-X20 I m , should be negative. If

3 28
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'J.

the evaluation of the expressions for the first and second derivatives shows

that the current choice of coefficients does not yield a maximum value for

the orbital energy, then an improved guess must be determined for the

coefficient matrix X . This is done by taking the derivative of equation 28

with respect to the coefficient matrix, I, and setting the resulting equation

equal to zero. Taking the derivatives of the matrices in equation 31 with

respect to the coefficient matrix yields:

00lx asa= + -2'- /82_ AX (32)
U.

.

Then setting equation 32 equal to zero would yield the following.

S&/XIm+ 283/g21 ax =0 (33)

morn-

Simplifying this equation, and solving for the first derivative of the

orbital energy leads to:

,'.

orx . = Dom (34)
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Since the chances of picking the correct coefficients to generate the

maximum energy for the shuttle on the first iteration are exceedingly small,

to determine the best correction for our present guess, X we must solve

equation 34 for the term & . To do this requires a method of solving n

linear equations ( one for each of the coefficients ), which is expressed in

matrix form as A x = B , where the matrix we want to determine from

this expression is x. Equating this general form to equation 34, A is

equivalent to the matrix 2C _[/W , x is the same as matrix BX

and B is the matrix -8,oxI Dm While the determination of the

matrix might be made by finding the inverse of A4/I X2 I , it is not

advisable to solve the equation this way because ( 08/X21 1-1

might be singular. Thus to determine the answer simultaneously to the N

linear equations will require a flexible linear equation solver that is capable

of obtaining precise answers from ill-conditioned matrices. For this project,

the process used was the VAX IMSL routine LEQT2F. The routine inputs

the current values for the matrices l/oX_ I Rom and -8/X2 I Dm

and then uses a gauss-seidel method with partial pivoting to determine the

BX matrix.

Upon determining X , the incremental improvement to the

coefficients, the next value to be used in the iteration process can be
determined by adding the correction to the present value of X as expressed

by:

x +f xi+ i (35)

30



The new value, X'+' for the matrix of coefficients is input into the

equation of motion routine to determine the resultant boost that the tether

"toes" gives to the shuttle. The iterative process of determining the next

value for Bx continues until a maximum value for (3 is reached.

When the Lagrangian for the system is non-linear and the control

variable is linear then it is possible to simplify the optimization process

further. By examining the results of equation 9, it is easy to determine that

the system Lagrangian is non-linear. While the Lagrangian for this system

is not linear, the equations of motion that were derived from it are linear

because of the assumptions and simplifications made during their derivation.

In addition, the control variable for this optimization problem is the tension

in the tether, and it is linear. According to Bryson and Ho ( 10:252 )

b when this type of system exists there is only one method of solution and it

is called a Bang - Singular - Banx solution. This Bang - Singular -

Bang type of system has it's optimum performance when the control variable

is turned off until a certain point and then once turned on the control

variable operates at it's maximum value to drive the system performance.

The conditions for this system that equate to this type of control method

may be expressed as:

FT  f = Tmf (36a)
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where FT. is determined by the characteristics of the material used for

5the tether. The other option for the value of the tension force is

FT =- 0.0 (36b)

Where the maximum tension, FT- u , is determined by the material

properties of the cable that is being used, and the physical size of the cable.

For this project, the material selected was Kevlar and the nominal diameter

of the cable was 1.0 centimeter. Since the maximum tension in the cable is

determined by the product of Young's Modulus for the material, E, and the

cross sectional area of the cable, A, then the maximum yield strength of this

tether is 2.120675 x 10 Newtons. Using the Bang - Singular - Bang type

of optimal control, with the cable tension fixed at FT. , the only

remaining variable not analytically determined is the initial separation

distance, Do , at which the tension force is applied to the cable. The

variation of the initial separation distance, Do , will make a difference in the

final altitude that the shuttle will reach because this distance determines the

length of time that the cable will transfer momentum from the external tank

to the shuttle. Using the same method for determining the optimum energy

value as was developed for determining the solution for the tension

coefficients, it is obvious that the orbital energy, (3 , is also a function of

the initial distance. Using the same form of expression as in equation 29, it

would be possible to write a Taylor series expansion of the orbital energy in

terms of the separation distance, D . However, the end result would be the

32
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same expression as equation 30 and solving this equation for the resulting OX

matrix would require the same solution techniques as for equation 34. If AI

is now defined as the I x I matrix ( a scalar ) containing the separation

distance, D , it is possible to use equation 34 to solve for the optimum

value. Thus, the solution to the incremental adjustment process is still

determined by the solution to equation 34. The only difference in the

process as it was described above is that instead of N linear equations to

solve ( one for each coefficient ) there is only the one equation for the value

of the initial separation distance. With the initial separation distance as the

variable in the SX matrix, the matrix is now only a scalar and a complex

equation solver is not required as with the N tension coefficients.

Theoretical analysis of the system equations of motion enabled a "

further simplification to be made in the optimization process by eliminating

the complex problem of having to determine the polynomial representation of

the tether tension. Due to the nature of the three body system, the optimal

control solution to maximizing the altitude of the shuttle is to have the

tension in the tether be equal to the material limits of the cable, or have no

tension in the tether at all. This simple Bang - Singular - Bane system
°p

means that the only variable once the size of the cable has been chosen is

when, measured in terms of initial separation distance, to "turn onm the

cable tension. .
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IV. Promm Development and Method of Solution

The theory presented above for the perturbation process, determining

the optimum value for the separation distance at which to appl the tension

force on the cable has been programmed in FORTRAN. An oi in. of the

s computer algorithm will facilitate understanding of the results ti are

presented in the next section. The physical values for the size d weight of

the external tank and shuttle are part of the input routine, as -I! as the
initial value for the separation distance. The initial conditions the end

body position and velocity are input as data in the geocentric e atorial

coordinate frame, and after program initiation they are transfor d into the

local relative coordinate fraime described in Section IL With th , relative

initial conditions for position and velocity, the process still requ i a source

for choosing the "turn on" distance of the tension in the tether Any

arbitrary value for the separation distance may be selected, and le equations

of motion for the end bodies ( equations 24 to 27 in Section II are

numerically integrated in the relative frame using the numerical itegrator

Hamhag. The tension force is held equal to zero during the ca lation of

the trajectories of the two end bodies until the distance betwee -hem has
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exceeded the selected value for the separation distance. Once the tether

force has been "turned on", it's input in the numerical integration process

continues until the separation between the bodies has reached the maximum

tether length. There are traps in the program to avoid pulling on the tank

for momentum transfer after it has crashed on the earth, if the tension in

the tether becomes negative, or if it is in a higher orbit than the shuttle.

When the numerical integration of the orbit has been completed, the position

and velocity of the shuttle at tf , the end time, are transformed from the

local reference frame into the geocentric equatorial frame so that the classical

orbital elements of the post-release orbit for the shuttle may be determined.

Then the result of that separation distance can be judged by comparing the

orbital energy after the "tos with the nominal orbital energy, (3 , and

any other values to determine a maximum. This basic outline is what the

program does for each separation value that is input, and the first cycle of

the equation of motion subroutine is to determine the nominal energy,

aomM , value at the reference point.

After a nominal value for the energy is determined, a perturbation

process is used to explore the sensitivity of the energy to changes in the

separation distance. In the perturbation process, each iteration determines

five perturbed values that cluster around the nominal value. These

perturbed values for the distance are used to analyze what direction and

magnitude of change to use for the next improvement to the separation

distance. Using the process described above for determining the

integration is repeated for each of the perturbed separation distances. Then
the position and velocity vectors are transformed and the orbital energy is

determined at each of these points. By then using numerical analysis
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techniques to analyze the five points ( 1:883-885 ), it is possible to find

values for the first, 48/X--, and second derivatives, $8_./X I ,

of the orbital energy at that nominal separation distance. The tests

described in Section MI for a maximum are run on these two derivatives,

and if necessary the next improvement to the separation distance, 8X , is

determined. Through the equations for determining 81 listed in Section H

( equations 31 to 35 ), the next incremental improvement to the X matrix

is determined. With the new value for the separation distance from equation

a35, the iterative process is repeated until the separation distance for the

maximum value of orbital energy is reached. In this process, it is important

to remember that the orbital energy of all orbits under consideration have a

negative value ( 9 <= 0.00 ), and to maximize this value will be to make

it's value marginally less than zero.

3I
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V. Rmes and Disucuuuon

The validity of the equations of motion developed in Section 11 for the

simplified two body system of the shuttle and the external tank has been

validated by comparing the result of integrating the equations of motion with

the classical orbital elements of a known reference orbit. To further check

the validity of the computer implementation of the equations of motion, the

ZI position vectors of the two end bodies were input and after transformation to

the local frame, integrated for 50,000 seconds in simple two body motion

with no external forces, such as air drag, to compute the position vectors.

Then the local coordinate frame position vectors were transformed back into

the geocentric frame, and the classical orbital elements were calculated to

compare with those of the two bodies at the initial time. The small changes

in orbital elements from the initial time to the final time can be accounted

for by round-off error in the transformation from inertial geocentric

coordinates to the local relative frame, and then back again. For example,

the difference in a , the semi-major axis, over the trial period was less

than .5 meters with the initial orbital radius being about 6,444,000 meters.
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Since this is a change of approximately 7.76 x 10-" 6 per cent, it is obvious

that the simple two body portion of the model is operating correctly.

For the case that was investigated in this paper, the shuttle and

external tank are assumed to be at the normal separation point and the

shuttle has started to pay out the cable as it moves away from the external

tank. The separation point is at an altitude of 65 kilometers, and the

*shuttle has already acquired the velocity to carry it to it's normal orbital

height. From the initial run of the program, these initial conditions give the

shuttle a semi-major axis of it's orbit of about 6490 kilometers which is

used as the absolute standard to judge performance of the tether 'toes'.

While previous investigations ( 12:167 ) into the use of the tether as a

means to augment rockets for propulsion have shown that the boost available

from a tether is proportional to the length of the tether, they assumed a

constant tension in the tether from the time it was deployed until the tether

was discarded. The method of this research, varying the point at which

tension is applied to a constant tether length, has the same effect as

changing the length of cable used on a tether "toss'. For the 1.00
i
%

centimeter tether used in the Bane - Singudar - Bant model that was

described in Section II, the results of variations in the orbital energy, (3,

for the different initial separation distances of the post release orbit are

shown in Figure 3. The graph in Figure 3 measures the initial separation

distance at which the tension is applied ( in kilometers ) on the horizontal

axis, and the resulting orbital energy from the "toss' along the vertical axis.

The orbital energy is a measure of the potential and kinetic energy of the

shuttle, and by using dimensional analysis it is easy to determine that the

units used for this term are (length)2/(time) 2 , and this is the specific
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mechanical energy of the shuttle. For this model, the velocities of the bodies

were measured In km/sec and their masses were measured In kilograms, thus

(3 nmeasured in kM2/W2.

Since the orbital energy term, (3, , is somewhat hard to relate to the

actual performance of the "toes" on the shuttle, using Equation 28 it is

possible to determine a , the semi-major axis, for the various separation

distances shown in FIg7e 3. Then plotting these values of the semi-major

axis, a , for the same range of initial separation distances as was shown in

Figure 3 will yield the graph that is shown in Figure 4.

The smallest distance that is on the graph of Figue S and 4 is 10

kilometers because for distances less than this the time required for the tank

and shuttle to reach the 100 kilometer length of the tether exceeds 15 hours,

and this is too long to be of use. In addition, the resultant "toss" from the

tether actually ends up pulling the shuttle downwards because the tank is

still very close and the resultant force is almost straight downwards. The

end result of this arrangement is that the tank ends up being pulled up and

the shuttle is pulled down. The very small values for (3 on Figure 3,

and for a on Figure 4, for the 10-11 kilometer range of separation, and

the subsequent large jump at the 12 kilometer point are related to the

relative positions of the tank and shuttle at the time the tension is "turned

on". As the external tank and shuttle drift apart after initial separation, the

relative velocity between the two gradually starts to build, but it is not until

the distance reaches the 12 kilometer point that the force on the tether is

insufficient to eliminate the relative motion. After the twelve kilometer

point, the energy would continue increasing proportional to the increases in

separation distance except that the relative positions of the tank and shuttle
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cause the external tank to impact on the earth before the tether reaches it's

U full deployment length. As the separation distance increases, more of the

relative motion is in the horizontal mode and when the tether is tensioned

the resultant force is more in the horizontal direction than in the vertical

direction. However, since the external tank is at it's apogee when the initial

separation occurs every bit of momentum that is transferred to the shuttle

makes the descending path towards perigee that much steeper, and the

transfer of momentum lowers the perigee of the tank from it' initial value at I,

the separation point. Thus, as the initial separation distance increases in the

13 to 26 kilometer range the external tank has dropped that much lower in

altitude before the shuttle can start using it as an energy source. It

becomes a vicious circle because the longer the separation distance is the

closer the tank is to the earth, and the less momentum transfer is required

to cause it to crash. However, as the tether separation distance starts to

increase further, another factor enters into the picture that tends to mitigate

this problem. As the tether separation distance passes about the 28

kilometer point, the displacement from the local vertical that causes the

restoring force in the tether becomes so large that the shuttle is actually, in

some cases, slung ahead of the external tank. This is referred to as a

swinging release ( 11:167 ), and can either increase or decrease the orbital

energy of the shuttle. Of course, in most cases it is assumed that the tether

will be released before it will start to decrease the energy of the payload.

Thus the reason for the continued drop of both Figures 3 and 4 after the 30

kilometer point is because the point of initial tension application is still far

enough from the 100 kilometer termination point that the tether actually

starts to pull the shuttle back down towards the external tank. The
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orientation of the shuttle and the tank at the 40 kilometer separation point

is such that the shuttle is released on the "upswing" of the momentum

transfer from the external tank, and thus it receives the full benefit of the

tank's energy. Prior to this point, the shuttle is released after passing the

local vertical because the tether does not reach full deployment until that

time. The large drop at the 45 kilometer point is because the tank crashes

into the earth. This same factor is the reason for the large drop in the

graphs at the 50 to 54 kilometer separation distances. By the time the 60

kilometer separation distance is reached, the tank is too far from the shuttle

to drop the tank into the earth before the length limit is reached. The

jumps that occur at the 65, 75, and 85 kilometer points are there because of

:-f6 the orientation of the tether at the moment of shuttle release. The shuttle

is released prior to passing the local vertical and so does not lose the energy

gained by the momentum transfer.

It is obvious that the maximum momentum transfer from the tank

into the shuttle is a balancing act between pulling on the cable too soon and

qdropping the external tank into the earth ( and the shuttle also ) or slinging

the shuttle around the tank and back towards the earth and a lower orbit or

pulling too late and not getting the full benifit from the tether before

maximum separation distance is reached. The different types of tether

releases have been given names that are descriptive of the method in which

the cable is allowed to pay out. When the tether is let out very slowly, and

the two objects stay very close to the local vertical such that it appears that

the bottom object is falling while the top one is climbing along the reference

defined by the local vertical, this is called a "hanging" release. When the

tether is allowed to pay out very fast and then tightened up so that the
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shuttle in spun around at the end of the tether, this is called a "swinging"

Nrelease. The increase in orbital energy between the "swinging" release ( the

jump points Figure 3 ), and the normal or "hanging" releases was by about

a factor of 1.42 for the separation ranges between 50 and 86 kilometers.

Previous attempts to quantify the contributions of tethers ( 13, 11, 12 ),

have shown that the change in velocity ( or "characteristic velocity" ) of a

tether is a function of it's material properties, it's length, and the type of

release used. For a swinging release with the shuttle released at or prior to

the local vertical point of the tether, the effective increase in the velocity is

by about a factor of 1.2 . Since the orbital energy is directly proportional

to the square of the velocity, then any change in the velocity by a factor of

1.2 should give a proportional increase of the orbital energy by a factor of

1.44, with all other factors being the same. This agrees very well with the

result that was given by the program for the jump from the value for (,

at an initial separation of 76 kilometers as opposed to 78 kilometers. Thus

the jumps in the curves for figures and 4 may be explained as being
F.

caused by the variations in either the initial or release geometry between the

shuttle and external tank. The flat portion of the graphs in figures 3 and 4

starts at 90 kilometers, and continues until the distance reaches 100

kilometers. The reason for this flat section is that the tether did not have

time to significantly change the orbit of the shuttle before the maximum

tether length was reached. The values shown for this portion of the graph

for (, on figure , and a on Figure 4 is about the same as that for the

unmodified orbit that was used as a test for the equations of motion of the

system described in Section IV.
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A comparison of rocket enginess presently being used to boost the

shuttle with the effectiveness of the tether "toss" would show the benifits of

tether useage. The way to accomplish this comparison would be to compare

the effective specific impulse of the tether to that of the shuttle manuevering

engines, and a typical solid fuel booster. To determine the specific impulse

of the tether, it is first required to find the change in linear momentum of

the shuttle at the time of tether release from it's pre- tether state. Then,

the gain in shuttle performance measured as an effective ip will be

determined by the ratio of increase in linear momentum to the penalty

caused by having to carry the weight of the cable. This can be expressed

by the following formula as:

3 Ai=A P/ W (37)

9Where I.P is the specific impulse of the tether, A P is the change in the

linear momentum of the shuttle, and WS is the weight of the cable. Since

the material for the cable was chosen to be Kevlar the density, Pt , is 1.45

- grams per cubic centimeter. Thus for a 100 kilometer tether with a

diameter of 1.00 centimeter, the mass is 1.138827337 x 1i0 kilograms. Using

/the standard acceleration for gravity at the surface of the earth, the value of

the I., for the entire range of separation distances shown in Figures 3 & 4

was plotted in Figure 5. While the shape of the curve showing the

performance of the tether does not change very much from the previous

figures, there is additional information to show the relative Ip of the shuttle
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manuevering engines ( I., of 313 seconds ), the solid fuel booster ( 1. of

20 seconds ), and the tether's I., ( variable ). The bottom line on the

graph at zero represents the unaided ( or normal ) level with no added

boost. The maximum specific impulse that the tether acquired was 237

seconds as conmpared to the 313 for the manuevering engines, and 230 for

the solid fuel boosters.

The program based on the set of equations developed in Sections II

and I was used to examine the range of release values between 10 and 100

kilometers, and determine the distance at which to apply tension that would

result in the maximum altitude gain for the shuttle. The optimization

routine determined the separation value that gave the maximum energy to

1', the shuttle was for the distance of 76.742 kilometers. This agrees with the

approximate point picked from the output ( see Figur 3 and 4 ) of a

different program that simply did an iterative search throughout the entire

4range of allowable tether values, and calculated the resulting orbital energies

and semi-major axes. Using the value found by the optimization routine for

the initial separation distance, the shuttle would acquire a semi-major axis,

. i a , of 7093.129 kilometers and an orbital energy, 4., of -28.0977 km2/sec,

from a controlled tether "toss. This represents an increase in altitude of

603.066 kilometers from using a tether that is 100 kilometers long. The

comparison of specific impulse with other types of shuttle propulsive devices

enabled a comparison to be made of how well the tether performed relative

to other currently avlable devices.
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VI. Sugent ons and 1co mmendatous

.

The equations of motion have been developed and validated for

calculating the motion of the combined external tank and space shuttle

system while they are connected by a tether. Using the optimization

procedure that was developed in Section ITM it is possible to determine the

separation distance between the tank and the shuttle for application of

tension that will result in the maximum altitude gain for a cable with given

physical size and material properties. While there are many possible

combinations of tether length and diameter, the results for a typical cable of

Kevlar that is 100 kilometers long and 1 cm in diameter was used. The

resulting "tos" contribution to the shuttle boost from the cable was

maximized at an initial separation distance of 76.742 kilometers. The shuttle

was boosted so that it's semi-major axis was increased from 6490.063

kilometers to 7093.129 kilometers, which is a gain of 603.066 kilometers.

The benefits from using the cable to transfer momentum from the

external tank to the shuttle are obvious as this will increase the number of

mission options that are available for the shuttle to fly. The increase in

altitude that may be gained from a tether "toss could be used to allow
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rescue of malfunctioning satellites in medium altitude orbits that are

A presently impossible for the shuttle to reach. Not only rescue, but launch of

satellites would benifit from the increase in shuttle altitude since medium

altitude orbits could be reached without the requirement for a space tug to

carry the satellite the last 400 km. In addition, by changing the

optimization search routine, the program could be made to find the

maximum increase in shuttle cargo weight that would still allow reaching the

normal shuttle operating altitude. The extra velocity needed to carry the

extra weight to orbit would come from the exchange of momentum with the

external tank.

While the use of such a tether to improve the performance of the

shuttle shows great promise, there are disadvantages as well as the

advantages already listed. The disadvantages are increased complexity to

control the tether tension, added weight for the tether and control

mechanism, abort options in the event the tether breaks during deployment,

and control of tank for disposal. The magnitude of the contribution that can

be made to shuttle operation during the boost phase from a tether "tossO is

enough to overcome all of the above disadvantages except the last. The

momentum extraction from the external tank will cause it to fall in areas

that have previously been considered safe from tank impact. Thus, tether

disposal of the external tank appears to be a very promising method of

operation for orbital boost, but control stability and guidance of the tank

dispersion after use are issues that must be solved before the benefits may

be realized.

While the development of the optimization algorithm is general enough

to determine the performance of any size (length and diameter ) tether, the
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issue of how the tether compares on a cost basis compared to an equivalent

5rocket boost has not been addressed. It should be possible to determine

approximate masses for the tether, deployment mechanism and control

system to allow for a direct comparison on a dollar basis. In addition, now

that the dynamics of the system have been determined it would be possible

to specify a desired set of end conditions ( in terms of orbital elements ) for

the shuttle, and using the optimization routine contained herein to determine

the size of cable and tension profile required to meet those performance

conditions.
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Abstract

OPTIMAL SHUTTLE ALTITUDE CHANGES USING TETHERS
The. possible use of tethers in space has been proposed for the last hundred years.
While much work has been done recently on the use of tethers for towed satellites
from the Space Shuttle, little has been done to determine the possible benefits of
using tethers as propulsive devices to supplement or replace rocket engines for boost
from Low Earth Orbit. This project attempts to determine one method of using
tethers to improve the performance of the Space Shuttle. Orbit insertion
parameters such as velocity and final altitude for the space shuttle are limited by
operational constraints on the possible delta V that can be supplied from the
engines. Th possibility of incrvasing the performance of the shuttle exits by use
an inter-connecting tether to serve as & momentum transfer device between the
External Tank and the Shuttle. This added momentum would widen the possible
orbit options presently availble by boosting the shuttle to a higher orbit. This
project derive the equations of motion for a three-body connected dynamical
system to include the Shuttle, the eternal tank, and the cable in orbit around a
sphercal Earth. Due to current material limitations the tether length is limited to
100 kilometeru. The possible envelope of orbital changes is Investigated, and this
propain determines through an optimization routine the tension profile in the cable,
and the initial separation distance to apply tension to the cable that results in the
maximum altitude gain for the shuttle.
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