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ABSTRACT

The rapid advancement of technology in the electronic
industry has created a need for solving a certain class of
large nonlinear reliability problems. The Department of

Defense and civilian industries when planning for the

allocations of budget resources require an efficient method

for solving these problems. In certain areas a specific
reliability, such as with nuclear reactors, must be
attainable to ensure the accomplishment of the mission or
to provide necessary safety factors. The current methods
used to solve these problems are very difficult and time
consuming. A computer algorithm which is based on
geometric programming has been developed to provide a
quick, accurate, and efficient way of solving reliability

[’

problems.
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. Chapter 1 5
I -
e INTRODUCTION -
o :
Y »
V) v
e Problem Statement
) X
ﬁq In the general field of electronic instrumentation, an N
A :{
@zk important goal for both government and private industry is <
e that of fielding systems that can operate reliably for a 4
} - .
A <
ij- specified period of time within specified environments. "
b 1-_:.1 R
e One of the most difficult problems in this field is s
‘it -
Pl ensuring a level of acceptable reliability at minimum ’
'i%; cost. Related to this problem is its economic dual, which G
e :..
}ﬁj is to maximize reliability within fixed cost limits. The o
purpose of this thesis is to show that these types of
2 reliability problems are easily solvable, within certain 2:
v restrictions, using geometric programming (GP). S
5y B
*?. Component reliability is defined as the mathematical
‘EJ: probability that an individual component will continue -
P/ -
-ﬁ{ performing its intended mission for a specific length cf *
L £
{f” time. The failure rate of a particular component is stated -
fik as a probability between 0 and 1. In mathematical terms, ff
S -
?Eﬁ component reliability equals | minus probability of -
o failure, or 1 - P(failure). If a system is composed of l
A >
b more than one component in series, then the system >
Ekﬂ< reljiability would be the product of the individual :i
i) kS
QYA .
?;Z: 8
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component reliabilities. For one type of component, the
system reliability would become
1 - P(failure)¥ (of units)

Although the definition of component reliability is
straightforward., systems involving reliability can become
rather complex. Figure 1.1 depicts a general reliabitlity
system. The system consists of n elements where each
element can have one or more redundant or parallel
components.

The reliability of any separate element and the
reliability of the system itself are increased
exponentially through redundancy of components. However,
one must then face the corresponding multiplicative
increase in cost.

The first problem of achieving acceptable reliability
at minimum cost could be stated as follows. Consider a
system involving electronics with n interconnected
elements. Each element is made up of some number of backup
components that will switch on in case of failure. Figure
1.1 is such a system. A two-element system, where we wish
to minimize the cost of parallel back-up components subject
to a minimally acceptable ltevel of total system

reliability, would be formulated as
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minimize cost: C = $5Nl + s7N2 55

' ~,:

| N1 N2 -

subject to: 1 - 0.4 tl - 0.6 2 0.90 (1.1) .

;Z

b

where Nl represents the number of components of element 1 ES
and N2 represents the number of components of element 2. ;&
The cost of each N] component is $5; for each N2 component g;
2

it is $7. The probability of failure of each component of gj
Y

S

element | is 0.4; the probability of failure of each %
-

component of element 2 is 0.6:; while the minimally el
~

acceptable level of total system reliability is 0.90. o

The second problem, the economic dual, also considers a

system involving electronics with n interconnected

%v"'

£

elements. As before, each element is made up of a number of

backup components that will switch on in~case of failure.

¥
'l

i v
)

However, in the case of the two-element system shown below,

the problem is maximization of total reliability given a S§
total cost constraint, e.g., $60. }
\

»
Nl N2 L3
maximize relfability: R = {1 - 0.4 1 - 0.6 =
subject to: $SN, + $TN, < $60 (1.2) =
;

This thesfis will develop an algorithm for the solution

of both types of problems. The algorithm, using geometric

Late St ".I '-/'.‘«'\ ".‘J' * -'.‘:‘.’: e R "'..1" A ..‘1\ KX J A T R NS SRR L R
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- programming, will be programmed for interactive use in f
' s
qﬁ Basic, and a class of appropriate test problems will be used 3
Y
-%ﬂ to demonstrate the algorithm’s ability to achieve global ::
l‘ lJ . &
. optimality. -~
NS e
o -
h‘\‘-- -
s 3
. The General Geometric Programming Approach 2
i
[ Problems involving reliability are normally charac- t:
~ " & ..-'
A A
n}i terized as nonlinear design problems. The objective Ny
» ]
- function and/or the constraint functions take the _z
éii generalized nonlinear form of )
." n ‘ " »
. minimize g(X) = ¢ C P (X) "
D% j=1 1 i -
s *
fi: where g
) 851,942 3n :
.::.: Pi(X) = Xl X2 Xn sy =21, 2, ...s N3
.f? ¢, and a;j are typically physical constants; and f
Ot ~::
! X; are design variables, § =1, 2, ..., n. 3z
W j &
™ N
«v; Geometric programming (GP) is a mathematical N
; .'\. ,':~_
.25 programming technique used to solve such nonlinear design N
57, problems. The general form of a GP problem is -
o -
n o
L ~
o, minimize cost: C = g,(X) -
b0 N
AL e
G
‘3 -;
I‘J -
[ J$ ” ,:-
4 »
o :
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S

)y subject to: gi(X) <1 i=1, 2, ..., m
o

>,

2’

L, xj >0 j=1,2, ..., n
s where

N T a

15 1 n ijt

- g (X) = £ C T X

gt i t=1 it jJ=1 J

N

.t A few definitions used in GP are helpful in order to
12 further understand and discuss the algorithm. A "term” is
.'!-

- defined as a grouping of one or more variables with or

;.j without coefficients separated from any other grouping of
ig variables by a plus, minus, or fnequality sign. The degree
.

;“; of difficulty is an indication of how difficult it is to

" solve the original problem;s progressively higher numbered
.r‘..

«if problems become more difficult to solve. The degree of

.

3: difficulty (DD) of a particular problem is determined by
.%; taking the number of individual terms in the entire problem,
;ﬁ minus the number of variables minus 1. Thus, a GP probtem
2

-q such as
- minimize cost: C = $I12N 9N,

L term 1

-1
subject to: Nl 2 0.95
e
term 2

R P D - (}_‘
T

N BN IV f;f.(htkf-x:!kfkf.fhf.f.x.iL? ¢

:.:',..’.._.4_..’.‘.:‘.:.’- AN n -‘(-.(- - =
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N, 2 0.95

| S
term 3

would have a DD of zero, as 3 terms minus 2 variables

(Nl and NZ) minus | equals zero.

In GP, a zero DD probiem is desirable, as a higher DD
problem would require some type of mathematical manipulation
before the problem could be solved. The reliability
problems solved using the algorithm developed below will be
one DD, and therefore will require an internal! mathematical
method to solve for the unknown % values. This method will
be addressed in Chapter 3. The first step in developing the
required algorithm is to rewrite the problem using various
substitutions to manipulate the variables so that the

resulting GP problem is one DD.
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Chapter 2
CURRENT METHODS OF SOLVING

RELIABILITY PROBLEMS

Reliability as a separate mathematical science was
developed as a direct result of analyses conducted during
World War 1I. The rapid automation of technology created a
need for a way to determine the reliability of specific
items of equipment as well as total systems.

At the close of World War Il, the military conducted
several studies on reliability. These studies revealed
some startling facts: (1) electronic equipment used
during Navy maneuvers was operational only 30% of the time;
(2) ©67-75% of the Army electronic equipment was out of
commission or under repairs; (3) Air force repair and
maintenance costs were ten times the original equipment
costs; (4) for every electonic tube on the shelf, seven
were in transit; (5) approximately one electronic
technician was needed for every 250 electronic tubes: and
(6) the number of electronic tubes required on board a
destroyer had risen from 60 to 3,200 (Shooman, [(968).

In 1950, the Department of Defense established an ad

hoc committee on reliability, which was replaced in 1952 by

the Advisory Group on the Reliability of Electronic
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Equipment (AGREE). AGREE and the Institute of Electrical

and Electronic Engineers (IEEE) are currently the main

" oar v
.

o2 0 a0 ]
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agencies conducting reliability analysis.

Today reliability is stressed in military applications

of electronics, aviation, and weapons systems. Relijability

"

i} has become an important aspect of military contracting as
. it is essential in evaluating the system usefulness or

?ﬂ goodness along with cost, size, and weight.

il The approach to solving reliability problems varies
;; with each individual and organization. Most often,

reliability problems are treated as applied probability or

statistics problems. Because analysis of complicated

reliability problems becomes lengthy or difficult,

P

"y 7§

e

transform methods or computer solutions are necessary.

g ™
l.l

Complex systems are almost impossible to solve in entirety

P

and must be decomposed into functional areas.

L

L |
S0

Currently, retiability problems of the type described

0y

PR LN

in Chapter | are theoretically solved using the Kuhn-Tucker
conditions. In reality, most reliability problems are

. solved using either a variable search or Markov process

if method. [t is fairly simple to solve reliability problems
- using the Markov process; however, the labor involved

y fncreases tremendously as the number of elements in the

-----

L R S

s

EAR N

e s . .
' 4 P P P Tt A e e e T e T e e et a e e e et e N P R .
Wy Y .'Ai\ Py VI Wy 1 W S, R T R S U WA VR WG, W W0 Wiy iy SV VI WYy Ay iy S S SN~ IS IS I BN S I




W—W T T T T rTreTTTTeTeTT™Y
)

AR ‘c.‘u'i‘

O

Pl LN

i .
y .

vor

ot 2"

T-3357 10

total system expands. In addition, this method cannot
guarantee global optimality; geometric programming, on the
other hand, does guarantee giobal optimality.

GP is practical for solving reliability problems since
it is capable of exploiting the linear algebraic structure
of each problem. These linearities can appear as |inear
equations, linear inequalities, or as matrices associated
with nonlinearities.

Research on the type of reliability problems discussed
in Chapter | revealed only one previous attempt to use GP.
In 1968, A. J. Federowicz and M. Mazumdar, while working
for the Westinghouse Research Laboratories, developed a
method of using substitution to enable the given problem to
be written in standard GP form. Once the problem was
written in GP form it was easier to solve.

The algorithm developed in this thesis follows the
initial substitution and manipulation that Federowicz and
Mazumdar used to solve maximization problems. Instead of
using Federowicz and Mazumdar’s method, which uses
logarithms and differentiation to find the unknown :
values, either the quadratic equation or the Brent-Dekker
method was used here to find the positive root of the
unkown . A method for solving minimization problems has

also been
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Further comparison between Federowicz and

Mazumdar ‘s method and the one developed
be addressed in Chapter 5.
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Chapter 3
METHOD FOR SOLVING

MINIMUM COST PROBLEMS

There are four phases in the GP method for solving
minimum cost problems and in developing an associated
generalized computer algorithm. Manipulation of terms and
substitution in the early phases can reformulate the
original problem in the standard GP form used by Woolsey’s

"Quick & Dirty”™ four rule algorithm (see Appendix A).

Phase 1: The Objective Function

This phase consists of three steps and uses
substitution and the rules of logarithms to manipulate the
objective function of the original problem. In the case of
the first problem discussed, minimizing cost subject to a

specified reliability, the generalized form of the

objective function is

minimize cost: C =

where

To transform the objective function into the form

required by GP, consider the following procedure.
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Step 1) Using substitution, let

N. = In X,
j "2

Step 2) Rewrite the objective function as

minimize cost: C =

Step 3) Use the rules of logarithms to get the

objective function in standard GP form.
a) When the antilog of a function such as

In Yj = Cj I'n XJ

is taken, it becomes
C.
Y, = xJ
b) When the antilog of an additive function

such as

InY =C, In X, + C2 In X

1 1 2

is taken, it becomes multiplicative

c, C

Transform the orfiginal objective function of sample

problem (1.1) by performing the above steps.

R R

-----
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Step 0) Restate the original objective function.

e

-y
oY .
N minimize cost: C = $5N, + $7N, S
-y é
‘_ Steps | & 2) Rewrite the above equation as discussed. ﬁ
n:;:

> minimize cost: C = 5 In xl + 7 In X2

<
'J

Step 3) Take the antilog of the above equation.

AL N AR

> minimize cost: eC = x?x;

1@

€ The objective function is now in standard GP form.

»

éj Phase 2: The Constraints

This phase consists of nine steps and uses substi-

IR
v
.
s
. . L
L 1' .A ) ! L

. tution and the rules of logarithms to manipulate the
s constraint of the original problem. The generalized form

of the orignal constraint discussed is
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is difficult to handle in GP. Use substitution to D
ad ]
W <~
Qf get rid of this "messv" term bv letting .q'
1‘\' :_‘».
e e
l N i v-",\
t = - A Y:— >
. Zj 1 Pj -f-
W cod
5
N Step 2) Rewrite the constraint as T
N i
A S
P Zy2p:-2n 2 0
& .
>
. Step 3) At this point, because of the substitution o
L L ) ) o
W previously performed. the objective function is t)
=
::, written in terms of Xi. while the constraint is N
4 R N
L RGN
0y written in terms of Zi. The porobtem cannot be solved N
o - e
o in this form. as there is now no relation between the o
oy variables in the objective function and the jg
“~ ..
o~ ey
- constraint. In GP. all constraints will be tight 3t gj.
N o
e optimality (Duffin et al.. 1967). Therefore. an o
J
- additional constraint (written as an inequalityv) can -
o be added for each Z.. showing the substitution used in oS
Q% L [l
A o
K Step 1. o
A Nj m
L Z. ¢ - P, RN
. Y- ] e
O e,
- 2
yﬂ Step 4) Terms that have a constant raised to a e
L)
" variagble power are rather difficult to handle with A
Py GP. Thus. let o
1:, :.
>, =0
— %ﬁ
B, "=
~ =
w R
5 NS
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Step 5) Take the natural log of both sides

Step 6) \Use the substitution Ni = In xi. 3as was done

for the obiective function. to obtain

in Y. = In X, In P
i i i
or

In Yj = In Pi In Xj

Step 7)Y Take the antilog of the above eaquation.

Step 8) Rewrite each added constraint (as reauired

in Step 3). using this manioulation to obtain

Step 9) Manipulate each constraint. so that the

o\
PN

.
.

right-hand sides are less than or equal to !.

’
’l
A

P

¥
.

a) Dividing both sides bv Z‘. the first

LY

5&53

constraint becomes

s
e

-li
N

{3

-1,-1
1> D‘Z‘ z, ...z

RN ¢
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.
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2NN <
" b) Rewritten, it becomes ;
NN
s _—1,-1 1 ::'
i £

X c) The added constraints become g-
L% _'
‘ .:_:.‘ In Pj :'
SN Z. + X < o
- J J ! .
¥ l::i
- By performing the above nine steps to the constraint ﬁ;
5S
ﬁ: of the original sample problem (1.1), the resulting -}
Y >,
i: constraints are transformed into standard GP form. An -;

application of the above nine steps is shown below.

o!
.
e
i ':;e “‘.

: N
- Step 0) Restate the original constraint: ;?
w N, N e
. (1 - 0.4 '}(1 - 0.6 2) > 0.90 ¥
‘-x} * N
") “-ﬁ \J'
J'.'"-‘ \j
‘ﬁf Steps | 8 2) Replace the "messy" terms with Zj’ :;
.:: \::
N and rewrite the constraint: Y

& M .?:
L e
. -

.*_:.- =

;&; Steps 3-8) Add the additional contraints for each Zj 3

.

- as discussed: o

- Z. > 1 xln 0.4

1 - 1 -~
¥

In 0.6 :5

221 =% ~
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Step 9) Rewrite each of the constraints acs discussed.

In 0.4

Zl + x] < 1
In 0.6

22 + x2 <1

The constraints are now written in standard GP form,

Phase 3: Solvina bv GP

This phase consists of seven steps., and uses Woolsev’s
four rules to solve the problem. Phases 1| and 2 have

reformulated sample problem (1.1) as follows.

minimize cost: C = X? X;
t—————
term |
subject to: 0.9021125' <1
—_ %y
term 2
z 4 xln 0.4 <
1! 1 =
term 3 term 4
In 0.6
| 22|+,x2 < ]

term S5 term 6
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At this point the resulting GP problem is one DD as
there are 6 terms and 4 variables (Xl. X2. Zl’ and 22).
Using Woolsey’s four rules of geometric programming

(Appendix A), we can solve sample problem (1.1).

3

D

Step 1) Write the form of the optimal solution ;&

according to Rule 1. %;

i 3, Y i 7:'1

) *2 :.'_:.4

minimize cost: C = (1/§ (0 9%, ) 2) (1/%3) (1/- i

s

.:,*.:

(5, + &) (ig + ) -

3 4 . .5 . 6 c 5 6 ﬁﬁ

(53 + 54) (1/55) (I/Js) (55 + ”6) -

Step 2) State the exponent matrix of the ‘s i

according to Rule 2. !!

o

(OF): 51 =1 (3.1) g

.:,:.ﬁ

. i ; . R

(X;): 55, +1n0.45, =0 (3.2) 4

(X,): 75, +1n0.65, =0 (3.3) f@

(Zl): —52 + 53 =0 (3.4) ‘:

: -3 & = e

(Zz) 2 + 5 g (3.5) Qf

Step 3) Solve for the values of the f’s using the -

logic that follows. A pattern occurs in the ! matrix T

Rﬂ table. Regardless of the number of variables in the o
v o
NG original problem, this pattern will always be e
o 2
v, present. The pattern is shown below. bi~
n7 - E
e s
. e
oS e
b, o

el
Ak

(9 3
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For j = 1 to the total number

i = %
"2 2ty + 1)
and

5(2'j +2) " —Costj /

of variables

= UNKNOWN

In Failure

J

The following steps depict how the pattern works for

the two-variable case.

a) From equation (3.1) determine

b) From equation (3.2) determine

54 = 5.4567833

c) From equation (3.3) determine
56 = 13.7033060

d) From equation (3.4) determine

e) From equation (3.5) determine

that

that

that

that

that
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f) Thus
52 =
Step 4)
and 55 are unknown.
a) MWrite the
$_. =
3
.S -
S
b)
Zl =
22 =
c) Replace the

equations

------------- L 20k 822 AcS oob il Bol SnA Gh od el wah ood ol s aa A4 Abs St Ale Ahe S Sas i

21

Skip to Rule 4 since the values of 52. 53.

for 53 and 55.

in terms of Zj.

i’s with the known values.

(52)

(¢, + 5.4567833)

2

(s,)

2

(¢, + 13.703306)

2
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d) At optimality each constraint is tight. thus
make the original constraint an equality and

solve it in terms of ZIZZ'
2.2, = 0.90

e) Substitute the equations found in Step 4c

for ZlZ2 in the above equation:

() (:)

2 X 2 = 0.90
(5, + 5.4567833) (i, + 13.703306)
Thus ’
.1522 - 17.244085, - 67.298374 = 0

Step 5) Solve the above equation. The power of the

first term determines the method to be used.

a) Since the power of the first term is 2 and

the equation in Step Se is in the quadratic form,

2
& | =
at, #* bsz + c 0
solve for 52 using the quadratic formula.
b+ (b2 - 4ac)$
3 =
2 23
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b) Substitute in the values found in Step 4e

and sotltve for :2:

—(-17.24408)1[(l7.24408)2—4(.l)(—67.29837d
2 2. 1)
Thus,
<, = 176.25895
and
‘i, = -3.818155

c) Since in GP the (‘s must be nonnegative. onlv
the real positive root of the quadratic equation

can be used: therefore. drop the negative to-

i, = i3 = ig = 176.25895

d) [If the power of the first term is Qreater
than 2, then to solve for the unknown éj a
modified secant method may be used. This
method, known as the Brent-Dekker method. is
based upon both bisection and the secant rule
methods. It is similiar to the Newton-Raphson
method. except only the ability to evaluate f(x)
is necessary. The Newton-Raphson method is

sliahtly faster, but it requires the first
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approximation concerning the bracketing of the
roots to be close. In addition, the Newton-
Raphson method may not converge, whereas the
Brent-Dekker method is guaranteed to work once
the function is bracketed.

To start the Brent-Dekker method, attempt
to bracket the function with two values (B and
Figure 3.1 depicts this starting bracket. The
function must be continuous, and f(B)f(C) must
be less than zero. Throughout this algorithm,
fs assumed to be the better root.

Convergence is based on a mixed retative-

absolute error test where

c-18B

2

24

).

£ max{Absolute Error,B!'* Relative Error]

The secant rule calculates the next iterate

(D) by starting with the first two iterates A and

B. The variable A is initially set equal to C.
Thus,

B - A

0 =8B -~ f(B)
€£(B) - f(A)

Figure 3.1 depicts how the starting bracket is

used to find the next iterate D using this

RRRRS

e,
2
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method. If D is to become the next iterate, then
it must lie between B and the midpoint between B

and C. If D is between B and the midpoint, then

it is set equal to B. The old B is then set

¥ "' s

equal to C. If D is not in the interval between

1, 8 0 -
.

B and the midpoint, then the midpoint between B

rs

and C is used as the new iterate.

The Brent-Dekker method quarantees that
there is either a root of f(x) = 0 in the
interval between B and C, or that one of the end
points is as close to a root as the desired
precision permits, if the function being
evaluated is continuous and the original bracket

(B,C) results in f(B)f(C) < 0.

Step 6) Solve for X, and X2 according to Rule 4, by

1

replacing the ¢°s with their known values.

a) Write the equations for 54 and 56’
_ yln 0.4 c
54 = xl (63 + ¢4)
c In 0.6, .
‘e = x2 (bs + 56)

-
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b) Substitute in the known values for the :’s.

-0.9162907

5.4567833 )

X (176.25595 + 5.4567833)

-0.5108256

13.703306 2

X (176.25895 + 13.703306)

c) Solve the above equations for Xl and X2.

‘2R

]
A A

x
1]

45.871487

¢ Bu U2 a &

X 171.904510

2

Step 7) Use the above values to solve for the

objective function.

a) Find the optimal GP values of N, and N, by

1
substituting in the values for the In Xj.

2

3.8258437

Z
i
5
x
]

In 45.871487

z
[}
2
x
1]

In 171.90451 5.1469392

b) Therefore, the optimal GP value of the

objective function is

minfmum cost: C = $55.16
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Phase 4: Integer Solution

Components cannot be split into fractions, therefore
an integer solution is required. This phase will consist
of four steps that will ultimately provide the minimum cost

integer component solution.

Step 1) Round each Nj down to the nearest inteqer,

then add |, and write its value.

Step 2) This value will more than satisfy the
original constraint; however, it may not be the
optimal combination of variables that both satisfies
the constraint and has the minimum cost. Determine

the reliability and cost.

. _ 4 ( 6
reliability = |l - 0.47;!1 - 0.6 = 0.9289384 > 0.90
cost = $5(4) + $7(6) = $62.00

Step 3) Determine the number of combinations that
must be compared to ensure that the optimal solution

is found.
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a) Add | to each integer value found in Step 1.

Determine the new reliability for each element.

reliability element | = 1 - 0.4 0.989760

"
|
(=]
(o))
]

reiiability element 2 0.9720064

b) Use the following formula developed by
Steven A. Strauss to find the number of
combinations to be checked to ensure that the
minimum cost is found subject to the minimum

required reliability.

+ combination NJ = + integer(NJ) - integer
[In(]l - minimum required reliability/k)]
of
In [P(failure of j)] )
o
b
where S?ﬂ
;{ﬂ
At
k = reliability of each element found in o)
o

Step 3a, times all the other element

.J; E

o
x£

.
'y

)

reliabilities except for the jth element

v
AASy
‘a

(IR
a0 0,
2 A

(the one whose optimal number of combin-

.
Ay by

- ]
s
N v ¥

»

ations is currently being calculated)

Therefore,
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- + combination Nl = 4+ 4 - integer

'..:.

\'-

B \-.

L

[ (In (1 - 0.90/0.9720064)]

Rt of =+ 2

N In 0.40

-

}3 + combination N, = +* 6 - integer

>l (In (1 - 0.90/0.9897600)1]

_'_‘ of = 4+ 2

» In 0.60

» c) Find all combinations for each variable as .

e .

:i determined in Step 3b. The combinations are "

,:{ also a sensitivity analysis for reliability and <y

hv cost. Table 3.1 shows the combinations of Nl "
] w0y

[~ e, S
fﬁ and N, which result for example problem (1.1). s

P

> -t
N Step 4) Select the feasible combination with the .

j ‘t«. :':'

o) minimum cost. This will be the optimal integer s

oy
) solution. A

1

:‘.\‘ » -:,'
. minimum cost: C = $60.00 -
3 RS |
~,: o

' y
N* =5 o
e 2 1 =
SN \:.1
> .,
I "4
J‘:‘« Nz * = 5 ""1.1
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a Table 3.1 Minimum Integer Combinations e,
P, )
& s
‘I.l ﬁ
o N, N, RELIABILITY CcoSsT o
o (IN DOLLARS) =
e &
> . A
7, 2 a4 0.7311360, 38.00 B
iy 2 S 0.7746816, 45.00 bﬂ
2 6 0.8008090, 52.00 o
[~ 2 7 0.8164854, 59.00 -
- 2 8 0.8258912 66.00 =
0 » o
X 3 4 0.8146944, 43.00 @2
3 S 0.8632166, 50.00 o
Py 3 6 0.8923300 57.00 ﬂ
O 3 7 0.9097980 64.00 ~
- 3 8 0.9202788 71.00 =
R - _‘.:;!
o 4 4 0.8481178, 48.00 N
2R 4 S 0.8986307 55.00 -
' 4 6 0.9289384 62.00
ol 4 7 0.9471230 69.00 -
ey 4 8 0.9580338 76.00 b
~on » N
N 5 4 0.8614871 53.00 Y
e 5 S 0.9127963 60.00 o
:) 5 6 0.9435818 67.00 ~
5 7 0.9620531 74.00 ‘
fﬁ$ S 8 0.9731358 81.00 =
~ - K
Y 6 4 0.8668348 58.00 oy
by 6 5 0.9184625 65.00 )
- 6 6 0.9494391 72.00 3
ok 6 7 0.9680251 79.00 L
,fj: 6 8 0.9791766 86.00 ;3
> o
fodd * denotes those combinations which are not R
,ﬁ-ﬁ feasible since they are less than the s
s minimum required reliability. o
, *
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. Chapter 4 .g
>
2 METHOD FOR SOLVING -
MAXIMUM RELIABILITY PROBLEMS é‘
:.4 ‘,.:—ﬁ
L] .
/-;. There are three phases in the method for solving ;;3-
"4 “ -~
sy
"‘ maximum reliability problems and in developing an &\‘
. associated qeneralized computer algorithm. This chapter :?:
L, . . . . B
o uses the same manipulation of terms and substitution for o
s,
" o
4", the objective function and constraints as does Chapter 3. :
"3 The second problem, maximizing reliability subject to a o
s W
,;-.: specified cost limitation, would be written in generalized o
s .
LS
-2 form as
N 3
) |
- ~
5 Nl N2 Nn i
0 maximize reliability: R =|1 - P 1 - P B L -
‘0 | 1 2 \ n -
: sub ject to: ICN <D
n j=1 1] T
_'\ T
o where 5
ri
g j=1.2, .... &4
€ r
g =
o =
o Phase 1: Standard GP Form %
Y BAS
-3 -
m This phase consists of three steps used to qaet the .
o
e original sample problem (1.2) into standard GP form. This -
o W
‘.':— is accomplished by using the substitutions and manipu- .‘::::
::- lations described in Chaoter 3. The substitutions include ff-'.'
[} Cat
» »
< B
I~ N
> N
s RS
‘.‘, T
o T
- '.‘-‘
g -
Wl o~
S .
B o e e e S s A A LA e T e
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Step J]) Restate the original! sample problem (1.2).

, Ny N2
i maximize reliabilitv: R = {1 - 0.4 } - 0.6
gt
o subiect to: S‘SN[ +$7N2 ¢ $60
N
" Step 2) Use the substitution and maninulation as
@
N described in Chaoter 3 to rewrite sample problem
I
5¥ (1.2).
Y
A
&S
) maximize reliability: R = 2122
-
1; subiject to: x?x; < e”?
\ N )
7z ¢ 1 -x'P 0.4
o 1 = 1
N
-_:’
%
v, In 0.6
i1 22 <1 xz
" ‘r:
5 5
- Step 3) GP only handles minimization oroblems: -
-
‘; therefore, to chanae the obiective function to a .
A minimization. invert the function. The resulting
"
N problem becomes
¥
.__‘
) P

1, -
‘:.C J.::
( W

9 oy

N

! MO

2 2

Tl
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minimize reliabilitv: R = = 2. '2

sub ject to: XX <1

term 5 term 6

Phase 2: Solvina bv GP

This phase consists of sivx steops and uses Woolsev’s
four rules to solve the problem. Sample problem (1.2) is
now in standard GP form and is a one DD oroblem as there
are 6 terms and 4 variables (X‘. Xz. T and 22). The
following steps are the same as thosed used in Phase 3 of

4

Chapter 3.

Step 1) Write the form of the optimal! solution

accordina to Rule 1|:

e
-an\'i*‘-' o
Dl A2 N

et

ORI o AL P A )
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i £

minimize reliability: R-l = (l/él)l(e-60/§2)2(1/53)3
5 (5. + &) 8 g (5. + )
. 4, 3 4 S i 16, : S 6
(1/54) (53 + 54) (1/55) (l/bs) (‘5 + 56)
Step 2) State the exponent matrix of the ¢’s
according to Rule 2.
(OF ) : ; =1 (4.1)
(Z]): -:l + 53 =0 (4.2)
(22): _51 + ‘?5 =0 (4.3)
(Xl): + 562 + 1In 0.454 =0 (4.4)
(Xz): + 752 + In 0.656 =0 (4.5)

Step 3) Solve for the values of the {’s using the
logic that follows. A pattern occurs in the ¢ matrix.
Regardless of the number of variables in the original
problem, this pattern will always be present. The

pattern is shown below.

For j = 1 to the number of variables

IS(Z'J + 1) = Sl = 1

(-Cost, / In Failure

Y203+ 2) T J 2

The following steps depict how the pattern works for

the two-variable case.
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" a) From equation (4.1) determine that
Lo
'
:-‘. 51 =1
,“ .‘
‘_ b) From equation (4.2) determine that
3 = 1
1N
L, c) From equation (4.3) determine that
- § =
9! .:-_ - 5 l
v,
,’ d) From equation (4.4) determine that
:E 62 = 0.1832581¢ ,

e) From equation (4.5) determine that

$, = 0.0729751%

2 6
f) Solve each unknown % in terms of 52. therefore
5 = S
54 5.4567833.2
and
5 = &
‘6 l3.703306.2
Step 4) Skip to Rule 4 since the values of 52. 54
e and 56 are unknown.
Lo
o~
.
\J
>
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a) Write the equations for 54 and 56.

-
PN A

Phe]
sttt ‘-.:

In 0.4 4+ 5

L P

s Bty
on
x

h i
KR

In 0.6
66 X2 (55 + 56)

.
.“v'A
]

‘(“‘:"ll' i'. N iy

b) Solve each equation in terms of Xj.

(1/0.9162907)

P
.

k7
N

55
+

B
—

@
-~
H

4 5L &
Tty

(1/0.5180256)

s
S

AT

x
N
]

~~
"

5y
+

)}
A

c) Replace the f°s with known values.

A 1.0913567
(1 + 5.4567833s,)

"
‘. .'. I~ ‘.'l .

A

?}"

(5.4567833:,)

13

2

e

-
A

r

1.9576152
(1 + l3.70330652)

et Tl
‘:}H)$}¢ -

(13.703306:% )

2

r

ay 8 00 g )
P3P RN R

L4

Pl d M RN o
AR

<

4]
N
e




P N P T D T P T N P i S e e R I P P oo o o T O U VP Yy T e P o ST ST

- PR
NN R

«
2

s

O OORDS

R

o
a

¥ SN

-
-,

T s _%
DAL

Ly
»

~, '-l‘l;.".
EE%??L

@

-_- s v v
L R "'.'.'1
et el

-

~
P
'n'a

T |

LA

E\ X

RSN
'. ‘.. "-’ "4,' ,

Y, LNRRARIR

¥ v 3
PN
- aw s

OAA

T-3357 38

d) At optimality each constraint is tight, thus
make the original constraint an equality and solve
it in terms of xlxz.

5,7 _ _60
xlxz = e

e) Substitute the equations found in Step 4c for

xlx2 in the above equation, and raise each

variable to the appropriate power.

(1.0913567)(5)

e60 . (1 + 5.456783352)
(5.456783352)
(1.9576152)(7)
(1 + 13.70330662)
times

(13.703306%,)

2
Step 5) The above equation is very messy, hence all
maximization problems regardless of the number of
variables will be solved using the Brent-Dekker method
discussed in Chapter 3. With a starting bracket (B,C)

of (0.001,1000) the value for 52 is found to be

52 = 0.26066114
Thus
54 = 1.42237110

- P

- RS L S, o (e e e L Ao T S T Y e T R A
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and

56 = 3.5719188

Step 6) Solve for xl and X2 according to Rule 4 by

replacing the &’s with their known valtues.

a) Write the equations for 54 and 56'

£ =X TU(ES o+ 5 )

b) Substitute in the known values for the {’s.

“s 1.4223711 = x]0-16299700 ¢y oy a223711)

N

A

- 75 -

ii 3.5719188 = x;°0-9%198236(| 4 3.5719188)

w -
o c) Solve the above equations for xl and X2. o
- -
o X, = 60.913084 S
b ! .
" X, = 280.36967 B
- at
k2 e
:! Step 7) Use the above values to solve the objective

'.'-.

R function.

o

7
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a) Find the optimal GP values of N, and N_, by

1 2
substituting in the values for the In Xj.
Nl = In xl = In 60.913084 = 4.109448
N2 = In X2 = In 280.36967 = 5.636109

b) Therefore, the optimal GP value of the

objective function is

maximum reliability: R = 0.92195686

Phase 3: Integer Solution

Components cannot be split into fractions, therefore an
integer solution is required. This phase will consist of
four steps that will ultimately provide the maximum

reliability integer component solution.

Step 1) Round each N, down to the nearest integer, and

J

write its value.

N2 =5

Step 2) This value will more than satisfy the
original constraint: however, it may not be the optimal

combination of variables that both satisfies the

T P L A G L AT g9 S AP UL ST S S S AT C RSN AT TRt | A VRSN SRR AN :
AN R WY I A 'r_L&MIALM.H{M.A_@ML;“&.mu‘xduumddnm‘.wumxum,
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v 5
e constraint and has the maximum reliability. Determine P
o the cost and reliability. ]
) cost = $5(4) + $7(5) = $55.00 < $60.00 =
VA .
o .I..-l I ‘u
SN 4 s o
e reliability = (1 - 0.4 )(1 - 0.6>] = 0.8986307 "
= 3
s Step 3) Determine the number of combinations that F
fi must be compared to ensure that the optimal solution "
% \.‘ -
oo is found. g
P

@ b
K-~ a) Subtract 1 from each integer value found in

- Step 1. Determine the new cost for each element.

— cost of element | = $5(3) = $15.00 -
i cost of element 2 = $7(4) = $28.00
:? b) Use the following formula developed by g
'_‘-' \-( 3
e Steven A. Strauss to find the number of o
- n
- ”-
v combinations to be checked to ensure that the x.
e s "
ot maximum reliability is found subject to the h
:j: maximum allowed cost. ;:
S =
‘;‘ + combination Nj = + integer of =
';'{ (budget limitation - costnew) N
i - integer Nj + 1 A
e (cost of jth element) 2

X i~
4 ' K ‘o
P :_.
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= where -—

Qs
J.‘ I“ ' a

.
1

t
o ,"

costnew = the cost of each element found in

'

Step 3a, plus all the other element costs

gy )

except for the jth element (the one whose

[ )

f: optimal number of combinations is currently

o being calculated)

KL 3 NP 1]

Therefore,

'y
pr

o + combination N + integer of

1

2

($60)

|
w»
N
®

$5

-
-"'.
T
e

K -

- + combination N, = + integer of

e ($60) - ($15) o
'::j -5+1=4+2 -
$7 :
S :::
x. £
(.- c) Find all combinations for each variable as S
:;ﬁ determined in Step 3b. The combinations are also ;E

[
LA N

. a sensitivity analysis for cost and reliability.

- Table 4.1 shows the combinations of Nl and N2

which result for example (1.2).
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Step 4) Select the feasible combination with the KA
maximum reliability. This will be the optimal integer

solution. ‘ -

vy

0.9127963

[}
s,

aly

maximum reliability: R

L

<

i
LI ¢

4
[
0n
vy
A

- ~
N2 = 5 A
e

~
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{: Table 4.1 Maximum Integer Combinations
.’;
" N, N, cosT RELIABILITY

2 (IN DOLLARS)

o 2 3 31.00 0.6585600
p 2 4 38.00 0.7311360

‘ 2 5 45.00 0.7746816

" 2 6 52.00 0.8008090

Q 2 7 59.00 0.8164854

]
2 3 3 36.00 0.7338240
Ay 3 4 43.00 0.8146944

- 3 5 50.00 0.8632166
A 3 6 57.00, 0.8923300

> 3 7 64.00 0.9097980

-

o 4 3 41.00 0.7639296

o 4 4 48.00 0.8481178

- 4 S 55.00, 0.8986307

- 4 6 62.00, 0.9289384

o 4 7 69.00 0.9471230

- 5 3 46.00 0.7759718

) 5 4 53.00 0.8614871

N S 5 60.00, 0.9127963

-] 5 6 67.00, 0.9435818 .
N 5 7 74.00 0.9620531 o~
b 6 3 51.00 0.7639296 e
Ry~ 6 4 58.00 0.8668348 ‘?ﬂ
o 6 5 65.00, 0.9184625 x
. 6 6 72.00, 0.9494391 =
- 6 7 79.00 0.9680251 o
::J -:;:'
o %
5] * denotes those combinations which are not .-::.-*
i feasible since they are more than the 4
l! maximum cost limitation. The values for the o
o combinations when N, is | and 7 are not R
. fncluded as the rellab{litles are too low, or o
. the cost exceeds the budget limitation. f::,,j:
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- ':_:-_. SOLUTIONS TO APPLIED SAMPLE

~

A RELIABILITY PROBLEMS

)

o

-f.:vl
;j@ A generalized computer algorithm, as described in
A
f'{ Chapters 3 and 4, was developed for a particular class of

o nonlinear reliabilty design problems and is presented in
;:& Appendix B. The computer algorithm is written in MICROSOFT

o
::j Quickbasic for IBM-compatible microcomputers.

» : The algorithm is built around S areas: (1)

N _,:.'

33 substitution and manipulation of terms and variables to

ﬁ; rewrite the original problem into standard GP form; (2) the

- use of GP to start solving for the i values; (3) the use of

~

f&: the Brent-Dekker method to solve for the remaining unkown :

-.‘.':

ok values; (4) the use of GP to solve for the optimal
~)_ noninteger answer; and (5) solving for the optimal integer
ﬁif solution.

\,h--v
K>, - The type of reliability problems that this algorithm
i_: handles (minimization or maximization) will always remain

i{ at one DD, no matter how many variables are added. This is

.‘.:.:

i{ due to the substitution and manipulation that is done.

o

whenever another variable is added, one more constraint

) with two terms (one with an artificial variable) will also

be added.
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" Currently the computer algorithm is limited to four
"..

N _‘-'
:uﬁ variables. The results of running sample problems using uﬁ
W ::-"
?JQ the computer algorithm are addressed below. N
) .
g w7
[ Minimization Problems e
[} :'n ':_- J
]:} Most industries, like the Department of Defense, are e
K e
oy >
& limited on how much they can spend to either purchase new :

¥

’n: systems or upgrade the present ones. Electronic equipment
.

:ﬂ must therefore have a high degree of reliability with a
_f reasonable cost in order to be competitive in today’s world

N of advanced technology.

'}5 The following problems are indicative of the
?V‘ reliability constraints imposed on civilian contractors for
;xj electronic equipment used by the miltlitary. The first two
?3 problems were developed by COL Arbogast. a career Signal
*“"

55 Officer currently stationed at the United States Military
i: Academy. The third problem is one that was used as a

K ’x

“ﬁi sample problem in a published reliability text book

s

‘P {(Dhillon, Balbir 1983). Three minimization problems are

-i  :

-31 addressed below as test cases. There is a separate test
iif problem depicting each number of variables solvable by the
s

. s computer algorithm. For each test problem, the original
f? problem will be stated, along with both the GP and integer
-.":

1% solutions.

.
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Two-Variable Problem
‘,)~
- The first problem depicts a system that is
ffi comprised of two elements. Table 5.1 provides both
L. the optimal GP and integer solutions. The original
IS
,}{‘ problem is shown below.
‘:::
b \.'
N minimize cost: C = $40N, + $60N,
B
kS N, ( N,
N2 subject to: 1 - .02 'l - .0t > .98
yhy
v \
4
'ﬁ:
;i? Table 5.1 Minimum Two-Variable Solutions
] ,f‘:
2
y Solution GP Integer
A\p
\-):
::$ Reliability 0.979998 0.989604
\ »
y
- Minimum Cost $115.51 $149.00
;_"' N, value 1.228815 2
I
e N, Value 0.9617115 1
' t 2
)
R
-x: Three-Variable Problem
B This problem depicts a system that is comprised
:}j of three elements. Table 5.2 depicts both the optimal
iﬁ GP and integer solutions for the problem. The
W ;4'
'n original problem is shown below.
N '
d‘_:.f‘ ‘.':.
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o 3
K o
" minimize cost: C = $40N, + $52N, + $60N,
s e
o N, N, =
2N subject to: 1 - 0.01 1 - 0.006
) N =
] 1 - 0.003 3)3 0.97 %
o
‘E ‘-i
R :~:
! W
- Table 5.2 Minimum Three-Variable Solutions ;;
W Y
o, ::..'4'
4 Solution GP Integer i
o ]
» Y
2 Reliability 0.969840 0.990919 X
o« b8
o Wy
b Minimum Cost $133.84 $192.00 =4
= N, Value 1.020958 2 o

B
[

N, Value 0.888597 1

.':'\. 2 ’.'-)'
o N3 Value 0.779838 1
o o
_) ,
: 3
5' Four-variable Problem i
¢ e
N This problem taken from Reliability Engineering N
Wi+ Y
i in_Systems Design and Operation (pages 114-117), by

w '._-“-
'.:' Balbir Dhillon, depicts a system that is comprised of -j:;
{l_ .t-‘
}t four elements. Table 5.3 depicts both the optimal -::}_
(AW 'd
.* GP and integer solutions for the problem. The answers &
W w' ﬂv
;‘3 derfved by the computer program differ slightly from Qlt"‘
'. » r
:. " the ones given in the test book. The answers that are 2
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: different in the text book are in parenthesis by the

A

‘ﬁ computer answers. It appears that round off error may

f& cause this difference. The original problem is shown

'v? below.
o
p minimize cost: C = $5N, + $ION, + $8N, + $2N,

. Nl N

-3 sub ject to: 1 - 0.04 1 - 0.03

N N

- (1 - 0.02 3)1 - .05 4)3 0.98

L

L

2

S Table 5.3 Minimum Four-Variable Solutions

e

o

e Solution GP Integer

‘.l

A

jb Reliability 0.980302 0.984330

e,
Minimum Cost $95.54 $100.00 ($98)

o N, Value 5.611212 6 -
o N, Value 3.924052 4 &
-2 o
'fn-»f N Value 3.859593 4 S
= N, Value 8.332921 9 (8)

R s

[ 4 '-“':. ‘7' i)
Toa,

4

Maximization Problems

U
'c‘n"!'-

Cost budgets are an important part of the total system

e ¢
o

4
PRI Rr Sl W WY,
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) !

)

W
oo equipment. Two of the following problems were developed by

\':~

‘2 COL Arbogast, while the third was taken from the article
SO
::A published by Federowicz and Mumzudar. Three maximization

3

;\ problems will be addressed as test cases; one for each

h'::

}S number of variables solvable by the computer algorithm.

3::;1

Two-Variable Problem

f§§ The first problem is one depicting a system that

ig is comprised of two elements. Table 5.4 provides both

’" the optimal GP and integer solutions. The originatl

o

o problem is shown below.

o

o

LW
! ~ Nl NZ

o maximize reliability: R = [1- 0.02 1 - 0.01

o

-
:)' subject to: SAONl + $60N2 < $200

j} Table 5.4 Maximum Two-Variable Solutions

>
.{;
[ Solution GP Integer

L
.':‘.
o
!jq Reliability 0.999635 0.999500

-"'

Yo Minimum Cost $200.00 $200.00

o N, Vvalue 2.233251 2
s
>, N, Value 1.844499 2

<o

g o
*,'.‘f W
o -
LA e
0, V.
?g ::
g -
L »
o
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Three-Variable Problem
This problem depicts a svstem that is comprised

of three elements. Table 5.5 depicts both the ootima!

GP and integer solutions for the probl!em. The oriqginal

problem is shown below.

( N,{ N
maximize reliability: R = |1 - 0.01 /'] - 0.004 “
N
(1 - 0.003 3)
subject to: $40Nl + SSZN2 + $60N3 £ $250

Table 5.5 Maximum Three-Variable Solutions

Solution GP Integer
Reliability 0.999546 0.9968843
Minimum Cost $250.00 $244.00
Nl value 1.928819 2
N2 value 1.59408 2
N3 Value 1.49925% 1
I T LIV RS P SIS, + R RSO TR TR RN ) RS NN
-------- R ™ -..‘._.\\_ﬁiﬁ_ﬂ}":\a‘\d\.a}m:{:-

N
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Four-variable Problem x

This problem taken from the article published bv ;k

Federowicz and Mazumdar. depicts a svstem that is ﬁ:

comprised of four elements. Table 5.3 depicts both the Fi

optimal GP and the integer solutions for the oroblem. }:f

-:_‘

The answers derived by the comput = program differ o

slightlvy from the ones given in the test article. rﬁ

«-:'

Roundoff error and the way combinations are checked ol

appear to be the reason for the computer not attainina ;:

the correct optimal answer. The answers that differ Q?

are noted with the article answer in parentheses. The }j;

-

original problem is shown below. }i

o

N, N, B

maximize reliability: R =11 - 0.20 1 - 0.30 o~

<

N { N ) -

(1 - 0.25 i - 0.15 1 3

e

<o

R

subject to: $l.20Nl + $2.3N, £

bﬁ' + $3.40N3 + $4.50N4 < $47 =
e e
.‘_4':}
b .
N i

'ﬁf'\ -4
] v . -
r“‘p: .“:
g.r,; iy

po ;Sﬂ
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Table 5.6 Maximum Four-Variable Solutions [P

Solution GP Integer )

Reliability 0.993107 0.988735 (0.99)
Minimum Cost $47.00 $43.40 ($45.80)
N, value 4.522890 4 (6)

& K

N2 Value 5.265519 )

N, Value 4.393139 4

3

N, Value 3.227793 3 ‘
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) Chapter 6
1]
N
o CONCLUSIONS
¥,
16
. Technology is an ever changing area of science. As
4
: equipment becomes more sophisticated, the need for reliable
7
"
‘: and cost effective elements increases. A reliability model
. that is quick, accurate, and efficient is an important part
‘O
f of resource management. It is evident that the generalized
Y
: computer algorithm can be a useful microeconomic tool in
! terms of convenience, speed of results, and reduction of
*
:g computational error in calculating the optimal combinations
f of system elements.
o The strength of this computer algorithm is that it
- provides a method for solving difficult problems that are
& currently either guessed at, or require an excessive amount

of time to solve either by hand or computer. The program
-~ is easy to use and solves each problem very quickly. The
14
‘2 algorithm has a slight weakness. When the costs for each
|_
. element are relatively small, with little difference, and
Y
N' the failure rates are also fairty close, the computer
2
: somet imes does not recognize a difference between adding or

subtracting one element. This appears to happen
ﬁ occassionally when there are four variables.
o N
- ..
_: \"‘.
7 NN
y g
i) v
> ri{
' h _‘!
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o
i ’ One area not fully explored was that of sensitivity
<,
‘ig analysis. The computer algorithm presently checks
35; different combinations of the variables, but only with
:;7 their present cost and failure rate values. The algorithm
Lﬁi should be expanded to include a method that would determine
.§¥ how sensitive each element is to its own cost and failure,
. as well as that of the total system.
iz Another important area for further research is that of
E% expanding the computer algorithm to include more than four
;'i variables. This means developing a method to determine the
;§ appropriate function to be solved when searching for 52.
‘Fﬂ The subroutine that searches for the unknown : values
. should also be refined. The Brent-Dekker method is very
:;j sensitive when converging on the positive root. When the
‘%i§ method finds a positive root, the convergence factor
;3 becomes less concise as the number of variables increases.
‘:f It is also noted that as the required minimum reliabilities
ﬁi become more precise, the less concise the criteria for the
i&. convergence factor can be. A lower convergence factor is
‘&? therefore necessary, otherwise, the computer tends to
,o
;EZ oscilliate around the positive root.

The program could also be modified to solve problems

with additional constraints. For instance, there may be a

AT TS T e A e .-~ ~ - R e
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size capacity which will require a constraint limiting the
total number of components.

Another area for further research is that of improving
the manipulation of the original problem to determine
whether a different method will reduce the problem to a
zero DD, GP problem. 1If the problem could be reduced to
zero DD it would cut the solving time in half as the Brent-
Dekker method could then be eliminated from the program.

The concept of using manipulation and substitution to
form messy problems into ones solvable by GP, and then
using a nonlinear method such as Brent-Dekker to solve the
inherent one DD mathematical problem significantly broadens
the range of possible applications of GP. This in itself
is an important area for further research.

The main contribution of this thesis is that it will
provide a simple-to-use, generalized computer algorithm for
solving a large class of nonlinear equations. In addition,
the algorithm guarantees that the GP solution will be
globally optimal. The integer solution cannot guarantee
global optimality, however, in most cases it will provide

the optimum local integer combination.
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Appendix A

FOUR RULES FOR GEOMETRIC PROGRAMMING

Ryle 1: The form of the optimal solution of any posynomial

GP problem is:

»
value of the Objective fFunction =

(coef. of first term in obj. Function/Sl)l X
cee X

£

last

(coef. of last term in obl]. Funct!on/élast) X

SIast+l
(coef. of first term in CO"Stra'"t/Slast+l) X
cee X

5

c , last+m

(coef. of last term in constraint/;'ast+m) X

(sum of %’s in constraint)
(sum of £’s in constraint)

Ryle 2: The exponent matrix fs constructed in the following
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e

A

)

Py
Rutle 2A: The sum of contributions to cost in the £ 2
objective function = 1. %ﬂ
o

A L & = v

AU IASERE IR PO :
Rule 2B: For each primal variable the equations in j'
the exponent matrix are: : ﬁ
(power of variable j in term 1) X i + 3§
(power of variable j in term 2) X f, + E
(power of variable J in last term) X Slast+m =0 ;i
Rule 3: At optimality N
- ::;

Value of the Objective Function = i
- ;:'

(First term in obj. Function/Sl) = —

&

- ,-.)

(second term in obj. function/3,) = .

n

.o v

» r v

5 )

(last term in obj. Function/-'ast) 3

\\‘ \.

Ryle 4: At optimality, for each constraint i
= 0
"
5J = (jth term in constraint) X 7
(sum of ¢“s in constraint) ?

]

N
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Appendix B
COMPUTER ALGORITHM FOR SOLVING
RELIABILITY PROBLEMS WITH GP

USING MICROSOFT QUICKBASIC

The reliability program developed for this thesis is
designed to run on an IBM-compatible personal computer
using a software package called Microsoft Ouickbasic. To
use the Microsoft Quickbasic package. the user must have
access to a computer with at least 384k memory. The
computer program could easily be modified and written in
the Basic language of the user’s personal computer if
Microsoft Quickbasic is not available.

To run the program, the program is first read into the
computer and an executable file is made. The program can
be then be executed by typing the file name (i.e., RELY) at
the computer A promept.

The program is designed to be user interactive. Once
the program is loaded, the computer will begin by asking
the user for input. Appendix C depicts a sample computer
run.

The reliability computer algorithm using Microsoft

Quickbasic is listed below.
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*  WELCOME TO CPT OATNEY’S RELIABILITY SOLVING » i
; *  PROGRAM. THIS PROGRAM WILL EITHER MINIMIZE . Qx&
- *  COST SUBJECT TO A REQUIRED RELIABILITY OR - Fe
& + MAXIMIZE RELIABILITY SUBJECT TO A BUDGET . R
> *  LIMITATION USING GP. THE PROGRAM WILL HANDLE * R
o * FROM 2 TO 4 VARIABLES. THE FINAL ANSWER, IN * N
N . INTEGER FORM, WILL INCLUDE: THE REQUIRED - i
*  QUANTITY FOR EACH VARIABLE AND EITHER THE » azad
_ *  MINIMUM COST OR MAXIMUM RELIABILITY OBTAINED * 3.2
A *  FOR THE DEFINED PROBLEM. . o
. XXX EZEZZEEEZEZZP R R R R R R R RN RRRR R O RR RRE R R R B N R X X X 8 X B J "_:FJ
I* S
:. WA

[ W
7’
Lo

.
vy | LRk

- .
| 3 h\‘_i
\J '-.-?‘.:
N OPTION BASE 1 Y
o DEF INT I-L,N R
. DEFDBL A-D,F.M,P b
. DIM COF(10),PROB(10),XX(10),YY(10),DELTA(20) l!!
¥ DIM NO(10).,PROBNEW(10),DIFFER(10),JCO(10) e
' DIM POWER(10),COSTNEW(10) T
e,
4 :'-\i:':
! S0
1

2

]
S
l' / P

h

b 1 CcLS
: GOSUB STARTINP

]
o
S

Pl o

MK.."
ke

4

.

* IF YN$="N" THEN GOSUB MAXIM ELSE GOSUB MINIM

U
% g.‘* e
. b b A | ."‘

ey

GOSUB ROUNDOFF
GOSUB VERIFY
GOSUB PRINTOUT
GOTO 9999
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STARTINP:

sewses® TH]S ROUTINE INITIALIZES THE PROGRAM ®®®sss=
sesveswssvews gy ASKING THE USER TO INPUT ®sssssssss
A XX 2 X X2 222X R Z ] THE ORlGINAL meLEH DATA [ Z X2 X2 & XX X & J

10 INPUT; ™IS THIS PROBLEM A MINIMIZATION? (Y/N) ".YNS
IF YNS<O"Y™ AND YN$<>"N" THEN GOTO 10
PRINT "=

15 INPUT; "HOW MANY VARIABLES ARE THERE? (2-4) ",NVAR
PRINT ""

16 PRINT "YOU HAVE INPUT ",NVAR
PRINT "AS THE NUMBER OF VARIABLES”™
INPUT:; "IS THIS VALUE ACCEPTABLE? (Y/N) ",YYNNS$
PRINT "
IF YYNN$="N" THEN GOTO 15
IF YYNN$<O"Y™ THEN GOTO 16

FOR J=1 TO NVAR

20 CLS
LOCATE 5,12
PRINT "YOU ARE INPUTING VARIABLE #".,J
INPUT; "WHAT IS THE COST COEFFICIENT? ",COF (J)
PRINT "™
INPUT; "WHAT IS THE ASSOCIATED PROBABILITY OF
FAILURE? ",PROB(J)
PRINT ™"
PRINT "YOU HAVE INPUT ";COF(J):™ AND ":PROB(J)
PRINT "™AS THE COST AND FAILURE PROBABILITY"

30 LOCATE 15,12
INPUT; "ARE THESE VALUES ACCEPTABLE? (Y/N) ",YNNS
PRINT ™"
IF YNN$="N" THEN GOTO 20
IF YNN$<O"Y" THEN GOTO 30
NEXT J
CLS

3y 40 IF YN$="Y" THEN
- INPUT; "WHAT 1S THE REQUIRED RELIABILITY? ",RELY
- PRINT "=

- PRINT "YOU HAVE INPUT ";RELY

PRINT "AS THE REQUIRED RELIABILITY"

..............................................
--------
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50 LOCATE 15,12
INPUT: ™IS THIS VALUE ACCEPTABLE? (Y/N) ‘,YNNS$
PRINT ™"
IF YNN$="N" THEN GOTO 40
IF YNN$<O>"Y"™ THEN GOTO 50

ELSE
60 INPUT; "WHAT IS THE BUDGET LIMITATION? ",BUDG
PRINT "*

PRINT "YOU HAVE INPUT ";BUDG
PRINT "AS THE BUDGET LIMITATION"

70 LOCATE 15,12
INPUT; ™IS THIS VALUE ACCEPTABLE? (Y/N) ",YNNS$
IF YNN$="N" THEN GOTO 60
[F YNN$<O"Y™ THEN GOTO 70
END IF
RETURN

MAXIM:

semescsecse TH|S SUBROUTINE PROVIDES THE ®==»»»sssss
ZEX XXX ER ¥ EQUATIONS NEEDED J0O SOLVE BERRBRBRESER
XX EZX XXX R R R X FOR THE 5 VALUES lN X A A XXX R B X XXX 2 )
rBERRBRBIRNRARNRRRRRINS HAX'"IZAT’ON PROBLEHS L ZE X2 X ERERE R X ]

DELTA(1)=1

FOR J = 1 TO NVAR
COFF (J)=COF (J) /BUDG
POWER(J) = -COFF (J)/LOG(PROB(J))
DELTA(2*J+1)=1

NEXT J

GOSUB OFUN

GOSUB SECSOLVE

GOSUB XMAXSOLVE

RETURN
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MINIM:

100

R A
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R

rumenesesse TH]S SUBROUTINE PROVIDES THE *#eesesswes
CTRRNRBBVRBBERERER EQUATIONS NEEDED TO SOLVE L Z 2 2 X 2 2 XXX N X ._'.:
A 22 23 X2 2 XXX 2 XL R X J FOR THE 6 VALUES lN I E X R X AR XX X E X - A
SRRV BRRBRARBTENES "!N]"IZATION pRoaLEHs LA 2 XA X 22 XX R XX J H
resennaansunn IT ALSO wLVES Tm_VARlABLE LA ZE R 2R XXX ﬁg
*essssass PROBLEMS USING THE QUADRATIC EQUATION ®**=*» A
£

CON = -1 i
DELTA(1) = | Fo
AA = (1-RELY) R
BB =0:CC=02:DD=0 NS
FOR J = 1 TO NVAR -
DELTA(2%J+1) = -COF (J)/LOG(PROB(J)) i
BB = BB-DELTA(2%J+1)"RELY v,
CON = CON®DELTA(2*J+1)*RELY 1
FOR 1J = J+1 TO NVAR N

IF 1J>NVAR THEN GOTO 100 o

CC = CC-DELTA(2*J+1)*DELTA(2*1J+1)*RELY o

FOR IJK = IJ+1 TO NVAR BN

L)

1F IJK>NVAR THEN GOTO 100
00 = DD-DELTA(2%J+1)*DELTA(2"1J+1)*
DELTA(2"1JK+1)*RELY
NEXT ITJK
NEXT 1J

NEXT J

IF

NVAR=2 THEN

D2 = (-BB+SQR(BB~2-4"AA"CON))/(2*AA)
GOSUB XMINSOLVE

RETURN

END IF

IF

NVAR>Z2 THEN GOSUB DFUN

GOSUB SECSOLVE
GOSUB XMINSOLVE

RETURN
;. IR S I S R N ".s"_- PURSUR I e i Sy fe e e ~'. -------
. -_1 ‘,4 | T n,,.\ » g s ‘~.'p ., "flaf'lﬁ )\"\_ .\1:._ . .\ 'n .“ .’. o~
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DFUN: E
:,..

sesesese TH[S SUBROUTINE DEFINES THE FUNCTION =#«+«« 20
ressssswss TO BE USED WHEN SOLVING FOR THE ®#®eessss r
BN ERBIRARNRERES REAL msITlvE RmT OF THE SRR ErEIENSED

S 2222 X2 XX R ZJ UNKNO“N 5 VALUES lN EITHER I X EZ X E XXX 2 X X J i-
seswsmne MAXIMIZATION OR MINIMIZATION PROBLEMS *®==* i

DEF FNFUNC (D2) e

IF YN$="Y" THEN L3

FNFUNC = AA®D2~NVAR+BB®*D2~ (NVAR-1)+CC*D2" (NVAR-2) :

+DD*D2~ (NVAR-3) * (NVAR-3) +CON

ELSE v}
DUM=1

FOR J = 1 TO NVAR

DUM = DUM* (((1+POWER(J)*D2)/
(POWER(J)*D2)) “POWER(J))
NEXT J
FNFUNC = -EXP(1)+DUM
END IF
END DEF =
RETURN -

S B lll
""‘/" 'f .

SECSOLVE :

/hunnneas THIS SUBROUTINE FINDS THE POSITIVE #ntress .

+ewsessnsnss REAL ROOT FOR THE UNKNOWN 5°5 =esesssen 2

‘eussnss THE SUBROUTINE BEGINS BY REQUESTING #nneses :i
ressmsnmussss AN INITIAL STARTING BRACKET **=esesess 3

&.

&

A

220 PRINT "PLEASE PROVIDE A STARTING BRACKET [B,C] 3
SEPARATED BY A COMMA " 3

INPUT "WHICH YOU BELIEVE CONTAINS A ROOT ":B,C :;

IF B<O OR C<0 OR (B=0 AND C=0) THEN GOTO 220 -

*

.-

240 PRINT "THANK YOU, YOUR STARTING BRACKET Is = ",8,C S
D=C:GOSuUB 900 !

™

ooy R
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330

350

480

690

66

TR RBRRRRERRERRENN "AIN pmGRAH STARTS HERE "ENERERIEREERR
fe%® QUICK CHECK: IS FA AND FB OF OPPOSITE SIGNS? **

A=C
GOSuUB 760

GOSuUB 690
IF FA®*FB > 0 THEN GOTO 1350
CONVERG=10" (-8+ (2" (NVAR-2)))
IF ABS(FB*FD)<CONVERG THEN
IF ABS(FD)<ABS(FB) THEN
B8=0
FB=FD
END IF
END IF

IF ABS(FB)<CONVERG THEN 1200
GOSuUB 830

IF ABS(FC)=>ABS(FB) THEN GOTO 480
A=8B

GOSuUB 760

B=C

GOSUB 690

C=A

GOsuB 830

GOTO 350

reassnssess PRINT CURRENT VALUES OF B,A,.FB,FA =enases

PRINT
D=(FB®"A-FA"B)/(FB-FA)
PRINT
GOsuUB 900
A=8B

PRINT
GOosuB 760
PRINT
M=(B+C)/2
GOSuUB 920
GOTO 970

IRBRARBBBBARNBINERNRIREN CALCULATE FB tsaRETRERERBNERRIRRESN

FB=FNFUNC(B)
PRINT
RETURN

TAUNTAPAR
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- 760

830

g 900

A

920
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970

SNk
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AR AN

FERNARBARRARRRRRTRERRES

FA=FNFUNC (A)
PRINT
RETURN

4 22222 X2 X2 R 2 X2 AR R 2

FC=FNFUNC(C)
PRINT
RETURN

RABRARBBEDIRABERIORNEANESS

FD=FNFUNC(D)
PRINT
RETURN

X 22X ZZZXXEZXEEERER X ]

FM=FNFUNC (M)
PRINT
RETURN

CALCULATE FA

CALCULATE FC

CALCULATE f0O

CALCULATE FM

67

RESRETRATERIRRARNERNER

LA XA X XEEXE R RS X2 8 &2

VEERAEARBRBIERERIRTREER

(A2 XX RS R R X J

s#sssses PRINT CURRENT VALUES OF D,B,M,AND C *®*====

PRINT

PRINT "THE CURRENT VALUES OF D,B,M,C ARE =

FXX=FD*FB
FYY=FD*FM
FZZ=FC*FD

IF FYY<=0 THEN

IF ABS(FD)<ABS(FM) THEN

B8=D:FB=FD
C=M:FC=FM
ELSE
C=D:FC=FD
B=M:FB=FM
END IF
A=C:FA=FC
GOTO 330

",0.,8,M,C

!
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k3
. ELSE
S IF FZZ<=0 THEN
Y B=C:C=A:A=8
) FB=FC:FC=FA:FA=FB
GOTO 1050
"‘r\‘ END IF
END IF
St
:c_::.( PRINT
23 1050 IF (D>B AND D<CM) AND FXX<0 THEN GOTO 1060
'y IF (D<B AND D>M) AND FXX<0 THEN GOTO 1060
. GOTO 1100
o 1060 B=D
= FB=FD
L~ GOTO 1120
- 1100 B=M
L3 FB=FM
.;:1:' 1120 IF (FB*FC)=>0 THEN C=A:GOSUB 830
NN GOTO 330
N
R ZZZ 2 Z XXX XX XX N X J PR!NT RESULTS [ XX XX EEEEEEEE RN E X J
e
o 1200 CLS
e PRINT
. PRINT "THE OPTIMAL VALUE OF THE UNKNOWN : [S = ".B
PRINT
J D2=8
e GOTO 1400
o, sreennnnnsnes TELL USER BRACKET IS NO GOOD ***ressses
~
(R 1350 PRINT
Y PRINT "ROOT NOT BRACKETED OR SECANT METHOD WILL NOT
.-" FIND ROOT, TRY AGAIN"
R GOTO 220
‘P
i
2o sresensnne USFR [S FINISHED WITH SUBROUTINE ®*trecnne
20
k\7 1400 RETURN
'\.‘,:
o
N
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“'\,

-{::
) XMAXSOL VE : 5
A sesssss TH]S SUBROUTINE SOLVES FOR THE X VALUES #==+ e
‘..: A AL XX 2R XXX & 3 ] IN "AXI"IZATION pROBLE"S [ E E X X 2 2 X XX 2 8 3 J -:_;-
. "
e "1
N FOR J = 1 TO NVAR 1
~y DELTA(2%J+2)=D2*POWER(J) X
b XX(J) = (LOG(DELTA(2%J+2)/(DELTA(2*J+1) '
¢ +DELTA(2*J+2))))/LOG(PROB(J)) .
) NEXT J >
% RETURN =
s 4
2 o
o XM INSOL VE : -
.
L, seswss» TH[S SUBROUTINE SOLVES FOR THE X VALUES #==»

\: ’rBRARRRBIRNBEBER IN HINIHIZATION PROBLE"S X E X R X X X B X X X X J

e

*
& FOR J = | TO NVAR
x DELTA(2%J)=D2

- XX(J) = (LOG(DELTA(2*J+1)/(DELTA(2*J)

) +DELTA(2%J+1))))/LOG(PROB(J))

NCXT J
= RETURN
,l

N

N

N ROUNDOFF :

{

el e s

<

;:; /urnsunanss THIS SUBROUTINE ROUNDS THE GP ®enssssasas
P rennasunansns SOl UTION TO INTEGER VALUES #nessccasase
3:
“l
. FOR J = 1| TO NVAR
:* YY(J)=INT(XX(J))
IF INT(XX(J))<XX(J) AND YN$="Y" THEN
: YY(J)=INT(XX(J))+1
N NEXT J
e RETURN
5.
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RO L PR

VERIFY:

sesesesns TH]S SUBROUTINE FINDS AND VERIFIES ##s=sse
ressssenwnwe THE OPTIMAL INTEGER SOLUTION *®ssssssxs

LRI R

PROBOPT=1:COSTOPT=0 N
FOR J = 1| TO NVAR x
COSTOPT=COSTOPT+COF (J)*YY (J) :
PROBOPT=PROBOPT* ( 1-PROB (J) “YY (J)) o
NEXT J -

IF YN$="N" THEN
FOR J = | TO NVAR
NO(J)=YY(J)-1
NEXT J
FOR J = 1| TO NVAR
COSTNEW(J)=0
FOR K = 1 TO NVAR
IF J<>K THEN
COSTNEW (J)=COSTNEW(J)+(COF (J)*NO(K)) S
NEXT K i
DIFFER(J) = INT((BUDG-COSTNEW(J))/
COF (J)) =YY (J)+I

v

- P .
SA S TEEL LY

NEXT J
END IF
IF YN$="Y" THEN 3
FOR J = 1 TO NVAR .
NO(J)=YY(J)+1 =
NEXT J

FOR J = | TO NVAR :
PROBNEW (J) =1 -
FOR K = 1 TO NVAR i
IF J<OK THEN PROBNEW(J)=PROBNEW(J)* k]
(1-PROB (K) “NO(K) ) -
NEXT K

DIFFER(J)=YY(J)-INT((LOG( !~ (RELY/
PROBNEW (J))) )/ (LOG(PROB(J)))) .
NEXT J o
END IF

AW AN s

. o @«
[ T

[ 2% & LI L
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rwwswens TEST FOR CONSTRAINT VIOLATION AND "#=#s=wws
ruwwanwnvus A BETTER OBJECTIVE FUNCTION *®wesssesass

FOR K = 1 TO NVAR: NO(K)=YY(K): NEXT K

) rwsmanes DETERMINE THE NUMBER OF COMBINATIONS #ww==ee
h.:; A L X222 RS2 B J 'rt) E;E: E:)(I\" l h‘!:() 'rl) '? I h‘[) (2 X222 22 22 X2 X X
:}r A 2 2 2222 R X2 2 22 2 'r}‘EE ()F)1'I r1‘\l_ fs()l-Lj1'l ()" SRS BRERREREREER
g FOR J1 = YY(1)-DIFFER(1) TO YY(1)+DIFFER(I}
"o JCo(1)=J1
O IF J1<1 THEN GOTO 9900
N FOR J2 = YY(2)-DIFFER(2) TO YY(2)+DIFFER(2)

: JCO(2)=J2

IF J2<1 THEN GOTO 9800

IF NVAR=2 THEN GOSUB COMPARE: GOTO 9800

FOR J3 = YY(3)-DIFFER(3) TO YY(3)+DIFFER(3)
JCO(3)=J3
IF J3<1 THEN GOTO 9700
IF NVAR=3 THEN GOSUB COMPARE: GOTO 9700
FOR J4=YY(4)-DIFFER(4) TO YY(4)+DIFFER(4)

LR B ™ 7
a'»

ASMD

RS

X JCO(4)=J4
v IF J4<1 THEN GOTO 9600
e GOSUB COMPARE
- 9600 NEXT J4
9700 NEXT J3
9800 NEXT J2
o 9900 NEXT JI
I RETURN
N
P
ﬁ COMPARE :
’
{ . I XXX EREEREX R X J 1'}'[ E; E;ljia‘%()tj1'! r‘!{ F'l "[)S; 1‘r‘E: I Z EXERRER X RN ¥
;:' [ EXEXXTEXYXX XX R R X J ()F)1'I r“\l_ (:()"EB l"‘\'r l()" [ E XX E R RX R RN Y X ¥ ¥ J
.
»
~ [F YN$="N" THEN
3 COSTCALC=0
N FOR JJ = 1 TO NVAR

COSTCALC=COSTCALC+COF (JJ) *JCO(JJ)
NEXT JJ

---------------
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A2
)
o IF COSTCALC>BUDG THEN RETURN
A PROBCALC=1
N\ FOR JUJ = | TO NVAR
e PROBCAL C=PROBCALC* ( 1 -PROB(JJ) ~JCO(JJ))
o NEXT JJ
C IF PROBCALC<PROBOPT THEN RETURN
e PROBOPT = PROBCALC
Y FOR JJ = | TO NVAR
- NO(JJ)=JCO(JJ)
Y NEXT JJ
i ELSE
' PROBCALC=1
ol FOR JJ = | TO NVAR
Rt PROBCALC=PROBCALC* ( 1 -PROB (JJ) ~JCO(JJ))
ey NEXT JJ
) IF PROBCALCCRELY THEN RETURN
) COSTCALC=0
oy FOR JJ = | TO NVAR
ey COSTCALC=COSTCALC+COF (JJ) *JCO(JJ)
:} NEXT JJ
ig IF COSTCALC<COSTOPT THEN
i COSTOPT = COSTCALC
W FOR JJ = | TO NVAR
' NO(JJ)=JCO(JJ)
23 NEXT JJ
S END IF
"::j END IF
fgy RETURN
o
J PRINTOUT:
L3
< sessnnsssss THIS SUBROUTINE TELLS THE USER ®"®®esscce
S senvesssnnes WHAT THE OPTIMAL SOLUTION IS ®e#seccccce
X}
,-{\
W PRINT "THE ORIGINAL PROBLEM WAS:"
:}4-: IF YN$="N" THEN
e PRINT "MAXIMIZE RELIABILITY";
5 FOR JJ = 1 TO NVAR-1
s PRINT "(1-(":PROB(JJ) " *N("3JJ"))*";
M NEXT JJ
£ PRINT " (1-(":PROB(NVAR);"~N(";NVAR"))"; -
< PRINT ™ S.T. "; -
> FOR JJ = | TO NVAR-1 -
o PRINT COF (JJ):i"*N(™3;JJ;™) +"; °
%7 3
5 y
xy 3
a'f,g Ly
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2.
. NEXT JJ
A PRINT COF (NVAR) ; "*N(":NVAR;") <= ";BUDG
> PRINT
7 ELSE
i PRINT "MINIMIZE COST";
M FOR JJ = 1 TO NVAR-1
' PRINT COF (JJ)3s"N("3JJ3™) +";
‘ NEXT JJ
= PRINT COF (NVAR) ; "*N(":NVAR;")"
e PRINT " S.T. ";
e FOR JJ = 1 TO NVAR-1
~ PRINT "(1-(";PROB(JJ) " “N("3JJ"))*";
- NEXT JJ
- PRINT "(1-(";PROB(NVAR);"“N(";NVAR")) => ";RELY
i PRINT
- ENDIF
oy COSTOLD=0 : COSTCALOPT=0 : PROBOLD=1 : PROBCALOPT=1
w PRINT "THE GP SOLUTION FOR THE PROBLEM HAS VALUES
h_£ OF"
K32 FOR J = 1 TO NVAR
b PRINT ™ N("3J;5")=";XX(J)
! COSTOLD=COSTOLD+XX (J) *COF (J)
o COSTCALOPT=COSTCALOPT+NO(J) *COF (J)
A PROBOLD=PROBOLD* ( 1-PROB (J) “XX(J))
, PROBCALOPT=PROBCALOPT* ( 1-PROB (J) “NO(J))
oA NEXT J
o PRINT " WITH AN OPTIMAL COST OF ";COSTOLD
o PRINT ™ AND A RELIABILITY OF ":PROBOLD
, ,j,: PRINT
, PRINT "THE OPTIMAL INTEGER SOLUTION HAS VALUES OF "
J FOR J = | TO NVAR
™ PRINT ™ N("3;J:")=":NO(J)
ey NEXT J
N PRINT " WITH AN OPTIMAL COST OF ";COSTCALOPT
W PRINT " AND A RELIABILITY OF ";PROBCALOPT
¢ 9997  INPUT "DO YOU WANT A HARD COPY OF THIS RESULT?
N (Y/N) ",.NY$ g
~ IF NY$="N" THEN GOTO 9998 3
;5 IF NY$<>"Y™ THEN GOTO 9997 -
¥ =
\ . LPRINT AT
5o LPRINT "THE OPTIMAL VALUE OF i, IS = ~.B -
\f: LPRINT e
[\ LPRINT "THE ORIGINAL PROBLEM WAS:" o
i IF YN$="N" THEN s
9 LPRINT "MAXIMIZE RELIABILITY"; v
N FOR JJ = 1 TO NVAR-1 ¢
wUN
oy
ol
W -
) -y
' "
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PRINT "(1-(";PROB(JJ) ;" "N(":JU"))*";
NEXT JJ
LPRINT "(1-(";PROB(NVAR):;"“N(";NVAR™))";
LPRINT " S.T. ":
FOR JJ = 1 TO NVAR-1
LPRINT COF (JJ):s"®"N(":;JJ;s™) +";
NEXT JJ
LPRINT COF (NVAR);"*N(";:NVAR:") <= ";BUDG
LPRINT
ELSE
LPRINT "MINIMIZE COST"™;
FOR JJ = | TO NVAR-1
LPRINT COF (JJ):;™"N("3JJ:") +";
NEXT JJ
LPRINT COF (NVAR) ;" *N(";NVAR:")"
LPRINT ™ S.T. ";
FOR JJ = 1| TO NVAR-1
LPRINT "(1-(";PROB(JJ)s""N(";JJd"))*";
NEXT JJ
LPRINT "(1-(":;PROB(NVAR);"“N(";NVAR™)) => ";RELY
LPRINT
END IF
LPRINT "THE GP SOLUTION FOR THE PROBLEM HAS VALUES
wn
FOR J = 1| TO NVAR
LPRINT ™ N(":sJ:;™)=";:XX(J)
NEXT J
LPRINT ™ WITH AN OPTIMAL COST OF ";COSTOLD
LPRINT ™ AND A RELIABILITY OF ";PROBOLD
LPRINT
LPRINT "THE OPTIMAL INTEGER SOLUTION HAS VALUES
OF =
FOR J = | TO NVAR
LPRINT ™ N(";3J;:™)=";NO(J)
NEXT J
LPRINT " WITH AN OPTIMAL COST OF ";COSTCALOPT
LPRINT ™ AND A RELIABILITY OF ";PROBCALOPT

RETURN

INPUT; "DO YOU WISH TO DO ANOTHER PROBLEM? (Y/N) ™,
NYS$

IF NY$="Y" THEN GOTO 1

IF NYS<O>"N" THEN GOTQ 9999

END
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e Appendix C is
ol =
o8 SAMPLE COMPUTER RUN 9
N '
- ]
Al Computer Questions Input i
o IS THIS PROBLEM A MINIMIZATION? (Y/N) Y £
o HOW MANY VARIABLES ARE THERE? (2-4) 3 4
o YOU HAVE INPUT 3 AS THE NUMBER OF VARIABLES o
» IS THIS VALUE ACCEPTABLE? (Y/N) Y ‘]
b YOU ARE INPUTTING VARIABLE 1 Ny
‘N WHAT 1S THE COST COEFFICIENT? 5 e
P

b WHAT IS THE ASSSOCIATED PROBABILITY OF FAILURE? .4 =3
K7y YOU HAVE INPUT S AND .4 o
o AS THE COST AND FAILURE PROBABILITY £
v ARE THESE VALUES ACCEPTABLE? (Y/N) Y n
l' “» > .
'3 X
»% YOU ARE INPUTTING VARIABLE 2 N
5% WHAT 1S THE COST COEFFICIENT? 7 K]
" WHAT IS THE ASSSOCIATED PROBABILITY OF FAILURE? .6 v
v YOU HAVE INPUT 7 AND .6 '
s AS THE COST AND FAILURE PROBABILITY o
¥ ARE THESE VALUES ACCEPTABLE? (Y/N) Y :"
b .
- YOU ARE INPUTTING VARIABLE 3

-2 WHAT [S THE COST COEFFICIENT? 6
" WHAT IS THE ASSSOCIATED PROBABILITY OF FAILURE? .5
-2 YOU HAVE INPUT 6 AND .5

) AS THE COST AND FAILURE PROBABILITY

e ARE THESE VALUES ACCEPTABLE? (Y/N) Y

8

e WHAT IS THE REQUIRED RELIABILITY? .9

" YOU HAVE INPUT .90
- AS THE REQUIRED RELIABILITY

gi IS THIS VALUE ACCEPTABLE? (Y/N) Y
L L

2 PLEASE PROVIDE A STARTING BRACKET

o (B.C] SEPARATED BY A COMMA

-, WHICH YOU BELIEVE CONTAINS A ROOT

v THANK YOU, YOUR STARTING BRACKET IS = 0,1000

N
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;IE

s Computer Output
898
oA THE OPTIMAL VALUE OF $, IS = 250.421517

A
K
A THE ORIGINAL PROBLEM WAS
9 MINIMIZE COST 5 * N( 1 ) + 7 * N(2) + 6 * N( 3)
24‘ S.T. (1 - (.4°N(1))*(1 - (.6~N(2))*(1 - (.5°N(3)) => .90
;
R THE GP SOLUTION FOR THE PROBLEM HAS VALUES OF
s N(1) = 4.199369

N(2) = 5.792162

o N(3) = 4.903512
o

0 WITH AN OPTIMAL COST OF 90.96304798

s AND A RELIABILITY OF .91409482752

+

5 THE OPTIMAL INTEGER SOLUTION HAS VALUES OF
e N(1) = 5
> N(2) = 6
) N(3) =5
_ WITH AN OPTIMAL COST OF 97

5 AND A RELIABILITY OF .896896312
b o
>
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