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Abstract

This paper is about a property of certain combinatorial structures, called

sequential convexifiability, shown by Balas [1974, 1979] to hold for facial

disjunctive programs. Sequential convexifiability means that the convex hull "

of a nonconvex set defined by a collection of constraints can be generated by

imposing the constraints one by one, sequentially, and generating each time

the convex hull of the resulting set. Here we- extend the class of problems

considered to disjunctive programs with infinitely many terms, also known as

reverse convex programs, and give necessary and sufficient conditions for the ,- ."

solution sets of such problems to be sequentially convexifiable. We point out

important classes of problems in addition to facial disjunctive programs (for

instance, reverse convex programs with equations only) for which the

conditions are always satisfied. Finally, we give examples of disjunctive

programs for which the conditions are violated, and so the procedure breaks

down.
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0. Introduction

A procedure has been proposed in Balas [1974, 1979] for the sequential

generation of the convex hull of feasible solutions to the system of constraints

of a disjunctive programming problem. The idea behind the procedure in

general terms is the repetition of a partial convex hull operation of the .

following kind.

Consider an optimization problem whose solution set is nonconvex. Its

constraints may include linear or nonlinear inequalities, integrality constraints,

logical conditions (implications, disjunctions, etc.) or whatever. Take a

subsystem of these constraints and form the convex hull of its solution set.

It is a partial convex hull relative to the convex hull of the set of solutions to .

the full system of constraints. Next, intersect this partial convex hull with

the solution set of a second subsystem consisting of constraints not included
.. '.-...

in the first subsystem. Finally, form the convex hull of the intersection. ..2 .

Under what conditions is the product of this partial convex hull operation

the convex hull of solutions to the augmented subsystem formed by appending .

the constraints of the second subsystem to those of the first? Once aware of

them, we can try to maintain these conditions through a number of repetitions V

of the operation, each enlarging the augmented subsystem by appending still

unincorporated constraints until the complete system is formed. If we

succeed, the result will be the convex hull of solutions to the complete system.

A procedure that generates the convex hull of a nonconvex set in this

sequential manner will be called a sequential convexification procedure. A set

whose convex hull can be generated in this manner will be called sequentially .

con vexifia ble.

Sequential convexifiability has both practical and theoretical implications.

Sequential convexification is often a more efficient procedure than the

1"%-%
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alternative of imposing all the constraints simultaneously and generating the

convex hull of the resulting set. Besides, the procedure involves a number of
"

%i iterations bounded by the number of constraints.

The question as to when precisely is a nonconvex set sequentially

s .. convexifiable was given a partial answer in the context of disjunctive

programming by Balas [1974, 1979], in the form of a sufficient condition for

the convex hull of a disjunctive set to be obtainable in the sequential manner

outlined in the preceding paragraph. It requires the disjunctive program to

be facial, a property (to be specified below) general enough to be shared by

all pure or mixed 0-1 programming problems, but not shared by general

integer programs. On the other hand, the question of a necessary condition

for the validity of the sequential convexification procedure has remained open

until this writing.

The present paper addresses this open question. However, in so doing it

also places the question of sequential convexification in a somewhat more

. . general context, in that, instead of disjunctive programs with finitely many

terms in each disjunction, it considers the class of reverse convex

programming problems, which can be viewed as disjunctive programs involving

disjunctions with infinitely many terms. To be specific, we consider problems

whose constraint set is of the form

gi(x) 0, i = 1, 2, ... , m

e where, for each i, g. is a convex function from Rn to R. In a disjunctive

'K programming problem with finitely many terms in each disjunction, each

g. is either linear or piecewise linear and convex. In the former
case it is called a conjunctive constraint. In the latter case it is called a

disjunctive constraint and is written as a disjunction, each term of which is a

linear constraint. This form of the constraint set is known as the conjunctive

-. 2.. '.. -



normal form. Thus the class of reverse convex programs considered here

corresponds to disjunctive programs stated in conjunctive normal form, whose

disjunctions may have infinitely many terms.

The sequential convexification procedure, as proposed in Balas [1974,

1979], applies to facial disjunctive programs, i.e. those in which every term of

every disjunction is a linear inequality that induces a face of the polyhedron -

defined by the conjunctive inequalities. It begins with the subsystem

consisting of all the conjunctive constraints of the problem. It continues by -.

appending one piecewise linear (or disjunctive) constraint to the growing

subsystem with each repetition of the partial convex hull operation. The

procedure to be considered here for the more general case of reverse convex .$.

programs retains this feature of introducing the constraints not included in 0 % %

the initial subsystem one by one. The main result of our paper is a

necessary and sufficient condition for the partial convex hull operation to .

work as desired when only one reverse convex constraint is introduced at a

time. The Constraint Boundary Condition, as we call it, is weaker than the .,,,,,

condition of faciality when applied to a disjunctive program with finitely many

terms. However, while faciality can be determined prior to the initiation of

the procedure, this may not be true of our condition: it may be necessary to ,. , ,

check each time the convex hull operation is repeated whether the Constraint

Boundary Condition holds. On the other hand, since it is a necessary as well

as sufficient condition for the partial convex hull operation to yield the

desired product, the Constraint Boundary Condition imposes the weakest I I
possible restriction on the constraints involved. The Constraint Boundary

Condition involves pairs of points satisfying the first subsystem of constraints

considered in a partial convex hull operation, during which the (partial)

convex hull of the system is formed. Often this convex hull is a polytope (see

'. -P-
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next paragraph), and in that case it is only necessary to consider pairs of

vertices of the polytope, which makes the Constraint Boundary Condition

finitely checkable.

The study of reverse convex programs goes back to Rosen (1966), who

investigated such problems in a control theoretic setting. For a general

discussion of important aspects of reverse convex programming, also called

* complementary convex programming, see Avriel (1976). Particularly relevant to

the present paper is the study of Hillestad and Jacobsen (1980). They have

shown that the convex hull of feasible solutions to a reverse convex

programming problem is a polytope subject to certain differentiability and

compactness assumptions. In this case, given a linear objective function,
knowledge of the convex hull enables one to solve the problem by linear

programming.

Our paper is organized as follows. In section 1 we state the Constraint

Boundary Condition and show that it is necessary and sufficient for the

success of the partial convex hull operation. We also state an alternative

sufficient condition for the finite case, which is usually easier to check. In

section 2 we give a formal statement of the sequential convexification

procedure and show how its success depends upon the Constraint Boundary

Condition being satisfied for every pair of sets in a certain sequence

generated by the procedure. In section 3 we discuss some important special

cases in which the Constraint Boundary Condition is always satisfied and

hence the sequential convexification procedure always works. Finally, in

section 4 we illustrate on a job shop scheduling problem the circumstances

under which the sequential convexification procedure may break down, and the "

way these circumstances may be avoided by a slightly different problem

formulation.

4
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1. A Basic Relation
J. ", " 

When will the partial convex hull operation yield the desired product? The

partial convex hull operation is binary inasmuch as it operates upon two sets.

On the one hand, there is the set of elements satisfying a subsystem of the -.--

constraints of an optimization problem. On the other hand, there is the set of

elements satisfying an additional constraint. The operation consists in

intersecting the convex hull of the former with the latter and forming the

convex hull of the intersection. The desired product is the convex hull of

elements satisfying the augmented system consisting of the first subsystem
." +# . ,'..

with the additional constraint appended to it. In this section that opening

question is appropriately qualified, recast in formal terms, and answered.

The partial convex hull operation was conceived in connection

with disjunctive programming problems. In that context the additional -'-

constraint is disjunctive. It has the form g(x) 0 where

g(x) = max(aix-b.) and the linear functions a.x - b. are finite in number.

The complement of the solution set, C = {x I g(x) < 0), if nonempty, is an

open convex polyhedron of full dimension. Thus the imposition of the

additional constraint can be viewed as the exclusion from the solution set of

the elements in C. The set resulting from the intersection of multiple

disjunctive constraints of this kind can be thought of as formed by

discarding a union of open convex sets.

In the present context, the class of constraints eligible to fill the role of

single additional constraint in the partial convex hull operation consists of l .4

reverse convex constraints. Each of these must be such that the set of

elements not satisfying it is open, convex, and of full dimension. If C

denotes this set, then it can be defined via a convex function

V .N $vow ..



g: R n 4 R as C = {x I g(x) < 0}. The solution set for the constraint is

represented as its complement, -C (x I g(x) 1 01. b.

The question of interest is now recast in formal terms as follows. Let P

represent the set of solutions to the subsystem of constraints. Let -C

~represent the set of elements satisfying the additional reverse convex

constraint. The partial convex hull operation intersects cony P and -C, which

yields (cony P)~C, and forms the convex hull of the result. So the product of

the partial convex hull operation is conv[(conv P)-C]. The set of solutions to

the augmented system, on the other hand, is just the intersection of P and

-C. So, in formal terms, for arbitrary P and for C open, convex and of full

A -. dimension the question of interest is to know when the following Basic

4 Relation is true:

(1.1) conv[(conv P)'C] conv(P-C).

Because (cony P)~C : P~C, it is always the case that conv[(conv P)~C]

- conv(P~C). The main result of our paper is that the reverse inclusion

holds if and only if the following condition, called the Constraint Boundary

Condition, is satisfied.

(1.2) If x v P (I C and y t P-C, then [x,y] (I bd C z conv(P~C).

-Here [x,y] denotes the line segment between x and y and bd C denotes

the boundary of C in the affine space spanned by C. Observe that since C

is full dimensional, [x,y] (I bd C 0.

Theorem 1.1. The sets P and C satisfy the Basic Relation (1.1) if and only

if they satisfy the Constraint Boundary Condition (1.2).U. The "if" part, which is the main content of Theorem 1.1, says that in

order to ascertain that all points of (convP)~C belong to conv(P-C), it is

6
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sufficient to check that all those points on the boundary of C that are the

convex combination of just two points of P, belong to conv(PC). The "only ,6 %

if"e part states the easily verifiable converse. % h,

The proof of Theorem 1.1 will make use of the following auxiliary result. -

Lena 1.2. Let x i , y. v I, i = 1, ... , h; j=1, ... , k; and let z...

[xiy.] be given for all pairs i, j. Then for all x conv{xl, .... Yh

and y: conv (y ... , the set [x,y] conv(z. I i 1 ... , h;

j l, ... ,k} is nonepty.

s.-,

Proof. By contradiction. If [x,y] () conv{zij I i=l,...,h; j=l,... ,k} = 4,

then there exists a hyperplane which strongly separates the line segment [x,y] .

from the polytope conv{zij I i=l h; j=l,. ..,k} (Cf. Rockafellar (1970),

Theorem 11.4). Hence the hyperplane defines an open halfspace H' which

contains [x,y] but does not contain any z. On the other hand, because

x r H+ and y r H+ we must have at least one x. and at least one y. in H
+ . But

1 J

for this x. and this y.i we must have [xiY.], and hence zi_, in H+ , which is

a contradiction. 0 
,-'.

Proof of Theorem 1.1. Assume that (1.1) holds. Let x z P A C and y E

P~C, and let w : [x,y] () bd C. Because x r P and y z P, w r conv P.

Moreover, as C is open, C () bd C * and w C. Thus w r (convP)~C

conv[(conv P)~C] z conv(P~C), where the equality holds by assumption.

Conversely, assume that (1.2) holds. As remarked above, it is sufficient

to show that conv[(conv P)~C] c conv(P-C). So, suppose that z is a point of ',.,...J.,

conv[(conv P)-C]. (If conv[(conv P)-C] *, then so, too, for the included

set, conv(P~C) :, and we need not continue.) Then, by Caratheodory's

Theorem, z can be expressed as a convex combination of finitely many points r

z (conv P)~C. In turn each such r can be expressed as a convex combination

of finitely many points of P. For each such r, because r / C and C is convex,

,.-G - ..
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the points of P in the convex combination for r must include at least

one point in P-C. On the other hand, each r which is

a convex combination solely of points in P-C must belong to

conv(P~C). In order to conclude that z v conv(P~C), we need only

show that those r which are not convex combinations of points solely

in P-C are also in conv(P~C). So assume that r can be expressed as a

convex combination of the points x1 f "... xh' yI, " where h, k > 1 and

x. z P (I C, each y. r P-C. For each pair x., y. define zi.j = [xi,y] A bd

C. Hence z.. r cl C (cl denotes the closure). By the Constraint Boundary
1J

Condition (1.2), z.. r conv(P-C). Furthermore, by collection of terms,1J'J

r can in this instance be expressed as a convex combination of just two

points x r conv{xl, ... xh) and y r conv{yl. ,yk} That is, r is on theh' ' . ... ..

closed line segment [x,y]. By Lemma 1.3 there exists w t [x,y] (' -"

conv{zij I i1l,...,h; j1l, .. ,k}. So [x,y] = [x,w) 0 [w,y], and

either r z [x,w) or r v [w,y]. Now w v cl C as z.. t cl C for all i, j.

Similarly, w r conv(P-C) as z.. r conv(P-C) for all i, j. Since x z C = int C1J

(int denotes interior) and w r cl C, we have [x,w) c C, while, as w and y

are in conv(P~C), so too is [w,y]. The fact that r C then implies r t [w,y]

and r t conv(P-C). So each r is in conv(P-C), and z, as a convex

combination of them, is there as well. Therefore, conv((conv P)-C1 c

conv(P~C). o

For the case of a disjunctive program with finitely many terms in each

disjunction, we give a sufficient condition for the Basic Relation to hold,

which is often easier to check than (1.2). Let - = I di "

> d io i t Q, be finitely many halfspaces of the space containing P.

" .'



Theormw 1.3. The Basic Relation

(1.]) conv((convP)-C) =conv(P-'C),

where -C =U 197-, is satisfied if the relation
itQ

(1.3) (convP) () ff7 = conv(PftRf-) ~-

is satisfied for every i t Q. HL

Proof. Suppose (1.3) holds for every i t Q. Then

conv((convP)-C) =conv((convP)fl( U IM)

= cony () ((convPMHIR)

=cony U conv(PA)H-)

iEQ

= conv(P(I( UH)
j'Q

conv(P-C).

Here the first and last equations were obtained by using -C UlT
iF'Q1

the second and next to last equations use the fact that () is distributive with

respect to U, the third equation follows from (1.3) (which is assumed to hold),

while the fourth equation uses the obvious relation conv(convS1) convT)

conv(S UT), true for arbitrary sets S, T.0

While (1.3) is sufficient for (1.1) to hold, it is not necessary. To

'2
see this, let P c R , P {l1,-~) and -'C = 1 U H 2 where H 1

1 2' 21

con(P-) cnvP =con((cnv)-C, ie.(1.1) holds. On the other

hand, P (* IT H (l1 conv(P(IRj), whereas cony P {x t IR l1)

(-ll)l-),0 < Vi l, and

(convP) IC X 2 x ( ~ ) - ~ ) 1 ~

X I+ X2 >3/2

= x I.R
2 I 1,l)X (-,)1X,3/4 X' 11.

9
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Clearly, conv(P(I ) c (convP) (I K, i.e. (1.3) does not hold.

Relation (1.3) is equivalent to a condition that has an appealing

geometric interpretation. We will say that HT (or Hi, where H. = bd H-)
1 1 1

satisfies the Window Condition with respect to P if the following is true:

(1.4) If x z P~HT and y c P () HT, then [x,y] F ). c conv(P(IHi).
11 1- 1-

Requirement (1.4) can be interpreted as having the set conv(PFlH i ) act as

a "window" through which every pair of points lying in P but on opposite

sides of H., can "see each other."

Theore 1.4. Equation (1.3) holds if and only if the Window Condition

(1.4) holds.

Proof. Applying Theorem 1.1 to P and C in the case when C = int HI~1

(=-IF), we find that (1.3) is in this case the same as (1.1), while the

Constraint Boundary Condition (1.2) becomes

(1.2') If x a P-H. and y - P ( KT, then ([x,y]FIH.) c conv(PFlHT).' 1 1 1 -1

The Window Condition (1.4) differs from (1.2') only in that it replaces

9T with H. on the righthand side of the last expression. Now if (1.4) holds*-- 1 1

then (1.2') clearly does, so all that remains to be shown is that (1.2')

implies (1.4). Let w := [x,y] () H.. Since w a H. Fl conv(PflHT) (from

(1.2')), w lies on the face of cony (PFlHT) contained in the hyperplane H.;
11

hence w a conv(PIH).I

Corollary 1.5. Let P be any set, and -C = U HI.. Then the Basic

Relation (1.1) holds if the Window Condition ('1.4) holds for every hyperplane

H., Po.

'5.~ Proof. Follows from Theorems 1.3 and 1.4.1

10
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2. The Procedure For Sequential Generation of the Convex Hull

In this section we give a formal description of the sequential

convexification procedure. This confirms that the procedure succeeds if upon

each repetition of the partial convex hull operation the two sets subjected to

the operation satisfy the Constraint Boundary Condition. In addition, we e

provide a sufficient condition for the success of the procedure in the more - .7

general version which adds constraints sequentially, but not one at a time. -'"'-'1

The procedure is designed for problems which include some reverse

convex constraints, each of which is such that the set of points satisfying the " "

constraint has a complement that is open, convex and of full dimension. If the

problem has other kinds of constraints as well, these other constraints can be

included in the initial subsystem.

The procedure consists in a number of iterations each of which uses the

partial convex hull operation to activate a single one of the constraints so far

left out. The constraint is made active by intersecting the set resulting from %

the preceding iteration with the set of points satisfying the constraint, and -

forming the convex hull of the intersection. The procedure continues until all ..

constraints have been made active. The desired result of the final iteration .

is the convex hull of the set of solutions to all the constraints of the problem. -

Our approach is best understood by viewing the activation of a constraint

at an iteration of the procedure as a narrowing of the feasible region by

excluding from consideration an open, convex, full-dimensional set. The set.

excluded is the complement of the set of points satisfying the constraint. The
AL 3

procedure could be viewed as consisting of the sequential exclusion of such

sets. From this perspective, the procedure can be described as follows.

11 .. 1
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Given an initial subsystem of the constraints, denote the set

of solutions to this subsystem F1. We assume F1 n P. Given that there
.. 's

are m remaining constraints, each satisfied by a set of points whose

complement is open, convex, and of full dimension, order the

' constraints and denote the corresponding open, convex complements CI , ..., C.

Set C U C.. The object of the procedure is the formation of the convex
j=l J

hull of the set F given by m

F = F -C = F U C
j=l

Alternatively, F can be described by successive exclusion of the sets C.:~J

F = ... ((F1-C1 )-C2 ) ... )~CM).

At the jth iteration the procedure forms the set F j 1 E IRn defined

recursively as Fj+ 1 = (cony F )Ci, j = 1, ..., m, and then takes its

convex hull. cony F j+1 will be compared below to the convex hull of the set

G j+l defined recursively as

G F1
G-- .'C j, j = 1, .... m.
Gj+l Gj M

Observe that G = F.
M+l

Theorm 2.1. Let F1  be an arbitrary set, and let C., j = 1 ... , a,

be open convex sets of full dimension, ordered into an arbitrary

% but fixed sequence. Then cony F. cony G. for j = 2, ... , m + 1 if and
J J

only if the Constraint Boundary Condition holds for each pair G., C.,

j , ... , a. If this is the case, then in particular cony F

cony F.

Proof. Assume that the Constraint Boundary Condition (CBC) holds for all

pairs G., C., j = 1, ..., m.. Apply the procedure to F1, F2 ,..., F. After

the first step we have:

J12



cony F2  = conv[(conv F)-Cl] (by definition of F2)

= conv[(conv GI)-CI] (since F1 = GI)

= conv(GlC 1 ) (since G1 , C1 satisfy the CBC)

= cony G (by definition of G2).

The proof continues by induction. By hypothesis, after step j - 1 we have

cony F. = cony G.. Therefore, after step j we have:

cony F = conv[(conv F )Cj]

- conv[(conv G.)C.] (by the induction hypothesis)

= conv(G"C. ) (since G., C. satisfy the CBC)

= cony G j+I .

After m steps, since G = F, we have: cony Fm+1 = cony F.
rn-l r~

Conversely, if the Constraint Boundary Condition fails for a pair G., C.,

then:

cony F : conv[(conv F.)-C.]j+lJ J

3 convf(conv G )-C.] (since F. G.)

conv(G -C (by Theorem 1.4)

- conv Gj+ I 0

Two comments are in order at this point, each of which reveals a certain

weakness of our procedure; weaknesses that are overcome in the important

special cases to be discussed in the next section.

First, note that for the sequential convexification procedure to be valid,

Theorem 2.1 requires (1.2) to hold for each pair G., C., where the set G.

is in the role of P and C. in that of C. The feature we wish to point out

here is that although cony G. = cony F., where F. is defined recursively as

cony (FI"C.j_ ), it is not sufficient for condition (1.2) to hold for each N

pair F., C.. In other words, while the sequential convexification procedure

is a recursive application of the partial convex hull operation to each pair

13
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Fi, Cj, the validity of the procedure hinges on a condition that at each step

of the procedure reaches back beyond F., to the set G.. This of course makes

the condition harder to check.

Second, note that the condition given in Theorem 2.1 for the validity of

of the sequential convexification procedure is tied to a certain ordering

of the constraints, hence of the pairs G., C.. The procedure may be valid ifJ J

the constraints are imposed in a particular order and invalid if a different

ordering is used. This makes a negative outcome often inconclusive: in order

to establish that the procedure is inapplicable to a certain problem, one might

have to explore exponentially many sequences.

Fortunately, both of these shortcomings disappear in certain special cases

which are rather important; they will be discussed in the next section.

Now we turn to the case of a disjunctive program with finitely many terms

in each disjunction, and give a sufficient condition for the validity of the

sequential convexification procedure.

Corollary 2.2. Let F and C. be as in Theorem 2. 1, with . = If..,J J i j

j 1, ... , z, where each 0 is finite and each It.. is a closed halfspace.ji

Then conv F. conv G. for j = 2, ... , m+ if for j=, ... , m each
J J S

hyperplane H.. (=bd f.) satisfies the Window Condition (1.4) with

respect to G..J
Proof. Analogous to the proof of sufficiency in Theorem 2.1, with

condition (1.2) replaced by (1.4). 3

In the Introduction we also outlined a more general version of the

procedure which involves the possibility of activating several constraints at

each iteration. An iteration of this version consists of intersecting the result

of the preceding iteration with the set of solutions satisfying several of the

as yet unactivated constraints. Then the convex hull of the intersection is

14
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formed. Next we show that if there is an ordering of the m constraints not

included in the initial subsystem such that each pair G., C. satisfies the

Constraint Boundary Condition, then a procedure which activates any number

of the still inactive constraints at each iteration will be successful. However,

if several constraints are activated at once, then they must be selected .

consecutively according to their original ordering.

Theorew 2.3. Let F1 be an arbitrary set, and let C., j 1, ... ' M, be

open convex sets of full dimension. If the Constraint Boundary Condition

holds for eachb pair G C j1 k..<km, then
k i We

canv[(conv F 1 ) U C.)] cony G

Proof. On j~ --the one hand, (cony F )(u C) Ff" U C) Therefore

cov[covF )(U C.) conv[F ( U C.) cony G tl
cov[cov =1 j=l k4

On the other hand, the opposite inclusion follows by induction. By Proposition

2.1 it holds for k = 1. Suppose it holds for k =i - 1, 2 < i < m, and '

set k = i. Then
k k- 1*""

conv[(conv F 1) u C.) conv[(conv F I)-( U C .)-Ck]
i-i j=lk-

c conv~conv[(conv F 1( U C.i)]-c k]- I
1 j-l k

= conv((conv G)-C k (by hypothesis)

kkk

=conv G k 0'1



3. Some Special Cases

In this section we discuss some of the results of the previous sections as

they apply to certain special cases.

First, there are situations in which the Constraint Boundary Condition

(1.2) holds trivially. One case of this kind occurs when P f( C = *. Another

one when P (I C z P. In the first case there is no x t P (1 C, in the second

one there is no y a P-C; so in both cases the condition (1.2) holds trivially

and thus from Theorem 1.1, the Basic Relation (1.1) also holds.

A very important case , with interesting subcases, is the one when P f C

S.but P c ci C. Consider for instance a nonlinear programming problem whose

only nonlinear constraints are equations involving convex functions, i.e. are of

the form g.(x) 0, i = 1, ..., m, with each gi a convex function such that

{x i g (x) < 0} *- We can then define F1  (i.e. the initial set P) as the

set of points satisfying the linear constraints plus the nonlinear

inequalities gi(x) < 0, i = 1, ..., m; and for i = 1, ..., m let C:
1 -

fx I gi(x) < 0}, i.e. ~C. = {x I g.(x) > 0}. On the one hand, this makes F1 1 .

convex, hence the procedure is relatively easy to start. On the other hand,

with the chosen definition of F and of the sets C.i, at any stage of the pro-

cedure if the current set G. is P and the next constraint C. to beJ J

activated is C, then y c P-C implies y & bd C and so for any x c P (I C, we

have [x,y] f) bd C = (y). The Constraint Boundary Condition (1.2) is thus

necessarily satisfied. In other words, for optimization problems whose only

nonlinear constraints are equations involving convex functions, the sequential

convexification procedure always works; and it does so irrespective of the

sequence in which the constraints are activated.

-p Another instance when P f C but P c cl C occurs in the case of facial

disjunctive programs, i.e. problems for which F1  (the initial set P) is a

16
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polyhedron given by a set of linear inequalities, and each disjunctive

constraint is of the form -C. U I., with 0. finite and H-. a closed
i i j JQ

halfspace such that H (I F is a face of FI. This situation is again easy

to recognize, since all one has to do is to check for each halfspace H1ji that

the inequality defining the opposite closed halfspace, Ht is among the
Ji

inequalities defining F1  As in the situation discussed earlier, the

sequential convexification procedure is then applicable without any need for

checking the Constraint Boundary Condition and the constraints may be

imposed in any order whatsoever.

As already mentioned, facial disjunctive programs include all pure or

mixed integer 0-1 programs. The fact that their convex hulls can be

generated sequentially in n steps, where n is the number of disjunctions,

makes it possible to develop cutting plane procedures whose finiteness proof

uses this property (see Jeroslow [1980] for one such procedure).

For general reverse convex programs, cony G. is often a polytope (this

is subject, as already mentioned, to certain differentiability and compact-

pactness assumptions; see Hillestad and Jacobsen [1980] for details). In

this case cony G. is generated by a finite number of so-called quasivertices,

and the checking of the Constraint Boundary Condition can be restricted to

pairs x, y of such quasivertices. %

4. A Job Shop Scheduling Example.

Consider the problem of scheduling the processing on n jobs on one --.

machine. If L. denotes the earliest time job j can be started, d. . the

minimum time lapse between the starting of job i and that of job j (in that

order) on the machine, and (the variable) t. denotes the actual starting time

17
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of job j, then for whatever objective function, the constraints of the problem

are

t. > L., j a N
(4.1)

t.- t. d d. v t. t. > d. ,i Ni j r

j 1 1 1 J N, J.

where N (1, ... , n). This is a disjunctive set, and it is easy to see that it is

not facial. Indeed, faciality would require that the conditions

t.- t. < d..
3 I 13

- t + t. < d.. i, j a N, i j

be added to the constraints of (4.1), which would obviously change the

problem, actually make it infeasible in most cases. So whether the sequential

convexification procedure works for this class of problems is an open

question. We will show by way of a small example that it does not work in

general.

Example. Let n = 3, L. = 0, j = 1, 2, 3, and

S2 4

(d..) = (3 * 6 j
22 *

Then F.= R3 (the positive orthant of P 3), and each disjunctive con-
1

straint set is of the form -Ci_, where

IC. {t a *3 I d.. < t. - t. < d ), i, j 1, 2, 3; i j}.

If we impose the constraints in the order -C12 , -C23, C the procedure

generates the set I:
2t 1 + 3t 2  >_ 6 l

. 3t 2 + t3 _ 6

3
. conv F4  t t A 2t + t > 4 I

S4t 1 + 9t 2 + 2t 3 26

t+18t 2 + 5t3  38

18
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The sets F2 and F3 consist of those t a 13 satisfying the first con-

straint, and the first two constraints, respectively, of F4* So the last

step adds three constraints.
3

Now F is not the convex hull of F := FI(_ C. .). The latter has,
4i =l Ij

besides the three facets defined by the nonnegativity constraints and the

three facets defined by inequalities with positive coefficients for two of the

three variables, another four facets defined by inequalities with positive

coefficients for all three variables (see Balas [1984] for an explanation of why

this is so), and is in fact

2t 1 + 3t2  > 6

3t + t > 6 . A

2t + t > 4 %
13%

conv3F tz+ 9t1 + lt2 + 5t3 _ 62

3t1 + t 2 + t3 > 10

14t + 21t 2 + lOt 112

2t + 33t 2 + lOt3 > 76

So the sequential convexification procedure does not work in this case;

namely, it breaks down at the third iteration, when we take the convex hull of .,

(cony F3 )~C13. Indeed

3 + t - t2 > 6 v t - t3 >2= 3 2-

C13 t { i - 2 < t3 - t1 < 4 s

Consider the points x (0,2,0) and y = (5,2,0). Both are in G but

x z C13, while y 9 C Now [x, y] (I bd C13 = (2,2,0), and it is easy
13' ~ 13*1

to check that (2,2,0) 9 conv(GifCl3 ) cony F, as (2,2,0) violates each

of the last four inequalities of cony F.
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Our example illustrates the fact that for a nonfacial disjunctive program

the sequential convexification procedure may not work. On the other hand,

any bounded disjunctive program can be restated as a (pure or mixed integer)

0-1 program, by introducing one 0-1 variable for every term of every

disjunction. By becoming a 0-1 program, the disjunctive program acquires the

property of faciality, and lends itself -- in its new form -- to the sequential

convexification procedure. This is a rather intriguing fact, in view of the

circumstance that the inequalities containing the 0-1 variables in many

instances have no constraining power in the linear programming relaxation of

the problem. A case in point is the above discussed job shop scheduling

problem, whose coiiitraint set in the standard 0-1 programming formulation

becomes

t . L., j N
3 - 3 .

t. - t. + My.. > d.
t. + t My - > di - M

Y {0, iU, i, N, i j.

Here M is a sufficiently large number to serve as an upper bound on any

of the differences t. - t.. It is easy to see that if the 0-1 condition
j 1

k. on each yi is relaxed to 0 < y. < 1, the constraints involving the

variables yij are ineffective in the sense that the continuous variables t.

are only constrained by their lower bounds: for any values t. > L., j N,

there exist associated values of yij satisfying 0 < y. < 1 and all the

remaining inequalities. Yet the disjunctive constraints are now of the form

ON - 0 v yij - 1, with each yij constrained in addition by 0 < yij < 1.

Clearly, in this formulation our disjunctive program is facial and thus the

sequential convexification procedure is valid for it.

20
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It should be noted, however, that although from this particular point of

view there is an advantage in representing the disjunctions by 0-1 variables,

for other purposes a direct approach often yields results that cannot be

obtained, or are much harder to obtain, by the use of 0-1 variables (see Balas

[19851 for an illustration on the case of job shop scheduling).
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reverse convex programs, and give necessary and sufficient conditions for the
solution sets of such problems to be sequentially convexifiable. We point out

.p. important classes of problems in addition to facial disjunctive programs (for
instance, reverse convex programs with equations only) for which the conditions
ire always satisfied. Finally, we give examples of disjunctive programs for V
Thich the conditions are violated, and so the procedure breaks down.
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