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The purpose of this paper is to provide an overview of the asymptotic
distributional theory of extreme values for a wide class of dependent
stochastic sequences and continuous parameter processes. The theory contains
the standard classical extreme value results for maxima and extreme order
statistics as special cases but is richer on account of the diverse behavior
possible under dependence in both discrete and continuous time contexts.
Emphasis is placed on stationary cases but other important classes (e.g. F*1
Markov sequences) are included. Significant ideas and methods are described
rather than details, and in particular the nature and role of important
underlying point processes (such as exceedances and upcrossings) are
enphasized. Applications are given to particular classes of processes (e.g. .'-
normal, moving average) and connections with related theory (such as
convergence of sums) are indicated.
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1.1 Scope and content of the paper

The purpose of this paper is to give a ,Imotivated overview" of the

principal results in and related to the distributional theory of extremes of

stationary sequences and processes. In particular we shall be concerned with ,

distributional properties of the maximum Mn = max( I' 'l '. tn) and other

order statistics from stationary sequences ( i} as n - D and with

corresponding results for continuous parameter processes. The emphasis

throughout will be on the motivation for and significant methods used in

obtaining the results. Full proofs will not generally be given - in many

cases the details of such proofs may be found in the volume [55], or from the

references cited.

The results to be described may, in part, be regarded as extensions of

the classical theory of extremes of sequene of independent, identically

distributed (i.i.d.) random variables (r.v.'s). However, they constitute more

"* -. than just such an extension of the classical theory, since the dependent

framework provides a natural setting for the theory and one in which its

essential ideas and methods may be clearly exposed. In particular, it will be

seen that the central results may often be regarded as special cases of the

- convergence of certain point processes - a view which may of course be taken
0 IAt ITY

in the classical case but which is less needed there in view of the detailed

i.i.d. assumptions. Our discussion will emphasize the centrality of these

underlying point process convergence results.

As indicated in the list of contents, this paper is organized in three

main parts. This first introductory part contains central distributional

results of the classical i.i.d. theory and, in particular, the "Extremal Types

Theorem" which restricts the possible limiting distributions for maxima to

essentially three "different types". We shall indicate the general . .

,. .
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organization and main features of the most recently available derivations of

these results, using the simple and elegant approach of de Haan via inverse

functions. As can be seen even this i. i. d. theory becomes most natural and

transparent when viewed from the standpoint of the behavior of related point

processes - such as the exceedances of high levels.

The second part of the paper concerns extremes of sequences -

" primarily (but not always) assumed stationary and is largely based on point

process methods. It will be seen that the classical theory may be regarded as

a special case of the more general theory for dependent sequences - some

results being identical and others generalizing in interesting and non-trivial

ways. For example, it will be seen, under weak dependence restrictions, that

the general "type" of limiting distribution for the maximum is the same as for

an i.i.d. sequence with the same marginal d.f. (though the normalizing

constants may change). However, the limiting distributions for other order

statistics can be quite different from those under i.i.d. assumptions.

Some particular cases of special interest (e.g. normal sequences,

moving averages, Markov sequences) will be discussed in Part 2. Other aspects

. of the theory (e.g. rates of convergence, multivariate extremes) are also

briefly described along with some interesting connections with convergence of

SUMS.

.-. In Part 3 attention is turned to continuous parameter processes. The

theory here may be made to rest on the sequence case by the simple device of

~regarding the maximum of a process (t) up to, say, time T = n as the maximum

of the values of the sequence i sup( (t) i-l_<ti}, for l in. While
-.. =3.{ ( ) h l

this is simple and obvious in principle, the details are more complicated and

require analogous but somewhat more intricate assumptions regarding the

dependence structure of the process. The point process approach is also very
.,4

_m@ I
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valuable here - considering, for examle, upcrossings of high levels in lieu

of exceedances. Again, a rather full and satisfying theory results and is

applied, in particular, to special cases such as normal, and X2 processes.

Properties of point processes of local maxima may also be obtained, as will

be briefly indicated.

It may be noted that the stationarity assumption, where made,

primarily provides for convenience and clarity, and that some departures from .4.

this will either not alter the result, or will alter it in an interesting way i*

which can be determined. This will be evident, e.g. in discussion of normal

sequences, where extensions to useful non-stationary cases will be briefly

mentioned. Finally this paper is not by any means intended as a complete

review of all aspects of extremal theory - a number of important topics are

not referred to at all. Rather it is our purpose to provide an overview of

much of a developing area which includes but is more widely applicable than

the classical theory, and is based on the interplay of interesting

mathematical techniques. In particular we emphasize recent results -

especially those obtained since the publication of the volume [55].

1.2 Classical extreme value theory

The principal concern of classical extreme value theory is with

asymptotic distributional properties of the maximum Mn--mx ( l, 2' , n from

an i.i.d. sequence ( i as n - . While the distribution function (d. f.) of

may be written dawn exactly (PMn _ x) = Fn(x) where F is the d.f. of

each ti), there is nevertheless virtue in obtaining asymptotic distributions2.,'."-'.1

which are less dependent on the precise form of F, i.e. relations of the forr

d
(1.2.1) P{a (M - b ) f x) - G(x) as n - c,-n n n -

where G is a non-degenerate d.f. and a > 0, bn, are normalizing constants.
n n

e.4V
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The central result of classical extreme value theory, due in varying

degrees of generality to Frechet [35], Fisher and Tippett [34], and Gnedenko

[37], restricts the class of possible limiting d.f's G in (1.2.1) to

essentially three different types as follows.

Theorem 1.2.1 (Extremal Type Theorem). Let M =max "1lZ2'.,n where

ti are i.i.d. If (1.2.1) holds for some constants an > 0, bn and sane non-

degenerate G, then G rust have one of the following forms (in which x may be

replaced by ax + b for any a > 0, b):

Type I: G(x) = exp(-e - x ) - < x <
0 x < 0,}

Type II: G(x) 0 x 0

exp(-x- ), for some a > 0 x > 0Typ II: Gx)= (exp(-(-x) ) '  for some > 0 x _ 0, "'".

Type III: G(x) , >(1, x > 0.

Conversely any such d.f. G may appear as a limit in (1.2.1) and in fact does
U ..

so when G is itself the d.f. of each ti.!A
It will be convenient to say that two non-degenerate d. f. 's G1 and G2

1 2
, are of the same type if Gl(X) = G2 (ax + b) for some a > 0, b, and to refer

to the equivalence classes so determined as "types". The use of "type" in the

above theorem is a slight abuse of this since Types II and III really

represent families of types--one corresponding to each a > 0. However this

abuse is convenient and it is conventional to refer to "the three types" of \9

limit. It should also be noted that the three types may be incorporated into

a single family, for example by writing Gm (x) = exp(-(l-ax) I/c}, - "S.)

.ax < 1, GO being interpreted as lim G,%(x) = exp(-e - ) (Such a para-
L4- 0

metrization was introduced by von Mises).

Before indicating the main features of the proof of this theorem, it
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will be convenient to state the widely used result of Khintchine which enters

extremal theory here and elsewhere in significant ways.

Lemma 1.2.2 (Khintchine). Let (Fn) be a sequence of d.f.'s and G a non-

degenerate d.f. Let an > 0, bn be constants sWch that Fn(an x + bn) n G(x).

Then for some nondegenerate d.f. G, and constants a>
n ,(x) if and o fand a -(B- bn) 4 b for some
LF*(x 1 n "n a rn (8n n

a > 0 and b, and then G,(x) = G(ax+b) so that G and G, are of the same type.

The derivation of Theorem 1.2.1 can be conveniently divided into two

parts and this division is most useful for later forms of the result. The

first part is to show that the class of limit laws G in (1.2.1) is precisely

the class of max-stable d.f. 's. Specifically a d.f. G is called max-

stable if for each n=l,2,... the d.f. Gn is of the same type as G, i.e. if

there exist constants an > 0,b such that Gn(anx + b) = G(x). The folloing

lema--which follows readily using Lemma 1.2.2--gives an immediate proof of

'this part.

Lenar 1.2.3. A non-degenerate d.f. G is max-stable if and only if there is a

sequence {Fn) of d.f.'s, and constants an > 0,bn such that
" d

(1.2.2) Fn(ankx + bnk) Gl(x) as n4m for each k=l,2...

It is easily seen from this that any G satisfying (1.2.1) is max-

stable by simply identifying Fn with F
n where F is the d.f. of each . For .4.

(1.2.1) is us -xb

is just F(an X+bn)4 G(x) and replacing n by nk yields (1.2.2) at

once. The converse is even simpler since if G is max stable and

G n(a x+bn)= G(x) for some an > 0, bn, an i.i.d. sequence with common d.f. Gn n n

satisfies
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P'an(Mn - bn) _ x}=Gn(%ix+bn)=G(x)

so that (1.2.1) holds trivially and G is indeed a limit law for maxima.
.

The essential point of this argument is that if F is the d.f. of Mn,
nn

then the assumption (1.2.1) is the same as (1.2.2) with k = 1 and the

independence shows that if (1.2.2) holds with k = 1, it holds with k = 2,3,...

so that G is max-stable. It will be seen later that the same line of argument

holds in dependent cases though the details are more complicated since Fn is

no longer precisely FA .

Thus the class of non-degenerate limit laws for maxima is precisely

the class of max-stable d.f. 's. The other part to the proof of Theorem 1.2.1

is to identify the class of max-stable d.f. 's with the Type I, II and III

extreme value d.f. 's. This is a purely function-analytic (non-probabilistic) -'

procedure and will apply verbatim in dependent cases. It is in fact trivial

to show that each extreme value d.f. is max-stable. The more important

converse is readily shown by transforming the definition of max-stability of G

to give a functional equation for the function U(y) inverse to

-log(-log G(x)), which may be readily solved (cf. [38]) to show that G must be

one of the three extreme value types.

It is, of course, important to know which (if any) of the three types

of limit law applies when n has a given d.f. F. Necessary and sufficientn
conditions are known, involving only the behavior of the tail 1-F(x) as x

increases for each possible limit. One form of such domain of attraction
IAt

criteria is as follows. In this xF (_ ) will denote the right hand end

point sup(t: F(t) < 1) of the d.f. F. %

Theorem 1.2.4. Necessary and sufficient conditions for the d.f. F of the

r.v.'s of the i.i.d. sequence {n to lead to each of the three types are:

n



Type I: There exists some strictly positive function g (t) such that

lir (l-F(t+xg(t)))/(l-F(t)) eX for all real x;
XF

Type II: XF o and

mli (l-F(tx))/(l-F(t)) = x-c, cc > 0, for each x > 0;

Type III: .,< a nd

lir (l-F(xF-xh))/(l-F(XF-h)) = xl, ci>0, for each x > 0.

The sufficiency of these conditions is readily established (cf. [55]).

The necessity is more complicated (though perhaps also less important) but may

be achieved by using methods of regular variation (cf. [39] for a recent *.

smooth treatment).

The following simple result is also used in these "domain of

attraction" determinations.

Theorem 1.2.5. Let (u n, n 1) be constants and 0 T f I. If 2 , ...

are i.i.d. with d.f. F then
( 1 . 2 . 3 ) P { M n _<U e - T

f- and only if

(1.2.4) n(l - F(un)) - T.

This result is proved almost trivially by writing P(M n _ Un = n

. (1-(l-F(u )))n in this i.i.d. context. It is stated formally since its N.
n

generalizations to dependent cases are important and much less trivial in

proof. It may be noted that (1.2.1) is a special case of (1.2.3) using a

linear parametrization, by making identifications r = -log G(x), u =a-lx+b

Thus a necessary and sufficient condition for the limit G is

n(l - F(alx + b)) -log G(x), as n ,
n n

for each x, and some a > 0, b . This explains the relevance of the tailn n

CAIW 'p



1 - F(x) in Theorem 1.2.4 which examines the existence of such an,b for each
n 

of the cases -log G(x) = e x, x_, (-x) = .

* By applying this result, forms for the normalizing constants may also

* be obtained. Specifically if -n is defined to satisfy F(Y -) 1 l-n -_F( n)n n

a and b may be taken in each case to be:n n a b
n n

Type I: (g C ))^ Y
n n

Type II: _Y -i 0

Type III: ( - .n-(,." .-n.x.

(using the notation of Theorem 1.2.4). Of course while the "(1-n-)-

• percentile -n may be determined (and hence an,bn found) when F is known, the. nn...

. practical problem lies in the estimation of those constants when the form of F

-. is not precisely known.

It is readily checked that a standard normal sequence belongs to the

Type I domain with normalizing constants

(1.2.5) an=(2 log n)I
/ 2

1/2 1 -1/2bn=(2 log n) - (2 log n) (log log n + log 47).

The exponential and log normal distributions also have Type I limits as does

the d.f. F(x) = 1-el/x (x < 0) with a finite right endpoint xF. = 0.

-.4 The Pareto and Cauchy distributions give Type II limits whereas the

*/ uniform distribution belongs to the Type III domain.

It should be noted that not every d.f. F belongs to a domain of
[ " attraction at all. The most common case occurs for certain discrete

distributions--such as the Poisson and geometric distributions--for which j
there is no sequence (un) such that (1.2.4) holds. This typically happens in

cases when the jumps of the d.f. do not decay sufficiently quickly relative to'"V"%4

.4,.'...
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the tail. In fact for a given r (0<r<co), a sequence (un} satisfying (1.2.4)

2ay be found if and only if

(1..6) (F(x)-F(X-))/(1-F(x))4 0 as x xF.

It is readily checked that (1.2.6) fails for the Poisson and geometric __-.V.

cases and hence there can be no un of any form (and certainly not of the form
-1"

a x + b ) satisfying (1.2.4) with T = -log G(x), so that no limiting
n n

distribution exists. However it is also possible for there to be no limit '1

even if (1.2.6) is satisfied--indeed for certain continuous d.f.'s. A case in

point is the d.f. F(x) le-X-sin x an exanple due to Von Mises.

We turn now, in this brief tour of classical results, to other extreme
(k)

or .r statistics, writing for the kth largest among the i.i.d. ' ' n "

with connon d.f. F. Suppose that (1.2.6) holds and hence for any fixed T>0, "-

un= un(r) may be found satisfying (1.2.4). Let Sn denote the number of

exceedances of un by i""' . n' i.e. S is the number of i, li<n, suchn 1..In' n
that i > u Clearly for k = 1,2,...,

1 n

(1.2.7) P{M n(k) Un P(Sn < k)n, -- n n

since the events in brackets are identical. But S is binomial with
n

parameters (n, p) pn= 1 - F(u nPn T 7 so that S has a Poisson limit with

mean T and hence 711
(k) k-1

(1.2.8) P{M u n e- T Tr/r!
n n r-0O

Suppose now that M =ax( 1V .n) has limiting distribution G so thatSups owta n  n 7a( i'7 '

(1.2.1) holds. By the standard identification unn = bn, = -log G(x) we s-

from Theorem 1.2.5 that (1.2.4) holds and hence from (1.2.8) that

k-l "
(1.2.9) P{an n - b) < x} G(x) Z (-log G(x))S/s!

s=0

%0-.

---..- *...*...-..



10

th~Thus if the maximum M has a limiting distribution G, then the k largest

4k) has a limiting distribution given by (1.2.9) (with the same normalizing

constants a ,bn as the maximum itself).nfl

These results foreshadow a more detailed discussion of the exceedances

and related point processes, which will be taken up in the next section.

Finally, topics from the classical theory not dealt with in this
present part include (a) rate of convergence results (considered in the

dependent setting in Section 2.8, (b) asymptotic distributions of minima

(obtainable by simple transformations of the results for maxima), and (c)

asymptotic theory of variable rank order statistics (cf. [85]).

1.3 Point processes associated with extremes

The heart of the previous simple calculation leading to (1.2.9) is4%e

that if n(l-F(un)) 4 T then the number of exceedances of un by 1... n is

asymptotically Poisson with mean T. This simple observation is capable of

considerable, useful generalization both for the present i.i.d. and for

dependent cases. The simplest of these results concerns the point process

Nof exceedances of the level un. Specifically N consists of the point

process on (0,1] formed by normalizing the actual exceedance points by the

factor 1/n i.e. if i is the time of an exceedance ( > un ) then a point of
N is plotted at i/n. If E c (0,1] then N (E) denotes the number of such

n n

points in E, so that Nn(E)=#{i/n c E: ti > u n l-i-n} = #(i c nE: > Un'

i_ Ln). The actual exceedance points and the point process N are

illustrated in Figure 1.3.1 below.

Ij • . *.* 'n

S• ..,,.

:iHgure 1.3.1 Point process of exceedances



One of the central results is that the point process Ntakes on an

asymptotic Poisson character as n increases in the sense that Nn converges in

distribution to a Poisson process N as n co (Theorem 1.3.1 below). A brief

. discussion of relevant features of point processes and their properties will

be given in Section 2.3 but for now it is sufficient to note that convergence

in distribution of point processes may be expressed in terms of convergence of

finite dimensional distributions; specifically Nn N if N({a))=O for each a and

(1.3.1) (Nn(albl], Nn(a2 ,b2]...Nn(akb]) (N(al,bl], N(a2 ,b2 ],...N(ak,bk])

for each choice of k and subintervals (ai,bi] c (0,1].

Theorem 1.3.1 Let 1,2... be i.i.d. with common d.f. F and let {un) satisfy

(1.2.4). Then Nn I N, where N is a Poisson process on (0,1] with intensity T.

This result is almost selfevident by virtue of the criterion (1.3.1).

For example Nn((a,b]) is the number of i E (na,nb] for which ti > un and

hence is binomial with parameters ([nb]-[na]), l-F(un)) and converges to the
Poisson r.v. N((a,b]) having mean T (b-a) since ([nb]-[na]) (l-F(un))-* (b-a) by

(1.2.4). The more general statement (1.3.1) clearly follows by independence
if the intervals (ai,bi] are disjoint, and in general by considering the

overlaps between the intervals and thereby reducing the problem to the case 
of.

disjoint intervals in an obvious way. L %

Theorem 1.3.1 clearly includes (1.2.7) and hence (1.2.9) since

Nn ((0, 1])=n so that it may be regarded as a "fountainhead" result from which

the asymptotic distributions for the maximum and all extreme order statistics I "

follow. The result may be extended by considering more than one levC to give

in particular asymptotic joint distributions of finite numbers of order

statistics. Specifically let 0 < T < 7 2" -  Tr be fixed constants and

* (u (T)) such that
n

ft 
.'M.

4. r . S -
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(13.)n(l - F(u_(T)) 4 TV

3for each T> 0, where U(r) are taken so that Un(T ) Un(T2)..._Un(Tr)

Consider exceedances of the levels un(7l) ... ,un(Tr) as illustrated in Fig.

1.3.2(a) (again normalizing the time scale by 1/n). A vector point process is "
thus obtained and may be visualized by points on fixed lines L,,L2 , ...,r in

the plane as shown in Fig. 1.3.2(b). Denoting these individual point processes by

',,. ,,(a) r__ _,_ '4"

0 (b) 

Fig 1.3.2 (a) Levels and values of { n} (b) Representation on fixed lines
...":L2 r''" l' "'"2 :IS

r, it is clear that each is asymptotically Poisson withn n

(k(k)intensity Tk' and that N(k-l) is a "thinned" version of Nk for 2_-k_<r.

In fact in the limit the thinnings involve independent removal of events.

To see this more explicitly let Nn be the process defined on the plane by

(k)the points of " k r (i.e. confined to the lines e....I*,Lr) and

let N be a point process in the plane defined as follows:
%(r)

Let {lj j=l,2,...) be the points of a Poisson Process N with

parameter Tr on Lr and let (1j, j=l,2,...) be i.i.d. random variables,
r

independent also of the Poisson process on Lr, taking values 1,2,...,r with

probabilities

(Trs+l r-s )/Tr ,s=l,2,...,r-i,P(3 =s)
is--r,

T 19'.
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i.e. P~j > s}= Tr_s+i/T r for s=l,2,...,r. For each j, place points

,3,. jon the 13-I lines Lri' Lr2''"r- +1 vertically

above lj' to complete the point process N. Clearly the probability that a

point appears on Lr_1 above alj is just P(Bj>_
2 }=Tr_I/Tr and the deletions are

independent, so that N (r-l) is obtained on Lr_1 as an independent thinning of
(rr)

the Poisson process N(r). Hence N(r-l) is a Poisson process with intensity

T r (Tr_I/Tr)=T r-l as expected. similarly Nk) is obtained on Lk as an

independent thinning of N(k+l) with deletion probability l-rT/Tk+l, all N(k)

being Poisson. The main theorem is as follows.

Theorem 1.3.2. The point processes Nn defined in the plane as above (with

levels satisfying (1.3.2)) converge in distribution as n-)w to the point

process N consisting of r successively thinned Poisson processes.

Again the proof of this may be accomplished by showing that

(Nn(BI),...,Nn(Bk)) I (N(B1),...,N(Bk)) for each choice of k and rectangles

BI, ... ,Bk , the calculations being more involved but similar to the one-

cimensional case. V

Theorem 1.3.2 may be used to give the asymptotic joint distribution of

extreme order statistics (and their locations). For example the following

result concerns the maximum and second largest values.

______ ____ '=M(1) hsteay totic distribution G,
Theorem 1.3.3 Suppose that the maximum Mn( I ) has the asympton

(1)_)_ GX sn .
(1.3.3) P{a (Mn (-b) < x} (X) as n4c.

n n n
Then for x > x

(13.) Pln M(1) ~ (2)(1.3.4) Pan (M1-n bn) xl, an(Mn )-bn) - x2 .

G(x2) (log G(xI) - log G(x2 ) + 1) as n-c.

This may be proved by writing Ti = -log G(xi), Un(r i) = xi/a n+bn

,. % .
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i=1,2 and noting that (1.3.3) implies (using Theorem 1.2.5) that

n(1-F(U (r))) ri i=l,2. The left hand side of (1.3.4) is then just (writing

n1N(k ) for N ( k ) ((0,1])) .
n n'

Un(Tl) U (T ~P{N 2 =O + P{N(')=O, 2 2=)()l
n~7Q n~ 2 ~ n n n

which converges to the same probabilities with N(k) replacing N(k). Tis is
-T2 -2

readily seen to be e + (T 2 -T 1 )e which is just the right hand side of
(1.3.4).

The "r-level" result Theorem 1.3.2 allows the joint asymptotic

distribution of r extreme order statistics to be obtained. On the other hand

these results may be summarized in one theorem commonly referred to as a

"complete" convergence result, and which concerns convergence of the process

values themselves (suitably norTalized) regarded as a point process in the

plane. This result is intuitively satisfying and in the i. i.d. case it may be

regarded as the fundamental result yielding all the relevant asymptotic

distributional properties. On the other hand when dependence is introduced I.

into a sequence the "partial" r-level results require somewhat less

assumptions than does the "complete" result.

Theorem 1.3.4 Let i, 2... be i.i.d. with marginal d.f. F. Suppose that

Un(T), satisfying (1.3.2) for each T>O, is continuous and strictly decreasing

in T for each n. Let Nn denote the point process in the plane consisting of

the points (j/n, un(-1 )) where u - I denotes the inverse function of Un(T),n n n
defined on the range of the r.v.'s ). Then - N whereN is

"j n

Poisson process on (0,a)x(0,co) having Lebesgue measure m as its intensity.

Proof. Again this is readily proved from convergence of finite dimensional
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distributions. For a rectangle B=(a,b]x[c,d), N (B) is clearly binomial with iS

parameters ([nb]-[na],p ) where pnPlc _< un 1 ) < d} (Un(c))-F(un(d).

(d-c)/n, so that ([nb]-[na])pn 4 (b-a) (d-c) = m(B). Hence N(B) converges

in distribution to a Poisson r.v. with mean m(B). If B=(ai,bi]xU [cij,dij)

where the intervals (ab] are disjoint, it follows along similar lines that

(Nn(BI)..Nn(Bk))) I (N (B)...N ()). It is readily seen from this that

the same holds when Bi are arbitrary rectangles of the form (ai,bi]x[ci,di) which

is slifficient (cf. Sec. 2.3) to show that N* I N*.

As noted above this theorem summarizes a whole spectrum of asymptotic

distributional results for maxima and extreme order statistics in the i. i.d.
(r) -

case. For example P(Nn((0,1x[O,T)) < r) = P{N _ Un(T)} as is easily
n(r)

checked so that the limiting distribution of M can be obtained. When Mn-'v , I-11

has the asymptotic distribution G as in (1.2.1) we may take U((T) = G (e -)+bn

* as is readily checked. In that case Theorem 1.3.4 ay be readily transformed to

give the following form (writing x0 = inf{x: G(x) > 0)).

Theorem 1.3.5 Suppose (1.2.1) holds, for the i.i.d. sequence {j), and let., , 
"' "

- N be the point process in the plane with points at (j/n, a (t -b )). Then
n n jn

N 4 N on (0,w) x (x0 ,) where N is a Poisson process whose intensityn

measure is the product of Lebesgue measure and that defined by the increas-

ing function log G(y).
-.,. This form of the result was first proved by Pickands ([71]) and is more

transparent when linear normalizations give an asymptotic distribution for Mn.

(Theorem 1.3.4 applies to linear or nonlinear normalizations). For example it
is clear that P ~a(M r)- -<

n nn x) = P(Nn((0,1] x (x,cD)) _ r-l) 4
J .]

P(N ((0,1] x (x,-)) < r-1) from which (1.2.9) follows simply. j"
UMt-
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2. Extremes of sequences

2.1 The Extremal Types Theorem for stationary sequences.

In this section it will be shown that the Extremal Types Theorem still

holds for (strictly) stationary sequences under weak dependence assumptions.

Obviously some form of restriction on the dependence structure of the sequence

is necessary to obtain nontrivial results since e.g. one might take all to

be equal with arbitrary d.f., so that Mn would also have this assigned d.f.

Then in the next section we shall see that the introduction of dependence does

not typically alter the limiting distributional type for the maximum and will

explore the precise changes involved.

Loynes ([61]) first obtained a form of the Extremal Types Theorem

under dependence - assuming strong mixing. Weaker (distributional) conditions

will suffice and will be used here. The difference is not too important for

our present purposes since the main ideas of proof are essentially the same.

The main condition to be used (termed D(Un)) is defined with reference to a

sequence (un) of constants in terms of the finite dimensional d.f. 's
Fn xl,... xn) of the stationary sequence n.

Si(xl ,...x = Ptn n1* n n

Writing F. "  (u) = F. (u,u...u), define

n n < J

1i < i 2 < i p < j j1 ,,i-

Then D(Un) is said to hold if a n,l1 for sane sequence 1in  o o(n) .
n

It is, incidentally, obviously possible to weaken the condition D(un)

very slightly to involve "intervals" of consecutive integers (See O'Brien

(C68]) for the details of such a procedure and for some advantages in

bpi
,'- .,., "-

%

, .................-.... " - -.
..... ...,, . ... -.,..~~~~~~~~~~~~...... .....-. .-.....-... . . ....... ,... ....-- .•.-. ., . . ,
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application to periodic Markov chains.)

The following result is basic for the discussion of and shows the

form in which D(Un) entails approximate independence. It is stated in a

somewhat more general form than needed in this section.

Lemma 2.1.1. Let (un) be a sequence of constants and let D(un) be satisfied

by the stationary sequence (tn Let (kn > 1) be constants such that =o(n) and

(in the notation used above for D(un)), knn=o(n), k-imn,1 n 0. Then
n

PIMN - un }  P n(Mrn _5 Un} 4 0 asn ,.-'

where r /k~rn  n1
The proof of this result is perhaps the key method in dependent

extremal theory. The type of argument was used first in this context by

Loynes ([61]) but was used earlier in dependent central limit theory (cf.

[15]).

The basic idea is to divide the integers 1,2,...,n into "intervals"

I I 12, 12 .k ,k , where I= (l,2...rn-1 n), I=(r n+l,rn)

I2= (rn+l,. 2rn-1 n) and so on in this fashion except for the last interval

I = (knrn-ln+l,...n). Thus IlI 2* - I are large intervals separated by%
smaller (but typically expanding) intervals I*I The steps of proof

intevals1l12*** .Teseso ro

(cf. ([54]) for details) are

(i) Approximate P(.%un) by P( n (M(Ij)_un)) (using M(E) to denote

(i prxmt ( n j=1

max { : j cE}). This simply reflects the fact that the maxin AI

is likely to occur on the larger intervals.

(ii) Approximate P( nn (M(I) _ Un)) by k 1  ) using D(Un).

(iii) Approximate Pn(MgI1)_Un) by p n{Mr un), the maximum of the first

rn of the i's being likely to occur on I,.

.-.o " . o" . . ."." . .'°- .. o" - o ...- . ,°." " . , °. .... .,. . ... ° ... . .. .. .. . . ... . .. .-. ..'.'4'.
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The Extremal Types Theorem now follows simply from this result.

Teorem 2.1.2. (Extremal Types Theorem for Stationary Sequences) Let { .

be a stationary sequence such that Mn--max( l1'2'..,*n has a non-degenerate

limiting distribution G as in (1.2.1). Suppose that D(n) holds for each un

of the form u=x/a+b, for x with 0 < G(x) < 1. Then G is one of the three

classical extremal types.

Proof. Writing un-x-/an+bn it follows that P(M_1Un} - G(x) and D(un) holds (at

continuity points of G). By Lemma 2.1.1 by putting k =k, fixed, and then

replacing n by nk we have P(Mnkunj - Pk(Mnuk} 0 so that P{Mnunk}4Gl/k(x)

or P+an(M-bn)5x) - Gl(x), k-1,2.... But this implies that G is max

stable by Len= 1.2.3 and hence an extreme value d.f.

2.2 The Extremal Index

While the introduction of dependence into a sequence can significantly S.

affect various extremal properties, it does not, within broad limits, affect

the distributional type for the maximum. The purpose of this section is to

make that rough statement precise and to explore the explicit changes brought

by a dependence structure. This depends essentially on a single parameter

sometimes called the "extremal index" of the (stationary) sequence ( n

Following Loynes ([61]) it will be convenient, for a given stationary

sequence { n), to define the associated independent sequence {L} to be
n ~i

i.i.d. with the same d.f. F as t n and to writen --=max(1 ' 2 '... n), with

M.--(max( , 2' ... n) as before. As noted originally for strongly mixing

sequences in [61], if un --U (T) satisfies (1.2.4) for each T, i.e.
5... n

'" (2.2.1) nil - F(un(T)) ] 4 T

then any limit (function) for P(Mn_ Un()) must be of the form e- e
T with

'S'Z

____ H.
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fixed e f [0,1] rather than just the function e-T given by (1.2.3) in the

i.i.d. case.

If P(Mn < Un(T))4 e-OT for each T>0, with Un(7) satisfying (2.2.1),
nn

we say that the stationary sequence n has extremal index 0 (0). This

definition does not involve any dependence restriction on the sequence { n).-

The following result shows that, under D(un) conditions any limit for

P{Miun(T)) must be of this form.

Lemma 2.2.1. For the stationary sequence {t } and constants (u (T) )

satisfying (2.2.1) suppose that D(Un(T)) holds for each T>0. Then

there exist constants 0, 0', 0 _ 0'<_ 1 such that li sup P{MnUn(T)=I n n

e-67, lir inf P(Mn_ Un(r)} = e- 0 T for each T, so that if P(Mn _ un(T)}

converges for some T>0 then a 0 and P(Mn _ Un(T)} 4 e- T for all 7>0 and

({n has extremal index e, 0 0 1.

This result is proved by using Lemma 2.1.1 to show that
l/k(..

(T)=lim sup P(MnUn(T)) satisfies (7/k) = h(T) for each k=l,2,..., to

give the exponential limit. The details of this proof may be found in [54].
I

Note that it follows in the course of the proof that 0< 1.

Clearly for any i.i.d. sequence for which (1.2.6) holds (so that

Un(T) may be found to satisfy (2.2.1)) has extremal index 8=1. A stationary

sequence { n) satisfying D(u (T)) for each 7>0 also has extremal index 0=1 if
n n

[nik] .. ,
(2.2.2) lim sup n Z P({ > Un, > U 4 0 as k - c.

y~r nco j=2 1 n j n

For proof see [55] where (2.2.2) is referred to as D'(un)).

Many stationary sequences satisfy (2.2.2), including normal sequences .

with covariance sequence (rn) satisfying the "Berman Condition" rn log n 4 0.

Sufficient conditions for values of 0<1 are given in [54], and an example
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with e=l/2 appears later in this section. Examples can be found where the

extreml index is zero, or does not even exist. This obviously has some

theoretical interest but appears to occur in somewhat pathological cases and

will not be pursued in the present discussion.

The usefulness of the extremal index appears from the following -,

result.

Theorem 2.2.2 Suppose that the stationary sequence nhas extreml index

>0. Let (Vn} be any sequence of constants and p any constant with 0_ pS 1.
n %

Then P V -n p if and only if P{Mn  Vn} , e.

This result makes no assumption about dependence, and is readily shown

by obvious arguments (cf. [54] for details).

The following result now follows as a corollary, by taking v =x/a +bn
n nn

in the theorem.

Theorem 2.2.3 Let the stationary sequence { n have extremal index 0>0. If

P(an(Mn-bn) _ x) - G(x) then P{an(Mn-bn) n x} -) G O (x) and conversely. That

is M has an asymptotic distribution if and only if Mn does, with the powern

relation between the limits and the same normalizing constants.

By way of comment, note that Ge is of the same type as G if one
of them is of extreme value type (e.g. [exp(-e -  ep e- , and ,

similarly for type II and III). If 0=l the limits forrMn and M are

precisely the same. Indeed for 0<0<1 the limits may also be taken to be the ,'.

same by a simple change of normalizing constants. - 4

The practical implication of this result is that one often does not

need to be concerned about possible dependence in the data when applying

classical extreme value theory. Indeed one may not have to worry about the

%0
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precise value of the extremal indiex since this only alters parameters of the

distribution which usually muist be estimated in any casc. Further, if 0>0,

the fact that the distributional type under dependence is the same as under

independence means that the classical domain of attraction criteria may be

applied to the marginal d.f. of the terms to determine which type applies.

The following simple example provides a case where 0<1, and will also

-' be useful later when the effects of the value of 0 on the clustering of

exceedances will be discussed.r

Ex~ 2. 2. 4 Let be i. i. d. with d. f. H and write -=inax (Y). + 1)

Then { n ) is stationary with d. f. F = H 2 and an easy calculation shows that

ifu(T) satisfies (2.2.1) then n~l-H(Un(T))] -* T/2 and

n)n n

*so that ft n has extremal index 0=1/2.

Criteria for determining the extrenal index are discussed in [54].

Finally, we note that an interesting approach to the relating of dependent and -

i.i.d. cases has been given recently by O'Brien [68]. This is based on the

* general result

P (M u F(u) n u0>u

* which is shown in [ 68] to hold under weak dependence conditions, for a wide

*variety of sequences {u u) and integers p~ co with pn=o (n) .

2.3 Relevant point process concepts.

% In dealing with dependent cases it will be necessary to be somewhat

more formal than previously in the use of point process methods. Here we__

establish the notation and framework (substantially following Kallenberqj

([53])), and review a few key concepts which will be needed.

JWJ
~~ .. . ~~. ~~ . ,° .-. * ~~ 'p

pN N 
i

precisevalue o the exremal idex sineti nyatr aamtr ftei .
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In general a point process is often defined on a locally compact

second countable (hence complete separable metric) space S, though here S will

invariably be a subset of the line or plane. Write S for the class of Borel

sets on S and B=B (S) for the bounded (i.e. relatively compact) sets in S. A

point process , on S is a random element in M=M(S), the space of locally

f inite (i. e. finite on B (S)) integer-valued measures on S where M has the

vague topology and Borel a-field M = M (S).

Write F F (S) for the class of non-negative S-measurable functions,

"f = ffd- for k E M, f e F(S). The distribution pt-l of a point process

- is uniquely determined by the distributions of ( (Ii) . (I

k=l, 2... I. T if T is any semirirg whose generated ring is B. The

distribution of is also uniquely determined by the Laplace Transform

L (f) = Ee , fcF.

A (general) Poisson Process with intensity measure has the Laplace
: <-f

Transform L (f)=exp(-x (l-e - f ) whereas a Compound Poisson Process has Laplace

Transform

(2.3.1) L (f) = exp {-(l-LBof))

whAere B is a positive integer-valued random variable with Laplace Transform.
*~ Bt

LB (t)=Ee . This consists of multiple events of (independent) sizes B

located at the points of a Poisson Process having intensity measure ).

Convergence in distribution of a sequence ( n of point processes to a

point process is, of course, simply weak convergence of P.l to p -i

It may be shown (cf. r531) that if and only if L (f) - L, (f) for ever;Ln n
."f c the subclass of F consisting of the nonnegative continuous fnuctior.S

with compact support. Point process convergence is also equivalent to con-

vergence of finite dimensional distributions. Even more simply n if an

only if (n (I ((i ) k=l,2... Ij T ,,here T-

n~ 1 k1
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is a sexniring such that [ (aB)=0 a.s. for each BET, and such that for any

B B, > 0, B may be covered by finitely many sets of T with diameter less

than c (cf. [53 Theorem 4.2]). The semiclosed intervals and rectangles used

in Section 1.3 form such classes and hence e.g. (1.3.1) is indeed equivalent

to full convergence in distribution of Nk to N. -.-.

Finally the dependent counterpart of Theorem 1.3.4 requires the

concept of infinite divisibility. A point process is said to be infinitely

divisible if for each nl, 2,... there exist some independent and identically

distributed point processes l''" n such that d i + 2 + n

Laplace Transform of an infinitely divisible point process has the canonical

representation

(2.3.2) - log Lt(f) = 1 (l-e- f)P(du)
M\(0)

where P is a measure on M\(0} such that f (l-e-a(B))p(da) <__
M\(0)

for all B E B. P is referred to as the canonical measure of .

2.4 Convergence of point processes associated with extremes

We return now to the stationary sequence { n and consider point
n

process convergence results along the same lines as for the i.i.d. case in

Section 1.3. The notation of that and other previous sections will be used. -7

, In particular N will denote the point process of exceedances on (0,1] as
n

defined in Section 1.3, viz N (E)=#(i/n c E: i > u n li-n), for a givenn .O n

,' sequence of constants un.

When { n} has extremal index 0=1, the Poisson convergence result,

nnTheorem 1.3.1, may be proved provided D(U n) holds. This leads again to the

classical form (1.2.9) for the asymptotic distributions of extreme order

statistics. Similarly Theorem 1.3.2 holds under an r-level version D (Un) ofr n

Ag g.: . '' / ' - Mr 't.*v* ... r
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D(Un) (cf. [55, p. 107]) leading to the classical forms for the asymptotic

joint distributions of extreme order statistics when 0=1 (cf. Theorem 1.3.3).

The "complete convergence" result Theorem 1.3.4 also holds giving again a

Poisson limit in the plane when 0=1 provided the multilevel conditions Dr(un)

all hold. These results are described in [55]; here we indicate the new !W

features which arise when 0<0<1.

As noted in Section 2.2, cases when 0<1 occur when there is "high

local dependence" in the sequence so that one exceedance is likely to be

followed by others (see Example 2.2.4 as an illustration of this). The result

is a clustering of exceedances, leading to a compounding of events in the

limiting point process.

To include cases where such clustering occurs (i.e. 0<0<1) we

require the following modest strengthening of the D(un) condition (cf. [50]).

Let B i(Un) be the a-field generated by the events s Un)' isj.

For 5 1 _n-i write

k (Un)' BE B in),

(2.4.1) B = max{jP(An B)-P(A)P(B)I AEB k (un)Un,1 1 _ k _ n-1)n, 11n +
Then the condition i (u ) is said to hold if B 4 0 for some sequence

n n 1Jh
1 with 1 -o(n). {5,) will be called the mixing coefficients for ..

n n n,1

The condition L is of course stronger than D but still significantly

weaker than strong mixing.

The condition A will be applied through the following lemma which

is a special case of [84, Equation I').

Lem- 2.4.1. For each n and 1515n-1 write Y sup Eif-EIEIj 7
where the supremum is taken over all Y), ( measurable with respect () ,

B n (u ) respectively, 0 1 , , i- j5 n-1). Then B _ n, 4 3~j1n n, n n
where 3 is the mixing coefficient for A, given by (2.4.1). Inn, 1

U oI- ",

," ." ?... .i'...- - - ",-.'','.". '..., . "'.,...',.,.;.' "i . *.p'< -" ..- '.- . . .... - ...-.-... ....... .". .- ... -. , -
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particular n satisfies A(un) if and only ifY n, 1 0 for some In=o(n).
n

It will be convenient to have the following simple notion of clusters.

Divide the ( i} into successive groups .'.r of

rn consecutive terms where rn (=o(n)) is appropriately chosen. Then all

exceedances of u within a group are regarded as forming a cluster. Note that

since rn=o(n) the positions of the members of a single cluster will coalesce

after the time normalization, giving nearly multiple points in the point

process Nn on (0,1]. The following lemma shows that the clusters are

asymptotically independent.

Lenma 2.4.2. Let r>0 be constant and let A (un) hold with Un=un (T) satisfying

(2.2.1). Suppose { } is a sequence of integers for which there exists a

sequence {n such that kn1 /n + 0 and k 0, where 3 n1 is the..
n

mixing coefficient of a (un). Then, for each non-negative continuous f on

(o,1], ""

n k ir
(2.4.2) E exp(-= f(j/n)k n,j) -i1l E exp(-._ n f(j/n)k n) -n Q,

=l n i=l j=( i-)r +"

where X is the indicator 1 and r k
* n,j >aao u , an

This result is proved by the standard basic technique. Here the-

"intervals" (,...,r), (rn+,...,2r n) ... are each shortened by onittirg the

final 1 integers of each, and successive approximations made for t-e f .rstn
term of (2.4.2) in a similar way to the argr-nent of Leir 2.1.1, but isirq

Lemna 2.4.1. (See [50] for details).

The number of exceedances in the i cluster is N ((i-l)r,/n, ir 'n",
ir of, iceth
, n X and the cluster size distribution is therefore

j=(i-l)r +1 n,
n

conveniently defined to be given by

-4-

4-. , - %

".-. " ". ". . . . . - " ". "-"- . ". '- . 7 , -' . .. ' .' . . - - - '- - '. v
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(2.4.3) 7Ti) -P{ rn n i  E 0n
Pn0J> 01,ii,,...

j=1 j=l"u"
The following result gives sufficient conditions for Nn to have a Ccmound

Poisson limit. s-i

Theorem 2.4.3. Let the stationary sequence { n} have extremal index 0>0, and

*'' suppose that the conditions of Lemma 2.4.2 hold. If 7 (i) (defined by

(2.4.3)) has a limit iT(i) for each i=1,2,..., then 7 is a probability

- distribution on 1,2,... and the exceedance point process Nn converges in

distribution to a Compound Poisson Process N with Laplace transform

(2.4.4) LN(f) = exp {-OT J (1- Z e-f(t)i wr(i)) dt}
0 i=l <.

Proof. The Laplace Transform I, (f) of N is precisely the first term of

(2.4.2) and hence may be approximated by the second term. This latter term

may be manipulated by using the facts that for large n, f(j/n) is

irn
approximately constant in (i-l)rn < j irn, and Zn = Xn . has the

j=(i-l)r +1 nj
distribution P(Zn=i }  1-pn or Pn~rn(i) according as i=0 or i>, where

p n=P{(Nn((0,rn]) > 0)- T/kn from LeTma 2.1.1.

The Laplace Transform (2.4.4) is of the form (2.3.1) with the integer

valued r.v. 3 satisfying P{B=i} = r(i) and intensity measure simply 6TM where

m is Lebesgue measure. That is N consists of multiple events of size whose

distribution is r (i), located at the points of a Poisson Process having

Lntensity OT.

The following result, showing that the Compound Poisson Process is the

only possible limit for Nn under the conditions A is proved along similar .-

lines to Theorem 2.4.3. (Full details may be found in [50]).

Theorem 2.4.4. Suppose 7>0 is constant and the condition (un) holds

nI.

...................................... ......................................................................................................
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(Un=Un(T) satisfying (2.2.1)) for the stationary sequence { j}. If Nn

converges in distribution to sane point process N, then the limit must be a

Compound Poisson Process with Laplace Transform (2.4.4) where K is sne
probability measure on (1,2,...} and O= -T-1 log lira P(Mn  Un(T) r [0,i].

If e8O then 7v{i) = livrn n{i} where Tn is defined by (2.4.3) for rn=[kn] ,

k (O) being any sequence chosen as in Lemra 2.4.2.

Exampl 2.4.5. (Example 2.2.4 continued) It is evident that the exceedances Wi

of un by the process j--Tax( qj,nj+l) in Example 2.2.4 occur in (at least) -

pairs, since if j-I Un but tj > un then Yj+ 1 > u and hencetj >Un It
j- jl n j+1l Un I

is readily seen by direct evaluation that 7T n (2) - 1 and hence 7 (i)=l or 0

according as i=2 or i 2. Thus the limiting point process N consists entirely

of double events and (2.4.4) gives

I.,(f) =eXp{-(T/2)1
1 (1-ef-t)dt).
0

The most important application of the Compound Poisson limit is to
give the asymptotic distribution of the nth (k)

when 0<1, using the relationship
/"1 .J

(2.4.5) P(k) 5 Un(T)} = P{Nn((0,1]) 5 k-l}

Theorem 2.4.6. Suppose that for each 7>0, A(u ) holds with Un=Un(T)
(T) n

satisfying (2.2.1) and that (=N ) converges in distribution to some non-

(T)
trivial point process N (=N ) (which will occur e.g. if the conditions of

Theorem 2.4.3 hold). Assume that the maximum n has the non-degenerate

asymptotic distribution G as given in (1.2.1). Then for each k=-l,2,...
k-1 k-i G x)jj. )  ji ] .''

(2.4.6) P(a(M k)-b) < x) G S(x) [1+ Z Z ((-log G(x)) /j!) 7T (1)
nA njlil

.~ .1NI:
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%J. %

(zero if G(x)=0), where 7r. is the j-fold convolution of the probability
D

7r = 1ir -n' 7 being given as in Theorem 2.4.4.
'na,

Proof. It follows from Theorem 2.4.4 that ( n) has extremal index 8>0 and
a n

by Theorems 2.2.3 and 1.2.5 that u (T) an x+bn satisfies (2.2.1) with
.

nnn

-. 9'T = r(X) = -log G / 0 (x). The result follows using (2.4.5) since

\ k-1 , k- 1 ,*
*%..9- P{Nn((0,1]) _ k-l} P{N((0,1]) 5 k-l)= e-OT{l+ E (OT) ? W (i)/j!ij=1 i=j

which equals the right hand side of (2.4.6).

Note that the form (2.4.6) differs fra the (classical) case 8=1

(i.e. (1.2.9)), by inclusion of the convolution terms. These arise since e.g.

the second largest may be the second largest in the cluster where the maxim

occurs or the largest in some other cluster. This contrasts with the case k=l

for the maximum itself involving only the relatively minor change (Theorem

2.2.3) of replacing the classical limit by its eth power.

Finally in this section we indicate the modifications required by the

dependence structure for "complete" convergence results such as Theorem 1.3.4.
V.'  *

As in that case let N denote the point process in the plane consisting ofn

points at (j/n, unl( j)) where un denotes the inverse function of (r).

-a.. Under appropriate conditions (including e.g. that { n) has extrenal
n

index 0=1) N has again a Poisson limit N in (0,w) x (0, ) with Lebesgue
n

measure as its intensity. However, as for the exceedance point process, the

limit may undergo "compounding" when e<l.

T possible limiting forms forN were discussed first by Mori ([65])

under strong mixing conditions. More recently a transparent derivation has

been given by Hsing ([48]) under weaker conditions, of i(u ) type butn

involving multiple levels u (ri). A derivation similar to that for the
n1

•9A . o. "
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exceedance process shows that any limit in distribution of Nn, N say, must

have independent increments, be infinitely divisible and have certain

stationarity properties. These properties restrict the canonical measure P of

N to a form which can be readily determined (though requiring further

notation), thus providing a specific expression for the Laplace Transform of
* * .. ,

N Rather more illuminating, however, is the "cluster" representation of N.

which exhibits N as a Poisson Process in the plane together with a countable

family of points with integer valued masses on vertical lines above and

emanating from each Poisson point.

Specifically let a(st) denote unit mass at (s,t) and ( = l*i=l (SiTi

a homogeneous Poisson Process on (0, ) x (0,ca). Let Yi, i=l,2,...,be i.i.d.

point processes on [1,.) each independent of , such that -vi ( {1}) _ i, - having

points of mass aij at Yij. Then (under the assumed conditions),

N - a. 8ij (Si, Tji

As is clear from this representation N has atoms at each (SiTi) (since the

smallest Yij=l for each i) and at points (Si, TiYij) lying vertically above

(Si'Ti).

As noted in Sec. 1.3, theorems of this type summarize the relevant

information concerning asymptotic joint distributions of extreme order

statistics, in contrast to the individual marginal distributions obtained in

.h.oorem 2.4 . V

2.5 Normal sequences: the comparison method.

For stationary normal sequences with covariances {rn), the condition -.

D"un ) holds - as also does the sufficient condition (2.2.2) for the extremal

index to be 1 provided the "Berman Condition" holds, viz.

,- .. : ,.: <,-v -v - - - .. ;-v :..v .'.--. . , . < -<-• .v .:-. ;.- .. .-..- ; - .. , .... -.. -.- --; -;-.-.... .-.- . . -....- .---.- -. .-.
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(2.5.1) rn log n 4 0 as n 4

These results are simply proved by means of a widely used comparison

method which, in particular, bounds the difference between two (standardized)

normal d.f. 's by a convenient function of their covariances. This result -

here given in a general form - has been developed in various ways by Slepian

[81], Berman [9] and Cramer (cf.[21]).

Theorem 2.5.1 (Normal Comparison lemma). Suppose that i,... , n are standard

nnormal random variables with covariance matrix A\ = (.\.j) and l" n"

00 1 0similarly, with covariance matrix (.\.j) and let pij--max( j ,

Then, for any real numbers ui u 1 ,.. .,un,

* (2.5.2) P( j u j=l,2,..,n) - P U j=,2,...,n)
S uj, J J.. - uj,

l ) + 2 -1/2 22
(2-,)- 'i-"j (l-ij e[-uu/(2(l+Pijl)]

I_ i<j J n

1 replacig 1 - 0
where x = max(x,0). Further, replacing( by its absolute value

on the right hand side of (2.5.2) yields an upper bound for the absolute value

of the difference on the left hand side.

V..°%

By taking ' 2 to be a stationary sequence of standardized

normal r.v. 's with covariance sequence (rn) and i2" to be i.i.d.

standard normal r.v. 's it follows simply from the theorem that if

sup r < 1 then for any real sequence (un ),

n 'n n

n 2
(2.5.3) IF. (U)- (u) _Kn Erj exp (1+ 1 r

where F the joint (normal) distribution of [.,...,[. and is
there saa .. s
the standard normal d.f., i is being any choice of distinct integers from

1,2.. .n.

%....,.



Now if n(l-:(un)) is bounded and (2.5.1) holds it can be shown (by

scme routine calculation) that the right hand side of (2.5.3) tends to zero

as no, showing that P( _ U n,... tis un) is approximately the same as
it would be if the r.v. 's were i.i.d. instead of being correlated.

One can clearly (by identifying i1,...i s with 1, ...n) then show

directly that P(Mn <_ ) is approximately the same as for the i.i.d. standard

normal sequence. Or Equation (2.5.3) may be simply used to verify the

conditions D(u n), (2.2.2) and Theorem 2.2.3 used, thus leading by either route

to the following result.

Theorem 2.5.2. Let {n} be a (standardized) stationary normal sequence with

covariances (rn such that rn log n 0 as n-c. Then

P{an(Mn-bn) 5 x) 4 exp(-e - x

nnwhere an, b n are given by (1.2.5).

Thus if r log n 0, the maximum Mn from the stationary normaln
sequence has precisely the same asymptotic distribution as an i.i.d. normal

sequence. The same is true of the distributions of all extreme order

statistics. Although a slight weakening of (2.5.1) is possible this condition

is close to being necessary for Theorem 2.5.2. Indeed if r log n Y > 0

and un = x/an + bn (with an, b given by (1.2.5)) then the time normalized

point processes of exceedances converge in distribution to a certain doubly

stochastic Poisson Process. This leads to the asymptotic distribution of the

maximum given by the convolution of a normal and Type 1 extreme value

distribution. (See [55 Sec. 6.5] for details). Further, Mittal and Ylvisaker

([64]) have shown that if rn * 0 but rn log n - then Mn has an asymptotic

normal distribution. Thus in these "highly dependent" cases where D(un) fails

the classical theory no longer applies.
.1

e&'s At
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As noted previously stationarity has been assumed in many of the

results to avoid the complications of notation and calculation which a

nonstationaxy framework entails. For normal sequences, however, the

sufficient correlation conditions still remain quite simple in nonstationary

cases. For example the following result holds.

Theorem 2.5.3 Suppose that ( n) is a normal sequence with correlations rij

satisfying rij -P i-j for i;j where pn<1 for all n and pn log n - 0 as

n+ c. Let u (l<in, n=l,2,...) be constants such that X =min i >

n

c (log n)1/ 2 for some c>0. If for some r_0, (1- (Uni)) r, then
n 1

P( (ti <  -n) Ta-n.
i=1

Theorem 2.5.3 has a very useful corollary in the case where a sequence

(.1) is obtained from a stationary normal sequene n by adding a varying

mean - such as a seasonal component or trend. Calculations then show that the

double exponential limit for the maximum still holds, but the normalizing

constant b can require an appropriate modification. Specifically suppose .
n ,

that i =  i + mi where (i } is a stadr (zero mean unit variance) normal ,

sequence (not necessarily covariance stationary) and m are added

deterministic components with the property that .".

(2.5.4) B max im! =o(log asnn) 1 .
(2 5.) n  l-<i-n 2.

Under this condition it may be shown that a sequence of constants {n

may be found such that

1n * * 1 * 2,

(2.5.5) n i_ exp(an(mi  mn) 2 (m mn as n co

in which a* = a - log log n /(2an). With this notation, the following result
n5 n n

5..
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holds.

Theorem 2.5.4 Let Y i = ti + mi as above where n is a standard normal
1 1 n

sequence with correlations rij satisfying Ir i < pl-il for i~j with Pn < 1
and p log n 0. Suppose that (2.5.4) holds and satisfies (2.5.5). Men

Mn max i . satisfies

P(an( -b n -m) _ x) exp (-ex)

with a and b given by (1.2.5).
p.n n

Thus the non-stationarity in the correlation structure has no effect

on the limit law, and that introduced by the added deterministic component

is adjusted for by the change of bn to (bn + in). For details see [55,

Chapter 6].

Normal processes provide a widely used source of models for describing -
physical phenomena, and it is gratifying that extremal theory applies so

simply to them. Another convenient source of models is of course Markov

chains, whose extremal behavior we discuss next.

2.6 Regenerative and Markov sequences

Most limit results for Markov chains are intimately tied to the theory
of regenerative processes. For extreme values, this has been used in [2],

[9], some further references on extremes of Markov chains being [10], [12],

[68]. The "classical" case, exemplified by the GI/G/I queue, is when a

recurrent atom exists. However, recently regeneration techniques have been

extended, in [6], [7], [67], to show that any Harris recurrent chain ( n} on

a general state space is regenerative or 1-dependent regenerative (concepts to

be defined below), and to give effective criteria for regeneration. Further,

%7 '.-
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clearly a function [n=fCsn) of a (1-dependent) regenerative sequence is (1-
n nI dependent) regenerative. An example where this added generality is useful is

given by ARIA (p,q) - processes. They are naturally considered as functions

of a Markov chain in RP  and can be shown to be 1-dependent regenerative

under weak conditions but usually not to be regenerative (cf. [79]).

Regenerative and 1-dependent regenerative sequences are strongly

mixing, and hence the theory from Sections 2.1-2.4 applies, in particular the

Extremal Types Theorem and the Ccnpound Poisson limit for exceedances hold.

However, this can also be obtained directly, and the direct approach gives

some added insight, also into the results for general stationary sequences..

In the present section this will be briefly outlined, along with some results

directly tailored to Markov chains.

A sequence ( t: t=l,2,... ) is regenerative if there exists integer-

valued random variables 0 < S0<S1 < ... which divide the sequence into

"cycles"

C= {n: 0 _ n < S 0 }, cl = n: S0 0 n < S1 } c2 = Un: S1 - n < S2 "
I

which are independent and such that in addition ci,c ,... follow the same

probability law. Then (Sk} is a renewal process, i.e. T0=S0 , TI=SI-S 0 , T2=S2 -

SI... are independent and TI,T 2 ,... have the same distribution. We shall

here assume that m=ETl<. and that the distribution of T is aperiodic, i.e.

that the only integer for which P(T1 E (d,2d,.. .))=i is d=l. The sequence

(En) is 1-dependant regenerative if there exists a renewal process (Sk} as

above, which makes c0 ,cl,... 1-dependent and clC 2,... stationary.

Suppose now that { n: n=0,1,...} is a stationary regenerative

sequence, let f0--max i: 0 - i < SO 1 0) = max (Ui: So - i < S1}, 2 =max

S 1 - < $ ... be the cycle maxima and define vt=inf(k>l: Sk>t). By

the law of large numbers vt/t 1/m a.s. and Mn = max {i'" n } is easily

n ( ll .. -.n

*..,,. _ ___ ____ ___ ____ ___ ____ ___
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approximated by max s§i' "'" , vn}, which then in turn can be approximated by

ax Sl,/m]}. since §i,1 2,... are i.i.d., this can be shown to lead

to

(2.6.1) sup P(M n x) Gn(x), 4 0, as n 4
x '

With G(X) = X) , see e.g. [79]. Since G is a d.f. it follows at

once that the Extremal TPes Theorem holds for { n}, and criteria for domains

of attraction are obtained by applying the criteria for i.i.d. variables to

G(x).

In particular it follows frcn (2.6.1) and Theorem 1.2.5 that if n(l-

G(un)) then

(2.6.2- P(Mn _ Un) e-, as n C,
n

and conversely if (2.6.2) holds then n(l-G(un)) Y ). As in Section 2.2 let

i 2' ... be the associated independent sequence which has the same marginal
d.f. F as t1 , 2 ... and write = max ' If in addition n(l-

nU) -r > 0 then e-r and (tn) hence has extremal

* index 0 = )/r. Since l-G(un) - P(rI > un)/m, this can be formulated as

follows. If there exists a sequence {Un) such that n(l-F(un)) 4 T > 0 and
n

P(§I > U )/m
(2.6.3) n e

P(t 1 > Un)

then (t) has extremal index 0>0. In the same way it can be seen that I
conversely if {t) has extremal index 0>0 then for any T>0 there exists a ,

sequence {un} which satisfies n(l-F(un)) r and (2.6.3). Further, 77:79

straightforward arguments show that (2.6.3) can be replaced by

(2.6.4) lira=8 i

XtXF P( Z > x)''-..

' ., . . . . . . -,- ." . . . . .."" ' - ". ". " .. -". - ." . -". - - ." " " - - " . "; '-. -" -" : . "' ,, --"-
• -. I • • .'- " -" '.,' . . .. .' ''" -' " " -" - " ,' . o' " . " " ".._ = -,.'__ _ _.__ _ _',," .,'.%-- . t..",. " . - . ...,.
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in this, with xF the righthand endpoint of the d.f. F. However, it should

be noted that there are examples of regenerative sequences { which satis .y

(2.6.2), even for un=Un(x) = x/an+bn, for all x, but for which

(P( l>un)/m)/P( l > u n) does not converge, and hence the extremal index does

not exist, even if this is not expected to occur in cases of practical

interest.

A counterpart to the Compound Poisson limit Theorem 2.4.3 for the

exceedance point process N given by N (E) # {i E E: i > Un1' is also easy
n n n n

to obtain for stationary regenerative sequences. Let N be the point process
n

on (0,1] which has points of multiplicity Y #(t: >, S < t S at
a.t'n Si-l~ Sa

i/n for each i for which Yi > 0, i.e. Nn is defined by Nn(E) =' ..
edi/nE

-. en i=is an i.i.d, sequence, and if (2.6.2) holds so that

rip (-Y > 0) = nPf > un) - m and if

(2.6.5) T- 
( i

) P( > 0) (i), as n-c,n P(:Y 1  1

for all i, for some (7(i); i=1,2,....} then it follows at once that NIn

converges in distribution to a Compound Poisson process N with Laplace
trner-~,f=ep-m~(I~f (t) i

transform ,(f) =exp-m i- 'Eile i,(i))dt). By definition, a non-

zero ' t corresponds to a cluster of '. exceedances of u by t for S t<S ,  *111 n Stfor

and since S./i -+ m as i - c there is hence a cluster of Yi points located

approximately at mi/n in N . Hence for an interval E, 4n (E) is approxLmated-

by 1(m E) , (for m -E= {x: mx E E)) and asymptotically N n(E) should have

the same distribution as N (m E). This argument can easily be extended and

made stringent, to give the following result.

Theore 2.6.1 Let ( n=0,1,...) be a stationary aperiodic regenerativen

sequence with m < which satisfies (2.6.4) and let {u be constants such

that (2.2.1), i.e. n(l-F(un)) T r, and (2.6.5) hold. Then N converges in
n n

distribution to a Compound Poisson Process N with Laplace transform (2.4.4),

. .
.-. :

k< .~ d .. .
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i.e.
IN~f) = exp {-GT E i e -f t  () dr}.

0 i=l

These results may also be extended to 1-dependent regenerative sequences,

however with some extra corplexity. Here we mention that the criterion (2.6.4) for

the extre-mal index to be one then is replaced (cf. [78]) by

[,. ]-P( l - x, ' - x)/r

(2.6.6) 1r =x e.
XF P({l > X)

In "79, (2.6.6) is further used to find conditions for 0=1 for a

function t=f( t) of a Markov chain on a general state space. This result is

expressed directly in terms of the transition probabilities

"; Pn (X)=P(f( l)>Un 0x) = l>UnI 0 = x) as follows.

Theorem 2.6.2 Let (n n be a stationary regenerative M1arkov chain with the

cycle length TI aperiodic and satisfying E T < a, for some a> 1. IfI I
SUn-U (T) satisfies (2.2.1) for some T>0 and

s
E(Pn(Y ) ) n'+S/ 0 as n cnoo

for some s>l with l/a + 1/s < 1 then { n) has extremal index 0=1.
n

SWe also refer to [79, Theorem 4.1] and [68, Theorem 2.1] for

additional results on the extremal index and Compound Poisson Convergence, for

general distributionally mixing sequences, in a form which is particularly

convenient for applications to Markov chains. Finally the restriction that

the 4arko., chain (or regenerative sequence) is started with the stationary

initial distribution is not essential. All the results hold for arbitrary

initial distributions, provided only that

P( 0 >  max l ,.... ) 0 as k -.

.4
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2.7 Moving averages

Here, a stationary sequence t is a moving average if it can be

written in the form

(2.7.1) tt =E ct ijt+ ti=_ ciD~ , . .

where (St) is an i.i.d. sequence (the "noise sequence") and {ci) is a sequence

S-. of constants (the "weights") and where the sums are assumed to converge with

probability one. If a stationary normal sequence has a spectral density -

this holds e.g. if Er2 < m, it can be represented in a non-unique way,

as a moving average with normally distributed s 's. Further, (2.7.1) includes

the ARMA-processes (which satisfy a finite linear difference equation in the
J .

's and hence are multi-dimensional Markov chains), which are extensively

used in time series analysis. Thus, in particular, some of the themes from

Sections 2.5 and 2.6 will be taken up again here, but from a slightly

different point of view.

The extremal behavior of { It) depends on both the weights and the two
pt

tails of the marginal d.f. of the noise variables in an intricate and

interesting way. To reduce the amount of detail, we shall only describe the

asymptotic distribution of the maxima, for the case of non-negative c 's.
i

The general case involves some extra complexity, since then an extreme

negative noise variable which is multiplied by a negative c i may contribute to

-. a large t-value. In addition to this, the references cited below prove

point process convergence and give rather detailed information on the sample"' -.'p.

path behavior near extremes, including the clustering which occurs when the

extremal index is less than one. Here we will only exhibit the limiting form

of the sample paths near extreme values without going into technicalities,

referring to [75], [76], [29] for further details.
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In cases when (1.2.1) holds, i.e. when

(2.7.2) P(an(Mn-bn) _ x) -+ G(x), as n 4 ,

the asymptotic behavior of the maximu is specified by the constants an > O,b
n-n

and the d.f. G. However, this involves an arbitrary choice, since if

an, bn are replaced by an',b', where ana n ) a > 0 and a (b - bn) 4 b, then
nnnn n

(2.7.2) still holds, but with G(x) replaced by G(ax + b). In the sequel we

will keep the G's fixed, as the standard d.f. 's displayed in Theorem 1.2.1 and

hence describe extremal behavior by an, bn and the type of G.

The effect of dependence on extremal behavior can be further

understood by comparing with extremes of the noise sequence and of the

associated i.i.d. sequence { t)with the same marginal d.f. as the moving
'P

average { ). Specifically, for =max(§, §hi and M §i' 4 n} there
t 'In "-% -'" 1- n n

are norming constants an, n>0 and b, n such that for the cases we

consider here,

(2.7.3) Pan(n - bn)_ x) - G(x)

arid

(2.7.4) P(a N(M - ) < x) G(x),

with the same G as in (2.7.2), and we shall indicate the relations between the

different norming constants. V

The articles by Rootzen ([75]) and Davis and Resnick ([29)) are

concerned with noise variables which are in the domain of attraction of the

type II extreme value distribution, or equivalently when the noise variables

have a regularly varying tail,

(2.7.5) P(U0 > x) = x-aL(x),

with a > 0, and L slowly varying at infinity. Hence, using the prescription

for norming constants given after Theorem 1.2.5, if Yn satisfies P(s0 < Yn) .

1-1/n < P(0 _ ), so that *n is roughly of the order n''/ , then (2.7.3)
0 n n

V - .4V 'N..~ 4
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holds, with

i.n n ' n'

S(x)= exp(-x-Q), x > 0.

Let c= max (ci; i = 0,+I,...}. Then also (2.7.2) is satisfied, with

(2.7.6) n
= c+ b 0

This is elegantly proved in [29], by first noting that complete Poisson FA

convergence of extremes of the (-sequence is immediate (cf. Section 1.3) and "41
then obtaining the corresponding result for the t's by a "continuous mapping"

and approximation argument. [29] uses some summability assumptions on the

c 's, and for convenience that c.=0 for i=-l,-2,..... However, it seems clear

that the results hold without any restrictions beyond the assumption that the

su ms in (2.7.1) converge, cf. [75).

An intuitive explanation of (2.7.6) is that when the tails of the

noise variables decrease slowly, as in (2.7.5), then the extreme noise values

are very much larger than the typical ones, and that hence the maximal tt-

p, value asymptotically is achieved when the largest §t-value is multiplied by

the largest weight, c+. This of course agrees with (2.7.6), since the norming

constants there are the same as those which apply to maxtc+ 1 .. C+n )

These heuristic arguments also easily lead to the following form of the

normalized sample path t t + r/ T near an extreme value at, say, the time

point r; asymptotically this ratio has the same distribution as the function 7-

Yt given by
- , 4.

(2.7.7) -uct,Yt ...:t

where U is a certain random variable with values in the set {... 1/c_1 ,l/c, 1/cl,... }.

Thus, except for a random height, sample paths near extremes are
'7p

..
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asymptotically deterministic.

The special case of (2.7.5) when the noise variables are stable (or

"sum-stable", as opposed to max-stable) was studied first, in [75]. It has

the appealing feature that then also the moving average, and indeed all linear

functions of the noise variables are jointly stable. For such variables, it

is easily seen that (2.7.4) holds, with

a =an, = 0 .- 1

G(x) = exp(-x-,),

and hence also that the extremal index is cL/Tc{, for the case of

non-negative c's discussed here. Although not considered in [29], this can be

shown to hold also for the general case (2.7.5), provided the sums involved

are convergent.

The other class of moving averages which has been studied, in [76],

is specified by

(2.7.8) P ( 0 > x) - Kx-e as x -) a,
0....

where K,p > 0 and a are constants. Again it follows, using Theorem 1.2.5,

that (2.7.3) holds, with

1-/p/ 1
1, )'. a n  p(log n) I - /  .2"?" 6n

b (log n)1/ p + p-1 ((a/p)log log n + log K)(log n) I/ p - "

G(x) exp {-e-X).

Thus the center of the distribution of tends to infinity roughly as

(log n)i/p, and the "scale parameter" a-' is of the order (log n) I / p - I , which. , n

shows that for p>l the distribution of M becomes more and more concentrated __

as n -. c, and that it becomes increasingly spread out for 0<p<l, while the

order of the scale does not change for p=l. As we shall see, the same holds

-a. forM andM

The case when (2.7.8) holds with p=1 leads to intermediate behavior,
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and we will only discuss the remaining cases. For 0<p<l again a large -

value is caused by just one large noise variable, in a similar way to the

behavior when (2.7.5) holds. However, the non-zero -terms cause some extra

complications. Thus, (2.7.2) holds with

Sn C+ an, bn =c+bn

.G(x) -txp{-e-X ,

in analogy with (2.7.6), but, writing k for the number of i's with ci=c+ , the

appropriate version of (2.7.4) involves

a n= c+ an, bn c+( +(log k)/an)

G(x) = exp (-e-X.

Also the asymptotic form of the sample path t - r/E 7 near an extreme value at

T is similar. For k = 1 it is given by the deterministic function

t= c-t/ct,

while in the general case it is a random translate of this.

The case when (2.7.8) holds with p>l is more intricate, since then an

extreme t-value is caused by many moderately large noise variables in

conjunction, and since extremal behavior is determined by the constant 1c 1?q
= (ZIc iq)l/q and the function

(2.7.9) yt = ci-t /P/ cI q,

- i q

v with q=(l-i/p) In fact, the normalized sample path t + -r/ r near an

extreme at T asymptotically has the deterministic form (2.7.9), and (2.7.2)

and (2.7.4) hold, with

a= Cj a N b n=
(2.7.10) n q n'

S(x) = exp (-e- } .

Here bn = N is not determined by (2.7.8) alone, except for finite moving

* - .**...*,n .. . .- . .... . .
.. ... -.-.. . ....- --..-.-.,. . -.. .,...-..,.. , .: .. . ,,,-,-. - - ,---. '. -,: < .,',' ', , ,:A'-. :r
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averages, it is also influenced by the center of the distribution of the [ 's.

However, it is roughly of the order I C 11 bn' but still

an (bn-- c q b n may in general tend to infinity. It of course follows at

once frm (2.7.10) that the extremal index is one for p>l.

For p=q=2, which includes the normal case, (2.7.9) is the correlation -i

function and 11 c is proportional to the standard deviation, in agreement
q

with Section 2.5. However, it is interesting to note that for p 2

covariances seem to have little bearing on extremes.

The results for the case (2.7.8) use the assumption that

c-i 0(iI for some e > max (l,2/q), and for p>l in addition a number of

smoothness restrictions on the distribution of the noise variables. These are

mainly used in the derivations of the behavior of the tail of to=c si_

which for p>l is the main difficulty, cf. [78]. It is fairly easy to see that

D(u n) holds for all the moving averages considered here, and the results above
ni

for p>l are obtained along the lines set out in Section 2.2, by verifying

- (2.2.2). For 0<p l, i.e. in the cases when e may be less than one, the

proofs use ad hoc methods, closely related to the heuristic arguments given

above.

Finally it should be mentioned that Finster ([33]) obtains some

related results using autoregressive representations of the processes, and

that Chernick (18]) provides an example with qualitatively different

behavior.

2.8 Rates of convergence

Rates of convergence for the distribution of the maximum have mainly

been studied for i.i.d. variables. In the present section we briefly review

this work, discussing in turn pointwise rates, uniform convergence of d.f. 's,

I"%'
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so called "penultimate" approximations, uniform convergence over the class of

all sets, and "large deviation" type results. Although generalizations seem

straightforward, the only dependent sequences which have been considered are

the normal ones. The quite precise results available for this case are

discussed at the end of the section. A useful general observation, which

applies to i.i.d. and dependent cases with extremal index 0=1, is that once

rates of convergence of t he max imun have been found, then it is typically

quite easy to find similar rates for kth order statistics.

For i.i.d. random variables and a given un, the error P(Mn Un)-e -T

in the approximation (1.2.3) is easy to compute directly, since then

P(M--u)=Fn(u-), where F is the common d.f. of the variables. Further if F

is continuous one can always make the difference zero for any n, T>0 (by

taking un=F-l(e- In)). Hoever, often un is determined from other

considerations, e.g. in (1.2.1) it is chosen as un--Un (x)=x/an+bn and corre-

pondingly T=T (x)=-log G(x). Then the behavior of the approximation error

-n (x)=P(MnUn(X)) - e-rC ( x-,

perhaps over a range of x-values, and in particular of

d (a ,bn) = supn-1 (x) supIP(an(Mn-b -(x)n n n x n x n M~n) 5X) -~)

is less immediate. If (1.2.1) is used as an approximation or, more

importantly if it motivates statistical procedures, when an, bn have to be. -

estimated, interest centers on which rate of decrease is attainable when the

"best" an, bn are used, i.e. on

d =inf d (a,b) = inf sup Pta(Mn-b)_x} - G(x)
a> ,b a>0,b x

It is easy to give examples of distributions F for which dn tends to zero

arbitrarily slowly, and to any exponential rate there is an F which achieves

this rate. However faster than exponential decrease of dn inplies that F is

.2%
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max-stable, and then dn=O for all n, [8], [77]. Also different standard

distributions give quite different rates, e.g. for the normal distribution d

is of the order l/log n while for the uniform and exponential distributions

" the order is 1/n.

Let T = Tn(X) = n(l-F(un(x))). In the sequel we will usually, forn n

U brevity, delete the explicit dependence on x. An obvious approach to

analysing n (=An (x)) in the i.i.d. case is to introduce

n n -

a n (l-r/n) -e , = e -e

so that

(2.8.1) 1I1n I IF Fu)ie-T I I (1-Tn/n) ~e-1 T I a~ + i"A

Here 0_ -nn, and for such values the satisfying uniform bound
1• 2

(2.8.2) A' _ n (a + n )e

is derived by Hall & Wellner ([46]). Further, for fixed T, by Taylor's formula

(2.8.3) j ' ~ e- T I -r
n

as T -+T. However, (2.8.3) is only uniform for r -r = rn(X) - r(X) in
n n n

intervals which are bounded from below, and to bound d_ a further argument has

to be added. Often this runs as follows; (2.8.2) and (2.8.3) give sharp

estimates of sup .an (x)I, for any a > xo, where x0 is the left-hand endpoint
x>a

of the d.f. G, and then also for sup An (x) I if xn is taken to convergeX>Xn .
x2 n

to x 0 suitably slowly. Combining this with
< 5(2.8.4) s up 1 n( M 1_< max (Fn (x~an+b, G (Xn)}

x x n  n

leads to a bound for dn (an, bn), and then by varying an, b to bounds for d
n nnn n

This approach is used, with some variations, by Hall & Wellner ([46]), Davis

([26]), Cohen ([19] [20]), and Leadbetter et al. [55]). Here the bounds

corresponding to (2.8.2) and (2.8.3) are asymptotically sharp, but there is a
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possibility that i and can at least partially cancel. Hcever, thisn

happens only if T - T2/(2n) + o(i/n), and hence in fairly special

cases, as is readily seen (cf. Davis ([26))).

A number of papers, same of the later references being Cohen

([19][20]), Smith ([82)), and Resnick ([73]), have introduced conditions which

permit more explicit bounds than (2.8.1) - (2.8.4) to be calculated. Their

approach is to take some set of conditions for attraction to an extreme value

distribution, typically involving convergence of scme quantity related to the

tail of F, and show that if this holds at a specific rate then dn (an bn)

converges at a corresponding rate. In this a set of simple sufficient

conditions due to von Mises ([63)) (cf. [55], p. 16) have been particularly

useful. There are many possible versions of such conditions, and hence many

partially overlapping results have been obtained. As a typical example we

cite the following result of Resnick ([73]).

Suppose F is differentiable and that there exists a continuous

function g which tends monotonically to zero and which satisfies

xF'(x) a I - ) x>o,(2.8.5) X gM x>0
F(x) (-log F(x))

-0 -"for scme a>0. Then, if a is chosen to satisfy -log F( i, = n

sup IFn(x/a ) - exp(-x-} I _ .2701 g(a( 1

for n such that g(a I ) nHere (2.8.5) is a slight variation of von Mises'

condition for attraction to the type II extreme value distribution, and the

proof is somewhat different frn the method outlined above, the main

ingredient being an estimate of -log (-log F(x)). Resnick also obtains a

somewhat more complicated bound for the supreum dn (an, 0) over all x.

For i.i.d. variables bounds on the rate of convergence of the maximum

. ..
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automatically lead to bounds for the rate of convergence also of k t h largest

values. This follows by using (1.2.7) and any of the known bounds for the

difference between the bincmial and Poisson distributions, since Sn is
nD

binomial with parameters n, rn/n (see e.g. [55], Section 2.4).

The normal case, briefly mentioned above, of course has attracted

special attention. Straightforward calculations show that for an, b given by
n

(1.2.5),

Zn(X) [exp(-e-x)e (log log n) 2/(16 log n) as n 4 co

and in Hall ([44]) is shown that for i.i.d. normal variables there are

constants 0 < c < c2 < 3 such that cl/log n _ dn 5 c 2/log n, for n _ 3, i.e.

the best rate of convergence is of the disconcertingly slow order l/log n. ..

However, this is partially offset by the fact that d is, nevertheless, fairly .r

small for small n, e.g. for n 5 10000 it compares well with the error in the

normal approximation to the binomial distribution.

In their pioneering paper [34], Fisher & Tippet had already noticed

the slow convergence rate for the normal case, and suggested improved L

"penultimate" approximations. The idea is that since the type I extreme value

d.f. can be approximated arbitrarily well by type II (or type III) d.f. 's, if

a d.f. can be approximated by a type I d.f., the same error can (in the limit)

be achieved by a type II (or III) d.f., and there is always a possibility they

can do better. This has been further developed by Cohen ([19] [20], who in

particular shows that a penultimate approximation of the maximum of normal

random variables by a type II extreme value d.f. improves the rate of

2convergence to 1/(log n) . The disadvantage with this approach is that the

exponent a in the approximating d.f. then has to be chosen differently forIadifferent values of n. A related approach is to consider a function IMn a

instead of M itself. This is pursued in Hall ([45]) and Haldane & Jayakar

. j % •*n
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2
([43]), and gives the rate of convergence 1/(log n) for a=2, while other

values of a lead to the same order l/log n as for M. itself. Numerical

computations sho that these approximations also do better for small and

moderate values of n, as could be expected.

A further statistically relevant question is to find rates of uniform

N convergence, i.e. to bound

d = inf sup IP(an(Mn-bn) B) - G(B)

a>O,b BEB M.)

where B denotes the Borel sets in R, and G(B) is the probability that a.

random variable with d.f. G belongs to B. The obvious approach is to bound

the difference between the density (which is assumed to exist) of a n(Mn-bn)

and G'. Let G'(x) = G(x)Y(x), so that 7(x) = eX, Cx-- and a (-x) -  -

for the type I, II and III extreme value distributions, respectively. Since

(for i.i.d. variables),
d_ d n-(xa = '.

dP(an(Mn-bn)<xF ""n+bn) F(an + bN) na-F' (x/a + b ",
dx n' n dx n ' Fxa n n n

where the first factor tends to G at a rate given by the references cited

above, the main problem is to bound the difference nan F' (x/an + bn) - 7(x).

The recent thesis by Falk ([32]) contains a survey of results in this

direction, some further recent work being that of de Haan & Resnick ([42]) and

Weissman ([86]).

Another problem which has attracted some attention, partly because of

reliability applications, is the uniformity of the convergence of

P(an(Mn-b n)>x)/(l-G(x)) for large x; see Anderson ([2]) and de Haan & Hordijk

([40]).

For a stationary dependent sequence with extremal index 0=1, a

further source of error is the approximation by the associated independent

sequence, i.e. the difference

A.,. . . . . . . ; v" " • "
"
" """ " "" " ""* " 

'
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(x) P (an(Mn-bn < x) - Fn(x/an+b n)

where F is the marginal d.f. of the sequence. Cohen ([19]) shows, under weak
' t

covariance conditions, that for a stationary normal sequence an is

o(I/log n), and hence that the rate of convergence in (1.2.1) is determined by

the difference Fn(X/an+b) - G(x), and hence is the same as in the i.i.d.

case. Let p be the maximal correlation in the stationary normal sequence.

Rootzen ([77]) gives a first order approximation and bounds for
(l-p)/ (l+p) .

A,'' which are roughly of the order 1/n for p _ 0.
n

By using an embedding technique, these rates are extended also to Mkn

and to point processes of exceedances. This embedding can be used mre

generally, and hence also in dependent cases rates for the maximu= often

easily lead to similar rates for k-th largest values.

2.9 Multivariate extremes

We shall discuss here only one multivariate problem, the Extremal

Tyes Theorem for i.i.d. random vectors, and its extension to dependent

sequences. As shown by de Haan & Resnick ([41]) and Pickands ([72]) the

problem of characterizing the possible limit laws of the vector of

coordinatewise maxima splits into two independent problems, to find the

marginal d.f. 's which may occur - by the one-dimensional result this is just

the class of extreme value d.f. 's - and to characterize the limiting

dependence between components. Following Deheuvels ([30]) and Hsing ([49]) we
Mq

will use the concept of dependence functions to discuss this.

Let i = (l,...,d) be a d-dimensional random vector with d.f. G and

marginal d.f.'s G., ljd. The dependence function D of j (or of G) is

defined by

'2. _~~~~D(Xl,...,x d ) 
= P(Sl(t I) - l..S( d  d"...

.9. . *%.d 9.

................... ........ ........ ........ , .
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D is the d.f. of a distribution on [0,1] and it has uniform marginal

distributions if the G. 's are continuous. The marginal distributions together

with the dependence function determines g, since

(2.9.1) G(xl,.xd D(G (xl)I,....Gd xd)1,....

This is a consequence of the relation

(G.(i. G(x.); l j~d}\ 'U 1(G.(t) G.(x.) 3 > xj}

c ( j -< x; l_<j-d) c {G.( j) - G(x), l-sj-d), :'

since itis readily seen that P(Gj.( j)5Gj (xj), j > xj) =O0foreach j. -.

A further useful property is that convergence of d-dimensional..,'

distributions is equivalent to convergence of the dependence function and the

marginal distributions, provided the limit has continuous marginal d.f. 's.

This can be proved rather easily, using (2.9.1). Similarly to the one-

dimensional case, a d-dimensional d.f. G is said to be max-stable if there

exist constants a i > 0, b , i=l,...,d, such that

(2.9.2) Gn(an 1 x + bn + .. andxd bnd)=-(Xl1" Xd) xl'" Xd E

for each n=l, 2,..... Further, a dependence function D is max-stable if
q i (xl/n 1/n,-",

(2.9.3) l) = D(Xl,...,xd), Xl,...,xd E

for n = 1,2,...

Theorem 2.9.1 A d-dimensional (d _ 2) d.f. with nondegenerate marginal

distributions is max-stable if and only if its marginal d.f. 's and its

dependence function are max-stable.
r it

Proof. If GI,...,Gd are max-stable, or if G is max-stable, then there are

constants a > 0, b , with Gi(a nx + b i) = Gi(x), for i=l,...,d. Hence,
n ~ ,1 1 n,i ni C1

in either case,

(2.9.4) G(a = _nQl(G(anlxl+bn) ,...,Gd(andxd~bnd))

. _DnG 1 i/n 1l/n),... •x G.....
1



Thus (2.9.2) follows at once if D is max-stable, by (2.9.1). The converse,
' !. _. /n i/n\

i.e. that _P(yI ''', "d ) =D(y,...,yd) for yi e (0,1), i=l,...,d if G is

max-stable also follows from (2.9.4), by taking xi=G- (yi) there (note that

each Gi is nondegenerate max-stable and hence continuous and strictly

increasing on its support).

Let {.n} =(n,l' "',n,d))n=l be a sequence of i.i.d. random

vectors, write Mn, = max{ 1 , n, i) and suppose there are constants

a >0, b such thatn,. n,i

d
(2.9.5) P(an i(Mnib i) x, li5d) G(Xl

where we may assume without loss of generality that the marginal distributions

of G are nondegenerate. It then follows exactly as in the one-dimensional

case that the possible limits G in (2.9.5) are precisely the max-stable

d.f. 's. Thus, by Theorem 2.9.1 each marginal d.f. is max-stable and hence one

of the three extreme value types, and the dependence function is max-stable.

Further the distribution of a n,i(n,i-bn, i) tends to Gi, for i=l,...,d and the

dependence function of (Mn, i: i=l,...,d) converges to the dependence function

of G. To complete the characterization of the limits, it only remains to

describe the max-stable dependence functions. Again, this is a purely

analytical problem, to solve the functional equation (2.9.3), and we thus only

cite the result, which is obtained in somewhat varying forms in [45], [72],

,-'.[30], and [49].

Theorem 2.9.2 A function D on [0,1] is a max-stable dependence function if

and only if it has the representation

D(Yl,.,yd)= exp { min {x. log yi)du),
S l id
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where S is the simplex {(xl,...,Xd): xi 0 0, i=l,...,d, Ljxi=1), for some

finite measure u on S which satisfies Jxid = 1, for i=l,...,d.
S.

Hsing, ([49]) also makes the observation that while the

characterization of the limiting marginal d.f. 's is crucially tied to linear

normalizations, this is not so for the dependence function. Specifically, if

{Un, i(x) } are levels which are continuous and strictly increasing in x, and if

d

-P U(M(xQn, ilx,...d) G,

where G has continuous marginal distributions, then the dependence function of

G is max-stable. The basic reason for this is the obvious fact that if

V T..d are continuous and strictly increasing, then (tl,., and

(.T. (T (),...,Td( d)) have the same dependence function.

Hsing also extends these results to stationary dependent sequences

{in), along rather similar lines as for the one dimensional case, as treated

in Sections 2.1 and 2.2. Specifically, for given constants {un,j: j=l,...,d,

nl) the condition D(u n,.. .,un,d) is defined to hold if there is a sequence

1  = o(n) such that n a 0 as n for
n n,'.

" n,1 = max (I P( i,j - un,j j=l,...,d, i e A U B)

N -P(ti,j Un, j: j=l,...,d, icA) P(ijUn,j: j=l,...,d, i E B) 1 .5

"-" where the maximum is taken over all sets A,B such that A c {,...,k),

B (k+1,...,n), for same k. If D(un l,...,und) holds the only possible 4

limits in (2.9.5) again are the max-stable d.f.'s. Further, if in addition

[ d d [n/k]",.. (2.9.6) lim sup n Z d Z Pnk]., , t,. > u } 40 as k-) c

n il=1 i2=1 j=2 1  
1  2  2

then P(Mn ~ < Un, i=l,...,d) -) p >0 if and only if n( li _ unj:

i=l,...,d) - p, i.e. the asymptotic distribution of maxima is the same as if

- >'.-.
.4':.-:-.. ,.,, '.-,. -.,',..-' / ' ',,,,.-.. ' '-,"..", .' "- -"-"-,. .... ...:-'- ['""''''...-'C - -.' L
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the vectors were independent. ((2.9.6) of course reduces to (2.2.2) for d=l).

A further question considered by Hsing is independence of the

lmarginals in the limiting distribution. In particular, he shows that if
~~d [n/k]ui2(2.9.7) lir sup E E P(t >

i1,,2=1 j= l ,/.,0

.132

as k4co, and if D(unl,...,Un,d) is satisfied then (2.9.5) holds if and only

if P(ani(Mn,i-bn i) _ x) 4 Gi(x), as nw, for i=l,...,d, and G then is of the

form G(xl,...,xd) =GI(x1G 2(x 2) ... Gd(xd).

Now let { be normally distributed with E =O,V(l)= and let

rij(n) be the covariance between tij and .l+n,i" If rij(0) < 1, for

l.i~jd and ri(n ) log n4 0, as n- cD, for i,j=l,...,d, and ini=xi/an+bn,

with an bn as in (1.2.5) then D(un,,...,Un,d), (2.9.6), and (2.9.7) are

satisfied, so that the asymptotic distributions of maxima are the same as for

a sequence of independent normal vectors with independent components (see

[49], [1]).

2.10 Convergence of sums to non-normal stable distributions.

To consider the simplest case first, suppose {ti} is a sequence of i.i.d.

synmetric r.v. 's, with P(t i > x) - x - L, x 4 o, for some a. c (0,2), so that the i

, belong to the domain of attraction of the type II extreme value distribution, with

norming constants an-n-nl , bN=O. Let M ) and m denote the kth lrest

and kth respectively, of i ' . n" It is straightforward to show that then

(2.10.1) lim"sup a ( . - Z(Mk)+mk))> a1 4 0 as r - c,
n = n nn-) coi=1 k--1

for any 8>0. By Theorem 1.3.2 the joint distribution of {an M(k): k.-1,...,r)
nn

converges, and the limit can be found explicitly, as in Theorem 1.3.3. For

6d. Z. .. o.g-.-" '
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exaple, the joint asymptotic distribution of a(1) and anM is as given

there, with G(x) = exp(-x-c). Let {M(k): k=l,...,r} have this distribution,nk) iN1(k)

so that (a : k=l,...,r 4 : k=l,...,r. Similarly, there are(-"n k )  (k (m( k )

(m k-l,...,r), with (an% : k=l,...,r) ; k=l,.,r), and it is

easy to see that there is also joint convergence, (ank) an(k) . k l,...,r)A n%
Ca (k) ,r(k)

P *. (M~ k  m ; k-l,...,r). Hence

r (k)(k) r (k) (k)an E (N) E (M+M as ne 4 .k=-i k=l

() (k)
It can further be shown that Z (M k)+ m k ) tends in distribution to a stable

(or "sum stable", cf. Section 2.7), limit with index a as ro, and then it
n

follows at once from (2.10.1) that a E i has the same stable limit.
n

This illustrates that the central limit problem of convergence of sums

to non-normal stable distributions hinges on the convergence of extreme order

statistics, and the most natural approach to it is perhaps via extreme value

*1. theory. In Theorem 2.10.1 below this is made precise. The theorem, which

builds on ideas of Durrett and Resnick ((31]) and Resnick ([73]), contains a

functional central limit theorem, and the corresponding extreme value result

is the "complete" convergence of upper and of lower extremes, which is

discussed in Sections 1.3 and 2.4. The corresponding one-dimensional approach

via the joint distribution of extremes, as sketched above, is used in [56] and

(28] and will be briefly discussed at the end of this section.

The results depend essentially on the Ito-Levy representation of the

stable process, and we shall now list the relevant properties, referring to

Ito ([51], Section 1.12) for proofs and further information. Let ((t):

0_ t <_ i be a non-normal stable stationary independent increments process

(briefly, () (t)} will be referred to as a stable process). ( (t)) can - and

will throughout - be assumed to have sample paths in D[0,1] the space of

% %.
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functions on [0,1] which are right continuous and have left limits at each

point. Let S-=[0,1]xR, with R-[-,oD]\(0), and define the Ito process N of

JiUMS Of () by

,. 4(2.10.2) N(A) = #(t: (t, ,(t) - ,(t-)) E A)

for Borel sets A c S, where ) (t) - Y,(t-) is the jump of q(') at time t. F

' '-" Then N(A) is (measurable and) finite a.s. for each rectangle A such that ..

Ac [0,1 x [-co,-E]U[ E,] for some i>0. HenceN is apoint process, and in

fact it is a Poisson process with intensity measure v which is the product of

l.besgue measure and the measure V' on R with density +y - O-1 for y>0 and -.

yK-- 1 for y<0, for some constants 7+, i'- a 0 which are not both

zero (i.e. in shorthand notation, dy = dtxd' = dt x (i+Iy l dy)).

Let m(e) =0 for 0<<l, let m(e) =+y d (y) for a=l,
E<Iyl

and let m(c) = I yd' (y) for i<a.<2 , and define
E<Iyl

(0)
(2.10.3) n(t) 0_Is _ - t()

<yI

Here the integral is just a finite su: if N has the points {(t.,yj): j>l)

then Iy I > e and 0_<t_1 only for finitely many j's, and

I I ydN= yj.
O.st j: t <t and

With this notation

(2.10.4) P( sup I (t)- ')(t) I > 8) 4 0, as £0,

for any 3>0.

Let {n= be arbitrary random variables, let (a >0, b1' be normngnnln nn= 1 enomng.

constants, define stochastic processes: { n n (t): 0<t<l n=1 in D[0,1] by
~[nt]

(2.10.5) M E (t)--

na n n

94
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and in analogy with (2.10.2) let Nn be the point process of jumps of , 

defined as

(2.10.6) Nn(A) = #{t: (t,,1n(t)-)n(t-)) E A) = #(j: (j/n, an(tj-bn)) E A), -.

* for Borel sets A c S = [0,1]xR. The following theorem specifies the

connection between convergence in distribution of n to -n and of N to N. In
nn

this convergence is in D[0,1] given the Skorokhod topology, see e.g. [16,

Chapter 16].

. .. Theorem 2.10.1. Let (In(t): 0_tl) ard Nn be given by (2.10.5) and (2.10.6)
nn

and let (i(t): O.tsl) be a non-normal stable process with Ito process N
d

defined by (2.10.2). Then -n n 4 as n.*, in D[0,1], if and only if the

following two corditions hold,

d
(2.10.7) Nn - N as n O, on S,

and, writing In, j =1 if I an (t j-bn) I > e and = 0 otherwise[n J.n
[nt]

(2.10.8) limsup P( sup E 7 a (V-b )(l-I n)+ tm(c)j > 5) 40, as c40,
n4 00, _<t_<l j=ln n n3

for each a > 0.

Proof. Let N and Nn be the restrictions of N and Nn to [0,1] x

((-a,- ]U[Ec), for c>0. Let Y( ) be given by (2.10.3) and set

* (e)nt
= fydNn - tm()= r an(j-bn)In, j - tn().

n 0< s < t j=l
E<IYl

*" . First, suppose that Y n - n. The function which raps 'Y into

N and Yn into Nn  is a.s. continuous with respect to the distributionn (e) d (e)

of n (see Resnick ([73, p. ]) and hence N 4 N for each > 0.
• . d

This implies that Nn 4 N, i.e. (2.10.7) holds. Similarly,
,%n

' r4 " " ' " " " " . / " J -" ' l ' " ,- '' ' ' '' * . . "- " ' "% ' . . - ' "" . . " " " " . . ' '' , '
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-in(.) - )n()I' ) - (I in D[0,1], and hence(e) (E)

P{ sup I )n(t)-Y)n (t) l > 5) 8 P( sup i(t)- (t) I > 5) as n+,,0_<t I  0_<t < I r

since P(supo<t<l (t)- € (t) = 5) = 0, for 8>0. Now,

[nt] ::(2.10.9) n(t) - ,n)(t) = Z an(tj-bn)(1-In, j) + tm(E),

j =1 n n

and (2.10.8) thus follows immediately frcm (2.10.4).

Conversely, suppose (2.10.7) and (2.10.8) hold. The map

which takes N into Yn is a.s. N-continuous, and hence 1n '

as n)D in D[0,1J, and together with (2.10.8), (2.10.9) this implies that

in by [16], Theorem 4.2.

nnThe main condition, Nn -) N, of "complete" convergence of extremes,

requires much weaker asymptotic mixing conditions than those needed for

convergence of sums to the normal distribution, cf. the end of Section 2.4.

However, the local dependence restrictions, such as (2.2.2) may instead be

rather restrictive, and are not even in general satisfied for 1-dependent

processes, cf. Example 2.2.1.

The conditions of course became particularly simple when t i,2' "'"

are i.i.d. ThenNn 4 N is equivalent to nP(an( 1 -bn) e A)4 v '(A) , for each

Borel set A c [-co,-c]U[ c,a] for same c>0, which in turn is the same as

(2.10.10) nP(an( 1-b n ) > x) J+ y-- Idy, for x > 0,
x

, *j x
rnP((-bn) _ x)- _ f jy -=-1 dy, for x < 0,

-Y -' x

as n) . Another way of expressing (2.10.10) is to say that the marginal d.f.

F of the 's should belong to the domain of attraction of the type II

AJ~ -W %.,
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distribution for both maxima (if Y+>0) and minima (if Y_>0), with the same

norming constants (an>0, bn }. Furthermore, Resnick ([73]) shows that

(2.10.10) actually implies also (2.10.8) for i.i.d. sequences. Thus in this
d

case n 4 Y in D[0,1] is equivalent to (2.10.10). It may also be noted that

b can be taken to be zero here.n

If one is not interested in full convergence in D[0,1], but only in
n

'tnarginal" convergence of n(1) = a (ti -bn) to a non-normal stable
j=l

distribution, sufficient conditions are easily found by "projecting onto the

y-axis". Let N' be the point process of jump heights of n, given by

N'(A) = #(tE[0,1): n(t) - i(t-) c A] = N([O,1] x A)

for Borel sets A c R, so that N' is a Poisson process with intensity v' and

similarly let

NI(A) = #(j E [l,n]: an( j - bN) E A) =Nn([0,1] x A).n n j n

By the same considerations as in the last part of the proof of Theorem 2.10.1,

if

(2.10.11) N' N1, as fl*CD, in R,n

and if, as before with In,j = 1 if Ja ( j - bn) I > E and In,j =0 otherwise,
n nnn

limsup P(I Z a ( j-bN) (1-In,j) + m(E) I > 8) 4 0, as E - 0,

dfor each 6>0, then Y)n (1) d r)(1) in R. Moreover, it can be seen that

(2.10.11) holds if and only if the joint distribution of the k largest and k

smallest order statistics of l" '.n tends to the distribution of the k

largest and k smallest jumps of ({I(t): 0-t-l) for each k, cf. the

introduction to this section. This approach to convergence of E an(j - b
n ] n

"".'. to non-normal stable distributions is, with sane variations, pursued in detail

for i.i.d. 's by LePage, Woodroofe, & Zinn [(56]) and for stationary

0, sequences satisfying distributional mixing conditions by Davis ([28]).

% ,P.P
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Finally, the results of this section easily carry over to non-

stationary situations with [nt] replaced by an arbitrary time-scale, to

convergence of row-sums in a doubly indexed array { n j to a Levy
4.n,j to

(independent increments) process without continuous component, to multi-

dimensional t 's, and also to convergence of so-called self-normalized sums. --

2. 11 Miscellanea

(a) Minima and maxima. since the minimum mn-min{ i can be obtained

. as mn = -max{-yl,...,- n}, results for maxima carry directly over to minima.

In particular it follows from the Extremal Types Theorem that, under

distributional mixing assumptions, limiting d.f. 's of linearly normalized

N.: minima must be of the form l-G(-x) where G is an extreme value d.f. Further,

it is trivial to see that for i.i.d. variables minima and maxima are

asymptotically independent (cf. [55], p. 28).

In a series of papers ([23], [24], [27]), R. Davis studies the joint

distribution of m and Mn for stationary sequences {t n under a number of

different dependence restrictions. Here we only note that same of his results

alternatively may be obtained as corollaries of the multivariate theory

- discussed in Section 2.9 by making the identification so , i,=-ti, so

that Mn,ln , Mn,2=-mn . For example, writing un l=un, Un,2--Vnn for vn Un,

the mixing condition D(un, un) then translates to a 0 for some
n,l' n, 2 n, 1n

nn" ~sequence in=o(n), with . ,._.

a n, = ikx( ijP(t i Un , t V: i A U B) -

P(i f un, ti - v n A) P(i U , - V i B) J,

where the maximum is taken over all sets A c (1,...,k), B c (k+1,...,n), for

k=l,...,n-1. Thus if this holds for un--x/a + b and v = y/cn+dn, for all x C7-n n n n n n
and y it follows that any limiting d.f. of (an(M-bn), cn(mn-dn)) must be of

S. n'' '. '
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the form G(x,cz)-G(x,-y) where G is a bivariate extreme value d.f.

Furthermore the criterion (2.9.10) for independence of componentwise maxima,

i.e. here for asymptotic independence of Mn and mn translates to

', In/~[k] ....

1ir sup Z {P(tI > u t < Vn) + P ( < v ,j > un)} 0, as k4.
n-*o j=2 1 n + P V

(b) Poisson Limit Theorems. Although scmewhat less generally formulated, the .

Poisson and Compound Poisson limits discussed in Section 2.4 amount to

convergence of point processes N defined fram a triangular array { n, i:

i=l,... ,n, n_ } of zero-one variables, with stationary rows cn, i' Enn by
n,11 ... n.

gn(E) i n En,iI
i:i/nEE

for Borel subsets E of (0,1]. Thus, the proof of the Poisson limit for e=1

(see [55], Section 2.5) is easily seen to show that if D(un) and (2.2.1) hold

with i Un and ti > Un replaced by en, i=0 and en, i=I, respectively, then Nn

converges to a Poisson process with intensity T if and only if nP( n =1) ..n,l1

Conversely, the literature contains many sufficient conditions for

convergence, which may be applied to extremes by setting en, i equal to zero

or one according to whether Un or i > un. Two sets of such conditions

seem particularly useful here. For the first, let B i be the a-algebran, i

generated by cnl,..., ni. Then the relation

[nt] .

(2.11.1) 7 E{[En n i) 4 tT as n4o,i= na+l Bn, a .i=0

in probability, for each tf (0,1] is sufficient for convergence of Nn to a

Poisson process with intensity T ([36], [31]). For the second one, which is

due to Berman ([12], [14]), we assume that each row has been extended to a

doubly infinite sequence ... c n,-l, f n,0' n,l1, and write Bn,i for the .-.

q. '5.

. . . . . . . . . . . . . . . . . . .-
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a-algebra generated by n,l ,.... C n, Then the relation

[nt]
(2.11.1) E n, i+l I B n, i} tT as n-)4,

in probability, for each tc (0,1] is sufficient for convergence of Nn to a

Poisson process with intensity T ([36], [31]). For the second one, which is

due to Berman ([12], [ 14]), we assume that each row has been extended to a

doubly infinite sequence ... ,c n,-1, En,0' fn,l, and write Bn,i for the

"-a"gebra generated by e , n,i-1' E ni Berman's result is that if

nP(n =1) 4 T and if there exists a sequence 'Y of integers, with n =o(n), ..n,lI n nl

such that
-ynn P(Cn l=l, 1ni~) 0, n4 c,

i=2

nP(e n,l=iBn r 4 7 , n4 o, 

in probability, then Nn again converges to a Poisson process with intensity 7.

Neither one of these three sets of conditions imply any of the others,

in particular they are not necessary, and each of them might be the most

convenient one in some situation. However, e.g. for normal sequences with r n  .'

log n 4 0 they all seem to lead to about the same amount of work. One useful -

feature of (2.11.1) is that it also directly gives rate of convergence

results, cf. [77].

3. Extremes of continuous paramete proces

3.1 The Extremal Types Theorem for stationary processes.

In this section we consider continuous parameter stationary processes

and indicate the extremal results which are analogous to those of Chapter 2.

Let, then, { (t): t > 01 be a strictly stationary process having a. s.

,. continuous sample functions and continuous one-dimensional distributions. It

i m.-
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7-v

may then be simply shown as in [55, Chapter 7] (assuming that the underlying

probability space is complete) that M(I) = sup(t (t): t E I) is a r.v. for any

finite interval I and, in particular, so is M(T) = M([O,T]). The extremal

types theorem may be proved even in this continuous context, showing that,

under general dependence restrictions, the only nondegenerate limits G in

(3.1.1) P(aT(M(T) - bT) _ x) 4 G(x) as T 4 , "1

are the three classical types.

Though the general result requires considerable details of proof, the

method involves the very simple observation that for (any convenient) h > 0

(3.1.2) M(nh) = max(i , n

where i--ax {(t): (i-1)h s t _ ih). Thus if (3.1.1) holds and the

(stationary) sequence 1'2,'... satisfies D(un) for each un/anh+b, then

it follows from the discrete parameter Extremal Types result (Theorem 2.1.2)

that G mst be one of the extreme value types. Hence the Extremal Types

Theorem certainly holds for strongly mixing stationary processes since then

the sequence {sn) is also strongly mixing and thus trivially satisfies D(un).n n

However a more general form of the theorem results from showing that the D(un

condition holds for the [ 's when the t 's satisfy certain conditions - in -

particular a continuous version C(UT) of D(un). In fact the condition C(uT)

will be defined in terms of the process properties only at "time sampled"

points JqT for a sampling interval qT 0.

The I are of course maxima of t (t) in fixed intervals of length h

RH(e. g. 4= (h)) and the sampling interal qT must be taken small enough so .•

that these are well approximated by the maxima at the sample points jqT. A '2
convenient restriction to achieve this is to define q(=q(u)) to satisfy

(3.1.3) P(M(h) > u, t(jq) _ u, 0 _ jq 5 h) = o( (u)) as u

where (u) is a function which will later be taken to represent the tail of

-Zi z --f:

"'A"
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the distribution of M(h) but which for the present need only dominate

P(t(0)>u) i.e.

(3.1.4) P(t(0) > u} =o((u)).

In the following definition Ft (U) will be written for
-Ft

Ft t(u,... u), where Ft tn (Xl,...Xn) = P({(tl) < xl,... (t n ) Xn..
1 n 1** n

The Condition C(UT) will be said to hold for the process (t) and

the family of constants (UT: T > 01, with respect to the constants T 4 0 if

_ for any points s <s < s < t, .. < t , belonging to (kqT: 0< kcr fT) and
1 2... p 1

satisfying t -s p ^_ , we have
1p~

F ... t.4) 5  TF(T) C

where 4 0 for some family YT = o(T) as T 4 co
T,~T

Theorem 3.1.1. (Extremal Types Theorem for stationary processes) With the

above notation suppose that (3.1.1) holds for the stationary process ({(t)),

and some constants aT, bT and a non-degenerate G. Suppose also that € (u) is

a function such that (3.1.4) holds and T (UT) is bounded for UT--/aT bT, for

each x. If C(UT) holds for some family of constants lT=q(uT ) where q=q(u)

satisfies (3.1.3) then G must be one of the three classical extreme value

types.

Proof. The method of proof is to take an arbitrary sequence of points

Tn c (nh, (n+l)h], write Vn U and then relate D(Vn) for the sequence

'n to C(UT) for the process (Et) . This is achieved by approximating

the joint distributions of the fi by corresponding joint distributions of
.' .t. maxima at time sampled points jqr. Details of the calculation may be found in

[55, Section 13.11.

...-.
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3.2 Domains of attraction

In the classical theory of extremes of i.i.d. sequences the type of

',.-.K... limiting distribution for the maximu= was determined by the asymptotic form of

the tail of the distribution of i This remained true for dependent

stationary cases with non-zero extremal index since the limiting type was that

of the associated independent sequence. For continuous parameter processes

however it is clearly the tail of the distribution of §i (in view of (3.1.2))

rather than that of t which determines the limiting type. More specifically

if sis 2 ... are i.i.d. random variables with the same distribution as .l=M(h)

then { n) is called the independent sequence associated with {t}. If
n

the / -sequence has extremal index e>0 then any asyrptotic distribution for
nA

M(T) is of the same type as that for Again the caseis max n Aanhcs

0=1 is of special interest and sufficient conditions may be given. In

particular the following condition (analogous to (2.2.2) for sequences) is

useful:

The Condition C (UT) will be said to hold for the process ({ (t)) and

the family of constants {uT: T>0} with respect to the constants {q=q(uT) -0)

if

lim sup (T/q) p{(0)>UT, (jq)>uT} u as c40
T4 co h<jq<cT

.2.)We assume also as needed that for some function

(3.2.1) P(M(h) > u} - h (u) as u 4 n for O<h<3, sorre 8 > 0.

The following result may then be shown.

Theorem 3.2.1. Suppose that (3.2.1) holds for soe function 4 and let (UT)

be a family of constants such that C(UT), C' (UT) hold with respect to a family

(q(u)) of constants satisfying (3.1.3) with h in C (U not exceeding 8/2,

. . ._.-'..
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where 3 is from (3.2.1). Then as T c)

(3.2.2) T .(uT) 4 7 > 0

if and only if

(3.2.3) P{M(T) _ UT1 4 e- T .

Proof. It is sufficient to show that (3.2.2) and (3.2.3) are equivalent when

T is replaced by any sequence Tn E (nh, (n+l)h] and uT by vn = .But it

is readily seen that P{M(nh) _ vn} - P(M(Tn) _ v ) 4 0 so that it is
n n n

sufficient to show equivalence of the relations Tn 4 (Vn) 4 T and P (M(nh) <  
_

n hn

vn} '-.-r.
n

Now the sequence { } defined as in (3.1.2) satisfies D(Vn) and itn. nn

follows from Lemma 2.1.1 that for fixed k=n,2, , = [n/k],

P{M(nh) v Pk(M(nh) <v n} 4 0 as n .
n n

Afurther approximation of P(M(n h) _< Vn } by n h (Vn) may be obtained by .

approximating maxima over intervals with those frcm sampled points jq ({55,

Corollary 13.2.2]) and the desired equivalences follow from obvious relations

-l-
such as

1- (r/k) -o(k-I) lim inf P{M(n'h) _vn) lim sup PM(n h) _v}
n n

. 1- (T/k) + o(k ).

This result has the following immediate corollazy linking the

asy rptotic distributional properties of M(T) to those of the maximum

,n--max (fl,. n) of the associated independent sequence (n). -

Corollary 3.2.2 Let {UT 1 be a family of constants such that the conditions of

Theorem 3.2.1 hold. Let O<p<l. If

(3.2.4) P(M(T) U ) p as T co

then

." .. -.
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-(3.2.5) P{M. vn} p as n 4

with v nunh. Conversely if (3.2.5) holds for sane sequence (V n then (3.2.4)

holds for any uT such that (UT) (v provided the conditions of

v Theorem 3.2.1 hold.

Proof. This follows simply from Theorems 3.2.1 and 1.2.5 by obvious

identifications.

It may be seen simply from this how the function 0 can be used in the P"I

classical domain of attraction criteria to determine the type of limiting

distributions G in (3. 1.1) for M (T) . In this for an extreme value d.f. G we

write D(G) for the (classical) domain of attraction of G, i.e. the set of all

d.f. 's F such that Fn(x/an+bn) G S(x) for some sequences {an>0 ) {b}

Corollary 3.2.3 Suppose that the conditions of Theorem 3.2.1 hold for all

families of the form uT = x/aT + bT where a,?O and bT are given constants and

" -that M(T) has the limiting distribution given by (3.1.1). Then

(3.2.6) h$ (u) - 1 - F(u) as u 4

for some F ED(G). Conversely suppose that (3.2.1) holds, and (3.2.6) holds

pti
for some F c D(G). Let a > 0, b be constants such that

F>n(x/an+bn) -o G(x) and set aT = a [T/h]' bT = b [T/h] * Then (3.1.1) holds

provided the onditions of Theorem 3.2.1 hold for each u1-/a+bT.":'p

Proof. This follows from the previous corollary, noting that if F is the d.f. of

the associated independent sequence {n then l-F(u) = P(M(h) > u) - h (u).
n

In particular if O (u) satisfies one of the classical domain of

attraction criteria when substituted for 1-F(u), then the limiting

distribution for M(T) is of that type. Thus O (u) plays the central role in

determining limiting types just as the tail 1-F does in the discrete case.
.lh; A

'K-
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3.3 Extremes of stationary normal processes

In this section we briefly indicate how the results apply to a

stationary norral process t (t) (assumed standardized to have zero mean, unit

variances, and covariance function r(t) satisfying

(3.3.1) r(t) = 1 - C t c + o( tIc) as t - 0

for some C>0, 0< _ 2. This includes all the mean-square differentiable cases

(a=2) and a wide variety of cases with less regular sample functions (0<cL<2), "

such as the Ornstein-LUlenbeck process (a_=1). It may be shown that for such Wr,

a process (satisfying (3.3.1)) that a function (u) satisfying (3.2.1) is

given by

(3.3.2) (u) = C/O l HO U( 2 - OL)/ (2n) - 1 /2 e -u /2,

but the proof involves quite intricate computations when cL<2 (and indeed

forms the main part of the total discussion of the asymptotic behavior of

M(T)). The Ha are constants whose numerical values are known only in the

cases a=1,2 (HI=l, H2=-/2). The "regular" case cL=2 is simpler and . (u) may

then be alternatively obtained as in the next section.

It can be shown using the Normal Comparison Lerma (Theorem 2.5.1) that

the (standard) stationary normal process t(t) satisfying (3.3.1) satisfies

C(uT) if Twl (UT) T _ 0 with $ given by (3.3.2) provided that

(3.3.3) r(t) log t -4 0 as t .

To show this, the required "sampling intervals" q(u) are chosen to satisfy

(3.1.3) with qu2 /O - 0 sufficiently slowly. It can also be shown quite

readily that C (uT ) is satisfied under the same conditions.

The function (u) given by (3.3.2) satisfies the domain of attra--t n

criteria for the Type 1 extreme value distribution (e.g. T,,eorem 1.2.4, w t-h

-X
=l-F). Indeed some calculation shows that (3.2.2) holds with Te ,,

-ux/a-bT , for

A.



(3.3.4) r= (2 log T) I
PM-1/2 2(2 cc 2

bT = aT + ((2-a)/2) log log T + log(C/a HC(2- 12 -a T

Hence Theorem 3.2.1 gives the folloing result. A

Theorem 3.3.1. Let the (standardized) stationary normal process t (t) have

covariance function r(t) satisfying (3.3.1) and (3.3.3). Then P(aT(M(T)-

bT) x1 - exp(--eX) as T4 o, wher aT and b are given by (3. 3. 4).

-S.- *This result was obtained by Cramer ([21]) for the case a = 2 and a

somewhat more restrictive condition on the rate of decay of r(t) as t4 c. Theo1

* result in its present generality was obtained by Pickands [69] with further

subsequent refinements by other authors (see [55, Chap. 12, for references]).

In particular considerable generality is afforded by the family of covariances

satisfying (3.3.1), and the requirement r(t) log t - 0 imposes only a very

mild assumption on the rate of convergence of r(t) to zero as t* .

3.4 Finite upcrossing intensities, and point processes of upcrossings.

In the continuous parameter case exceedances of a level typically
occur on intervals and do not form a point process. However a natural analog

is provided by the upcrossings (i.e. points where excursions above a level

begin) which can form a useful point process for discussing extremal

properties. Further in many cases the intensity of this point process

provides the function 4 (u) needed for the determination of extremal type.

Before proceeding it is of interest to note that an alternative to discussing

upcrossings is to consider the amount of time which the process spends above a

level. This approach, used by Berman, is briefly indicated in Section 3.7.

Let then (as before) (t(t): t_0) be stationary with a.s.

10 If w %... 1 2- .5"
" _6
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continuous sample functions, and continuous one-dimensional d.f. If u is a

constant, (t) is said to have an upcrossing of u at to>0 if for some c>O,

t(t) _ u in (to-C, to) and t(t) _ u in (to, to + E). (Hence in particular

t(to)-u.) Note also that t(t) is (a.s.) not identically equal to u in any

interval, so that (t)<u at (infinitely many) points of (t0-E, t0 ) and (t)>u

at infinitely many points of (to, t 0 +e).

Under the given assumptions the number Nu (I) of upcrossings of u by

(t) in an interval I is a (possibly infinite valued) r.v.. If

u(u)=EN ((0 ,l))<D then Nu (I) < c a.s. for bounded I, and the upcrossings form

a stationary point process Nu with intensity parameter u=u (u).

For stationary normal processes satisfying (3.3.1) u is finite when

ct=2 and is then given by Rice's Formula,

(3.4.1) u(u) = (C/2) 7 e/2 - I
and for non-normal processes u may be calculated under weak conditions as

(3.4.2) a(u) = f z p(u,z) dz
* 0

where p(u,z) is the joint density of t(t) and its (q.m.) derivative t (t).

In fact these relations can be shown sinply since a (u) = lim J (u) where
q O q

(3.4.3) J q(U) = q-IP(t(O) < u < t(q)} (q > 0).

Note that the calculation of L as lim J (u) is potentially simple since Jq(U) ,..

q q
*i depends only on the bivariate distribution of t (0) and (q). Under general

*- conditions it is also the case, when u-+ o as q 0 0 in a suitably coordinated

way that

(3.4.4) J (u) - a (u) 2-

andq

(3.4.5) P{M(q) > u) = o(a(u)

It then follows that (3.1.3) holds if $(u)=a (u). For

.O' °



U'. r

-10

0 . (qu) P((0) _ u, t(q) E U, M(q) > u)

= (qu) - [P{ (0) _ u, M(q) > u) -P(t(0) 5 u < t(q))]
(qu)-  [P(Nu(0,q ) _1) ~ q (qu)- (qujq 7-

< > .< .

"l~ Jqu L 0

which with (3.4.5) readily gives (3.1.3). Also (3.2.1) is often satisfied in

regular cases. Under such conditions it thus follows that S (u) may be

-' replaced by u (u) in previous results such as Corollary 3.2.3. (For a precise

statement of conditions see [55, Theorem 13.5.2]).

Thus the intensity u (u) can provide a convenient means for

determining the type of limiting distribution for M(T). However the point

*process of upcrossings has further interesting properties analogous to those

for exceedances in discrete parameter cases. In particular a Poisson limiting

distribution may be obtained after suitable time normalization.

Specifically let u=uT and T tend to infinity in such a way that

Tu (UT)- T>0. Define a normalized point process N of upcrossings having points at
T

t/T when has an upcrossing of u at t i.e. N*T(I) = #{upcrossings of uT by

(t) for t/T e I). Then the following result holds.

Theorem 3.4.1 Suppose that the conditions of Theorem 3.2.1 hold, with

h (u) =a (u). Then converges in distribution to a Poisson Process with

intensity T as T- -. This in particular holds for the stationary normal

processes satisfying (3.3.1) with cL=2 and (3.3.4).

Similar results may be obtained under appropriate conditions for the

point process of local maxima of height at least u, as u-- , leading in

particular to the asymptotic distribution of M(k) (T), the kth largest local

maximun in [0,T]. Indeed "complete Poisson convergence" results analogous to

those indicated for sequences in Sections 1.3 and 2.4, may be obtained for the

% '
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point process in the plane consisting of the locations and heights of the

local maxima. (cf. [55, Sections 9.5 and 13.6] for details).

Finally, it is also possible to obtain Poisson limits in cases with

irregular sanple paths when u (u)=w (e.g. normal with 0<i<2) by the simple

device of using the "E-upcrossings" of Pickands [70] in lieu of ordinary

upcrossings. Specifically, for given E>O, (t) has an c-upcrossing of the

level u at t0 if t(t) _ u for t C (t0- , t 0 ), and t (t)>u for scme

te (t0, t 0+tY), for each Y)>0, so that clearly the number of e-upcrossings in a

finite interval I is finite (indeed bounded by (m(I)/c)+ 1 where m(I) is the

length of I). This device was used in [693 to give one of the first proofs of

Theorem 3.3.1.

2 .'.'. 3.5 X -processes

The proofs for normal processes in Section 3.3, and also for the

sequence case (Section 2.5) use the Normal Cmparison Lemma (Theorem 2.5.1) in .V

an essential way. It will also be the basis for the present section on

functions { X(t)) of stationary d-dimensional (d _ 2) normal processes

M ()=((t) .M) defined as

d
'4(3.5.1) X tM = Z ~)i=l

We shall assume that the components are standardized to have mean zero and the

same variance one - here this is a real restriction and not just a question of
normalization - and also that the components are independent. Then X (t) has

2 2
a X -distribution and the process {x(t); t_>0) is called a X -process (with d

4'.- degrees of freedom). Extremal properties of X2-processes, and of some

related functions of J (t), have been studied in detail by Sharpe ((80]),

Aronowich and Adler ([4], [5]), and Lindgren ((2], (57], (59]). Here we will

" *. " " " . " . " " " ... " " - -"
* - .," :. " "" " ' 
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/,. . follow the "geometrical" approach of [58), and use the fact that X (t) is the

radial part of j(t) to find the asymptotic double exponential distribution of

maxima of X (t), referring the reader to [5] for results on minima. However,

.-- ~ we will indicate how the results can be obtained quite smoothly from the

general theory of Section 3.4, rather than by using Lindgren's direct

calculations.

Now, suppose further that the component processes { i(t) , i=l, . .. ,d

are continuously differentiable a.s., and have the same covariance function

r(t). We shall presently show that u (u), the mean number of u-upcrossings by

X(t), Otl, is easily found frcm (3.4.2), and then apply Theorem 3.4.1. For

* i=l,.. . ,d, i (0) and ti (0) are jointly normal, and hence independent, sincef!

Cov(t i (0),i()) = lim E(h (ti(h)-ti(0))i(0)) = r (0)=0, where the
h-os

last equality holds because r(t) is syimmtric around zero. Similarly, if
I

'=-r"(0) is the second spectral moment, 1 (t) has variance X. Thus the

' , d ,d 2
conditional distribution of X (0) Z 2 (0) (0) given X (0)= Z i(0) = u>0

i=0 i i=1

in ad 2is normal with mean zero and variance E 4 X (0)=4Xu. Let p(zIu) be the
-- p i~l 1

density of this conditional distribution and let p(u) be the density of

X X(0), i.e.
/. .

(3.5.2) p(u) 2-d/2p (d/2) - I ud/2-1 e-u/2.

Then, using (3.4.2), it follows that

u(u) = p(u) I z p(zlu)dz

=2-(d-l)/2 P d/2)-l(X/) 1/2 u(d-l)/2 -u/2

for u a 0. For u fixed, Jq (u)=P(x(o) 5 u < x(q))/q4 u(u) as q4 0, and

similarly (3.4.4) holds also when u D m, q - 0, with u I / 2 q 4 a>0 (cf. [58,

.1.,
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Lemma 3.5], viz. a ()-.(u) as q-) 0, as needed.Jq~

S3.5.1 Let _t (t)=(t 1 (t), ... I t(t) ) be a continuously differentiable d-

d.imensional standardized normal process with independent canponents and the

same covariance function r(t), as above. Suppose further that r(t) log t 40

as t -4 c and that

(3.5.3) Tsu(uT) 4 T as T- 4

and let NT be the point process of upcrossirqjs of u1 by (X(t/T): t E[0,l1

Then N Tconverges in distribution to a Poisson process with intensity T, and

in particul~ar,

(3.5.4) P~max X(t) 5 u, T 4 e- 7 , as T 4~

0~t5T

Proof. We shall briefly indticate how the conditions of Theorem 3.4.1 can be

checked. We assu~me that d=-2, the extension to d>2 being straightforward. The

main idea in ( 58 ] is to introduce the normal random field (X e(t) : 05e0<2 7r,

t 0), where ..

Xe(t) 1 (t) Cos@ + t 2(t) sine

is the component of _t(t) in the direction (cose, sine), and to note that then

(3.5.5) x (t) = sup XG (t) 2

0O5 <2 ir

2
Thus sup X(t) =sup xe(t) ,and it follows at once from

the extremal theory for normal random fields that (3.2.1) holds, for

S(u)=u(u) and any h>0, see [58, Lemna 2.2]. As noted above for f ixed a>0
awe

(..)holds frq=a/u 12and since clearly P(t(0) > u) = o(u(u)), (3.4.5)

is satisf ied and thus also (3. 1. 3) holds with (u) = u (u) . Thus it only

remains to establish C(qT1 ) and C' (uT), for an arbitrary h, say h=l, and with

this choice of q = q(u) since all the conditions then also hold if a is taken

to tend to zero sufficiently slowly as u aD . For this we introduce a

'V N N.



"74

further sampling, in the a-direction, given by a parameter r = r(u) = b/u I / 2

with b>0. Let X(t) =nmax {tXir(t); i=O,...,[27/r]}. Then, by (3.5.5) and an

easy geometrical argument,

2 - 2
(3.5.6) fo(t) rosr r- (t) 2 <- xt

(3.5.6) To show that C-[holds let UT) "Cos r, so that by(3.5.6)

and stationarity,

(3.5.7) T P(X (0)>u T, X (jq) > UT)q 1jqET c-

P(Xr(O)>UT ' Xr(jq) > uT)
q 1jq< cT

<_T I P(i (0)>UT.., 'r(Jq ) > UT) - (-r (0)>U,)Pxr(jq)>UT) I

1ijq eT 'r.T

2 '2
/) /2 adhP(tr(O) > t)

It is readily seen that Tu((uT) = T e b ard that e(t) has ean -.-

zero and variance one, and that Icov (Xo(O), Xo'(t))I < jr(t)I, for any

0,6 . The Normal Caonarison Lemma can then be routinely applied to show that

the sumn on the righthand side of (3.5.7) tends to zero. Further, since '-

1/2
a(u)/p(u) = (21u/7) / , by (3.5.2) and since J (U) a(u), it follows from

'g (3.5.6) that

V.2 2 2 '2 2,(T/q) 2 P(Xr(0) > UT) 2 <  (T/q) 2 P (X (0) > (LIT)2) ...:

2 22 '2 2 2C (Tu ((uT)2) (Plx (0) > ( 2,(UT ) )
_>,,eb2/2) 2 (8,)l 2 "

Next, with the notation of C(uT),

(3.5.8) IF NT) F I .... ,yYI
S. . - . t . .... "

__,.,.
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5~~~~~~,.. P( (t .- .. i ..

I Cr~t S, -
P(Xr(t)< 5 : t (S,.Sp)(r(t) - -T:t {t,....,It,) ...'',?

r~~~~~ ~ ~ ~ 14T)1 (i . Ip)PXr -I

+ P(uT 5 X(jq) -Utycos2 r).
Osjq5T

Here the Normal ccarison Lemma may be applied, similarly as for C (UT), to

show that the first expression on the right tends to zero as T4 D, if tl-sp _

'T for suitable oT = o(T). Further, the last sum in (3.5.8) is bounded by

2 c s~
Tq -' =-

T ~ ~ ~ ~ 2 b21U /4-ico .:k

(27r/ X) 1/2 (l-e -b 2/ 4 )/a as T

by straightforward computations. Since this limit tends to zero as b4 0, for

a fixed, this may be seen to prove C(uT).

It is easy to "solve" (3.5.3), to show that (3.5.4) implies that

P (aT (max X (t)-bT) x) 4 exp (-e as T-,
O~t5T

for

2 -

/) aT = 1/2, bT= 2 log T + (d-l) loglog T - log (P(d/2)

It might also be noted that this proof of C(uT) and C (UT) applies without

change also when the components of ][ (t) are dependent and have different

covariance functions.

3.6 Diffusion processes

Diffusion processes have many useful special properties, and

correspondingly several different approaches to their extremal behaviour are

possible. E.g. Darling and Siegert ([22]), Newell [66], and Mandl [62] apply
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transform techniques and the Kolmogorov differential equations (cf. also the survey

17]), Berman [11] exploits the regenerative nature of stationary diffusions,

similarly to Section 2.6, and Davis [25] and Berman [13] use a representation of the

diffusion in terms of an Ornstein-Uhlenbeck process. Here we shall discuss scme

aspects of Davis' methods, and in particular state his main result (relation 3.6.6)

below).

A diffusion process { (t); t _ 01 can be specified as the solution of a

stochastic differential equation

(3.6.1) dt(t) = u(t(t))dt + a( (t))dB(t)-

where {B(t) : t_ 0) is a standard Brownian motion. We refer to [52] for the

precise definition, and for the properties of { (t)) usedbelow. For simplicity we

will consider a somewhat more restrictive situation than in [52], and in particular

we assume that { (t) ) is defined on some open, possibly infinite, interval I=(r, r2 )

and that a and a are continuous, with e>0 on I.

Let {s(x); xcI) be a solution of the ordinary differential equation

(3.6.2) 2(x)s (x) + 2a(x)s (x) = 0

i.e. let it have the form s(x)=c +c2 IX exp (-Iy (2u(z)/-2(z))dz} dy, with
0 0

c2 > 0, c1 real constants, for some point x cI. Then s is strictly increasing and by

Ito's formula nt=s(t ) satisfies dj t=f(nt)dBt, for f(x)= s (s (x)) (x)), j

i.e. s is a scale function and { t: t-0) is the diffusion on natural scale. The

speed measure, m, corresponding to this scale function then has density 1/f (x),

i.e. m(dx) = (1/f(x))dx. We further assume that the speed measure is finite, im!

1I m(dx) =f 1 (1/f(x)dx < a, and that s(x) - w as x-*r 2 , s(x) -c as x-rI. It then

follows that the boundaries r,, r 2 are inaccesible, that the diffusion is recurrent,

and that there exists a stationary distribution so that { (t)) becomes a stationary

process if (0) is given this distribution.
The Ornstein-Uhlenbeck process, which will be denoted by { (t) here, is

5 -:0
.. . . . ...v?:.:. .........-.-..;; ., ,....., .- *.*** ~ % :s~ . * :: .. - . . .. :.. ....... -.....-..-
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the stationary diffusion process (3.6.1) specified by I=R, u (x)=x/2,

a (x) =1, x I. For the present purposes, a convenient choice of scale function

for {(t) iss (2) I/2 xey22 dy, and the corresponding speed measurefis 2e_ / o e.../2

is m(dx) (27!) 1 e 2 dx. Further, it can be seen that (j (t) } is a

stardardized stationary normal process with covariance function r(t)=e and 67W

that s(x) - ( 1/2r / 2 = (xM(x))- 1 as x- . Hence, Theorem 3.3.1 may

be applied with C=cL=l and its conclusion can, e.g. by a simple "subsequence

argument" be written as

(3.6.3) sup P(M(T) < u) -e-T/Iq(u)i 4 0 as T 0,
u>u0

for any u0 >0, and with M(t)=sup(t (t): OtT).

The main additional fact needed is that the Ornstein-Uhlenbeck process on

natural scale can, by a change of time, be made to have the same distribution as

({i(t)). More precisely, ([25, Theorems 2.1 and 2.2]), there exists a strictly

increasing random function { T (t) : t_ 0) such that the processes (s (t (t)): t_ 0) and

{s(( (t))): t2 0) have the same distribution, and which satisfies :.

(3.6.4) T-IT(T) 4 i/]m I  as T 4 , 5

almost surely.

As in Section 2.6 it follows easily from (3.6.3), (3.6.4) that

-T/(s(u) I ml)
(3.6.5) SUp IP(M(r(T)) _ U) -e I 4 0, as T 4 c.

u>uo

Since for M(T) = sup( (t): 0tT),

P(M(T) u) = P(sup (s(t(t)): OtST) < s(u))

= P(sup (s(t(T(t))): Ot<T) < s(u)) '.

= P(M(T(T)) < s-(s(u))),

(3.6.5) is readily seen to imply the main result of [27], that

-T/(s(u) ml)
(3.6.6) sup IP(M(T)<u)-e I 0 as T 4 ,

p .u < u , , .

0

1 14%

% %S



for any u c I with s(u )>0. This is a quite explicit description of M(T), "as the maximum
0 0

of T i.i.d. random variables with d.f. G(u) = exp(-1/(s(u) l ) }", and in particular

domains of attraction for M(T) are found by applying the classical criteria to exp {-

1/(s(u) m )) Finally, as for Markov chains, the hypothesis of stationarity is not

essential, (3.6.6) holds for any initial distribution, as can be seen e.g. by a sirple

",coupling argument".

3.7 Miscellanea 71

(a) Moving averages of stable processes. These are continuous time processes

of the form t (t) = I c(t-x)d[ (x), with {s (x) } a non-normal stable independent

"O0' increments process. Their extremal behaviour, which is similar to that of the

* corresponding discrete parameter moving average (cf. Section 2.7), is studied

in detail in [75].

(b) Sample path properties. As mentioned in Section 2.7, [75], [76] and [29]

also study the asymptotic distribution of sample paths near extremes. A

different approach to this problem, via so-called Slepian model processes, has

been pursued by G. Lindgren in a series of papers, cf. the survey [60] and the

references therein.

(c) Extremal properties and sojourn times. In an important series of papers,

%% Berman studies "the sojourn of (t) above u", defined as L"(u)=8 l (t)>u)dt,

where 1{. } is the indicator function. For a wide variety of cases, including

many normal processes, X 2-processes, Markov processes, and random Fourier

sums, he finds the asyrptotic form of the distribution of y (u) as u- for

fixed T, and as u,T-. in a coordinated way. Further, he uses the equivalence

of the events (M(T)>u) and {(u)>0) to study the maximum of ( (t)). This

,'. r, ,w,. in the 1r,,!ent iournal ([12]) by Twrman h iireI f

L'-- e, 4 e- ". "." F -- e-



1."

• EE- C,

Because of space limitations we have not attempted to give a complete
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