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ABSTRACT

i
A new method for reconstruction of the shape of the left ventricle from the

biplane angiocardiograms is proposed. This approach utilizes a pair of orthogonal X-
ray projection images. The shape of the ventricle is reconstructed by dividing these
projection images intc: parallel slices and then being processed slice by slice
stepwise. Each corresponding pair of slices form two one-dimensional projection

profiles which are used to reconstruct a cross section of the ventricle.

Without using predefined models, we proposed a new method to reconstruct the
cross section under the assumption that the cross section is regular along the
directions of projections and a monotonically nondecreasing or nonincreasing equai—
divisor curve is available. A cross section is regular if it contains only one closed
interval within the cross section along each ray of projection. The equal—-divisor

curve is defined within the cross section which divides each closed interval into two

equal halves. Instead of solving the binary matrix directly, we nee\d\gnly to obtain

the equal-divisor curve, then the cross section is uniquely determined_ We have
proved that the cross section can be optimally reconstructed by- minimizing an error
index which is generated by the sum of the absolute difference between the original
and estimated projection profiles. The algorithm has been tested on synthetic and X-
ray pictures with better than 95% conformity for regular cross sections. The
experiments show better results than any existing direct methods since it is based
on a more flexible geometrical assumption. It also prevents the sensitive selection of
mask model which dominates the results of model-based methods. Thus. the

algorithm is reliable, and more generally fits real shapes of the ventricle.
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CHAPTER 1
INTRODUCTION

in patients with cardiovascular diseases, left ventricular function is one of the
major parameters to be considered in making the:apeutic choices and determining
prognosis. Left ventricular function is primarily evaluated by measurements of
pressure and volume during a cardiac cycle. Although several indices based upon the
volume measurements have been developed. accurate measurements of volume are
not yet possible. Almost all methods of measurement are based upon an ellipse
model. Even- the biplane integration method based on Simpson's rule, the most
accurate method of all, assumes an ellipsoid shape constructed around two axes for
each cross section Therefore, any method that can improve the accuracy of the
measurement of cross sectional area is likely to improve accuracy of the method to
measure the ventricular volumes. The present study was undertaken to investigate if
the shape of each cross section can be predicted with better accuracy knowing the

density of the dye (radiopaque dye injected to visualize the left ventricle) in two

planes.

In this report we present a new method for reconstruction of the shape of the
left ventricle from the biplane angiocardiograms. This approach utilizes a pair of
orthogonal X-ray projection images for each ventricular phase in a cardiac cycie
The projection image is a two—dimensional picture which is obtained by integrating
the absorption function of the X-ray photons along the directions paralie! to the
optical axis of the camera sets. Obviously, the absorption function affected by the
injected dye will influence the reconstructed results. For simplicity, we define the
absorption coefficient of the dye to be umity to form a binary reconstruction
problem just like all the other developed methods The shape of the ventricle s

reconstructed by diding these projections into slices and then being processed
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) slice by slice stepwise. Therefore, we reduce our three-dimensional problem into a
two-dimensional problem by considering the object as a stack of parallel cross
sections. Each cross section consists of one connected region and is reconstructed
from its two one-dimensional projection profiles. Therefore, our probiem can be

stated as the reconstruction of a binary matrix from its row and column sums.

in Chapter 2 we describe our reconstruction problem and review some currently
developed methods. In Chapter 3 some mathematical characteristics are explicated.

s Our algorithm and its implementation are discussed in Chapter 4. Some synthetic

examples are also demonstrated. In Chapter 5, we describe an experiment by using
two projection images from a bag of dye. The discussion of the experimental

results and some suggestions for further improvements are given in Chapter 6.

NN el

e s m A e e e o aas el _ M araa A Soa S S A

\.'fs.".'.\.'_\‘.'a.':q.':\':\.':h'l;."_s.‘:.s.":;':-;" TN ST A Y S T N A T A T




CHAPTER 2
PROBLEM DESCRIPTION AND LITERATURE REVIEW

The binary reconstruction problem may be stated as follows in terms of entries of
a matrix X with m x n cells. Each cell is identified by the pair of numbers {i,j) and is
represented by xij. x”_ may be 1 if the cell falls into the region of object or O

otherwise. The problem is to estimate xij given the marginals

n

I x, =P, i=1, ... ,m
=1
m
! x..=Q., j=1, ... ,n
=1 4
where P i=1, . . ., m are elements of vector P containing the row sum of X, and
'

Q,_ j=1...n are elements of vector Q containing the column sum of X It is also clear

from the essence of the matrix that

m n
I P=7 Q.
= =1

This implies that the estimation of m x n variables xij €{0,1} needs to be
determined from m + n - 1 independent equations. Therefore, our problem is
obviously underdetermined. Some previous research results (2,5,7) also show that
the reconstruction of an arbitrary binary matrix from two projections is in general
impossible. According to the theory by Ryser (1,2), it is possible to find zero, one,
or more than one binary matrices satisfying a given pair of row and column sums
(see Fig2-1). To reconstruct the binary matrix, some certain assumptions always

need to be made. In the following, we are going to review some of the research

works done in this area and their assumptions.
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1 3 1 1 3 1
2 1 1 0 0 1 1
2 0 1 1 1 1 0
1 0 1 0 0 1 0

1 3 2 1 3 3
3 1 1 1 3
2 0 1 1 3
3 0 1 0 1
One solution No solution
Figure 2-1
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The matrix reconstruction algorithms can roughly be divided into two categories.
The algorithms in the first category apply some direct methods to solve the
matrices under some assumptions, while those in the other category usually
reconstruct the matrix by using a priori knowledge, in other words, some
predefined binary mask models. We will discuss some methods in both categories as

follows.

The commonly used method in biplane angiocardiograms utilizes the assumption that
the shape of the cross section is close to an ellipse (3. So the distance between
two end points of each projection profile is taken as an axis of the ellipse
However, the shape of the cross section is usually not an ellipse, and the

reconstruction result of a certain cross section also depends on the orientation of

PP s

the cross section. In 1983, Eiho et al (4) proposed a method to solve the

orientation dependence problem by using three projection profiles with the same
ellipse assumption. The reconstructed shape is much improved with the expense of
one more projection, but still far from a shape of a real ventricular cross section
Chang (5) has developed an algorithm to recover any binary matrix from two
projection profiles. The algorithm can obtain the exact reconstruction when there
exists only one unambiguous solution from two projection profiles. However, most
of the shapes of cross sections are ambiguous based on his definition. Only one in
a large amount of possible solutions found by his algorithm is the real solution. So
the results are usually not correct Chang and Chow proposed another aigorithm to

specifically reconstruct the shape of a ventricle (6). They assumed the cross section

of the ventricle should be in a connected region which is convex symmetric. So the
ambiguity is largely reduced, only a few possible solutions remain after
reconstruction. However, a cross section of the left ventricle is in general not

convex symmetric (7,9). Therefore, we proposed our new algorithm without the

convex symmetry assumption to fit more generally to the left ventricle )
L

o

~

Because the ambiguity was hardly solved by most of the direct methods. :
\

researchers also found another approach that uses a priori information. At first, ]
Onnasch and Heintzen (7) and Onnash (8) developed an algorithrm for binary ‘
reconstructiobn of the left or right ventricle from two projections that utilizes a :j
y

’

. . . .(.Q“- .
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mode! database obtained from the cast study of ventricles This method implies the
estimation, for every matrix element, of its probability to belong to the ventricle
Recently, Slump and Gervranchs proposed a method also incorporated with a priori
knowledge to reduce the ambiguity of the problem (8. A minimum cost capacitated
network flow algorithm is adopted, which yields the optimal solution with respect to 4
the selected binary matrix models. If the correct models are available, these model- '

based reconstruction methods usually give more promising results than the direct

methods. However, a correct model is physically unavailable, in fact, it is the goal to
be recovered by these algorithms. Our new algorithm reconstructs the binary matrix
with the assumption that the equal-divisor curve of a cross section always exists.
No binary matrix model is required, though the reconstruction results are pretty

reliabie. We will discuss it in the following sections.
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CHAPTER 3
MATHEMATICAL CONSIDERATIONS

Suppose that V is a connected region in Rd {d >= 2} and fix) 1V(x), the indicator

function of V. Define

Plxys . .. X _])=j Flx Xy, sX ) dx

d d

(3.1)
and

q(xz,... ,xd)=f f(x],x . ,xd)dx

27 1

(3.2)

p and g are known as projections along x‘-axis and xd-axis respectively. In

practice, our observations are given as follows:

R](x],.”,x )=p(x],,..,x

d-1 Jrelx s o axg )*A

d-1 d-1

(3.3)
Rz(xz, o ,xd)=q(x2, o ,xd)+n (XZ’ o ,xd)<1»x2

(3.4)

where € and mn are known as nhoises centered at expectations and )\1 . >‘2 are
known as the expectations of noises. In continuous case., £ and n can be assumed
to be stochastic processes and in descrete case, they are assumed to be two
families of random variables. In practice, R1 and R2 can be computed from two
photos which are taken along two orthogonal directions. The probiem we are faced

is how to reconstruct the shape of the subject V by using these two profiles, FR1

and Rz' The mathematical work concerning this problem includes

~

{i) estimation of the projections p and q
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(i) reconstruction of V, V, by using p and q.

Obviously, the first task is statistical and the second is geometrical. In this section,

we shall discuss how to solve these two probiems. h

At first, we shall consider the noise free case. In this. case, there is no need to ;
estimate the projections and it is assumed that p and q are known, A1 and )‘2 are
zeros. In our reconstruction approach, the two projection profiles are not equally
treated. Acc'ording to their usage, let us name p as the constructor (constructive

profile) and q as the ruler (control profile), respectively.

In the sequel. we always assume that V are regular, namely, each straight line

e St Sy

along x1-axis or xd—axis intersects V in a closed interval on the line, if they are not

disjoint Define the eqhal—divisor surface {ED) as follows:

D= {(x1, SRR S there is an X, such that (x, ... ,xd) eVl ’

For (x1, e X 1) € D. denote the two intersection points of the line
- — o -
(X1—x1, C ,Xd_1 xd_1) and the surface of V by (x1,x2, ey )} and :
1 L]
{x_,x_, X ), e, R
2 d o
0_ .
x, = sup {xd , (x1,x2, A ,xd) eV} |
and :
1 f
=i e V .
x, = inf {xd b x) € } :

0 1 .
LR ’ + + P
Then the surface {(x1, X X+ x J20) (x X,.) € D} is called the

ED of V (or more definitely the ED of V along xd—axis). For convenience, we also

call the function gix, ... x| = 1/2x *+ x ') the ED of V. :
The following propositions are evident. N

Proposition 1. If the ED and the constructor of V are known, then V can be

reconstructed uniquely.

- .y g " ., -y o > - P E P NP
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Preposition 2. If the constructor is given, then V and its ruler are continuous with

respect to ED in the following metrics:
d(v,v')=f |1 -1, |dx

(3.5)
d(a,q')=f fJalx,. . .. X mat Xy o ax) |dx2, e

(3.6)
and
dgag)=f [glxqe o ox, )=g" Ououx ) |dx ol

(3.7)

where g = 1/2(xd°+xd1) and g is similarly defined for another subject

The most difficult thing in reconstruction is that there is no unique solution. We

have the following example.

Example 1. Suppose V1 and V2 are two identical ellipses except the long axis of
V1 coincides with the line y=x and the long axis of V 2 coincides with y=—x. Both
of their centers are at origin. Then V1 and V2 have the same constructors and

rulers.

To make the solution unique, we have to make further assumptions which can be
justified by practical knowledge. For instance, the doctor can say the heart of a

patient is tilted towards left by his experience.

In the following we will consider the case d = 2. Suppose pix| is a continuous and
unimodal function defined on the interval D = [a,b] with p(a) > 0, p(b) > 0, and pix)
> 0. x glab) Let f be a function defined on [ab].

Define

V(f)={(x,y) :xeD,f (x)=1/2p(x) <y<f(x)+1/2p(x)}

and define

q(f) (y) -Max{x‘-xzz (x] ) Y) sV(f)and(xz.y) r(e)vif)},

(3.8)

if Vif) is regular and if there is at least one point x such that (xy) € VIif), and

qm(y) = 0 otherwise
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Suppose F is a class of functions defined on [ab] satisfying

(i each f in F is nondecreasing and continuous,

(il for each f gF, VIf) is regular,

(i) for any pair f1, f2 g F. the set {x ¢ (ab), f1(x) E fz(x)} consists of at most

two pieces of open intervais.
v={VIifi:f € F}

(3.9
and
f
R = {q( )it e F}
(3.10
We have the following basic theorem.
Theorem 3.1 Under the assumptions given above, we have
FesrVesR
311

Where -+ denotes one-to-one correspondence. The proof of Theorem 3.1 is given

in a companian paper by some of the present authors.

Theorem 3.2 (Basic Reconstruction Theorem). Suppose V is a subject to be
reconstructed, and suppose the constructor of V is P(x). Let F be a function class
satisfying the conditions given in (3.9). Suppose the ED of V belongs to F (of
course, this .implies V is regular). Then V is uniquely determined by its ruler among

V with respect to F.

Example: Suppose V is convex region in RZ with ED being a straight line up-
sloped Pix), x € [0a] and qly), v € [0b] are its constructor and ruler

respectively. Take

F={oax+B8 0<a<b/a 0<B <b}

Use P and F, we get the set V, then by Theorem 3.2 V is the oniy element in V

PR T PRI TN % JO TS T I SR I SO A R LI Y S
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which has qly) as its ruler. This example explains why our procedure given in
section 4-1 works. Now let us extend the result from d = 2 to the general case.

Let V be a convex region in Rd, d > 2. As eariier defined, let p and q be its two

projections and let g be its ED. For any fixed x, = xzo, Xy = xod_l, define

* . 0] o]

Vimllxsxgd s (xgoxgs oo, axg) € V]

* 0 0

P (x])-p(x].xz. S .xd_1)

% 0 0

q (xd)=q(x2. .xd_1.xd)

and

* 0 0

g (x])=g (x].xz, . .xd_1)
provided that va is not empty. Then a can be regarded as the cross section of V,
cut out by the hyper plane {x2=x2°, XS xod_1}. Also, p', q’ and g' are the
constructor, ruler and ED of va respectively. It is easy to see that for each
x2=x2°, C ,xd_1=x°d_1, g' is continuous and nondecreasing if and only if g is
continuous and nondecreasing in X, for each fixed X oo e Xy Hence by theorem

3.2 we have

Theorem 3.3 Suppose that V is a regular subject in Rd to be reconstructed with
nondamaged profiles P(x1, C ,xd_1) and q(x2 ..... xd). Let F be a family of
functions satisfying the conditions (3.9) for each given multipie (x s xd_1). Then
the true subject V is the only one which has q as its ruler, among the family of

subjects constructed by p and each element in F.

Here the regularity of region in R is similarly defined as that in Rz. Namely, a

. . d . . . 0
region V in R is called regular, if each line {x1= x1°, XX c’_1} or
0 0 . . . . .
{x2=x2 ..... x5 X, } can only intersect V in a closed interval (or a single point
or empty)

Remark 1. Since the regions under usual consideration are assumed to be convex,

thus the condition of regularity is satisfied




By Theorems 3.2 and 3.3, the task of reconstruction turns out to estimate the ED

of the region by using its two projections. Thus our problem becomes to fine a
function among a given class of functions such that the derived projection along

x1—axis is closest to the observed one, the ruler.

By Weierstrassian approximation theorem, for any continuous function, we can find
a polynomial uniformly approximating it. Thus we can restrict our attention to finding
a polynomial as the estimate of the ED of V. The detail description of the

reconstruction algorithm will be given in the foliowing section.

Next, let us consider the case where noise arises. Because the projections p and
q are damaged by the noise, we can not use R1 and Rz to do reconstruction and
we have to smooth them to eliminate the affect of noise. There are many ways to

do so. We only state several simple methods here.

(i) Kernel smoothing. Suppose K is a probability density. Choose a positive number

h, then let

~ ~ l -
px)+r,= —— J R](y)K(X—l)dy

hd-l Rd--l h

-~ P ] Loy !
Q= — [ Ry (K
hd-] Rd‘]

)dy'

(i) Histogram smoothing. Split D into small regions as D1, Dz' ce, Dm. Then

define

px)+x, = J Ry(y')dy,ifx €D,
D

.
|
-~

Similarly smooth q as g

{iil Median smoothing. Choose § > 0, for each x, take the median of the

observations of p observed in the interval (x—§ x+§) as the estimate p of R1.

Similarly define q. This approach is available only for discrete case.

(iv) Polynomial fitting. Find a polynomial p which minimizes

J IR (- (U013 5g 042 2ax

Similarly define q.
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Under certain conditions, we can prove all the above approaches get consistent
estimates of the true profiles. The proof will be found on the other technical report

which will be filled later soon.
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CHAPTER 4 :
SHAPE RECONSTRUCTION

For a given cross section as in Fig. 2, one can have the two profiles from the .

column and row projections, where

m
I x.. =P, j=1,...,n

I x..=Q, i=1,...,m;

4.1)

P) and QI denote the two projection profiles and x”'s e {0.1} are the cells in
the given matrix. We assume that a cross section of a left ventricle is a connected
region without holes in the m x n binary matrix X. Therefore, we can get the mass
center of the cross section which can always be unambiguously determined from

any given sets of profiles.

[aer]
L
o
" e—1
[
L]
©

4.2)

In general, we can find an ED curve, along which one of the projection profiles
can be divided into two equivalent halves. For instance, in Figure 4-1, we can see
the real ED curve divides PJ’ into two halves at j = |, where one half is above the
ED curve and the other half beneath it Consequently, if we repeat this operation
for j = 0, . .n. along the real ED curve the cross section can be correctly

reconstructed from P In other words, the proposition, that a cross secticn can
J
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always be uniquely determined by one of its projection profiles and its
corresponding ED curve, is always valid for any regular cross sections. Therefore.
our problem is simply to estimate the real ED _urve with respect to PJ or, similarly
the real ED curve with respect to Q.' which can divide Q', i= 1 _ . .minto two
equivaient haives rowwise. Let us use the following equation to approximate the ED

curve in Figure 4-1.

~

PG = i ragray (rmi)va, Gt ) Phag G e )

4.3)

where (i ,j } are the coordinates of the weight center,j’ is the given | coordinate,

n o

[
and a. i 0. . . .3 is the parameter of vector A, with which we aproximate the
t

real ED curve Then we can assign .
- . . 1
= {l if || |C|§/2PJ. .

' 0 otherwise,

4.4

If the approximation of ED curve in (3) is perfect, we can have

n
Qi = _X xi_j' i=l, . ..,m

(4.5)

where E a equals to zero.

.
.
.
L)

From the same approach for 51, we can also have

14 6)

.and EP equals to zero if the estimation of ED curve i1s correct The regularity

.'.\)\ *-._\',., _- A A S TN \ \ \ - e

ENT AN A S

"-ra:l..ﬂ. MRS N

..\.Q ‘mm



b a2 ol ad B ad Lt A b Aty Ao h-a ko B a Alay e it 2y Al Al > Loty x A of a4 . s y Lol 4l 6

17

)
1
{
f_-Egtimated ED
(RULER)

” .

P

.-...—'..\
Lg

U3 p

{
!
“Seeee——1t— Real Cross
| section

i—' Estimated (rosg

m - =L | ection

Figure 4-1;

sf\’a;\;\‘\fu‘s":%“u’\'\’\’\’ﬁr\”\’ T T TN ATy
¥ v . N o u, . N B

LA A A N A A AT AR R
A .



ey

sa g I an o

18

constraint in our algorithm is much less restrictive than the convexity constraint,
since even the concave cross section can also be regular. Therefore, the regularity
constraint fits the ventricular shapes much better. From a normal shape of ventricle,
which does not have abrupt changes on its boundary to cause large discontinuities
on ED curves, we usually can expect Ep and/or E a close to zero. So the cross
section can be reconstructed if A can be obtained. Now we state that our problem

is to find a optimal vector A which will minimize EP or EQ.

In the sequel, let us summarize our algorithm of reconstruction in several steps as

follows. The detail of each step will be illustrated in the subsequent subsections.

- i ST
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Algorithm:

1. Find the weight center (ic, j) of ‘two projection profiles by using
c

equation (4.2)

. Assume ED is linear and passing through (ic,jc), ie.,

ED: i—i =23a_-¢(j-j)
c 1 c
or = = a, ¢ {i-i)
c 1 c
By using the coarse—to—fine approach, obtain a:’s, which minimize E a
or E ..
p

. . . “
. Perform the consistency test to obtain the unique solution of a, on

each layer of cross sections.

. Let ED be a curve approximated by a third order polynomial., such that

o _ 2
ED: i 'c = (ao :Aao) + (a1 + Aa1)(1 ;C)-F(a2 t Aaz)(j Jc) +

.. .3
(aaiAa3)(; Jc)
(Similarly for j coordinates)
to minimize EO with respect to A=[ao,a1,az,a3]’ by a gradual descent
method with a fixed step AA The at obtained in the last step is used

as the initial value of a1.

. A contour relaxation procedure is then applied to obtain the higher
order terms of the polynomial used to estimate ED curve Therefore, it
further refines the reconstruction results.

. Regenerate each cross section. Pile them up slice by slice to construct
the 3-D shape.

(AART AT R R

P I
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4.1. A COARSE-TO-FINE APPROACH TO FIND Al’

For a convex or slightly concave cross section, ED curve can roughly be
approximated by a line. The direction of the estmated ED line implies the major
orientation of the cross section. To obtain it, let us assume

PR . ¢ =i
l(J)Jc a1(11c) at j=j
(or similarly j (i) = j +a (i-i ), at i=i)
c 1 c
(4.7)

and find an optimal a: such that from the reconstructed x ¢ {0,1}, we can obtain

-

*
EQ or E_,where

Q

*

EQ 'aﬂ;nEQﬂa\nf': |Q| |‘
E*H E =M E
orE =Hink,= lnX|J _jl'

% l J

The procedure to find EO (EP) has been described in the previous subsection by

equations (4.4),(4.5),(4.6).

Since the minimum of Eo(or EP) can not be obtained analytically, we use a coarse—

to—fine approach in finding a:. As illustrated in Figure 4-2, we start with an array
of five equally spaced a_ values covering the possible range of a, [-a.a]. The three
neighboring a1‘s which contribute the least sum of three neighboring Eo’s (or Ep's)
are picked up after each iteration. By inserting two new a1's into the two slots

between three picked a1's, another array of five equally spaced a1's is formed agan.

The array is then used to initiate another iteration. Ultimately, the optimal a: 1s

picked up from one of the five remaining a1’s which generate the smallest values of

EO (or Ep) after four iterations of this procedure. Nevertheless, the a: 1s not always

L]
i unique. Two possible a1‘s can be generated if the project profiles of the ruler is
symmetric with respect to its weight center The ED Ines of the reconstructed
cross sections are symmetrical with respect to the axis passing through the weight

L
center and parallel to the constructor. In other words, these two a1's are similar in

(~".‘-\" v‘..,. e At ,.-..'.d‘.".;-.'-...‘_..‘.._--..‘.._...-_--_. L U _-‘-’.'......._.".._.....__.‘._..‘~ :
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a = 1,[C] is the selected center of group

at each iteration,

Figure 4-2:
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value but with different signs. Therefore, the other possible aj’s, if available, can be

found from the opposite portrait of the last five remaining a1's. In  this

* »* *
implementation both a and a, are recorded for the next process. if the as is not

larger than a: by 15%.

i

The reconstruction results from a vertica and horizontal constructor are usually
different Thus, the above process can be applied to both horizontal and vertical

)
i
*
! directions, but generate only one set of a from one of the directions. However,

*
both sets of a, are stored if both directions generate similar EP and EO. This
ambiguity may be caused by a cross section highly symmetric with respect to the
origin. The consistency test procedure in the next subsection can be utilized to cope

with this problem.

42. TEST OF CONSISTENCY

H From a symmetrical ruler projection profile, two cross sections, which are

symmetrical to each other with respect to the direction parallel to the direction of
} the constructor, can be reconstructed equally well. Therefore, the ambiguity arises
when more than one cross section can be reconstructed from the same pair of

projection profiles.

The first step of the reconstruction process under the assumption of a hinear ED
is performed exclusively with the two projection profiles given in the corresponding
layer In fact it estmates the major orientation of the cross section on the current
layer. Thus, the major orientation of the cross sections on all the layers can be
obtained independently The orientations and error indices of both possibie answers
on every ambiguous layer are stored. After computing cross sections on all the

layers. the ambiguities can then be resclved by using the property that the cross

T e T e e SO N T e
lh.'..’ P A SR PR v‘.’..s‘.a.'\’q.'s » ‘.A’.’; NGO a.sh‘l.c- s \.". D S A
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sections on neighboring layers are smoothly and continuously connected. Therefore

their major orientations are consistent in similar directions.

To pick up the real orientation from the possible solutions of an ambiguous layer,

the following two simple rules need to be applied.

Rulet: If both neighboring layers are unambiguous, then pick the one that gives

minimum difference of orientations to both neighboring layers.

Rule2: If only one of the neighboring layers is unambiguous, then pick the one

that gives minimum difference of orientation to the unambiguous cross section.

In general, the ambiguities generated by symmetric projection profiles on the ruler

can be determined by inference from the neighboring layers.

The consistency of the major orientations affects the 3—-D shape reconstruction
substantially only when the reconstructed cross sections are elongated in shape.
Due to the nature of the algorithm, the cross section reconstruction is more
accurate when ED lies along the elongated direction. Therefore, the optimal ED lines
obtained in step one usually are from the same side of constructors. One from the
two possible solutions can be determined easily by using the two given ruies. If the
orientation of the cross section is tilted about +45 degrees. the reconstructions by
using horizontal or vertical projection profiles as constructors can both obtain fairly
good results. It is preferred to use the same side of constructor as its two
neighboring layers. However, the two neighboring layers may not use the same side
of constructors in the transition area where the orientations of the cross sections
change from less than to more than +45 degrees. The two given rules are still
applicable since the real ED lines of the horizontal and the vertical constructors are
in similar orientations when their major direction of the cross section are around
+45 degrees. The orientation that generates minimum projection error(EP or EO) and

satisfies the two given rules is picked up in the transition case.

The process of the consistency test can be performed from top layer to bottom

layer (and then in reverse if necessary) by using the results from the first step

P A AN -'";." oyt -'(-;*-" ALTRR "V\ s \ \' "‘ T S G N ANy
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It is comparatively less e'xpensive in computation because point to point matching
IS unnecessary in our approach. Instead, the properties of ED line can be utlized
Thus , the consistent shape of 3-D objects is availabie, after this test for the

detailed adjustment in the following steps.

43. ITERATIVE DESCENT PROCEDURE TO ESTIMATE ED
CURVE BY A POLYNOMIAL

The ED curve is not linear on some of the convex cross sections and most of
the concave cross sections. The ED line obtained from the above process needs to
be adjusted to better fit the real ED curve. Therefore, a third order polynomial 1s
used to approximate the ED curve under the constraint that the weight center of
the cross section is invariant A higher order polynormal is intuitively easier to fit an
arbitrary curve. In practice, a third order polynomial is usually moderate to simulate a

nonlinear ED curve and computationally less expensive.

It is known that the weight center of the real cross section can be uniquely
determined from the given two projection profiles. So. the weight center of the
reconstructed cross section certainly should be always kept identical to the real one.
As a result of this constraint, only three parameters need to be adjusted in the

optimization process. Now, we begin to further refine the ED curve by using
PG =0ty +bag)+ (a,%xaa)) (=i )+ (a,020a,) (1-i ) B

(a,°28ay) (j'=j )
4.8)

(Similarly, for the other projection
QG = @ O+bag)+(a,%saa) (i1-i )+ (a, 202, (=i ) 2

(a;028a,) (i'-i )3
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At first, let a: be the initial value of a, and zero be the initial values of a-a, a
to form an initial vector of parameters, denoted by AO. A fixed array of Aa',
i=1,2,3 are given such that the external boundary points are changed by at least one
cell when the corresponding 8 varies with the amount Aai. The change of a0 value
simply moves the weight- center of the reconstructed cross section away from the
real weight center. So the ao value is only adjusted by the other parameters in
order to compensate the generated deviations to the weight center when those
parameters are changed. The iterative descent procedure is therefore applied only

to three parameters of Ao; a, is kept updated when necessary. Four points

1 0 . . . . .
denoted as a = a ¢+ pAa, where ao has not been adjusted in the previous iteration
i [} [} [}

and i ¢ {1,2.3}, are checked to find the optimal a,* which results in a minimum
[}

E (E), calld EE) If ENE") < EXEY), then a° = a~. Thi i ted til
oEp) called E (E) EE, JE.). then a” = a. is process is repeated till no

further improvement can be made. The final vector of A° is then the optimal
solution of the problem that generates minimum sum of error between the real and

estimated projection profiles.

44. CONTOUR RELAXATION

The real ED curve of a cross section can fairly be approximated by a third order
polynomial. However, the attempt to obtain the exact ED curve still involves some
higher order terms. To resolve these higher corder terms by increasing the order of
the polynomial which is used to approximate ED curve is too computationally
expensive. The contour relaxation algorithm is designed to solve this problem
without directly computing the higher order polynomials. Based on the theory. it
minimizes the difference between the given and estimated projection profiles in
order to minimize the difference between given and estmated cross sections under

the condition that the regularity constraint on the contour of the cross section

I R N A S Y
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should not be violated. The difference between the real and estimated ED curves
introduces error represented as the difference between the estimated and given

projections along the ruler coordinate. It is clear from our proposition that the real

-

cross section can be uniquely reconstructed from a given constructor and its i
corresponding real ED curve. Therefore, the contour relaxation algorithm intends to
eliminate the difference between given and estimated projection profiles to obtain
the estimated ED as correct as possible. Now let us introduce the algorithm in the

following.

To simplify the illustration, we use a horizontal constructor as in Figure 4-3; the

alternative case can be solved similarly. First, let us set the projection error e(j as
the projection of estimated cross section minus the real given projection at each
row j along the ruler coordinate. The upward potential U.(k)’ and downward potential p
Di(k), which will be explicitly defined later, at each column i along the constructor
coordinate are used as the basic measures in this algorithm. As we know, the

deviation between real and estimated ED's generates the difference between

estimated and ruler projection profiles, and contributes error to the projection error
e(j. This error can obviously be compensated by shifting the estimated ED upward
or downward toward the real ED. However, the real ED is unknown. Therefore, the f
adopted U.(k) and Di(k) represent the potential to reduce error by shifting upward or
downward along column i from point k-1 to point k away from the current
estimated ED. It is obvious that the potential of shifting upward or downward
increases when large projection error can be compensated after the shifting. From

Figure 4-3, we define U(k) and D (k) as below.
1 1

Let m. and n denotes the row coordinates of the upper and lower boundaries of
the estimated cross section at column i. Moving this column one point upward (k=1)
will make the projection error e(m'+1) increase one while e(nl) will decrease one.
Therefore, larger e(nl) and smaller e(m‘+1) implies more potential to move this

column upward. Thus, we define

U'(‘l) = e(ni) - e(ml+1),




and
Uk = e(ni+k—1) - e(mi+k),
]

when the column is moved from point k-1 to point k upward.  Similarly, for r

shifting downward, we define

Di(1) = e(mi) - e(ni—1),

and
Dk = em-k+1) - e(ni—k).
[} I

Using U and D, we then define
1 1

TU =2 » Ui(‘l) + Ui(2) + Ui(3)

T =2 - Di(l) + DI(Z) + D’(3)

and
f(i) = TUi, dii)=1, if TU‘_ - TDi > Ti
(i) = TD, di)=-1, if TDi - TUI > Ti,
]
fii) = 0, dli)=0, ortherwise,

where T = 0.75 Max( TUi , TDi ).

To include the influence from the neighboring columns, we then assign

gl = dli-1)«fli=1) + 2dli)«fli) + di+1)+fii+1),
to be used in the iterative process.

The TU (or TD) from the linear combination of U (or D) assigns more weight to
I [} [} i

the columns need to be shifted more deeply upwardidownward). The f(i) and d(i} are

then defined so that each column i can only be shifted upward, downward, or kept
stil. The larger the f(i) implies the more potential to move this column. Considering
neighboring columns are usually shifted smoothly in the same direction. glil grants
priority to the column where both its neighbors and itself have a strong tendency to

be adjusted. Now let us state the contour relaxation algorithm as follows:
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1. Adjust those columns which exceed the upper and lower end points of
the ruler to assure the contour 1s within the possible region of cross
saction.

2. Let k=0. Obtain the initial ek(j) for each row on the ruier from the
estimated cross section.

3. k=k+1. Compute gk(i) and dk(i) from ekq(i) for each column i on the
constructor.

4. For sach row | with ek-l(j) £ 0O, pick up a column with maximum
gk(i) among those candidates, which reduce |ek_1(j)| by shifting
according to dk(i), without violating the regularity constraint of the
boundary.
5. For each picked column i, adjust it by shifting toward the direction )
given by dk(j) and then set dk(j)=0. If the dk(j) has been set to zero, do

no adjustment. Compute ek(i) after all columns have been adjusted.

6. If E= Zj Iek(j)l is reduced, go to 2, else stop.

Figure 4-4 demonstrates an example for the use of the contour relaxation
algorithm. Figure 4-4(a) is obtained from the ED curve approximated by a third
order polynomial. Figure 4-4(b) shows the results after applying this algorithm
Considerable improvement has been made by the contour relaxation. In fact, the
algorithm can generally further refine the reconstructed cross section as long as the

regularity is satisfied The higher order terms of the estimated ED curve are

resolved implicitly.
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45 SOME EXAMPLES OF THE CROSS SECTION
RECONSTRUCTION

Some examples of the cross section reconstruction are gwven in this section
Figures 4-5 to 4-10 illustrate some of the experimental resuits with our algorithm
for six randomly drawn cross sections. Each cross section is drawn by a graphic
program into a 60 x 60 matrix. The projection profiles are constructed by summing
up the elements belonging to the region of cross section columnwise or rowwise
The reconstructed cross section is compared with the original. The relative mean

error used in {6,11,12) is adopted to measure the performance. It 1s defined as

m n
DI ole-x|
=1 =1 oo
R =
m n
I I g
=1 =1 '
4.9)
The Q are the elements of the original cross section and xJ are the elements of
1 |

J
the reconstructed one. As mentioned above, the reconstruction does not refer to

any predefined binary mask models. However the results are quite good even when
the original cross section is very irregular. Table 4-1 summarizes the experimental
results for the cross sections shown in Figure 4-5 to 4-10. For each figures set.
{a) shows the original cross section, (b) illustrates the reconstructed results and the
estimated ED curve given by our method. (c) is the reconstruction results obtained
by the ellipse approximation method. The dark curve inside the reconstructed region
in (b) is the ED curve obtained by our algorithm. From 50 randomly drawn pictures.
the reconstruction results for a regular shape ususlly can achieve more than 96%
conformity, which is better than the results shown in (45) The conformity measure
1S gven by the number of elements common to the original and the reconstructed
cross sections Thus the conformity measure is one hundred minus half of the
relative error R in percent As to the cross sections of irregular shape. we usually

get less than 20% R, in other words, it is around 90% conformity. Figure 4-5 to

4-10 show fairly regular cross sections. the results are as good as predicted
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Figure 4-89 and 4-10 show cross section with obvious irregularity, which is

generated by large concavity and sharp changes on boundary. Although the cross

~ ¥ =% W

sections are irregular, the reconstructed results still keep the approximate shapes

for visual recognition. In the next section, we are going to do the experiments with

real X-ray pictures. J

Table 4-1: Experimental results for Figures 4-5 to 4-10

Figure Total No. our Method ' El1lipse Approximation
No. of Points
23S EEZIEEIESEEREEE RIS R E I EFE R ERE N EEE R EE S ESEE S EEESEEEE S SRR ErEREIERESEEEEEEERE
No. of R Conformi ty No. of R Conformi ty
Mtsmatch Mismatch
4-5 1733 128 7.4% 96.3% 778 4. 9% 78.5%
4-8 1298 20 1.8% 99.2% 505 39.0% 80.5%
4-7 1382 44 3.2% 98. 4% 840 81.7% 79. 1%
4-8 870 24 2.8% 98. 8% 298 30.6% 84.7%
4-9 1743 110 8.3% 96 . 8% 803 34.7% 82.8%
4-10 1322 150 11.3% 94.3% 824 47.2% 76 . 4%
EERE R IR R E S I E NS EE S EEEEEE S S SESEEEEE S S R EEE RS R EEE RS EREEEREEEEEERESEEEEERNESE
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Figure 4-7
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CHAPTER 5
AN EXPERIMENTAL RESULT

In this section, we will demonstrate an example with two X-ray fims of a bag of ;
dye to show the applicability of the object reconstruction technique described in
Section 3. The procedure of object reconstruction is shown in Figure 5—1. The
films were digitized by an Optronix drum scanner into 512 by 512 arrays of pixels.
The grey value of each pixel is recalled by an 8-bit integer which scales the
intensity of brightness. into the range between O and 255 Low grey value !
represents low intensity (dark pixels), while high grey value represents high intensity '
(bright pixels). The second step is to apply the logarithmic transformation to both
left and right digitized images, such that the exponential absorption of the radiation
is compensated. Then, the grey value of the dye free region is subtracted from the
image since we are only interested in the net X-ray absorption by dye, which is

proportional to the depth of the ventricle.

For a real ventricular reconstruction, we have to do some averaging work to
assure the quality of image because the mixture of the injected dye is usually
incomplete. However, this experiment utilizes a full bag of dye, so the incomplete
mixture problem does not have to be considered in this case. The next step is the

ventricular boundary detection. Several papers have been presented for this problem.

Pope et al utilize the Dynamic Search Algorithm (11) and Bocker utilizes the

Laplacian-Gaussian operator (12), which are pretty reliable for the ventricular

boundary detection . In this experiment. we utilize a simple threshold method to
segment the region of object The detected boundary is satisfactory since the used
object is 150 cc of pure dye in a plastic bag whose shape is regular and

unambiguous.
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After the boundary detection, the segmented region is smoothed by a medium
filter for eliminating the corrupted noise at the present experiment The processed
images are ready to use except their sizes are different since they were taken by
two different sets of cameras. Therefore, these two images are scaled and aligned
so that we can slice the two images into corresponding arrays of pixels. Each cross
section will then be reconstructed from the grey values of the corresponding pair

of pixel arrays. However, we can not apply these grey values directly into the

binary reconstruction process because grey value is not equivalent to the depth of.

the object Fortunately, the depth of the object and grey level are proportional to

each other. It can be expressed by
D= qal
x x

where Dx is the depth, Ix is the grey value, and ¢ is an adjustment coefficient
decided by the characteristics of the X-ray machine. In this experiment, the «
values for both projections are unknown. For simplicity, we assume the highest grey
value corresponds to the width of the grey level profile on the other projection. So
these two adjustment coefficients can be decided and used to transfer grey level
profiles into depth profiles. The generated depth profiles are then used to
reconstruct the cross sections. The reconstructed cross sections are put into a
stack to represent the three—dimensional objects. On the other hand, the volume of
the object is also computed with a Simpson integration formuia,

Volume = h/3 (L 4earea) + ( £ 2earea)
odd even

Figure 5-2 shows the original X-ray pictures for both left and right projections.
Figure 5-3 shows the same image after preprocessing. Figure 5-4 shows the
reconstructed three-dimensional object by piling up each reconstructed cross
section. The estimated volume of this object is 153.2 cc. which is around 97.9%
accurate with respect to the real volume 150 cc. The ellipse method by the HP.
ventricle estimation system obtains 163 cc for the object. which is around 91.4%
accurate. Our method obtains better volume estimation, and the reconstructed shape

(Fig. 5-4) is close to the real shape of the object according to doctor's observation.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS
FOR FURTHER IMPROVEMENT

In this report, we present a new method to reconstruct the three—dimensional
shape and estimate the volume of an object by using its two orthogonal projections.
We have proved that the cross section can be optimally reconstructed by minimizing
an error index which is generated by the sum of the absolute difference between
the original and the estimated projection profiles. This error index is uniquely and
continuously proportional to the sum of error between the original and the estimated
cross sections under the condition that the original cross section is regular and has
a monotonically non-decreasing or non-—increasing equal—divisor curves. A new

algorithm has been designed based on these properties.

The algorithm has been tested on synthetic cross section as well as real X-ray
pictures. From synthetic pictures, it achieves better than 96% conformity for regular
cross sections and better than 91% conformity for irregular ones. The
reconstruction for X-ray pictures is also better than 95% conformity in every layer
of cross section. The processing speed is less than 3 seconds for each cross
section by a Fortran implementation in VAX 780. Thus, the algorithm are reliable and

fast for the different experiments that we have done so far.

in the next phase of this project, we are going to apply this algorithm to real
ventricular images. To obtain better results in real ventricular images, we suggest to
further investigate the adjustment coefficient o of X-ray absorption. We also
propose some methods to depress the corrupted noise in real X-ray images. At
last, some more detail consideration will be made to directly reconstruct 3-D
objects from the two projection images. Some more studies for the irregular case

is also of interest
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