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tor — Total potential energy of two body system

X — column vector of tether tension coefficients

3X ~ column vector of corrections for tether temsion coefficients

3 — radial coordinate direction for relative coordinate frame

8 — downtrack angular coordinate direction for relative coordinate frame

3, — relative radial measurement for the external tank

3, — relative radial measurement for the space shuttle

%, ~ relative downtrack angular measure for the space shuttle

%, — relative downtrack angular measure for the external tank

p, — atmospheric density at the ET altitude

p, — mass densily of tether connecting the ET and shuttle

py — reference value for the atmospheric density in the
exponential model

s, — gravitational parameter for the Earth

l - angular velocity of reference orbit of relative coordinate frame
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Abstract
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\

"3 The poesible use of tethers in space has been proposed for the last
hundred years. While much work has been done recently on the use of
tethers for towed satellites from the Space Shuttle, little has been done to
determine the possible benefits of using tethers as propulsive devices to
supplement or replace rocket engines for boost from Low Earth Orbit. This
project attempts to determine one method of using tethers to improve the
performance of the Space Shuttle. Orbit insertion parameters such as
velocity and final altitude for the space shuttle are limited by operational
constraints on the possible delta V that can be supplied from the engines.
The possibility of increasing the performance of the shuttle exits by use of
an inter—connecting tether to serve as a momentum transfer device between
the External Tank and the Shuttle. This added momentum would widen the
possible orbit options presently available by boosting the shuttle to a higher
orbit. This project derives the equations of motion for a three—body
connected dynamical system to include the Shuttle, the external tank, and
the cable in orbit around a spherical Earth. Due to current material
limitations the tether length will be limited to 100 kilometers. The possible
envelope of orbital changes is investigated, and this program determines
through an optimization routine the temsion profile in the cable, and the
initial separation distance to apply that tension that results in the maximum

altitude gain for the shuttle. .. ;a..-\‘ .
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OPTIMAL SHUTTLE ALTITUDE CHANGES
USING TETHERS

I. Introduction

In the year 1895, the great Russian scien;ist Tsiolkovsky ( 23:165 )
first proposed connecting large masses in space by long cables to exploit the
weak gravity gradient forces that exist in orbit, and thus establish "towers"
in space. These large towers would reach from near the ground to out
beyond geosynchronous altitude, and would be supported by the tension
generated by excess centrifugal force on the higher portions of the stm<-:ture

% that would extend beyond geosynchromous. An Earth—based version of this
:: idea that would reach to low—earth orbit would require a super—strength
- material such as diamond ( or other perfect crystals ). However, the idea of
? using tethers to lift or propel objects in space does not require these super—
i - materials. Space tethers made of such substances as Kevlar or stainless
t "5 steel, could augment or even replace rockets for the transfer of payloads from
‘ he low earth orbits to orbits farther out. The basic mechanism for this process
is the simple exchange of momentum between the two bodies attached at the
f ends of the tether, one of them a carrier and the other the desired payload.
s H two objects are connected by a long tether and placed into an orbit that
) ~
' 1
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is roughly circular, the minimum energy configuration for this dumbbell
shaped system is with the tether aligned along the local vertical. In this
arrangement, the tether supports the lower object ( which moves with sub—
orbital velocity ) and retards the higher object ( which moves with supra—
orbital velocity ). Momentum can be transferred between the two end
bodies by lengthening or shortening the tether length from some nominal
initial value. This change in tether length generates Coriolis forces that
temporarily tilt the system away from the local vertical ( see Fig. 1 ). The
end result is that one mass of the system is decelerated while the other one
is accelerated. The factor that determines which body is accelerated and

which is decelerated is whether the tether is lengthened or shortened from
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Figure 1 Displacement from Local Vertical
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the original value. I the tether length increases after initial deployment of
the tether, then the higher object will be accelerated when tension is applied
to the cable and the lower body will be slowed down. Thus, the momentum
of the lower body is transferred to the higher one to maintain the tether
alignment along the local vertical.

An example of this momentum "toss" would be an exchange through a
connecting tether between the shuttle and the external tank with the tank
serving as the carrier and the shuttle serving as the payload. At the normal
separation point, the shuttle is detached from the tank and acquires about an
additional 20 fps of velocity. The increasing radius of the shuttle from this
velocity increase causes it to appear to fall behind the external tank as it’s
elliptical path carries it into a higher orbit. The difference in angular
velocities between the lower, faster moving tank, and the higher, slower
moving shuttle cause this apparent relative velocity to occur. As the shuttle
moves away and behind the jettisoned external tank, the connecting tether
cable will pay out. Any displacement of the tether cable away from the
local vertical when tension is applied to it will tend to create a force at the
ends of the tether that try to realign it with the local vertical. When the
system is aligned along the local vertical, the shuttle and tank have the same
angular velocity, but the shuttle has a higher linear velocity due to it’s
larger orbital radius. When the tether length is increased from it’s original
value, the two end bodies will tend to move farther apart and the path of
the orbital center of mass does not change. Yet, due to the coriolis forces
that are generated the tether will siiil tend to align itself along the local

vertical. As a direct result of this, the shuttle would gain in altitude, and

the tank would lose altitude when the tether cable length was changed from
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it’s original value. When the cable is discarded or cut, the end bodies will
drift apart into different elliptical orbits. Since the linear velocity of the
shuttle at the moment of release is higher than that required for an orbit at
the same altitude, the orbit that it enters will be elliptical with the perigee
at the release point, and the apogee at the opposite side of the earth.

In order to have a controllable tether system that uses these benefits
of tether behavior, it is usually necessary to have a tether deployer,
controller, and retriever. A tether system has been developed for use on the
Space Shuttle, not for a tether toss as described above, but to deploy and
retrieve small scientific satellites ( 3,13,20,23 ) for use on low Earth orbit.
The idea of ﬂyin,g scientific payloads suspended below the Space Shuttie has
been developed by G. Columbo ( 12 ) of Italy for tethers up to 100 km
long. The primary purpose of this satellite and cable system is to allow for
the towing of satellites in the Earth’s upper atmosphere for research into
upper atmospheric physics. An extremely simple disposable tether "toss"
system is under development at Energy Sciences Lab in San Diego,
California, that would fit into a Getaway Special container in the Shuttle’s
cargo bay ( 23:168 ). The system has almost no moving parts with the
tether unwinding from a stationary spool. The tension between the Shuttle
and the deploying tether is maintained by inflatable gas bags that squeeze
the line between flaps during deployment. A meter measures the amount of
line deployed and a cutter severs the tether when the right amount of line
has been released. According to studies performed, this would allow the
deployment of a 350 pound payload using a ten kilometer long tether. In a
simple case as described above the retriever portion of the package may be
deleted.
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g Since the tension in the tether cable is proportional to the length of 2
' the tether, the limiting factor in the use of tethers becomes the amount of
tension the material strength of the cable can withstand. The limiting load "
M of the tether is determined by the properties of the material, as well as the
g diameter of the cable material being used. Thus if the tether needs to be 3
¥ stronger to withstand the loads imposed during the * ther "toss", one method
% of solution is that of brute force. Simply increase the diameter of the cable ._'?
until it can withstand the imposed loads. Increasing the diameter of the 3
E tether does not always solve this material limitation because the tether must N
£ still support itself, and since the weight of the tether increases linearly with ;."
a the length of the tether it will eventually reach a point where the cable .‘;‘
£ could not support iteelf for the lengths required. If the cable tether was 3
.. made of Kevlar, the maximum length due to material properties of a tether ‘
i is approximately 480 kilometers in Low Earth Orbit ( LEO ) ( 28:168 ). 5
K When the tether exceeds this length, the mass of the tether alone causes it ‘
* to exceed the material strength of the cable using only & nominal safety
" factor. It is possible to partially work around the physical limitations of the "
tether by using a tether that is tapered at the ends. When the tether is )
& tapered the portion of the tether near the endpoints only needs to be strong :
g enough to support the forces on the end bodies. However, the portion of -"'
) cable at the dumbbell—type system’s center of mass must still be strong i
‘:;& enough to support the forces generated at the endpoints as well as the mase “
.\ of the tether. R
22 For a simple tether deployment system between the shuttle and the :
P external tank, the tether retrieval portion may by discarded from the tether "
control system. This project will attempt to determine the optimum tension
¥
s N
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profile to maintain in the tether cable as it is deployed between the external
tank and the shuttle so as to maximize the orbital altitude gain of the
shuttle from the momentum "toes®. Several simplifying assumptions will be
made to limit the scope of this problem. These assumptions are:

1. Two Body motion — the two end bodies are in
orbit mﬁnd a spherical homogenous earth, and the
gravitational field is the field of the central body.
In addition,the two bodies are assumed to be small
enough that there is no mutual attraction.

2. Orbital Motion — for simplification, orbital

motion of the two bodies is constrained to remain
in the orbit plane. The reason is that the temsion
forces from the tether will remain almost entirely
within the plane of the initial orbit and there are
no other perturbing forces acting out of the plane.

3. Tether Tension — this will be the control
parameter for the optimization process. For this
reason, the tension will be modeled as an N-—
dimensional polynomial of the form

F.=2C, D
where F. is the magnitude of the tension, D is the
distance between the ET and the Shuttle, and the C/’s

N Y Y N ST VR VO AT TN L R R A S S N D A O R AL Yy
o 13 . - 3 > - 13 & i) - . - - » » .




are the optimized coefficients that maximize the
altitude gain for the shuttle. In addition, the

tension generated in the cable during the tether
"toss" will be treated as a generalized force rather

==

than as being generated by a potential similar to

8

the gravitational energy.

&

4. Tether Length — to avoid problems of
overstressing available material limits, the

tether length will be limited to a maximum of 100
kilometers. In addition, although many materials

v =

are suitable for use this project will use Kevlar
as the material of choice for the cable.

P

5. Air Drag — the force of air drag will be
included in the physical model of the tether

)ﬁ

o

v

system and it will be modeled as being of the

of the general form
A Fpb=12Cp Ap V2

RPN
I.'l

where the atmospheric density, p , is determined

from an exponential atmosphere model. The coefficient

2 &

of drag, Cp , and the cross—sectional area, A , of the
bodies are averages for the external tank and the
shuttle. The model will ignore the small effect of

Sxn

drag on the tether since it has a very small cross

R

sectional area normal to the velocity. Since the
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separation point of the shuttle from the tank is at
the normal apogee of the tank’s orbit, a further
simplification of the drag problem is that the

shuttle will be assumed to be above the atmosphere
for the portion of the flight which involves the use
of the tether, and the air drag forces will only be
considered as acting on the external tank.

The equations describing the motion of the system are derived using
the classical Lagrangian Procedure. The temnsion force in the tether is
represented as a generalized force, and serves as the control used during the
optimization process to maximize the altitude gain by the Shuttle during a
"toss" from the External Tank. The determination of the air drag forces
that act on the system are included under the generalized forces acting on
the system. The derivation of the equations of motion for this dumbbell
shaped two body mass in the next section describes in more detail the above
listed assumptions, and later sections of this report will further explain the

optimization concept used.
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) II. Derivation of

W tions of Motion

¥

g

. Consider a physical system of the Space Shuttle and the External

= Tank having masses m, and m, , respectively, which are connected by a

tether that has mass density, p, , and the entire system is in orbit around

a perfectly spherical and homogeneous Earth. In the most general case, the

A

orbit of the two body system around the Earth is Keplerian and the two end
bodies may be represented as idealized point masses with relative position
vectors in a 3, 3 local co~ordinate frame centered around a mean circular
orbit of radius R, The local coordinate frame is defined with the ¥

b CRING

axis pointing outward along a line from the origin of the geocentric frame to

%]

vYex
LS

the location of mean circular reference point ( this is aligned with the vector
R, ), and with the 3 axis at a right angle to this in the direction of the
orbital velocity and in the plane of the orbit. Both of these unit vector

T,

directions are in the orbit plane, and all motion is assumed to remain in the
plane of the orbit. The two end bodies will be located by the vectors R_,,
for the shuttle, and R, ., for the external tank both of which are

L T 3

measured in the relative reference frame. Since the typical separation

o

by}
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distances hetween the tank and shuttle are measured in kilometers, the
tether’s cross section ( measured in centimeters, or fractions thereof ) is very
small when compared to it’s length and so bending and torsional stiffness
forces resulting from the diameter of the tether cable will be very small, and
the effects of those forces may be neglected since they contribute little to the
dynamics of the system. For the purpose of evaluating the motion of the
shuttle and external tank tether connected system, the conmtributions of the
tether mass with respect to the system’s potential and kinetic energies will
be accounted for by adding part of the tether’s mass to each of the end
bodies. This will reduce the three component system ( shuttle, external
tank, and tether ) to a lumped two point mass model simplifying the
tethered system dynamics without reducing the accuracy of the solution.

The development of the tethered system equations of motion will be done
using the classical Lagrangian development method summing the contributions
of each individual part of the system to the total kinetic and potential
energies. The Lagrangian development of the equations of motion for this
two body tethered system used in this determination of the optimum tether
tension profile rest on the following assumptions:

(1) the geocentric equatorial reference frame is an
inertial one;

(2) the earth’s gravitational field is uniform, and

the center of the attracting field is the center of

the geocentric co—ordinate frame;

10

N

e e\ e A . RN U AT RN ERPRA 5
R A I A S SIS LA T SASLNAY

o)

e .

-
.
A3
.
L)




(3) the earth is a perfectly spherical body;

(4) the atmospheric density of the earth’s atmosphere,
p, » is dependent only on the altitude, h , above the
surface of the Earth, and is related to a nominal
value, p, , by an exponential relationship;

(5) the atmosphere rotates with the Earth like a
rigid body about the Z axis of the geocentric
co—ordinate frame; and

(6) the relative motion of the end bodies remains
in the orbital plane, which is initially defined by
the positions and velocities of the shuttle and
external tank just prior to initial separation.

This model assumes that the tether mass is distributed uniformly
along the straight line between the location of the two end body point
masees, i.e. — along the vector R = R_, - R,,, as in Pigure 3. From
this, it is obvious that the tether must have a uniform mass density, p, ,
throughout it’s length and the cross sectional area is assumed to be constant.
In addition, the tether is assumed to have uniform deformation along the line
between the two end bodies within the material limitations of the tether.
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Pigure 3 Tether Position along vector R

The simplification of the system dynamics as outlined in these
assumptions is realistic as long as the tether lies along the line between the
two bodies, but if the tether does not there may be significant deviations
from this idealized model of the mass distributions. Nevertheless, the kinetic
and potential energies that are calculated from these assumptions should be
very representative of the actual values as a mean.

The attitude motion of the system out of the orbit plane will have
very little effect on the orbital motion. Hence the relative orbital equations
of motion of each piece can be determined using the classical Lagrangian
formulation for the orbital motion of a point mass. The Lagrangian of a
system is determined from the sum of the kinetic and potential energies of

the system’s parts. The kinetic energy ( g ) of this system is determined

by the motion of the two point masses as follows:




, I =pm V 24+ 1pm V2 (1)

AL

R

Where m, is the mass of the space shuttle, and V_, is the magnitude

§ of the inertial velocity of the shuttle expressed in the local 3 , 3 relative
coordinate system. Similarly, m, and V,, are the mass and relative
?_: velocity of the external tank in the relative coordinate system. However, the
- velocity terms, V_, and V,_, , in the above expression may be

expressed as the time derivative of their respective position vectors ( i.e. —
‘o V = d_R /dt ), and this expression for the velocity will be substituted in

the kinetic energy expression. The potential energy of the system consists of
‘ the sum of the gravitational potential energy of the two end bodies, and may
be represented as:

.
. Vior = U, + W, (2)
3
N
f () : 1}
Where , represents the potential energy of the shuttle, and .
S represents the potential energy of the external tank. Thus, using the
assumptions listed previously for the definition of the coordinate frames and
2
ﬁj assuming a spherical homogeneous Earth with a uniform gravitational field,
o the gravitational potential energy of the two parts of the system may be
expressed as follows:
z
*
13
]
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?}s=-|"'ems/(nn4+hs)

vt=—"'em!/(nr¢!+art)

Where @, is the earth’s gravitational parameter, and the terms ( R,
+ %, ) and (R, + 3, ) are the distance of the shuttle and external

tank in the radial direction from the center of the geocentric coordinate
frame. Thus, the total potential energy of the system may be expressed as:

Vior= [—w (m / (Ry+8%)+m/(Ry+ ) (5

Then combining the expressions for the potential and kinetic energies, the

LY A

Lagrangian for this system is:

PLE O

L = i2m, V2 4+ 12 m V2
Fml(m /(R +%)+m /(R +0)) (6

Where the magnitudes of the velocities in the above equation may be

expressed in terms of their components as follows:

XN
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V,=[(d&, /dt )2+ (0 +d% /dt)? (B, + b, )22 (7)

Sj and
x, Vo={[(d8¥, /dt > + (0 + d 8, /dt )2 (R, + ¥, ) |2 (8)
N
In the above expressions, {} is the angular velocity of the mean
o
E: circular orbit used as a reference point, and R , is the magnitude of the
§ radius vector of the mean circular orbit expressed in the geocentric
coordinate frame. Using these expressions for the velocity, the expression for
_Ej the Lagrangian may be expressed in terms of the components of the position
o
and velocity vectors. Thus, making these substitutions the complete
. expression for the system’s Lagrangian is expressed as:
El
Y
. L=1pm [(dde, /dt )2+ (0 +dB, /dt )2 (R + %, )2 |
o
+yzm [ (dde /dt )? + (0 +d8, /dt )2 (R, + b, )? ]
+p (my/(Ry+ % )+m/ (R, + %)) (9)
I";
N
'% The external generalized ‘orces that will be acting on the system will
be limited to two, those of air drag and the tension force of the tether. The
~
= tension in the tether will be considered under the heading of the generalized
< forces because the tension profile used during the reel—in maneuver process is
the control variable used to optimize the aititude gain of the space shuttle.
15
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For modeling purposes in this report, the tension force in the tether will be
represented as an Nth degree polynomial of the form:

XXM
P g ‘s

P,.=CD+CD*+CD*+CD*..... + CD! (10)

y EL T """
3 ,('.f‘fl..f

or in short hand notation,

A

P, =XC D (i=1,n) (11)

e
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The following assumptions on the tether’s behavior were made in this

simulation to maintain a simple model:

N b

’

(1) The resultant force from the strain energy of

"t

the tether acts only in the axial direction due to the

small cross section of the tether, and is negligible

OGO

>

. compared to other forces acting on the system;

A
2

P
T O TR RS
LA

Ll a s -

! (2) The tether has a uniform mass density per

Ui i

unit length, o, , and a ccnstant cross sectional

e
Oy

area throughout it’s length;
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(3) The tether lies along the straight line

connecting the point mass representations of the

shuttle and the external tank;

(4) There is uniform deformation along the tether

within the material limits of the tether.

These simplifications for the tether are sufficiently realistic when the
tether is stretched between the two bodies. For the time periods when the
tether is slack, there may be significant deviations from the assumed mass
distribution. However, the answers that are generated should still be fairly
representative of the mean values for the forces involved.

The force of air drag will be very small for objects at the 2004+ km
altitude of the shuttle’s planned orbit when compared to the attraction of
gravity and the force of tension from the tether. Thus, air drag in the
model will be considered as acting only on the external tank with it’s lower
orbit causing the tank to spend more of it’s time in the atmosphere. In

general, the force of air drag on the tank may be represented as:

Fp =112Cy Ap V. }? (12)

Where the variable C, is the coefficient of drag ( averaged ) for

the tank, A is the cross sectional area of the tank, p is the atmospheric

17
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density, and V., is the magnitude of the inertial velocity of the tank
expressed in the relative frame. The force of air drag is parallel to the
velocity vector, V.., , but in the opposite direction thus opposing the
motion of the external tank. The magnitude of the velocity, V., , is
measured with reference to the geocentric frame. Since the density of the
atmosphere can vary considerably with altitude, sun spot activity, and many
other factors a simple method of modeling this variable was chosen. One of
the simplest models for determining the air density is an exponential model
using a scale height, and reference value for the air density. For this type
of model, the variations in the density, p , is calculated from the formula:

p-_-pmexp-(h/h‘f) (13)

The reference density, p_, ', is determined for conditions at the
reference altitude, and in this case the value used was 1.2321 x 10-10
kg/m3 ( 20:192 ). The scale height, href , is the altitude used that gives
the best density match for the altitude range in question. The value used
was for this program was href = 2 x 10° meters ( 20:192 ). The height, h
, of the external tank is determined by h = R, — Rg , with both vectors
beiﬁg expressed in the geocentric coordinate frame.

In general, the equations of motion are determined using the

Lagrangian formulation are of the form:

o . e A m B P BB A M- mAmrMAR el e . T e e P AT AN AR "5 N Y N B
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d/dt@Lsey) - L/w) - Q =0 (14)

where L is the Lagrangian for the system, q, and G, are the generalized
Lagrangian coordinates and their first derivatives, and the Qs are the

generalized forces acting on the system for that generalized coordinate
direction. For this two body tethered system, the generalized Lagrangian
coordinates are as follows:

A RO S TR

2y

»,

&

gj q's —— O, g's —— d %, /dt
%, d e /dt
%, d 2, /dt
», d %, /dt

o 52 W

The generalized forces acting on the system are air drag forces on the
external tank, and the tether force acting on the external tank and the
R shuttle. Using the classical Lagrange method of determining the generalized
¥ forces for each of the generalized coordinate variables, they may be expressed
8

PR R

o Qr = I Fj dw,/aq (=1.p sad kela) (15)
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Where the generalized force in the equation is expressed as Q, , the
forces acting on the system as l‘,, p is the number of forces acting on
the system, and = is the number of generalized coordinates. Since the
forces acting on the system are air drag and the tension force of the tether,

SV L R SO

the result of evaluating equation 15 for each of the coordinate directions is

f;: as follows:

B Q1 = ( ro + r-r )m.g (16)
&

EE Q= (Fp + Fr )yerashn (17)
i Qa = ( rp + r'r )m (18)
5

" QU= (T + I1 )ssenans (19)

ra

:‘ Where the respective Q’s are for the forces on the shuttle in the %
~ direction ( Q, ), the forces on the shuttle in the 3 direction ( Q, ), the

o~

r

forces on the tank in the 3 direction ( Q, ), and the forces on the tank in
the 3 direction ( Q, ). However, since the air drag term is negligibly small

(r ¥

on the shuttle, F, may be assumed to be zero on equations 16 and 17

»
Y thus further simplifying the equations of motion. Then using the definitions
N for the Lagrangian coordinates, the general definition of the equations of

20
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motion from Eq. 14, and the generalized force definitions from Equations 16

through 19 it is a simple matter to express the equations of motion as:

=y il BE B

For e,

@ m, d? 3¢, /dt? — m,( R, + 3, )( 0 + d 8, /dt )2 + :§
Y

b (k,m,) / (Ry+ 8, )~ Fp, =0 (20) &
léo For 80' :*
:.

Jie 0
| 20 dd, /dt (R, + 3, ) + 423, /dt2 (R, + &, )? 4
e +2dM, /dt d, /dt (R, + B, ) ’,ﬁ
- FTM ( Rlel + &a ) / I, = 0 (21) §‘:

;

Oy For ¥, ‘ %
2 ¢
& m, 4 b, /dt? — my( R, + B, )(0 + d 2%, /dt )2 + b2
(wemy ) / (B + 80 )® = Fropy = Fpraax =0 (22) :'_:_'

o

. R
!§' For %, : C(
) &
B 20 doe /dt (R + b, ) + &8, /dt? (R + b, )2 o
\ + 2d%, /dt dde /dt (R + ¥, ) e
X .\
= ( Frusust + Fowenua ) B + 3, ) / my = 0 (23) oY
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By expanding the gravity potential terms of equations 20 through 23
using the binomial theorem, it is possible to eliminate the gravitational
parameter, p, , from the equations. During the expansion, in order to
linearize the equations of motion the second order terms that contained &
and 8 were ignored as they were many magnitudes smaller than the terms
containing R, In addition, the terms that were of the form & / R,
and 8 / R, were ignored since the result was more than three orders of
magnitude less than many of the other terms. Since the ultimate objective
is to determine the motion of the two end bodies as a function of time, the
accelerations in each of the coordinate directions must be determined and
then integrated twice to yield the position vectors. Thus simplifying the
equations further by combining terms and dropping the higher order terms '
involving 3 and 3 , it is possible to solve equations 20 through 23 for '
the accelerations along the 3 and 8 component axis. When the forces )
of air drag and tension are broken down into their components along the ]

relative coordinate axis, the resulting set of equations is:

For ¥,

d?d, /dt2 =38, 0 + 2R_d%, /dt O + F /m  (24)

-

For %,

d28, /dt? = — (20dd, /dt) /R, + Fpry./ (R m,) .
~ (%, Fryea ) / (B2 m,) (25) f
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For %,

Qe /dt? = 3%, P + 2 B, dM /dt 0
+ ( Frraax + Foraa ) / my (26)

For 3,

d2%, /dt? = - (20 d¥ /dt) / R,
+(FM+FM)/(RMHI,)
= (% Fryuaaat + Foneaan ) 7/ (B my ) (20)

Then, using the above expressions for the accelerations in each local
coordinate direction, determining the motion of the two bodies will require
the double integration of each of these equations ( 24 to 27 ) of motion.
With the linearized expressions for the acceleration described in equations 24
to 27, it is possible to solve for the motion of the two end bodies using a
state space representation of the dynamics. For this process to work in this
program let X, =08, , X; =8, , X, =d 8, /dt, X, = d 8, /dt ,

Xs =8, , Xg =8, X, =dd¥ /dt , and X, = d 8, /dt . Using this
representation, the equations of motion are consolidated into a set of

equations and integrating the system of linearized equations with a numerical

23




?l s,

A 8 &8 X (s

e X

a3

Txs

e

N BRSPS e

"

2

]

T T A T T T R S N N N R L R S A IR A R A A AR R RSSO PR
a A A >, ) Aah R R R

integrator, such as Haming, is relatively easy to accomplish. The
determination of the tether force from it’s idealized coefficients is the only
input to this set of equations of motion that is subject to control external

to the basic physics of the system. Thus, the current choice of the N
coefficients will determine the altitude gain the shuttle achieves for this set of
parameters. The determination of what are the best choice for the optimized
coefficients, and what is the most efficient method of finding them is an
optimization problem of great difficulty. The next chapter will develop in
detail the method of maximising the altitude gain of the space shuttle by
correctly choosing these coefficients.

24
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[II. Development of the Optimisation Routine

The purpose of this research is to develop a method for maximizing
the altitude gain of the Space Shuttle from a tethered exchange of
momentum with the External Tank. The altitude gained may be determined
by arbitrarily picking a nominal set of coefficients, determining the apogee of
that orbit ( and hence the altitude ) by numerically integrating the orbit
from the point of tether release, then using the computer driven optimization
routine to incrementally improve the choice of coefficients and then re—
integrating the "new" orbit to determine the altitude gain from the "better"
guess. However, it would be much simpler to be able to determine the
performance of the program by comparing the change from the reference
orbit to the new orbit by the change in classical orbital elements a , e, i,
and & . It is much more computationally effective to determine the
altitude gain by determination of the orbital energy, é , from the radius
and velocity vectors, R, and V, , at the time of tether detachment than

-

numerically integrate the entire post—release orbit to determine the maximum

altitude.

25
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Since altitude is related to the orbital radius, an equally effective
alternative to altitude, h , might be the semi—major axis, a . This
increase in a is easy to measure, and allows a quick determination of the
performance of the tether "toss®. However, the added momentum from such
a "toss" would show immediately in the orbital energy of the shuttle, 8. ,
since it measures the kinetic and potential energy of the shuttle at any point
and is a constant for a closed orbit ( i.e. — a circle or an ellipse ) with no
dissipative forces involved. Since the classical parameters require less
computation time, the change in the energy, 8, , will be used to determine
the performance of the tether maneuver. The shuttle’s orbital energy, é ,

is related to the semi—major axis, a , of the shuttle’s orbit by the formula:

i a=- (s /(28,) (28)
I}::
! This variable can be directly related to the altitude gain of the

"' maneuver since a = ( R+ Rp )/2 , where R, is the radius of the orbit
: at apogee and R, is the radius of the orbit at perigee. Thus, if the
* orbital energy was increased, the semi—major axis ( and orbital altitude )
& would also be increased. As a review of what the magnitude of orbital
g energy relates to, for a parabolic orbit the orbital energy is equal to zero,

. and the energy of a hyperbolic orbit is greater than zero. Since the shuttle
:: is equipped for earth orbit, closed form orbits ( ellipse or circle ) are the
9 only ones of interest, and for these orbits the orbital energy, 8. , is always
! negative. Thus, the maximum altitude gain ( in a closed orbit ) for a
o
; 26
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momentum "toes" would be when the orbital energy is increased to just less
than gzero. However, if the increase in altitude is on the order of 100
kilometers, the increase may well be worth the extra complexity and weight
of the added tether equipment.

Since the only control variable in the development of the equations of
motion in Section II was the tension force in the tether, the orbital energy

may be expressed as a function of the tether temsion coefficients, or

6 =%(c,C,0Cp...... c,) (29)

Then expanding the expression for the orbital energy in equation 29
by using a second order Taylor series approximation allows the expression of
the shuttle’s orbital energy as follows:

6,=6,+=1365/08, + 12 T #5,/0C2 3C,| (mm) (30)

Where 8,0 is the value of the orbital energy for some nominal set
of tether tension coefficients, n is the number of coefficients used in the
tether tension polynomial, 8C, is the change made to the coefficient for this
perturbation, and 95,/C, and #5 /aC2 are the first and second
derivatives of the orbital energy with respect to the coefficient being
perturbed.
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Since this equation is a summation over the number of coefficients
being used ( variable n ) to model the tether temsion, it is more convenient
to re—write equation 29 in a matrix format that allows the expression to
represent the entire set of variables being used. If we let X be the
column matrix of tether temsion coefficients, C,'s, then the summation of the
first and second derivatives of the orbital energy per change in the
coefficients may be expressed as 38./3; and 328,/a1_t2. These partial
derivatives are evaluated at a set of conditions picked arbitrarily at the start
of the optimization process. Then, using the matrix definition of X for the
tension coefficients, 3X would be the small perturbations of the coefficients
around the nominal value used for the analysis. With these definitions, the
second order Taylor expansion of the orbital energy, (9. , from equation 30
may be expressed in matrix form as:

=6 + ag/agl X + 12 8XT #8 sax2 |

X (31

Thus with a method of relating the orbital energy ( and hence the
altitude ) to the change in coefficients, the question now becomes how to
chose the optimum set of coefficients. In order to determine if the current
values for the coefficients in the expression for the energy actually establish
the maximum value, the classical tests for determination of maximums and
minimums are adapted to matrix form. If the current set of coefficients is a

maximum, the first derivative, 35,/aX|__ , should be equal to zero, and

the sign of the second derivative, #G5,/aX2| . , should be negative. If
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the evaluation of the expressions for the first and second derivatives shows

that the current choice of coefficients does not yield a maximum value for

the orbital energy, then an improved guess must be determined for the
coefficient matrix X . This is done by taking the derivative of equation 28
with respect to the coefficient matrix, X , and setting the resulting equation
equal to zero. Taking the derivatives of the matrices in equation 31 with
respect to the coefficient matrix yields:

bpx = bxl,. + #6x|,, X (32)

Then setting equation 32 equal to zero would yield the following:

/X o + #E X2, X = O (33)

Simplifying this equation, and solving for the first derivative of the
orbital energy leads to:
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Since the chances of picking the correct coefficients to generate the
maximum energy for the shuttle on the first iteration are exceedingly small,
to determine the best correction for our present guess, X , we must solve
equation 34 for the term 3X . To do this requires a method of solving n
linear equations ( one for each of the coefficients ), which is expressed in
matrix form as A x = B, where the matrix we want to determine from
this expression is x. Equating this general form to equation 34, A is

equivalent to the matrix ﬂg,ﬁgl X is the same as matrix 3X ,

som
and B is the matrix -aé"_/a;_l som - While the determination of the
matrix might be made by finding the inverse of 028./327 | o + it is Dot
advisable to solve the equation this way because | 0@,/0&2 .

might be singular. Thus to determine the answer simultaneously to the N
linear equations will require a flexible linear equation solver that is capable
of obtaining precise answers from ill—conditioned matrices. For this project,
the process used was the VAX IMSL routine LEQT2F. The routine inputs
and 028./05” som

and then uses a gauss—seidel method with partial pivoting to determine the

the current values for the matrices 38,/3§| som
38X matrix.

Upon determining 38X , the incremental improvement to the
coefficients, the next value to be used in the iteration process can be
determined by adding the correction to the present value of X as expressed
by:

4 = X+ X (35)
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The new value, X+! , for the matrix of coefficients is input into the

equation of motion routine to determine the resultant boost that the tether
"toss" gives to the shuttle. The iterative process of determining the next
value for 3X' continues until a maximum value for (9, is reached.
When the Lagrangian for the system is non—linear and the control
variable is linear then it is poesible to simplify the optimization process
further. By examining the results of equation 9, it is easy to determine that
the system Lagrangian is non—linear. While the Lagrangian for this system
is not linear, the equations of motion that were derived from it are linear
because of the assumptions and simplifications made during their derivation.
In addition, the control variable for this optimization problem is the tension
in the tether, and it is linear. According to Bryson and Ho ( 10:262 ) ,
when this type of system exists there is only one method of solution and it

is called a Bang — Singular — Bang solution. This Bang — Singular —

Bang type of system has it’s optimum performance when the control variable
is turned off until a certain point and then once turned on the control
variable operates at it’s maximum value to drive the system performance.
The conditions for this system that equate to this type of control method
may be expressed as:

Fr = Frou (36a)
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where F. .. is determined by the characteristics of the material used for

the tether. The other option for the value of the tension force is

Fr =00 (36b)

e

Where the maximum tension, Fy_,, , is determined by the material

e

Ty
i%e

properties of the cable that is being used, and the physical size of the cable.

-

For this project, the material selected was Kevlar and the nominal diameter

.

of the cable was 1.0 centimeter. Since the maximum tension in the cable is

determined by the product of Young’s Modulus for the material, E, and the

X

cross sectional area of the cable, A, then the maximum yield strength of this

tether is 2.1205675 x 10° Newtons. Using the Bang — Singular — Bang type

of optimal control, with thg cable tension fixed at F  , , the only

T WD

remaining variable not analytically determined is the initial separation
distance, D, , at which the tension force is applied to the cable. The

v variation of the initial separation distance, D, , will make a difference in the
ﬁ final altitude that the shuttle will reach because this distance determines the

length of time that the cable will transfer momentum from the external tank

=

= to the shuttle. Using the same method for determining the optimum energy
§ value as was developed for determining the solution for the temsion

" coefficients, it is obvious that the orbital energy, 8, , is also a function of
:.: the initial distance. Using the same form of expression as in equation 29, it
a would be possible to write a Taylor series expansion of the orbital énergy in

terms of the separation distance, D . However, the end result would be the
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same expression as equation 30 and solving this equation for the resulting 38X
matrix would require the same solution techniques as for equation 34. If 83X
is now defined as the 1 x 1 matrix ( a scalar ) containing the separation
distance, D , it is possible to use equation 34 to solve for the optimum
value. Thus, the solution to the incremental adjustment process is still
determined by the solution to equation 34. The only difference in the
process as it was described above is that instead of N linear equations to
solve ( one for each coefficient ) there is only the one equation for the value
of the initial separation distance. With the initial separation distance as the
variable in the 3X matrix, the matrix is now only a scalar and a complex
equation solver is not required as with the N tension coefficients.

Theoretical analysis of the system equations of motion enabled a
further simplification to be made in the optimization process by eliminating
the complex problem of having to determine the polynomial representation of
the tether temsion. Due to the nature of the three body system, the optimal
control solution to maximizing the altitude of the shuttle is to have the
tension in the tether be equal to the material limits of the cable, or have no
tension in the tether at all. This simple Bang — Singular — Bang system
means that the only variable once the size of the cable has been chosen is
when, measured in terms of initial separation distance, to "turn on" the

cable tension.
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IV. Program Development and Method of Solution

The theory presented above for the perturbation process -
the optimum value for the separation distance at which to appl

force on the cable has been programmed in FORTRAN. An o
computer algorithm will facilitate understanding of the results t!
presented in the next section. The physical values for the size

the external tank and shuttle are part of the input routine, as -

initial value for the separation distance. The initial conditions

body position and velocity are input as data in the geocentric e
coordinate frame, and after program initiation they are transfon
local relative coordinate frame described in Section II. With tb
initial conditions for position and velocity, the process still requ
for choosing the "turn on" distance of the temsion in the tether
arbitrary value for the separation distance may be selected, and
of motion for the end bodies ( equations 24 to 27 in Section II
numerically integrated in the relative frame using the numerical
Haming. The tension force is held equal to zero during the ca

the trajectories of the two end bodies until the distance betwee

determining

the tension
ine of the
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exceeded the selected value for the separation distance. Once the tether
force has been "turned on", it’s input in the numerical integration process
continues until the separation between the bodies has reached the maximum
tether length. There are trape in the program to avoid pulling on the tank
for momentum transfer after it has crashed on the earth, if the temsion in
the tether becomes negative, or if it is in a higher orbit than the shuttle.
When the numerical integration of the orbit has been completed, the position
and velocity of the shuttle at t, , the end time, are transformed from the
local reference frame into the geocentric equatorial frame so that the classical
orbital elements of the post—release orbit for the shuttle may be determined.
Then the result of that separation distance can be judged by comparing the
orbital energy after the "toss" with the nominal orbital energy, &, , and
any other values to determine a maximum. This basic outline is what the
program does for each separation value that is input, and the first cycle of
the equation of motion subroutine is to determine the nominal energy,

gum , value at the reference point.

After a nominal value for the energy is determined, a perturbation
process is used to explore the sensitivity of the energy to changes in the
separation distance. In the perturbation process, each iteration determines
five perturbed values that cluster around the nominal value. These
perturbed values for the distance are used to analyze what direction and
magnitude of change to use for the next improvement to the separation
distance. Using the process described above for determining 8“,, , the
integration is repeated for each of the perturbed separation distances. Then
the position and velocity vectors are transformed and the orbital energy is

determined at each of these points. By then using numerical analysis

35
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techniques to analyze the five points ( 1:883—886 ), it is possible to find
values for the first, 35 /aX | .. , and second derivatives, #5./0X?| .._ ,

of the orbital energy at that nominal separation distance. The tests
described in Section III for a maximum are run on these two derivatives,
and if necessary the next improvement to the separation distance, 38X |, is
determined. Through the equations for determining 3X listed in Section III
( equations 31 to 35 ), the next incremental improvement to the X matrix
is determined. With the new value for the separation distance from equation
35, the iterative process is repeated until the separation distance for the
maximum value of orbital energy is reached. In this process, it is important
to remember that the orbital energy of all orbits under consideration have a
negative value ( & <= 0.00 ), and to maximize this value will be to make

it’s value marginally less than zero. '
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V. Results and Discussion

The validity of the equations of motion developed in Section II for the
simplified two body system of the shuttle and the external tank has been
validated by comparing the result of integrating the equations of motion with
the classical orbital elements of a known reference orbit. To further check
the validity of the computer implementation of the equations of motion, the
position vectors of the two end bodies were input and after transformation to
the local frame, integrated for §0,000 seconds in simple two body motion
with no external forces, such as air drag, to compute the position vectors.
Then the local coordinate frame position vectors were transformed back into
the geocentric frame, and the classical orbital elements were calculated to
compare with those of the two bodies at the initial time. The small changes
in orbital elements from the initial time to the final time can be accounted
for by round—off error in the transformation from inertial geocentric
coordinates to the local relative frame, and then back again. For example,
the difference in a , the semi~major axis, over the trial period was less

than .5 meters with the initial orbital radius being about 6,444,000 meters.
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Since this is a change of approximately 7.76 x 10~% per cent, it is obvious
that the simple two body portion of the model is operating correctly.

For the case that was investigated in this paper, the shuttle and
external tank are assumed to be at the normal separation point and the
shuttle has started to pay out the cable as it moves away from the external
tank. The separation point is at an altitude of 656 kilometers, and the
shuttle has already acquired the velocity to carry it to it’s normal orbital
height. From the initial run of the program, these initial conditions give the
shuttle a semi—major axis of it’s orbit of about 6490 kilometers which is
used as the absolute standard to judge performance of the tether "toss”.

While previous investigations ( 12:167 ) into the use of the tether as a
means to augment rockets for propulsion have shown that the boost available
from a tether is proportional to the length of the tether, they assumed a
constant tension in the tether from the time it was deployed until the tether
was discarded. The method of this research, varying the point at which
tension is applied to a constant tether length, has the same effect as
changing the length of cable used on a tether "toss". For the 1.00
centimeter tether used in the Bang — Singular — Bang model that was
described in Section III, the results of variations in the orbital energy, &, ,

for the different initial separation distances of the post release orbit are
shown in Pigure 8. The graph in Figure S measures the initial separation
distance at which the temsion is applied ( in kilometers ) on the horizontal
axis, and the resulting orbital energy from the "toss" along the vertical axis.
The orbital energy is a measure of the potential and kinetic energy of the
shuttle, and by using dimensional analysis it is easy to determine that the
units used for this term are (length)?/(time)?, and this is the specific
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mechanical energy of the shuttle. For this model, the velocities of the bodies

were measured in km/sec and their masses were measured in kilograms, thus
&, is measured in km?/sec?.

Since the orbital energy term, é”. , is somewhat hard to relate to the
actual performance of the "toses" on the shuttle, using Equation 28 it is
possible to determine a , the semi—major axis, for the various separation
distances shown in FIgure 3. Then plotting these values of the semi—major
axis, a , for the same range of initial separation distances as was shown in
Figure 3 will yield the graph that is shown in Figure 4.

The smallest distance that is on the graph of Figures 8 and 4 is 10
kilometers because for distances less than this the time required for the tank
and shuttle to reach the 100 kilometer length of the tether exceeds 15 hours,
and this is too long to be of use. In addition, the resultant "toss" from the
tether actually ends up pulling the shuttle downwards because the tank is
still very close and the resultant force is almost straight downwards. The
end result of this arrangement is that the tank ends up being pulled up and
the shuttle is pulled down. The very small values for 8. on Figure 3,
and for a on Figure 4, for the 10—11 kilometer range of separation, and
the subsequent large jump at the 12 kilometer point are related to the
relative positions of the tank and shuttle at the time the tension is "turned
on". As the external tank and shuttle drift apart after initial separation, the
relative velocity between the two gradually starts to build, but it is not until
the distance reaches the 12 kilometer point that the force on the tether is
insufficient to eliminate the relative motion. After the twelve kilometer
point, the energy would continue increasing proportional to the increases in

separation distance except that the relative positions of the tank and shuttle
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cause the external tank to impact on the earth before the tether reaches it’s

full deployment length. As the separation distance increases, more of the
relative motion is in the horizontal mode and when the tether is tensioned
the resultant force is more in the horizontal direction than in the vertical
direction. However, since the external tank is at it’s apogee when the initial
separation occurs every bit of momentum that is transferred to the shuttle
makes the descending path towards perigee that much steeper, and the
transfer of momentum lowers the perigee of the tank from it’ initial value at
the separation point. Thus, as the initial separation distance increases in the
13 to 26 kilometer range the external tank has dropped that much lower in
altitude before the shuttle can start using it as an energy source. It
becomes a vicious circle because the longer the separation distance is the
closer the tank is {o the earth, and the less momentum transfer is required
to cause it to crash. However, as the tether separation distance starts to
increase further, another factor enters into the picture that tends to mitigate
this problem. As the tether separation distance passes about the 28
kilometer point, the displacement from the local vertical that causes the
restoring force in the tether becomes so large that the shuttle is actually, in
some cases, slung ahead of the external tank. This is referred to as a
swinging release ( 11:167 ), and can either increase or decrease the orbital
energy of the shuttle. Of course, in most cases it is assumed that the tether
will be released before it will start to decrease the emergy of the payload.
Thus the reason for the continued drop of both Figures S and 4 after the 30
kilometer point is because the point of initial tension application is still far
enough from the 100 kilometer termination point that the tether actually
starts to pull the shuttle back down towards the external tank. The
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orientation of the shuttle and the tank at the 40 kilometer separation point

is such that the shuttle is released on the "upswing" of the momentum
transfer from the external tank, and thus it receives the full benefit of the
tank’s energy. Prior to this point, the shuttle is released after passing the
local vertical because the tether does not reach full deployment until that
time. The large drop at the 45 kilometer point is because the tank crashes
into the earth. This same factor is the reason for the large drop in the
graphs at the 50 to 54 kilometer separation distances. By the time the 60
kilometer separation distance is reached, the tank is too far from the shuttle
to drop the tank into the earth before the length limit is reached. The
jumpe that occur at the 65, 75, and 85 kilometer points are there because of
the orientation of the tether at the moment of shuttle release. The shuttle
is released prior to passing the local vertical and so does not lose the energy
gained by the momentum transfer.

It is obvious that the maximum momentum transfer from the tank
into the shuttle is a balancing act between pulling on the cable too soon and
dropping the external tank into the earth ( and the shuttle also ) or slinging
the shuttle around the tank and back towards the earth and a lower orbit or
pulling too late and not getting the full benifit from the tether before
maximum separation distance is reached. The different types of tether
releases have been given names that are descriptive of the method in which
the cable is allowed to pay out. When the tether is let out véry slowly, and
the two objects stay very close to the local vertical such that it appears that
the bottom object is falling while the top one is climbing along the reference
defined by the local vertical, this is called a "hanging" release. When the

tether is allowed to pay out very fast and then tightened up so that the
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shuttle is spun around at the end of the tether, this is called a "swinging"
release. The increase in orbital energy between the "swinging" release ( the
jump points Figure 8 ), and the normal or "hanging" releases was by about
a factor of 1.42 for the separation ranges between 50 and 86 kilometers.
Previous attempts to quantify the contributions of tethers ( 13, 11, 12 ),
have shown that the change in velocity ( or "characteristic velocity" ) of a
tether is a function of it’s material properties, it’s length, and the type of
release used. For a swinging release with the shuttle released at or prior to
the local vertical point of the tether, the effective increase in the velocity is
by about a factor of 1.2 . Since the orbital energy is directly proportional
to the square of the velocity, then any change in the velocity by a factor of
1.2 should give a proportional increase of the orbital energy by a factor of
1.44, with all other factors being the same. This agrees very well with the
result that was given by the program for the jump from the value for é".
at an initial separation of 76 kilometers as opposed to 78 kilometers. Thus
the jumps in the curves for Figures 3 and 4 may be explained as being
caused by the variations in either the initial or release geometry between the
shuttle and external tank. The flat portion of the graphs in Figures 8 and 4
starts at 90 kilometers, and :ontinues until the distance reaches 100
kilometers. The reason for this flat section is that the tether did not have
time to significantly change the orbit of the shuttle before the maximum
tether length was reached. The values shown for this portion of the graph
for g, on Figure 3, and a on Figure 4 is about the same as that for the
unmodified orbit that was used as a test for the equations of motion of the
system described in Section IV.
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A comparison of rocket enginess presently being used to boost the
shuttle with the effectiveness of the tether "toss" would show the benifits of
tether useage. The way to accomplish this comparison would be to compare
the effective specific impulse of the tether to that of the shuttle manuevering
engines, and a typical solid fuel booster. To determine the specific impulse
of the tether, it is first required to find the change in linear momentum of
the shuttle at the time of tether release from it’s pre— tether state. Then,
the gain in shuttle performance measured as an effective I, will be
determined by the ratio of increase in linear momentum to the penalty
caused by having to carry the weight of the cable. This can be expressed

by the following formula as:

L, =4P/W, (37)

Where I.p is the specific impulse of the tether, A P is the change in the
linear momentum of the shuttle, and W, is the weight of the cable. Since
the material for the cable was chosen to be Kevlar the density, p, , 18 1.45
grams per cubic centimeter. Thus for a 100 kilometer tether with a
diameter of 1.00 centimeter, the mass is 1.138827337 x 10* kilograms. Using
the standard acceleration for gravity at the surface of the earth, the value of

the I, for the entire range of separation distances shown in Figures 3 & ¢

was plotted in Figure 5. While the shape of the curve showing the

performance of the tether does not change very much from the previous

figures, there is additional information to show the relative I,p of the shuttie
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manuevering engines ( I of 313 seconds ), the solid fuel booster ( I, of
230 seconds ), and the tether’s Iy ( variable ). The bottom line on the

graph at zero represents the unaided ( or normal ) level with no added
boost. The maximum specific impulse that the tether acquired was 237
seconds as conmpared to the 313 for the manuevering engines, and 230 for
the solid fuel boosters.

The program based on the set of equations developed in Sections II
and III was used to examine the range of release values between 10 and 100
kilometers, and determine the distance at which to apply tension that would
result in the maximum altitude gain for the shuttle. The optimization
routine determined the separation value that gave the maximum emergy to
the shuttle was for the distance of 76.742 kilometers. This agrees with the
approximate point picked from the output ( see Figures 3 and 4 ) of a
different program that simply did an iterative search throughout the entire
range of allowable tether values, and calculated the resulting orbital energies
and semi—major axes. Using the value found by the optimization routine for
the initial separation distance, the shuttle would acquire a semi—major axis,
a , of 7093.129 kilometers and an orbital energy, 8. , of —28.0977 km?/sec,
from a controlled tether "toss". This represents an increase in altitude of
603.066 kilometers from using a tether that is 100 kilometers long. The
comparison of specific impulse with other types of shuttle propulsive devices
enabled a comparison to be made of how well the tether performed relative

to other currently avliable devices.
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The equations of motion have been developed and validated for
calculating the motion of the combined external tank and space shuttle

system while they are connected by a tether. Using the optimization
procedure that was developed in Section III it is possible to determine the
separation distance between the tank and the shuttle for application of
tension that will result in the maximum altitude gain for a cable with given
physical size and material properties. While there are many possible
combinations of tether length and diameter, the results for a typical cable of
Kevlar that is 100 kilometers long and 1 cm in diameter was used. The
resulting "toss" contribution to the shuttle boost from the cable was
maximized at an initial separation distance of 76.742 kilometers. The shuttle
was boosted so that it’s semi~major axis was increased from 6490.063
kilometers to 7093.129 kilometers, which is a gain of 603.068 kilometers.

The benefits from using the cable to transfer momentum from the
external tank to the shuttle are obvious as this will increase the number of
mission options that are available for the shuttle to fly. The increase in

altitude that may be gained from a tether "toss" could be used to allow
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rescue of malfunctioning satellites in medium altitude orbits that are
presently impossible for the shuttle to reach. Not only rescue, but launch of
satellites would benifit from the increase in shuttle altitude since medium

altitude orbits could be reached without the requirement for a space tug to
carry the satellite the last 400 km. In addition, by changing the

& Kl

optimization search routine, the program could be made to find the
maximum increase in shuttle cargo weight that would still allow reaching the

normal shuttle operating altitude. The extra velocity needed to carry the

extra weight to orbit would come from the exchange of momentum with the

external tank.

B 2

While the use of such a tether to improve the performance of the
shuttle shows great promise, there are disadvantages as well as the
advantages already listed. The disadvantages are increased complexity to
control the tether temsion, added weight for the tether and control

e ox

mechanism, abort options in the event the tether breaks during deployment,

o2

and control of tank for disposal. The magnitude of the contribution that can
be made to shuttle operation during the boost phase from a tether "toss” is

enough to overcome all of the above disadvantages except the last. The

=N

momentum extraction from the external tank will cause it to fall in areas

that have previously been considered safe from tank impact. Thus, tether

&3

disposal of the external tank appears to be a very promising method of

<
=

- -
-
-’

operation for orbital boost, but control stability and guidance of the tank
dispersion after use are issues that must be solved before the benefits may
be realized. -

&5

While the development of the optimization algorithm is general enough

to determine the performance of any size ( length and diameter ) tether, the
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issue of how the tether compares on a cost basis compared to an equivalent
rocket boost has not been addressed. It should be possible to determine
approximate masses for the tether, deployment mechanism and control
system to allow for a direct comparison on a dollar basis. In addition, now
that the dynamics of the system have been determined it would be possible
to specify a desired set of end conditions ( in terms of orbital elements ) for

N
&N

the shuttle, and using the optimization routine contained herein to determine

&2

the size of cable and temsion profile required to meet those performance

A

conditions.
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Abstract

OPTIMAL SHUTTLE ALTITUDE CHANGES USING TETHERS

The possible use of tethers in space has been proposed for the last hundred years.
While much work has been done recently on the use of tethers for towed satellites
from the Space Shuttle, little has been done to determine the possible benefits of
using tethers as %r:gukive devices to supplement or replace rocket engines for boost
from Low Earth it. This project attempts to determine one method of using
tethers to improve the performance of the Space Shuttle. Orbit insertion
parameters such as velocity and final altitude for the space shuttle are limited by
operational constraints on the possible deita V that can be supplied from the
engines. The possibility of increasing the performance of the shuttie exits by use
an inter—connecting tether to serve as a momentum transfer device between the
External Tank and the Shuttle. This added momentum would widen the possible
orbit options presently available by boosting the shuttle to a higher orbit. This
project derives the equations of motion for a three—body connected dynamical
system to include the Shuttle, the external tank, and the cable in orbit around a
spherical Earth. Due to current material limitations the tether length is limited to
100 kilometers. The possible envelope of orbital changes is investigated, and this
program determines through an optimization routine the tension profile in the cable,
and the initial separation distance to apply tension to the cable that results in the
maximum altitude gain for the shuttle.
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