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ABSTRACT A perturbed Lagrangian-based variational formulation is proposed
for the finite element solution of fully nonlinear frictional contact problems.
In the spirit of an operator splitting methodology, an analogy exists between
the proposed treatment for the stick-slip motion and the corresponding treatment
in elastoplasticity.

Within the context of discrete formu!ations arising from a finite element
approximation, explicit expressions for the frictional consistent contact tangent ", .
stiffness and residual are derived from variational equations by using a consistent
linearization procedure for both the sliding and adhesion phases. The consistent
tangent operator is always non-symmetric for the case of frictional sliding owing
to the nature of the Coulomb's friction law employed.

For two-dimensional applications, a three-node contact element is employed
in the finite e!ement discretization. Numerical examples are also presented that
illustrate the performance of the proposed formulation. D T IC
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Within the context of discrete formulations arising from
a finite element approximation, explicit expressions for the
frictional consistent contact tangent stiffness and residual
are derived from variational equations by using a consistent
linearization procedure for both the sliding and adhesion
phases. The consistent tangent operator is always non-
symmetric for the case of frictional sliding owing to the
nature of the Coulomb's friction law employed.

For two-dimensional applications, a three-node contact
element is employed in the finite element discretization.
Numerical examples are also presented that illustrate the
performance of the proposed formulation.
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J. W Ju, R.L. Taylor & L. Y. Cheng 2

1, Introduction

Frictional stick-slip contact phenomena constitute important aspects of real engineering

applications. The micromechanics of friction for metallic surfaces in contact has drawn

significant attention in the literature during the past several decades. Basically, the contact

surfaces are not smooth planes but rough, uneven surfaces composed of many asperities.

Microstructurally. the asperities experience local yielding and fracture. Moreover, they deter-

mine the real area of contact as opposed to the nominal area of contact. For a review on the

physical aspects of friction, see for example Tabor [1981], Oden & Martins [1985] and Oden

& Pires 11984].

For a finite element solution frictionless contact problems, a perturbed Lagrangian and

an augmented Lagrangian formulations have been proposed by Simo, Wriggers & Taylor

119851, and Landers & Taylor [1985], respectively. On the other hand, Duvaut & Lions

[1976], Oden & Martins [1985], and Oden & Lin [1986] have proposed some regularization

techniques of the Coulomb's law of friction for numerical solution of dynamic frictional con-

tact phenomena.

In this study, a perturbed Lagrangian-based formulation is proposed for the finite ele-

ment solution of fully nonlinear frictional contact problems. The stick-slip contact

phenomena is accommodated by means of a nonlinear variational formulation. In view of an

analogy between the Coulomb's law of friction for the stick-slip motion and the yield criterion

for classical elastoplasticity (see, e.g., Michalowski & Mroz [1978]), a two-step operator split-

ting methodology is employed.

In the current literature, the modification of the tangent stiffness accounting for the con-

tribution of frictional contact often takes the form of symmetric and/or non-symmetric rank-

one updates inherited from the linear theory (see, e.g., Oden & Martins [1985] and Hughes et

al. [1976]). In the finite element solution of geometrically nonlinear frictional contact prob-

lems, however, such simple procedures are no longer adequate. In the event of frictionless

contact, a consistent tangent operator has been obtained by Wriggers & Simo [1985].

Within the context of finite element discrete approximation, explicit expressions for the

frictional contact tangent stiffness and the residual are derived in this paper from variational

equations by using a consistent lineartzation procedure for both the sliding and adhesion

phases. It is shown that for the case of frictional stick the consistent tangent operator is sym-

metric only when numerical convergence is achieved. On the other hand, the consistent

tar'ent operator is airays non-symmetric for the case of frictional sliding owing to the nature

of the Coulomb's friction law employed. Not surprisingly, these expressions degenerate to the

classical rank-one corrections of the stiffness matrices in the limiting case of infinitesimal

detbrmations. It is emphasized that, in the presence of nonlinear contact kinematics, use of

the consistent contact tangent stiffness is essential in preserving the quadratic rate of asymp-

totic convergence of Newton's method.

[ -or tNo-dimensional applications, a three-node contact element is employed in the finite

clcment icrtiatin [he '"rturbed lagrangian'-hased cornputational algori n. is capable

q.i",, " ,' - -



Finite element lbrmulation ofrictional contact problems 3

S". 'of performing a one-pass or two-pass contact slide-line logic. A number of numerical exam-

pies are presented in Sec. 3 that illustrate the performance of the proposed variational formu-

lation.

2. Discrete variational formulation

Within the framework of the finite element method, the governing variational equations

involving fully nonlinear kinematics are considered in this section for both adhesive and slid-
ing contact problems. In what follows, for simplicity, attention is focused on the two-

dimensional (planar) geometry. The extension to three-dimensional geometry is complicated

by geometric considerations only.

2.1. Finite element discretization

Throughout the remaining part of this report, we employ the bilinear isoparametric ele-
-I] ments for "parent" contacting bodies. Concerning the contact segment characterization, the

master-slave' slide-line contact logic is adopted (see Hallquist 11983]). In particular, a three-

node contact element, consisting of two "master" nodes and one "slave' node, is used, see Fig-
ure 1. With reference to Figure 1, the tangent and normal vectors are defined as follows:

t= - (2.1)

n e 3 x t . (2.2)

where e, denotes the unit base vector normal to the plane of the three-node element and
4.-,x,= .X ul, x, X, + u, signify the current positions of the master nodes (XI X, for refer-

ence coordinates and ul , u, for current nodal dispacements). In addition, we define the

current "surface coordinate" a as follows

a =-•t (2.3)

in which x, = X, - u, denotes the current position of the slave node. The normal and tangen-
tial gaps (penetrations) associated with a typical three-node element are defined as

g (x, - x) ° n (2.4)

g, =(x, - x,) * t- a' j x - x,[ (2.5)

%khere a is the (old) surface coordinate at the last time step (known). The variations (incre-

ments) of the normal and tangent vectors due to nonlinear kinematics can be shown to be (see
S.>  v'rggers & Simo [19851) .,

5n - x, - x It 2) n) (172 - ni) (2.6)

", -1 (n ,) nn '() : - 1:) (2.7)
5----



J. W Ju R.L. Taylor & L. Y. Cheng 4

where q is the variation (increment) of u Furthermore, for convenience, we define the fol-
lowing abbreviations (operators)

- (1) - l a) . -a .)2 (2.8a)

)2 (2.8b)

With the above notations at hand, we now give the variational derivation.

2.2. Frictional stick

For the case of frictional stick (no-slip), we consider the following perturbed Lagrangian
functional for bodies in contact:

fiju, A, , A,) = 11(u) + ATG, 1 A, t + A TG, A L TA (2.9)
2w, 2w,2

Here u designates the vector of nodal displacements, A, (A,) the vector of normal (tangential)
nodal contact forces, G, (G,) the vector of normal (tangential) nodal gaps, and W, (W,) the
normal (tangential) penalty parameters. Moreover, 11(u) stands for the total potential energy

of the bodies in contact.

The discrete variational equations are then obtained by taking the variations with
respect to u, A, , and A, respectively:

+ &T + T6uG, = 0 (2.10a)

S,,G, t(2. 1Oa)6A T (-1-LA, + G,) =0 (2. 10b) "-

6A (- IA, + G,) =0 (2.1Oc)
,It

From (2.1Ob,c), we obtain that A, w, Gn and A, = w, G, as the normal and tangential

penalty contact forces.

The variation of a typical nodal normal gap g - G, takes the form (see Wriggers &

Simo [19851)

6g,.-n Tcn = [ - (1 - a)1 - a 1.n- n (2.11) -17"

where c,, =D,(6g) (D is the directional derivative operator). Alternatively, we can write

c, =n (2.12)

with the "bar" quantity defined in (2.8a). We shall give the matrix representation, within the
context of three-node contact elements, of ii later in this section.

Similarly, the variation of a typical nodal tangential gap g, E G, can be obtained accord-

ing to

6q, 71.. . . . ..). t -(x,. x).. .t- a" . .x- ..- x,.

"%°

..--.,-.--. % % -':;.--. -.. ..-. -. .-.: ... -- --..-. 2.. -..... ..- .. .:..-.. ;..-..:..;.. .-.. .-: .-' -,,.>: .--i .-.-.--. -; --;,-; .-t
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IX: Ti
=to X- x_- x ] (n° - n c, (2.13)

where

- =_ . - = - (1 - a
0) it 

- a' 72 , (2.14)

and

C, Lgg,) t+ n = (2.15)- --. (g)= °+I xz -xii

Moreover, the residual vector RB and tangent stiffness KB associated with the total potential

energy of the contacting bodies simply read

Rs -D,(f(u)) (2.16)

KB -D,(RB) (2.17)

In the case of inelasticity, RB and KB are deduced from a (Galerkin) variational functional fl

involving constitutive relations and boundary conditions.

The variational equations (2.1Oa,b,c) can now be stated as

[ s 1
RB + 14 (X S) + Xs) ¢S)) J = 0 (2,18a)

$=1

nA(  _ An + Gn)=0 (2.18b)
W.n

6AT(- -- A, + Gt) = 0 (2.18c)
Wot

In (2.18a), (scalars) X' E A , X )E A, , and 14 represents an assembly operation over all

three-node contact elements in consideration (S = total number of slave nodes in contact =

total number of conditions of constraints). To apply the Newton's iteration scheme, con-

sistent linearization of Eq. (2.18a,b,c) at ( u , A, A, ) is performed and leads tos s s
K 1+ 4 [K")+ K"s'  14 c(')  JN c(IS)

S-I s.l S-1 .S AuKT T K] 14 c'_ 11 os

~T 6AT 3A t ] n 1---

r ..: c(,s)T 0 - - I
+'+.. s-I o

S

R B  + 1 S [X, ('cS' + c +t ]

S- 1

. A. G,

194
,V

ll~l m % • , • • .o+ " + ." " + .+ o" +" " •. . .. . . . - . - . . . + . • ._7
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where (after some algebra)

T IWA n

17 K1,1 I xA -x i (t 0n) *7 + *- (t (Dn) _A.M

IX_ - xi

A= ( n = (2.20)

17 [ (,nt+t0n) A P (2.221)
Au Au X, A~,AT(.2

wered ten nifiedorers ofrcomponntsial, vectrx hasbee:ulavnse noden asterlode. For
smsite noe 2.l Byrsin thesueratrit noats, 22) and (2.21) caatyialsne rephrased asmet

N- [InT~ T ,~ -NIN'T]a nI (2.223)

T, tx ~ (I a) t T -Na tI (2.22c)

Tc = t [ ,, ~ -t , t gTc (2.22d)

TheC lierz tio ofE.22 ) with repc ton c aonto wit Eq. (2. he 1ed to

thr he llo ing rer' of'ana cm ontatnents s tisnhs ben: a venoe- ate od

Kn I[N N ,l I NT [ ,N I 1 , I' ' N (223
I0 N T gn T

Kr N + N ' (NTT +T N 2.24
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T T NT (2.26)

Hero,~ periW:\ parameter) has been assumed. Finally, the total tangent stiffness

matri x and -isidlual . ,cOr of the bodies in contict take the form

K= K8 - 14 K'C (2.27)

R = [R -1 ( g, c, - g, c, (Si(2.28)

Remark 2.1. From Eq. C' 23). we observe that K, is sYmmetric. By contrast, from

224), K. rand hence K, in (2.26)) is nion-sYm metric as long as N", * N,. That is. only when

a= L; wxil K. be symmetric. This situation arises only when the final numerical convergence

is ichie'. ed for the frictional non-slip case. El

Remark 2.2. If one drops the nonlinear terms (K, , K,) from (2.26), then the linearized

theory is recovered. In other words, only the rank-one-update term w [N, N[ + c, cT]
remains.E

2.3. Frictional slip

For the case of frictional slide, use of the Coulomb's law of friction renders

A, g A, where gi denotes the coefficient of friction. Similar to the development in Sec.

2.2. characteristic variational equations are:

6An' AAU, - G 0 (2.29b)

in which w is a penalty parameter. Note that in Eq. (2 29a) the virtual v-ork done by the fric-

tional force is always negative. Furthermore, Eq. (2.29b) yields A, =W G, as the normal

penalty contact force.

*By taking the variations at (U , A,,). Eq. (2. 29a.b) now read (see (2. 1 Sa~b~c))

17 Rn1  l ,('' C ,1,.5 ) ]=0 (2.30a)

A A, G.J (2.30b)

The cnns,.5tent Iirneariiation of at r ( 0ru A-. r then edsthe follo.,%ing expressions (see

I K. KK - c

11
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R +14 [M'."c'. - + '"?l,si

S+1 G,(2.31)
-- -- .+Z..

'-+_

Here, K, is the same as Eq. (2.20) and (2.23), whereas K, takes the following matrix form (for

a single element)

K, A I X I [ NO N T + N N T I - (N TT + T NT)l (2.32)

It is noted that Eq. (2.32) can be obtained by simply replace X, in Eq. (2.24) by [- X n,], as a %
direct consequence of the Coulomb's friction law. It

Remark 2.3. If the surface coordinate a a' (i.e., approximately unchanged), then
NO ;z N, and K, is almost symmetric. 0

Since X, = ws g,, the contact residual for one element is

Rc = - gc , - u c] (2.33)

The linearization of (2.33) at u together with Eq. (2.31),(2.32),(2.23) then yield the contact
tangent stiffness for frictional slip:

KC [,NT c j gn [NT T + T, N T + gn N N r T--
Kc = NsNf- cN l I - X1 3 X2 -X

1g, [N- r +NN gxn-T r NN]

SX2 -XI [NoN + NN T x2 -xI (NTT + T NT)] (2.34)

Therefore, the total tangent stiffness matrix and residual vector associated with the contacting

bodies are

S

K = KB + 11 K )  (2.35)

s-

R = - [RB + 14 Wg, (cn - gcf)] (2.36)

Remark 2.4. It is seen from Eq. (2.34) that the contact tangent stiffness for the case of
frictional sliding is always non-symmetric due to the nature of the Coulomb's friction law.
Even in the event of linearized kinematics (i.e., by neglecting nonlinear terms K, and K,), this

is still the case (see also Oden & Martins [1985]). 0

3. Numerical implementation and examples

In this section, implementation of the proposed formulation within the context of the
finite element method is described. Some numerical examples are also presented.
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3.1. Finite element implementation

The "master-slave" slide-line contact logic is employed, which features both the "one-

pass" and "two-pass" algorithms (see, e.g., Hallquist [1983]), For the planar three-node con-
tact element under consideration, explicit vector-component expressions (6 d.o.f.) for the
notations defined in Eq. (2.22a-g) can be obtained. For example,

ri'

-s S

.a s- ( I - a ) c +N - --a)c c, = g (3.1)a s -(I -a )s - x _-x I c

a

.
-a c 

gn 
.;-'

-a' c S

-i'-' 
I x2-xi I 

" .

",r,

-a' s~

where s , c denote sinO, cosO, respectively (see Fig. I).

In the spirit of operator splitting methodology for the Coulomb's law of friction, each
load (time) step is decomposed into two parts : (i) By assuming a sticking condition, a 'stick
trial" step is first performed (similar to the "elastic trial' step in classical elastoplasticity). If
the trial is successful, the contacting bodies are considered to be in a state of frictional stick-
ing. Otherwise, (ii) a *slip correction" step is performed (similar to the 'plastic return map-
ping' step in elastoplasticity) and the bodies in contact are viewed to be in a state of frictional
sliding. This operator split treatment separates the no-slip and slip conditions and renders the
transition from stick to slip (or vice versa) exactly the same way as the corresponding case in
classical elastoplasticity. The analogy between the Coulomb's law of friction (for stick-slip
contact problems) and yield criterion (for elastoplasticity) is noted

In all numerical examples that follow, standard Newton's method is used for solution
~,-

e , procedure. It is emphasized that line search plays no role in numerical simulations presented
rd in this section.

.P 3.2. Example i: frictional stick

This section is concerned with a (rigid or deformable) punch into an elastic foundation
under the circumstance of frictional stick. See Figure 2 for (plane strain) finite element mesh -
and dimensions.

Case I. Rigid punch. The material properties employed in the computation are:
E , , l 0 (assumed rigid), v,,., = 0 . E d,,,fl = 10 -  , ,,5 a = 0.3 , and = 0 Ipenalt.
value). The one-pass algorithm is used in this example. The finite element solutions conerge

quadratically, within 4 iterations; see Table I for numerical performance. The deformed mesh
is displayed in Figure 3. in which the deformation is enlarged 1000 times the real scale in

%%
"," 

"'0



J. W. Ju, R.L. Taylor & L.Y. Cheng 10

order to fully see the details. ."

Table 1. Residual & energy norms for iterates

Iteration 1 2 3 4

Residual .245e+4 .299e+3 .719e- 1 .173e-6 2 .

Energy .552e+2 .151e+0 .692e- 10 .727e-19 V,7

Case 2. Elastic punch. The punching block is now a deformable body. The material

properties involved in the computation are: Epuch = 104 , Vp,,h = 0.3 , Ef.od = 10,

ound = 0.3 , and w = 10 7 (penalty value). The one-pass algorithm is adopted in this example.
Once again, the finite element solutions converge quadratically within 3 iterations; see Table 2

for numerical performance. The deformed mesh is displayed in Figure 4 (to scale).

Table 2. Residual & energy norms for iterates

Iteration 1 2 3

Residual .245e+4 .528e+2 .155e-4

Energy .682e+4 .217e-4 .116e-12

3.3. Example 2: frictional slide

Attention is now focused on the event of frictional stick-slip motion. The transition

from stick to slip (or vice versa) is accounted for in this example. We once more consider an

elastic punch on top of an elastic foundation made of same materials. The finite element
mesh and boundary conditions are the same as Sec. 3.2 (see Fig. 2). Moreover, the material

properties used in the simulation are: E I0- , = 0 , and w = 10 5 , A = 0.1 (coefficient of

friction).

The punch is first vertically loaded into the elastic foundation, then move horizontally
to the right by displacement controlled loading condition (vertical loads still remain). During
the initial ,ertical loading, three bottom nodes of the punch are in contact with the founda- .
tion. In particular, the two (outer) edge nodes of the punch undergo frictional slip while the

central node experiences frictional stick. The solutions converge in 7 iterations with a residual

norm less than 10 - . Within the proposed formulation and implementation, tangential
motion across element boundaries does not impose numerical difficulties.

..'~ I

77V



Finite element formulation of frictional contact problems 11

Before the first contact node (the rightmost contact node) of the punch reaches the right
edge of the foundation, a typical iteration count for numerical convergence is 6 or 7. After the
first punch element begins to overhang, the contact area is not constant and the number of

contacting nodes changes. At 5% overhang (of the first punch element), the convergence takes

7 iterations. See Fig. 5 for deformed configuration (to scale). At 50% overhang, 8 iterations
are taken before convergence is achieved. At 80% overhang, II iterations are recorded. At
90% overhang, 13 iterations are required. Finally, at 98% and 100% overhang, 15 iterations

are observed. See Figures 6, 7 for deformed meshes (to scale). After the first punch element
completely overhangs, the solutions diverge which corresponds to the physical drop-off pro-

N *. cess of the punch. For this simulation, it is crucial to use the two-pass algorithm for a solu-

tion to converge. The one-pass algorithm works only before the punch overhangs. This exam-
ple provides a severe test for finite element formulation of frictional contact problems.

"- C To assess the significance of the proposed consistent tangent stiffness, we repeat the
above numerical experiment by using the linearized tangent (i.e., employing only the rank-

one-update terms). Before the first punch element overhangs, numerical convergence typically
takes 8 or 9 iterations. At 5% overhang, the convergence takes 9 iterations. At 50% overhang,

I I iterations are observed before convergence is achieved. At 80% overhang, 19 iterations are
recorded. At 90% overhang, 25 iterations are required. Finally, at 100% overhang, 33 itera-

tions are observed. The significance of the proposed formulation versus linearized theory is
clearly demonstrated.

4. Conclusion

On the basis of an operator split, the proposed formulation accommodates the frictional

stick-slip motion in a variational framework. By a consistent linearization procedure, explicit -

expressions for the consistent contact tangent stiffness and residual have been obtained. The
analogy between the proposed treatment for the stick-slip motion and the corresponding treat-

ment in classical elasto-plasticity is noteworthy. In addition, for infinitesimal deformations (as
a special case), the proposed formulation reduces to the linearized theory involving only

rank-one-update terms in the tangent matrices.

To illustrate the numerical performance of the proposed formulation, some numerical
examples have been presented in Sec. 3. The significant role of the proposed tangent stiffness

is fully demonstrated.
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Figure 5. Deformed mesh corresponding to 5% overhang of the first
(right) element of the punch.
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punch element.

V

4 9.

9.

'.4.

r.
I'..

'I.'N

4p
4.



Figure 7. Deformed mesh corresponding to 100% overhang ol' the first
punch element.



* DISTRIBUT1ION LIST

DIC Ale-\Ixandria, %*>A
GIDEI' OI[. Coronai. CiA
NA%\FACENGCONI Code 0,. Alexaindria. \.\A

\AVFACENGCON4 CI-ES DI'% Code FPCJ-IIL. \\ ,honion. IX

* NATACENGCONI -LANT DIV LiI'rar%. \ortolk.'A

N -k\ FACENGCONI - ORTII DIN' Code 04AL. Phiddelphia. I'\
NA% FACE' GCONI PA-C DIV Librar\. Peairl Ifarhor. [11

NA \FA CEN G CONI - WEST DIV Lithrar% t~d 21A'T. Sain B~runo ('A &E,

MWC Code 10 I- ibrlr\ . Oakland. CA: Code 1--. San Djeg~o ( A, ode -4:0. (Irc.jt .1k,!, 11 1 hr,r%

w(1Hde 1S-1. Pearl Harhor. III: L-ihrjir\ (iLIrn. \Iaia~na Walnd, Lihrar% \rlok I fhrt r\ kI
- FL.- Li,brirt Yokvuka JA. Tech Lihrjrt . Sub'ic Ba\ RIP

I- .



-I


