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ABSTRACT A perturbed Lagrangian-based variational formulation is proposed
for the finite element solution of fully nonlinear frictional contact problems.
In the spirit of an operator splitting methodology, an analogy exists between ‘
the proposed treatment for the stick-slip motion and the corresponding treatment
in efastoptasticity. : o
Within the context of discrete formulations arising from a finite element = " L
approximation, explicit expressions for the frictional consistent contact tangent -, =+
stiffness and residual are derived from variational equations by using a consistent * -
lirearization procedure for both the sliding and adhesion phases. The consistent
tangent operator is always non-symmetric for the case of frictional sliding owing
to the nature of the Coulomb’s friction law employed.
For two-dimensional applications, a three-node contact element is employed ’
in the finite element discretization. Numerical examples are also presented that
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1. Introduction

Frictional stick-slip contact phenomena constitute important aspects of real engineering
applications. The micromechanics of friction for metallic surfaces in contact has drawn
significanc attention in the literature during the past several decades. Basically, the contact
surfaces are not smooth planes but rough, uneven surfaces composed of many asperities.
Microstructurally, the asperities experience local yielding and fracture. Moreover, they deter-

mine the real area of contact as opposed to the nominal area of contact. For a review on the
physical aspects of friction, see for example Tabor [1981], Oden & Martins [1985] and Oden
& Pires [1984).

For a finite element solution frictionless contact problems, a perturbed Lagrangian and
an augmented Lagrangian formulations have been proposed by Simo. Wriggers & Taylor
(1985], and Landers & Tavlor [1985], respectively. On the other hand, Duvaut & Lions
(1976], Oden & Martins [1985], and Oden & Lin [1986] have proposed some regularization
techniques of the Coulomb’s law of friction for numerical solution of dynamic frictional con-
tact phenomena.

e

Y r

In this study, a perturbed Lagrangian-based formulation is proposed for the finite ele-

-

ment solution of fully nonlinear frictional contact problems. The suick-slip contact
phenomena is accommodated by means of a nonlinear variational formulation. In view of an
analogy between the Coulomb’s law of friction for the stick-slip motion and the vyield criterion
for classical elastoplasticity (see, e.g., Michalowski & Mroz [1978]), a two-step operator split-
uing methodology is employed.

In the current literature, the modification of the tangent stiffness accounting for the con-
tribution of frictional contact often takes the form of symmetric and/or non-symmetric rank-
one updates inherited from the /inear theorv (see, e.g., Oden & Martins [1985]) and Hughes et
al [1976]). In the finite element solution of geometrically ronlinear frictional contact prob-
lems, however, such simple procedures are no longer adequate. In the event of frictionless
contact, a consistent tangent operator has been obtained by Wriggers & Simo [1985).

Within the context of finite element discrete approximation. explicit expressions for the
frictional contact tangent stiffness and the residual are derived in this paper from variational

equations by using a consistent linearization procedure for both the sliding and adhesion
phases. [t 1s shown that for the case of frictional stick the consistent tangent operator is sym-
'j metric on/v when numerical convergence 1s achieved. On the other hand. the consistent
.-..'_.-, tar~ent operator is always non-symmetric for the case of frictional sliding owing to the nature
1‘. of the Coulomb’s friction law emploved. Not surprisingly, these expressions degenerate to the
classical rank-one corrections of the stiffness matrices in the limiting case of infinitesimal
deformations. It 1s emphasized that, in the presence of nonlinear contact kinematics. use of
:: i the consistent contact tangent stiffness is essential in preserving the quadratic rate of asymp-
e totic convergence of Newton's method.

“ For two-dimensional applications, a three-node contact element is emploved in the finite

element discretization. The “perturbed Lagrangran”-based computational algon a: is capable

L R, . - T




Finite element formuliation of frictional contact problems 3

of performing a one-pass or two-pass contact slide-line logic. A number of numerical exam-
ples are presented in Sec. 3 that illustrate the performance of the proposed variational formu-
lation.

2. Discrete variational formulation

Within the framework of the finite element method, the governing variational equations
invoiving fully nonlinear kinematics are considered in this section for both adhesive and slid-
ing contact problems. In what follows, for simplicity, attention is focused on the two-
dimensional (planar) geometry. The extension to three-dimensional geometry is complicated
by geometric considerations only.

2.1. Finite element discretization

Throughout the remaining part of this report, we employ the bilinear isoparametric ele-
ments for “parent” contacting bodies. Concerning the contact segment characterization, the
"master-slave” slide-line contact logic is adopted (see Hallquist {1983]). In particular, a three-
node contact element, consisting of two "master” nodes and one “slave” node, is used, see Fig-
ure 1. With reference to Figure 1, the tangent and normal vectors are defined as follows:

¢ X - Xy (7 l)
e - x| -
n=e;xt,. (2.2)

where e; denotes the unit base vector normal to the plane of the three-node element and
X, = X, ~u;. x> = X5 + u» signify the current positions of the master nodes (X, , X; for refer-
ence coordinates and u, , u, for current nodal dispacements). In addition, we define the
current “surface coordinate” a as follows

(x: - xl)

= ————— et (2.3)
lxx 'xll

a
in which x, = X, = u, denotes the current position of the slave node. The normal and tangen-
tial gaps (penetrations) associated with a typical three-node element are defined as

g, =(X; - X;)*n (2.4
g -x)et-a’ [xx-x ] . (2.5)

where ¢ is the (old) surface coordinate at the last time step (known). The variations (incre-
ments) of the normal and tangent vectors due to nonlinear kinematics can be shown to be (see
Wriggers & Simo [1985])

-1

—_ (t ® n)e(n:-7n) (2.6)
Ix: - x|

on =

A |
ot = ———
R RN

(n 2 n)e{n. -9 (2.7

- )
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.:-4' where n is the variation (increment) of u . Furthermore, for convenience, we define the fol- R
o+ lowing abbreviations (operators) z >
" Mi=(e) -U-a)(*)-a(+) (2.8a) Y
o CI=(e)~ () (2.8b) o
N With the above notations at hand, we now give the variational derivation. '
[} x
oy 2.2. Frictional stick
: :: For the case of frictional stick (no-slip), we consider the following perturbed Lagrangian “::f~
) "- functional for bodies in contact: _:
_ | | »
w0 O u, A, ,A) =1 + AIG, - ATA, + ATG, - —— AT A, (2.9) ~3
0y 2wy, 2w, .
:f_:; Here u designates the vector of nodal displacements, A, (A,) the vector of normal (tangential) .
5 nodal contact forces, G, (G,) the vector of normal (tangential) nodal gaps, and w, (w,) the oy
normal (tangential) penalty parameters. Moreover, I1(u) stands for the total potential energy .
.:'_-t_: of the bodies in contact. S
" The discrete variational equations are then obtained by taking the variations with
. >~
xﬁ respecttou, A, , and A, , respectively: ::-'
o
. sJIw) + AT8,G, + AT$5,G, =0 (2.10a) —_—
5AT (- wLAn +G,) =0 (2.10b) =
2 n .
= AT (-4, +G)=0 (2.10¢) o
7 i
= From (2.10b,c), we obtain that A, = w, G, and A, = w, G, as the normal and tangential .;::::
. peralty contact forces. "
The vanation of a typical nodal normal gap g, € G, takes the form (see Wriggers & :j-:"
'S Simo [1985)) "y
¥ ¢ =n"¢c, =[n, -(l —a)n -am]len=qen (2.1 ‘j-_f
- < where ¢, = ID,{ég,) (ID is the directional derivative operator). Alternatively, we can write j::}
S ¢, =W . (2.12)
_::: with the "bar” quantity defined in (2.8a). We shall give the matrix representation, within the ~'j:-
_::,' context of three-node contact elements, of A later in this section. :.'j:-"
-:-. Similarly. the variation of a typical nodal tangential gap g, € G, can be obtained accord- :-".:
- ing to
.S ] ,
V- bg, =(n - mlet+ (X, -x))edt-a’s]x:-x| _::_
A
N oy
:-\ u::-
' d'" ‘\-" d
! L)
. .!\-.
~ S
o L e e e T ey . TS . S T AT e
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::::j Finite element formulation of frictional contact problems S
b - 2, -
) =ten) + ————— (n =q7 2.
! : 1 |x:‘-“l|(n 1)=1" ¢ (2.13)
-'\: where
o WERe=n-(-a)n-am (2.14)
) and
-‘f— - g =
e ¢ =D,6g) =t + ———— 1 (2.15)
Ix: - x|
e . . . . .
> Moreover, the residual vector Ry and tangent stiffness K associated with the total potential
energy of the contacting bodies simply read
j{: R; = D,(I(u)) (2.16)
- K = D,(R) 2.17)
<
In the case of inelasticity, Rg and Kz are deduced from a (Galerkin) variational functional I
" involving constitutive relations and boundary conditions.
T The variational equations (2.10a,b,c) can now be stated as
::;:: s
- n | Ry + 14l A+ AN [ =0 (2.18a)
5=
- AT (-4, +G,) =0 (2.18b)
A “@n
< _
A/ (-— A +G)=0 (2.18¢)
o] g
'_‘:: In (2.18a), (scalars) AS'e A, , MY e A, , and M represents an assembly operation over all
'r‘:d three-node contact elements in consideration (S = total number of slave nodes in contact =
:: total number of conditicns of constraints). To apply the Newton's iteration scheme, con-
1 sistent linearization of Eq. (2.18a,b,c) at (u, A, , A, ) is performed and leads to
__ 4 I s ) )
Kp + HIKD+ K9] He Hc
Ao 5=l s=| §=
. - S | Au
R (n7 .5AL . 6A7] Hl e -—1 0 AA,
- S= W
CR .' < n AA,
Sk H 7 0 L
- sl @ ]
.J:.__
'..',' : S
o Ry + H DY + X
.{‘.; 5=
= I
. - -— A, + G, (2.19)
(-, Whn
f'::f.' -—1‘— A, + G,
;.. W
-
N .';';;_L ‘;;"
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where (after some algebra)

_‘\H‘)
TKY'Au = z A sn+ 7 e Au
u TN ([Aie(t@n)eng+7e(t®n)e Al
= Femen 7 (2.20)
|‘(»—K1|
A - -
nTK$f>Au=FT_"—ll[ﬁ°-(n@n)oAa+ﬁo(n®n)-Aﬁ
——g”———r,-(n®t+t®n)o.sﬁ]<” (2.21)
Ix:- x|

2.2.1. Matrix representation. To facilitate finite element implementation of the above
derived tangent stiffness operators and residuals, matrix formulations are given as follows. For
simplicity, we will drop the superscript (s) and focus on a typical single three-node element.
Let us start by introducing the following vectors

Ne=[n,-(1 -a°n,-a°n) (2.22a)
s=¢,=n=[n,-(l -a)n,-an]’ (2.22b)
s=[t, -1 -a)t,-at) (2.22¢)
T=t=[0,-t,t]" (2.22d)

N =a=[0,-n,n) (2.22¢)

Au = [Au, , Ay, Au, )7 (2.220)

c,slt,—(1-a°)t—lTl"f’(—lln,-a°t+Eg'_"—xl—l—nJT (2.22g)

where the unified order of components in all vectors has been: slave node - master node | -
master node 2. By using these matrix notations, Eq. (2.20) and (2.21) can be rephrased as

An &n

= - ————— [NT] NT + N N7 2.23
K,, I(‘a—‘lll T+T:L Ix"’_‘(li ] ( )

A
N NYNT NN
Ix: - x/] Ix: - x|

K, = (NTT + TNTy] (2.24)
In addition. from Eq. (2.19) together with the fact that A\, = w, g, and N\, = &, g, . the con-

tact residual vector {(due to contact only) for a single element is
RC == [“-’n 8n Cqp *+ w & C,] (::5)

The linearization of Eq. (2.25) with respect to u in conjunction with Eq. (2.19) then leads to
the following perturbed Lagrangian contact tangent stitfness matrix

£n

Ko=w fN N e el iy
RN

[INT/ « T N« — 2" — N N7
I x: - x|

0

’ f( y 1
Ly l-“'.ﬁv" Sx
B

e
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NN NN L T NTT TN (2.26)
|\ v | v - x|

Hereo w0 = o = o openaity parameter) has been assumed. Finally, the roral tangent stiffness

muatrix and restdual vector of the bodies 1n contact take the form

5
K - Ky - H K (2.27) .
- |
s
R=-[Ry~Hutg,c, ~g ¢ )] (2.28)

s o= |

Remark 2.1. From Eg. 1223). we observe that K, is symmetric. By contrast, from
(224, K, rand hence K, 1n (2.26)) is non-symmetric as long as Ny # N;. That is, only when
4 = a wiil K. be svsmmetric. This situation arises only when the final numerical convergence
15 achteved tor the frictional non-slip case. a

Remark 2.2. If one drops the nonlinear terms (K, , K,) from (2.26), then the linearized
theory is recovered. In other words, only the rank-one-update term w [N; NI +c¢ ¢/}
remains. O :

2.3. Frictional slip

For the case of frictional shde, use of the Coulomb’s law of friction renders
A, ! =u A,. where g denotes the coefficient of friction. Similar to the development in Sec.

2.2. characteristic vanational equations are:

s,JT(w) ~ AJ5,G, - u Al6,G, =0 (2.29a)
5AI (- -4, ~G,) =0 (2.29b)
@
in which w is a penalty parameter. Note that in Eq. (2.29a) the virtual vork done by the fric- .

tional force is always negarive. Furthermore, Eq. (2.29b) vields A, = « G, as the normal
penalty contact force.

By taking the variations at (u . A, ), Eq. (2.29a.b) now read (see (2.18a.b.c))

-

N
n Ry « Hoxyg e/ —un e’ | =0 (2.30a)

ali- Ly ~Go-0 (2.30b) .

oo -

-

The consistent hinearization of «2 30a.hs at tu . A then vields the following expressions (see

RIS :
K, - [1 [k, -K e - .
. ' i [ J L u € ] Au !
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s
Ry + H (N9e) - u \ ]

= - | 2.31)
-— A, "'Gn
w

Here, K, is the same as Eq. (2.20) and (2.23), whereas K, takes the following matrix form (for
a single element)

B A,
Ix:- x|

8n

K=— A —————
1 Ix2 - xi]

[NSNT + NNT - (NTT + TNT)] (2.32)

It is noted that Eq. (2.32) can be obtained by simply replace )\, in Eq. (2.24) by [~ u A, ], as a
direct consequence of the Coulomb’s friction law.

Remark 2.3. If the surface coordinate a = aq° (i.e., approximately unchanged), then
N? = N, and K, is almost symmetric. O

Since A\, = w g,, the contact residual for one element is
Re=-wgylen —nc) (2.33)

The linearization of (2.33) at u together with Eq. (2.31),(2.32),(2.23) then yield the contact
tangent stiffness for frictional slip:

&n &n

= T_ Ty_ 56~ T T T
Ke = o | (N NF = ey NI = B INTT 4 T, N+ e NNT)
K& INeNT + NNT = —8" __ (NTT + TNT)] (2.34)
|x2—x,| |X2—X||

Therefore, the rotal tangent stiffness matrix and residual vector associated with the contacting

bodies are
s
K=Kz + H] K® (2.35)
s
R=-[Rg+ Hwg (e -nc)] (236)
§=

Remark 2.4. It is seen from Eq. (2.34) that the contact tangent stiffness for the case of
frictional sliding is always non-symmetric due to the nature of the Coulomb’s friction law.
Even in the event of linearized kinematics (i.e., by neglecting nonlinear terms K, and K,), this
is still the case (see also Oden & Martins [1985]). a

3. Numerical implementation and examples

In this section, implementation of the proposed formulation within the context of the

finite element method is described. Some numerical examples are also presented.
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Finite element formulation of frictional contact problems 9

3.1. Finite element implementation

The "master-slave” slide-line contact logic is employed. which features both the “one-
pass” and "two-pass” algorithms (see, e.g., Hallquist [1983]). For the planar three-node con-
tact element under consideration, explicit vector-component expressions (6 d.o.f.) for the
notations defined in Eq. (2.22a-g) can be obtained. For example,

-5 s
¢ —(1—a")c+—i——s
N = (1-a)s Ix:-xi |
N =G =) _(-a)e| &= | - a) 8n 3.0
as -(l -a S—le-xllc
-ac
—a"c——g"—s
I x2-x |
8n
~a’s + ————¢
1 x2-x |

where s |, ¢ denote sind , cosd , respectively (see Fig. 1).

In the spirit of operator splitting methodology for the Coulomb's law of friction, each
load (time) step is decomposed into two parts : (i) By assuming a sticking condition, a “stick
trial” step is first performed (similar to the ~elastic trial” step in classical elastoplasticity). If
the tnal is successful, the contacting bodies are considered to be in a state of frictional stick-
ing. Otherwise, (it) a “slip correction” step is performed (similar to the “plastic return map-
ping” step in elastoplasticity) and the bodies in contact are viewed to be in a state of frictional
sliding. This operator split treatment separates the no-slip and slip conditions and renders the
transition from stick to slip (or vice versa) exactly the same way as the corresponding case 1n
classical elastoplasticity. The analogy between the Coulomb's law of friction (for stick-slip
contact problems) and yield criterion (for elastoplasticity) 1s noted

In all numerical examples that follow, standard Newton's method is used for solution
procedure. [t is emphasized that line search plavs no role in numencal simulations presented
1n this section.

3.2. Example I: frictional stick

This section is concerned with a (rigid or deformable) punch into an elastic foundauon
under the circumstance of frictional stick. See Figure 2 for (plane strain) finite element mesh

and dimensions.

Case 1. Rigid punch. The material properties emploved 1n the computation are:
Epunen = 10° (assumed rigid), vpuncw = 0 . Eving = 107 | vy = 0.3 . and w = 107 (penalty
value). The one-pass algorithm is used in this example. The finite element solutions converge
quadratically within 4 iterations: see Table | for numerical performance. The detformed mesh
1s displayed in Figure 3. in which the deformation 1s enlarged 1000 times the real scale in

U I

P \-\'n .'n" ;

b

8

* s
r

»
’

S
AR

E:

1
3

I

e

. 1
PRI
A

;AL A

. LIS
el
N

AR

‘e ta

£

A NG
PPN

b

A

5
AL

L 4

\.' ‘
B

)

%

Py
3,
,l

;o
g
'z_

.,

-

AN

YN

’

AN SR 4% 2R 4
e 40 s

e

s ot

s
3]z
]

oYy

4,

A

LK 4
554
v &

N
-

PN
(4



JW. Ju, RL. Taylor & L.Y. Cheng 10

order to fully see the details.

Table 1. Residual & energy norms for iterates

Iteration 1 2 3 4

Residual | .245¢+4 .299%¢+3 .719e-1 .173e-6

Energy .552e+2  .151e+0  .692e-10 .727e-19

Case 2. Elastic punch. The punching block is now a deformable body. The material
properties involved in the computation are: E,,,; = 10* , Vounch = 0.3 , Epung = 10% ,
Yound = 0.3, and w = 107 (penalty value). The one-pass algorithm is adopted in this example.
Once again, the finite element solutions converge quadratically within 3 iterations; see Table 2
for numerical performance. The deformed mesh is displayed in Figure 4 (to scale).

Table 2. Residual & energy norms for iterates

[teration 1 2 3

Residual | .245¢+4 .528¢+2 .155e-4

Energy .682e+4 217e-4  .116e-12

3.3. Example 2: frictional slide

Attention is now focused on the event of frictional stick-slip motion. The transition
from stick to slip (or vice versa) is accounted for in this example. We once more consider an
elastic punch on top of an elastic foundation made of same materials. The finite element
mesh and boundary conditions are the same as Sec. 3.2 (see Fig. 2). Moreover, the material
properties used in the simulation are: £ = 10*, » =0, and w = 10° , u = 0.1 (coefficient of

triction).

The punch is first vertically loaded into the elastic foundation, then move horizontally
to the night by displacement controlled loading condition (vertical loads still remain). During
the initial vertical loading, three bottom nodes of the punch are in contact with the founda-
tion. In parucular, the two (outer) edge nodes of the punch undergo frictional slip while the
central node experiences frictional stick. The solutions converge in 7 iterations with a residual
norm less than 1[0-'. Within the proposed formulation and implementation, tangential

motion across element boundaries does not impose numerical difficulties.
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Finite element formulation of frictional contact problems 11

Before the first contact node (the rightmost contact node) of the punch reaches the right
edge of the foundation, a typical iteration count for numerical convergence is 6 or 7. After the
first punch element begins to overhang, the contact area is not constant and the number of
contacting nodes changes. At 5% overhang (of the first punch element), the convergence takes
7 iterations. See Fig. 5 for deformed configuration (to scale). At 50% overhang, 8 iterations
are taken before convergence is achieved. At 80% overhang, 11 iterations are recorded. At
90% overhang, 13 iterations are required. Finally, at 98% and 100% overhang, 15 iterations
are observed. See Figures 6, 7 for deformed meshes (to scale). After the first punch element
completely overhangs, the solutions diverge which corresponds to the physical drop-off pro-
cess of the punch. For this simulation, it is crucial to use the two-pass algorithm for a solu-
tion to converge. The one-pass algorithm works only before the punch overhangs. This exam-
ple provides a severe test for finite element formulation of frictional contact problems.

To assess the significance of the proposed consistent tangent stiffness, we repeat the
above numerical experiment by using the linearized tangent (i.e., employing only the rank-
one-update terms). Before the first punch element overhangs, numerical convergence typically
takes 8 or 9 iterations. At 5% overhang, the convergence takes 9 iterations. At 50% overhang,
11 iterations are observed before convergence is achieved. At 80% overhang, 19 iterations are
recorded. At 90% overhang, 25 iterations are required. Finally, at 100% overhang, 33 itera-
tions are observed. The significance of the proposed formulation versus linearized theory is
clearly demonstrated.

4. Conclusion

On the basis of an operator split, the proposed formulation accommodates the frictional
stick-slip motion in a variational framework. By a consistent linearization procedure, explicit
expressions for the consistent contact tangent stiffness and residual have been obtained. The
analogy between the proposed treatment for the stick-slip motion and the corresponding treat-
ment in classical elasto-plasticity is noteworthy. In addition, for infinitesimal deformations (as
a special case), the proposed formulation reduces to the linearized theory involving only
rank-one-update terms in the tangent matrices.

To illustrate the numerical performance of the proposed formulation, some numerical
examples have been presented in Sec. 3. The significant role of the proposed tangent stiffness
is fully demonstrated.

Acknowledgments. This work is sponsored by Naval Civil Engineering Laboratory with
the University of California, Berkeley. This support and the continued interest of Dr.
Ted Shugar is gratefully acknowledged.
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