
7 -A179 173 SOLUTION TO 
A CLASS OF 

ECONOMIC RELIABILITY 
PROBLEMS 

In 1
IdITW GEOMETRIC PROGRAMMING(U) ARMY MILITARY PERSONNEL
CENTER ALEXANDRIA VA C K OATNEY 14 APR 87

UCLASSIFIED F/G 9/2 L

EIIIIIIIIIIII
llllllllhllllu

Slflfllfllfllflfllfll



-it ~ ~w- . W - r nrrr f 7 ,,~~ .rr .r~-

4

"L-
L. _

I.' do

'S



UNCLASSIFIED H E
SECURITY CLASSIFICA'ICN OF TH!S PA E 'Wen eaft Fnf-td)

REPORT DOCUMENTATION PAGE REA ENSTRUCTNSBEFORE COMPLETIZG FORM "J

% I REPORT NUMBER GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (and S.,tl.1 5 TYPE OF REPORT & PERIOD COVER

Solution to a Class of Economic "-liabilitv
.. Problems with Geometric Program' , Final Rpnar- 1lk Anrir-.q7..'

Prbes ihGemti PERFORMIN4G ORG. REPORT NUMBER

7. AUTHOR(-) 8 CONTRACT OR GRANT NUMBER(-)

CPT Cecilia K. Oatnev

9 PE FORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

1tudent AREA & WORK UNIT NUMBERS

HQDA, MILPERCEN ATTN: DAPC-OPA-E
200 Stovall Street, Alexandria, VA 22332

rM I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

)IQDA, MILPERCEN ATTN: DAPC-OPA-E 14 April 1987
20n Stovall Street, Alexandria, VA 22332 13. NUMBER OF PAGES

85
4 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

pproved for public release; distribution is unlimited. L TII C
ELECTE -

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

D

IS. SUPPLEMENTARY NOTES

A thesis submitted to the Colorado School of 'Mines, Golden, CO 80401

in partial fulfillment of the requirements for the degree of Master of Science.

19. KEY WORDS (Continue on reverse side it necessary ad Identify by block number)

Reliability (to include cost), Geometric Programming, Electronic Equipment

20. AsSTRACT rCmornu a rover" afb If necessary ad Identify by block number)

iThe rapid advancement of technology in the electronic industry has created

a need for solving a certain class of large nonlinear reliability problems.
The Department of Defense and civilian industries when planning for the

S, allocations of budget resources require an efficient method for solving these
problems. In certain areas a specific reliability, such as with nuclear
reactors, must be attainable to ensure the accomplishment of the mission or to

provide necessary safety factors, The current methods used to solve these

JANDO 141n EDTIONOF INOV65ISOBSOLETE UNCLASS I F I ED

_SECURITY C 'ASIFIeCATfgN OF 'A ... .

.4"

% %



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(IWhe Data Enitered)

problems are very difficult and time consuming. A computer algorithm which is

based on geometric programming has been developed to provide a quick, accurate,
and efficient way of solving reliability problems.

%, I

% '0

Vv 0 UNCLASSrFfED

sibSECURITY CLASSIFICATION OF TIS PAGE(VWh'.,, PAa F,,Ied)



Solution to a Class of Economic Reliability Problems with Geometric Programming

Cecilia K. Oatney, 0-3
HQDA, MILPERCEN (DAPC-OPA-E)
200 Stovall Street
Alexandria, VA 22332

Final Report 14 April 1987

-"-

Approved for public release; distribution is unlimited.

A thesis submitted to the Colorado School of Mines, Golden, CO 80401

in partial fulfillment of the requirements for the degree of Master of Science.

Ap

j4..



T-3357

.".m

,.P

SOLUTION TO A CLASS OF ECONOMIC

RELIABILITY PROBLEMS WITH

GEOMETR I C PROGRAKM I NG

Accesion For

NTIS CR-&I
Di1C TI'3

S"IBy

I .- . . . . . ." "- '

o. A

by -.

Cecilia K. Oatney

.4.

.4 
. . . . . . . . , . .



T-3357

A thesis submitted to the Faculty and the Board of

Trustees of the Colorado School of Mines in partial

fulfillment of the requirements for the degree of Master of

Science (Mineral Economics).

Golden, Colorado

Date v
/I

S igned: e s- z
-eci ia K. 66tney

Approved.:

Dr/ Ruth A. Mau fer
Th sis Advisor

Golden, Colorado

Date il

Dr John A. Cordes
Avsociate Professor and Head
Mineral Economics Department

~~I1



T-3357

ABSTRACT

The rapid advancement of technology in the electronic

industry has created a need for solving a certain class of

large nonlinear reliability problems. The Department of

Defense and civilian industries when planning for the

allocations of budget resources require an efficient method

for solving these problems. In certain areas a specific

reliability, such as with nuclear reactors, must be

attainable to ensure the accomplishment of the mission or

to provide necessary safety factors. The current methods

used to solve these problems are very difficult and time

consuming. A computer algorithm which is based on

geometric programming has been developed to provide a

quick, accurate, and efficient way of solving reliability

problems.
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Chapter I

I NTRODUCT ION

Problem Statement

In the general field of electronic instrumentation, an

important goal for both government and private industry is

that of fielding systems that can operate reliably for a

specified period of time within specified environments.

One of the most difficult problems in this field is

ensuring a level of acceptable reliability at minimum

cost. Related to this problem is Its economic dual, which

is to maximize reliability within fixed cost limits. The

purpose of this thesis is to show that these types of

reliability problems are easily solvable, within certain

restrictions, using geometric prograining (GP).

Component reliability Is defined as the mathematical

probability that an individual component will continue

performing its intended mission for a specific length of
..m

time. The failure rate of a particular component is stated

as a probability between 0 and 1. In mathematical terms,

component reliability equals I minus probability of

failure, or I - P(failure). If a system is composed of

more than one component in series, then the system

reliability would be the product of the individual
U

.,,4..
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component rellabilities. For one type of component, the

system reliability would become

- Pffalure)# (of units)

Although the definition of component reliability is

straightforward, systems involving reliability can become

rather complex. Figure 1.1 depicts a general reliability

system. The system consists of n elements where each

element can have one or more redundant or parallel

components.

*r The reliability of any separate element and the

reliability of the system itself are increased

*.. exponential ly through redundancy of components. However,

one must then face the corresponding multfplicative

Increase in cost.

The first problem of achieving acceptable reliability

at minimum cost could be stated as follows. Consider a

system Involving electronics with n interconnected

elements. Each element is made up of some number of backup

components that will switch on in case of failure. Figure

1.1 Is such a system. A two-element system, where we wish

to minimize the cost of parallel back-up components subject

to a minimally acceptable level of total system

reliability, would be formulated as
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minimize cost: C = $5N1 + $7N2
1 2 2
N N

subject to: 1 - 0.4 1 - 0.6) > 0.90 (1.1)

where N represents the number of components of element I

and N2 represents the number of components of element 2.copoen

The cost of each N component is $5; for each N2 component

it is $7. The probability of failure of each component of
9.

element I is 0.4; the probability of failure of each

component of element 2 Is 0.6; while the minimally

acceptable level of total system reliability is 0.90.
.9.'

The second problem, the economic dual, also considers a

system involving electronics with n Interconnected

elements. As before, each element Is made up of a number of

backup components that will switch on in case of failure.

However, in the case of the two-element system shown below,

the problem is maximization of total reliability given a 77

total cost constraint, e.g., $60.

, N N NW
maximize reliability: R = 1- 0 .4 1  - 0 .6..

subject to: $5N1 + $7N2 < $60 (1.2)

This thesis will develop an algorithm for the solution

of both types of problems. The algorithm, using geometric

.-. 1

q'.I',.

9. . . -l9. a .9 9 . .J,.
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programming, will be programmed for interactive use in

Basic, and a class of appropriate test problems will be used

to demonstrate the algorithm's ability to achieve global

optimal ity.

The General Geometric Programming Approach

Problems involving reliability are normally charac-

N., terized as nonlinear design problems. The objective

function and/or the constraint functions take the

generalized nonlinear form of

n
minimize g(X) = 8 C P (X)i1=1 1 1

where

-1 a 1a 2  aIn,
P (X) =X ... X 1 2 n;

C1 and aij are typically physical constants; and

X are design variables, J = 1, 2, .... n.

Geometric programming (GP) Is a mathematical

programming technique used to solve such nonlinear design

problems. The general form of a GP problem Is

minimize cost: C = go(X)

0.-
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subject to: gi(X) I I = I. 2, ... , m

X > 0 J 1, 2 . n

where
T a

I n fit
gl (X C if X

I t=1 It j=1 X

A few definitions used in GP are helpful In order to

further understand and discuss the algorithm. A "term" is

defined as a grouping of one or more variables with or

without coefficients separated from any other grouping of

variables by a plus, minus, or inequality sign. The degree

of difficulty is an indication of how difficult it Is to

solve the original problem; progressively higher numbered

problems become more difficult to solve. The degree of

difficulty (DD) of a particular problem is determined by

taking the number of individual terms in the entire problem,

minus the number of variables minus 1. Thus. a GP problem

such as

minimize cost: C = $12N1 9N2

term I

-1
subject to: N > 0.95

term 2

.i~
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N > 0.95

term 3
C,,.,

would have a DD of zero, as 3 terms minus 2 variables

(N1 and N2 ) minus I equals zero.

In GP, a zero DD problem is desirable, as a higher DD

problem would require some type of mathematical manipulation

before the problem could be solved. The reliability

problems solved using the algorithm developed below will be

one DD, and therefore will require an Internal mathematical

method to solve for the unknown 8 values. This method will

be addressed in Chapter 3. The first step in developing the

required algorithm is to rewrite the problem using various

substitutions to manipulate the variables so that the

resulting GP problem is one DD.

%-o ,.

A%

C2:Ci
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Chapter 2

CURRENT METHODS OF SOLVING

RELIABILITY PROBLEMS

Reliability as a separate mathematical science was

developed as a direct result of analyses conducted during

World War I. The rapid automation of technology created a

need for a way to determine the reliability of specific

items of equipment as well as total systems.

At the close of World War II. the military conducted

several studies on reliability. These studies revealed

some startling facts: (I) electronic equipment used

during Navy maneuvers was operational only 30% of the time;

(2) 67-75% of the Army electronic equipment was out of

commission or under repairs; (3) Air Force repair and

maintenance costs were ten times the original equipment

costs; (4) for every electonic tube on the shelf, seven

-. were in transit; (5) approximately one electronic

technician was needed for every 250 electronic tubes; and

(6) the number of electronic tubes required on board a

destroyer had risen from 60 to 3.200 (Shooman, 1968).

In 1950. the Department of Defense established an ad

hoc committee on reliability, which was replaced in 1952 by

the Advisory Group on the Reliability of Electronic

04
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Equipment (AGREE). AGREE and the Institute of Electrical

and Electronic Engineers (IEEE) are currently the main

agencies conducting reliability analysis.

Today reliability is stressed in military applications

of electronics, aviation, and weapons systems. Reliability

has become an important aspect of military contracting as

it is essential in evaluating the system usefulness or

goodness along with cost, size, and weight.

The approach to solving reliability problems varies

with each individual and organization. Most often,

rel lability problems are treated as applied probability or

statistics problems. Because analysis of complicated

reliability problems becomes lengthy or difficult,

transform methods or computer solutions are necessary.

Complex systems are almost Impossible to solve in entirety

and must be decomposed into functional areas.

Currently, reliability problems of the type described

In Chapter 1 are theoretically solved using the Kuhn-Tucker

conditions. In reality, most reliability problems are

solved using either a variable search or Markov process

method. It Is fairly simple to solve reliability problems

using the Markov process; however, the labor involved

Increases tremendously as the number of elements in the

-I .

" + ' '-- :: 222 :'-. ?.i :i.-- . 2 ? -i'? -""i') . + +' . : . -. " . " ..-, .2 " . . . .- -- - -. .-.- '." . .
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total system expands. In addition, this method cannot

guarantee global optimality; geometric programming, on the

other hand, does guarantee global optimality.

GP is practical for solving reliability problems since

it Is capable of exploiting the linear algebraic structure

of each problem. These linearities can appear as linear

equations, linear inequalities, or as matrices associated

with nonlinearities.

Research on the type of reliability problems discussed

in Chapter I revealed only one previous attempt to use GP.

In 1968, A. J. Federowicz and M. Mazumdar, while working

for the Westinghouse Research Laboratories, developed a

method of using substitution to enable the given problem to

be written in standard GP form. Once the problem was

written in GP form it was easier to solve.

The algorithm developed in this thesis follows the

initial substitution and manipulation that Federowicz and

Mazumdar used to solve maximization problems. Instead of

using Federowicz and Mazumdar's method, which uses

logarithms and differentiation to find the unknown

values, either the quadratic equation or the Brent-Dekker

method was used here to find the positive root of the

unkown . A method for solving minimization problems has

also been

* - * * -*~*-*
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included. Further comparison between Federowlcz and

/ Mazuindar's method and the one developed in this thesis will

be addressed in Chapter 5.

N%
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Chapter 3

METHOD FOR SOLVING

MINIMUM COST PROBLEMS

There are four phases In the GP method for solving

minimum cost problems and in developing an associated

generalized computer algorithm. Manipulation of terms and

substitution in the early phases can reformulate the

original problem in the standard GP form used by Woolsey's

0 T"Quick & Dirty" four rule algorithm (see Appendix A).

"-- Phase 1: The Objective Function

This phase consists of three steps and uses

"- substitution and the rules of logarithms to manipulate the

,. objective function of the original problem. In the case of

the first problem discussed, minimizing cost subject to a

specified reliability, the generalized form of the

objective function is

n
minimize cost: C S C N

w,'-. j~I j j--

where

j 1, 2..., n

To transform the objective function into the form

required by GP, consider the following procedure.

04

.... .. ......... .. - . . . . -- - - - ... .*.
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k Step 1) Using substitution, let F

, . ..

N. = In X.
J J

Step 2) Rewrite the objective function as

n
minimize cost: C = C in X

j=1 j j

Step 3) Use the rules of logarithms to get the

objective function in standard GP form.

-. a) When the antilog of a function such as

In Y C In X

is taken, It becomes

C.
"'"..v. j =  j

b) When the antilog of an additive function

such as

In Y =C 1 In X1 + C2 In X2  6

is taken, it becomes multiplicative

C C
Y x I x 2

I 2

Transform the original objective function of sample

problem (1.1) by performing the above steps.

64
L'S- --
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Step 0) Restate the original objective function.

'.4

minimize cost: C =$5N 1 + $7N2
1 21

Steps I & 2) Rewrite the above equation as discussed.
..

" minimize cost: C = 5 In X + 7 In X

Step 3) Take the antilog of the above equation.

C 5 7
minimize cost: e = X IX2

The objective function is now in standard GP form.

Phase 2: The Constraints

This phase consists of nine steps and uses substi-

tution and the rules of logarithms to manipulate the

constraint of the original problem. The generalized form

of the orignal constraint discussed is

NI ' N2 ) N 0
I- I - P2 - n)P n b

Step I) The reliability o- the jth element stated as

N.
j

-A - 7-1 -7. ... 4,-
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is difficult to handle in GP. Use substitution to

aet rid of this "messv" term bv letting

N
Z =1-Pzj = jJ

Step 2) Rewrite the constraint as

ZIZ -Z n  b

Step 3) At this ooint. because of the substitution

previously performed. the objective function is

written In terms of X.. while the constraint is

written in terms of Z.. The Problem cannot be solved

in this form. as there is now no relation between the

variables in the objective function and the

constraint. In GP. all constraints will be tight at

oDtimality (Duffin et at.. 1967). Therefore, an

additional constraint (written as an ineoualitv) can

be added for each Z,, showina the substitution used in

Step 1.

NZ. ( ! - .

I 1

Step 4) Terms that have a constant raised to a

variable Power are rather difficult to handle with

GP. Thus. let

ANSIA

'p..
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N.
1 P.

Step 5) Take the natural loo of both sides

InY =N In P

Sten 6) Use the substitution N. =In X.. as was done

for the obiective funct ion. to obtain

In Y. =In X. In P.

or

InY In nP In X

Step 7) Take the antilog of the above eauation.

In P.
=y 1

Stec) 8) Rewrite each added constraint (as recuired

in SteD 3). usfna this manipulation to obtain

In P.I

Stec) 9) Manipulate each constraint. so that the

right-hand sides are less than or eaual to 1.

a) Dividina both sides by Z I* the first

constraint becomes

1 2 n

-A , AA-
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b) Rewritten. it becomes

bD\L 1' 2 ... L i n

c) The added constraints become

In P
zj + Xj < I

By performing the above nine steps to the constraint

of the original sample problem (1.1). the resulting

constraints are transformed into standard GP form. An

application of the above nine steps Is shown below.

Step 0) Restate the original constraint:

S - 0.4 ) - 0.62 > 0.90

Steps I a 2) Replace the "messy" terms with Zj,

and rewrite the constraint:

_]Iz
Z1Z2 > 0.90

Steps 3-8) Add the additional contraints for each Z

as discussed:

>1! - In 0.4

In 0.6z2  > i 2  :

9.

' •,~~~~~~~~~~~~~~~~~~~~..-.-.. ,- . ....--,,---,........ .. .- ,...,.-..-.'.,.... ................. ..-... .-.... ... . ,,.:
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Stev q) Rewrite each of the constraints 
as discussed.

-L -

0.9z1 .Z2 
1

'J In 0.4 !
Z + x I 0.

i In 0.6Z 2 + X2  < I

2',

The constraints are now written in standard GP form.

Phase 3: Solvina by GP

This phase consists of seven steps, and uses Woolsev's

four rules to solve the problem. Phases I and 2 have

reformulated sample problem (1.1) as follows.

minimize cost: C X5 X7

1 2,

term I

subJect to: 0.90Z 1 Z - < I

term 2

Z + xIn 0.4

term 3 term 4

In 0.6 ZT l
+2 +< I

term 5 term 6

df,

.- v

p .,., .- , . -
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At this point the resulting GP problem Is one DD as

there are 6 terms and 4 variables (X,, X2 Z,, and Z2)

Using Woolsey's four rules of geometric programmifng

(Appendix A), we can solve samp~le problem (1.1).

Step 1) Write the form of the optimal solution%%

according to Rule 1.

77

minimize cost: C (1/k (0.9/i ~

(3 + 4) 5 6 (5 6) *

3 + 4 15) (/6) (5 + A6

Step 2) State the exponent matrix of the 6's

according to Rule 2.

(OF): =1 (3.1)

(X. 1m 55+n.464 = 0 (3.2)

(X) 71, + mnO.6! = 0 (3.3)2 16

S+3 6 0 (3.4)
2Z2 3

22 + 85 0 (3.5)

Step 3) Solve for the values of the A's using the

V. logic that follows. A pattern occurs in the matrix

table. Regardless of the number of variables in the

original problem, this pattern will always be

Present. The pattern is shown below.
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For j I 1to the total number of variables

.

(2= j 1) UNKNOWN2 -(2*j + 1)

and

(2*J + 2) = -Csj/ In Flue
-Cost I Failure~

The following steps depict how the pattern works for

the two-variable case.

a) From equation (3.1) determine that

b) From equation (3.21) determine that

S= 5.4567833

.44

c) From equation (3.3) determine that

6 = 13.7033060

d) From equation (3.4) determine that

2 3

e) From equation (3.5) determine that

2 5

V.'

5-.

" ' '" '"" " " '" / " -" " -"- -""", " ." " " " " .- ' ".''>" "-" ". .- .- " " -- '- ,'.-' '. 'i"'-"% " ,'i-' , 4'
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f) Thus

- 2 3 -5

5J7

* ~Step 4) Skip to Rule 4 sOnce the values of 2 3

and -S are unknown.

a) Write the equations for and
3 5

z +

~3 1 - -4)

0 = Z(5 +

5 2 5

b) Solve each equation in terms of Z.

(3)

(3 4)

z = 52

c) Replace the S's with the known values.

2

S+ 13.703306)

'.2



T-3357 22

d) At optimality each constraint is tight, thus

make the original constraint an equality and

solve It in terms of Z Z

1 2'

Z Z 0.90
1 2

e) Substitute the equations found in Step 4c

for Z Z in the above equation:

_2)_ X 2 = 0.90

(82 + 5.4567833) (-2 + 13.703306)

Thus,

.1,5 2 2 17.24408,2 - 67.298374 = 0

Step 5) Solve the above equation. The power of the

first term determines the method to be used.

a) Since the power of the first term is 2 and

the equation In Step 5e is in the quadratic form.

SI

a 2_ bS2 c = 0

solve for S 2 using the quadratic formula.

22-b ± b2  4acV

2a

'..'. ."-

S.7
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b) Substitute in the values found in Step 4e

and solve for

[-]'

-(-17.24408)+ (17.24408)2-4(.1)(-67.29837)]y

2>= 2(. 1)

Thus, ,

= 176.25895

and

= -3.818155

c) Since In GP the 's must be nonnegative, only

the real positive root of the quadratic equation

can be used; therefore. drop the neoative 2"

- * - 5 =176.25895

d) If the power of the first term is greater

than 2. then to solve for the unknown . a

modified secant method may be used. This

method, known as the Brent-Dekker method. is

based upon both bisection and the secant rule

methods. It is simillar to the Newton-Raphson

method, except only the ability to evaluate f(x)

is necessary. The Newton-Raphson method is

slightly faster, but it requires the first

."4
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approximation concerning the bracketing of the

roots to be close. In addition, the Newton-

Raphson method may not converge, whereas the

Brent-Dekker method Is guaranteed to work once

the function is bracketed.

To start the Brent-Dekker method, attempt

to bracket the function with two values (B and C). S

Figure 3.1 depicts this starting bracket. The

function must be continuous, and f(B)f(C) must

be less than zero. Throughout this algorithm, B

Is assumed to be the better root.

Convergence is based on a mixed relative-

absolute error test where

< max(Absolute ErrortB'- Relative Error]

The secant rule calculates the next iterate

(D) by starting with the first two iterates A and

B. The variable A is initially set equal to C.

Thus,

8-A
D B- f(B)

f(B) - f(A)

Figure 3.1 depicts how the starting bracket is

used to find the next iterate D using this

'I..

4...
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method. If D is to become the next iterate, then

it must lie between B and the midpoint between B

and C. If D is between B and the midpoint, then

it is set equal to B. The old B Is then set

equal to C. If D is not in the Interval between

B and the midpoint, then the midpoint between B

and C is used as the new iterate.

The Brent-Dekker method guarantees that

there is either a root of f(x) = 0 in the

Interval between B and C. or that one of the end

points is as close to a root as the desired

precision permits, if the function being

evaluated is continuous and the original bracket

(B,C) results in f(B)f(C) < 0.

Step 6) Solve for X and X2 according to Rule 4, by

replacing the S's with their known values.

a) Write the equations for and -

4 =Xlln  0.4( '_ + S 4
4 1 3 4)

In 0.6 +

6 : X2 05 + 6

-4-
-4 . . . . .~4 .
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b) Substitute in the known values for the 's.

5.4567833 X (176.250-95 + 5.4567833)

13.703306 X X2
0 5 0 8  (176.25895 + 13.703306)

c) Solve the above equations for X and X

X = 45.871487

0X 2 = 171.904510

Step 7) Use the above values to solve for the

objective function.

a) Find the optimal GP values of Nand N by

substituting In the values for the In X..
J

1 I In X In 45.871487 =3.8258437

N 2  In X =In 171.90451 =5.14693922 2

b) Therefore. the optimal GP value of the

objective function is

minimum cost: C =$55.16

17a A, --

reZ - n Lw A-t-4
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Phase 4: Integer Solution

Components cannot be split into fractions, therefore

an Integer solution is required. This phase will consist

of four steps that will ultimately provide the minimum cost

integer component solution.

Step 1) Round each N. down to the nearest integer,J

then add I. and write its value.

N =4

N =6
2

Step 2) This value will more than satisfy the

original constraint; however, it may not be the

optimal combination of variables that both satisfies

the constraint and has the minimum cost. Determine

the reliability and cost.

reliability = - 0.4)i 0.6) 0.9289384 > 0.90

cost = $5(4) + $7(6) $62.00

Step 3) Determine the number of combinations that

must be compared to ensure that the optimal solution

is found.

-....- .
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a) Add 1 to each integer value found in Step 1.

Determine the new reliability for each element.

V5

reliability element I = I - 0.45 0.989760

reliability element 2 = 1 - 0 6 0.9720064

b) Use the following formula developed by

Steven A. Strauss to find the number of

combinations to be checked to ensure that the

minimum cost Is found subject to the minimum

required reliability.

+ combination N = + integer(Nil - integer

[In(I - minimum required reliability/k)]
of

In [P(fai lure of j)]

I

where

k = reliability of each element found in

Step 3a, times all the other element

reliabilitles except for the Jth element

(the one whose optimal number of combin-

ations is currently being calculated)

Therefore,

I,
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+ combination N = + 4 - integer

(In (1 - 0.90/0.9720064)]
of +2

In 0.40

+ combination N2 - + 6 - integer

(In (1 0.90/0.9897600)]
of -+2

In 0.60

c) Find all combinations for each variable as

determined In Step 3b. The combinations are

also a sensitivity analysis for reliability and

cost. Table 3.1 shows the combinations of N"

and N2 which result for example problem (1.1). -2
Step 4) Select the feasible combination with the

minimum cost. This will be the optimal integer"-

solution.

minimum cost: C = $60.00

N%" 5

N 2 =5

*:.':i

2 .= 5 ,.*

."Al
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Table 3.1. Minimum Integer Combinations
S..

N N RELIABIL ITY COST
(IN DOLLARS)

2 4 0.7311360: 38.00
2 5 0.7746816. 45.00
2 6 0.8008090. 52.00
2 7 0.8164854. 59.U0
2 8 0.8258912 66.00

3 4 0.8146944. 43.00
3 5 0.8632166. 50.00
3 6 0.8923300 57.00
3 7 0.9097980 64.00
3 8 0.9202788 71.00

4 4 0.8481178: 48.00
4 5 0.8986307 55.00
4 6 0.9289384 62.00
4 7 0.9471230 69.00
4 8 0.9580338 76.00

'' 5 4 0.8614871 53.O00"7
5 5 0.9127963 60.00

5 6 0.9435818 67.00
5 7 0.9620531 74.00

.5 8 0.9731358 81.00

6 4 0.8668348 58.00
6 5 0.9184625 65.00
6 6 0.9494391 72.00
6 7 0.9680251 79.00
6 8 0.9791766 86.00

" denotes those combinations which are not
A feasible since they are less than the
ha minimum required reliability.

,.J
P

. .5,

.4.
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Chapter 4

METHOD FOR SOLVING

-* MAXIMUM RELIABILITY PROBLEMS

There are three phases in the method for solving
4

maximum reliability problems and In developing an

associated generalized computer algorithm. This chapter

uses the same manipulation of terms and substitution for

the objective function and constraints as does Chapter 3.

The second problem. maximizing reliability subject to a

specified cost limitation, would be written in generalized

form as

P -r

maximize reliability: R - - P2)... - Pn

n
subject to: C N < b

j=1 I !-

where

j = 1. 2..... 4

Phase I: Standard GP Form

This Phase consists of three steps used to get the

original sample problem (1.2) into standard GP form. This _.

is accomplished bv using the substitutions and maniou-

!ations described in Chapter 3. The substitutions include

Ub
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N. = In X

and
In P.

-i j• . = l - ..

Steo I) Restate the original sample problem (1.2).

maximize reliability: R = - 0 .4  1 - 0 .6

subJect to: $5N +$7N

1 2-

Steo 2) Use the substitution and manioulation as

described in Chaoter 3 to rewrite sample problem

~(1.2).

maximize reliability: R = ZIZ 2

5 7 60
subiect to: XX 2 < e

In 0.4
Z ( I - X

2 - 2

Step 3) GP only handles minimization Problems:

therefore. to change the obiective function to a

minimization, invert the function. The resultina

Problem becomes

U0
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minimize reliabilitv: R =Z Z
1 2

term I

60X5 7subject to: e X < I
1 12,

term 2

In 0.4

term _ term -4

Z + xIn 0.6 1
2, _2

term 5 term 6

Phase 2: Solvina bv GP

This ohase consists of siv steos and uses Wootsev"s

four rules to solve the problem. Sample oroblem (1.2) is

now in standard GP form and is a one DOD oroblem as there

are 6 terms and 4 variables (X, . X Z I . and Z ) The

2- 2

followlna steps are the same as thosed used in Phase 3 of

Chapter 3.

Step 1) Write the form of the optimal solution

accordina to Rule I:

-.-
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-11 -60 ~23minimize reliability: R = IA (e ~ (1/'3

+ + +5

(l/p; () 1/8(s5  (1/6)p
+ 55)

Step 2) State the exponent matrix of the 8's

according to Rule 2.

(OF): 1 (4.1)

(Z1) + **3=0 (4.2)

(Z + =0 (4.3)
2 2 5

(X ): + 58 + In 0.4S =0 (4.4)

(X+ 2 + In 0.66 0 (4.5)

Step 3) Solve for the values of the s's using the

logic that follows. A pattern occurs in the 5 matrix.

* . Regardless of the number of variables in the original

problem, this pattern will always be present. The

pattern is shown below.

.1

For J I to the number of variables

(2-j + 1) 1=

(2*j + 2) (-Cost /In Failure 2

The following steps depict how the pattern works for

the two-variable case.
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a) From equation (4.1) determine that

b) From equation (4.2) determine that

c) Fro eq a in ( .)d t r iet a 'Y

., , d) From equation (4.4) determine that,,;
S -t

2 4

e) From equation (4.3) determine that

2=

d) From equation (4.4) determine that tr

2 = 5.18325814

e) From equation (4.5) determine that

4 2

2 =0.072975156

6% 2

Se f) Solve each unknown 5 In terms of 2 therefore

-2' --4

'p.-

4 = 5"4567833 2 -

and :

6= 13. 703306,5 ..z:

Step 41 Sklp to Rule 4 since the values of .

and 5 are unknown.
6

% -%

*44',

:, :-.,

,L~r . ...'.",V-- "- - "-"-- - --", "' "- " "-"'. '- -" "."'-". -"-"- -"- -" -'."- -" "--"-"'."' " "-"- '-"". -',..' ,r.'. ,'.,'..'.-. ,'.'. *4.



T-3357 37

a) Write the equations for and 6

4 6

In 0.4
54 =Xl 3 +4)

In 0.656 = 2 5 6-

b) Solve each equation in terms of X...

1(1/0.9162907)
+

x( "53 +  "84)  r

2

x I

()Rpac h s ) wihkon.aus

= (5.457332

-- ,

h.A

X2 = 19576152

(I + 13 7 3 0 )
.2-

44

! . 0913567..<.\..

2 (13 .47033A,
X1 = .2
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d) At optimal ity each constraint is tight, thus

make the original constraint an equality and solve

It In terms of X IX2

1 2

e) Substitute the equations found in Step 4c for

12X in the above equation, and raise each

variable to the appropriate power.

r 1(1.0913567) (5)
e60  1(1 + 5.45678335 2)[(5.45678335 2)

r (1.9576152)(7)
1(1 + 13.70330611 2

ties(13.703306S 2

Step 5) The above equation Is very messy, hence all

maximization problems regardless of the number of

variables will be solved using the Brent-Dekker method

discussed In Chapter 3. With a starting bracket (B.C)

of (0.001.1000) the value for Is found to be

2 0.260661 14

Thus

-1.42237110-4-
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and

3.5719188

Step 6) Solve for X and X2 according to Rule 4 by

replacing the 8's with their known values.

a) Write the equations for 4 and 6
4 6'

IX xn 0.4(, + .)4 1 3 '4)

In 0.6
6 2 5 6

b) Substitute in the known values for the 5's.

1.4223711 = X 0.916290700(1 + 1.4223711)

3.5719188 = X- 0 05108256(1 + 3.5719188)
2

c) Solve the above equations for Xl and X2 .

X = 60.913084

X= 280.36967

Step 7) Use the above values to solve the objective

funct I on.

• "_.. ,-:

,.4



T-3357 40

a) Find the optimal GP values of N and N2 by

substituting in the values for the In X.

N = In X = In 60.913084 = 4.109448

N = In X = In 280.36967 = 5.636109
2 2

b) Therefore, the optimal GP value of the

objective function is

maximum reliability: R = 0.92195686

0

S. Phase 3: Integer Solution

Components cannot be split into fractions, therefore an

integer solution Is required. This phase will consist of

four steps that will ultimately provide the maximum

reliability integer component solution.

Step 1) Round each N down to the nearest integer, and

write Its value.

N =4

N =5
2

Step 2) This value will more than satisfy the

original constraint; however, it may not be the optimal

combination of variables that both satisfies the

'a
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constraint and has the maximum reliability. Determine

the cost and reliability.

cost = $5(4) + $7(5) = $55.00 < $60.00

)( 15
reliability -0.4 - 0.6 = 0.8986307

Step 3) Determine the number of combinations that

must be compared to ensure that the optimal solution

is found.

a) Subtract I from each integer value found in

Step 1. Determine the new cost for each element.

cost of element I = $5(3) = $15.00

cost of element 2 = $7(4) = $28.00

b) Use the following formula developed by

Steven A. Strauss to find the number of

combinations to be checked to ensure that the

maximum reliability is found subject to the

maximum allowed cost.

+ combination N = integer of

(budget limitation - costnew)I" / - integer N + I

[ (cost of Jth element)

04
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where

costnew : the cost of each element found in

Step 3a, plus all the other element costs

except for the jth element (the one whose

optimal number of combinations is currently

being calculated)

Therefore,

+ combination NI = + integer of

($60) - ($28)
:.-. - 4 + = + 3

* ,, $5

+ combination N = + integer of

($60) - ($15)
-5 + I= + 2

$7

c) Find all combinations for each variable as

determined in Step 3b. The combinations are also

a sensitivity analysis for cost and reliability.

Table 4.1 shows the combinations of N and N
12

which result for example (1.2).

.4-.. -

.4
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Step 4) Select the feasible combination with the

maximum reliability. This will be the optimal integer

solution.

maximum reliability: R = 0.9127963-U
N =5

N = 5

9...

.° .
.1%1

9..b
9.j

-- aN . l

-.-

9. " .

9. '%

9.-
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Table 4.1 Maximum Integer Combinations

N 2 COST RELIABILITY1 2 (IN DOLLARS)

2 3 31.00 0.6585600
2 4 38.00 0.7311360
2 5 45.0O0 0. 77468 16 ,-i

2 6 52.00 0.8008090
2 7 59.00 0.8164854

3 3 36.00 0.7338240
3 4 43.00 0.8146944
3 5 50.00 0.8632166
3 6 57.000 0.8923300
3 7 64.00 0.9097980

4 3 41.00 0.7639296
4 4 48.00 0.8481178
4 5 55.00* 0.8986307
4 6 62.00• 0.9289384
4 7 69.00 0.9471230

5 3 46.00 0.7759718
5 4 53.00 0.8614871
5 5 60.00, 0.9127963
5 6 67.000 0.9435818
5 7 74.00 0.9620531

6 3 51.00 0.7639296
6 4 58.00 0.8668348
6 5 65.00, 0.9184625
6 6 72.00, 0.9494391
6 7 79.00 0.9680251

* denotes those combinations which are not
feasible since they are more than the
maximum cost limitation. The values for the
combinations when N is 1 and 7 are not k.I

included as the reliabilities are too low. or
the cost exceeds the budget limitation.

-.. A

.1' ** , * % . ' . . .* ** .. . *- ... , V . .. .. %
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Chapter 5

SOLUTIONS TO APPLIED SAMPLE

,
~~RELI[ABI[L ITY PROBLEMS

A generalized computer algorithm, as described in

Chapters 3 and 4, was developed for a particular class of

nonlinear rel iabiIty design problems and is presented in

Appendix B. The computer algorithm is written in MICROSOFT

Quickbasic for IBM-compatible microcomputers.

The algorithm is built around 5 areas: (1)

substitution and manipulation of terms and variables to

rewrite the original problem Into standard GP form; (2) the

use of GP to start solving for the 6 values; (3) the use of

the Brent-Dekker method to solve for the remaining unkown

values; (4) the use of GP to solve for the optimal

noninteger answer; and (5) solving for the optimal Integer

solution.

The type of reliability problems that this algorithm

handles (minimization or maximization) will always remain

at one DO, no matter how many variables are added. This is

due to the substitution and manipulation that is done.

Whenever another variable Is added, one more constraint

with two terms (one with an artificial variable) will also

be added.
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Currently the computer algorithm is limited to four

variables. The results of running sample problems using

the computer algorithm are addressed below.

Minimization Problems

Most industries, like the Department of Defense, are

limited on how much they can spend to either purchase new

- systems or upgrade the present ones. Electronic equipment

must therefore have a high degree of reliability with a

reasonable cost in order to be competitive In today's world

of advanced technology.

The following problems are Indicative of the

rel lability constraints imposed on civilian contractors for

electronic equipment used by the military. The first two

problems were developed by COL Arbogast, a career Signal

Officer currently stationed at the United States Military

:,. Academy. The third problem is one that was used as a

sample problem In a published reliability text book

(Dhillon, Balbir 1983). Three minimization problems are

addressed below as test cases. There is a separate test

problem depicting each number of variables solvable by the

computer algorithm. For each test problem, the original

problem will be stated, along with both the GP and integer

solutions.

7
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Two-Variable Problem

The first problem depicts a system that is

comprised of two elements. Table 5.1 provides both

the optimal GP and Integer solutions. The original

problem is shown below.

minimize cost: C = $40N1 + $60N2

NI N2N
subject to: I - .02 - .01 > .98

Table 5.1 Minimum Two-Variable Solutions

Solution GP Integer

Reliability 0.979998 0.989604

Minimum Cost $115.51 $149.00

N IValue 1.228815 2

N Value 0.96171 15 1
2 p.

Three-Variable Problem

This problem depicts a system that is comprised

of three elements. Table 5.2 depicts both the optimal

" . GP and integer solutions for the problem. The

_ original problem is shown below.

1114

4 U.
'p./
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minimize cost: C = $40N 1 + $52N 2 + $60N 3

subject to: 1- 0 .0 1 1 1 - 0.006

I - 0.003 N 0.97

Table 5.2 Minimum Three-Variable Solutions

Solution GP Integer

Reliability 0.969840 0.990919

Minimum Cost $133.84 $192.00

N Value 1.020958 2I

N2 Value 0.888597 I

N Value 0.779838 1

3

Four-Variable Problem

This problem taken from Reliability Engineering

in Systems Design and Operation (pages 114-117), by

Balbir Dhillon° depicts a system that is comprised of

four elements. Table 5.3 depicts both the optimal

GP and integer solutions for the problem. The answers

derived by the computer program differ slightly from

the ones given In the test book. The answers that are

01.
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different In the text book are in parenthesis by the

computer answers. It appears that round off error may

cause this difference. The original problem is shown

be low.

minimize cost: C = $5N I + $ION 2 + $8N3 + S2N4

subject to: - 0. 0 4  I - 0 .0 3

- 0.02 - .05 > 0.98

Table 5.3 Minimum Four-Variable Solutions

Solution GP Integer

-K~

Reliability 0.980302 0.984330

Minimum Cost $95.54 $100.00 ($98)

N Value 5.611212 61

N2 Value 3.924052 4

N3 Value 3.859593 4

N Value 8.332921 9 (8)

4

Maximization Prob lems

Cost budgets are an important part of the total system

planning, especially when dealing with electronic pieces of

• ,p.

Kl ' * ," ..
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..

equipment. Two of the following problems were developed by

COL Arbogast, while the third was taken from the article

published by Federowicz and Mumzudar. Three maximization

problems will be addressed as test cases; one for each i

number of variables solvable by the computer algorithm.

Two-Variable Problem

The first problem is one depicting a system that

is comprised of two elements. Table 5.4 provides both

the optimal GP and integer solutions. The original

problem is shown below.

I N ')
maximize reliability: R = I- 0.02 1 0.01

subject to: $40N1 + $60N 2 i $200

Table 5.4 Maximum Two-Variable Solutions

Solution GP Integer

Reliability 0.999635 0.999500

Minimum Cost $200.00 $200.00

N Value 2.233251 2

N2 Value 1.844499 2

"S2

04..
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Three-Varijable Probl1em

This problem depicts a system that is comorised

of three elements. Table 5.5 depicts both the ontima!

GP and inteaer solutions for the oroblem. The oriainal

Droblem is shown below.

maximize reliability: P l-0.1' 0.004 '

- N.03 )

subject to: $40N I+ 352 2 60N 3 $250

Table 5.5 Maximum Three-Variable Solutions

Solution GP Integer

Reliability 0.999546 0.9968843

Minimum Cost $250.00 3244.00

N Value 1.928819 2

N Value 1.59408 22

N Value 1.49925 1
3

Lie.
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Four-Variable Problem

This problem taken from the article oublished by
Federowicz and Mazumdar, depicts a system that is

comprised of four elements. Table 5.3 depicts both the

,',' optimal GP and the integer solutions for the problem. .The answers derived by the conput - program differ

slightly from the ones aiven in the test article.

- Roundoff error and the way combinations are checked

appear to be the reason for the computer not attaining

the correct optimal answer. The answers that differ

are noted with the article answer in parentheses. The

original Problem is shown below.

N. N

maximize reliability: R = - 0 .2 0 1  - 0.3 0N2)

( - 0.25 1 0.15

subject to: $1.20N + $2.3N
1 2

+ $3.40N + $4.50N < $47
3 4

i%

'~ 

. .

9 4, 
'. '

-.-. 
:.o0

.. .. . - - ,; ... ..''- .. ,...*,........ .-. .. *"..'-'..-..,- . -,. - . -" -, .-. ,-.-,, , ,.,,." -,, ,,-. ;- ,
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Table 5.6 Maximum Four-Variable Solutions

Solution GP Integer

Reliability 0.993107 0.988735 (0.99)

Minimum Cost $47.00 $43.40 ($45.80) -

N Value 4.522890 4 (6)

N Value 5.265519 5
2

N Value 4.393139 4
.

,3
N4 Value 3.227793 3

..-

a...

,.

.'

'a.=

-a:-
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Chapter 6

CONCLUS IONS

Technology Is an ever changing area of science. As

.1-

equipment becomes more sophisticated, the need for reliable

and cost effective elements increases. A reliability model

that is quick, accurate, and efficient is an important part ',

of resource management. It is evident that the generalized
C ."

computer algorithm can be a useful microeconomic tool in -

terms of convenience, speed of results, and reduction of

computational error in calculating the optimal combinations

of system elements.

The strength of this computer algorithm is that it

provides a method for solving difficult problems that are

currently either guessed at, or require an excessive amount

of time to solve either by hand or computer. The program

is easy to use and solves each problem very quickly. The

algorithm has a slight weakness. When the costs for each

element are relatively small, with little difference, and

the failure rates are also fairly close, the computer

sometimes does not recognize a difference between adding or

subtracting one element. This appears to happen

occassionally when there are four variables.

A.
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One area not fully explored was that of sensitivity

analysis. The computer algorithm presently checks

different combinations of the variables, but only with

their present cost and failure rate values. The algorithm

should be expanded to include a method that would determine

how sensitive each element is to its own cost and failure,

as well as that of the total system.

Another important area for further research is that of

expanding the computer algorithm to include more than four

variables. This means developing a method to determine the

appropriate function to be solved when searching for 2"

The subroutine that searches for the unknown values

should also be refined. The Brent-Oekker method is very

sensitive when converging on the positive root. When the

method finds a positive root, the convergence factor

becomes less concise as the number of variables increases.

It is also noted that as the required minimum reliabilities

become more precise, the less concise the criteria for the

convergence factor can be. A lower convergence factor is

therefore necessary, otherwise, the computer tends to

oscilliate around the positive root.

The program could also be modified to solve problems

with additional constraints. For Instance, there may be a
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size capacity which will require a constraint limiting the

total number of components.

Another area for further research is that of improving

the manipulation of the original problem to determine

whether a different method will reduce the problem to a

zero DD, GP problem. If the problem could be reduced to

zero DD it would cut the solving time in half as the Brent-

.. Dekker method could then be eliminated from the program.

The concept of using manipulation and substitution to

* form messy problems into ones solvable by GP, and then

using a nonlinear method such as Brent-Dekker to solve the

inherent one DD mathematical problem significantly broadens

the range of possible applications of GP. This in itself

is an important area for further research.
".

The main contribution of this thesis is that it will

provide a simple-to-use, generalized computer algorithm for

solving a large class of nonlinear equations. In addition,

,.'.'. the algorithm guarantees that the GP solution will be

globally optimal. The integer solution cannot guarantee

global optimality, however, in most cases it will provide

the optimum local integer combination.

Ile's
V..
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Appendix A
h'% -

FOUR RULES FOR GEOMETRIC PROGRAMMING

Rule 1: The form of the optimal solution of any posynomial

GP problem is: I

9.

Value of the Objective Function =

(coef. of first term in obj. function/51) X

(coef. of last term fn obj. functfon/laslast X

(coef. of first term in constraint/51ast+ilast+ X

x I
" Iast+m

(coef. of last term In constraint/ Xlat~m s °

(sum of 's in constraint)

(sum of S's in constraint)

*" Rule 2: The exponent matrix is constructed in the following
Iwy

way:

-.

--.4. .. 4"" " "" " " ' ' " "v " ' ." ' -" "' -v -.. . - -" . -' -, -" " , -' .? ' --'. .. .-. ': ' ..-' , -.. .--; . .v "' : ' ' ' .: ' , .
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Rule 2A: The sum of contributions to cost in the

V. objective function 1.

1 + 2 + + last =

Rule 2B: For each primal variable the equations in

the exponent matrix are:

(power of variable j in term 1) X +

(power of variable j in term 2) X +
2

(power of variable J in last term) X 5 last+m = 0

Rule 3: At optimality

Value of the Objective Function =

(first term in obj. function/5 I) =

(second term in obj. functton/52 ) 

(last term In obj. functfon/ s)
last

Rule 4: At optimality, for each constraintI = (Jth term in constraint) X

(sum of 's in constraint)

'N.'

*~,* **,

*1 * ,.*'
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Appendix B

COMPUTER ALGORITHM FOR SOLVING

RELIABILITY PROBLEMS WITH GP

USING MICROSOFT QUICKBASIC

The reliability program developed for this thesis is

designed to run on an IBM-compatible personal computer

using a software package called Microsoft Ouickbasic. To

use the Microsoft Quickbasic package, the user must have

access to ai computer with at least 384k memory. The

computer program could easily be modified and written In
, .- ,

the Basic language of the user's personal computer If

Microsoft Ouickbasic is not available.

To run the program, the program is first read into the

computer and an executable file is made. The program can

be then be executed by typing the file name (i.e.. RELY) at

the computer A prompt.

The program is designed to be user interactive. Once

the program is loaded, the computer will begin by asking

the user for input. Appendix C depicts a sample computer

run. %

The reliability computer algorithm using Microsoft I

Quickbastc is listed below. III

I %*
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WELCOME TO CPT OATNEY'S RELIABILITY SOLVING
PROGRAM. THIS PROGRAM WILL EITHER MINIMIZE "
COST SUBJECT TO A REQUIRED RELIABILITY OR "
MAXIMIZE RELIABILITY SUBJECT TO A BUDGET ,

* LIMITATION USING GP. THE PROGRAM WILL HANDLE 0

FROM 2 TO 4 VARIABLES. THE FINAL ANSWER, IN 0 "'
INTEGER FORM, WILL INCLUDE: THE REQUIRED
QUANTITY FOR EACH VARIABLE AND EITHER THE
MINIMUM COST OR MAXIMUM RELIABILITY OBTAINED 0 i.

' FOR THE DEFINED PROBLEM. *

OPTION BASE I
DEFINT I-L,N
DEFDBL A-D,F•M,P
DIM COF(1O).PROB(10),XX(IO),YY(10),DELTA(20)
DIM NO(10) ,PROBNEW(10) •DIFFER(10) ,JCO(10)
DIM POWER(10),COSTNEW(1O)

.1,

I CLS
GOSUB STARTINP

J!..

IF YN$="N" THEN GOSUB MAXIM ELSE GOSUB MINIM

GOSUB ROUNDOFF
GOSUB VERIFY
GOSUB PRINTOUT
GOTO 9999

I.

, 5'°-. " "- .% .- " " ". ."; , ","" , ",' ",ww ,",, " ','', -' -''?. ' " ", """",'-'','." '•" .".''. -.r Z."."."'"'""' ' /
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STARTINP:

"***** THIS ROUTINE INITIALIZES THE PROGRAM **

".** *BY ASKING THE USER TO INPUT
" * * THE ORIGINAL PROBLEM DATA *

t0 INPUT; "IS THIS PROBLEM A MINIMIZATION? (Y/N) ",YN$
IF YN$<>"Y" AND YNS<>"N" THEN GOTO 10
PRINT ,,1

15 INPUT; "HOW MANY VARIABLES ARE THERE? (2-4) ",NVAR
PRINT ""

16 PRINT "YOU HAVE INPUT ",NVAR
PRINT "AS THE NUMBER OF VARIABLES"
INPUT; "IS THIS VALUE ACCEPTABLE? (Y/N) ",YYNN$
PRINT ""

IF YYNN$="N" THEN GOTO 15
IF YYNN$<>"Y" THEN GOTO 16

FOR J=I TO NVAR

20 CLS
LOCATE 5,12
PRINT "YOU ARE INPUTING VARIABLE #".J
INPUT; "WHAT IS THE COST COEFFICIENT? ",COF(J)
PRINT ""

INPUT; "WHAT IS THE ASSOCIATED PROBABILITY OF
FAILURE? ",PROB(J)

,,*. PRINT ""
PRINT "YOU HAVE INPUT ";COF(J);" AND ";PROB(J)
PRINT "AS THE COST AND FAILURE PROBABILITY"

30 LOCATE 15,12
INPUT; "ARE THESE VALUES ACCEPTABLE? (Y/N) ",YNN$
PRINT ""
IF YNNS="N" THEN GOTO 20
IF YNN$<>"Y" THEN GOTO 30

NEXT J
CLS

40 IF YN$="Y" THEN
INPUT; "WHAT IS THE REQUIRED RELIABILITY? ",RELY
PRINT ""
PRINT "YOU HAVE INPUT ";RELY
PRINT "AS THE REQUIRED RELIABILITY"
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50 LOCATE 15,12
INPUT; "IS THIS VALUE ACCEPTABLE? (Y/N) ',YNN$
PRINT ""
IF YNN$="N" THEN GOTO 40
IF YNN$<>"Y" THEN GOTO 50

ELSE -

60 INPUT; "WHAT IS THE BUDGET LIMITATION? ",BUDG
PRINT " -

PRINT "YOU HAVE INPUT ";BUDG
PRINT "AS THE BUDGET LIMITATION"

70 LOCATE 15,t2
INPUT; "IS THIS VALUE ACCEPTABLE? (Y/N) ",YNN$
IF YNN$="N" THEN GOTO 60
IF YNNS<>"Y" THEN GOTO 70

END IF
RETURN

""'p

MAXIM:

"*'''' THIS SUBROUTINE PROVIDES THE "*''

" a *'EQUATIONS NEEDED TO SOLVE '

" FOR THE 8 VALUES IN ..... *..

MAXIMIZATION PROBLEMS **'**U

DELTA( I )=1
FOR J = 1 TO NVAR

COFF(J)=COF(J)/BUDG
POWER(J) = -COFF(J)/LOG(PROB(J))
DELTA(2"J+1 )=.

NEXT J A
GOSUB DFUN
GOSUB SECSOLVE
GOSUB XMAXSOLVE ""
RETURN

I7,

'I..-

- ~. '~ .' ____
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MINIM:

• ' *, .THIS SUBROUTINE PROVIDES THE "
""*** * EQUATIONS NEEDED TO SOLVE ********.**

"*******~ FOR THE 8 VALUES IN *
"************* MINIMIZATION PROBLEMS ***-
" ' * IT ALSO SOLVES TWO-VARIABLE "
"'***** PROBLEMS USING THE QUADRATIC EQUATION * -.

CON =-

DELTA(I) = I ; ,

AA = (I-RELY)
BB = 0: CC = 0 : DD = 0
FOR J I TO NVAR

DELTA(2*J+I) = -COF(J)/LOG(PROB(J))
BB = BB-DELTA(2*J+I)*RELY
CON = CON*DELTA(2*J+I)*RELY
FOR IJ = J+1 TO NVAR

IF IJ>NVAR THEN GOTO 100
CC = CC-DELTA(2*J+1 )*DELTA(2"IJ+I )*RELY
FOR IJK = IJ+I TO NVAR

IF IJK>NVAR THEN GOTO 100
DO = OD-DELTA(2*J+I)*DELTA(2*IJ+I)*

DELTA(2* IJK+I ) *RELY 2.
NEXT IJK

NEXT IJ

100 NEXT J
IF NVAR=2 THEN

02 = (-BB+SOR(BB-2-4*AA"CON))/(2*AA)
- GOSUB XMINSOLVE

RETURN
END IF
IF NVAR>2 THEN GOSUB DFUN
GOSUB SECSOLVE
GOSUB XMINSOLVE
RETURN

,'.: .:.:

:. , ... '-~ V ' ' . -..
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DFUN:

• THIS SUBROUTINE DEFINES THE FUNCTION .
.4 '* *~m.. TO BE USED WHEN SOLVING FOR THE ****O***O

. * REAL POSITIVE ROOT OF THE
UNKNOWN 8 VALUES IN EITHER ... F

,'*m.=. MAXIMIZATION OR MINIMIZATION PROBLEMS .

DEF FNFUNC (D2)
IF YN$="Y" THEN

FNFUNC = AA*D2-NVAR+BBOD2-(NVAR-I)+CC*D2-(NVAR-2)
+DD*D2-(NVAR-3)*(NVAR-3)+CON

ELSE
DUM=I
FOR J = I TO NVAR

DUM = DUM*(((I+POWER(J)*D2)/
(POWER(J)*D2))'POWER(J))

NEXT J
FNFUNC = -EXP(I)+DUM

END IF
END DEF
RETURN

SECSOLVE:

• .* ''.. THIS SUBROUTINE FINDS THE POSITIVE **' 4

• ",... REAL ROOT FOR THE UNKNOWN 5'S '
"'Uhlif* THE SUBROUTINE BEGINS BY REQUESTING ******

' 'AN INITIAL STARTING BRACKET

220 PRINT "PLEASE PROVIDE A STARTING BRACKET [B,C] .4

SEPARATED BY A COMMA
INPUT "WHICH YOU BELIEVE CONTAINS A ROOT ";B,C
IF B<0 OR C<0 OR (B=0 AND C=0) THEN GOTO 220

240 PRINT "THANK YOU, YOUR STARTING BRACKET 15 = .B.C'I ~ D=C:GOSUB 9004.

.4- .-

II.
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'**O***O***MAIN PROGRAM STARTS HERE ****

' QUICK CHECK: IS FA AND FB OF OPPOSITE SIGNS?

A=C
GOSUB 760

330 GOSUB 690
IF FA*FB > 0 THEN GOTO 1350
CONVERG=10-(-8+(2*(NVAR-2)))

-S IF ABS(FB*FD)<CONVERG THEN
IF ABS(FD)<ABS(FB) THEN

8=D
FB=FD

END IF

END IF

350 IF ABS(FB)<CONVERG THEN 1200
GOSUB 830
IF ABS(FC)=>ABS(FB) THEN GOTO 480
A=B
GOSUB 760
B=C
GOSUB 690
C=A
GOSUB 830
GOTO 350

~ PRINT CURRENT VALUES OF B,A.FBFA

480 PRINT
'P 0= (FB*A-FAB8) /(FB-FA)

PRINT
GOSUB 900

PR INT
GOSUB 760
PRINT
M=(Bl.)/2

GOSUB 920
GOTO 970

* *0**0 ....... CALCULATE FB 0*ooo*0

690 FB=FNFUNC(B)
PR INT
RETURN
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- . . , CALCULATE FA .

760 FA=FNFUNC(A)
PRINT
RETURN .4 "

" ' ''O*ftft tftt~ft ~ CALCULATE FC * '*' ftftftftf .'f..-

830 FC=FNFUNC(C)
PR I NT
RETURN

':f"**''*ft *.... *'***'' CALCULATE FD ft ft ft ft ft

900 FD=FNFUNC(D)
PRINT
RETURN

~~~ ~~CALCULATE FM tttfttttttfftttt

920 FMFNFUNC(M)
PR I NT4.I

RETURN -

; ''' PRINT CURRENT VALUES OF D,B,NAND C "

970 PRINT
PRINT "THE CURRENT VALUES OF D.B,M,C ARE = ",D,BNC .-

FXX=FD*FB
"V FYY=FD*FM " =

FZZ=FC*FD
IF FYY<=O THEN ,'

IF ABS(FD)<ABS(FM) THEN
B=D :FB=FD

4" C=M:FC=FM
ELSE

C=D :FC=FD
B=M :FB=FM

END IF 1
A=C :FA=FC
GOTO 330

4,..



...

T-3357 68
.%

ELSE
IF FZZ<=O THEN

B=C:C=A:A=B
FB=FC :FC=FA FA=FB j

END IF

PRINT

1050 IF (D>B AND D<M) AND FXX<O THEN GOTO 1060 I
IF (D<B AND D>M) AND FXX<O THEN GOTO 1060~~GOTO I1100i:

1060 B=D
FB=FD -
GOTO 1120

1100 B=MFB=FM -

1120 IF (FB*FC)=>O THEN C=A:GOSUB 830
GOTO 330

-' .... m...*....... PRINT RESULTS *......*..*.*.*

1200 CLS
PR I NT
PRINT "THE OPTIMAL VALUE OF THE UNKNOWN IS = ".B
PRINT
D2=B
GOTO 1400

'"' *** * TELL USER BRACKET IS NO GOOD " I
1350 PRINT

PRINT "ROOT NOT BRACKETED OR SECANT METHOD WILL NOT
,' FIND ROOT, TRY AGAIN"

GOTO 220

-,"* * USER IS FINISHED WITH SUBROUTINE -

1400 RETURN
,,L.

*1.,

":.,. :. =

'.', . . . . .. .
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XMAXSOLVE:

,*. THIS SUBROUTINE SOLVES FOR THE X VALUES "
" ' ' IN MAXIMIZATION PROBLEMS "

FOR J =I TO NVAR
DELTA(2*J+2)=D2*POWER(J)

XX(J) = (LOG(DELTA(2*J+2)/(DELTA(2"J+I)
+DELTA(2*J+2))))/LOG(PROB(J))

NEXT J
RETURN

XMINSOLVE:

"'°* THIS SUBROUTINE SOLVES FOR THE X VALUES "
"**°°*****=° IN MINIMIZATION PROBLEMS ***W****

FOR J =I TO NVAR
DELTA(2*J)=D2
XX(J) = (LOG(DELTA(2*J+I)/(DELTA(2*J)

+DELTA(2°J+l))))/LOG(PROB(J))
NLXT J
RETURN

ROUNDOFF:

"U* '°THIS SUBROUTINE ROUNDS THE GP °
.' ' SOLUTION TO INTEGER VALUES

FOR J = I TO NVAR
YY(J)=INT(XX(J))
IF INT(XX(J))<XX(J) AND YN$="Y" THEN

YY(J)=INT(XX(J))+I
NEXT J
RETURN
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VERIFY:

~~ THIS SUBROUTINE FINDS AND VERfFIES
'~*~ THE OPTIMAL INTEGER SOLUT!ON '

PROBOPT= I:COSTOPT=0
FOR J = I TO NVAR

COSTOPT=COSTOPT+COF (J)*YY (J)
PROBOPT=PROBOPT*(I-PROB(J)-YY(J))

NEXT J

IF YN$="N" THEN
FOR J = I TO NVAR

NO(J)=YY(J)- I
NEXT J
FOR J =1I TO NVAR

COSTNEW(J)=0
FOR K = I TO NVAR

IF J(>K THEN
COSTNE W(CJ )=COSTNEW (J )+( COF (J )NO (K))

NEXT K

DIFFER(J) = INT((BUDG-COSTNEW(J))/
NEXT JCOF(J) )-YY(J)+l

END IF

IF YN$="Y" THEN
FOR J = 1 TO NVAR

NO(J)=YY(J)+I
NEXT J
FOR J = I TO NVAR

PROBNEW(J)=l
FOR K = I TO NVAR

IF J<>K THEN PROBNEW(J)=PROBNEW(J)*
C 1-PROB (K) -NO (K) )

NEXT K
DIFFER(J)=YY(J)- INT( (LOG( I- (RELY/

PROONEW(J)) ))/(LOG(PROB(J))))
NEXT J
END IF

J~7
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"****'* TEST FOR CONSTRAINT VIOLATION AND * **

"***** A BETTER OBJECTIVE FUNCTION ***

FOR K = I TO NVAR: NO(K)=YY(K): NEXT K

"*** DETERMINE THE NUMBER OF COMBINATIONS *
"* *'* TO BE EXAMINED TO FIND *
"*******U****** THE OPTIMAL SOLUTION *

FOR JI = YY(1)-DIFFER(1) TO YY(1)+DIFFER(I)
JCO(I)=JI
IF Jl<l THEN GOTO 9900
FOR J2 = YY(2)-DIFFER(2) TO YY(2)+DIFFER(2)

JCO(2)=J2
IF J2<1 THEN GOTO 9800
IF NVAR=2 THEN GOSUB COMPARE: GOTO 9800
FOR J3 = YY(3)-DIFFER(3) TO YY(3)+DIFFER(3)

JCO(3)=J3
IF J3<1 THEN GOTO 9700
IF NVAR=3 THEN GOSUB COMPARE: GOTO 9700
FOR J4=YY(4)-DIFFER(4) TO YY(4)+DIFFER(4)

- JCO(4)=J4
IF J4<0 THEN GOTO 9600
GOSUB COMPARE

9600 NEXT J4
9700 NEXT J3
9800 NEXT J2
9900 NEXT J!

RETURN

COMPARE:

"****** THIS SUBROUTINE FINDS THE ***

"' ****OPTIMAL COMBINATION *

IF YN$="N" THEN
COSTCALC=O
FOR J 1 = I TO NVAR

COSTCALC=COSTCALC+COF(JJ)*JCO(JJ)
NEXT JJ
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IF COSTCALC>BUDG THEN RETURN
PROBCALC= I
FOR JJ =1I TO NVAR

A PROBCALC=PROBCALC*(I-PROB(JJ)-JCO(JJ))
NEXT JJ
IF PROBCALC(PROBOPT THEN RETURN

PROBOPT = PROBCALC
FOR JJ = I TO NVARt

NO(JJ)=JCO(JJ)
NEXT JJ

ELSE
PROBCALC= I
FOR JJ = I TO NVAR

PROBCALC=PROBCALC*( -PROB(JJ)-JCO(JJ))
NEXT JJ
IF PROBCALC(RELY THEN RETURN
COSTCAL C= 0
FOR JJ = I TO NVAR

COSTCALC=COSTCALC+COF (JJ ) JCO(JJ)
NEXT JJ
IF COSTCALC<COSTOPT THEN

COSTOPT = COSTCALC
FOR JJ = I TO NVAR

NO(JJ)=JCO(JJ)
NEXT JJ

END IF
END IF
RETURN

PRINTOUT:

'****~~*~THIS SUBROUTINE TELLS THE USER

*U~ WHAT THE OPTIMAL SOLUTION IS

.4

.% PRINT "THE ORIGINAL PROBLEM WAS:"
IF YNS="Nff THEN

PRINT "MAXIMIZE RELIABILITY";
FOR JJ = I TO NVAR-I

PRINT "C I-(";PROB(JJ) :"-N(";JJ") )*;
NEXT JJ
PRINT "(I-(";PROB(NVAR);"-N(";NVAR"))";
PRINT "S.T. "

FOR JJ I ITO NVAR-I
PRINT COF(JJ);"fN(";JJ;")+"
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NEXT JJ
PRINT COF(NVAR);"*N(";NVAR;") <= ";BUDG
PRINT

ELSE
PRINT "MINIMIZE COST";
FOR JJ = I TO NVAR-I

PRINT COF(JJ);"N(";JJ;") +";
NEXT JJ
PRINT COF(NVAR);"*N(";NVAR;")"
PRINT " S.T. ";
FOR JJ = TO NVAR-!

PRINT "(I-(";PROB(JJ);"-N(";JJ"))*";
NEXT JJ
PRINT "(I-(";PROB(NVAR);"^N(";NVAR")) => ";RELY
PRINT

ENDIF

COSTOLD= : COSTCALOPT=O : PROBOLD=l : PROBCALOPT=I

PRINT "THE GP SOLUTION FOR THE PROBLEM HAS VALUES
OF"

FOR J = I TO NVAR
PRINT " N(";J;")=";XX(J)
COSTOLD=COSTOLD+XX(J)*COF(J)
COSTCALOPT=COSTCALOPT+NO(J) COF(J)
PROBOLD=PROBOLD*(I-PROB(J)-XX(J))
PROBCALOPT=PROBCALOPT(I-PROB(J) NO(J))

NEXT J
PRINT " WITH AN OPTIMAL COST OF ";COSTOLD
PRINT " AND A RELIABILITY OF ";PROBOLD
PRINT
PRINT "THE OPTIMAL INTEGER SOLUTION HAS VALUES OF
FOR J = I TO NVAR

PRINT "N(";J;")=";NO(J)
NEXT J
PRINT " WITH AN OPTIMAL COST OF ";COSTCALOPT
PRINT " AND A RELIABILITY OF ";PROBCALOPT

9997 INPUT "DO YOU WANT A HARD COPY OF THIS RESULT?
(Y/N) ",NY$

IF NY$="N" THEN GOTO 9998
IF NYS<>"Y" THEN GOTO 9997

LPRINT
LPRINT "THE OPTIMAL VALUE OF IS =~2
LPRINT
LPRINT "THE ORIGINAL PROBLEM WAS:"
IF YNS="N" THEN

LPRINT "MAXIMIZE RELIABILITY";
FOR JJ = I TO NVAR-I

.'
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PRINT "(I-(";PROB(JJ) ;m-N(";JJ") )";
NEXT JJ
LPRINT "(1-(";PROB(NVAR) ;"'N(";NVAR"))";
LPRINT "S.T. "

FOR JJ I TO NVAR-1
IPRINT COF(JJ);"*N(";JJ;")+"

NEXT JJ

LPRINT COF(NVAR);"*N(";NVAR;") <= ";BUDG
LPR INT

ELSE
LPRNT"MINIMIZE COST";

FOR JJ =I TO NVAR-I
LPRINT COF(JJ);"*N(";JJ;")+"

NEXT JJ
LPRINT COF(NVAR);"*N(";NVAR;")"
LPRINT " S.T. ";
FOR JJ = I TO NVAR-1

NEXT JJ
LPRINT "(1-(";PROB(NVAR);"-N(";NVAR")) => ";RELY

-' LPRI NT
END IF
LPRINT "THE GP SOLUTION FOR THE PROBLEM HAS VALUES

OF"
FOR J = I TO NVAR

LPRINT " (;;)=;XJ
NEXT J

LPRINT "WITH AN OPTIMAL COST OF ";COSTOLD
'S LPRINT "AND A RELIABILITY OF ";PROBOLD

LPRINTow
IPRINT "THE OPTIMAL INTEGER SOLUTION HAS VALUES

OF"
FOR J I ITO NVAR

LPRINT "N(";J;")=";NO(J)

NEXT J
LPRINT " WITH AN OPTIMAL COST OF ";COSTCALOPT
LPRINT " AND A RELIABILITY OF ";PROBCALOPT

9998 RETURN

9999 INPUT; "DO YOU WISH TO DO ANOTHER PROBLEM? (Y/N) "

pI~ NY$
IF NYS="Y" THEN GOTO 1
IF NYS<>"N" THEN GOTO 999

END

S. del
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Appendix C

SAMPLE COMPUTER RUN

Computer Questions Input

IS THIS PROBLEM A MINIMIZATION? (Y/N) Y
HOW MANY VARIABLES ARE THERE? (2-4) 3
YOU HAVE INPUT 3 AS THE NUMBER OF VARIABLES
IS THIS VALUE ACCEPTABLE? (Y/N) Y

YOU ARE INPUTTING VARIABLE I
WHAT IS THE COST COEFFICIENT? 5
WHAT IS THE ASSSOCIATED PROBABILITY OF FAILURE? .4
YOU HAVE INPUT 5 AND .4
AS THE COST AND FAILURE PROBABILITY
ARE THESE VALUES ACCEPTABLE? (Y/N) Y

YOU ARE INPUTTING VARIABLE 2
WHAT IS THE COST COEFFICIENT? 7
WHAT IS THE ASSSOCIATED PROBABILITY OF FAILURE? .6
YOU HAVE INPUT 7 AND .6
AS THE COST AND FAILURE PROBABILITY
ARE THESE VALUES ACCEPTABLE? (Y/N) Y

YOU ARE INPUTTING VARIABLE 3
WHAT IS THE COST COEFFICIENT? 6
WHAT IS THE ASSSOCIATED PROBABILITY OF FAILURE? .5
YOU HAVE INPUT 6 AND .5
AS THE COST AND FAILURE PROBABILITY
ARE THESE VALUES ACCEPTABLE? (Y/N) Y

WHAT IS THE REQUIRED RELIABILITY? .9
YOU HAVE INPUT .90
AS THE REQUIRED RELIABILITY

IS THIS VALUE ACCEPTABLE? (Y/N) Y

PLEASE PROVIDE A STARTING BRACKET
(B.C] SEPARATED BY A COMMA
WHICH YOU BELIEVE CONTAINS A ROOT
THANK YOU, YOUR STARTING BRACKET IS = 0,1000

C ..
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Computer Output

THE OPTIMAL VALUE OF S IS = 250.421517

THE ORIGINAL PROBLEM WAS
MINIMIZE COST 5 * N( I ) + 7 N( 2 ) + 6 N( 3 )
S.T. (1 - (.4-N(I))(l - (.6^N(2))*(I - (.5-N(3)) => .90

THE GP SOLUTION FOR THE PROBLEM HAS VALUES OF
N(I) = 4.199369
N(2) = 5.792162
N(3) = 4.903512

WITH AN OPTIMAL COST OF 90.96304798
AND A RELIABILITY OF .91409482752

THE OPTIMAL INTEGER SOLUTION HAS VALUES OF
N(I) =5
N(2) = 6
N(3) = 5

WITH AN OPTIMAL COST OF 97
AND A RELIABILITY OF .896896312

I.e

4,w

""a

4.am

.4.
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