
7 9 1 4 9 M O D E L IN G PW IN E S W I S Y S T E M S R I L * T O S T U C T I i n

HOELIM(U) CALIFOANXN MNY LOS RNSELES MISTERM
NSEN SCIENCE INST A H GEOFFION FED 6?

CLASSIFID RS-P-33 NW e14- fl-C-0S5?F/9 2

EsmhhhImmEl.' mmmll

11111 1.0j.

1361

112 Jl=M4 1.
. I

4- I

,RkOPY RESOLUTION TEST CHART

'p .

AD III II

; Z, Z

%ll

IITIC FILE COPY
Working Paper No. 339

MODELING APPROACHES AND SYSTEMS
RELATED T0 STRU'CTUIRED MODELING

by

A~RTR M. GEOFFRION

Contract N00014-7 5-0-0570

Februarv 1987

fThis d oc n ,j h s b e~-
for p blic release or 40 P, ~

WESTERN MANA(4MINT SC iIENC E INSTIT E
U niversity of California, Lo~s Angeles

% %
%"

WESTERN MANAGEMENT SCIENCE INSTITUTE
University of California, Los Angeles

Working Paper No. 339

Drafted July, 1986
Revised February, 1987

MODELING APPROACHES AND SYSTEMS RELATED TO STRUCTURED MODELING

by

Arthur M. Geoffrion

e %

This companion to the author's paper "An Introduction to
Structured Modeling" discusses modeling approaches by other
authors and some of the modeling systems available as alterna-
tives for at least some of the functions to which a structured
modeling system aspires. It is an expansion of the brief dis-
cussion of this topic in the mentioned paper, with which the
reader is assumed to be familiar.

Partially supported by the National Science Foundation, the
Office of Naval Research, and the Navy Personnel R&D Center.
The views contained in this report are those of the author and
not of the sponsoring agencies.

?Lia docum .nt has been opp:ovod

ir p-blir releccre and Scak itsdistribuon is unlimited.

. -. v -..

MODELING APPROACHES AND SYSTEMS RELATED TO STRUCTURED MODELING

Many modeling approaches and systems (or classes of sys-
tems) share at least some of the aspirations of structured
modeling. This paper discusses many of the most pertinent of
these in the context of the eight desirable modeling system
features proposed in Section 1.2 of Geoffrion <1986a>. Those
features are repeated here for the reader's convenience.

(a) a rigorous and coherent conceptual framework for
modeling based on a single model representation
format suitable for managerial communication,
mathematical use, and direct computer execution

(b) independence of model representation and model
solution, with model interface standards to facil-
itate building a library of models and of easily
accessed solvers for retrieval, systems of simul-
taneous equations, optimization, and other
important manipulations

(c) sufficient generality to encompass most of the
great modeling paradigms that MS/OR and kindred
model-based fields have developed for organizing
the complexity of reality (activity analysis,
decision trees, flow networks, graphs, markov
chains, queueing systems, and so on)

(d) usefulness for most phases of the entire life-cycle
associated with model-based work

(e) representational independence of general model
structure and the detailed data needed to describe
specific model instances

(f) desktop implementation with a modern user interface
(e.g., visually interactive, directly manipulative,
syntactically humane, and with liberal use of gra-
phics and tables)

(g) integrated facilities for data management and ad
hoc query in the tradition of database systems

(h) immediate expression evaluation in the tradition of
desktop spreadsheet software.

• %

V..4'. We - %

- i - '%. , ,',e % %"?'.'" " '"2 '.,. ' j : '"....',,.'''':.: J. .;7 ,'," "-,..'.,.',_. ' ,' • ' '-. ';; .- ,'5 -1- V'''..,.'"v '.,,
" " " " "#'." " " I' " " "

TM ° "
.. ."" %

% " "
'%

%
%

-%"%" -" •" " • -%-%" %"- " -° •

The categories of discussion are:

1. Relational database systems

2. GAMS

3. PLATOFORM

4. Other modern mathematical programming systems

5. IFPS and OPTIMUM

6. ANALYTICOL

7. Conceptual graphs

8. Discrete event simulation

9. Graph grammar-based systems

10. Special purpose systems.

Three general conclusions can be drawn from the discussion
that follows and from the evolution of structured modeling over
the last several years. First, structured modeling has received
significant inspiration and reinforcement from some of these
approaches and systems. Second, there remain many attractive '-

opportunities for structured modeling to cross-fertilize with
other approaches. Third, none of the other approaches or sys-
tems reviewed comes close to achieving all eight of the fea-
tures. This is not meant as a criticism, as many of the systems '3

are superb for their intended uses, but rather as a way of dis-
tinguishing the niche that structured modeling attempts to fill.

Software packages are referenced either by an authored
publication in the usual way or by listing their name in
italics, in which case their vendor is noted in a separate %
reference section appearing at the end of this paper.

1. Relational Database Systems

Consideration is limited here to relational database man-
agement systems available for desktop computers. There is an
ample supply of such systems; a recent survey (Krasnoff and
Dickinson <1986>) lists 56 such. Highly rated products include %

DataEase, dBASE III Plus, Paradox, R:base 5000, and Revelation.

Feature (a). Ideally, each of these systems offers a coher-
ent conceptual modeling framework, namely the relational data
model (e.g., Tsichritzis and Lochovsky <1982>). Most systems
actually offer one or another variant of the standard relational

-2-

.-.,,-...... .-.. - . 5. *.-, .I ' " ~ % % % " " " " , " " " • " " ' ' ' ' , , " : .' '; ' : ?:' " ' ¢ ?¢.

model. Often the exact variant offered is not stated explicitly
and must be inferred from the documentation or the program it-
self.

Feature (b). Only one solver is involved, namely the query
processor, and so there is no provision for a "library" of
solvers or for interface standards through which other solvers
can be invoked.

Feature (c). The basic data model of these systems is not
general enough to encompass the great modeling paradigms of
MS/OR. Omission to provide for mathematical functions is one of
the fatal limitations.

Feature (d). These systems do a fairly good job of life-
cycle support relative to typical database applications.
However, the life-cycle of analytical modeling applications
tends to be more complex.

Feature (e). The general model structure is usually evident
in the structure of the tables that hold the data. So evident,
in fact, that some desktop systems neglect to declare it sepa-
rately and thus violate the spirit of this feature -- in con- l1

trast to mainframe database systems, nearly all of which exhibit
this feature to a high degree.

Feature (f). The user interfaces of these desktop packages
are often excellent.

Feature (g). The database capabilities of these packages
are, of course, their main strength, but they are not integrated
with any significant facilities useful for analytical modeling.
However, at least one package -- KnowledgeMan -- does integrate
relational database capabilities with spreadsheet facilities
useful for some kinds of analytical modeling.

Feature (h). Those packages which allow "calculated" or .,
"virtual" fields have a kind of immediate expression evaluation
capability.

Database systems have reached a high degree of sophisti-
cation. However, their modeling scope is not designed to serve
the needs of the analytical modeler. Cross-breeding these
systems with analytical modeling systems could well result in a
qualitative improvement in their usefulness. Recent efforts in
the extensible database systems area may well make this practi-
cal (e.g., Batory and Mannino <1986>).

|- - -

2. GAMS

GAMS -- for General Algebraic Modeling System -- has been
in use at the World Bank for a number of years for optimization-
based economic development studies 'Bisschop and Meeraus <1982>,
Kendrick and Meeraus <1985>).

Feature (a). GAMS adopts the mathematical programming para-
digm as its conceptual framework. It uses conventional mathema-
tics (mainly sets and algebra) as the basis of its model repre-
sentation. This representation is computer-executable and fine
also for mathematical use, but of course is of limited value for
managerial communication.

Feature (b). GAMS succeeds admirably in making model repre-
sentation and model solution independent of one another, and has
a well interfaced library of solvers for nonlinear as well as
linear programming. Construction of the optimizer input file
(matrix generation) is entirely automatic and transparent to the
user.

Feature (c). GAMS is not intended to support anything other
than the mathematical programming paradigm.

Feature (d). GAMS is primarily intended to support just the
optimization phase of the modeling life-cycle.

Feature (e). GAMS discourages the separation of general
model structure from detailed data; usually the two are inter-
twined.

Feature (f). GAMS has been rewritten recently in PASCAL for
personal computers. The command-driven user interface is not
modern.

Feature (g). The PC version of GAMS has limited database
capabilities, although it does store its data in a relational
database.

Feature (h). GAMS does not provide for immediate expression
evaluation.

GAMS is an excellent productivity tool for mathematically
oriented users who need to solve mathematical programming
problems.

Comparisons of GAMS and structured modeling are available
in Geoffrion <1986b> and Kendrick and Krishnan <1986>.

°°.'

-4-

V -% --

3. PLATOFORM

PLATOFORM -- PLanning TOol written in DATAFORM -- is a
remarkable long term success story from Exxon Corporation that
has only recently been revealed (Palmer <1984>). Its purpose is
to support the formulation, solution, analysis, and maintenance
of mathematical programming models using an approach that
differs radically from standard matrix generation technology.
This it apparently does extremely well. To quote from Palmer
<1984> (page 20): "... PLATOFORM creates an environment, rather
than delivering an application package ... This broad set of
capabilities has improved analyst/user productivity tenfold ...
In about a month, an entirely new application can be developed
that otherwise would have taken over a year ... [there is a]
tenfold reduction in elapsed time required to develop a model or
to obtain a valid case study." It is used today for essentially
all Exxon LP models worldwide.

Feature (a). PLATOFORM adopts the mathematical programming
paradigm and also a table-oriented data model for database
design. The representation is not well suited to mathematical
use and probably not intended for managerial communication.

Feature (b). One could wish for a greater degree of indep-
endence between the model and the solver. In structured modeling
terms, nearly everything that corresponds to entity or attribute
genera is set down cleanly in tables, but much of what corres-
ponds to function and test genera is embedded in the generalized
data-driven matrix generator and the control tables used to in-
voke it. A very elaborate optimization system is coupled with
the modeling facilities. In addition to large scale linear pro-
gramming, it also has facilities for integer, nonlinear, and
sequential linear optimization.

Feature (c). PLATOFORM is wedded to the two modeling
paradigms mentioned under feature (a).

Feature (d). PLATOFORM provides extensive facilities for
data management (which, incidentally, GAMS does not), matrix
generation, optimization, and report-writing. It does not
provide much support for solution analysis.

Feature (e). PLATOFORM achieves a high degree of indepen-
dence between general model structure and detailed data.

Feature (f). PLATOFORM was strictly a mainframe system at
the time Palmer <1984> was written. However, PLATOFORM takes
great care to relieve the user of having to know JCL, PCL, or
any other procedural programming language.

Feature (g). Although PLATOFORM has extensive data manage-
ment facilities, it does not have facilities for general ad hoc
queries.

-5-

• - - .. " . . * . ." . I . " " . . °. . '....'. •' ,
•

•
. - . '

'.- , ". . '-" . '-V .

Feature (h). PLATOFORM does not support immediate express-
ion evaluation.

There is much to admire about PLATOFORM. However, its
historical evolution from early if venerable LP modeling soft-
ware leaves it with some serious liabilities as an inspiration
for future modeling system designs.

4. Other Modern Mathematical Programming Systems

GAMS and PLATOFORM are not the only mathematical programm-
ing systems to appear in recent years that lighten greatly the
burden on the user by comparison with the standard commercial
offerings.

Nearly all such systems adopt the mathematical programming
paradigm as their conceptual framework and thus are not very
compatible with the other great modeling paradigms. Most are
oriented mainly toward quantitatively skilled people who can use
a computer but cannot (or do not wish to) program it. They all
offer independence of model representation and model solution,
but differ widely in the degree of independence between general
model structure and detailed data. Usually they offer just one
solver, for which the traditionally onerous matrix generation
step is handled entirely by the system, and have no provision ..
for an entire library of solvers. Typically they focus primarily
on the optimization phase of the modeling life-cycle. Some are
available for desktop machines, and those which are not probably
could be adapted to the desktop environment. Only a few have
integrated database query capabilities or facilities for immed-
iate expression evaluation.

Like GAMS and PLATOFORM, these systems boost productivity
for mathematical programming applications and incorporate some
advances worthy of imitation by future modeling systems. .:
However, I believe that they lack the scope and integrated
capabilities necessary to revolutionize modeling on a broad
scale.

Some of these systems are now discussed briefly. Others are
AMPL by Fourer, Gay and Kernighan <1987>, EMP (Expert System for
Mathematical Programming) by Schittkowski <1985>, GXMP (General-
ized Experimental Mathematical Programming System) by Dolk
<1986>, LPMODEL by Katz, Risman and Rodeh <1980>, MIMI/LP (Mana-
ger for Interactive Modeling Interfaces/Linear Programming), and
PAM (Practitioner's Approach to Modeling). See Fourer<1983> for
a particularly informative discussion of modeling languages for
mathematical programming, and Waren, Hung and Lasdon <1986> and
Maturana <1987> for surveys of several modern systems.

A

-6-

N NN-
%0

CAMPS (Lucas and Mitra <1985>) -- Computer Assisted Mathe- %l
matical Programming System -- is a descendent of UIMPS (Ellison
and Mitra <1982>). Its main distinction is that it is almost
entirely menu-driven. Presently it runs only on a mainframe. To
enhance its capabilities for solution analysis, some work has
been done to integrate CAMPS with ANALYZE (Greenberg <1983>).

LINDO -- Linear, Interactive aNd Discrete Optimizer -- is
widely used, particularly in academe. It features interactive
problem input using fully explicit conventional but indexless
mathematical notation. This is handy for small problems, but it
violates the principle of separating general model structure and
data and is onerous for large problems (for which the user is
advised to code a custom matrix generator). LINDO runs on most
desktop machines and minicomputers. -

What's Best! marries LINDO with the best selling spread-
sheet program, 1-2-3, which is used for all model-building and
solution reporting chores. The marriage is one of truly remark-
able simplicity; LINDO is all but invisible to the user. Adopt-
ing 1-2-3 as the modeling environment confers many advantages,
including (obviously) understandability by many managers and
immediate expression evaluation, but carries with it a big
liability: lack of independence between general model structure
and detailed data.

MLD (Burger <1981>, Burger <1982>) -- Modeling Language and
Database -- adopts a broader perspective and is closer in spirit
to structured modeling than most of the other entries in this
category. For example, it consciously exploits the close rela-
tionship between modeling and data base design and programming
language design; it champions the separation of models and sol-
vers, and also the independence of general model structure and .1]
detailed data; it appreciates the virtues of modularity; and it
seeks to achieve an interactive system with relational database
query facilities integrated with optimization capability. Like .
GAMS, MLD specifies model structure algebraically.

5. IFPS and OPTIMUM

IFPS is the best selling mainframe financial planning lan-
guage. OPTIMUM is a version of IFPS that incorporates linear, 7:
nonlinear and integer programming capability (Roy, Lasdon and
Lordeman <1986>).

Feature (a). The underlying conceptual framework is similar
to that of spreadsheet software like 1-2-3 in that it is based
on one- or two-dimensional arrays of text entries, numbers, or
algebraic formulas. However, it has a stronger bias toward 4
arrays of identical horizontal dimension -- each horizontal unit
typicaliy corresponds to a time period -- and it has built-in
facilities for Monte Carlo simulation. Also, its representation j

-7-,.

.° .- .o . o * ". -

is more like a declarative programming language and is less
visually oriented or directly manipulative in character. Only
one model representation is used. It is well suited to manag-
erial communication and direct computer execution, but less so
to mathematical use (e.g., there is no explicit indexing).

Feature (b). Model representation and solution are reason-
ably independent, but there is no support at present for the
concept of an open solver library.

Feature (c). IFPS was designed for just one model paradigm,
namely the standard spreadsheet view of financial planning. It
turns out that this paradigm is flexible enough to accommodate
numerous other paradigms (e.g., Bodily <1986>, Plane <1986>), .

although this does not always lead to natural representations.

Feature (d). The IFPS family of products endeavors to
support most of the modeling life-cycle.

Feature (e). IFPS normally interweaves general model
structure with detailed data. However, "datafile" options do
support separation.

Feature (f). Desktop versions of IFPS are available as
IFPS/Personal and MindSight, but optimization capability is only
available on the mainframe. The user interface for invoking
optimization is extremely easy to use, including completely
transparent matrix generation.

Feature (g). IFPS has modest data management capabilities
and essentially no ad hoc query capability.

Feature (h). IFPS has reasonably immediate (but not auto-
matic) facilities for expression evaluation.

IFPS and OPTIMUM provide a productive modeling environment
for applications that fit into the spreadsheet paradigm.

6. ANALYTICOL

ANALYTICOL is a UNIX-based environment for analytical
computing in use at AT&T Bell Laboratories (Childs and Meacham
<1985>; see also Childs and Vokolos <1986>). Comprising a
collection of loosely integrated tools for data extraction,large file manipulation, algebraic modeling, data management,-

application development, and other functions, it is credited
with increasing the productivity of business analysts and
application developers by a factor of five or more.

Feature (a). The philosophy of ANALYTICOL is not to impose
any particular conceptual framework on users, but rather to
support whatever users want to do as well as possible. Of
course, some of the tools within ANALYTICOL must be based on

-8-

6

. .°..-,"

v,', '. '.i~ ' \\ L.' '> ' l '.~vv. ,' " .'., .-. .-.. ; -" - v ," '."- "

conceptual frameworks for data modeling or analytical modeling.
The most interesting of these is the graphical framework of
HEQS, which stands for Hierarchical Equation Solver (Derman and
Sheppard <1985>). It is based on a directed graph whose nodes
are model variables and whose arcs represent computational
dependencies among the variables. This is quite similar to
structured modeling's element graph.

Feature (b). ANALYTICOL pays no particular attention to the
separation of models and solvers.

Feature (c). ANALYTICOL aims to be a capable host for a
great many modeling paradigms, although its tools may support o-
some of them better than others.

Feature (d). ANALYTICOL supports all five of the generic
activities that its designers believe are associated with ana-
lytical studies. These are data acquisition, data refinement and
structuring, data analysis and model building, report and graph
generation, and specialized tool building.

Feature (e). ANALYTICOL pays no particular attention to
the separation of general model structure and detailed data,
although it provides some tools for the user who is concerned
about this.

Feature (f). ANALYTICOL targets minicomputers and main-
frames but does run on suitable UNIX workstations for small
applications.

Feature (g). ANALYTICOL provides loosely integrated data-
base capabilities.

Feature (h). ANALYTICOL does not support immediate expres-
sion evaluation.

This an impressive system. It represents a polar alterna-
tive to the direction taken by structured modeling: instead of
providing a unifying conceptual framework and a comprehensive
arsenal of supporting tools that are tightly integrated with b

that framework, ANALYTICOL provides a collection of loosely
integrated tools that are of general utility for any conceptual
framework.

7. Conceptual Graphs

The most fundamental problem in modeling may well be how to
represent knowledge. The MS/OR community generally has taken the
attitude that the available spectrum of conventional mathemati-
cal notation suffices for this purpose. The artificial intelli-
gence community, on the other hand, has been much more concerned
with devising new knowledge representation schemes. Various
approaches to knowledge representation can be distinguished; one

-9-

, -% %

standard reference (Barr and Feigenbaum <1981>) lists logic,
procedural representations, semantic networks, production
systems, analogical representations, semantic primitives, and
frames and scripts. One of the most popular of these is semantic
networks, which has essentially merged with frames and scripts
in recent years (Brachman and Levesque <1985>). This is the
viewpoint from which Sowa <1984> has recently brought to cul-
mination his long term effort to unify the foundations of
artificial intelligence in terms of "conceptual graphs".

Sowa's theory of conceptual, graphs bears a striking simi-
larity to structured modeling that is sketched in Appendix 1.
The following general comments are pertinent to both that
discussion and the present one.

- Sowa's roots are in the cognitive sciences, especially
linguistics, philosophy, and psychology, rather than in
the decision sciences.

- Sowa's conceptual graphs are broader in scope than most
prior "semantic network" representations used in AI (see
Brachman <1979> for a detailed survey). For example, he
shows that they offer "a complete notation for first-order
logic with direct extensions to modal and higher-order
logic" (p. 23), and he explains connections to several
other knowledge representation approaches.

- Sowa explains how to map conceptual graphs to and from
natural language.

- Conceptual graphs stress semantics rather than syntax.
Each graph represents a single declarative proposition,
which can be highly complex. A linear notation suitable
for typing is available as an alternative to the
diagrammatic one.

Conceptual graphs are closely related to genus and element
graphs in structured modeling. They have two kinds of nodes: T'
(a) concept nodes, which usually represent entities, events, and
states, and (b) conceptual relation nodes, which represent the
roles that concept nodes play in relation to one another. Con-
ceptual graphs are finite, connected, directed, bipartite (every
arc links a concept node with a conceptual :elation node), and
typed in that each node is labeled according to the type of the
concept or conceptual relation to which it belongs. All concep-
tual relation nodes have out-degree one. Nearly all conceptual
relation nodes have in-degree one; if the in-degree is greater
than one, then the incoming arcs bear sequence numbers to dis-
tinguish them.

Consider now the eight desirable features listed at the
outset. Keep in mind that Sowa's work is theoretical in char-
acter; his book does not treat implementation issues to any-6

-10-

significant extent. Thus it may not be totally fair to comment
on Sowa's work in terms that presume at least a functional
description of a modeling system.

Feature (a). Sowa's development offers a reasonably rig-
orous and coherent framework for modeling with a single focal
representation. He demonstrates that this representation is
suitable for mathematical use, at least for applications of
first-order logic. He also indicates how this representation can
be mapped to and from natural language, an exciting possibility
that certainly carries with it the opportunity of good manager-
ial communication (although, strictly speaking, this communica-
tion involves a change of model representation). He does not
claim direct computer executability of conceptual graphs, but
does cite some partial implementations by others (pp. 324-5). In
addition, seven implementation projects are cited in Sowa and
Way <1986>.

Feature (b). Sowa's development makes a clear distinction
between model representation and model solution.

Feature (c). Conceptual graphs were not designed for ana-
lytical modeling, but rather for modeling natural language in
the context of artificial intelligence. Any MS/OR model can be
expressed in natural language, and hence probably also as a
conceptual graph, but it does not necessarily follow that con-
ceptual graphs encompass the great modeling paradigms of MS/OR
in a useful way. One serious limitation, for example, is the
lack of any direct way to model mathematical functions.

Feature (d). Again, one would have to say that Sowa's de-
velopment was not intended to support work based on analytical
modeling or databases.

Feature (e). Unfortunately, although Sowa makes a strong
distinction between general structure and detailed data, con-
ceptual graphs merge the two. Sowa implicitly acknowledges
(Sec. 6.4) that this leads to inefficiency in database applica-
tions, but points out that this is done commonly in knowledge
representations of artificial intelligence because AI typically
has a low ratio of data items to data descriptors. Database
applications, of course, have a very high ratio, and analytical
modeling falls somewhere in between.

Feature (f). No mention is made of any desktop implementa-
tions among those cited in Sowa and Way <1986>.

Feature (g). Conceptual graphs provide a theoretical foun-
dation for ad hoc query in an even broader sense than is
customary in the database field.

-11- '

I] I B - m , • % . , I * . I" . i -•I, , *. l *.4 I % .* % *j* •, " . . . %. .I . % -. -. I ,

e5 W..~? .* ~ **~ . ~*

Feature (h). Sowa showed how "actors" capable of calcula-
tion can be attached to conceptual graphs. It therefore seems
possible that an implementation could be designed to support
expression evaluation in a reasonably immediate way.

We remind the reader that Appendix 1 contains a fairly
detailed discussion of the relationship between conceptual
graphs and structured modeling.

8. Discrete Event Simulation

The technology of discrete event simulation developed his-
torically quite independently of the technology of analytical
modeling. This is partly a reflection of the differing aims of
the two fields, and partly a consequence of the relative absence
of mathematics in the heritage of simulation. The main concern
of discrete event simulation is mimicking the time-dependent
behavior of some target system.

Structured modeling, by contrast, is mainly concerned with
representing the pertinent essence of the system itself, and
prefers to regard generating the time-dependent behavior as a
non-modeling task best left to a solver. (However, it is some-
times possible to design a structured model so that the evalua-
tion operation yields the desired time-dependent behavior.) For
this reason, and also because discrete event simulation does not
pretend to cope with any of the other great modeling paradigms,
it may seem justified to dismiss it from further consideration
as an alternative to structured modeling. Nevertheless, a number
of developments in simulation are of interest from the struc-
tured modeling viewpoint.

One particularly interesting development is the emergence,
especially during the last decade, of a heightened awareness
within the simulation community that model specification should
be a distinct task quite separate from model implementation
(simulation programming); see, for example, Nance <1984> and
Oren, Zeigler and Elzas <1984>. This is in keeping with the
structured modeling principles of having a rigorous theoretical
modeling framework (feature a) and of separating model represen-
tation and model solution (feature b). Modeling frameworks for
discrete event simulation have been constructed from general
systems theory (Zeigler <1976> and Oren, Zeigler and Elzas
<1984>) and from classical mathematics in the form of the
entity-attribute-set (EAS) formalism of Markowitz and others
(e.g., Markowitz <1979>), to name two of the more prominent
approaches. Such frameworks provide the basis for model speci-
fication languages, which can be non-executable like CS (Over-
street and Nance <1985>) or executable like SIMSCRIPT (Markowitz
<1979>). Unfortunately, it is still common practice to do simu-
lation using FORTRAN or another general-purpose high level lan-
guage in an ad hoc manner that confounds model with solver
(Nance <1984>).

-12-
a0

' .. .'." ."V ."." "". " 't '..' ', .'. . . . , .'.. . .. ''.,.'" " '"". '' "". ' '"'? " . "" "".

. "." " ". ' ". % ". "-". % ". ""% -- .% % %-%-'.%-- ".%. .'. -- " - .- . .--.. *L% % N. .

Another interesting development is the recognition in some 4
quarters that model development and model management environ-
ments are needed that cater to as much of the simulation model-
ing life-cycle as possible (e.g., Nance <1981>). This is in
keeping with structured modeling's life-cycle orientation
(feature d). Nance <1981> proposes the so-called Conical
Methodology as an approach to supporting many of the life-cycle
phases. (That paper also advocates many other tenets held by
structured modeling, including the need for a genuine modeling
framework, the importance of complete documentation, the desir-
ability of top-down design, and the need for an interactive
implementation.)

One recent trend in model development systems is the rapid
proliferation of implementations based on computer graphics.
Examples include DRAFT (Mathewson <1985>), GSS (Zamanzadeh
<1986>), the current version of SIMAN (Pegden <1985>), TESS
(Standridge <1985>), and a rapidly growing family of animated
simulation systems for what is often known as visual interactive
modeling (Bell <1985>, Hurrion <1986>). This trend is interest-
ing from a structured modeling viewpoint for at least two rea-
sons. First, the model representations used in these systems
tend to be declarative rather than procedural in character, and
are graph-based rather than string-based. Thus they are closer
to the structured modeling style of model representation than >

other kinds of simulation systems are. Second, most graphics-
based systems are intended to reach a broader base of potential
simulation users by achieving simpler user interfaces, and by
exploiting the rapid and continuing improvement in graphics
hardware performance/cost ratios. Structured modeling has
similar aspirations. It is likely that there is much to learn
from the evolution of simulation modeling systems based on com-
puter graphics as they mature to meet practitioners' needs. The
lessons should be particularly valuable if a graphics-oriented
structured modeling implementation is undertaken centering on
genus and element graphs.

The final simulation development to be mentioned is an
evolutionary one in keeping with structured modeling's ambition
to integrate database capabilities with modeling (feature g).
Markowitz, Malhotra, and Pazel <1984> have taken the entity-
attribute-set formalism together with its SIMSCRIPT implementa-
tion and extended these to a quite general application develop-
ment system called EAS-E capable not only of modeling and data-
base management, but of almost anything that can be done with a
high level procedural language. We shall return to a discussion
of EAS-E after first discussing the EAS formalism in somewhat
greater detail.

The EAS formalism is closely related to certain structured
modeling concepts. Its "entities" correspond to either primi- .

tive or compound entity elements in structured modeling terms.
Its "attributes" correspond to either compound entity, attri-

-13- V

vvv \. VI ~ V

[..h w W. .r. a , fl,.E p. a.P laws rp

bute, or function elements. Its "sets" correspond to compound
entities that call their "owner" as well as their "members".
Its "entity types" correspond to genera obeying a condition
similar to generic similarity. The EAS formalism is used to
describe the instantaneous "status" of the system being simu-
lated. Separate procedural code specifies how system status
changes over time.

Markowitz <1979> notes that the relational database for-
malism (without including functional dependencies) and the EAS
formalism are "equally general". Since it is known that struc-
tured modeling subsumes the relational database formalism (even
with functional dependencies), it appears to follow that struc-
tured modeling subsumes the EAS formalism. Of course, this
subsumption is not necessarily a natural one. The best way to
resolve the issue of natural subsumption would be to devise a
straightforward translation procedure from an EAS model to a
structured model.

Not only did Markowitz <1979> demonstrate that the EAS for-
malism used by SIMSCRIPT is as general as today's most dominant
data model, but he also devotes considerable space to a discuss-
ion of the relation between SIMSCRIPT and several other data
models. If this concern with the relationship between modeling
languages and data models seems ahead of its time, consider that
extensive database capabilities were planned (but not implemen-
ted) as part of SIMSCRIPT II Level 6 since the late 1960's.

The database capabilities and more were fulfilled with the
EAS-E system developed and in use at IBM (Markowitz, Malhotra
and Pazel <1984>). EAS-E is an application development system
that includes "a procedural language for manipulating database
and main-storage entities, and direct (nonprocedural) facilities
for interrogating and updating database entities." EAS-E code is
surprisingly compact by comparison with other high level lan-
guages, and is said to be fairly easy for novices to read (in
another paper the authors call it "executable documentation").
Its browsing and updating facilities look quite friendly. A com-
panion paper -- Markowitz, Malhotra and Pazel <1981> -- argues
convincingly that a truly integrated application development
system should use a single modeling framework not only for the
modeling and database entities defined by the user, but also for
all entities with which the user must interact, including graph-
ical entities, text entities, and entities defined by the compu-
ter system itself. It could be worthwhile to consider structured
modeling's potential as the basis for integrated application
development systems of this type.-

Now that discrete event simulation has been discussed from
the point of view of structured modeling, it is natural to ask
whether structured modeling can support discrete event simula-tion. This question is taken up in Appendix 2. -

-14-

.6

[[. , - ' " - _ _.' •• -.--- -_.-. .- %-A ' '.. -'.A .C ._'.- % .. ,%L ._._% "_'. %'%q% %_C%% % ~ t

9. Graph Grammar-Based Systems

Rapid advances in computer graphics hardware and software
guarantee the growing importance of modeling systems with graph-
ically oriented model representations. One of the most difficult
challenges facing the design of such systems is how to generate
entire classes of models nearly as easily as one can generate a
specific model instance. One promising answer to this challenge
is provided by the notion of a "graph grammar".

Jones <1985> extends some recent work in graph grammars and
demonstrates the applicability of these ideas to analytical
modeling systems based on computer graphics. Only a partial
implementation is available at the present time, but it is clear
that this approach has considerable potential. %

Jones is concerned with designing what might be called (but
he does not) "modeling system generators". These dwell two
levels of abstraction above specific model instances. The first
level of abstraction, which he calls the "generic model", is a
class of specific model instances all similar to one another in
important respects. The second level of abstraction, which he
calls the "meta-model", is a class of generic models with common
mathematical structure. Jones chooses attributed, directed
graphs as the ruathematical structure at the second level.

Particular classes of attributed graphs can represent a
variety of generic models; Jones cites network flow and vehicle
routing models as examples. The crux of the matter is how tc
characterize the common structure shared by all instances of a
model class that a modeler wants to view as a generic model.
Jones' solution to this puzzle is to adapt the theory of graph
grammars to the task. This yields a generative mechanism for %
constructing any desired instance of a generic model. This
mechanism can serve as the organizing principle of a computer-
based implementation.

Jones' "meta-model" is a modeling framework in the same
sense that structured modeling is. An implementation of it would
be a modeling system (generator) in the same sense that a struc-
tured modeling implementation is. His "generic model" corres-
ponds to the notion of a schema in structured modeling. Although
he cites as illustrative generic models only examples that
clearly involve graphs, we know from the wide scope of applica-
bility of structured modeling and its attributed graph roots
that Jones' work applies to a far broader range of generic
models. This conclusion is reinforced by the fact that the con-
ceptual graphs of Sowa <1984> can also be viewed as a modeling
framework based on attributed graphs.

Jones' work is now appraised relative to the standard list 'A
of eight desirable features, after which its relation to struc-tured modeling is discussed further.

-15-

% % .%

-. ~~ -, A: Alp PC* * . * .. . - .

' a 1 WPr wvim Wv-xN7 "Frr)WNV T T NV 77J

Feature (a). The notion of an attributed graph as formal-
ized in Jones <1985> provides a fully rigorous and coherent
conceptual framework for modeling. The focal (generic) model
representation is computer-executable in principle, but is in a
grammar theoretic notation that most people would find obscure
as a basis for either managerial communication or conventional
mathematical use. For building or explaining a model instance,
however, a system that can compile the grammar theoretic nota-
tion has excellent potential for good managerial communication
through the power of graphic images.

Feature (b). Jones' approach has the potential for good
independence between model representation and model solution.

Feature (c). As observed earlier, attributed graphs provide

a modeling framework general enough to encompass a great many
modeling paradigms.

Feature (d). Jones is primarily concerned with just part of
the entire modeling life-cycle.

Feature (e). Representational independence of general
structure and detailed data is a consequence of Jones' careful
distinction between a generic model and an instance of a generic
model.

Feature (f). There is good potential for friendly desktop
implementation on the next generation of desktop computers and
workstations, for they will be quite graphics-capable.

Feature (g). Jones does not consider the possibility of .g..

integrated database functions.

Feature (h). Immediate expression evaluation capability may
be possible, but is left by Jones as a desirable extension.

There is potential mutual applicability between structured
modeling and Jones' work. In one direction, structured modeling
can provide an intermediate language through which a wide
variety of model classes can be recast as generic attributed
graphs ripe for the application of Jones' apparatus. In the
other direction, Jones' apparatus could help (i) to identify
useful standard transformations either of genus graphs or ele-
ment graphs in structured modeling (cf Sowa <1984> on "formation I
rules"), and (ii) as the basis for a fully graphics-based
implementation of structured modeling.

A particularly intriguing research issue is whether and how
Jones' attributed graph grammar for a generic model can be
translated automatically to/from a proper structured modeling
schema. A "from" (resp. "to") translator could provide a "front
end" (resp. "back end") facility for the kind of system Jones

-16-

.%

, ., ,.. , '. , ,, :-Z'" ."., - .",. ,_.'.._,- '... v'. v ,,'." ..- - .'- ', .-.'- .'- '-a '5"-%-" '. 'a-" % %-" ;"- * .., . ,.,?

envisions, and a "from" translator would enable Jones' system to

be used as a graphical model-viewing and model-building medium
for the kind of system envisioned in Geoffrion <1986a>. U

Another research question is whether the "programmed graph
grammars" Jones discusses, which allow a partial order to be
established over the operations to be performed, could help to
formalize the prompting tasks for which the smart loader/editor
(see Geoffrion <1986a>) has responsibility.

10. Special Purpose Systems

The stronger the assumptions one makes concerning the
class of models for which a modeling system will be used, the
more effectively can the design of the system be tailored to
the target applications.

There are numerous specialized modeling systems for
engineering design (e.g., Westerberg <1985>), distribution
system design (e.g., Geoffrion, Graves and Lee <1982>), manu-
facturing modeling (Engelke et al <1985>), project management
(Assad and Wasil <1985>), vehicle routing and scheduling
(Golden, Bodin and Goodwin <1985>), and so on (see, e.g., the
Applications Software section of Data Sources <1986>).

All such systems are limited by definition in the gener-
ality of their conceptual frameworks, that is, they are weak by
desirable feature (c). For this reason, they are not considered
further here.

CONCLUSION

This concludes discussion of various modeling approaches
and systems in the context of the eight desirable features
advocated in Geoffrion <1986a>. A similar analysis for struc-
tured modeling itself can be found in Section 2.4 of that paper.

Several of the references in this paper have influenced
the design of the prototype structured modeling implementation
now under way at UCLA. At a more fundamental level, the theo-
retical literature from which many of the references spring --
especially database theory, discrete mathematics, and parts of
computer science -- has influenced the structured modeling
framework itself. As explained at various points in this paper,
and in greater detail in Section 5 of Geoffrion <1986a>, there
are many opportunities for additional influence.

We close by reiterating the point made earlier that this .
paper is not intended to criticize the alternative modeling
approaches and systems reviewed here for failing to have all

-17-

%. %

eight desirable features, but rather to clarify how structured

modeling differs from previous approaches and to point out someof the grounds for future cross-fertilization.

4.'.

? 1

''

,C

!

- "

'C.

".4

.-, , ,,% -'m , ,%,- %, ,% - . , •,% ,% %,% % % " • ," .' -. % • ,-, ,-,% - , ,-. , ,-%, % - % % - ' % C ,

BIBLIOGRAPHY

ASSAD, A. and E. WASIL <1985>. "Project Management Using a
Microcomputer," Working Paper MS/S 85-027, College of Business
and Management, University of Maryland at College Park.

BARR, A. and E.A. FEIGENBAUM <1981>. The Handbook of Artificial
Intelligence, Volume 1, William Kaufmann, Los Altos, CA.

BATORY, D.S. and M. MANNINO <1986>. "Panel on Extensible
Database Systems," ACM SIGMOD 86.

BELL, P.C. <1985>. "Visual Interactive Modeling as an Opera-
tions Research Technique," Interfaces, 15:4 (July-August),
26-33.

BISSCHOP, J. and A. MEERAUS <1982>. "On the Development of a
General Algebraic Modeling System in a Strategic Planning
Environment," Math. Programming Stud. 20 (October), North-
Holland, Amsterdam, 1-29.

BODILY, S. <1986>. "Spreadsheet Modeling as a Stepping Stone,"
Interfaces, 16:5 (September-October), 34-52.

BRACHMAN, R.J. <1979>. "On the Epistemological Status of Seman-
tic Networks," in N.V. Findler (ed), Associative Networks:
Representation and Use of Knowledge by Computers, Academic
Press, New York.

BRACHMAN, R.J. and H.J. LEVESQUE <1985>. Readings in Knowledge
Representation, Morgan Kaufmann, Los Altos, CA.

BURGER, W.F. <1981>. "A Modeling System for Mathematical Pro-
gramming," Technical Report 177, Department of Computer
Sciences, University of Texas, Austin, May.

'.e

BURGER, W.F. <1982>. "MLD: A Language and Data Base for Model-
ing," IBM Research Division, San Jose, Research Report RC 9639
(#42311), September 14.

CHILDS, C. and C.R. MEACHAM <1985>. "ANALYTICOL - An Analytical
Computing Environment," AT&T Technical J., 64:9 (November),
1995-2007.

CHILDS, C. and F.I. VOKOLOS <1986>. "AWB-ADE: An Application
Development Environment for Interactive, Integrated Systems,"
working paper, AT&T Bell Laboratories, Warren, NJ 07060.

DATA SOURCES <1986>. Quarterly reference publication, Ziff-
Davis Publishing Co., New York.

-19-
J.. t_

e5 ..0 *. S*

DERMAN, E. and E.G. SHEPPARD <1985>. "HEQS - A Hierarchical
Equation Solver," AT&T Technical J., 64:9 (November),
2061-2096.

DOLK, D.R. <1986>. "A Generalized Model Management System for
Mathematical Programming," ACM Trans. Math. Software, 12:2
(June), 92-125.

ELLISON, E.F.D. and G. MITRA <1982>. "UIMP: User Interface for
Mathematical Programming," ACM Trans. Math. Software, 8:3
(September), 229-255.

ENGELKE, H., J. GROTRIAN, C. SCHEUING, A. SCHMACKPFEFFER, W.
SCHWARZ, B. SOLF and J. TOMANN <1985>. "Integrated Manufactur-
ing Modeling System," IBM J. Res. Develop., 29:4 (July),
343-355.

FOURER, R. <1983>. "Modeling Languages Versus Matrix Generators
for Linear Programming," ACM Trans. Math. Software, 9:2 (June),
143-183.

FOURER, R., D.M. Gay and B.W. Kernighan <1987>. "AMPL: A Mathe-
matical Programming Language," Computing Science Technical
Report No. 133, AT&T Bell Laboratories, Murray Hill, NJ 07974,
January.

GEOFFRION, A. <1986a>. "Introduction to Structured Modeling,"
Working Paper No. 338, Graduate School of Management, UCLA,
June, revised February 1987. To appear in Proceedings of the
Conference on Integrated Modeling Systems (held at the Univer-
sity of Texas, Austin, October 1986) and, wiLhout the section
on implementation, in Management Sci., May 1987.

GEOFFRION, A. <1986b>. "A Structured Modeling Representation of
the GAMS Static Model of the Mexican Steel Industry," informal
note, Graduate School of Management, UCLA, August 7.

GEOFFRION, A., G. GRAVES and L. LEE <1982>. "A Management Sup-
port System for Distribution Planning," INFOR, 20:4 (November),
287-314.

GOLDEN, B., L. BODIN and T. GOODWIN <1985>. "Microcomputer-
Based Vehicle Routing and Scheduling Software," Working Paper
MS/S 85-024, College of Business and Management, University of
Maryland at College Park.

GREENBERG, H.J. <1983>. "A Functional Description of ANALYZE: A
Computer-Assisted Analysis System for Linear Programming
Models," ACM Trans. Math. Software, 9:1 (March), 18-56.

HURRION, R.D. <1986>. "Visual Interactive Modeling," European
J. Oper. Res., 23:3 (March), 281-287.

.1i
-20- AJ

,"

JONES, C.V. <1985>. Graph-Based Models, Ph.D. Thesis, Cornell
University.

KATZ, S., L.J. RISMAN and M. RODEH <1980>. "A System for Con-
structing Linear Programming Models," IBM Systems J., 19:4,
505-520.

KENDRICK, D.A. and R. KRISHNAN <1986>. "A Comparison of Struc-
tured Modeling and GAMS," to appear in Proceedings of the Con-
ference on Integrated Modeling Systems (held at the University
of Texas, Austin, October 1986).

KENDRICK, D.A. and A. MEERAUS <1985>. GAMS: An Introduction,
draft, The World Bank, February. The Scientific Press, Palo
Alto, to appear.

KRASNOFF, B. and J. DICKINSON <1986>. "Project Database II," PC
Magazine, 5:12 (June 24), 106-227.

LUCAS, C. and G. MITRA <1985>. "CAMPS: Preliminary User Man-
ual," Department of Mathematics and Statistics, Brunel
University, Middlesex, U.K., July.

MARKOWITZ, H.M. <1979>. "SIMSCRIPT," in J. Belzer, A.G. Holzman
and A. Kent (ed), Encyclopedia of Computer Science and Tech-
nology, Marcel Dekker, New York.

MARKOWITZ, H.M., A. MALHOTRA and D.P. PAZEL <1981>. "The ER and
EAS Formalisms for System Modeling, and the EAS-E Language," 2C
8802, IBM T.J. Watson Research Center, Yorktown Heights, NY,
April 4.

MARKOWITZ, H.M., A. MALHOTRA and D.P. PAZEL <1984>. "The EAS-E
Application Development System: Principles and Language Sum-
mary," Comm. ACM, 27:8 (August), 785-799.

MATHEWSON, S.C. <1985>. "Simulation Program Generators: Code
and Animation on a P.C.," J. Oper. Res. Society, 36:7, 583-589.

MATURANA, S. <1987>. "Comparative Analysis of Mathematical
Modeling Systems," informal note, Graduate School of Manage-
ment, UCLA, February.

NANCE, R.E. <1981>. "Model Representation in Discrete Event Si-
mulation: The Conical Methodology," Technical Report CS81003-R,
Department of Computer Science, Virginia Polytechnic Institute
and State University, March 15.

NANCE, R.E. <1984>. "Model Development Revisited," Working
Paper, Computer Science Department, Virginia Polytechnic % %

Institute and State University.

-21-

• .% % '. .% o. - . ..- , ,. ..- % ... o ,. . -.. * • . ~ % .
?~. p ~ - *. ~ ~ .. * .. ~ &eA~&~* h.L~ h~, I~, thA~ qh 4.

OREN, T.I., B.P. ZEIGLER and M.S. ELZAS <1984>. Simulation and
Model-Based Methodologies: An Integrative View, NATO ASI
Series, Springer-Verlag, Berlin.

OVERSTREET, C.M. and R.E. NANCE <1985>. "A Specification
Language to Assist in Analysis of Discrete Event Simulation
Models," Comm. ACM, 28:2 (February), 190-201.

PALMER, K. <1984>. A Model Management Framework for Mathemati-
cal Programming, Wiley, New York.

PEGDEN, C.D. <1985>. "Introduction to SIMAN," Proc. 1985 Winter
Simulation Conference. S

PLANE, D.R. <1986>. Quantitative Tools for Decision Support
Using IFPS, Addison-Wesley, Reading, MA.

ROY, A., L. LASDON and J. LORDEMAN <1986>. "Extending Planning
Languages to Include Optimization Capabilities," Management
Sci., 32:3 (March), 360-373.

SCHITTKOWSKI, K. <1985>. "EMP: A Software System Supporting the
Numerical Solution of Mathematical Programming Problems," Work-
ing Paper, Institut fur Informatik, Universitat Stuttgart. .

SOWA, J.F. <1984>. Conceptual Structures: Information Process-
ing in Mind and Machine, Addison-Wesley, Reading, MA.

SOWA, J.F. and E.C. WAY <1986>. "Implementing a Semantic
Interpreter Using Conceptual Graphs," IBM J Res. Develop.,
30:1 (January), 57-69.

STANDRIDGE, C.R. <1985>. "Performing Simulation Projects with
the Extended Simulation System," Simulation (December).

TSICHRITZIS, D.C. and F.H. LOCHOVSKY <1982>. Data Models,
Prentice-Hall, Englewood Cliffs, NJ.

WAREN, A.D., M.S. HUNG and L.S. LASDON <1986>. "The Status of
Nonlinear Programming Software: An Update," Working Paper,
Dept. of Computer and Information Science, Cleveland State
University, November.

WESTERBERG, A.W. <1985>. "Aids for Engineering System Model
Formulation," Working Paper, Department of Chemical Engineer-
ing, University of Wisconsin, Madison.

ZAMANZADEH, B. <1986>. A Graphical Simulation System for Manu-
facturing Systems, Ph. D. Dissertation, Department of Engineer-
ing, UCLA. -,

ZEIGLER, B.P. <1976>. Theory of Modeling and Simulation, Wiley,
New York.

.

-22-

AL 9-
-,?, .' .-,-, .- , -.., ,:..:- -, ,....... ...,.9..-.: .

! - - VV#. uw . .d ~ V MLwIWTW ~ P ww.~~ w, VUVW~V~ i-U~vE if~T~U

COMMERCIAL SOFTWARE REFERENCES

DataEase. Software Solutions Inc., 12 Cambridge Dr., Trumbull,
CT 06611.

dBASE III Plus. Ashton-Tate, 20101 Hamilton Ave., Torrance,
CA 90502.

IFPS. Execucom Systems Corp., 3410 Far West Blvd., Austin,
TX 78731.

IFPS/Personal. Execucom Systems Corp., 3410 Far West Blvd., .i
Austin, TX 78731•..

KnowledgeMan. Micro Data Base Systems Inc., P.O. Box 248,
Lafayette, IN 47902.

LINDO. LINDO Systems Inc., P.O. Box 148231, Chicago, IL 60614.

MIMI/LP. Chesapeake Decision Sciences, Inc., 200 South Street,
New Providence, NJ 07974.

MindSight. Execucom Systems Corp., 3410 Far West Blvd.,
Austin, TX 78731.

OPTIMUM. Execucom Systems Corp., 3410 Far West Blvd., Austin,

TX 78731.

PAM. Ketron, Inc., 151 S. Warner Rd., Wayne, PA 19807.

Paradox. Ansa Software, 1301 Shoreway Rd. #221, Belmont, A
CA 94002.

R:base 5000. Microrim Inc., 3380 146th P1. SE, Bellvue,
WA 98007.

Revelation. COSMOS Inc., 19530 Pacific Hwy. South, Seattle,

WA 98188.

SIMSCRIPT 11.5. CACI, 3344 North Torrey Pines Court, La Jolla,

CA 92037.

What's Best!. General Optimization Inc., 2251 North Geneva
Terrace, Chicago, IL 60614.

1-2-3. Lotus Development Corporation, 161 First Street, Cam-
bridge, MA 02142. ,

} p .

-23-

-Or

I # 9 ,-- :.- . • ,-.- ,.... .z .. ._ .

Appendix 1

ON THE RELATIONSHIP BETWEEN CONCEPTUAL GRAPHS
AND STRUCTURED MODELING

The relationship between conceptual graphs (Sowa <1984>) I
and structured modeling's genus and element graphs is surpris-

ingly intimate, and can be stated informally as follows:

1. Each concept node with a referent corresponds to an element
or genus of primitive entity type. It corresponds to a
singleton genus and an element if its referent is an indi-
vidual marker (the marker is like an identifier in struc-
tured modeling, except that it must be a serial number). Itcorresponds to a singleton genus if its referent is a gen-

eric marker. It corresponds to a self-indexed genus if its
referent is a generic set. And it corresponds to a self-
indexed genus and one or more elements if its referent is a
specific set.

2. Each concept node with no referent (assuming no implicit
generic marker) corresponds to an element or singleton
genus of compound entity type. A concept node may also take
as its referent an entire set of conceptual graphs, in
which case it can be viewed as a singleton compound entity.

3. As indicated earlier, nearly all conceptual relation nodes
have degree two and so necessarily link two concept nodes.
Each such conceptual relation node corresponds to an arc in
a genus or element graph. Alternatively, each such node can
be viewed as spelling out explicitly the role played by a
specific call in a specific calling sequence.

4. Conceptual graphs do not incorporate the att: ibute type of
structured modeling directly. Sowa deals with a text-valuedattribute as a word (a particular type of concept) that is

associated with an entity (also a type of concept) through
a name (a type of conceptual relation). He deals with a
numerical-valued attribute as a word that is associated
with a measure (a type of concept) through a particular
type of conceptual relation which is also called measure.
This corresponds to a standard trick in structured modeling
of replacing an attribute element by a compound entity
element with the help of a primitive entity element that
represents the particular value. Sowa does recognize that
this approach can be cumbersome, and so introduces name
contraction and measure contraction conventions to simplify
conceptual graphs where "name" and "measure" are used. The
resulting simplified graphs contain contracted concept
nodes that are similar to singleton attribute genera
together with their elemental detail.

-24-

= %--% % .% %.% -.--.-...-.% .. %...

5. Conceptual graphs do not have anything that corresponds
to the function or test elements of structured modeling,
but provision is made for connecting conceptual graphs to
functional data flow graphs that do embody constructs
that act like such elements.

It follows from points 1, 2, and 3 that any conceptual
graph with all conceptual relation nodes of degree two corres-
ponds to a genus graph with only primitive and compound entity
nodes. This can be demonstrated constructively by erasing each
conceptual relation node and merging its incoming and outgoing %
arcs, possibly changing the orientation of the resulting arc.
Any aspect of the conceptual graph not directly translated to
the genus graph can be viewed as elemental detail. I

A partial reverse correspondence appears to be possible for
structured models with no attributes, functions, or tests. The
principal change is the introduction of conceptual relation
nodes to explain the role played by each call (this explanation
is supposed to appear in the interpretation part of each genus
paragraph).

Here are some additional observations on the connections
between Sowa's development and structured modeling.

6. There is no provision for explicit indexing in conceptual
graphs.

7. Sowa makes a strong distinction between intension (roughly,
the meaning of something in an abstract sense) and exten-
sion (roughly, instances of something in a concrete sense).
His concepts and conceptual relations are intensional,
while his referents are extensional. The corresponding dis-
tinction in structured modeling is captured by the separa-
tion of generic structure from elemental structure. There
appears to be nothing in Sowa's development that corres-
ponds to modular structure, although he uses a related idea
as explained in the next comment.

8. The concepts appearing in conceptual graphs are understood
not in an isolated sense, but rather as occurring within a 4
broader context. That context is provided by a type hier-
archy: a partial ordering of concept categories. The type
hierarchy is an adjunct to a conceptual graph and is not
always needed. It is particularly helpful as a basis for
property inheritance. Type hierarchies can be modeled with-
in the structured modeling framework, but it is not common
practice to do so in connection with ordinary applications
in MS/OR.

9. Sowa rigorously develops formation rules for editing and
combining conceptual graphs. They constitute a context-free
graph grammar. Viewed in reverse, they amount to rules for

-25-

.4
1% N N ,- P° - .%- ,- P.%' ,- P'%°* P

. . . .P • - o • % . % ", IS, - , • , . " €

inference. Although the formation rules all have analogs in
structured modeling, no corresponding theory has yet been
worked out. This is an inviting research topic.

10. Sowa comments extensively on the limitations of conceptual
graphs. Some, such as the unrealism of the finiteness
assumption in certain situations, are applicable also to
structured modeling. Other limitations are not pertinent
because structured modeling does not aspire to model the
full range of natural language.

It is evident that Sowa's grand synthesis of the founda-
tions of AI contains much material worth adapting to structured
modeling. For example, it points the way to a better understand-
ing of the relationship between structured modeling and both
natural language and first-order logic.

The strong connection that Sowa develops between first-
order logic and conceptual graphs (and hence structured model-
ing) suggests adding inference engines to the kinds of solvers
that structured modeling seeks to accommodate. How to do this
constitutes a potentially important research topic.

Comment on the Concept of a "Solver"

This last point suggests that the very concept of a
"solver" should be rethought. This term is based on the notion
of a "solution", which reflects a analytical modeling orienta-
tion in which the main concern is with solving systems of V
equations and optimization. The term "retrieval" would better J.
reflect the orientation of the database community, which is %

strongly concerned with retrieving data elements and rearranging
them so as to answer queries posed against a database. The term
"inference" would better reflect the orientation of the artifi-
cial intelligence community, one of whose principal concerns is
the drawing of inferences from a knowledge base. The last of
these terms is probably the most appropriate if a model-based
synthesis of all three disciplines is to be achieved. The solu-
tion to a set of equations or to an optimization problem is
certainly a kind of inference based on model assumptions, and
the answer to a query requires a kind of inference based on a
database.

Let us, then, think of a "solver" as a device for drawing a
class of inferences (using the term broadly) from a model. The
inferences can be mathematically elementary as in the case of
database systems, mathematically advanced as is often the case
in MS/OR systems, or somewhere in between as usually is the case
in artificial intelligence.

-26-

Appendix 2

HOW CAN DISCRETE EVENT SIMULATION BE DONE
WITHIN THE STRUCTURED MODELING FRAMEWORK?

One possible answer to the question of the title of this
appendix is to prepare a static structured model of the

system

to be simulated and to compose a (probably procedural) control
program that edits elemental structure according to the rules
governing the system's dynamic behavior. This could involve
creating and deleting elements, changing attribute values, and
so on. The control program would also determine when the eval-
uation operation should be carried out, record the pertinent
aspects of the dynamic behavior of the elemental structure and,
after execution, report a summary of this behavior and restore
the elemental structure to its original state (unless only a
copy of it was manipulated).

It would, of course, be objectionable for the control pro-
gram to contain information more properly thought of as part of N
the specification of the target system's dynamics. Such informa-
tion should be included as part of the structured model itself,
in a dynamic part of the schema to complement the static part
mentioned above. The control program should be designed to use
the dynamics described in a structured model to govern the edit-
ing of elemental structure, and also to accept directions from -
the user as to the nature of the simulation experiment to be
performed. These directions, communicated by the user in a
simple language rather than by writing procedural code, should
have to do only with the user's intentions and not with the
model per se. They can be thought of as specifying a task to a
solver in connection with a specific model.

Thus the control program would in effect become a kind of

all-purpose solver for discrete event simulation in the context
of structured modeling. It would not need to be customized for
each application. No such solver has yet been built, and it is
not obvious whether the idea is practical. It is encouraging to
observe that SIMSCRIPT can be viewed as working according to a
similar plan (except that customization is required for each
application). Its EAS formalism corresponds to the part of the
structured model that describes the system's static aspects, and
its event routines correspond to the part of the structured
model that describes the system's dynamics together with the
user's directions concerning the experiment to be performed.

The development of these ideas for achieving discrete event
simulation capability within the structured modeling framework
is an open research opportunity at this time.

-27-

-. * # ,f , .*.,'='L '... " . 2 '.. .'.', " ." ." , . . .".". . . ,' ." '%Z..*..'.'.. ." .'.," % . ." 1 .%-...)

I
bI

I

