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SCIENTIFIC REPORT 2 2-D LFD AT YUCCA FLATS AFGL-TR-86-0220

EFFECTS OF LOCAL GEOLOGIC STRUCTURE
ON YUCCA FLATS, NTS, EXPLOSION WAVEFORMS:
2-DIMENSIONAL LINEAR FINITE DIFFERENCE SIMULATIONS

SUMMARY

Two-dimensional linear elastic finite difference calculations were performed for a
two-dimensional geologic model of Yucca Flats, Nevada Test Site, Nevada. The cal-
culations were used to produce synthetic teleseismic P-wave seismograms for explosive
line sources in Yucca Flats. P-wave coda (first 5 seconds) is observed to be highly
dependent on takeoff angle for the teleseismic synthetics. P-wave coda varies with the
position of the source in the valley structure and may produce variations in the indivi-
dual station teleseismic P-wave m, magnitude of up to 0.3 magnitude units. However
these magnitude variations should be substantially reduced by averaging over stations

at multiple azimuths.

The reverberant coda appears to arise from scattered modal waves that are ini-
tially excited in the low velocity near-surface structures of the Yucca Flats deposits of
alluvium and tuff. Scattering of the waves occurs at offsets in the basement structure

and at the sides of the valley.

The combined effects of scattering, source function, intrinsic attenuation, and

instrument response serve to obscure the expected P+pP spectral scalloping that i<

expected from a linear model. This loss of spectral resolution 1s the product of P codu

filling in the P+pP interference notches and the lengthening of the initial P owave
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source time function by the convolution of the source time function, intrinsic attenua-
tion operator and instrument response. Therefore, short time windows that do not
include P coda energy do not have sufficient resolution to reliably detect the P+pP

interference notches.

INTRODUCTION

Yucca Flats explosion waveforms have often been noted to posses unusual rever-
berant P coda. The suggestion that this complication is due to near-source structure is
apparent from observations that teleseismic P coda recorded in Yucca Flats is also
reverberant (Der et al 1980). Also, regional phases such as Pg and Lg recorded in

Yucca Flats are anomalously large and have extended codas (Der et al 1980).

Also, several authors have claimed that there are systematic magnitude anomalies
due to location within Yucca Flats (Blandford and et al, 1977, Minster et al, 1981;
Ferguson, 1981, 1983; Meliman et al 1983). These magnitude anomalies have gen-
erally been associated with the shallow graben structure of Yucca Flats. The horst and
graben structures strike north-south and magnitude anomalies have generally been attri-

buted to the east west lateral variation in structure.

We present simulations of explosions within the laterally varying structure of
Yucca Flats. The calculations are 2-D linear elastic finite difference calculations for
line sources in a 2-D model. The calculations are used to simulate the first 5 seconds
of teleseismic P waveforms. Vanations in m, and P-coda are observed as a function
of take-off angle and azimuth. Spectra of the teleseismic waveforms are also exam-

ined. We compare the waveforms predicted from the 2-D modeling with waveforms

TGAL-86-4 2
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predicted from simple 1-D layered models. Finally we show some deconvolved
equivalent source time functions of Yucca Flats explosions at the arrays EKA, YKA,

and GBA as well as recordings at the LRSM station, RK-ON.

CALCULATIONS

A 2-D geologic structure suggested by Ferguson (1981, 1983) was used to calcu-
late synthetic seismograms for explosion sources in Yucca Flats. The structure 1s
shown in Figure 1 with a 5-to-1 vertical exaggeration. The structure can be conswdered
to be a West-to-East cross-section, looking North along the strnike of the valley. The
upper most layer has a P-wave velocity of 1.34 km/sec, and represents the surface allu-
vial deposits that cover the valley floor. The intermediate depth layer has a P-wave
velocity of 2.14 km/sec and represents a layer of undersaturated tuffs. The 3.0 km/sec
layer represents the saturatcd tuffs that unconformably overlay the 4.57 km/sec Paleo-
zoic carbonate sediments that form what is usually referred to as the Paleozoic base-
ment. The basement itself has been folded and faulted in the Cenozoic. Faulting is pri-
manily responsible for the basement relief shown in Figure 1, but a pre-volcanic (Terti-
ary) erosional surface provides some of the basement relief. Review and summary of
the Geology of Yucca Flats may be found in Bames, Housner, and Poole (1963),
Bames and Poole (1968), Colton and McKay (1966), Keller (1960), Ekren (1968), and

Ramspott and Howard (1975).

The S-wave velocity (B) was assumed to be directly related to the P-wave velo-
city (a) by the following linear relationships: for a < 3.0, B 045 a; for 3.0 < a <

50,8 =050 «; and for a > 50, B 059 a The 2D hnear clastodynamic fimte

TGAL-86-4 3
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difference calculations (Kelley et al 1976) were performed on a grid with 0.05 km
spacing. A two point radius smoothing operator was applied to the model in Figure 1
in order to smooth the first order discontinuities. Consequently the first order discon-
tinuities in Figure 1 are replaced by gradient layers 2 to 3 grid spaces thick (100 to
150 meters). A broadband plane P-wave pulse was directed from the 4.57 km/sec
half-space at either a normal, 5 , 10, or 15 degree incidence angle. A flat free-surface
boundary condition was assumed for the top of the grid, and the Clayton and Engquist
(1977) absorbing boundary conditions were used for the sides and bottom of the grid.

The dilatation was computed at each of the numbered sites indicated in Figure 1, at a

T

depth of 550 meters in the saturated tuff layer. By use of the reciprocity principle,
the displacement response at an infinite distance (teleseismic) was determined for a
dilatational line source with a von-Seggemn and Blandford (1972) reduced displacement
potential (RDP). The RDP was appropriate for a 100 Kt explosion in hard rock. A
frequency dependent attenuation operator appropriate for NTS to shield path (Der and

Lees, 1984) (see Figure 2) and an instrument response were then applied to the final

-

synthetic seismogram. The synthetic seismograms are considered accurate up to 4 Hz.
At frequencies above 4 Hz, the S-wave wavelengths are shorter than 10 grid spaces in
the slowest portions of the model. Since 4 Hz P waves are rarely seen at teleseismic

distances from NTS, this is not considered an important limitation. Incidence angles

of 0,5, 10, and 15 degrees (in the 4.57 km/sec halfspace) were used so that the P-
wave synthetics correspond to teleseismic P-wave slownesses of 0.0 2.0, 4.0, and 6.4
b sec/km. Flat layered models for the same incidence angles were calculated to compare

with the 2-D model of Figure 1. These flat layered models were chosen to coincide

e m mAE e wm & m. a A A A e oen

TGAL-86-4 4

EVS e A IS )

- - - o, 4 . e L4 e W o« . ~-\‘.\\\‘-‘-'.'.\'-'.'\'-.\\'
VR ORI M A SR BN, 2008 AL A I, N, AN SRNRN 26 M MR A N ANCH S SO O NN GH O
o A 1 i X 3 N A .




SCIENTIFIC REPORT 2 2-D LFD AT YUCCA FLATS AFGL-TR-86-0220

with the vertical velocity sections of Figure 1 at source points 5 and 10.

Figure 3 shows seismograms for a takeoff angle of 15 degrees at the numbered
source locations 1 through 13 in Figure 1. Five seconds of synthetic seismograms are
shown. All traces are shown at the same relative scale. The takeoff angle is defined
such that the receiver is to the east of the valley at a distance of 65 degrees. Note that
the initial P waveform is fairly stable with the characteristic P+pP interference notch
while the coda varies dramatically across the model. The coda appears to be larger for

sources towards the west.

For comparison, Figure 4 shows the seismograms for source locations 7, 8, and 9
at takeoff angles of 15 and -15 degrees (receivers to the east and west respectively).
Additionally, the response of a 1-D layered model for the same takeoff angle is shown.
All seismograms are shown at the same scales. The coda of the 1-D layered model is
much reduced while the initial P waveform is very similar to that of the 2-D model.
The receiver to the west (-15 degrees) has a slightly different P+pP interference notch

and slightly less coda.

To further demonstrate the P-coda generation inherent in the 2-D model, Figure 5
shows the response of the 2-D model for a takeoff angle of 15 degrees, and sources at

locations 4, 5, and 6 compared to the response of a 1-D model with the same vertical

velocity structure as at source location 5. The principle differences remain in the P

coda following the P wave by more than 2 seconds.

The 1-D vertical velocity structures of Yucca Flats taken at source locations S

2 1
and 10 produce very similar responses as seen in Figure 6. The seismograms are off- g
R
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set slightly for the comparison. Simple 1-D layered models do not produce sizable
anomalies in the teleseismic seismogram.

The coda generation appears to be a strong function of the takeoff angle. Figure 7

shows the response of the model for a source at location 5, and takeoff angles of 0 and

. SRR & E AT P S W B A ma— ——

15 degrees. The P wave of zero slowness has much reduced coda generation. How-

ever, the initial P waveform is similar for the two takeoff angles.

AMPLITUDE SPECTRA

Figure 9 shows amplitude spectra for a source at location 7 and takeoff angles of

F.
~
C
!
b
F.
"

0, 5, 10, and 15 degrees. A 2.5 second window has been used for each spectral estima-
tion. No smoothing operator has been applied. No source time function, seismometer

response, Or attenuation operator has been applied to the model response. The P+pP

interference notches are clearly visible for all takeoff angles. The structure explored
here is not sufficiently complex to obscure the linear pP reflection viewed at telese-

ismic distances.

Figures 9A and 9B show spectra for 2.5 and 5.0 second windows for the source
location 5, takeoff angles 15 and -15 degrees with source time function, seismometer
response, and attenuation operator applied to the model response. The P+pP spectral
scalloping is no longer apparent in the spectra. Figure 9C shows the spectra for a 1-D
layered model. The P+pP spectral modulation is evident in the 1-D layered model
spectra for both the 2.5 and the 5.0 second windows. Therefore, the 2-D model is
responsible for the lack of P+pP spectral modulation when the source time function,
attenuation operator, and instrument response have been convolved with the model

TGAL-86-4 6
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response. Since the model response without the complications of source, attenuation,
and instrument shows P+pP nulls for short windows, it is evident that the smearing

effects of the convolution also contributes to the loss of spectral resolution.

TELESEISMIC rm,

In order to compare the predicted magnitude anomaly that may occur for a
laterally varying model such as this, the amplitudes of the "a", "b", and "max" phase
of the P waves of Figure 3A and B were measured and plotted in Figures 10A, 10B,
and 10C. The varation is plotted as log(amplitude) and log(amplitude/period) just as
teleseismic magnitudes are computed. The log(A) and log(A/T) measurements are
shown West-to-East across the model at source locations 1-to-13 in Figure 1. The "a",
and "b" phase measurements show little vanation as expected. Maximum vanation is
0.20 magnitude units for mb(Pa) and mb(Pb). The mb(Pa) and log(A) measurements
show slightly less variation than the mb(Pb) and log(A/T) measurements. The
mb(Pmax) measurements show the greatest variation since they are dominated by the
later coda for several synthetic seismograms. The range of log(Pmax/T) vanation is at
most 0.4 magnitude units. Log(Pmax/T) has a larger variation than log(Pmax). Obvi-
ously, the estimation of the dominant period, T, is a significant source of estimation or
measurement error. Since network standard deviations of 0.3 to 0.4 magnitude units
are typical for single stations, it is conceivable that at least part of the variation of
log(Pmax) may be the early P coda generation by the laterally varying structure. Stan-
dard procedures for measuring m, require that the largest arrival in the first few

seconds be used for measurement. A higher log(Pmax) magnitude is observed for

TGAL-86-4 7
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source Jocations ! and 2 on the westem side of the Yucca Flats structure. A
log(Pmax) magnitude minima occurs in the center of the Flats structure and the pattern
is similar to the pattern found by Mellman et al. (1983, although the amplitude of the

predicted fluctuation appears to be 0.2 magnitude units larger in this study.

COMPARISON WITH OBSERVED WAVEFORMS

TV CLIHEREY 5450 5 ElNYS OV Ty er

LA

The P-coda arises from the scattering of waves initially excited in the low velo-
city graben structure of the valley. Fault offsets and slopes of the basement act as
locations for the conversion of the trapped waves into downward propagating P-waves.
In the case of our 2-D simulations, these trapped waves are excited by a line source
and propagate in a 2-D structure, and therefore they have less geometrical spreading
than do waves from a point source in a 3-D structure. In fact, Rayleigh waves under
these 2-D circumstances do not attenuate with distance if it were not for scattering.
Therefore, P-coda is probably over estimated by the 2-D calculations. The P-coda
predicted by our 2-D calculations should constitute a good upper bound to the P-coda

generated by explosions in Yucca Flats.

We show in Figure 11A deconvolved source time functions (see Shumway and
Der, 1985) Yucca Flats shots and Piledriver (Climax Stock) recorded at EKA (71.4°).
The resolution kemel for the deconvolution is shown at the top of Figure 11A and
indicates the potential resolution afforded by the bandwidth of the deconvolution, 0.4
to 3.5 Hz. The instrument and frequency independent t*=0.45 sec attenuation operator
have been removed as part of the multichannel deconvolution. See Table 1 for event

information. The Yucca Flats explosion source time functions (far-field displacement)
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show reverberation lasting several seconds. Piledriver was detonated in the Climax
Stock located to the north of Yucca Flats and does not show the low-frequency rever-
beration. Although Piledriver shows a negative polarity pulse following the initial P
wave by about 0.25 seconds that could be interpreted as a pP, the Yucca Flats events

show little or no apparent pP's within 1 seconds following the initial P wave.

We argue that the major variations in the elements of the "equivalent source func-
tions” presented are due to the near source structure. Topgallant and Strait were
located only 0.36 km apart. Likewise Lowball and Hearts were located 1.32 km apart.
There are a number of similarities between the "equivalent source functions” for these
two pairs of records. Lowball and Hearts were located between 2 and 2.25 km from
Topgallant and Strait and the two pairs of explosion time functions show systematic
differences. Farallones is located more than 4 km from any other explosion shown in

Figure 11A and looks the least like any of the other explosions.

Figure 11B shows deconvolved source time functions for seven Yucca Flats

events at YKA (25.5°) but the records are complicaied by the upper mantle triplica-

tions The first triplication lengthens and complicates the source time function consid-
erably. The second tnplication is prominent about 16 seconds following the initial P
wa > Again, similarities between pairs of equivalent source time functions are

apparent for explosions that were located close together. Scantling and Topgallant

were separated by 045 km, Quargel and Cabrillo by 0.79 km, Crewline and Lowball

by 174 km and Crewline and Bulkhead by 1 51 km many of the fine details of the

coda and the two tnplications can be correlated between pairs of neighboring events. |
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Figure 11C shows three out of four events at GBA (127.8°) that exhibit the rever-
berant P-coda in the first 5 seconds. Also, it is apparent that the near source generated
coda is azimuthally dependent when Strait at GBA is compared to Strait at EKA. The
explosion pairs Crewline and Bulkhead and Crewline and Strait are separated by 1.51
and 1.59 km respsectively. Farallones on the other hand is located more than 4 km

from any of the the other events in Figure 11C.

The individual traces of the R3 element of the EKA array are shown for 5 Yucca
Flats events and Piledriver (as in Figure 11A). The source complexity is still apparent

in these raw records when we compare Piledriver to the Yucca Flats events.

Figure 13 shows the complexity of several Yucca Flats events compared to
Piledriver at the station RK-ON (Table 1 for event information). The reverberant P
coda is clearly due to near-source structure since the Piledriver record shows much less
complexity and the paths are nearly identical except for the Yucca Flats, Climax Stock
locations in NTS. The only pair of explosions located within 1 km of each other in
Figure 13 are Chiberta and Commodore, and they show similarities in the coda out to

P+20 seconds..

These records make a qualitative argument that much of the equivalent source
time function observed teleseismicaly from Yucca Flats explosions is near source

related and varies with azimuth and location within the Valley.
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TABLE 1. EVENT LOCATIONS AND DEPTHS
YEAR DOY EVENT LAT. LONG. DEPTH(km)
1966 153 PILEDRIVER 37.22707 -116.05554 0.4627
1967 140 COMMODORE 37.13041 -116.06395 0.7452
{ 1975 059 TOPGALLANT 37.10620 -116.05625 0.7132
o 1975 066 CABRILLO 37.13401  -116.08424 0.6005
1975 114 EDAM 37.11568  -116.08739 0.4115
r 1975 120 OBAR 37.10886  -116.02880 0.5690
{ 1975 154 MIZZEN 37.09483 -116.03610 0.6370
; 1975 249  MARSH 37.02365 -116.02831 0.4267
; 1975 354  CHIBERTA 37.12765 -116.06157 0.7160
1976 077 STRAIT 37.10728 -116.05247 0.7803
1977 117  BULKHEAD 37.09479 -116.02789 0.5943
y 1977 145  CREWLINE 37.09433  -116.04486 0.5639
' 1977 231  SCANTLING 37.11003  -116.05451 0.7010
1977 348 FARALLONES 37.13587 -116.08603 0.6680
1978 193 LOWBALL 37.07867 -116.04379 0.5639
1978 322 QUARGEL 37.12687 -116.08388 0.5420
1979 249 HEARTS 37.08811 -116.05279 0.6400
CONCLUSIONS

"

We show that the reverberant P-coda from Yucca Flats explosions is due to the

r scattering of trapped waves in the low-velocity structure by variations in the Paleozoic

basement of the horst and graben structure. This reverberation can be seen at a
number of azimuths (Mellman et al 1983) and clearly distinguishes Yucca Flats explo- {
sions from Pahute Mesa or Climax Stock explosions. We find that the P-coda

increases with increasing takeoff angle.

Variations in individual seismic station m, (Pmax)’s may approach 0.3 magnitude

units due to changes in location of the explosion, takeoff angle, and azimuth. How-

ever, these variations should be reduced substantially by network averaging.
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Neither the m, (Pmax) variations nor the P-coda variations can be attributed to a
purely 1-D layered structure without lateral variation. Although our calculations agree
favorably with Haskell-Thompson calculations for 1-D layered structures, there are no
independent checks of the calculations for full elastic calculations of line sources in 2-
D models. Because of the differences between 2-D and 3-D calculations, the P-coda
predicted by these methods is probably an upper bound on the true 3-D case. Obser-

vations of Yucca Flats explosions do show the reverberant P-coda at several azimuths.

It was found that although there is an elastic P+pP scalloping in the spectra of the
model response, that when instrument, source, and attenuation operators were con-
volved with the model response, that there is a "smearing” effect that diminishes the
resolution of the interference notches. The P+pP time function is drawn out into the
P-coda by the convolutions and the P-coda tends to fill in the interference notches.
These simulations point out the difficulty of observing such notches in the spectra of a
signal. A short window with poor spectral resolution is required to observe the
notches but a long window with higher spectral resolution includes P-coda that con-

taminate the elastic P+pP scalloping.

We do not require complicated sources to simulate the Yucca Flats reverberant
seismograms. The initial portion of the waveform is the least altered by propagation
in the structure. We see no mechanism for apparent * differences due to the scattering
of waves in the Yucca Flats structure. We predict that deterministic m, variations
should be expected as a function of location within Yucca Flats. The m, vanations are

best treated by suitable averaging over numerous azimuths around the source.
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FIGURE CAPTIONS

FIGURE 1. West-to-East model for geologic structure across Yucca Flats from Fergu-
son (1983). Model shown with 5-to-1 vertical exaggeration. Numbered source loca-
tions referred to in the text are indicated by solid dots at a depth of 550 meters below
the surface. P-wave velocities of 1.34, 2.14, 3.00, and 4.57 km/sec are indicated for
the geologic units of alluvium, unsaturated tuff, saturated tuff, and Paleozoic car-
bonates respectively.

FIGURE 2. Frequency dependent t*(f) for NTS to shield path from Der and lees
{ (1985). Time domain attenuation operator, A(t), is shown as inset. r* is 0.45 seconds
at 1 Hz.

FIGURE 3A, 3B. Teleseismic P-wave synthetics appropriate for a takeoff angle of 15
degrees for model in Figure 1. Numbers correspond to numbered source locations in
Figure 1. S seconds of record are shown in each case. All synthetics are plotted at
b the same scale. Synthetics are calculated for a von Seggern Blandford (1972) hard

rock 100 Kt RDP convolved with an instrument response and an attenuation operator
as in FIGURE 2.

FIGURE 4. Synthetics for the Yucca Flats mode!l at source locations 7, 8, and 9, for
takeoff angles of 15 and -15 degrees. Right-most seismograms are for a 1-D layered
model and a takeoff angle of 15 degrees.

b FIGURE SA. Synthetics for source locations 4, S, and 6 at takeoff angle of 15 degrees
compared to the layered model.

FIGURE 5B. Comparison of linear elastic finite difference calculations with results of
a Haskell-Thompson matrix solution for the layered structure at the source location §.
Takeoff angle is 15 degrees.

FIGURE SC. Spectra of the two traces seen in FIGURE 5B. L

FIGURE 6. Synthetics for 1-D layered models at source locations 5 and 10. Takeoff
angle is 15 degrees.

FIGURE 7. Synthetics for the 2-D Yucca model, source location S, at normal and 15
degree takeoff angles.

FIGURE 8. 2.56 second spectra of P waves for 0, 5, 10, and 15 degrec takeoff angle, 1
source location 7. P+pP interference pattern 1s clearly visible in all spectra. Spectra
do not have the source, attenuation, and instrument responses convolved with the
model response as in previous Figures.

FIGURE 9A B,C. 2.5 and 5.0 second windows of the synthetics for source location §
with takeoff angles of 15 (9A) and -15 (9B) degrees. (9C) shows the spectra for a |-
D layered structure appropnate for the same source location

FIGURE 10A. Log(A) and log(A/T) for "a" phase of the P wave synthetics with a 15
degree takeoff angle. Numbers refer to source locations in bigure | Maximum vana-
non is 0.15 log units. ‘
FIGURE 10B. Log(A) and log(A/T) for “b" phase of the P wave synthetics with a 15 ‘
ﬂ degree takeoff angle. Source locations | through 13 in Figure | Maximum vanauon
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is 0.15 log units.

FIGURE 10C. Log(A) and log(A/T) for "max" phase of the P wave synthetics with a
15 degree takeoff angle. Source locations 1 through 13 in Figure 1. Maximum vana-
tion is 0.3 log units.

FIGURE 11A. Deconvolved source time functions (far-field displacement) of Yucca
Flats events and Piledriver at EKA array (A=71.4°). The effects of a constant t*=0.45
sec attenuation operator have been removed. A resolution kernel is shown at the top
representing the limited bandwidth of the deconvolutions, 0.4 to 3.5 Hz. The initl
causal P wave has been been shaded for clarity. Note the higher frequency and shorter
duration source time function of Piledriver with respect to the Yucca Flats events.
Topgallant, Lowball, and Farallones have considerable reverberation in the first 3
seconds of record. The Yucca Flats events do not show a clear pP within 1 second of
the initial P wave, although several events do show a negative phase about 1 second
following the P wave and positive and a positive pulse about 1.5 seconds following the
P wave. Piledriver shows a negative pulse about 0.25 seconds following the P wuve
(pP’) and another negative polarity pulse about 0.8 seconds following the P wave.

FIGURE 11B. Deconvolved source time functions (far-field displacement) of Yucca
Flats events at YKA array (A=25.5°). The effects of a constant t*=0.45 sec attenuation
operator have been removed. A resolution kemel is shown at the top representing the
limited bandwidth of the deconvolutions, 0.4 to 3.5 Hz. The initial causal P wave has
been been shaded for clanty. The P waves are doubly triplicated at this distance
range. The initial P wave (shaded) is followed by a second stronger P wave by about
1.3 to 1.5 second. The two arrivals constructively interfere to produce a reverberant
waveform that lasts 8 seconds or more. A second P-wave triplication follows the ini-
tial P waves by about 16 seconds.

FIGURE 11C. Deconvolved source time functions (far-field displacement) of Yucca
Flats events at GBA array (A=127.8°). The effects of a constant t*=0.45 sec attenua-
tion operator have been removed. A resolution kernel is shown at the top representing
the limited bandwidth of the deconvolutions, 0.4 to 3.5 Hz. The initial causal P wave
has been been shaded for clarity. Strait, Crewline and Bulkhead show the charactens-
tic reverberation of Yucca Flats events. Azimuthal differences are apparent if we com-
pare Strait and Farallones between GBA and EKA (FIGURE 11A)

FIGURE 12. The individual traces of the R3 element of the EKA array are shown for
5 Yucca Flats events and Piledriver (as in Figure 11A). The source complexity 1s less
apparent in these raw records when we compare Pilednver to the Yucca Flats events.
The multichannel deconvolutions of Figure 11A improve the signal-to-noise over the
single trace records.

FIGURE 13. Several Yucca Flats events recorded at RK-ON (A-2?1.0°) compared to
Piledriver. Note the complexity of the P coda from the Yucca Flats events. Complex-
ity is not due to receiver structure or upper mantle P wave complications, but must be
due to the near-source structures of the Yucca Flats events. Chiberta and Commodore
were located only 0.37 km apart.
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