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EXTREMAL, THEORY FOR STOCHASTIC PROCESSES

by
M.R. ILeadbetter Holger Rootzen

University of North Carolina University of Copenhagen

The purpose of this paper is to provide an overview of the asymptotic
distributional theory of extreme values for a wide class of dependent
stochastic sequences and continucus parameter processes. The theory contains
the standard classical extreme value results for maxima and extreme order
statistics as special cases but is richer on account of the diverse behavior
possible under dependence in both discrete and continuous time contexts.
Emphasis is placed on stationary cases but other important classes (e.g.
Markov sequences) are included. Significant ideas and methods are described
rather than details, and in particular the nature and role of important
underlying point processes (such as exceedances and upcrossings) are
emphasized. Applications are given to particular classes of processes (e.d.
normal, moving average) and connections with related theory (such as
convergence of sums) are indicated.
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1.1 Scope and content of the paper

The purpose of this paper is to give a "motivated overview" of the
principal results in and related to the distributional theory of extremes of
stationary sequences and processes. In particular we shall be concerned with
distributional properties of the maximum 1\% = max(El,Ez,...,En) and other
order statistics from stationary sequences (Ei} as n-» o and with
corresponding results for continuous parameter processes. The emphasis
throughout will be on the motivation for and significant methods used in
obtaining the results. Full proofs will not generally be given - in many
cases the details of such proofs may be found in the volume [55], or from the
references cited.

The results to be described may, in part, be regarded as extensions of
the classical theory of extremes of sequences of indeperdent, identically
distributed (i.i.d.) random variables (r.v.'s). However, they constitute more
than just such an extension of the classical theory, since the dependent

framework provides a natural setting for the theory and one in which its

essential ideas and methods may be clearly exposed. In particular, it will be
seen that the central results may often be regarded as special cases of the
convergence of certain point processes - a view which may of course be taken
in the classical case but which is less needed there in view of the detailed

i.i.d. assumptions. Our discussion will emphasize the centrality of these

underlying point process cornvergence results.
As indicated in the list of contents, this paper is organized in three

main parts. This first introductory part contains central distributional

results of the classical i.i.d. theory and, in particular, the "Extremal Types

Theorem" which restricts the possible limiting distributions for maxima to

essentially three "different types". We shall indicate the general
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organization and main features of the most recently available derivations of

these results, using the simple and elegant approach of de Haan via inverse E
functions. As can be seen even this i.i.d. theory becomes most natural and
transparent when viewed from the standpoint of the behavior of related point uLd‘
processes - such as the exceedances of high levels. i:i
The second part of the paper concermns extremes of sequences - 13
primarily (but not always) assumed stationary and is largely based on point .ﬁ

process methods. It will be seen that the classical theory may be regarded as

A b

a special case of the more general theory for dependent sequences - some
‘results being identical and others generalizing in interesting and non-trivial
ways. For example, it will be seen, under weak dependence restrictions, that
the general "type" of limiting distribution for the maximum is the same as for
an i.i.d. sequence with the same marginal d.f. (though the normalizing
constants may change). However, the limiting distributions for other order
statistics can be quite different from those under i.i.d. assumptions.

Some particular cases of special interest (e.g. normal sequences,
moving averages, Markov sequences) will be discussed in Part 2. Other aspects
of the theory (e.g. rates of convergence, multivariate extremes) are also
briefly described along with some interesting connections with convergence of
sums.

In Part 3 attention is turned to continucus parameter processes. The
theory here may be made to rest on the sequence case by the simple device of
regarding the maximum of a process {(t) up to, say, time T = n as the maximm
of the values of the sequence {i = sup{ §(t): i-1lsts<i), for ls<icsn. While
this is simple and obvious in principle, the details are more complicated and
require analogous but somewhat more intricate assumptions regarding the

dependence structure of the process. The point process approach is also very
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valuable here - considering, for exammle, upcrossings of high levels in lieu
of exceedances. Again, a rather full and satisfying theory results ard is
applied, in particular, to special cases such as normal, and X2 processes.
Properties of point processes of local maxima may also be obtained, as will
be briefly indicated.

It may be noted that the stationarity assumption, where made,
primarily provides for convenience and clarity, and that some departures from
this will either not alter the result, or will alter it in an interesting way
which can be determined. This will be evident, e.g. in discussion of normal
sequences, where extensions to useful non-stationary cases will be briefly
mentioned. Finally this paper is not by any means intended as a camplete
review of all aspects of extremal theory - a number of important topics are
not referred to at all. Rather it is our purpose to provide an overview of
much of a developing area which includes but is more widely applicable than
the classical theory, and is based on the interplay of interesting
mathematical techniques. In particular we emphasize recent results -

especially those cbtained since the publication of the volume [55].

1.2 Classical extreme value theory

The principal concern of classical extreme value theory is with
asymptotic distributional properties of the maximum annax( El, 52, ceey En) from
an i.i.d. sequence (Ei) as n-» o, While the distribution function (d.f.) of
M may be written down exactly (P{M < x) = F'(x) where F is the d.f. of
each Ei) , there is nevertheless virtue in obtaining asymptotic distributions
which are less dependent on the precise form of F, i.e. relations of the form

d

(1.2.1) P{an(Mn - bn) < X} » G(x) as n- o,

where G is a non—degenerate d.f. and a, > 0, bn’ are normalizing constants.
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The central result of classical extreme value theory, due in varying “’“
degrees of generality to Frechet [35], Fisher and Tippett (34], and Gnedenko .
[37], restricts the class of possible limiting d.f's G in (1.2.1) to 3
essentially three different types as follows. o
Theorem 1.2.1 (Extremal Types Theorem). I.etr%=max (El,zz,...,fn) where :ﬁv
9
(A
¢i are i.i.d. If (1.2.1) holds for some constants a, > 0, b and some non- :’ “
&
degenerate G, then G must have one of the following forms (in which x may be \'
replaced by ax + b for any a > 0, b):
Ny
Type I: G(x) = exp(-e~X) -0 < X < o »'a'
0 x < 0, o
Type II: G(x) = { ] J,",
exp(~-x-¢), for some a > O x>0 *_
[
exp(-(-x)*), for some a > 0 x £ 0, fjf'}_
Type III: G(x) = L s
1, x > 0. P
Conversely any such d.f. G may appear as a limit in (1.2.1) and in fact does :::;{
so when G is itself the d.f. of each . By
7
It will be convenient to say that two non-degenerate d.f.'s G, and G, - .
are of the same type if Gl(x) = Gz(ax + b) for some a > 0, b, and to refer E‘: '
gy
to the equivalence classes so determined as "types". The use of “type" in the é‘i
above theorem is a slight abuse of this since Types II and III really "-.‘\
Cat
represent families of types--one corresponding to each a« > 0. However this :‘%‘
(‘-
abuse is convenient and it is conventional to refer to "the three types" of _ }:'\
limit. It should also be noted that the three types may be incorporated into ;i"
P
a single family, for example by writing Gu (X) = exp{~(l-ax)!/%}, -o<a<w, r_.‘_:_
- "
ax < 1, G, being interpreted as lim Gq(X) = exp(-e x). (Such a para- i,.,;
a0 o
metrization was introduced by von Mises). o
.::.h
Before indicating the main features of the proof of this theorem, it ."_:_.
"
s
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N, will be convenient to state the widely used result of ¥hintchine which enters
) extremal theory here and elsewhere in significant ways.
~
: Lemma 1.2.2 (Khintchine)., Let {Fn) be a sequence of d.f.'s and G a non~
degenerate d.f. Let a, > 0, bn be constants sych that Pn(anx + bn) g G(x). 2
LOm Then for some nondegenerate d.f. G, and constants a > 0,8, _.:.:
] e
" . . _1 -l “:‘--:‘-
+ Fn(anx+13n) @, G, (%) if and only if a, a, 2 a and a, (Bn bn) > b for some :::::_:_.
a >0 and b, and then G, (x) = G(ax+b) so that G and G, are of the same type. -‘
ST
§ The derivation of Theorem 1.2.1 can be conveniently divided into two ;.:-_f:_‘
(> '.'_.<:_
'; parts and this division is most useful for later forms of the result. The A
¢ AR M
¥
i first part is to show that the class of limit laws G in (1.2.1) is precisely )
:; :"Jf
the class of max-stable d.f.'s. Specifically a d.f. G is called max- N
" e
» -)‘ )h.
7 stable if for each r=1,2,... the d.f. G" is of the same type as G, i.e. if e
' there exist constants a, > o,bn such that Gn(anx + bn) = G{x). The following -
s v \
;:: lemma--which follows readily using Lemma 1.2.2--gives an immediate proof of '::.:_.z-
- this part. X ;-
[ %"
Lemma 1.2.3. A non—degenerate d.f. G is max-stable if and only if there is a '..;-
" ::-‘-s"
e ' "~
o sequence {Fn} of d.f.'s, and constants a, > o,bn such that ;:5; f
" d ‘\1
5 -1 1/k Bty
; (1.2.2) Fn(ankx + bnk) > G7/7(x) as mwo for each k=1,2... Wy
-‘. . . . . . . ‘,'.f_-
o It is easily seen from this that any G satisfying (1.2.1) is max- W
Z S
<. stable by simply identifying F,_ with F" where F is the d.f. of each §, For
hv d ' o
- *J
o (1.2.1) is just Fn(anlx+bn)-> G(x) ard replacing n by nk yields (1.2.2) at *t
L 'u":-:'.
> once. The converse is even simpler since if G is max stable and :.,,
o _ 2hes.
&' Gn(anlx+bn)= G(x) for some a, >0, bn' an i.i.d. sequence with common d.f. G -
5 satisfies o
2. N
NN
:. \\.":\. 3
- o
~...f:'-..., -‘:J_:-‘.:-'_; . ~'.--._— ~rcp -,‘:‘...;J s --.-..‘:_\ LR RF S LTV -"':'_ ~ . ‘i".:l‘ “"-‘J’ At -(,.:r.; & ').:.’.;J‘_:r“:l{-“:::{f :J' -"':".':'-“;":“':‘;:-;“-;::;::'b‘-\
"'i -"‘?‘n‘.’. B e Al .ﬁa"‘" " .\‘ .“. :'t.. . !ﬂ ’h‘Jc‘!’:‘!::‘!::‘!ﬁ..h‘n :.::“..I' -'.@Qili: (R 0 \\' \ e "‘: {‘.!-‘ ( LN
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;'_s-_ . Pla (M - b)) s x} = Gn(ahlx + b)) =G(x)

so that (1.2.1) holds trivially and G is indeed a limit law for maxima.

The essential point of this argument is that if Fn is the d.f. of Mn’
then the assumption (1.2.1) is the same as (1.2.2) with k = 1 and the
independence shows that if (1.2.2) holds with k = 1, it holds with k = 2,3,...
so that G is max~-stable. It will be seen later that the same line of argument
holds in dependent cases though the details are more complicated since Fo is
nc longer precisely .

Thus the class of non-degenerate limit laws for maxima is precisely
the class of max-stable d.f.'s. The other part to the proof of Theorem 1.2.1
is to identify the class of max-stable d.f.'s with the Type I, II and III
extreme value d.f.'s. This is a purely function-analytic (non-probabilistic)

procedure and will apply verbatim in dependent cases. It is in fact trivial

to show that each extreme value d.f. is max-stable. The more important

converse is readily shown by transforming the definition of max-stability of G

..,.....'-

J
N to give a functional equation for the function U(y) inverse to
- ~log(-log G(x)), which may be readily solved (cf. [38]) to show that G must be
e
fh:: one of the three extreme value types.
W
b

It is, of course, important to know which (if any) of the three types

’ T
o A -
s VO

of limit law applies when En has a given d.f. F. Necessary and sufficient

T T T
£ ¢%,
»

>

conditions are known, involving only the behavior of the tail 1-F(x) as x

TXE T
S5t

increases for each possible limit. One form of such domain of attraction

o) ¥

fi: criteria is as follows. In this Xp (s o) will denote the right hand end #,

13 . vy
e . S )

o point sup(t: F(t) < 1) of the d.f. F. oo
>

;::; '\‘.\

Theorem 1.2.4. Necessary and sufficient conditions for the d.f. F of the 7

.

" .. S

-q; r.v.'s of the i.i.d. sequence {En) to lead to each of the three types are: j-,.}j

\}.?1

ﬁ ?‘a._‘;t

v 3

“ %
»

&
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": Type I: There exists some strictly positive function g(t) such that
‘ -
. lim  (1-F(t+xg(t)))/(1-F(t)) = e * for all real x;
tmxf‘ A
;::: Type II: xF = o and .;:::::
S -
Lo lim (1-F(tx))/(1-F(t)) = x ¢, a > 0, for each x > 0;
» t o e
. AT,
I o
a . ; .:\
ﬁ: Type III Xp <@ ard ;:::?
[ lim (1-F(x=x¥h))/(1-F(x~h)) = x*, «>0, for each x > 0. B
N hv0
Ly
” The sufficiency of these conditions is readily established (cf. [55]).
" The necessity is more complicated (though perhaps also less important) but may
;3'-: be achieved by using methods of regular variation (cf. [39] for a recent
e
e smooth treatment).
':\" The following simple result is also used in these "domain of
.)'\
':‘ - attraction" determinations.
LY
K 1 Theorem 1.2.5. let {uy, B2 1} be constants and 0 £ 7 € ©. If 21,22,...
'K
K~ are i.i.d. with d.f. F then
R
"
[ -7
B (1.2.3) P(Msu ) > e
v if and only if
.;-:
: : (1.2.4) n(l - F(un)) > T. |
y ' . o o _ A3
‘ This result is proved almost trivially by writing P{Mns u n} = Fn(un) 'f'}
, = (]_—(l-F(un)))n in this i.i.d. context. It is stated formally since its ;I;j'.i
N -'\'-:.
o generalizations to dependent cases are important and much less trivial in _‘Z:-_:.]
2 et
o proof. It may be noted that (1.2.1) is a special case of (1.2.3) using a w d
R/ - .
:f.' linear parametrization, by making identifications t = -log G(x), un=an1x+bn.
Z:}. Thus a necessary and sufficient condition for the limit G is
't:;

n(l - F(a;Ix + b)) » -log G(x), as mo,

e
R ]

for each x, and some a, > 0, bn' This explains the relevance of the tail
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,, 1 - F(x) in Theorem 1.2.4 which examines the existence of such a b for each
of the cases -log G(x) = e X, x-2, (-x)%.
e
;"-: By applying this result, forms for the normalizing constants may also
- be obtained. Specifically if v_ is defined to satisfy F(y -) s 1-n ‘sF(V),
W a  and b may be taken in each case to be:
’.-: a b
- n n
N : -1
,; Type I: (g(v,)) Tn
Type II: vn'l 0
o -1
b Type III: (XF = ‘Yn) Xo
(using the notation of Theorem 1.2.4). Of course while the "(l—n-l)-
A
percentile ¥, may be determined (and hence an'bn found) when F is known, the
1“.
f-:j practical problem lies in the estimation of those constants when the form of F
‘ is not precisely known.
: It is readily checked that a standard normal secquence belongs to the
Type I domain with normalizing constants
'::
(1.2.5) a_=(2 log n)*/?
> b_=(2 log n) /2 -% (2 log n) Y?(log log n + log 41).
\'..
- The exponential and log normal distributions also have Type I limits as does
Iy the d.f. F(x) = 1-e¥/¥ (x < 0) with a finite right endpoint Xp = 0.
::3 The Pareto and Cauchy distributions give Type II limits whereas the
:3, uniform distribution belongs to the Type III domain.
: It should be noted that not every d.f. F belongs to a domain of
'«.
‘;:l attraction at all. The most common case occurs for certain discrete
= distributions--such as the Poisson and geometric distributions--for which
there is no sequence {un) such that (1.2.4) holds. This typically happens in
-,
;_2 cases when the jumps of the d.f. do not decay sufficiently quickly relative to
Wy
Ca
!
] .
iT -\::"
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the tail. In fact for a given 7(0<7<e), a sequence {u} satisfying (1.2.4)
may be found if and only if

(1.2.6)  (F(x)-F(x-))/(1-F(x))> 0 as x t x

It is readily checked that (1.2.6) fails for the Poisson and geometric 3-:.—3
cases and hence there can be no u_ of any form (and certainly not of the form _
a;lx + bn) satisfying (1.2.4) with 7 = -log G(x), so that no limiting .\.:
distribution exists. However it is also possible for there to be no limit 5_,!..2
even if (1.2.6) is satisfied~-indeed for certain continuous d.f.'s. A case in

point is the d.f. F(x) = 1o ¥7sin ¥ an exanple due to Von Mises. it
We turn now, in this brief tour of classical results, to other extreme i

order statistics, writing )ggk) for the kth largest among the i.i.d. El, oo ’En :

with common d.f. F. Suppose that (1.2.6) holds and hence for any fixed 7>0,

u = un(r) may be found satisfying (1.2.4). Let Sn denocte the nmumber of

\"'
Gy
exceedances of u by f,,...,f, i.e. S is the number of i, lsisn, such :;:EE::
By
that Ei > u. Clearly for k =1,2,..., ‘:‘“ﬁ
8.
(k) - \_'-T._:-.
(1.2.7) PO < uw ) = P(S, < k) .
since the events in brackets are identical. But sn is binomial with o :::
parameters (n,pn) r Py 1 F(un) y TP, > T SO that Sn has a Peisson limit with re
mean 7 and hence b
k-1 \::“:.
(1.2.8) P{M(k) <u )~ e T [ Tr/r! IS
n n
r=0 s
PN
e e . . . ®:

/ = t
Suppose now that Mn max(El,sz, ey sn) has limiting distribution G so that -\Eﬁ
(1.2.1) holds. By the standard identification u, = an_lx+bn, T = -log G(x) we scc ::::'\‘1
.\ !‘\
~
from Theorem 1.2.5 that (1.2.4) holds and hence from (1.2.8) that \'A-\
(x) 7 s o
(1.2.9) Pla_ (M = b ) < x} » G(x) I (-log G(x))"/s!
n'n n e
s=0 N
v
3
b Y
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Thus if the maximm Mn has a limiting distribution G, then the kth

largest
N&gk) has a limiting distribution given by (1.2.9) (with the same normalizing
constants an’bn as the maximum itself).

These results foreshadow a more detailed discussion of the exceedances
and related point processes, which will be taken up in the next section.

Finally, topics from the classical theory not dealt with in this
present part include (a) rate of convergence results (considered in the
dependent setting in Section 2.8, (b) asymptotic distributions of minima
(ocbtainable by simple transformations of the results for maxima), and (c)

asymptotic theory of variable rank order statistics (cf. [85]).

1.3 Point processes associated with extremes

The heart of the previous simple calculation leading to (1.2.9) is
that if n(l—F(un)) > 71 then the number of exceedances of w by 51'"% is
asymptotically Poisson with mean 7. This simple observation is capable of
considerable, useful generalization both for the present i.i.d. and for
dependent cases. The simplest of these results concerns the point process
N, of exceedances of the level u . Specifically N, consists of the point
process on (0,1] formed by normalizing the actual exceedance points by the
factor 1/n i.e. if i is the time of an exceedance (Ei > un) then a point of
Nn is plotted at i/n. If E ¢ (0,1] then Nn(E) denctes the nmurber of such
points in E, so that Nn(E)=#{i/n € E: Ei > u., 1<isn) = #{i ¢ nE: Ei >u,
1lci<n). The actual exceedance points and the point process N, are

illustrated in Figure 1.3.1 below.
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f; One of the central results is that the point process N takes on an h;;
’ asymptotic Poisson character as n increases in the sense that Nn converges in ;;;
distribution to a Poisson process N as n » o (Theorem 1.3.1 below). A brief ;?3

discussion of relevant features of point processes and their properties will ;ég

be given in Section 2.3 but for now it is sufficient to note that convergence 5%;

in distribution of point processes may be expressed in terms of convergence of ;§3

finite dimensional distributions; specifically N g N if N({a})=0 for each a and ;Eg

(1.3.1)  (N_(a;,bi), N_(ay,0,].. N (a,b,]) ¢ (N(a,,b;], N(ay,b,1,...N(ay,by]) ';!’,;

for each choice of k and subintervals (a;,b;] ¢ (0,1].

Theorem 1.3.1 et §,,f,... be i.i.d. with camon d.f. F and let (u ) satisfy

(1.2.4). Then N ¢ N, where N is a Poisson process on (0,1] with intensity 7. i;%

R

This result is almost selfevident by virtue of the criterion (1.3.1). ifﬁ

For example Nn((a,b]) is the number of i ¢ (na,nb] for which Ei >u and 3:;

hence is binomial with parameters ([nb]-[na]), l—F(un)) and converges to the
Poisson r.v. N((a,b]) having mean 1 (b~a) since ([nb]-[na])(1—F(un))+1(hha) by
(1.2.4). The more general statement (1.3.1) clearly follows by independence
if the intervals (ai,bi] are disjoint, and in general by considering the

overlaps between the intervals and thereby reducing the problem to the case of

‘.

Yy by e

disjoint intervals in an obvious way. -l

s

Theorem 1.3.1 clearly includes (1.2.7) and hence (1.2.9) since iEi

Nn((o,l])=sn so that it may be regarded as a '"'fountainhead" result from which ;é;

the asymptotic distributions for the maximum and all extreme order statistics ;;%

v follow. The result may be extended by considering more than one leve’ to give Eéf
) in particular asymptotic joint distributions of finite numbers of order ?li

4
a

statistics. Specifically let 0 < Ty < Tpeees T, be fixed constants and

R

{un(r)) such that

2l
LAl S

w' )y

- . - PRI
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WO (1.3.2) n(l - Fu (1)) » 7
for each 7> 0, where un(T) are taken so that %(Tl) tun('rz)...zun(rr).
Consider exceedances of the levels un(Tl)""'%(Tr) as illustrated in Fig.

| 2 1.3.2(a) (again normalizing the time scale by 1/n). A vector point process is

thus obtained and may be visualized by points on fixed lines Ll’LZ' .o "L&: in .

NPT g

the plane as shown in Fig. 1.3.2(b). Denoting these individual point processes by

o
waltg— . z
n |r 0 i v r-v
L - J
[ v ~—¥ —F ;-q
Un(tr-n)r S :!'.\‘
Unlt, ) e * .:_‘4
S . S .
(a) n o
L - ﬂ
[S— -
1 ',
Lr-!{ ' %
L, b
G
0 (b) 1

Fiqure 1.3.2 (a) levels and values of {E } (b) Representation on fixed lines

LlLZ""'r le,...,L

s
N
Nrgk) , 1< ks r, it is clear that each N(nk) is asymptotically Poisson with 2
intensity Ty and that N(k Disa "thinned" version of Nrsk) for 2<sksr.
.'\"!
In fact in the limit the thinnings involve independent removal of events. %
To see this more explicitly let N, be the process defined on the plane by 2
. k , , . B
the points of Nr(1 ) 1<ksr (i.e. confined to the lines I"1’L2’“"Lr) and :;
Ny
let N be a point process in the plane defined as follows: :::q
Y
1et (clj; j=1,2,...) be the points of a Poisson Process N(r) with :ﬂ
]
parameter T, on Lr and let (Bj, j=1,2,...} be i.i.d. random variables, E:::
Wi
independent also of the Poisson process on L., taking values 1,2,...,Tr with :ﬁ:
\"
probabilities ﬁ
(T i~ T /7. 4+ 81,2,...,X"1, ‘
P(B =s) = r-s+l r-s r g
i \ Tl/tr ’ s=r, :J,E
§
L.
. e h e s R e eiere e TN
o .-- -------------------- .. ‘- ".’_. """"

.
-

o . o . - ‘.
. 3 . 1'
j (L{.ill‘._fdtf.hﬁx‘(’\b‘(,'.ﬁ";_*m-\_ﬁ'&-\‘ﬁ,g(-A-f; & ;(-LIHA*J}L FOLALPE VL PP u.("; L {'.r(] Lu N (
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i.e. P(B.j > s)= for s=1,2,...,r. For each j, place points

Tr—s+1/Tr
azj,o3j,...,cr 3 on the Bj-l lines Lr-l’ Lr—2""’1*r—ﬁ. +1 vertically

above ¢ 1 to complete the point process N. Clearly the probability that a

jl

point appears on Lr-l above dlj

independent, so that N(r-l) is obtained on Lr-l as an independent thinning of

is just P(Bj22}=1r_1/1r and the deletions are

the Poisson process N'¥). Hence N‘¥™Y) is a Poisson process with intensity

(rr_l/rr)=rr_l as expected. Similarly N(k) is obtained on I‘k as an
(k+1)

T
r

independent thinning of N with deletion probability l—Tk/ T all N(k)

k+1'
being Poisson. The main theorem is as follows.

Theorem 1.3.2. The point processes N defined in the plane as above (with
levels satisfying (1.3.2)) converge in distribution as m» to the point
process N consisting of r successively thinned Poisson processes.

Again the proof of this may be accomplished by showing that
(N_(B[),+-+,N_(B)) g (N(B,),...,N(B)) for each choice of k and rectangles
Bl' cee ’Bk’ the calculations being more involved but similar to the one-

dimensional case.

Theorem 1.3.2 may be used to give the asymptotic joint distribution of
extreme order statistics (and their locations). For example the following

result concerns the maximm and second largest values.

Theorem 1.3.3 Suppose that the maximum %(=Mr(\l)) has the asymptotic distribution G,
(1) _ <
(1.3.3) P(an(Mn bn) < %X} 2 G(%) as mo.
Then for xl > xz,
(1) _ (2) _ <
(1.3.4) P(an(Mn bn) < xl, an(l"g,l bn) < x2} >

G(xz) (log G(xl) - log G(xz) + 1) as mo.

This may be proved by writing Ty = -log G(xi) ' un(ri) = xi/an+bn,

ot
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I i=1,2 and noting that (1.3.3) implies (using Theorem 1.2.5) that 2

n(1~F(u (7,))) >7; i=1,2. The left hand side of (1.3.4) is then just (writing ;\;;:.

D\‘

k k

w09 for 809 (0,20, 2%

Lde

1l 2 2 1l 2 y

Pl s w (r), M < u (7)) = pviP=0) + pv (M=o, NP, : %‘3«

\.':*.:

which converges to the same probabilities with n® replacing Nr(lk) . This is Z;ZE.Z

-T -T ‘-\‘-',‘

readily seen to be e 24 (1,-7;)e 2 vhich is just the right hand side of Fox

=

(1.3.4). SR

The "r-level" result Theorem 1.3.2 allows the joint asymptotic (!

distribution of r extreme order statistics to be cbtained. On the other hand ﬁ:

4

these results may be summarized in one theorem commonly referred to as a f,ﬁ:

s

"complete" convergence result, and which concerns convergence of the process - ,

values themselves (suitably normalized) regarded as a point process in the 6

plane. This result is intuitively satisfying and in the i.i.d. case it may be

)

"

s
Y
»

4.1

P o P AT "
"z . - L P
. E 3

- ¥ rr oy -

regarded as the fundamental result yielding all the relevant asymptotic

»

distributional properties. On the other hand when dependence is introduced

into a sequence the "partial® r-level results require somewhat less 2:3
SN
assumptions than does the "complete" result. o

{l

Theorem 1.3.4 ILet 21,52... be i.i.d. with marginal d.f. F. Suppose that :"
un(T) , satisfying (1.3.2) for each 7>0, is continuous and strictly decreasing i‘:
in 7 for each n. Let N; denote the point process in the plane consisting of %:-%
the points (j/n, u;l(sj)) where u;l denotes the inverse function of u (1), ::\.
defined on the range of the r.v.'s (Ej}. Then N; 9 N*, where N* is a ::':

Poisson process on (0,»)x(0,») having Lebesgue measure m as its intensity.

P
S

‘1’"
Y

Proof. Again this is readily proved from convergence of finite dimensional

&

g

w<
*

]

2

< .
o8
h ]
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distributions. For a rectangle B=(a,blx[c,d), N;(B) is clearly binomial with
parameters ((nb]-[na],p_) where p =P(c s u ' (f,) < d} = F(4 (c))=F(u (@)
(d-c)/n, so that ([nb]-[na])pn > (b-a) (d=c) = m(B). Hence N;(B) converges
in distribution to a Poisson r.v. with mean m(B). If Bi=(ai,bi]xq [cij’dij)
where the intervals (aibi] are disjoint, it follows along similar lines that
* * * * . . .
(N (B))...N(B,))) ¢ (B))...N"(8))). It is readily seen from this that
the same holds when Bi are arbitrary rectangles of the form (ai,bi]x[ci,di) which

' *
is sufficient (cf. Sec. 2.3) to show that N, g §*.

As noted above this theorem summarizes a whole spectrum of asymptotic
distributional results for maxima and extreme order statistics in the i.i.d.
case. For example P(N,_((0,1]x[0,7)) < r} = P{M](,‘r) < u (1)) as is easily
checked so that the limiting distribution of uér ) can be cbtained. When M_
has the asymptotic distribution G as in (1.2.1) we may take un(r) = aglG-l(e-T)ben
as is readily checked. 1In that case Theorem 1.3.4 may be readily transformed to

give the following form (writing Xy = inf(x: G(x) > 0}).

Theorem 1.3.5 Suppose (1.2.1) holds, for the i.i.d. sequence {Ej}, and let

Nn be the point process in the plane with points at (j/n, an(sj-bn)) . Then
L] ]

N, 2 N on (0,2) X (Xgr®) where N'is a Poisson process whose intensity
measure is the product of lLebesgue measure and that defined by the increas-

ing function log G{y).

This form of the result was first proved by Pickands ({71]) and is more
transparent when linear normalizations give an asymptotic distribution for M.
(Theorem 1.3.4 applies to linear or nonlinear normalizations). For example it

is clear that P(an(Mr(lr)-bn) < %) = PN ((0,1] x (x,0)) € r-1) »

P{N‘((O,l] X (%X,»)) ¢ r~l} from which (1.2.9) follows sinmply.




2. Extremes of sequences

2.1 The Extremal Types Theorem for stationary sequences.

*

In this section it will be shown that the Extremal Types Theorem still

[}
[
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holds for (strictly) stationary sequences under weak dependence assumptions.

y 'a s
‘ -
‘a2

LI

e Obviously some form of restriction on the dependence structure of the sequence

'
R

el

‘2 tp a s

is necessary to obtain nontrivial results since e.g. one might take all Ei to
be equal with arbitrary d.f., so that Mn would also have this assigned d.f.
Then in the next section we shall see that the introduction of dependence does
{:'_ not typically alter the limiting distributional type for the maximum and will
I explore the precise changes involved.

Ioynes ([61]) first obtained a form of the Extremal Types Theorem
under dependence - assuming strong mixing. Weaker (distributional) conditions
will suffice and will be used here. The difference is not too important for
our present purposes since the main ideas of proof are essentially the same.
The main condition to be used (termed D(un)) is defined with reference to a
sequence {un} of constants in terms of the finite dimensional d.f.'s

g : Fil...in(xl""xn) = P{Ej_ls xl,...sins xn) of the stationary sequence {zn).
N

Writi F. . (u) = F, . ...u), defin
g 11""1n() 11,...1n(u’u’ ), define

’’ = max{| F, . . . u) - F, . (u.) F. (v :
2 “n,1 { ll,...lp,]l...jp,(n) 11,...1p(n) jl,...jp,(n)I
3
: 151l<12<1p<31...<3p,5n, jl-lpzl}

Then D(un) is said to hold if a g 2 0 for some sequence ln=o(n).

’

n

It is, incidentally, obviously possible to weaken the condition D(un)

very slightly to involve "intervals" of consecutive integers (See O'Brien

((68]) for the details of such a procedure and for some advantages in
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application to periodic Markov chains.)

The following result is basic for the discussion of M and shows the
form in which D(un) entails approximate independence. It is stated in a
scmewhat more general form than needed in this section.

Lemma 2.1.1. ILet (Lﬁ_l} be a sequence of constants and let D(un) be satisfied
by the stationary sequence {En}. let {)ﬂ,1 2 1} be constants such that l%=o(n) and
(in the notation used above for D(%)), )S_‘ln=o(n), ]S”lanlln + 0. Then

k

n
P{N&_\ < un} P {Mrn < un} > 0 as Mo,

where r, = [n/kh].

The proof of this result is perhaps the key method in dependent
extremal theory. The type of argument was used first in this context by
Loynes ([61]) but was used earlier in dependent central limit theory (cf.
[15]).

The basic idea is to divide the integers 1,2,...,n into "intervals"

* * * *
Il, Il’ 12, 12 ...Ik ' Ik , Where Il = (l,2...rn-ln), Il=(rn-ln+l,...rn)
I2=(rn+l,...2rn-ln) and so on in this fashion except for the last interval

*
I]'h= ()%rn-lnﬂ,...n) . Thus Il’I2"'Ikn are large intervals separated by

*

smaller (but typically expanding) intervals II,Iz.. ..

The steps of proof
(cf. ([54]) for details) are

(1) Approximate P{Mni%} by P{ ]r:h (M(Ij)S%)} (using M(E) to denote
j=1
max {Ej: jeE}). This simply reflects the fact that the maximrm

is likely to occur on the larger intervals.
(ii) Approximate P(j)n(h (M(Ij) < un)) by Pkn(M(Il) < un} using D(un).
=1

*n *n

(iii) Approximate P (M(Il)sun) by P (le sun}, the maximum of the first
n

r, of the Ei's being likely to occur on Il'

............................
............

.........................
...........................

...................................................
.......................................




The Extremal Types Theorem now follows simply from this result.

Theorem 2.1.2. (Extremal Types Theorem for Stationary Sequences) Iet {En}

be a stationary sequence such that %"“a"(fl'Ez"'-'fn’ has a non-degenerate
limiting distribution G as in (1.2.1). Suppose that D(%) holds for each L
of the form un=x/an+bn, for x with 0 < G(x) < 1. Then G is one of the three

classical extremal types.

Proof. Writing un=x/an+bn it follows that P{t%sun} » G(x) and D(%) holds (at

continuity points of G). By Lemma 2.1.1 by putting kn=k’ fixed, and then

replacing n by nk we have P{Mrks"ﬁ-ﬂ(} - Pk(Mns%k}-)o so that P{Mns%ﬂ(}»Gl/k(x)
or P{ank(Mn-bnk)sx} > Gl/k(x) , k=1,2,... . But this implies that G is max

stable by Lemma 1.2.3 and hence an extreme value d.f.

2.2 The Extremal Index

While the introduction of dependence into a sequence can significantly
affect various extremal properties, it does not, within broad limits, affect
the distributional type for the maximm. The purpose of this section is to
make that rough statement precise and to explore the explicit changes brought
by a dependence structure. This depends essentially on a single parameter
sometimes called the "extremal index" of the (stationary) sequence (i nl

Following Loynes ([61]) it will be convenient, for a given stationary
sequence {En), to define the associated independent sequence (%n} to be

i.i.d. with the same 4.f. F as Enandtowrite r"g,fmax(%l,% ’En), with

prees
M =max(§,, 8., .En) as before. As noted originally for strongly mixing
sequences in [61], if u, =un(r) satisfies (1.2.4) for each 7, i.e.
(2.2.1) nl - Fu (1))] » 7

then any limit (function) for P(N&1 < un(T)) must be of the form e-®7 with
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fixed ¢ ¢ [0,1] rather than just the function e-7 given by (1.2.3) in the
i.i.d. case.

If P(M < u (7)) e-@T for each 7>0, with u (1) satisfying (2.2.1),
we say that the stationary sequence (sn} has extremal index 6 (20). This
definition does not involve any dependence restriction on the sequence {En) .
The following result shows that, under D(un) conditions any limit for

P{P&_\sun(r)} must be of this form.

Lemma 2.2.1. For the stationary sequence {En} and constants {un(r))
satisfying (2.2.1) suppose that D(un(r)) holds for each 7>0. Then
there exist constants 6, 6', 0 < 8 < 6'< 1 such that lim sup P{Mnsu (1))=
e-97, lim inf P(Mns u, (1)} = e'eT for each 7, so that 1fn-)Pa{°Mr1 un(r)}
wmagggor some 7>0 then 8 = and P(M < u (1)} > e-9T for all 7>0 and
(En}hasextrenal index 8, 0 < & < 1.

This result is proved by using Lemma 2.1.1 to show that
¢ (1)=1lim sup P{P&sun(-r)} satisfies ¢y (7/k) = ¢l/k(1) for each k=1,2,..., to
give the exponential limit. The details of this proof may be found in [54].

Note that it follows in the course of the proof that 6<1.

Clearly for any i.i.d. sequence for which (1.2.6) holds (so that

u,(7) may be found to satisfy (2.2.1)) has extremal index 6=1. A stationary

sequence {En) satisfying D(un(v)) for each 7>0 also has extremal index 6=1 if

”
i (2.2.2) 11 [nék] P{¢ £ }» 0 k
.2. imsup n (£, >u_, £ >u_} » as k ~» <.
~e
~ For proof see [55] where (2.2.2) is referred to as D'(u.)).
i-:J
E}:j Many stationary sequences satisfy (2.2.2), including normal sequences

“

»
’

with covariance sequence {(ry) satisfying the "Berman Condition" r, log n > 0.

sufficient conditions for values of 6<1 are given in [54], and an example
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with 6=1/2 appears later in this section. Examples can be found where the
extremal index is zero, or does not even exist. This obviously has some
theoretical interest but appears to occur in somewhat pathological cases and
will not be pursued in the present discussion.

The usefulness of the extremal index appears from the following
result.

Theorem 2.2.2 Suppose that the stationary sequence (En} has extremal index

8>0. let {vn} be any sequence of constants and p any constant with 05p<1l.

Then P(if, < v ) » p if and only if PM < V) p°.

This result makes no assumption about dependence, and is readily shown

by obvious arguments (cf. [54] for details).

The following result now follows as a corollary, by taking vr,1=:‘;/an+}::»n

in the theorem.

Theorem 2.2.3 Iet the stationary sequence {En} have extremal index 6>0. If

Pla, (M -b) < X} > G(x) then P{an(Mn—bn) < X} » G%(x) and conversely. That
is M " has an asymptotic distribution if and only if l‘% does, with the power

relation between the limits and the same normalizing constants.

By way of comment, note that G® is of the same type as G if one

i “Xy10 = - (x-log ©)
of them is of extreme value type (e.g. [exp(-e ")]9 = exp[-e ], and
similarly for type II and III). If 6=1 the limits for I*g_‘ and fdn are
precisely the same. Indeed for 0<6<1 the limits may also be taken to be the
same by a simple change of normalizing constants.

The practical implication of this result is that one often does not
need to be concerned about possible dependence in the data when applying

classical extreme value theory. Indeed one may not have to worry about the

_'.
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precise value of the extremal index since this only alters parameters of the
distribution which usually must be estimated in any casc. Further, if 6>0,
the fact that the distributional type under dependence is the same as under
independence means that the classical damain of attraction criteria may be
applied to the marginal d.f. of the terms to determine which type applies.

The following simple example provides a case where <1, and will also
be useful later when the effects of the value of 8 on the clustering of

exceedances will be discussed.

Example 2.2.4 let TAPTEE be i.i.d. with d.f. H and write Ej=max(nj,nj+l).
Then (f ) is stationary with d.f. F =K and an easy calculation shows that
if un(T) satisfies (2.2.1) then n[l-H(un(T))] > 7/2 and

P(lvg1 sun(r)) = P{max (nl,...nn) < un(v)} P{nml < un(1)} 5> e~ T/2

so that {En) has extremal index 6=1/2.

Criteria for determining the extremal index are discussed in [54].
Finally, we note that an interesting approach to the relating of dependent and
i.i.d. cases has been given recently by O'Brien [68]. This is based on the

general result

nP{max (§,,8,,...5 ) s w |§, >u}
PM, s u ) - Fu) 273 U T A

which is shown in [68] to hold urder weak dependence conditions, for a wide

variety of sequences {un} and integers Pp ® with pn=o(n) .

2.3 Relevant point process concepts.
In dealing with dependent cases it will be necessary to be somewhat

more formal than previously in the use of point process methods. Here we

establish the notation and framework (substantially following Kallenberg

((53])), and review a few key concepts which will be needed. ,




In general a point process is often defined on a locally compact
second countable (hence complete separable metric) space S, though here S will
invariably be a subset of the line or plane. Write S for the class of Borel
sets on S and B=3(S) for the bounded (i.e. relatively compact) sets in S. A
point process ¢ on S is a random element in M=M(S), the space of locally
finite (i.e. finite on B(S)) integer-valued measures on S where M has the
vague topology and Borel o-field M = M(S).

Write F = F(S) for the class of non-negative S-measurable functions,

«f = [fdu for 1 ¢ M, £ ¢ F(S). The distribution Pt * of a point process

§ 1s uniquely determined by the distributions of (f(I .. E(Ik)),

1)
k=l,2...,Ij ¢ T if T is any semiring whose generated ring is B. The
distribution of { is also uniguely determined by the Laplace Transform

-tf
Ly (f) = Fe , feF.

A (general) Poisson Process with intensity measure ) has the Laplace

Transform Li (f)=exp{-) (l—e-f)} whereas a Compound Poisson Process has Laplace

Transform

.,,.
S

(2.3.1) L (£) = exp (=) (1-L,0f))

s

|

vhere B is a positive integer-valued random variable with Laplace Transform

LB (t)=Fe Bt. This consists of multiple events of (independent) sizes B

Y e et
A H

12
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located at the points of a Poisson Process having intensity measure ).

Convergence in distribution of a sequence (&) of point processes to a

point process f is, of course, simply weak convergence of Pir:l to PE-l. _j?
It may be shown (cf. [53]) that { > { if and only if Lg (f) - Lt (f) for every :_,:
t ¢ F_, the subclass of F consisting of the nonnegative continuous functions '

X
with compact support. Point process convergence is also equivalent to con- ‘\-:

vergence of finite dimensional distributions. Even more simply En d ¢ if and

only if (£ (I;) ... §(I,)) qd (£(I)) -.v E(T)) X=1,2... Ty ¢ T where T = &
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is a semiring such that {(dB)=0 a.s. for each BeT, and such that for any

B¢ B, ¢ >0, Bmay be covered by finitely many sets of T with diameter less

S o RRTTY Y Y

than ¢ (cf. [53 Theorem 4.2]). The semiclosed intervals and rectangles used

in Section 1.3 form such classes and hence e.g. (1.3.1) is indeed equivalent

: . N : >i
) to full convergence in distribution of Nk to N. K3

Finally the dependent counterpart of Theorem 1.3.4 regquires the

vy

s a
y rer 1

.
A
VIS

concept of infinite divisibility. A point process ¢ is said to be infinitely

-
R
A

S

divisible if for each r=1,2,... there exist some independent and identically

)

’

distributed point processes & such that E £ 1 + ¢ PERER + § .

H
o

LY ¢
ll ISn

Laplace Transform of an infinitely divisible point process has the canonical

jo]

‘l
'i L}

'
t
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3
3

t
1

representation

(2.3.2) - log Lt(f) =  (l-e-4f)P(du) e
M\( 0 ) _-.:..-::..
e
: where P is a measure on M\{(0} such that [ (l-e-#(B)yP(du) < = ,_!
! M\{0O} :'-j-.
g for all B ¢ B. P is referred to as the canonical measure of f. :;l:i_
- e
N
®
> 2.4 Convergence of point processes assoclated with extremes -

5 We return now to the stationary sequence {En} and consider point -
b process convergence results along the same lines as for the i.i.d. czase in ’./ 7
k]

o

' Section 1.3. The notation of that and other previous sections will be used. "
In particular Nn will dencte the point process of exceedances on (0,1] as ':

defined in Section 1.3, viz Nn(E)=#(i/n € E: Ei >, l¢i<n), for a given ' =

sequence of constants u_. S

Vvhen {En) has extremal index 6=1, the Poisson convergence result, j'\"::::

:, Theorem 1.3.1, may be proved provided D(un) holds. This leads again to the “
o,

~ute
",
g
1
0

1
-

classical form (1.2.9) for the asymptotic distributions of extreme crder

e

«

statistics. Similarly Theorem 1.3.2 holds under an r-level version Dr(un) of
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D(un) (cf. [55, p. 107]) leading to the classical forms for the asymptotic
joint distributions of extreme order statistics when 6=1 (cf. Theorem 1.3.3).
The “complete convergence" result Theorem 1.3.4 also holds giving again a
Poisson limit in the plane when 6=1 provided the multilevel conditions D.(u))
all hold. These results are described in [55]; here we indicate the new

features which arise when 0<6<1.

As noted in Section 2.2, cases when 6<1 occur when there is "high
local dependence" in the sequence so that one exceedance is likely to be
followed by others (see Example 2.2.4 as an illustration of this). The result
is a clustering of exceedances, leading to a compounding of events in the
limiting point process.

To include cases where such clustering occurs (i.e. 0<6<l) we
require the following modest strengthening of the D(un) condition (cf£.([50]).

Iet Bji(un) be the ¢-field generated by the events {ss s u), iss<3.

For 1<1<n-l1 write

(2.4.1) B = max{| P(A n B)-P(A)P(B)]| : AeBli(un), BeB}gl(un), 1 <k < n-1)
Then the condition .x(un) is said to hold if Bn, 1, > 0 for some sequence :::':.‘
ln with 1 _=o(n). {Bn,l) will be called the mixing coefficients for :::3
.. The condition . is of course stronger than D but still significantly C;"C
weaker than strong mixing. —vi
s
The condition i will be applied through the following lemma which :.E
is a special case of [84, Equation I'). l‘:dj
Lerm: 2.4.1. For each n and l:<lg<n-1 write Y:., ;= | sup En{ =En E{| "

where the supremum is taken over all n,{ measurable with respect B-Jl (%) ’

8?4 (un) respectively, 0 < »,{ <1, 1;.¢jsn-l1). Then B <y < 4B

n,1 - n,l n,l

where Bn is the mixing coefficient for i, given by (2.4.1). In

, 1

e AT SA TN
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particular {En} satisfies A(un) if and only if v s> 0 for some ln=o(n).

n,l
n
. It will be convenient to have the following simple notion of clusters.

eladh

Divide the (£ into successive groups (Eyreeerbp )y (8 of

yeessk ) ee
) n rn+l 2rn
- r, consecutive terms where r, (=0(n)) is appropriately chosen. Then all

exceedances of u within a group are regarded as forming a cluster. Note that

since rn=o(n) the positions of the members of a single cluster will coalesce

f,, after the time normalization, giving nearly multiple points in the point

2 process Nn on (0,1]. The following lemma shows that the clusters are = :j:.»_
asymptotically independent. \
\ o
Lemma 2.4.2. let 7>0 be constant and let _\(%) hold with un=un(1) satisfying E::
\ (2.2.1). Suppose (K.} is a sequence of integers for which there exists a $f

4

o

P i N
‘-:_‘ sequence {ln) such that khln/n s 0 and kan,l n-) 0, where Bn,l is the o
’ mixing coefficient of A(U.n) . Then, for each non-negative continuous f on .
N
s (0,11, =
? no. LY ir, . ) e
B (2.4.2) E exp(-"_ f(]/n)\nlj) - I E exp(f_ ' f(]/n)\n j) - C, S
j=1 i=1 J=(i-1)r +1 !_,_,,
h, « S
o where Xn,j is the indicator l{gj >u ) and rn=[n,/kn]. :::;‘,:
.: :::{::.
: This result is proved by the standard basic technique. Here the Z.a'?-:
s =
N "intervals" (1,...,r), (fpyqs+++s2r,) ... are each shortened by omitting the _\_L}_j
A T
- final ln integers of each, and successive approximations made for the first :Z-j::
.;: term of (2.4.2) in a similar way to the argument of lLemma 2.1.1, but uwsirg ..‘:.
- Lemma 2.4.1. (See [50] for details).
[ '.-.:.
- . T
N The number of exceedances in the i~ cluster is Nn((i—l)rn/n, irvf’nj; RN
ol ir : WY
= B x_ . and the cluster size distribution is therefore E
. o n,j S
< I=(1-1)r +1 _
» n e
‘o conveniently defined to be given by o
«Sa .
h ) . ‘o
Y . .
! 2o
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(2.4.3) nn(i) = P(L X, =i | I X, 5 >0}, i=1,2,... !m
j=l IJ j___l I] .

The following result gives sufficient conditions for Nn to have a Compound

Poisson limit.
> '::'-)
’ Theorem 2.4.3. Let the stationary sequence {En} have extremal index 6>0, and \':{w
suppose that the conditions of Lemma 2.4.2 hold. If nn(i) (defined by "f.:.';:
(2.4.3)) has a limit (i) for each i=1,2,..., then 7 is a probability A
"“.-_1:
- distribution on 1,2,... and the exceedance point process N converges in f:.:;::-‘
:-j distribution to a Compound Poisson Process N with Iaplace transform ~"~
: &
1 ® e
off (2.4.4) (£) = exp (=67 [ (1- L e-ftt)i x(i)) dt} o
- o 0 i=1 ( e
‘_': ""::!"
. Proof. The Laplace Transform I‘N (£) of Nn is precisely the first temm of :'.’-;'f-
~.
(2.4.2) ard hence may be approximated by the second term. This latter term ;—“v:
- R
- may be manipulated by using the facts that for large n, £(j/n) is e,
ir s
. \ , _ . R = n ;« .‘-\.‘
: approximately constant in (i l)rn <3< i, and Zn j=(iE1)r " xnj has the %u
distribution P(Zn=i} = 1-p  OF pnwn(i) acoording as i=0 or 158, where e
._-: pn=p{Nn((o,rn]) > 0) ~ 91/131 from Iemma 2.1.1.
-\ The Laplace Transform (2.4.4) is of the form (2.3.1) with the integer w;
. L , 0w
“ valued r.v. B satisfying P{R=i} = n (i) and intensity measure simply 6rtm where A
> a3
- m is Lebesgue measure. That is N consists of multiple events of size whose ;f»‘_:l-
distribution is n (i), located at the points of a Poisson Process having '«
intensity o7. "";C
The following result, showing that the Compound Poisson Process is the ::Z:::
-x P‘
l-\.n.’\
only possible limit for Nn under the conditions A is proved along similar é
lines to Theorem 2.4.3. (Full details may be found in [50]). =
o
- Theorem 2.4.4. Suppose 7>0 is constant and the condition a(u ) holds t:.:‘,’
/ : \:‘pc
3 | 'Y
[ 7
. N
e e e et et e rar e ae I R -..‘-‘_...'..'_ ‘- -., A AR ..‘.\ - -._\-_?N
B N P I T LG D A Wy S :\,.;;.‘.;; gt ':!\:J:‘.:{.'\‘\» SR



27

(un=%(r) satisfying (2.2.1)) for the stationary sequence (sj}. If N,
converges in distribution to some point process N, then the limit must be a
Compound Poisson Process with Laplace Transform (2.4.4) where n is some

probability measure on {1,2,...} and 6= -T-l log lim P{Mn < un(r)} e [0,1].
o

If 6#0 then n{i} = lim wn{i} where T is defined by (2.4.3) for rn=[n/]%],

kn(-m) being any sequence chosen as in Lemma 2.4.2.

Example 2.4.5. (Example 2.2.4 continued) It is evident that the exceedances

of u, by the process Ej=max(nj,nj+1) in Example 2.2.4 occur in (at least)

pairs, since if Ej—l < u, but Ej > u then "j+l > u and hence Ej+1 > - It

is readily seen by direct evaluation that nn(z) > 1 and hence n(i)=1 or O
according as i=2 or i#2. Thus the limiting point process N consists entirely
of double events ard (2.4.4) gives

Ly(f) = exp(=(7/2) (g (1-e"2F(Pjar),

The most important application of the Compound Poisson limit is to

give the asymptotic distribution of the kth largest value Mrgk) of El. .o En’

when 6<1, using the relationship

(2.4.5) P(Mrgk) < w (1)) = PN ((0,1]) £ k-1)

Theorem 2.4.6. Suppose that for each 7>0, A(u ) holds with u = (T)
(1)
satisfying (2.2.1) and that N n(_Nn ) converges in distribution to some non-

(1)
trivial point process N (=N ) (which will occur e.g. if the conditions of

Theorem 2.4.3 hold). Assume that the maximm M, has the non-degenerate

asymptotic distribution G as given in (1.2.1). Then for each k=1,2,...

(%) kol il 3y 2
(2.4.6) P{an(Mh —bn) < X))o G(x) [1+ T .Z ((=log G(x))-/3!) m “(1)]
j=1 i=1
PRI SOOI LN T z“"'.*"‘ AN AN _ Q'--""V"'. ‘*«. \"".\" A SO SR
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SN
oo (zero if G(x)=0), where "j is the j-fold cornvolution of the probability
"'3'.:“ 7 = lim Tor To being given as in Theorem 2.4.4.
5
n.\g~
i.':.* Proof. It follows from Theorem 2.4.4 that ({ ) has extremal index 6>0 and
St
K by Theorems 2.2.3 and 1.2.5 that un(T) = anlx+bn satisfies (2.2.1) with
199 R0
-L:‘: T = 7(x) = -log G1/9(x). The result follows using (2.4.5) since
"' o
“%2 k-1 Cok-l .
P(N_((0,1]) < k-1} » P{N((0,1]) s k-1) = e-®7(1+ I (o7)) I ='J(i)/3!
‘ j=1 i=]
L,
Yo which equals the right hand side of (2.4.6).
A
el
" Note that the form (2.4.6) differs from the (classical) case 6=1
“.;.'. (i.e. (1.2.9)), by inclusion of the convolution terms. These arise since e.gq.
N
::'_--_ the second largest may be the second largest in the cluster where the maxintum
>
occurs or the largest in some other cluster. This contrasts with the case k=1
K 3 for the maximm itself involving only the relatively minor change (Theorem
K)
,::.' 2.2.3) of replacing the classical limit by its ot power.
91
o . . . . . e . .
:-) Finally in this section we indicate the modifications required by the
R dependence structure for "complete" convergence results such as Theorem 1.3.4.
e
X 2’5] As in that case let N; denote the point process in the plane consisting of
D - -
ROV, points at (j/n, unl(zj)) where unl denctes the inverse function of u (7).
3 %
o Under appropriate conditions (including e.g. that {f ) has extremal
A , *
',:-", index 6=1) Nn has again a Poisson limit N in (0,o) X (0,®) with Lebesgue
.‘.:\j
o measure as its intensity. However, as for the exceedance point process, the
“ : limit may undergo "compounding" when 6<1.
1 ,’,‘
K :_:.: The possible limiting forms for N; were discussed first by Mori ([65])
£
0y under strong mixing conditions. More recently a transparent derivation has
.N; been given by Hsing ([48]) under weaker conditions, of a (un) type but
.,-'(',: involving multiple levels un(Ti) . A derivation similar to that for the
3
1 ’.
(‘:{_--“-l‘-'(.-.‘._-‘ﬂ.f. TR RPN s T T R e Y
N AT
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kY
:" Xk
" exceedance process shows that any limit in distribution of N, N say, must
3
o have independent increments, be infinitely divisible and have certain
{f stationarity properties. These properties restrict the canonical measure P of
- * . . . s

- N to a form which can be readily determined (though requiring further

ﬁ) ) notation), thus providing a specific expression for the laplace Transform of
A58 ) *
\:j N*. Rather more illuminating, however, is the "cluster'" representation of N

o

~
;ﬁ’ which exhibits N as a Poisson Process in the plane together with a countable

. family of points with integer valued masses on vertical lines above and
P
- emanating from each Poisson point.

- .

e Specifically let 3 denote unit mass at (s,t) and { = I &

(s,t) i=1 (5T

& a homogeneous Poisson Process on (0,o) X (0,=). Let LY i=1,2,...,be i.i.d.

. point processes on [1l,=) each independent of {, such that vi((l})zl,vi having
D2

o points of mass aij at Yij' Then (under the assumed conditions),

* d \ .:

. N =11 a3 \ NS
: ijg (SpTi¥s9 ]

. \-"' ‘:

As is clear from this representation N" has atoms at each (Si,Ti) (since the §§3
b

smallest Yij=l for each i) and at points (Si, TiYij) lying vertically above

»
" v
.

AT (R

-
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As noted in Sec. 1.3, theorems of this type summarize the relevant ifﬁ

R
7 information concerning asymptotic joint distributions of extreme order ANL'
o =3
:: statistics, in contrast to the individual marginal distributions obtained in :Rzl
3 Theorem 2.4.6. Y
k=, .fu
N8 =
'$: 2.5 Normal sequences: the comparison method. -
A B
5 For stationary normal sequences with covariances (rphs the condition s
7, O(u ) holds - as also does the sufficient condition (2.2.2) for the extremal R
- | . " . i
M index to be 1 provided the "Berman Condition" holds, viz. L
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(2.5.1) T, logn- 0 as n-s o.

These results are simply proved by means of a widely used comparison
method which, in particular, bounds the difference between two (standardized)
normal d.f.'s by a convenient function of their covariances. This result -

here given in a general form - has been developed in various ways by Slepian

1) " .
[81], Berman (9] and Cramer (cf.[21]). S
N
...
Theorem 2.5.1 (Normal Comparison Lemma). Suppose that El,...,znarestandard »
normal random variables with covariance matrix .\1 = (.f\l. .) and "l’ e :_".;
similarly, with covariance matrix (.\O ), ard let plj-max(l \13' / l.\oij] ). ::::-
Then, for any real numbers u,u,,...,u., ‘
(2.5.2) P(sj < “j' j=1,2,...,n}) - P{nj < uj, 3=1,2,...,n} ¢
-1 2, -1/2 2, 2 -,
@07ty AT el emr-whud)s e )]
l<i<js<n 1] 3
+ _ . 1 0 \+ . . .:::.
where x = max(x,0). Further, replacing (.\ij - '\ij) by its absolute value G
on the right hand side of (2.5.2) yields an upper bound for the absolute value ot
Ny
of the difference on the left hand side. .{:
oy
By taking 51,52... to be a stationary sequence of standardized A
. , .. *.
normal r.v.'s with covariance sequence (rn) and Ny Mgeee to be i.i.d. =y
o~
standard normal r.v.'s it follows simply from the theorem that if
[ [ :::..
sup  r | < 1 then for any real sequence {un}, 0.
n &
- 2 Lo g =
(2.5.3) R (u,) =~ (Un)l < Kn Z lrj exp%/(lﬂrj\)
s j=1 =3
where F, is the joint (normal) distribution of ¢, ,...,f, and . is 3
ll-oois l'l JS ’ "]
the standard normal d.f., il"'is being any choice of distinct integers from 4
RS
1,2...n. N
!
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Now if n(l-‘:(un)) is bounded and (2.5.1) holds it can be shown (by

same routine calculation) that the right hand side of (2.5.3) tends to zero

1
S

it would be if the r.v.'s were i.i.d. instead of beirng correlated.

as o, showing that P{Ejls Worees £, < u) is approximately the same as

One can clearly (by identifying il,. ..iS with 1,...n) then show
directly that P{Mn < un) is approximately the same as for the i.i.d. standard
normal sequence. Or Equation (2.5.3) may be simply used to verify the
corditions D(un) , (2.2.2) and Theorem 2.2.3 used, thus leading by either route

to the following result.

Theorem 2.5.2. Let {En} be a (standardized) stationary normal sequence with
covariances (rn} such that r, logn> 0 as me. Then
-X
Pla (M b ) < x} » exp(-e ")

where a., bn are given by (1.2.5).

Thus if r, log n » 0, the maximm 1‘% from the stationary normal
sequence has precisely the same asymptotic distribution as an i.i.d. normal

sequence. The same is true of the distributions of all extreme order

3

..
statistics. Although a slight weakening of (2.5.1) is possible this condition E-
is close to being necessary for Theorem 2.5.2. Indeed if r, logn- v >0 :_
and u, = x/an + bn (with ag bn given by (1.2.5)) then the time normalized ':'
point processes of exceedances converge in distribution to a certain doubly \
stochastic Poisson Process. This leads to the asymptotic distribution of the _;, :
maximm given by the convolution of a normal and Type 1 extreme value .‘-
distribution. (See [55 Sec. 6.5] for details). Further, Mittal and Ylvisaker t'-.v ;
{(64]) have shown that if r, v 0 but r, log n »» then M has an asymptotic 31.'
normal distribution. Thus in these "highly dependent" cases where D(un) fails
the classical theory no longer applies. ;_E
i

b w
e T S ,_3}"
R R R e e R e e R




As noted previously stationarity has been assumed in many of the
results to avoid the complications of notation and calculation which a
nonstationary framework entails. For normal sequences, however, the
sufficient correlation conditions still remain quite simple in nonstationary

cases. For example the following result holds.

Theorem 2.5.3 Suppose that {} n) is a normal sequence with correlations r; 3

for izj where Pl for all n and Pn logn-> 0 as

satisfying r.. = »

ij i-j
Mo. let Ui (1<isn, r=1,2,...) be constants such that Xn = min >
n
¢ (log n)!/2 for some c¢c>0. If for some 720, I (1- (uni)) + 71, then
n 1
P{i=l(£i < uni)] 2 e~ T as nyo.

Theorem 2.5.3 has a very useful corollary in the case where a segquence
{ny} is obtained from a stationary normal sequence (i n) by adding a varying
mean - such as a seasonal component or trend. Calculations then show that the
double exponential limit for the maximum still holds, but the normalizing
constant bn can require an appropriate modification. Specifically suppose

that ny = E. + m, where {Ei) is a standard (zero mean unit variance) normal

i
sequence (not necessarily covariance stationary) and m, are added

deterministic components with the property that

1/2

(2.5.4) A= max ymi! = o(log n) as n- o.

n l<ic<n

Under this condition it may be shown that a sequence of constants {m;}

may be found such that

(2.5.5) rll

ll. t1 3

eplay(m -m) -5 (m -m)%) 51 asns o

1=1

in which a; =a, - log log n /(2an) . With this notation, the following result

5
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holds.

5
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Theorem 2.5.4 Let ny = Ei +m; as above where (En} is a standard normal

sequence with correlations Ty satisfying |rij| < P1j-i] for i#3j with pp < 1
i

and p log n > 0. Suppose that (2.5.4) holds and m satisfies (2.5.5). Then

s

e &
L,

2

Mn = max (nl,nz,...nn) satisfies

L'

"}M

fa's
fazal

Pla,(M -b -m) < x) > exp (=)

;j\ with a, ard bn given by (1.2.5).

Lo

o .

:;’v Thus the non-stationarity in the correlation structure has no effect
L2

_“; on the limit law, and that introduced by the added deterministic camponent
E':.: is adjusted for by the change of b, to (b, + n;;) . For details see [55,

108

N Chapter 6].

o)

_‘_ Normal processes provide a widely used source of models for describing

physical phenomena, and it is gratifying that extremal theory applies so
simply to them. Another convenient source of models is of course Markov

chains, whose extremal behavior we discuss next.

2.6 Regenerative and Markov sequences

v, Most limit results for Markov chains are intimately tied to the theory

"-:\'C- of regenerative processes. For extreme values, this has been used in [2],

N

h (9], some further references on extremes of Markov chains being [10], [12], '.;4
-

% (68]. The "classical" case, exemplified by the GI/G/1 queue, is when a i-_:jf:'\,
s

ot recurrent atom exists. However, recently regeneration techniques have been :j-.j:q

:::: extended, in [6], [7], [67), to show that any Harris recurrent chain {n,} on )

” (Y

A a general state space is regenerative or l-dependent regenerative (concepts to ~f‘_

i s

: : be defined below), and to give effective criteria for regeneration. Further, s
‘:':N
.(‘_._‘

o

\.‘;‘.", .............................................



ik

34

{.{"‘l’ a.

clearly a function £n=f ($ n) of a (1-dependent) regenerative sequence is (1-

.

dependent) regenerative. An example where this added generality is useful is

i

o

P

given by ARMA (p,q) - processes. They are naturally considered as functions
of a Markov chain in Rp+q, and can be shown to be l-dependent regenerative

under weak conditions but usually not to be regenerative (cf. [79]).

] " how S,

[ .l
PSR W

Regenerative and l-dependent regenerative sequences are strongly
mixing, and hence the theory from Sections 2.1-2.4 applies, in particular the

Extremal Types Theorem and the Campound Poisson limit for exceedances hold.

’

.
Mo
-
-
"
I-
¥

However, this can also be obtained directly, and the direct approach gives
some added insight, also into the results for general stationary sequences.

In the present section this will be briefly outlined, along with some results

directly tailored to Markov chains.
A sequence {Et: t=1,2,...) is regenerative if there exists integer-
i valued random variables 0 < 5.<S, < ... which divide the sequence into

0l
"cycles"

L M
D I TR

Y TY Y YTy
PR A I

co=(£n:05n<so), cl={£n: Sosn<sl} c2=(En: slsn<sz}

r

Latey

which are independent and such that in addition CysCoreve follow the same

a i & B
LR N

probapility law. Then {Sk} is a renewal process, 1i.e. TO=SO '1‘l—s1 SO, T2

Sl’ ... are independent ard Tl’Tz’ ... have the same distribution. We shall

.
n

=5,-

here assume that m=£‘1‘l<m and that the distribution of 'I‘l is aperiodic, i.e.

that the only integer for which P(’I‘l € {d,2d,...})=1 is d=1. The sequence

-

"f {En} is 1-deperdent regenerative if there exists a renewal process (S} as
= above, which makes c¢y,c ,... l-dependent and c,,C,,-.- stationary.

. Suppose now that {En: n=0,1,...} is a stationary regenerative

! sequence, let §O=max {si: 0z 1« So}, “(l = max {si: SO <1« Sl}, (2 = max

» (si: Sl < i« Syde ees be the cycle maxima and define vt='mf{k31: Sk>t}. By

A

f: the law of large numbers yt/t - 1l/m a.s. ad Mn = max {El,...,sn} is easily

..'\

A

.
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approximated by max {{l,...,fyn), which then in turn can be approximated by

max ”l""’f[n/m]}' Since {l,fz,... are i.i.d., this can be shown to lead

to

(2.6.1) sup | P(M _sx) - *x)! =+ o, as n - o,
X

»

with G(x) = P(sl < x)l/m, see e.g. [79)., Since G is a d.f. it follows at
once that the Extremal Types Theorem holds for (En}, and criteria for domains
of attraction are cbtained by applying the criteria for i.i.d. variables to
G(x).

In particular it follows from (2.6.1) and Theorem 1.2.5 that if n(l-
G(un)) - n then
(2.6.2° P(M, s u) > e, asn- o,

and conversely if (2.6.2) holds then n(l-G(un)) » 7n. As in Section 2.2 let

El'% 5r-+- be the associated independent sequence which has the same marginal
d.f. F as 21,22,... and write 1‘% = max {El,...,sn). If in addition n(1-

F(u))=nP(f, >u ) » 7 > 0 then P(»’g1 <u

n) 5 e-T and {En) hence has extremal

index 8 = n/7. Since 1—G(un) ~ P(_(l > un)/m, this can be formulated as
follows. If there exists a sequence {un} such that n(l-F(un)) > 7 >0 and

P(§{, >u)/m
(2.6.3) 1_n 5 0

P(El > un)

then ((t} has extremal index 6>0. In the same way it can be seen that
conversely if (ft} has extremal index 6>0 then for any 7>0 there exists a
sequence {un} which satisfies n(l-F(un)) » 7 and (2.6.3). Further,
straightforward arguments show that (2.6.3) can be replaced by

P(fy > x)/m
(2.6.4) lim —=———— =9

xTxF P(El>x)
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in this, with Xp the righthand endpoint of the d.f. F. However, it should
be noted that there are examples of regenerative sequences (Et) which satis<y
(2.6.2), even for un=un(x) = xyanfbn, for all x, but for which
(P({l>un)/m)/P(El > un) does not converge, and hence the extremal index does
not exist, even if this is not expected to occur in cases of practical
interest.

A counterpart to the Compound Poisson limit Theorem 2.4.3 for the

exceedance point process Nn given by Nn(E) = 4 {i e E: 5. > un}, is also easy

i
!
to obtain for staticnary regenerative sequences. Let Nn be the point process

on (0,1] which has points of multiplicity v = #{t: £t>un, Si—l < t<8S,} at

1) 1
i/n for each i for which v, > 0, i.e. N_ is defined by N_(E) = I Y.
© N n n i/nfE 1
Then (7ihioy is an i.i.d. sequence, and if (2.6.2) holds so that

nP(‘rl > 0) = nP(s’l > un) » 2m and if
(2.6.5) TTn(l) = P(*fl = 1;*/1

1
for all i, for some {n(i); i=1,2,...) then it follows at once that Nn

>0y - 7(1), as e,

'
converges in distribution to a Compound Poisson process N with laplace

® _ .
transform LN,(f)=exp(-qnué(l- Zi=l e £o)1 n(i))dt). By definition, a ron-
zero ¥ cerresponds to a cluster of Yi exceedances of U, by Et for Si-15t<s"

and since Si/i » mas 1+ o« there is hence a cluster of LN points located

approximately at mi/n in Nn' Hence for an interval E, Nn(E) is approximated
1 - -

by Nn(m l-E), (for m l-E = {x: mx ¢ E}) and asymptotically Nn(E) should have

1

t -
the same distribution as N (m ~ E). This argument can easily be extended and

made stringent, to give the following result.

Theorem 2.6.1 let {En: n=0,1,...} be a stationary aperiodic regenerative
sequence with m < « which satisfies (2.6.4) and let (un) be constants such
that (2.2.1), i.e. n(l—F(un)) - 7, and (2.6.5) hold. Then Nn converdges in

distribution to a Cormpound Poisson Process N with lLaplace transform (2.4.4),
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(f) = exp {(-671 |
LN 0 i=1

These results may also be extended to l-dependent regenerative sequences,

however with some extra complexity. Here we mention that the criterion (2.6.4) for

the extremal index to be one then is replaced (cf. [78]) by

P(fl > %, {, < X)/nm
(2.6.6) lim =9.

XX P({) > %)

In [79%, (2.6.6) is further used to find conditions for 6=1 for a

function ¢ =f(1,) of a Markov chain on a general state space. This result is <

expressed directly in terms of the transition probabilities

P (X)=P(£(n)>u, 7,=X) = P(£l>un|no = x) as follows.

Thecorem 2.6.2 Let {np) be a stationary regenerative Markov chain with the

cycle length T, aperiodic and satisfying E Tla < », for some a> 1. If

un=uh(7) satisfies (2.2.1) for some 7>0 and

S 1+4s5/a
E(Pn(no) ) n > 0 as n- o

for some s>l with 1/a + 1/s < 1 then {En) has extremal index 6=1.

We also refer to [79, Theorem 4.1) and [68, Theorem 2.1} for

additional results on the extremal index and Compound Poisson Convergence, for

general distributionally mixing sequences, in a form which is particularly

convenient for applications to Markov chains. Finally the restriction that
the Markcov chain (or regenerative sequence) is started with the staticnary

initial distribution is not essential. All the results hold for arbitrary

initial distributions, provided only that

P({,. > max {{l,...,fk})-a o as K » =.

0
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2.7 Moving averages
Here, a stationary sequence {Et} is a moving average if it can be

written in the form

(2.7.1) t =0,+1,...,

where {{t} is an i.i.d. sequence (the "noise sequence") and {ci} is a sequence
of constants (the "weights") and where the sums are assumed to converge with
probability one. If a stationary normal sequence has a spectral density -
this holds e.g. if ng < ®, it can be represented in a non-unique way,
as a moving average with normally distributed {'s. Further, (2.7.1) includes
the ARMA-processes (which satisfy a finite linear difference equation in the
{'s and hence are multi-dimensional Markov chains), which are extensively
used in time series analysis. Thus, in particular, some of the themes from
Sections 2.5 and 2.6 will be taken up again here, but from a slightly
different point of view.

The extremal behavior of (% £} depends on both the weights and the two
tails of the marginal d.f. of the noise variables in an intricate and
interesting way. To reduce the amount of detail, we shall only describe the
asymptotic distribution of the maxima, for the case of non-negative ci's.
The general case involves some extra complexity, since then an extreme

negative noise variable which is multiplied by a negative c | may contribute to

a large ¢ t-value. In addition to this, the references cited below prove
point process convergence and give rather detailed information on the sample
J"}-:' path behavior near extremes, including the clustering which occurs when the
extremal index is less than one. Here we will only exhibit the limiting form
of the sample paths near extreme values without going into technicalities,

referring to [75], [76], [29] for further details.

------
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In cases when (1.2.1) holds, i.e. when

d
(2.7.2) P{an(Mn-bn) < X} 2 G(x), as n-» o,

the asymptotic behavior of the maximm is specified by the constants a > O,bn

and the d.f. G. However, this involves an arbitrary choice, since if

a_, b_ are replaced by a!,b!, where a /a! » a > 0 and an(b' - b ) » b, then
(2.7.2) still holds, but with G(x) replaced by G(ax + b). In the sequel we
will keep the G's fixed, as the standard d.f.'s displayed in Theorem 1.2.1 and
hence describe extremal behavior by ar bn and the type of G.

The effect of dependence on extremal behavior can be further
understood by comparing with extremes of the noise sequence ard of the
associated i.i.d. sequence {%t} with the same marginal d.f. as the moving
average (Et). Specifically, for f&\ = max{{l,...,{“} and 1{%:(?1'“"?11} there
are norming constants gn’ Sn > 0 and Sn’ }Sn such that for the cases we

consider here,

(2.7.3) P(én(fg] - Bn) < X} 4 G(X)
and
(2.7.4) p(én(r'frn - f)n) < x) 9+ G(X),

with the same G as in (2.7.2), and we shall indicate the relations between the
different norming constants.

The articles by Rootzen ([75]) and Davis and Resnick ([29]) are
concerned with noise variables which are in the domain of attraction of the
type II extreme value distribution, or equivalently when the noise variables
have a regularly varying tail,

(2.7.5) P((0 > X) = x"¢L(x),
with « > 0, and L slowly varying at infinity. Hence, using the prescription
for noming constants given after Theorem 1.2.5, if n satisfies P({O < vn) <

1-1/n ¢ P(!o < vn), so that Yh is roughly of the order ni/«, then (2.7.3)
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W holds, with
;l N . 1~ _'h
N L= B =0 %
L »
b LG(X) = exp(-x"%), x > 0. -
‘A Let c_ = max {cys i=0,+1,...}. Then also (2.7.2) is satisfied, with g
-
; :3 a =cta,b =0 ?:E:
~ = ' = T
e (2.7.6) [ noo+ onon S
S 60 = ep(-xe). 3
| This is elegantly proved in [29], by first noting that camplete Poisson >
B -,
o convergence of extremes of the (-sequence is immediate (cf. Section 1.3) and =
o -
\-"T . . , ] ~:
:' then cbtaining the corresponding result for the {'s by a "continuous mapping" -
: and approximation argument. [29] uses same summability assumptions on the é
' :-:j ci's, and for convenience that ci=0 for i=-1,-2,... . However, it seems clear :':.
B o
"::: that the results hold without any restrictions beyond the assumption that the

sums in (2.7.1) corverge, cf. [75).

b
S

\, An intuitive explanation of (2.7.6) is that when the tails of the E
i noise variables decrease slowly, as in (2.7.5), then the extreme noise values .f.}:
' are very much larger than the typical ones, and that hence the maximal § & \
.r: value asymptotically is achieved when the largest { -value is multiplied by :'.E
‘ N the largest weight, c_. This of course agrees with (2.7.6), since the norming ;‘5
.- . constants there are the same as those which apply to max{c {,s++,C L1} %
These heuristic arguments also easily lead to the following form of the :
Ix normalized sample path t¢+r/fr near an extreme value at, say, the time ‘:
\; point 7; asymptotically this ratio has the same distribution as the function -‘-.'
;’:: Y, given by .':S
" (2.7.7) Ye = U o B
4‘ where U is a certain random variable with values in the set (.. ’l/c-l’l/co'l/cl' eel ) %
: ;'.z Thus, except for a random height, sample paths near extremes are
4 N

- o S
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E -' asymptotically deterministic. —u
'!' The special case of (2.7.5) when the noise variables are stable (or J
;’tg "sum-stable", as opposed to max-stable) was studied first, in [75]. It has j
Ej the appealing feature that then also the moving average, and indeed all linear ,S_j.
1 S ) functions of the noise variables are jointly stable. For such variables, it %
\J‘- is easily seen that (2.7.4) holds, with .~
RS R - . RS
J: a, = (Ie})!/* a, b = ‘;
= - &

G(x) = exp{-x-%}, %A‘
-::.‘:: and hence also that the extremal index is cf';/Zc{l, for the case of ::::“
i-,:: non-negative c's discussed here. Although not considered in [29], this can be \;
L shown to hold also for the general case (2.7.5), provided the sums involved ‘*‘
: The other class of moving averages which has been studied, in [76], dj
..‘ is specified by =
B (2.7.8) P(§o > %) = pae® as x5 o, E.:
: where K,p > 0 and a are constants. Again it follows, using Theorem 1.2.5, ;ﬁ
that (2.7.3) holds, with =

’ 3‘;’ 5n = p(log n) 1-1/p 3
a8 b_ = (log m™P + p™ ((a/p)log log n + log K) (log m) /Pt ﬂ
% L G0 = e (-e7)
:’.: Thus the center of the distribution of f% tends to infinity roughly as ‘.
{ E"' (log n) 1/ p, and the "scale parameter" a—i is of the order (log n) 4 p-l, which '&é
j" shows that for p>1 the distribution of 1% becomes more and more concentrated ":{'?
:::.;z as n » o, and that it becomes increasingly spread out for 0<p<l, while the :.,

\ 2
L) J‘- .\
Yo order of the scale does not change for p=l. As we shall see, the same holds §
Yo -

1 »* .o » i
) for M, and M. 2
< .
rNT, )
o The case when (2.7.8) holds with p=1 leads to intermediate behavior, e
f": :\:.
e N :
o .-
3 , oo e 3
e -"a".r" T AR BT "'J- E AN '-’"“"’*" N, «.-n-. \. e Y N R

N o N L Y LYY LSS L '\. > ; ’ > ‘ & ‘N (\f»
. o " '\.( ! |! l‘o‘:‘- (3 n"..')".l .h nl'.- Ul B u "w, B M w‘ \' N‘}K NR \ .- ‘- v . ( o,




0 V"wmmmmmvwmmwjrvwv:rv~v'nvrvwm* |
A 3
a7 '
.,(‘ ::ﬂ
- a2 ;

P ':’.."

e 5
-"‘:-_ .“-’

::.:- and we will only discuss the remaining cases. For 0<p<l again a large - ::'i

S

.z value is caused by just one large noise variable, in a similar way to the t%i

KN . e

'- behavior when (2.7.5) holds. However, the non-zero b n—terms cause some extra tZ-}

! g

3.. camplications. Thus, (2.7.2) holds with 3

e ‘ ;Fp
¥ _a = -1z = b o

£ [ n 7% % P S 4

A -X <
o G(x) = 2p(-e ), 3
S
o in analogy with (2.7.6), but, writing k for the number of i's with Ci{=C,, the

Q‘j'. appropriate version of (2.7.4) involves
o

et a =ci, b =c (b+log k)/a)

O { n + n’ "n +'n n
j G(X) = exp (-e-x}.

a-‘y
- Also the asymptotic form of the sample path {i-+/f+ near an extreme value at

-'."‘,(: 7 is similar. For k = 1 it is given by the deterministic function
o

d_ﬂ Ye = c_t/c+, W

‘:;': while in the general case it is a random translate of this. oy

s o

3 '.r',‘ The case when (2.7.8) holds with p>1 is more intricate, since then an E&h

extreme t-value is caused by many moderately large noise variables in -T;

J‘,‘- Y LY
y "\_ conjunction, and since extremal behavior is determined by the constant | |c| Iq _:’:
R 7 ‘Q"‘
- Sl

o = (2]c;1%H Y9 ana the function R

‘ (2.7.9) v, = ey VB lc||¥

! {-\- i i q e
-. with q=(l-l/p)-1. In fact, the normalized sample path {t++/f{r near an '-:f_":

o Y
tn extreme at 7 asymptotically has the deterministic form (2.7.9), and (2.7.2) ‘:i
" 9
- and (2.7.4) hold, with ,j
o P

b 1 e
>~ ’ - ~ ’ oo

o a =a =llec||. a, b, =Db o
e (2.7.10) non _xq nn n =
= G(X) = exp (- "} . .

) » , . . .*\

-;,f Here b_ = b_ is not determined by (2.7.8) alone, except for finite moving j-'_':

LS n n .'{

i =
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Q;%A.'v
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averages, it is also influenced by the center of the distribution of the ('s.

However, it is roughly of the order | |c| ‘q Bn’ but still _

an\ (bn-] | c] )q fan)] may in general tend to infinity. It of course follows at

once from (2.7.10) that the extremal index is one for p>l.

For p=g=2, which includes the normal case, (2.7.9) is the correlation
function and | |c| Iq is proportional to the standard deviation, in agreement E{:?\
with Section 2.5. However, it is interesting to note that for p#2 ;"

covariances seem to have little bearing on extremes. ”’

The results for the case (2.7.8) use the assumption that
lci‘j-—:O( |1]19), for some 6 > max (1,2/q), and for p>1 in addition a rumber of '-

smoothness restrictions on the distribution of the noise variables. These are -

mainly used in the derivations of the behavior of the tail of §o=Icify ;.‘.:

which for p>l is the main difficulty, cf. [78]. It is fairly easy to see that ':

D(un) holds for all the moving averages considered here, and the results above

for p>1 are obtained along the lines set out in Section 2.2, by verifying »

(2.2.2). For 0<p<l, i.e. in the cases when 6 may be less than one, the

proofs use ad hoc methods, closely related to the heuristic arguments given i*

above. \
Finally it should be mentioned that Finster ([33)) obtains some ‘.'; ;

related results using autoregressive representations of the processes, and :“

that Chernick ([18]) provides an example with qualitatively different »:-\
behavior. :-:
e .

2.8 Rates of convergence ,

Rates of convergence for the distribution of the maximum have mainly "
been studied for i.i.d. variables. In the present section we briefly review = A

this work, discussing in turn pointwise rates, uniform convergence of d.f.'s, \‘,:
o NASK
" 2
L] he
!
Covieiainesssn s L R R

()
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::. so called "penultimate" approximations, uniform convergence over the class of
: . all sets, and "large deviation" type results. Although generalizations seem =
straightforward, the only dependent sequences which have been considered are 3
l::.\': the normal ones. The quite precise results available for this case are .:
‘ discussed at the end of the section. A useful general cbservation, which :
:3 applies to i.i.d. and dependent cases with extremal index 6=1, is that once
. rates of convergence of the maximun have been found, then it is typically
s quite easy to find similar rates for kth order statistics.

:‘: For i.i.d. random variables and a given U, the error P(Mn < un)-e‘T

2_ in the approximation (1.2.3) is easy to caompute directly, since then

‘_~ P(Mnsun)=fﬁ(%), where F is the common d.f. of the variables. Further if F
.:; is continuous one can always make the difference zero for any n,7>0 (by

‘:. taking un=F-l(e—V ")), However, often w is determined from other
. considerations, e.g. in (1.2.1) it is chosen as %=un(x)=x/an+bn and corre-

pondingly 7=7 (X)=-1log G(x). Then the behavior of the approximation error

A(K=PO U (x) = enT X,
' perhaps over a range of x-values, and in particular of
;} O (2ney) = Sl 2,(x) | = S| Play 0, By) <) - GO |

~
I" is less immediate. If (1.2.1) is used as an approximation or, more

‘:_: importantly if it motivates statistical procedures, when a_, b have to be
: :3._ estimated, interest centers on which rate of decrease is attainable when the
‘T "best" an bn are used, i.e. on
Ef dﬂ:;:;g’b dn(a,b) = Eiir;g’b s;.:p iP(a(I%-b)sx} -G(x)!.

-’-E:: It is easy to give examples of distributions F for which d  tends to zero
arbitrarily slowly, and to any exponential rate there is an F which achieves
__: this rate. However faster than exponential decrease of dn implies that F is
&

,e 7 =
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max-stable, and then dn=o for all n, (8], [77]}. Also different standard
distributions give quite different rates, e.g. for the normal distribution %

is of the order 1/log n while for the uniform and exponential distributions e

the order is l/n.
Let Th = Tn(X) = n(l—F(un(x))). In the sequel we will usually, for
- "
brevity, delete the explicit dependence on x. An obvious approach to 'j.
analysing ;n(=3n(x)) in the i.i.d. case is to introduce
-7 " -7
= (l-rn/n)n—e n, ) =e Noe-r,
so that
n n
(2.8.1) |a | = lF(%) ~e 7| = | (1=7_/n) ~eT| g IA'A + IA"A.
Here Os<7r n<h and for such values the satisfying uniform bound "
(2.8.2) l.s'nl < n_l(a+ n-'l)e—2
is derived by Hall & Wellner ([46]). Further, for fixed 7, by Taylor's formula
" - - -
(2.8.3) |.sn] e~ 7 lrnrl, )
as 1. 57. However, (2.8.3) is only uniform for ToT = Tn(x) - 17(x) in g
intervals which are bounded from below, and to bound dn a further argument has .
to be added. Often this runs as follows; (2.8.2) and (2.8.3) give sharp -,(
n-\.'.
estimates of sup ’.s (x)|, for any a > Xy, where X, is the left-hand endpoint X
xa ~
of the d.f. G, and then also for sup |a_(x)| if x  is taken to converge 23
Id
“n e
O
to x, suitably slowly. Combining this with ::,
7.
(2.8.4) )s:s |3, 00] € max (I-‘n(xn/a b ), G(X))
A “n
Y
s leads to a bound for d_(a_, b_), and then by varying a_, b_, to bounds for d_.
:,:.: n'n n n n n
S{s This approach is used, with some variations, by Hall & Wellner ([46]), Davis
)
_ ([26]), Cohen ([19] [20]), and Leadbetter et al. [55]). Here the bounds :
';’ corresponding to (2.8.2) and (2.8.3) are asymptotically sharp, but there is a .’,:Z
e
;.‘
A
9
| ;g %
\,' " n n\\"\".("n!\"-" -« ! ‘,"';l"-
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7

;:,".‘: possibility that Ar; and _%’ can at least partially cancel. However, this
R

~ happens only if TR=T " 12/(2n) + 0o(1/n), and hence in fairly special
:; cases, as is readily seen (cf. Davis ([26])).

N

.r M A mumber of papers, some of the later references being Cohen

) L

({191[20]), Smith ([82]), and Resnick ([73]), have introduced conditions which

2

Lo N ¢

permit more explicit bounds than (2.8.1) - (2.8.4) to be calculated. Their

N
';_‘ approach is to take some set of conditions for attraction to an extreme value
y distribution, typically involving convergence of scame quantity related to the
;.‘5":-_4 tail of F, and show that if this holds at a specific rate then d_(a_,b.)
3'._:: corverges at a correspording rate. In this a set of simple sufficient

corditions due to von Mises ([63]) (cf. [55], p. 16) have been particularly

3%

-
(.

v
L.

- FrTr

¢ Wb et
AN .

v DR Y

. PR

useful. There are many possible versions of such conditions, and hence many
partially overlapping results have been obtained. As a typical example we

cite the following result of Resnick ({73)]).

Suppose F is differentiable and that there exists a continuous

e

-l function g which tends monotonically to zero ard which satisfies
n‘.»}

XF! (X)
a (2.8.5) | -a | £g(x), x>0,
F(x) (-log F(x))
v
%

for same «>0. Then, if a, is chosen to satisfy -log F(q:l) = n-'l

b9
LSy .

22
[

’

-1 -1
sup | F(x/a,) = exp(-x"*}| < .2701 g(a ")/ (a=g(3;"),
NN xz1
T
N
:2:; for n such that g(a;;l) < a. Here (2.8.5) is a slight variation of von Mises'
o
[ | condition for attraction to the type II extreme value distribution, and the
'::::EI proof is somewhat different fram the method outlined above, the main
o

o ingredient being an estimate of -log (-log F(x)). Resnick also obtains a

somewhat more complicated bound for the supremum dn(an,O) over all x.

LT

o For i.i.d. variables bounds on the rate of convergence of the maximum L
o e
5o r
&, -
N'l'n o
A :
=
AT
= AP - A g tee el SelaIe e e e el
-.: A TN I AR g ~ '.'f‘ "N-f ‘-4"“- (‘ AV }". Y Dol T TR P N RPN -t v - ',ﬂ -.-_ o ‘o ',,' ") 1\
A A SRR s Yl . et R RN Gl
RO 2L RN OB O ~ TR e S SR



S JRANRRA. Sk s

Al

47

automatically lead to bounds for the rate of convergence also of kt‘h largest
values. This follows by using (1.2.7) and any of the known bounds for the
difference between the binamial and Poisson distributions, since S n is
binomial with parameters n, Tn/n (see e.g. [55], Section 2.4).

The normal case, briefly mentioned above, of course has attracted

special attention. Straightforward calculations show that for a

" bn given by

(1.2.5),

3,00 [exp(-e™)e™ (log log m)®) /(16 logm) as s o
and in Hall ([44]) is shown that for i.i.d. normal variables there are
constants 0 < C,<¢cy <3 such that cl/log n s dn < cz/log n, forn: 3, i.e.
the best rate of convergence is of the disconcertingly slow order 1/log n.
However, this is partially offset by the fact that % is, nevertheless, fairly
small for small n, e.g. for n < 10,000 it compares well with the error in the
normal approximation to the binomial distribution.

In their pioneering paper [34], Fisher & Tippet had already noticed
the slow cornvergence rate for the normal case, and suggested improved
"penultimate" approximations. The idea is that since the type I extreme value
d.f. can be approximated arbitrarily well by type II (or type III) d.f.'s, if
a d.f. can be approximated by a type I d.f., the same error can (in the limit)
be achieved by a type II (or III) d.f., and there is always a possibility they
can do better. This has been further developed by Cohen ([19] [20], who in
particular shows that a perultimate approximation of the maximum of normal
random variables by a type II extreme value d.f. improves the rate of
convergence to 1/(log n)2 . The disadvantage with this approach is that the
exponent a in the approximating d.f. then has to be chosen differently for

different values of n. A related approach is to consider a function anl a

instead of I‘% itself. This is pursued in Hall ([45)) and Haldane & Jayakar
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([43]), and gives the rate of convergence 1/(log n)2 for a=2, while other
j values of a lead to the same order 1l/log n as for Pg‘ itself. MNumerical

camputations show that these approximations also do better for small and

_::}:f moderate values of n, as could be expected.

. A further statistically relevant question is to find rates of uniform
-

:.3 convergence, i.e. to bound

n&
R

Pl

d) = inf  sup lP(an(l‘%—bn)eB) - G(B) |

i a>0,b BeB

:,: where B denotes the Borel sets in R, and G(B) is the probability that a
i

“\-}j random variable with d.f. G belongs to B. The cbvious approach is to bound
l‘ h‘

the difference between the density (which is assumed to exist) of an(r%-bn)

A e

and G'. let G'(X) = G(xX)¥(x), so that 7(x) = e %, ax-%-1, and a(-x)a-!
for the type I, II and III extreme value distributions, respectively. Since

(for i.i.d. variables),

. U e e
G L
PR

g—x Pa (M -b)<x) = g—x Fl(x/a +b) = F(x/a_ + b )" " na JF' (x/a + b.),

-
’,

3

s ] « o
RN PRI
v e e T e
R [ R

where the first factor tends to G at a rate given by the references cited

above, the main problem is to bound the difference na;l F! (x/an + bn) - Y (x).

'

The recent thesis by Falk ([32]) contains a survey of results in this

s
)

” .l."- :.-' m"‘.‘

direction, some further recent work being that of de Haan & Resnick ([42]) and

Welssman ([86]).

D)
4

Another problem which has attracted some attention, partly because of

v-":

; reliability applications, is the uniformity of the convergence of

o P(a, (M _-b_)>x)/(1-G(x)) for large x; see Anderson ([2]) and de Haan & Hordijk
l{?.

:j: ([40]).

r's
4

For a stationary dependent sequence with extremal index 6=1, a

)
Fy

further source of error is the approximation by the associated independent

A

sequence, i.e. the difference

2

2
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ts

s, (0 = Pa (M-b) s X} - Fn(x/an+bn)

n
where F is the marginal d.f. of the sequence. Cohen ([19]) shows, under weak

[ ]
covariance conditions, that for a stationary normal sequence a is

n
o(1/1log n), and hence that the rate of convergence in (1.2.1) is determined by
the difference Fn(x/an+bn) - G(x), and hence is the same as in the i.i.d.
case. let p be the maximal correlation in the stationary normal sequence.
Rootzen ([77]) gives a first order approximation and bounds for

_ (1-p)/ (1+5)
At which are roughly of the order 1/n for o 2 0.

n

By using an embedding technique, these rates are extended also to Mrgk)
and to point processes of exceedances. This embedding can be used more
gererally, and hence also in dependent cases rates for the maximm often

easily lead to similar rates for k-th largest values.

2.9 Multivariate extremes

We shall discuss here only one multivariate problem, the Extremal
Types Theorem for i.i.d. randam vectors, and its extension to dependent
sequences. As shown by de Haan & Resnick ({41]) and Pickands ({72]) the
problem of characterizing the possible limit laws of the vector of

coordinatewise maxima splits into two independent problems, to find the

marginal d.f.'s which may occur - by the one-dimensional result this is just

e the class of extreme value d.f.'s - and to characterize the limiting

-
“oa

dependence between components. Following Deheuvels ([30]) and Hsing ([49]) we

L4

will use the concept of dependence functions to discuss this.

ey
ety

let £ = (El,...,sd) be a d-dimensional random vector with d.f. G and

marginal 4d.f.'s Gj’ l<j<d. The dependence function D of ¢ (or of G) is

defined by

¢

D(XyyeesXg) = PG (£)) 2 %) eee Gylhy) © Xy

AT e

.................
..........
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D is the 4.f. of a distribution on (0,1]d, and it has uniform marginal
distributions if the Gj 's are continuous. The marginal distributions together
with the dependence function determines G, since

(2.9.1) g(xl,...,xd) D(G (xl),...,G (x )), xl,...,xd € .

This is a consequence of the relation

d
(Gj(Ej) s G (X )i 1jsdi\ ]Ej.l{Gj(E ) <G (X ) Ej Xj)
¢ (Ey 5 %y 1s35d) ¢ (Gy(Ey) £ Gy(xy), 1s)<d),
since it is readily seen that P(Gj(Ej) £ Gj(xj), Ej > xj) = 0 for each j.

A further useful property is that convergence of d-dimensional
distributions is equivalent to convergence of the dependence function and the
marginal distributions, provided the limit has continuous marginal d.f.'s.
This can be proved rather easily, using (2.9.1). Similarly to the one-
dimensional case, a d-dimensional d.f. G is said to be max-stable if there
exist constants a_ , > 0, b i i=1,...,d, such that

n,i n,

n -
(2.9.2) G (an lxl+b l""'andd SRAREY. d) XypeoerXg €

for each n=1,2,... . Further, a dependence function D is max-stable if

+ b Q=G(x

™

1 1/n
(2.9.3) Qn(xl/n,...,xd/ ) =g(xl,...,xd), xl,...,xd € 7,

forn=1,2,... .

Theorem 2.9.1 A d-dimensional (d > 2) 4.f. with nondegenerate marginal
distributions is max-stable if and only if its marginal d.f.'s and its

dependence function are max-stable.

Proof. 1If Gl""'Gd are max-stable, or if G is max-stable, then there are [5'—1
constants a, y > 0, bn,i with Gn(a n, i¥ + b i) =G, (x), for i=1,...,d. Hence, :\3
in either case, 5:;_21;:3
(2.9.4) _Gn(an’lxl+bn,l,...,an *a*Pn @) = Qn(Gl(an,lxl+bn'l),...,Gd(an,dxd+bn,d))

= DGy e Y™ Gy ) M
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= o
:t;::‘ Thus (2.9.2) follows at once if D is max-stable, by (2.9.1). The converse, é-—'i'
‘,'j- . that Dyy™, . vy = D(Yys++-s¥g), fOr y; € (0,1), i=1,...,d if G is "%
max-stable also follows from (2.9.4), by taking x,=G;(y;) there (note that }
-'j.‘ each Gi is nondegenerate max-stable and hence contimuous and strictly E
. ,:_-’ increasing on its support). )
T .

"y Let (£} = {(En,l’”"sn,d) }p Pe a sequence of i.i.d. random

vectors, write . = max sy .} and se there are constants
! Iv&1,1 {El,l ’En,l} SUPpo
a_ .>0, b_ . such that

n,i n,i
i d
.-v (2.9.5) P(an,i(Mn,i-bn,i) £ X, 1<isd) » g(xl,...,xd),
L]

AEN where we may assume without loss of generality that the marginal distributions
?_-;: of G are nondegenerate. It then follows exactly as in the one~dimensional
,;'.:" case that the possible limits G in (2.9.5) are precisely the max-stable
d.f.'s. Thus, by Theorem 2.9.1 each marginal d.f. is max-stable and hence one
AN

':'.:f-'.; of the three extreme value types, and the dependence function is max-stable.
Purther the distribution of an, i(%, i-bn,i) terds to Gi for i=1,...,d and the
:; dependence function of {I\g.1 it i=1,...,d} converges to the dependence function
R _-"':. !
-:-\_:’ of G. To complete the characterization of the limits, it only remains to

" -

~ad

Ty describe the max-stable dependence functions. Again, this is a purely
& n

analytical problem, to solve the functional equation (2.9.3), and we thus only
‘_::::E cite the result, which is obtained in somewhat varying forms in [45], [72],
o [30], and [49].

A‘ylr
PPl » -

Theorem 2.9.2 A function D on [O,l]d is a max-stable deperdence function if

-
K
s
’;“":‘-I-‘.&'-‘.\'

and only if it has the representation

g

Y

Dyy,.-e0yq) = exp {g‘ lrgiin(d(xi log y;)du},

v, -‘- v o
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\ where S is the simplex {(x X.): %, 20, i=1 d dx.=l} for some
O 1. s ARRE A U i = ’ 1o 14y %_ i ’
g finite measure u on S which satisfies fxidu =1, for i=l,...,d.
~. S
>, .
Hsing, ([49]) also makes the observation that while the
S
_-\"
' characterization of the limiting marginal d.f.'s is crucially tied to linear
:' normalizations, this is not so for the dependence function. Specifically, if
:(': {% i(x)} are levels which are continuous and strictly increasing in x, and if
i. ’
d
N P(l%’i < un,i(xi)’ i=1,...,d) - g(xl,...,xd)
-
fr: where G has continuous marginal distributions, then the dependence function of
‘Dl
o G is max-stable. The basic reason for this is the obvious fact that if
i Tl,...,Tdamcontirruousarxistrictly increasing, then (El,...,sd) and
:*_Z (Ty(§;) ..., T4(k4)) have the same dependence function.
, Hsing also extends these results to stationary dependent sequences
- { ﬁn}, along rather similar lines as for the one dimensional case, as treated
in Sections 2.1 and 2.2. Specifically, for given constants {u, j: j=1,...,d,
’
by nzl) the condition D(url 1ree ey d) is defined to hold if there is a sequence
7 ’
e _
.‘: ln = o(n) such that a.n,ln > 0 as n» o for
&N
o . .
2 "’n,l_max {lP(Ei,js%'j.j—l,...,d, ie AU B)
: -P(Ei’j %,j: j=1,...,d, ied) P(Ei,js%,j: j=1,...,4, i € B) |}
:_ where the maximm is taken over all sets A,B such that A c (1,...,k},
-
. Bo{kt1,...,n}, for same K. If D4 y,...,4 ) holds the only possible
Iy '
o limits in (2.9.5) again are the max-stable d.f.'s. Further, if in addition
2 (2.9.6) 1i % C; ] £ £y 0 as k
0 .9, im sup n L P . > , >u. ., } - as Ko
-~ me  i=11=1j=2 Lif " i,” i,
e then P(M_ ; <u ;, i=1,...,d) » p >0 if and only if P“(s .
" i=1,...,4) » p, i.e. the asymptotic distribution of maxima is the same as if
o
4
) -
o o
' L T TP S L I S [ et ata w®
b _. ‘\v \- J. y,‘-_, _;- WY -4;- -{: _n > _:-. :' ~- ‘f. s _u. -J..' ._.1..’_.‘._._:-“-_;_,‘ ..... ; . '-"~.'H,‘ '. R S
: o ’." ‘Jﬁ: lh 5 :: ......... "'I‘h. ' N \ \ .. N A ":',)!’-\_ ."} v .( b2 'a "(N .E.L&;"",.'.'- s .._
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¥
!.
b
; "3 the vectors were independent. ((2.9.6) of course reduces to (2.2.2) for d=1).
\.h
h] A further question considered by Hsing is indeperdence of the
N marginals in the limiting distribution. In particular, he shows that if
N
& (2.9.7) 1i cz1 [n/zk] £
.9. im sup P{ . > R P .} 20,
) i,i=1 3=l N R R L
'\':‘-: \
o 1,73,
:'::: as k»o, and if D(W, ),..sW, o) is satisfied then (2.9.5) holds if and only
‘ if P(ani(r%,i_bn,i) < X} > Gi(x), as mwo, for i-=l1,...,d, and G then is of the
_:_::' form g(xl,...,xd) = Gl(xl)GZ(xz) Gd(xd).
_\_:'.; Now let (f )} be normally distributed with Ef, =0, V({, ;)=1 and let
" ’ ’
B J R
' rij (n) be the covariance between Ei,j and El+n,i’ If r.lj(O) < 1, for
Y C s
;S.; 1¢iz#j<d and rij (n) logn-s 0, asn-» o, for i,j=1,...,d, ad %,i=xi/an+bn,
-
\. Iy k3
‘ ::3- with an’bn as in (1.2.5) then D(un,l""’un,d)' (2.9.6), and (2.9.7) are
satisfied, so that the asymptotic distributions of maxima are the same as for
Ky
'::.‘: a sequence of independent normal vectors with independent components (see
R
'::T. [49], (1]).
—f\-

2.10 Convergence of sums to non-normal stable distributions.

.1:'1’ ?“t";‘ &'

"1
o+

o To consider the simplest case first, suppose {Ei} is a sequence of i.i.d. ';;

‘1 ‘ symmetric r.v.'s, with P(Ei >X) ~X"%, X3 o, for some a € (0,2), so that the si'._ iﬂ

'f belong to the domain of attraction of the type II extreme value distribution, with Jf
‘j’,\ norming constants a =n-! /e, b =0. let M;k) and mlgk) denote the kK largest };
ﬁb and K™ respectively, of 1/+++1f,e It is straightforward to show that then =
a: _—
\‘ (2.10.1) lim sup P{Ian('E Si -z (M(§)+m(:))i> §) 0 asr 3 o,

.::. ndo i=1 k=1

‘- for any §>0. By Theorem 1.3.2 the joint distribution of {an M(::): X=1,...,T)

j: -.§ converges, and the limit can be found explicitly, as in Theorem 1.3.3. For

8

»
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Ky
example, the joint asymptotic distribution of %M(g;) and anM(i) is as given :j
there, with G(x) = exp(=x~%). Let {M(k): k=1,...,r} have this distribution, __
so that (anr/g_(lk): k=1,...,r) d (M(k): k=1,...,r}. Similarly, there are :‘;:;1’
{m(k) : k=1,...,r}, with (anmr(]k) : k=1,...,r}) g (m(k) : k=1,...,r}, and it is :
easy to see that there is also joint convergence, {anl"&gk) , ann&gk): k=1l,...,r} E"ﬂ
g {M(k) ’ m(k) ;7 k=1,...,r}. Hence

ﬁ

r r
a, L (P'g.fk)*' (k)) g1 (M(k)ﬂn(k)) as n- o.
=1 k=1

3
Fary

r
It can further be shown that [ (M(k)+ m(k)) tends in distribution to a stable

k=1
(or "sum stable", cf. Section 2.7), limit with index ¢ as r»«, and then it
n
follows at once fram (2.10.1) that a, L Ei has the same stable limit.
i=1

This illustrates that the central limit problem of convergence of sums

to non-normal stable distributions hinges on the convergence of extreme order

k]

SRR S
[ S NPT

statistics, and the most natural approach to it is perhaps via extreme value

L

theory. In Theorem 2.10.1 below this is made precise. The theorem, which

builds on ideas of Durrett and Resnick ([31]) and Resnick ([73]), contains a

functional central limit theorem, and the corresponding extreme value result ::i
. , . e
1s the "camplete" convergence of upper and of lower extremes, which is ::::n'

o

x

discussed in Sections 1.3 and 2.4. The corresponding one-dimensional approach

ig

via the joint distribution of extremes, as sketched above, is used in [56] and

rr
s
‘e tntn O

g

(28] ard will be briefly discussed at the end of this section.

The results depend essentially on the Ito—I.évy representation of the

-
(3

oY stable process, ard we shall now list the relevant properties, referring to {',Q1
“~ S
o RN
;:z Ito ([51], Section 1.12) for proofs and further information. Iet (= (t): ::R:
" -
% Os<tc<l) be a non-normal stable stationary independent increments process E
K -
‘ (briefly, {n(t)} will be referred to as a stable process). {n(t)} can - and i
N e
N will throughout - be assumed to have sample paths in D[0,1] the space of .‘_-:.1
Ly o
o W
™) e
< =3
s it B ol i o S S P B o o N e ot 8 AT AT T A A At e et e et i
'S ".r:'a B I e T R e A e A R e At SRR )

<
4
'3
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e
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functions on [0,1] which are right contimucus and have left limits at each
point. ILet S=[0,1]xR, with Re[-=,»]\{0}, and define the Ito process N of
jumps of {n(t)} by

(2.10.2) N(A) = #{t: (t, n(t) = a(t=)) € A}

for Borel sets A c S, where n(t) - a(t-) is the jump of n(+) at time t.

Then N(A) is (measurable and) finite a.s. for each rectangle A such that

Ac [0,1] X (~o,-€]U{€,»] for same ¢>0. Hence N is a point process, and in
fact it is a Poisson process with intensity measure v which is the product of

Lebesgue measure ard the measure v' on R with density v y-%-! for y>0 and v-
|y|-2-1 for y<0, for some constants ¥, ¥Y- 2 0 which are not both

zero (i.e. in shorthand notation, dv = dtxdy' = dt x (v |y|-2-*dy)).

Let m(¢) = 0 for O<a<l, let m(e¢) = | Iy(l+y2)-l dr'(y) for a=l,
e<|y
ard let m(¢) = J‘I lyciv'(y) for 1<a<2, and define
€<|y
(€)
(2.10.3) nppy= S ydN - tm(e).
Oss<t
e<|yl|

Here the integral is just a finite sum: if N has the points {(tj,yj): j>1}

then ]yj| > ¢ and 0st.<1 only for finitely many j's, and

J
I ydN = ) Yao
Os¢ss<t j: t,<t and )
e<ly;| Iyl

With this notation

(2.10.4) P(sup [n(t)=-nt€(t)| > &) » 0, as €0,
Ost=l
for any §>0.

Let (£ )., be arbitrary random variables, let {a_ >0, bn};l be norming
@©

constants, define stochastic processes: (nn(t): 0<t<1)n=l in D[0,1] by

(nt]
2.10.5 t)y = L a -b
( . . ) ')n( ) j=l n(Ej n)l
T T T L R A T
R R e I A N . RO AN SR A S N L L - v, S BRI o
RN NS L e e e KA R s A PAPAT PRI P T A
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K )
g ot
o N . . ."r- 8
':fo, 3 and in analogy with (2.10.2) let Nn be the point process of jumps of M E‘
> defined as ¥
J'.‘J N
J -'.‘-' _'_—
'.'::j (2.10.6) N (A) = #{t: (tmn(t)-')n(t‘)) € A) = #(3: (I/n, an(fj-bn)) € A}, 4
L) _ '.',-
l ' for Borel sets A c S = [0,1]xR. The following theorem specifies the '
S connection between corvergence in distribution of » to » and of N, to N. In s
e
P ~~‘_
}ﬁj- this convergence is in D{0,1] given the Skorokhod topology, see e.g. [16, -
e
o Chapter 16]. o
. o\
I R

Theorem 2.10.1. Let {n (t}: Ost<l) and N be given by (2.10.5) and (2.10.6) by

e 'lu'..'

&Y

PN AP
L]

-

.‘Q‘

‘
5

a

and let {n(t): 0<ts<l) be a non-normal stable process with Ito process N

d 23
S defined by (2.10.2). Then n_> n as mw, in D[0,1], if and only if the o
! -_"- .':'_
' :-_E'. following two conditions hold, o
K-oor T3
o d 4
(2.10.7) Nn-> N as o, on g, -
g Ly
P S d = ! | o = . ._'. \
:;.:_; and, writing In,j 1 if ,an(E:.1 bn)l > ¢ and In,j 0 otherwise ]
S =)
- , [nt) 2
Ay (2.10.8) limsup P{ sup | I an(s.-bn) (-1 :) + tm(e)| > §) 20, as 0, -
) meo  0stslj=1 P J +J .
=N '.‘k.,
oo for each § > 0. Ry
e <
--.\ ,.h
(€) (€) e
s Proof. let N and N, be the restrictions of N ard N, to [0,1] x -
2o ((~o,=-€]U[e,»), for ¢>0. ILet n'€) be given by (2.10.3) and set j_-.
L b,
585 (€) nt 5
e, n = [ ydN_ - tm(e) = I a (f.-b )T . - tm(e). o
o9 n Ossst O ( j=1 n{f3™n) n, 3 () B
- e<|yl
’-._* d -:{‘n
A First, suppose that = > v. The function which maps » into ot
AN (€) (€) o
.:-;2 N and n, into N is a.s. continuous witl(1 fe(sjpe(ct) to the distribution ::ﬁ
. € € e
. of » (see Resnick ([73, p. ]} and hence bﬁq 3 N for each ¢ > 0. T,
P d -
N This implies that N_» N, i.e. (2.10.7) holds. Similarly, P,
s
o :
v 3]
.‘% *
I.ﬁl .'.\
m*;:,;'-,'r\‘_:.';:/?",:..,w'.\d(‘\-),:_w 'f,;l‘.:v)" ‘;’_:J .:J_") SRR ";""-l-'.(.‘;."{.';".('."'"‘(""..‘;i."-‘ _::._.,_’-\. :\' . :.:-
SRS A L oL £ L D SN € S0 Zode A by Rt PPN IR ORCN N A :
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(€) q (€)
[np(r) = a3 fa(e) = » ()| in D[0,1], and hence
(€) (€)
P{sup [n (t)=n, (t)] > 8} > P(sWp [n(t)-n ()] >3} asmwo,
0stsl ostsl
since P(supy_y | n(E)=nt€(t)| =3) =0, for 5>0. Now,

{nt]
(2.10.9)  n (t) = nlEI(t) = I an(sj'bn) (l"Inlj) + tm(e),

j=1
and (2.10.8) thus follows immediately fram (2.10.4).
Conversely, suppose (2.10.7) and (2.10.8) hold. The map
which takes Nn into "1(:) is a.s. N-contimuous, and hence "1(16) 9 n(f) ,
as mo in D[0,1], and together with (2.10.8), (2.10.9) this implies that

"n§ n, by [16], Theorem 4.2.

The main condition, N 9N, of "camplete" convergence of extremes,
recquires much weaker asymptotic mixing conditions than those needed for
convergence of sums to the normal distribution, cf. the end of Section 2.4.
However, the local dependence restrictions, such as (2.2.2) may instead be
rather restrictive, and are not even in general satisfied for l-dependent
processes, cf. Example 2.2.1.

The conditions of course became particularly simple when Eyr Eqreee
are i.i.d. Then Nn 3 N is equivalent to nP(an(El-bn) € A) » v'(d), for each

Borel set A c [-o,-€]U[¢,o] for same €>0, which in turn is the same as

o]
(2.10.10) nP(an(El-bn) > X} > v, .rxy-a‘ldy, for x > 0,

-
4

'\\\\:-"'

a7 X
~ nP(a (§,-b)) < x} » v- [ |y[-2-1 dy, for x < O,
. .
as mo. Another way of expressing (2.10.10) is to say that the marginal d.f. 3
N .
Sy F of the {'s should belong to the damain of attraction of the type II ey
o oo
e <
o R
~ '
B4
o
i“
K dre o “ " v T S LA A Ay :’-_:.:j‘..;;‘.--‘. Gl

-
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distribution for both maxima (if ¥ +>0) and minima (if v_>0), with the same
norming constants {a >0, b }. FPurthermore, Resnick ([73]) shows that =
(2.10.10) actually implies also (2.10.8) for i.i.d. sequences. Thus in this
case nnf n in D[0,1] is equivalent to (2.10.10). It may also be noted that ,
bncanbetakentobezerohere. ‘?}
If one is not interested in full convergence in D[0,1], but only in :
"marginal" convergence of nn(l) = réla (E -b ) to a non-normal stable ::
distribution, sufficient condition; are ea511y found by "projecting onto the (’—;
y-axis". Let N' be the point process of jump heights of », given by
N'(A) = #{te[0,1]: n(t) = n(t-) € A] = N([0,1] X &) 0

for Borel sets A ¢ R, so that N' is a Poisson process with intensity v' and f

<ty

similarly let

a3
a

N/ (A) = #{(J ¢ [1,n): an(sj -b) €A = N,([0,1] x A).

S
. & “'x..‘;'.:/‘ -

By the same considerations as in the last part of the proof of Theorem 2.10.1,

n'x
i o
1] 9 1 . -— -:::
(2.10.11) Nrl N, as o, in R,
"
, , , _ . N
ard if, as befo;e with In,j =1 if |an(Ej - bn)[ > ¢ amd In,j_o otherwise, :_:;:-
: 5 - - 9
limsup P(| ';1 an“j bn) (1 In,j) +m(e)| >8) > 0, as € » 0, 3__:
J s
for each $>0, then nn(l) d n (1) in R. Moreover, it can be seen that s
[
Py
(2.10.11) holds if and only if the joint distribution of the k largest and k (
-\-
smallest order statistics of El’ ceey En terds to the distribution of the k RSy
largest and k smallest jumps of (n(t): O<tc<l) for each k, cf. the .
introduction to this section. This approach to convergence of L an(Ej -b) : :3,'
-
to non-normal stable distributions is, with some variations, pursued in detail X
for i.i.d. §'s by LePage, Woodroofe, & Zinn [(56]) and for stationary .‘_
Y
sequences satisfying distributional mixing conditions by Davis ({28]). ‘;:?;
:}.:I
-
-
:":-\
R R PO PRt g SN ey -}'.’."\"' e AT T RS
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Finally, the results of this section easily carry over to non-
stationary situations with [nt] replaced by an arbitrary time-scale, to
convergence of row-sums in a doubly indexed array {En,j} to a Lévy
(independent increments) process without continuous component, to multi-

dimensional §{'s, and also to convergence of so—called self-normalized sums.

2.11 Miscellanea

(a) Minima and maxima. Since the minimum nh=min{£l,...,zn} can be obtained
asm, = -max(-sl,...,—sn}, results for maxima carry directly over to minima.
In particular it follows from the Extremal Types Theorem that, under
distributional mixing assumptions, limiting d.f.'s of linearly normalized
minima must be of the form 1-G(-x) where G is an extreme value d.f. Further,
it is trivial to see that for i.i.d. variables minima and maxima are
asymptotically independent (cf. {55], p. 28).

In a series of papers ([23], [24], [27]), R. Davis studies the joint
distribution of m and Mn for stationary sequences (En) under a number of
different dependence restrictions. Here we only note that same of his results
alternatively may be cbtained as corollaries of the multivariate theory
discussed in Section 2.9 by making the identification Ei,fsi’ Ei,2=-€i’ s0

that Mn,lq%’ l%’f—xrh. For example, writing un,1=un, %,2=-Vn’ for vnsun,

the mixing condition D(u_ .,u_ .) then translates to a > 0 for some
n,1'"n,2 n,ln

sequence 1n=o(n) , with

a = m:x{‘[P(Eisu

0l (.2 v:ie AU B) -

n’ * i n
P(E; < u, £ 2 Vi 1€ A) P(E; < u, £y 02 Viloe B) |},

where the maximum is taken over all sets A ¢ (1,...,k}, Bc (k+l,...,n}, for
k=1,...,n~1. Thus if this holds for un=x,/al_l + bn and vh = y/cn+dn, for all x

and y it follows that any limiting d.f. of (an(Mn_bn)’ Cn(nh'dn)) must be of

R
s
I

i
x ;E';";’ .";':f;

y

e - .
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the form G(x,»)-G(x,-y) where G is a bivariate extreme value d.f.
Furthermore the criterion (2.9.10) for independence of camponentwise maxima,
i.e. here for asymptotic indeperdence of 1% and m translates to

, (n/k]}

lim sup E (P(E1 >u, Ej < Vn) + P (El < Vo Ej > un)} 5> 0, as krw.

Mo J=2
(b) Poisson Limit Theorems. Although somewhat less generally formulated, the
Poisson and Campound Poisson limits discussed in Section 2.4 amount to

convergence of point processes Nn defined from a triangular array {€q 3¢
?

i=1,...,n, n21) of zero-cne variables, with stationary rows €17 €n ' by
7 !
N () = I €. 1,
n i:i/ne¢E n,1

for Borel subsets E of (0,1]. Thus, the proof of the Poisson limit for é=1
(see [55], Section 2.5) is easily seen to show that if D(%) and (2.2.1) hold
with FEI ard £, > u replaced by en,i=0 and enli=l, respectively, then N
cornverges to a Poisson process with intensity r if and only if nP(en,l=1) 3
T.
Conversely, the literature contains many sufficient conditions for

convergence, which may be applied to extremes by setting €n, 1

i equal to zero

or one according to whether § i < u, or Ei > u. Two sets of such conditions

seem particularly useful here. For the first, let B, 4 be the o-algebra

’

generated by ¢ Then the relation

n, 17t fn,i‘

(nt]
(2.11.1) I K
i=0

| B, .} » tr7 as mo,
1

€ .
n,1i+1 n

in probability, for each te(0,1] is sufficient for convergence of N, to a
Poisson process with intensity 7 ([36], [31]). For the second one, which is
due to Berman ([12], [14]), we assume that each row has been extended to a

doubly infinite sequence ..., ...andwriteEniforthe

€ €
n,-1l, n,0' ' n,l,

....................

......................

................
S

3 N A
. et . . S R R AR S -
A o e ] f:-' A AT AR _.\.n _;. &

ERE e e e A ATARI O - Tl
PPN E Y NP N ST S NP AR S EAP N IR ST RN VT KR AR AT, S AR ATAY )
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c-algebra generated by ¢ Then the relation

n’l’...’ En,ii
(nt]

(2.11.1) I E{
i=0

En,i+l| Bn,i} st as Mo,

in probability, for each te(0,1] is sufficient for comvergence of N, toa
Poisson process with intensity 7 ([36], (31]). For the second one, which is
due to Berman ([12], [14]), we assume that each row has been extended to a

doubly infinite sequence ...,c¢ ... and write En i for the
!

€ €
n,-1, n,0''n,l,

c~algebra generated by ... , Berman's result is that if

‘n,i-1’ ‘n,i’
nP(en l=1)->'r and if there exists a sequence Y of integers, with ‘Yn=o(n) ,

’

such that
Y
n = —3
n E P(‘n,l 1, ‘n,i 1) » 0, ndo,
1=2
nP(sn'l=1|Bn_yn) > T, o,

in probability, then N again corverges to a Poisson process with intensity 7.
Neither one of these three sets of conditions imply any of the others,
in particular they are not necessary, and each of them might be the most
convenient one in some situation. However, e.g. for normal sequences with r,
log n > 0 they all seem to lead to about the same amount of work. One useful
feature of (2.11.1) is that it also directly gives rate of convergence

results, cf. [77].

3. Extremes of continuous parameter processes.

3.1 The Extremal Types Theorem for stationary processes.

In this section we consider continuous parameter stationary processes
and indicate the extremal results which are analogous to those of Chapter 2.
Let, then, {f(t): t 2 0} be a strictly stationary process having a.s.

contimuous sample functions and continuous one-dimensional distributions. It
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ot may then be simply shown as in [55, Chapter 7] (assuming that the underlying
NN

probability space is camplete) that M(I) = sup{f(t): t ¢ I} is a r.v. for any

N
':.‘ finite interval I and, in particular, so is M(T) = M([0,T]). The extremal
“ types theorem may be proved even in this continuocus context, showing that,

under general dependence restrictions, the only nondegenerate limits G in

(3.1.1) P(a,(M(T) = by) € x) » G(x) as T o,

’

T, 7,7y
00 .’!n .
LA A

din
L]

v g
. S
e
* v

G
»

are the three classical types.

Though the general result requires considerable details of proof, the

;‘\-f:: method irvolves the very simple cbservation that for (any convenient) h > 0

o

" (3.1.2) M(rh) = max($q,8,0.ee,80)

x where {.=max (£(t): (i-1)h < t s ih). Thus if (3.1.1) holds and the

‘E-"::::j (stationary) sequence { 1,{ grees satisfies D(%) for each un=x/a nh+b ah then

::'_1:: it follows fram the discrete parameter Extremal Types result (Theorem 2.1.2)
that G must be one of the extreme value types. Hence the Extremal Types

vy
Bl

»
o e

Theorem certainly holds for strongly mixing stationary processes since then

s

v v v
"‘l

& 4 Y 0
aR)

Rl S

the sequence (¢{ o) is also strongly mixing and thus trivially satisfies D(un) .

However a more general form of the theorem results from showing that the D(un)

b

::’.;\ condition holds for the {‘'s when the }'s satisfy certain conditions - in
i\:.: particular a continuous version C(uy) of D(w). In fact the condition C(u)

b will be defined in terms of the process properties only at "time sampled"
':_::b peints jqr for a sampling interval qp 0.
'::(;‘ 'Ihe!iareofcoursemximaoff(t)infixedintervalsoflengthh
%Q: (e.g. ¢,=M(h)) and the sampling interval g must be taken small enough so
that these are well approximated by the maxima at the sample points qu. A 1

convenient restriction to achieve this is to define q(=q(u)) to satisfy *

! (3.1.3) P(M(th) >u, §(jg) s u, 0< jg< h) =0(4(u)) asu-> o Qi‘
L;-S where ¢ (u) is a function which will later be taken to represent the tail of Sj.
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the distribution of M(h) but which for the present need only dominate

P(f (0)>u} i.e.

(3.1.4) P(£(0) > u} = oy (u)).
In the following definition Ft £ (W will be written for
l... n
Ftl“' trgu,... u), where Ftl"' tn(xl""’ﬁq) = P{f(tl) S Xypees E(tn) £ X))

The Condition C(ur) will be said to hold for the process f(t) and
the family of constants {Ups T > 0}, with respect to the constants 9 2 0 if
for any points Sy<S, +. < sp < tl"' < tp, belonging to {qu: o< qu <T} and
satisfying tl_sp > ¥, we have

|F (u,) = F (un) F (up| < «
sl...sp tl...tpu'l‘ sl...sp Y tltp, Ur T, ¥
R where a »Oforscmefamily'YT=o(T)asT-> ®.
"j T,'Y
- T
h Theorem 3.1.1. (Extremal Types Theorem for stationary processes) With the

above notation suppose that (3.1.1) holds for the stationary process (f (%)},
o and scme constants aq bT and a non-degenerate G. Suppose also that ¢ (u) is

a function such that (3.1.4) holds and Ty (uT) is bournded for uT=x/aT+b , for

Pard
]
»

LT e

o o .

v Yo N e te te
s o
A AR
. PR R

1
.
oSt

"

each x. If C(uT) holds for some family of constants qr=q(qr) where g=q(u)

s

LA
’
Lt

satisfies (3.1.3) then G must be one of the three classical extreme value

:;:4 :..

Ay types.

- Proof. The method of proof is to take an arbitrary sequence of points

e

RIS ' =

;::C:i 'I‘n ¢ (nh, (n+l)h], write vn-uTn and then relate D(vn) for the sequence

e {_ to C(u. for the process {f{,}. This is achieved by approximating
n Ut t

e the joint distributions of the { ; by corresponding joint distributions of

0N

:-::’,{ maxima at time sampled points qu. Details of the calculation may be found in

.-‘I-.'

e (55, Section 13.1].
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3.2 Domains of attraction

In the classical theory of extremes of i.i.d. sequences the type of
limiting distribution for the maximm was determined by the asymptotic form of
the tail of the distribution of El. This remained true for dependent
stationary cases with non-zero extremal index since the limiting type was that
of the associated independent sequence. For continuous parameter processes
however it is clearly the tail of the distribution of { 1 (in view of (3.1.2))
rather than that of Et which determines the limiting type. More specifically
if 0,8,

then {ffn) is called the independent sequence associated with {Et}. If

are i.i.d. random variables with the same distribution as §1=M(h)

the { n-Sequence has extremal index 6>0 then any asymptotic distribution for

M(T) is of the same type as that forl’4n=max {?l“”’? }. Again the case

n
0=1 is of special interest and sufficient conditions may be given. In
particular the following condition (analogous to (2.2.2) for sequences) is
useful:

The Cordition C' (uT) will be said to hold for the process {{(t)) and
the family of constants {up: T>0} with respect to the constants {W(UT) >0}
if

limsup (T/q) I  P{E(0)>uy, §(J@)>up} » v as €0

o h<jg<eT
We assume also as needed that for some function ¢

(3.2.1) P{M(h) > u} ~ hy (u) as u- o for O<h<s, some § > 0.

The following result may then be shown.

Theorem 3.2.1. Suppose that (3.2.1) holds for some function ¢ and let {ur)

be a family of constants such that C(uT) , ¢ (UT) hold with respect to a family

{q(u)) of constants satisfying (3.1.3) with h in C'(ur) not exceeding §/2,

il
>

Y, e e
- .1"'1'..4 l’l
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where § is from (3.2.1). Thenas T+ o«

(3.2.2) T ‘HUT) > 7>0

if and only if

(3.2.3) P{M(T) uT)—) e T,

Proof. It is sufficient to show that (3.2.2) and (3.2.3) are equivalent when
T is replaced by any sequence Tn € (nh, (+1)h]) and U by v, = uTn. But it

is readily seen that P{M(nh) < vn} - P{M(Tn) < vn) » 0 so that it is

sufficient to show equivalence of the relations Tn ¢ (vn) 5 71 and P{M(nh)

A

vy e T,
n

Now the sequence ({n} defined as in (3.1.2) satisfies D(vn) ard it
follows from Lemma 2.1.1 that for fixed k=1,2,..., n' = [r/k],

P{M(nh) < vn} - Pk{M(n'h) < vn} > 0 as n-> o,

A further approximation of P(M(n'h) £ v_} by n'hy(v_) may be obtained by
approximating maxima over intervals with those from sampled points jg ({55,
Corollary 13.2.2]) and the desired equivalences follow from obvious relations

such as

1- (1/K) - o(k % SIMMmfPuMHh)swﬁs lim sup P(M(n h) < V)
je 3 X ™o

< 1= (1/K) + ok Y.

This result has the following immediate corollary linking the
asymptotic distributional properties of M(T) to those of the maximum
I"Inqrax(’{l,.. .,’f ) of the associated independent sequence {:(n}’

n

Corollary 3.2.2 lLet (UT} be a family of constants such that the conditions of

Theorem 3.2.1 hold. Iet 0<p<l. If
(3.2.4) P(M(T) < up) » pasTo o

then

o P T v I i P R O TR SR ., 1_~._\<_-' BRI
- TP Yy vt ..‘_,.. N _.‘_‘_'.. S TRVIUNS .__-.....g_. ‘
. / f--"* -f.-_ . ARSI RS G T Rl i NI » IR ...-‘-".p"(.‘. _“_"I".'._/._ ._./ ’ . .} ~ ‘q..'\"‘- o
("'f"'“" TRV RS L'.Al Lf.‘nu.."l;'g NI IRV 2

. LR T I S
el Wit Tt

SRR

Lo Lopmme

..t .r",-",'l'.-. ‘.."."‘.‘l
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(3.2.5) P(M sV )> pasn> o,
with VS Conversely if (3.2.5) holds for some sequence {vn} then (3.2.4)
. -
) ..\) P
holds for an ch that ~ ¢ (v rovided the conditions of
:j.-"j Theorem 3.2.1 hold. N
> =
Procof. This follows simply from Theorems 3.2.1 and 1.2.5 by cbvious -
b o
i identifications. 4
_Z;_f. "
'.'? It may be seen simply from this how the function ¢ can be used in the
Lfl-_-] classical domain of attraction criteria to determine the type of limiting
A
; Z:‘_:: distributions G in (3.1.1) for M(T). 1In this for an extreme value d.f. G we
write D(G) for the (classical) domain of attraction of G, i.e. the set of all
-t d.f.'s F such that Fn(x/an+bn) > G(x) for some sequences {a >0}, (b, }.
i
* Corollary 3.2.3 Suppose that the conditions of Theorem 3.2.1 hold for all
, families of the form Up = x/aT + b’I‘ where a.T>O and bT are given constants and
_{ii that M(T) has the limiting distribution given by (3.1.1). Then
(3.2.6) hy (u) ~ 1 - F(u) as u- o
,.* for some F ¢D(G). Conversely suppose that (3.2.1) holds, and (3.2.6) holds
b
LY 1] ]
;:'f.: for scme F ¢ D(G). let a >0, b be constants such that
L
‘. ' - a - ,
oL F“(x/an+bn) > G(x) and set ap =a p,., bp=b gy, . Then (3.1.1) holds H
o provided the conditions of Theorem 3.2.1 hold for each u=x/ajtby. =y
% 2
~ Proof. This follows from the previous corollary, noting that if F is the d.f. of Y
p-? , 4
at the associated indeperdent sequence ({n} then 1-F(u) = P(M(h) > u} ~ hy (u). L
,;‘ . c“‘*
In particular if ¢ (u) satisfies one of the classical domain of 'f:‘:
o \:,
AN attraction criteria when substituted for 1-F(u), then the limiting ‘“‘:
oy ‘N
-"- I.
> distribution for M(T) is of that type. Thus ¢ (u) plays the central role in !;
LSV ‘h".":
< % determining limiting types just as the tail 1-F does in the discrete case. '_C::
) “.\ E
N N
g =
AN e
ook W
J. Nk .' \' T ‘;'. Ny .‘.\—-'-':::F . .‘~"":~'-‘ ) -\."“. A_"-,.';ﬂ

4'.’..l~‘l’l'k b
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3.3 Extremes of stationary normal processes
In this section we briefly indicate how the results apply to a

stationary norral process {(t) (assumed standardized to have zero mean, unit

variances, and covariance function r(t) satisfying

(3.3.1) rt) =1-Cctje +o(lt]|e) as t > 0

for some C>0, O<a<2. This includes all the mean-square differentiable cases

(a=2) and a wide variety of cases with less regular sample functions (0<a<2),
such as the Ornstein-Uhlenbeck process (a=1). It may be shown that for such
a process (satisfying (3.3.1)) that a function ¢ (u) satisfying (3.2.1) is
given by

~u?2

’

(3.3.2) y(u) = Cl/a Hy utz-al/sa (27)y~-1/2 e
but the proof involves quite intricate computations when a<2 (and indeed
forms the main part of the total discussion of the asymptotic behavior of
M(T)). The H, are constants whose numerical values are known only in the

-1/2) )

then be alternatively cbtained as in the next section.

cases a=1,2 (Hl=l, H2=7r The "regular" case a=2 is simpler and ¢ (u) may

It can be shown using the Normal Comparison Lemma (Theorem 2.5.1) that
the (standard) stationary normal process § (t) satisfying (3.3.1) satisfies
C(UT) if Ty (uT) > 12

(3.3.3)

0 with ¢ given by (3.3.2) provided that

r(t) logt» 0as t » o.
To show this, the required "sampling intervals" g(u) are chosen to satisfy
(3.1.3) with qu?2/2 » 0 sufficiently slowly. It can also be shown quite
readily that C' (uT) is satisfied under the same conditions.

The function ¢ (u) given by (3.3.2) satisfies the domain of attraction

criteria for the Type 1 extreme value distribution (e.g. Theorem 1l.2.4, with S

. . -x iy

v=1-F). Indeed scme calculation shows that (3.2.2) holds with 7=¢ 7, ot

uT=x/aT+b , for At

e

NN

RY

® .

R

e
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“ "

1/2 £

(3.3.4) ap = (2 log T) A
AN - ."'1
o bp = a; + {((2=2)/2a) log log T + log(C!/e Hg(2r) /2 5 2-al/2a))/a, 2;3
e o
!‘.‘ {

v Hence Theorem 3.2.1 gives the following result. i
-_x__.::j Theorem 3.3.1. lLet the (standardized) stationary normal process t(t) have %
= covariance function r(t) satisfying (3.3.1) and (3.3.3). Then P(a,(M(T)-

-x .

X bT)sx}-» exp(~e 7)) as T3 «, mereaTandeareglvenby (3.3.4).
_:j'.; This result was obtainedbyc:rarm'ar ([21]) for the case a =2 ard a

i samewhat more restrictive condition on the rate of decay of r(t) as to»». The

5

result in its present generality was abtained by Pickands [69] with further
subsequent refinements by other authors (see [55, Chap. 12, for references]).
In particular considerable generality is afforded by the family of covariances
satisfying (3.3.1), and the requirement r(t) log t » 0 imposes only a very

mild assumption on the rate of convergence of r(t) to zero as too.

3.4 Finite upcrossing intensities, and point processes of upcrossings.

In the continuous parameter case exceedances of a level typically

occur on intervals and do not form a point process. However a natural analog

s

is provided by the upcrossings (i.e. points where excursions above a level

__\-

=

. begin) which can form a useful point process for discussing extremal oy
o

el

properties. Further in many cases the intensity of this point process 23

v S
5 provides the function ¢ (u) needed for the determination of extremal type. s
. e
E”'- Before proceeding it is of interest to note that an alternative to discussing

T
o
1 N

, . ‘l
.
A A

upcrossings is to consider the amount of time which the process spends above a
level. This approach, used by Berman, is briefly indicated in Section 3.7.

Let then (as before) (f(t): t20)} be stationary with a.s.
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N
\-:-I
\-.--I
continuous sample functions, and continuous cne-dimensional d.f. If u is a =
TN
= =
constant, f(t) is said to have an upcrossing of u at to>0 if for some €¢>0, b

Lo d
N

£(t) < u in (to-e, to) and f(t) 2 u in (to, to + €). (Hence in particular

.
'-

E(t0)=u.) Note also that f(t) is (a.s.) not identically equal to u in any

L]
o

A

} interval, so that {(t)<u at (infinitely many) points of (to-e, to) and § (t)>u

at infinitely many points of (t,, t+e). u

Under the given assumptions the number Nu(I) of upcrossings of u by u-;‘

£(t) in an interval I is a (possibly infinite valued) r.v.. If %‘_l‘

w(u)=EN,((0,1))<= then N (I) < o a.s. for bounded I, and the upcrossings form \_

a stationary point process N, with intensity parameter u=u(u). ;.:
For stationary normal processes satisfying (3.3.1) u is finite when

a=2 and is then given by Rice's Formula, E’:':.:

NN

(3.4.1) L) = (c/2)23,71 72 N

5
-

and for non-normal processes u may be calculated under weak conditions as
©

(3.4.2) w(u) =§ 2z p(u,z) dz
0

e

X
oy

s

a2 a
]

;.l “l [
S

where p(u,z) is the joint density of §(t) and its (g.m.) derivative E'(t) .

R ,.‘1‘

In fact these relations can be shown simply since u(u) = lim Jq(u) where NG

q'0 -

-1 \:,-.;

(3.4.3) J(u) =q P(§(0) s u<i(q} (g>0). bad

: B

Note that the calculation of u as 1lim J q(u) is potentially simple since J q(u) f:::';:

oA

depends only on the bivariate distribution of §{(0) and f{(q). Under general ;::"Z:

":..!.u

conditions it is also the case, when wo as ¢ » 0 in a suitably coordinated a¥

| X

way that al

N DA
Dy (3.4.4) J_(u) ~ u(u) Y
-~ a h:.\:
and o
(3.4.5) P{M(q) > u} = o(u(u)). N

It then follows that (3.1.3) holds if ¢ (u)=u(u). For
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0 ¢ (qu)™F P(E(O) £ u, £(q) £ u, M(q) > u)

0

(@)™} (P(E(0) < u, M(Q) >u) - P(§(0) € u< §(Q))
—l < _l

()™ [POL0,@ 2 1) - @) < (@) (qumaT)

1l - Jc/“ > 0

A

which with (3.4.5) readily gives (3.1.3). Also (3.2.1) is often satisfied in
regular cases. Under such conditions it thus follows that ¢ (u) may be
replaced by u(u) in previous results such as Corollary 3.2.3. (For a precise
statement of conditions see [55, Theorem 13.5.2]).

Thus the intensity w(u) can provide a convenient means for
determining the type of limiting distribution for M(T). However the point
process of upcrossings has further interesting properties analogous to those
for exceedances in discrete parameter cases. In particular a Poisson limiting
distribution may be cbtained after suitable time normalization.

Specifically let =y and T ternd to infinity in such a way that
Tu (4p)> 7>0. Define a normalized point process NTI‘ of upcrossings having points at
t/T when { has an upcrossing of u at t 1i.e. N*T(I) = #{upcrossings of Un by

E(t) for t/T ¢ I). Then the following result holds.

Theorem 3.4.1 Suppose that the conditions of Theorem 3.2.1 hold, with
y (U= (u). Then N; converges in distribution to a Poisson Process with
intensity 7 as T>o. This in particular holds for the stationary normal

processes satisfying (3.3.1) with a=2 and (3.3.4).

Similar results may be obtained under appropriate conditions for the

point process of local maxima of height at least u, as wo, leading in

particular to the asymptotic distribution of M(k) (T), the kth largest local

maximm in [0,T). Indeed "complete Poisson convergence! results analogous to

o

AR

.

those indicated for sequences in Sections 1.3 and 2.4, may be obtained for the DAY
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1 _;:-_ point process in the plane consisting of the locations and heights of the ' v

- local maxima. (cf. [55, Sections 9.5 and 13.6) for details).
p ) Finally, it is also possible to obtain Poisson limits in cases with :f:_
'f";.‘ _.:'
; .,_: irreqular sample paths when u(u)=e (e.g. normal with 0<a<2) by the simple K
NCor _ .
' . device of using the "e¢-upcrossings" of Pickands [70] in lieu of ordinary
’?_:_: upcrossings. Specifically, for given >0, {(t) has an e-upcrossing of the :f.'
T T
b <. level u at t, if f(t) € u for t e (ty=e¢, t;), and §(t)>u for same "
-

te (to,t0+n), for each >0, so that clearly the nmumber of e-upcrossings in a b
‘e,

W «
S finite interval I is finite (indeed bounded by (m(I)/¢)+ 1 where m(I) is the v
Py A ":
’:"1' length of I). This device was used in [69] to give one of the first proofs of :
Theorem 3.3.1. E
— Y
./.r &
SArS 4
o, 2 “
o~ 3.5 X “-processes v
;e ha

The proofs for normal processes in Section 3.3, and also for the —

y i‘?\ : sequence case (Section 2.5) use the Normal Comparison Lemma (Theorem 2.5.1) in _,
~ <
Y an essential way. It will also be the basis for the present section on \
" '
:) functions {x (t))} of stationary d-dimensional (d 2 2) normal processes
o E(6)=(E(£), ..., Eg(t)) defined as o
" 1 d >
A >
ki - d LN

>

(3.5.1) X(t) = I §2(t). :

X i=1 1

T NG
':}.J We shall assume that the components are standardized to have mean zero and the ::
"E‘ same variance one - here this is a real restriction and not just a question of i
)‘-‘l H
i normalization - and also that the components are independent. Then X (t) has b
'%':' ,:_
’Z;}j a xz-distribution and the process (X (t); t20)} is called a Xz—pmcess (with 4 3

"2}

_L:;-Z degrees of freedom). Extremal properties of Xz-processes, and of same ;:-
K .'f' A
* related functions of f(t), have been studied in detail by Sharpe ([80]), -
}3"\‘ &
Vi, Aronowich and Adler ([4], (5]), and Lindgren ((2], [57], (59]). Here we will 3
i
:.!‘ > )
:.t"’t i

"‘
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follow the "geametrical approach of {58], and use the fact that X (t) is the

¥
radial part of f(t) to find the asymptotic double exponential distribution of -
maxima of X (t), referring the reader to [5] for results on minima. However, . .f
we will indicate how the results can be cbtained quite smoothly from the ;-
3

general theory of Section 3.4, rather than by using Lindgren's direct TR

calculations. ‘
Now, suppose further that the camponent processes {Ei(t) ), i=1,...,d

are continuously differentiable a.s., and have the same covariance function

r(t). We shall presently show that u(u), the mean number of u-upcrossings by

£ "‘:‘_‘l‘ oy 'l—,'J W|Wh o AN

x(t), 0stsgl, is easily found from (3.4.2), and then apply Theorem 3.4.1. For

\ ,
i=1,...,d, Ei(O) ard Ei (0) are jointly normal, and hence independent, since
' - ' iy

Cov(t, (0),£,(0)) = lim E{h l(E-(h)‘E (0))£,(0)} = r (0)=0, where the <
i i hs 0 i i i v

v
last equality holds because r(t) is symmetric around zero. Similarly, if ot

]

y==r"(0) is the second spectral mament, £,(t) has variance ). Thus the e
. \ 4 4 -
conditional distribution of X (0) = [ 2 . (O)E (0) given X (0)= L E (0) T
i=0 i=1

d e

is normal with mean zeroc and variance £ 4x£ (0)—4xu Let p(z|u) be the S
i=1 :

:.-

density of this conditional distribution and let p(u) be the density of -
. &

X (0), i.e. s
bt

(3.5.2) p(u) = 272 (g2t W lW2 i
-

Then, using (3.4.2), it follows that a
® R,

w(u) = p(u) (f) z p(zlu)dz : i::-

= 27(@1)/2 1 g0y 2 y(@1/2 w2 b

for u 2 0. For u fixed, Jq(u)=P(x(0) su<Xx(g)/da-» uf(u) as g 0, and 5
similarly (3.4.4) holds also when u - o, g- 0, with ul/z qg-+ a>0 (cf. [58, :.';
..

.
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lemma 3.5], viz. Jq(u) ~ u(u) as 0, as needed.

; Theorem 3.5.1 Let _{(t)=(51(t) ,...,Sd(t)) be a continuously differentiable d-
dimensional standardized normal process with independent camponents and the
same covariance function r(t), as above. Suppose further that r(t) logt > 0
! as t » o and that

(3.5.3) Tu(up) > 7 asT» o,

and let N} be the point process of upcrossings of up by (X(t/T): te[0,1]).
Then N,; converges in distribution to a Poisson process with intensity 7, and
in particular,

(3.5.4) P{max X(t) < u
0<tsT

T} 2 e 7, as T 9 o.

Proof. We shall briefly indicate how the conditions of Theorem 3.4.1 can be

- oo

checked. We assume that d=2, the extension to d@>2 being straightforward. The

main idea in [58] is to introduce the normal random field {Xe¢(t): 0<é6<2m,

Sy
RN
t20), where )

s

¢

Xe(t) = §,(t)cose + §.(t) sine o

1 2 .

is the camponent of f(t) in the direction (cosé, siné), and to note that then BN

(3.5.5) X(t) = sup  Xe(t)? S
0<e<2m A

P

Thus sup X (t) = sup xe(t)z, and it follows at once from .3
Osts<h Ost<h, 0s@<2w S
N the extremal theory for normal randam fields that (3.2.1) holds, for \_\
B

. ¢ (u)=u(u) and any h>0, see [58, Lemma 2.2). As noted above for fixed a>0 ; 1
W
(3.4.4) holds for q = a/ul/2 and since clearly P(f (0) > u} = o(u(u)), (3.4.5) .-:.-:'

C\"':'.

is satisfied and thus also (3.1.3) holds with ¢ (u) = u(u). Thus it only A

I
remains to establish C(u,r) and C'(uT), for an arbitrary h, say h=1l, and with AW
‘ this choice of g = q(u) since all the conditions then also hold if a is taken AR
X to tend to zero sufficiently slowly as u » ». For this we introduce a C:;’
: oS
2

e R e A OO A A e S e

‘ ot e " . u' SAAT AN t'.""'t’; ) l'l Yetts N" o "' "' ’\' ::-':"" “:.‘":'1::':,"o."o."v“!e.".h”l“ﬁ“. W, ‘! : .!c" NI * § -'. gt } !"0 !
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1/2 '.«-""
further sampling, in the é-direction, given by a parameter r = r(u) = b/u ot
with b>0. Iet ir(t) = max (Xir(t); i=0,...,[2n/r]}. Then, by (3.5.5) and an .‘".
easy gecmetrical argument, ) Z‘:}"_n-
2. . % 02 N
(3.5.6) X (t) cos’r £ X ()% X(t), W
N
for O<r<r/2. To show that C (u) holds let u,'r=(u,1,) 1/24s r, so that by S
(3.5.6) :\:
and stationarity,
T . Ay
(3.5.7) = L P(X (0)> X (jg) >
) 9 1e5qeer (X (0)>ur, x(Jq up) X
< T 1 piE_(0>uy ¥ (0 >up NN
= ’ M
q lsjgser T Yo e r
< T ): ~ ! ~ ! ~ ' P ~ . ] | '."
g,k | P(X (0)>un, X (3@ > up) = P(X(0)>up) P(X.(3Q)>Uy) N
$Jqs €T MRS
e
+ /@2 PO > upd) S
r uT g » 304
It is readily seen that Tu((up)?) » 7 =1 exp (b°/2) and that ¥e(t) has mean 3
zero and variance one, and that |cov (Xe(0), Xe'(t))| < |x(t)|, for any :':{::
)
= AL
e, e'. The Normal Camparison Lemma can then be routinely applied to show that EA
u\.l
the sum on the righthand side of (3.5.7) ternds to zero. Further, since »x:.
M
w)/pu) = (zm/ﬂ)l/z, by (3.5.2) and since Jq(u) u(u)y, it follows from :
iy
(3.5.6) that b

Ly

RPERY -

e (/2 PG_(0) > up? ¢ e(@m/@? px(0) > up?)?

»
L]

. =
' )
T | "v"'r ‘A

= c(mu(upn? e > p?/a i n? L
._-..
2 <y
> e(Teb /2)2 (8\ﬂ)/a2 ij{;

ard thus C' (u,r) is satisfied.
Next, with the notation of C(up) s

(3.5.8) |F

I N RN (up) = F ,...,sp(“T)Ftl,....,fp,(“I‘”

[PV

Y ) s mmmm e e e e m el aiay M et e % L Pa e e MR BN LR
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s S | P(X_(t) st e (SyseeesSpr Epumenity)) =

p(ir(t)s Yot t €(Syees5)) p(ir(t) s Yot e{tl,...,tp,})l
+ I P(uT < x(Ja) su.I./cos2 r).

e
. AR AT R/ Y
I- r

A L .
XiR{ K. .
. ' ‘< . Iy L

0<3qsT
1
. Here the Normal Camparison Lemma may be applied, similarly as for C (uT) , to "5 L
Ly
show that the first expression on the right tends to zero as oo, if tl-sp 2 _-C:j‘}- !

P

[
ks
b LT

Yopr for suitable Yp = o(T). Further, the last sum in (3.5.8) is bounded by

-2, _e-z"lu,r/ooszr )

T 2 T
EP(UTS X (0) ¢ uT/oos r) =&-(e

'S

1/2

2
s (27/)) T (l-e-b /4)/a as T » o,

by straightforward computations. Since this limit tends to zero as b» 0, for
. a fixed, this may be seen to prove C(uT) .
¥ It is easy to "solve" (3.5.3), to show that (3.5.4) implies that
: Plap (max X (t)-by) £ X) » exp(-e %) as Do,
! 0st<T
for
¢ a,=1/2, b= 2 log T + (d-1) loglog T - log (T (d/2)2
b T/A).
. ]
1 It might also be noted that this proof of C(uT) and C (uT) applies without
". change also when the camponents of f (t) are dependent and have different
covariance functions.
p 3.6 Diffusion processes
)
i Diffusion processes have many useful special properties, and
)
correspordingly several different approaches to their extremal behaviour are =
)':,-.
possible. E.g. Darling and Siegert ([22]), Newell [66], and Mandl (62] apply ;-:::
1 o
: fat
: [ 2
1 :h"'
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transform techniques and the Kolmogorov differential equations (cf. also the survey
[(17]), Berman [11] exploits the regenerative nature of stationary diffusions,
similarly to Section 2.6, and Davis [25] and Berman [13] use a representation of the
diffusion in terms of an Ornstein-Uhlenbeck process. Here we shall discuss same
aspects of Davis' methods, and in particular state his main result (relation3.6.6)
below).

A diffusion process {f{(t): t 2 0} can be specified as the solution of a
stochastic differential equation
(3.6.1) ag(t) = u(i(r))dt + o(E(t))dB(L),
where {B(t): t2 0} is a standard Brownian motion. We refer to [52] for the
precise definition, and for theproperties of {{ (t) ) usedbelow. For simplicitywe
will consider a samewhat more restrictive situation than in [52], and inparticular
we assume that {§ (t) } is defined on some open, possibly infinite, interval I=(ry,x,)
and that u amd ¢ are continuous, with ¢>0 on I.

Let {s(x); xeI} be a solution of the ordinary differential equation
(3.6.2) e2(xX)s (X) + 2u(X)s (x) =
i.e. let it have the form s(x)=c,*c, I¥ exp (-1Y (2u(2)/¢°(2))dz) dy, with

172 x
¢, >0, <, real constants, for same point xoeI . Thenos is strictly increasing and by
Ito's formila n =s(f,) satisfies dn =f(n,)dB, for £(x)= s (s '(x))e (s (%)),
i.e. sisascale function and {ny: t20) is the diffusion on natural scale. The
speed measure, m, corresponding to this scale function then has density 1/£(x),

i.e. m(dx) = (1/£(x))dx. We further assume that the speed measure is finite, im! =

v J‘I m(dx) = II(l/f(x)dx < @, and that s(x) 2 » as X r,, s(X)?~» as Xry. It then
.
et follows that the boundaries r,,r,are inaccesible, that thediffusion is recurrent,
o

. ard that there exists a stationary distribution so that {f (t) } becomes a stationary

process if § (0) is given this distribution.

The Ormstein-Uhlenbeck process, which will be dencted by {E (t)) here, is

AN > ™ . .- '.' ‘.- TSN s -‘..
» Kh ' . " (. 1 R n- 'r\ﬂ " - \" ’\.r\ ’\ - };‘ . ‘ " . ." . .‘;\ *
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the stationary diffusion process (3.6.1) specified by I=R, wu(x)=x/2, :j Ny

¢(x)=1, x¢I. For the present purposes, a convenient choice of scale function

for (I - 12 ¥ yy2 .
{E(t)) 1is s(x)=(27) f dy, and the corresponding speed measure

isﬁx(dx)=(27r) 1/2 )Z/de Further, 1tcanbeseenthat(£(t)}lsa I
-lt o
. standardized staticnary normal process with covariance function r(t)=e and ._"

/2 -1 e>? /2

that s(x) ~ (27) = (x$(x)) "}, as x3@. Hence, Theorem 3.3.1 may

be applied with C=a=1 and its conclusion can, e.g. by a simple "subsequence

A,
argument" be written as '
(3.6.3) swp [PAT) s w) ~e /5| 5, 0 asT> o0, \.;

wu, G

for any Cxo>o, and with M(t)=sup(E (t): 0st<T}). 4
The main additional fact needed is that the Ornstein-Uhlenbeck process on x:_:\

natural scale can, by a change of time, be made to have the same distribution as ‘f

{n(t)}. More precisely, ({25, Theorems 2.1 and 2.2]), there exists a strictly f.

increasing random function {7 (t): 20} such that the processes {s(f(t)): t20} and \T:EE

{S(E(7(t))): t20) have the same distribution, and which satisfies \.1
(3.6.4) T17(T) » 1/|n] as T » o, ii“

TRt R

a
P
AL

almost surely.

« 4,
.

AR
L
‘.' 1]

As in Section 2.6 it follows easily from (3.6.3), (3.6.4) that

~ \1,.

- - ~“T/(s(u) |m|) &
i (3.6.5) sup |PM(T(T)) < u) -e | » 0, as T» o. Sy
- wu -
) e

Since for M(T) = sup{f(t): O<tsT}, R

P(M(T) < u) = P(sup {(s(f(t)): O<ts<T} < s(u)) b e

= P(sup {S(E(7(t))): O<ts<T) < s(u)) <

- ~-1 \;j-:_!

= P(M(7(T)) < s “(s(u))}, IS

0 t

(3.6.5) is readily seen to imply the main result of [27], that —

~T/(s(u) [m|) R

(3.6.6) sup |P(M(T)<u)-e | 0 as T » o, )

u<u0 .ﬁ."

b

St

A
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for any U, € Iwiths (uo) >0. This is a quiteexplicit descriptionof M(T), "as the maximum
of T i.i.d. random variables with d.f. G(u) = exp{~1/(s(u)|m|)}", and in particular
domains of attraction for M(T) are fourd by applying the classical criteria to exp {-
1/(s(u) 'm )). Finally, as for Markov chains, the hypothesis of stationarity is not
essential, (3.6.6) holds for any initial distribution, as can be seen e.g. by a sinmple

"coupling argument.

3.7 Miscellanea

(2) Moving averages of stable processes. These are continuous time processes

of the form { (t) = [ec(t=x)d{ (x), with {{ (%)} a non-normal stable independent

increments process. Their extremal behaviour, which is similar to that of the

corresponding discrete parameter moving average (cf. Section 2.7), is studied

in detail in [75].

(b) Sample path properties. As mentioned in Section 2.7, (75], [76] and [29]
also study the asymptotic distribution of sample paths near extremes. A
different approach to this problem, via so-called Slepian model processes, has
been pursued by G. Lindgren in a series of papers, cf. the survey [60] and the

references therein.

(c) Extremal properties and sojourn times. In an important series of papers,
Berman studies '"the sojourn of §(t) above u", defined as Lr(u)=6Tl(E(t)>u)dt,
where 1{+} is the indicator function. For a wide variety of cases, including
many normal processes, xz-processes, Markov processes, and random Fourier
sums, he finds the asymptotic form of the distribution of LT(u) as wo for
fixed T, and as u,T»> in a coordinated way. PRurther, he uses the equivalence

of the events (M(T)>u} ard (Lr(u)>0) to study the maximum of ({(t)}). This

work 19 reviewe:dd 1n the jresent journal ([12]) by Berman himself.
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