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Abstract

This paper is about a property of certain combinatorial structures, called
sequential convexifiability, shown by Balas {1974, 1979] to hold for facial
disjunctive programs. Sequential convexifiability means that the convex hull
of a nonconvex set defined by a collection of constiraints can be generated by
imposing the constraints one by one, sequentially, and generating each time
the convex hull of the resulting set. Here we extend the class of problems
considered to disjunctive programs with infinitely many terms, also known as
reverse convex programs, and give necessary and sufficient conditions for the
solution sets of such problems to be sequentially convexifiable. We point out
important classes of problems in addition to facial disjunctive programs (for
instance, reverse convex programs with equations only) for which the
conditions are always satisfied. Finally, we give examples of disjunctive
programs for which the conditions are violated, and so the procedure breaks

down.
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0. Introduction

A procedure has been proposed in Balas [1974, 1979] for the sequential
generation of the convex hull of feasible solutions to the system of constraints
of a disjunctive programming problem. The idea behind the procedure in
general terms is the repetition of a partial convex hull operation of the
following kind.

Consider an optimization problem whose solution set is nonconvex. Its
constraints may include linear or nonlinear inequalities, integrality constraints,
logical conditions (implications, disjunctions, etc.) or whatever. Take a
subsystem of these constraints and form the convex hull of its solution set.
It is a partial convex hull relative to the convex hull of the set of solutions to
the full system of constraints. Next, intersect this partial convex hull with
the solution set of a second subsystem consisting of constraints not included
in the first subsystem. Finally, form the convex hull of the intersection.

Under what conditions is the product of this partial convex hull operation
the convex hull of solutions to the augmented subsystem formed by appending
the constraints of the second subsystem to those of the first? Once aware of
them, we can try to maintain these conditions through a number of repetitions
of the operation, each enlarging the augmented subsystem by appending still
unincorporated constrainta until the complete system is formed. If we
succeed, the result will be the convex hull of solutions to the complete system.

A procedure that generates the convex hull of a nonconvex set in this
sequential manner will be called a sequential convexification procedure. A set
whose convex hull can be generated in this manner will be called sequentially
convexifiable.

Sequential convexifiability has both practical and theoretical implications.

Sequential convexification is often a more efficient procedure than the
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W alternative of imposing all the constraints simultanecusly and generating the

ol s
:ES convex hull of the resulting set. Besides, the procedure involves a number of
:: iterations bounded by the number of constraints. )
. . The question as to when precisely is a nonconvex set sequentially
LA

:::}_: convexifiable was given a partial answer in the context of disjunctive
Y

,_ programming by Balas [1974, 1979], in the form of a sufficient condition for
:‘ the convex hull of a disjunctive set to be obtainable in the sequential manner
:': outlined in the preceding paragraph. It requires the disjunctive program to
T_ be facial, a property (to be specified below) general enough to be shared by
__. all pure or mixed 0-1 programming problems, but not shared by general
-._.-E integer programs. On the other hand, the question of a necessary condition
$- for the validity of the sequential convexification procedure has remained open
»

.-I;:_ until this writing.

EE:' The present paper addresses this open question. However, in so doing it
\-‘L' also places the question of sequential convexification in a somewhat more
.::_: general context, in that, instead of disjunctive programs with finitely many
-.;: terms in each disjunction, it considers the <class of reverse convex
programming problems, which can be viewed as disjunctive programs involving
"' disjunctions with infinitely many terms. To be specific, we consider problems
:ES whose constraint set is of the form

gi(x)zo, i=1,2, ..., m

1-: where, for each i, gi is a convex function from R" to R. In a disjunctive
E:‘E: progranming problem with finitely many terms in each disjunction, each
{" gi is either linear or piecewise linear and convex. In the former
_-;::_ case it is called a conjunctive constraint. In the latter case it is called a
;{;':’_ disjunctive constraint and is written as a disjunction, each term of which is a
‘J' linear constraint. This form of the constraint set is known as the conjunctive
B
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normal form. Thus the class of reverse convex programs considered here
corresponds to disjunctive programs stated in conjunctive normal form, whose
disjunctions may have infinitely many terms.

The sequential convexification procedure, as proposed in Balas [1974,
1979], applies to facial disjunctive programs, i.e. those in which every term of
every disjunction is a linear inequality that induces a face of the polyhedron
defined by the conjunctive inequalities. It begins with the subsystem

consisting of all the conjunctive constraints of the problem. It continues by

appending one piecewise linear (or disjunctive) constraint to the growing
subsystem with each repetition of the partial convex hull operation. The
procedure to be considered here for the more general case of reverse convex
programs retains this feature of introducing the constraints not included in
the initial subsystem one by one. The main result of our paper is a
necessary and sufficient condition for the partial convex hull operation to
work as desired when only one reverse convex constraint is introduced at a
time. The Constraint Boundary Condition, as we call it, is weaker than the
condition of faciality when applied to a disjunctive program with finitely many
terms. However, while faciality can be determined prior to the initiation of
the procedure, this may not be true of our condition: it may be necessary to

check each time the convex hull operation is repeated whether the Constraint

Boundary Condition holds. On the other hand, since it is a necessary as well
as sufficient condition for the partial convex hull operation to yield the
desired product, the Constraint Boundary Condition imposes the weakest
possible restriction on the constraints involved. The Constraint Boundary
Condition involves pairs of points satiefying the first subsystem of constraints
considered in a partial convex hull operation, during which the (partial)

convex hull of the system is formed. Often this convex hull is a polytope (see




next paragraph), and in that case it is only necessary to consider pairs of
vertices of the polytope, which makes the Constraint Boundary Condition
finitely checkable.

The study of reverse convex programs goes back to Rosen (1966), who
investigated such problems in a control theoretic setting. For a general
discussion of importanit aspects of reverse convex programming, also called
complementary convex programming, see Avriel (1976). Particularly relevant to
the present paper is the study of Hillestad and Jacobsen (1980). They have
shown that the convex hull of feasible solutions to a reverse convex
programming problem is a polytope subject to certain differentiability and
compactness assumptions. In this case, given a linear objective function,
knowledge of the convex hull enables one to solve the problem by linear
programming.

Our paper is organized as follows. In section 1 we state the Constraint
Boundary Condition and show that it is necessary and sufficient for the
success of the partial convex hull operation. We also state an alternative
sufficient condition for the finite case, which is usually easier to check. In
section 2 we give a formal statement of the sequential convexification
procedure and show how its success depends upon the Constraint Boundary
Condition being satisfied for every pair of sets in a certain sequence
generated by the procedure. In section 3 we discuss some important special
cases in which the Constraint Boundary Condition is always satisfied and
hence the sequential convexification procedure always works. Finally, in
section 4 we illustrate on a job shop scheduling problem the circumstances
under which the sequential convexification procedure may break down, and the
way these circumstances may be avoided by a slightly different problem

formulation.
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1. A Basic Relation

When will the partial convex hull operation yield the desired product? The
partial convex hull operation is binary inasmuch as it operates upon two sets.
On the one hand, there is the set of elements satisfying a subsystem of the

constraints of an optimization problem. On the other hand, there is the set of

elements satisfying an additional constraint. The operation consists in
intersecting the convex hull of the former with the latter and forming the
convex hull of the intersection. The desired product is the convex hull of
elements satisfying the augmented system consisting of the first subsystem
with the additional constraint appended to it. In this section that opening

question is appropriately qualified, recast in formal terms, and answered.

The partial convex hull operation was conceived in connection
with disjunctive programming problems. In that context the additional
constraint is disjunctive. It has the form g(x) >0 where

g(x) = m@x(aix—bi) and the linear functions ax - bi are finite in number.
The com;lement of the solution set, C = {x | g(x) < 0}, if nonempty, is an
open convex polyhedron of full dimension. Thus the imposition of the
additional constraint can be viewed as the exclusion from the solution set of
the elements in C. The set resulting from the intersection of multiple
disjunctive constraints of this kind can be thought of as formed by
discarding a union of open convex sets.

In the present context, the class of constraints eligible to fill the role o}
single additional constraint in the partial convex hull operation consists of
reverse convex constraintis. Each of these must be such that the set of

elements not satisfying it is open, convex, and of full dimension. If C

denotes this set, then it can be defined via a convex function TS




. g: RP>R as C = {x | g(x) < 0}. The solution set for the constraint is

represented as its complement, ~C = (x | 2(x) > 0}. ;:
The question of interest is now recast in formal terms as follows. Let P |

Ty

represent the set of solutions to the subsystem of constraints. Let ~C K
.

represent the set of elements satisfying the additional reverse convex :
constraint. The partial convex hull operation intersects conv P and ~C, which .
-

yields (conv P)~C, and forms the convex hull of the result. So the product of '_':_
the partial convex hull operation is conv((conv P)~C]. The set of solutions to "3
the augmented system, on the other hand, is just the intersection of P and "".
~C. So, in formal terms, for arbitrary P and for C open, convex and of full :;'_'
dimension the question of interest is to know when the following Basic ':'
Relation is true: ‘
3

4

(1.1) conv[(conv P)~C] = conv(P~C). )
3

Because (conv P)~C 2 P~C, it is always the case that conv{(conv P)~C] e

2  conv(P~C). The main result of our paper is that the reverse inclusion :
holds if and only if the following condition, called the Constraint Boundary ':
Condition, is satisfied. 5
(1.2) Ifx P N\ C and y ¢ P~C, then [x,y] N bd C £ conv(P~C). ::‘.

Here [x,y] denotes the line segment between x and y and bd C denotes
the boundary of C in the affine space spanned by C. Observe that since C

is full dimensional, [x,y] N bd C # .

Theorem 1.1. The sets P and C satisfy the Basic Relation (1.1) if and only

if they satisfy the Constraint Boundary Condition (1.2).

The "if" part, which is the main content of Theorem 1.1, says that in

order to ascertain that all points of (convP)~C belong to conv{(P~C), it is



sufficient to check that all those points on the boundary of C that are the
convex combination of just two points of P, belong to conv(P~C). The "only
if" part states the easily verifiable converse.

The proof of Theorem 1.1 will make use of the following auxiliary result.

Lemma 1.2. Let X s yJ.z IRH, i=1, ..., h J=1, ..., k; and let zl.J.a

[xl.,yJ.] be given for all pairs i, j. Then for all x & conv{x],...,xh}

and y ¢ conv[yl, ey yk}, the set [x,y] N conv{zl.J. | =1, ..., B
J=1, ..., k} is popempty.
Proof. By contradiction. If [x,y] N Conv{zi,j | i=1,...,h; j=1,...,k} = o,

then there exists a hyperplane which strongly separates the line segment [x,y]
from the polytope conv{zi‘j l i=1,...,h; j=1,...,k} (Cf. Rockafellar (1970),
Theorem 11.4). Hence the hyperplane defines an open halfspace H* which
contains [x,y] but does not contain any zij' On the other hand, because
% ¢ HY and v ¢ H* we must have at least one X, and at least one yJ. in HY. But

for this xg and this yJ. we must have [xi,yj], and hence zij’ in HY, which is

a contradiction. O

Proof of Theorem 1.1. Assume that (1.1) holds. Let x ¢ P 1 C and y ¢

P~C, and let w = [x,y}] N bd C. Because x # P and y ¢ P, w & conv P.

Moreover, as C is open, C 1 bd C = ¢ and w # C. Thus w ¢ (convP)~C ¢
conv[(conv P)~C] = conv(P~C), where the equality holds by assumption.

Conversely, assume that (1.2) holds. As remarked above, it is sufficient

to snow that conv({(conv P)~C] ¢ conv(P~C). So, suppose that z is a point of

conv{(conv P)~C]. (If conv{(conv P)~C] = ¢, then so, too, for the included

set, conv(P~C) = ¢, and we need not continue.) Then, by Caratheodory’s

Theorem, z can be expressed as a convex combination of finitely many points r

t (conv P)~C. In turn each such r can be expressed as a convex combination

of finitely many points of P. For each such r, because r ¢ C and C is convex,
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the points of P in the convex combination for r must include at least
one point in P~C. On the other hand, each r which is
a convex combination solely of  ©points in P~C must belong to
conv(P~C). In order to conclude that 2z ¢ conv(P~C), we need only
show that those r which are not convex combinations of points solely
in PC are also in conv(P~C). So assume that r can be expressed as a
convex combination of the points Kps ceen Xps Ypo o cees ¥ where h, k > 1 and
X, * P 1 C, each yj ¢ P~C. For each pair X y.j define zij = [xi,yj] f1 bd
C. Hence zij £ ¢l C (cl denotes the closure). By the Constraint Boundary
Condition (1.2), zij t conv(P~C). Furthermore, by collection of terms,

r can in this 1instance be expressed as a convex combination of just two

points x & conv{xl,...,xh} and y ¢ conv{yl,...,yk}. That is, r is on the
closed line segment [x,y]. By Lemma 1.3 there exists w z [x,y]
c:onv{zi‘j | i=1,...,h; j=1,...,k}. So [%,v] = [x,w) U [w,¥], and

either r ¢ [x,w) orr ¢ [(w,y]. Now w ¢ cl C as zij £ ¢l C for all i, .
Similarly, w £ conv(P~C) as zij ¢ conv(P~C) for all i, j. Since x £ C = int C

{int denotes interior) and w ¢ ¢l C, we have [x,w) € C, while, as w and y

are in conv(P~C), so too is [w,y]. The fact that r # C then implies r ¢ [w,y]
and r ¢ conv(P~C). So each r 1is in conv(P~C), and z, as a convex
combination of them, is there as well. Therefore, conv{(conv P}~C] <

conv(P~C). O

For the case of a disjunctive program with finitely many terms in each
disjunction, we give a sufficient condition for the Basic Relation to hold,
which is often easier to check than (1.2). Let HT = {x | d'x

? d.lo}, i £ Q, be finitely many halfspaces of the space containing P.
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Theorem 1.3. The Basic Relation
(1.1} conv({convP)~C) = conv(P~<C),
where C = U H;, Is satisfied if the relation
1 Q
(1.32) (convP) (1} 1{; = conv(PHH;.)
1s satisfied for every 1 t Q.
Proof. Suppose (1.3) holds for every i1 ¢ Q. Then
conv({convP)~C) = conv({(convP) () ( U H;))
ieQ
= conv UJ ((convP)“H_i)
12Q
= conv ) conv(PMHT)
. i
1£Q
= conv UJ (POHT)
. i
12Q
= conv(PN( U H))
, i
1z2Q
= conv(P~C).
Here the first and 1last equations were obtained by using ~C = U H_i'
1:Q
the second and next to last equations use the fact that () is distributive with
respect to UJ, the third equation follows from (1.3) (which is assumed to hold),
while the fourth equation uses the obvious relation conv{convSlJconvT) =

conv(SUT), true for arbitrary sets S, T. o

wWhile (1.3) 1is sufficient for (1.1) to hold, it is not necessary. To

see this, let P ¢ Rz, P={(1,1),(-1,1)} and ~C = Hi U Hg, where HI
= {x ¢ Rz ] x|t Xy > 3/2, HE = {x ¢ IR2 } Xyt Xy > 3/2}. We have P~C = P,
conv(P~C) = conv P = conv{((convP)~C), i.e. (1.1) holds. On the other

hand, P N HI = {(1,1)} = conv(P”HI), whereas conv P = {x & IR2 [ x = (1,1)N +

(-1,1)(1-x), 0 < x < 1}, and

x = (L,DA + (=1, 10{1-2), 0 ¢ A <1

"
—
x
]
b )
[\S)

{convP) N HT

Cx e R D xo= (LD + (=1, 13010, 3/4 < A < 1}.
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Clearly, conv(P(\Hz) ; (convP) N Hi, i.e. (1.3) does not hold.

Relation (1.3) 1is equivalent to a condition that has an appealing
geometric interpretation. We will say that H; (or Hi’ where Hi = bd H;)
satisfies the Window Condition with respect to P if the following is true:
(1.4) If x ¢ P~H; and y £ P N H;, then [(x,y] N Hi < conv(P(]Hi).

Requirement (1.4) can be interpreted as having the set conv(Pf1Hi) act as
a "window" through which every pair of points lying in P but on opposite
sides of Hi’ can "see each other."

Theorem 1.4. Kquation (1.3) holds if and only if the Window Condition
(1.4) holds.

Proof. Applying Theorem 1.1 to P and C in the case when C = int H?

my l'; '-A"...i 8 :fr v

(=~H;), we Tfind that (1.3) is in this case the same as (1.1), while the

Constraint Boundary Condition (1.2) becomes

XA N

(1.2%) If x & P~H; and y £t P N H;, then ([x,y](\Hi) 3 conv(P(\H;).

The Window Condition (1.4) differs from (1.2’) only in that it replaces

4

«

1, 5, 8

H; with Hi on the righthand side of the last expression. Now if (1.4) holds

v f
ey

r

then (1.2’) clearly does, so all that remains to be shown is that (1.2’)

implies (1.4). Let w := [x,y] N Hi. Since w & Hi 0N conv(Pf]H;) (from

[ 40

(1.2’)), w lies on the face of conv (Pf\H;) contained in the hyperplane Hi;

YYN s

o o
‘A

hence w ¢ conv(Pf1Hi).H
Corollary 1.5. Let P be any set, and ~C = U H;. Then the Basic
iz @
Relation (1.1) holds if the Window Condition (1.4) holds for every hyperplane

& el i
l‘;‘)i'\.u' B X "
L Rk

x:-

-

H., 1t Q.
1

Proof. Follows from Theorems 1.3 and 1.4.
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2. The Procedure For Sequential Generation of the Convex Hull

In this section we give a formal description of the sequential
convexification procedure. This confirms that the procedure succeeds if upon
each repetition of the partial convex hull operation the two sets subjected to
the operation satisfy the Constraint Boundary Condition. In addition, we
provide a sufficient condition for the success of the procedure in the more
general version which adds constraints sequentially, but not one at a time.

The procedure is designed for problems which include some reverse
convex constraints, each of which is such that the set of points satisfying the
constiraint has a complement that is open, convex and of full dimension. If the
problem has other kinds of constraints as well, these other constraints can be
included in the initial subsystem.

The procedure consists in a number of iterations each of which uses the
partial convex hull operation to activate a single one of the constraints so far
left out. The constraint is made active by intersecting the set resulting from
the preceding iteration with the set of points satisfying the constraint, and
forming the convex hull of the intersection. The procedure continues until all
constraints have been made active. The desired result of the final iteration
is the convex hull of the set of solutions to all the constraints of the problem.

Our approach is best understood by viewing the activation of a constraint
at an iteration of the procedure as a narrowing of the feasible region by
excluding from consideration an open, convex, full-dimensional set. The set
excluded is the complement of the set of points satisfying the constraint. The
procedure could be viewed as consisting of the sequential exclusion of such

sets. From this perspective, the procedure can be described as follows.

11
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Given an initial subsystem of the constraints, denote the set

of solutions to this subsystem Fl' We assume Fl : R°. Given that there
are m remaining constraints, each satisfied by a set of points whose
complement is open, convex, and of full dimension, order the

constraints and denote the corresponding open, convex complements Cl, eevy, C .

m
m
Set ¢ = U C.. The object of the procedure is the formation of the convex
J=1
hull of the set F given by n
F=F~C = F,~UZC..
1 1 j=1 J

Alternatively, F can be described by successive exclusion of the sets Cj:

F= (... ((F1~Cl)~02) cen )*Cm).

.th

At the iteration the procedure forms the set Fj+ t R® defined

1

recursively as Fj+l = (conv Fj)~cj' i=1, ..., m, and then takes its

convex hull. conv Fj+1 will be compared below to the convex hull of the set

G. 1 defined recursively as

J+
6 =f
j41 ° GJ*CJ. Jj=1, , m.
Observe that Gm+1 = F.

Theorewm 2.1. Let F} be an arbitrary set, and let C&, J=1, ..., m,
be open convex sets of full dimension, ordered into an arbitrary
but fixed sequence. Then conv F& = conv G& for g =2, ..., m+ 1 if and
only 1if the Constraint Boundary Condition holds for each pair G&, qj,
J=1, ..., m. If this 1is the case, then in particular conv i;*l =
conv F.

Proof. Assume that the Constraint Boundary Condition (CBC) holds for all
pairs Gj' Cj’ J=1, ..., m.. Apply the procedure to Fl, F2""' Fm. After

the first step we have:
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conv Fz conv{ (conv F1)~C1] (by definition of FZ)

= conv| (conv Gl)~Cl] (since Fl = Gl)

= conv(G1~Cl) (since Gl’ C1 satisfy the CBC)
= conv G2 (by definition of GZ)'

The proof continues by induction. By hypothesis, after step j - 1 we have

conv Fj = conv Gj' Therefore, after step j we have:

conv Fj+1 = conv((conv Fj)~cj]
= conv[ (conv Gj)~cj] (by the induction hypothesis)
= conv(GJ~Cj) (since Gj’ Cj satisfy the CBC)
= conv G5+1.
After m steps, since Gm+1 = F, we have: conv Fm+1 = conv F.

Conversely, if the Constraint Boundary Condition fails for a pair Gj’ CJ’

then:

conv Fj+1 = conv{(conv Fj)~cj]

ju

. . i .2 G.
conv{ (conv GJ)~CJ] (since FJ 2 J)

conv(G 30 3 (by Theorem 1.4)

HU

conv G, o
J

+1°

Two comments are in order at this point, each of which reveals a certain
weakness of our procedure; weaknesses that are overcome in the important
special cases to be discussed in the next section.

First, note that for the sequential convexification procedure to be valid,
Theorem 2.1 requires (1.2) to hold for each pair Gj’ Cj’ where the set Gj
is in the role of P and Cj in that of C. The feature we wish to point out
here is that although conv Gj = conv Fj' where Fj is defined recursively as
conv (FJ~1~CJ—1)’ it is not sufficient for condition (1.2) to hold for each

pair Fj’ Cj‘ In other words, while the sequential convexification procedure

is a recursive application of the partial convex hull operation to each pair

13
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procedure which involves the possibility of activating several constraints at

55 Fj' CJ.. the validity of the procedure hinges on a condition that at each step ,'
::': of the procedure reaches back beyond Fj’ to the set Gj‘ This of course makes ;Q;
_. the condition harder to check.
::f Second, note that the condition given in Theorem 2.1 for the validity of :T:
-, of the sequential convexification procedure is tied to a certain ordering
*', of the constraints, hence of the pairs GJ., C.. The procedure may be valid if
:::: the constraints are imposed in a particular order and invalid if a different .-i
t::: ordering is used. This makes a negative outcome often inconclusive: 1in order :::
i to establish that the procedure is inapplicable to a certain problem, one might f
3 j have to explore exponentially many sequences. C,
E:'g Fortunately, both of these shortcomings disappear in certain special cases ;:E

> which are rather important; they will be discussed in the next section. .

: Now we turn to the case of a disjunctive program with finitely many terms “
, in each disjunction, and give a sufficient condition for the wvalidity of the
» sequential convexification procedure. o
ﬁ Corollsry 2.2. let Fy and C; be as in Theorsm 2.1, with <C; = U iy, i
J=1, ..., m, where each Q is finite and each E;'j is a closed ba]fjspace.
f)r Then convszconvG'j for j=2, ..., m+1 1if for Jj =1, ..., m each n'
X hyperplane H . (<bd H;) satisfies the Window Condition (1.4) with E
1:’,}.: respect to Gj' .f
o Proof. Analogous to the proof of sufficiency in Theorem 2.1, with “
o condition (1.2) replaced by (1.4). O E
o, !

:%: In the Introduction we also outlined a more general version of the :
)

each iteration. An iteration of this version consists of intersecting the result

"\, of the preceding iteration with the set of solutions satisfying several of the

#
R as yet unactivated constraints. Then the convex hull of the intersection is
.’.|'\
)
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formed. Next we show that if there is an ordering of the m constraints not
included in the initial subsystem such that each pair Gj’ Cj satisfies the
Constraint Boundary Condition, then a procedure which activates any number
of the still inactive constraints at each iteration will be successful. However,
if several constraints are activated at once, then they must be selected
consecutively according to their original ordering.

Theorem 2.3. Let F} be an arbitrary set, and let C&, J=1, ..., m, be
open convex sets of full dimension. If the Constraint Boundary Condition

holds for each pair § , g , J =1, .., k<{m then

k
conv{ {(conv F})*( U Cb)] = conv Gk+1.
=l k k
Proof. On the one hand, (conv F1)~( Uc,) 2 F1~( U C.). Therefore
=1 7 j=1 "
k k
conv| (conv F1)~(j:i Cj)] 2 conv[F1~(j:i Cj)] = conv Gk*l'

On the other hand, the opposite inclusion follows by induction. By Proposition

2.1 it holds for k = 1. Suppose it holds for k=i-1,2<1i<m and

set k = 1. Then

k k-1
conv [ ( conv F1)~(.EJ CJ)] = conv((conv F1)~(.£J Cj)~Ck]
J=1 =1
€ conv[conv{(conv F1)~(j:i CJ)]~Ck]

conv[ (conv Gk)“'Ck] (by hypothesis)

conv(Gk~C (by the CBC)

k)
conv Gk+1' o
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o 3. Some Special Cases
?{k In this section we discuss some of the results of the previous sections as
:‘.u,_ they apply to certain special cases.
j , First, there are situations in which the Constraint Boundary Condition
::' {1.2) holds trivially. One case of this kind occurs when P 1 C = ¢. Another
:‘a" one when P 1 C = P. In the first case there is no x ¢z P ()1 C, in the second
:0."':' one there is no y ¢ P~C; so in both cases the condition (1.2) holds trivially
t‘: 3 and thus from Theorem 1.1, the Basic Relation (1.1) also holds.
.::: A very important case , with interesting subcases, is the one when P ¢ C
".‘_ but P ¢ cl C. Consider for instance a nonlinear programming problem whose
:?" only nonlinear constraints are equations involving convex functions, i.e. are of
T the form gi(x) =0,1=1, ..., m, with each gi a convex function such that
_ {x | g (x) <0} # ¢. We can then define F, (i.e. the initial set P) as the
.:. set of points satisfying the linear constraints plus the nonlinear
2 inequalities gi(x) <0, i=1, ..., m;j and for i=1, ..., m let Ci =
:: {x | gi(x) < 0}, i.e. ~Ci = {x | gi(x) > 0}. On the one hand, this makes Fy
S,; convex, hence the procedure is relatively easy to start. On the other hand,
: with the chosen definition of Fl and of the sets Ci' at any stage of the pro-
‘_..;: cedure if the current set GJ. is P and the next constraint CJ. to be
.EE: activated is C, then y ¢ P~C implies y ¢+ bd C and so for any x ¢t P 11 C, we
\.' have [x,y] Y bd C = {y}. The Constraint Boundary Condition (1.2) is thus
":: necessarily satisfied. In other words, for optimization problems whose only
i."';: nonlinear constraints are equations involving convex functions, the sequential
-"' convexification procedure always works; and it does so irrespective of the
:f sequence in which the constraints are activated.
"‘tz Another instance when P £ C but P € ¢l C occurs in the case of facial
',‘- disjunctive programs, i.e. problems for which li‘1 (the initial set P) 1is a
A0 Iy
2
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polyhedron given by a set of linear inequalities, and each disjunctive
constraint is of the form ~C. = ) H}i' with Qj finite and H}i a closed
1:01

halfspace such that Hji (1 F, is a face of Fl. This situation is again easy

1

to recognize, since all one has to do is to check for each halfspace H‘)1 that
the inequality defining the opposite closed halfspace, H;i, is among the
inequalities defining Fl. As in the situation discussed earlier, the
sequential convexification procedure is then applicable without any need for
checking the Constraint Boundary Condition and the constraints may be
imposed in any order whatsoever.

As already mentioned, facial disjunctive programs include all pure or
mixed integer O0-1 programs. The fact that their convex hulls can be
generated sequentially in n éteps, where n is the number of disjunctions,
makes it possible to develop cutting plane procedures whose finiteness proof
uses this property (see Jeroslow [1980] for one such procedure).

For general reverse convex programs, conv Gj is often a polytope (this
is subject, as already mentioned, to certain differentiability and compact-
pactness assumptions; see Hillestad and Jacobsen [1980] for details). In
this case conv Gj is generated by a finite number of so—called quasivertices,

and the checking of the Constraint Boundary Condition can be restricted to

pairs x, y of such quasivertices.

4. A Job Shop Scheduling Example.

Consider the problem of scheduling the processing on n jobs on one
machine. If I‘j denotes the earliest time job j can be started, dij the
minimum time lapse between the starting of job i and that of job j (in that

order) on the machine, and (the variable) tj denotes the actual starting time

17




of job j, then for whatever objective function, the constraints of the problem

are

t.>L., jeN
(4.1) )7

tj - ti > diJ v ti - tj > dji s 1, JEN, 1 # 3
where N = (1, ..., n}. This is a disjunctive set, and it is easy to see that it is
not facial. Indeed, faciality would require that the conditions

t. - t. <d..

J 1= 1)

- tj +t< dji i, je N, i#]

be added to the constraints of (4.1), which would obviously change the
problem, actually make it infeasible in most cases. So whether the sequential
convexification procedure works for this class of problems is an open
question. We will show by way of a small example that it does not work in

general.

Example. lLlet n =3, L. =0, j =1, 2, 3, and

2
(dij) = [ ;

Then Fl = R?_ (the positive orthant of Ra), and each disjunctive con-
straint set is of the form “'CiJ., where

_ 3, _ _ —— .
4T {t ¢ R® | dJ.i < tj t, < dij}, i, 3 =1, 2, 3; i # j}.

If we impose the constraints in the order ~C12’ “'023, ~013, the procedure

generates the set

. . ‘ MR R RS Py TR =0 PR
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QU
. 3 . . . .v'\ ?
The sets l“2 and F3 consist of those t ¢ R+ satisfying the first con- Lo
straint, and the first two constraints, respectively, of F4. So the liast _&_":v
Pl
step adds three constraints. Nt h:
3 o
Now F, is not the convex hull of F := F.~( U C..). The latter has, o ."
4 1 i,j=1 1) "
besides the three facets defined by the nonnegativity constraints and the [ ]
i
three facets defined by inequalities with positive coefficients for two of the &:,.:‘
NANCLL
three variables, another four facets defined by inequalities with positive ":"»- o’
S
coefficients for all three variables (see Balas [1984] for an explanation of why
oY
this is so), and is in fact :::.::.::
Ry
( 2t1 + 31:2 > 6 ‘v
3t,+ ty> 6 :,.:‘\
AT
o t
2t oty 4 BN
3 KSLHEY
conv F = t s R 9t1 + llt2 + 5t3 > 62 . '—
RGNS
3t1 + t2 + t3 > 10 ::: 4_-\:)_-
PR
14*t:1 + 21t2 + 101:3 > 112 ’::
oy
2t1 + 331:2 + 10t3 > 16 3
So the sequential convexification procedure does not work in this case; el N
_f:__.\..
namely, it breaks down at the third iteration, when we take the convex hull of t-;_‘é}_‘r-
L 908 \J"
(conv F3)~013. Indeed ‘&.
_ - SN
) 3| to-ty22vt; -ty 23 )
Gy ={tecR, . o :l:.
- - Lot
ty =ty 26 vty -ty > 2 A
c -{tcR3|—2<t-—t <4} S
13 ~ 3 1 : LA
SUSLN
Consider the points x = (0,2,0) and y = (5,2,0). Both are in G3‘ but ::‘:‘-"{f:
.': '\":
X t 013' while vy # 013. Now [x, y] ) bd 013 = (2,2,0), and it is easy :::.T::_A
to check that (2,2,0) ¥ conv(Gw*Cm) = conv F, as (2,2,0) violates each vk
S
of the last four inequalities of conv F. N::_:.a:
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Our example illustrates the fact that for a nonfacial disjunctive program

s
. & b

g X

1,

the sequential convexification procedure may not work. On the other hand,

any bounded disjunctive program can be restated as a (pure or mixed integer)

v,
o

ofa
. 2

0-1 program, by introducing one O0-1 variable for every term of every

oL
A
Tl'-'-"

disjunction. By becoming a 0-1 program, the disjunctive program acquires the

::':\ property of faciality, and lends itself -- in its new form -- to the sequential
S

:-3 convexification procedure. This is a rather intriguing fact, in view of the
5

circumstance that the inequalities containing the 0-1 wvariables in many

instances have no constraining power in the linear programming relaxation of

the problem. A case in point is the above discussed job shop scheduling

v

b

problem, whose constiraint set in the standard 0-1 programming formulation

becomes
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Here M is a sufficiently large number to serve as an upper bound on any

E'.E' of the differences tj - ti. It is easy to see that if the 0-1 condition
EZ:: on each yij is relaxed to 0 ¢ yij <1, the constraints involving the
E variables yi‘j are ineffective in the sense that the continuous variables tj
: are only constrained by their lower bounds: for any values tJ. > Lj' JEN,
-:_ there exist associated values of Y45 satisfying 0 < Vi3 <1 and all the
g remaining inequalities. Yet the disjunctive constraints are now of the form
E yij <0 v yi,j > 1, with each yi,j constrained in addition by 0 < yij < 1.

Clearly, in this formulation our disjunctive program is facial and thus the

o

sequential convexification procedure is valid for it.
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1t should be noted, however, that although from this particular point of
view there is an advantage in representing the disjunctions by 0-1 variables,
b for other purposes a direct approach often yields results that cannot be
obtained, or are much harder to obtain, by the use of 0-1 variables (see Balas

[1985] for an illustration on the case of job shop scheduling).
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which the conditions are violated, and so the procedure breaks down.

reverse convex programs, and give necessary and sufficient conditions for the §4
solution sets of such problems to be sequentially convexifiable. We point out -g
important classes of problems in addition to facial disjunctive programs (for -
instance, reverse convex programs with equations only) for which the conditions :5
are always satisfied. Finally, we give examples of disjunctive programs for 5=
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