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ABSTRACT

A new 'method for reconstruction of the shape of the left ventricle from the

biplane angiocardiograms is proposed. This approach utilizes a pair of orthogonal X-

ray projection images. The shape of the ventricle is reconstructed by dividing these

projection images into parallel slices and then being processed slice by slice

stepwise. Each corresponding pair of slices form two one-dimensional projection

profiles which are used to reconstruct a cross section of the ventricle.

Without using predefined models, we proposed a new method to reconstruct the

cross section under the assumption that the cross section is regular along the

directions of projections and a monotonically nondlecreasing or nonincreasing equal-

divisor curve is available. A cross section is regular if it contains only one closed

interval within the cross section along each ray of projection. The equal-divisor

curve is defined within the cross section which divides each closed interval into two

equal halves. Instead of solving the binary matrix directly, we need Q9nly to obtain

the equal-divisor curve, then the cross section is uniquely determined.' We have

proved that the cross section can be optimally reconstructed by- minimizing an error

index which is generated by the sum of the absolute difference between the original

and estimated projection profiles. The algorithm has been tested on synthetic and X-

ray pictures with better than 95% conformity for regular cross sections. The

experiments show better results than any existing direct methods since it is based

on a more flexible geometrical assumption. It also prevents the sensitive selection of

mask model which dominates the results of model-based methods. Thus, the

algorithm is reliable, and more generally fits real shapes of the ventricle.
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CHAPTER I
INTRODUCTION

In patients with cardiovascular diseases, left ventricular function is one of the
major parameters to be considered in making thei apeutic choices and determining

prognosis. Left ventricular function is primarily evaluated by measurements of
pressure and volume during a cardiac cycle. Although several indices based upon theI
volume measurements have been developed, accurate measurements of volume are
not yet possible. Almost all methods of measurement are based upon an ellipse

model. Even. the biplane integration method based on Simpson's rule, the most

accurate method of all, assumes an ellipsoid shape constructed around two axes for

each cross section. Therefore, any method that can improve the accuracy of the6
measurement of cross sectional area is likely to improve accuracy of the method to

measure the ventricular volumes. The present study was undertaken to investigate ifI
the shape of each cross section can be predicted with better accuracy knowing the
density of the dye (radiopaque dye injected to visualize the left ventricle) in two

planes.

In this report we present a new method for reconstruction of the shape of the

left ventricle from the biplane angiocardiograms. This approach utilizes a pair of

orthogonal X-ray projection images for each ventricular phase in a cardiac cycle

The projection image is a two-dimensional picture which is obtained by integrating

the absorption function of the X-ray photons along the directions parallel to the

optical axis of the camera sets. Obviously, the absorption function affected by the *
injected dye will influence the reconstructed results. For simplicity, we define the

absorption coefficient of the dye to be unity to formr a binary reconstruction V

problem just like all the other developed methods The shape of the ventricle is

reconstructed by dividing these projections into slices and then being processed



MMS MEN ~..a~-a ~ a.Xna ~u,~ n-, W f.flf~rrn~. a

3

slice by slice stepwise. Therefore, we reduce our three-dimensional problem into a

two-dimensional problem by considering the object as a stack of parallel cross

sections. Each cross section consists of one connected region and is reconstructed

from its two one-dimensional projection profiles. Therefore, our problem can be

stated as the reconstruction of a binary matrix from its row and column sums.

In Chapter 2 we describe our reconstruction problem and review some currently

developed methods. In Chapter 3 some mathematical characteristics are explicated.

Our algorithm and its implementation are discussed in Chapter 4. Some synthetic

examples are also demonstrated. In Chapter 5, we describe an experiment by using

two projection images from a bag of dye. The discussion of the experimental

results and some suggestions for further improvements are given in Chapter 6.

J.

-%i,,,,
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CHAPTER 2

PROBLEM DESCRIPTION AND LITERATURE REVIEW

The binary reconstruction problem may be stated as follows in terms of entries of

a matrix X with m x n cells. Each cell is identified by the pair of numbers (i,j) and is

represented by x.. x may be 1 if the cell falls into the region of object or 0
i i

otherwise. The problem is to estimate x. given the marginalsi

ji . x ij 'P i ,  i- 1 . . . M
j=1

m

i .xijnQ ,  j-1,.. n

where P i=1 . m are elements of vector P containing the row sum of X, and

o j=l,..,n are elements of vector Q containing the column sum of X. It is also clear

from the essence of the matrix that

M nPi. EQj
i=1 j=1

This implies that the estimation of m x n variables x (0, 11 needs to be
ij

determined from m + n - 1 independent equations. Therefore, our problem is

obviously underdetermined. Some previous research results (2,5,7) also show that

the reconstruction of an arbitrary binary matrix from two projections is in general

impossible. According to the theory by Ryser (1,2). it is possible to find zero, one,

or more than one binary matrices satisfying a given pair of row and column sums

(see Fig.2-1). To reconstruct the binary matrix, some certain assumptions always

need to be made. In the following, we are going to review some of the research

works done in this area and their assumptions.

e-m e
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3 1 1 3

2 1 1 0 0 1 1
2 0 1 1 1 1 0
1 0 1 0 0 1 0

Two Solutions

1 3 2 1 3 3

3 1 1 1 3
2 0 1 1 3
1 0 1 0 1

One solution No solution

Figure 2-1:
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The matrix reconstruction algorithms can roughly be divided into two categories.

The algorithms in the first category apply some direct methods to solve the

matrices under some assumptions, while those in the other category usually

reconstruct the matrix by using a priori knowledge, in other words, some

predefined binary mask models. We will discuss some methods in both categories as

follows.

The commonly used method in biplane angiocardiograms utilizes the assumption that

the shape of the cross section is close to an ellipse (3). So the distance between

two end points of each projection profile is taken as an axis of the ellipse

However, the shape of the cross section is usually not an ellipse, and the

reconstruction result of a certain cross section also depends on the orientation of

the cross section. In 1983, Eiho et al. (4) proposed a method to solve the

orientation dependence problem by using three projection profiles with the same

ellipse assumption. The reconstructed shape is much improved with the expense of

one more projection, but still far from a shape of a real ventricular cross section.

Chang (5) has developed an algorithm to recover any binary matrix from two

projection profiles. The algorithm can obtain the exact reconstruction when there

exists only one unambiguous solution from two projection profiles. However, most

of the shapes of cross sections are ambiguous based on his definition. Only one in

a large amount of possible solutions found by his algorithm is the real solution. So

the results are usually not correct Chang and Chow proposed another algorithm to

specifically reconstruct the shape of a ventricle (6). They assumed the cross section

of the ventricle should be in a connected region which is convex symmetric. So the

ambiguity is largely reduced, only a few possible solutions remain after

reconstruction. However, a cross section of the left ventricle is in general not

convex symmetric (7,9). Therefore, we proposed our new algorithm without the

convex symmetry assumption to fit more generally to the left ventricle

Because the ambiguity was hardly solved by most of the direct methods,

researchers also found another approach that uses a priori information. At first,

Onnasch and Heintzen (7) and Onnash (8) developed an algorithm for binary

reconstructiobn of the left or right ventricle from two projections that utilizes a
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model database obtained from the cast study of ventricles. This method implies the

estimation, for every matrix element, of its probability to belong to the ventricle.

Recently, Slump and Gervranchs proposed a method also incorporated with a priori

knowledge to reduce the ambiguity of the problem (9). A minimum cost capacitated

network flow algorithm is adopted, which yields the optimal solution with respect to

the selected binary matrix models. If the correct models are available, these model-

based reconstruction methods usually give more promising results than the direct

methods. However, a correct model is physically unavailable, in fact, it is the goal to

be recovered by these algorithms. Our new algorithm reconstructs the binary matrix

with the assumption that the equal-divisor curve of a cross section always exists.

No binary matrix model is required, though the reconstruction results are pretty

reliable. We will discuss it in the following sections.

I

• p o o. -o .o .., = = .• = ° -, -o -. .°* ..% .• .° , ...-° ..° ." ' ° ' % ' ' % .' ' .' ° o .--I
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CHAPTER 3

MATHEMATICAL CONSIDERATIONS

Suppose that V is a connected region in R (d >= 2) and fIx) = 1 (x, the indicator
function of V. Define

d1 f(X 2  Xd) dxd

(3.1)

and

q (x2 P . . fxd)=.J f x2* . ... xd )dx

(3.2)

p and q are known as projections along x -axis and x -axis respectively. InA d

practice, our observations are given as follows

R (X 1 . . X d -I) xP (X l . x d - I)+ c (x 1  . . .. . X d -1) +

(3.3)
R2(x 2 . Xd)-q (x 2 . Xd +11 (X2 Xd)2

(3.4)

where c and TI are known as noises centered at expectations and ., 2 are

known as the expectations of noises. In continuous case, C and Ti can be assumed

to be stochastic processes and in descrete case, they are assumed to be two

families of random variables In practice, R and R can be computed from two1 2

photos which are taken along two orthogonal directions. The problem we are faced

is how to reconstruct the shape of the subject V by using these two profiles, R

and R . The mathematical work concerning this problem includes
2

Ii) estimation of the projections p and q.

%6

I.

'. . , " = = " = =. . . * =* " ** h - . . % % " . " . % " . ' = ' -* . ."-' . -' q " ' % % * °" ' ' *% .
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(ii) reconstruction of V, V by using p and q.

Obviously, the first task is statistical and the second is geometrical. In this section,

we shall discuss how to solve these two problems.

At first, we shall consider the noise free case. In this case, there is no need to

estimate the projections and it is assumed that p and q are known, X 1 and X 2 are

zeros. In our reconstruction approach, the two projection profiles are not equally

treated. According to their usage, let us name p as the constructor (constructive

profile) and q as the ruler (control profile), respectively.

In the sequel, we always assume that V are regular, namely, each straight line

along x -axis or x -axis intersects V in a closed interval on the line, if they are not1 d

disjoint Define the equal-divisor surface (ED) as follows:

D = f(x ..... x ,there is an X such that (x ..... x ) V}
1 d- 1 d 1d

For (x ..... x ) D, denote the two intersection points of the line
1 d-1

0(X =x ..... X d_=x d-1) and the surface of V by (x1,x . .... X d and

(x,x ..... x ),i.e.,

0 sup{x , (Xx ... x ) V}d d 1 2'

and

x = inf {x d , (x1,x2'..... xcl) IV
Then the surface {(x ..... x ,(x + x)/2 ),(x ..... x ) D is called the

1, d-1' d d 1 d-1
ED of V (or more definitely the ED of V along x -axis). For convenience, we also

d

call the function g(x. ..... ) = 1/2(x 0+ x ) the ED of V.

The following propositions are evident.

Proposition 1. If the ED and the constructor of V are known, then V can be

reconstructed uniquely.

% %
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Proposition 2. If the constructor is given, then V and its ruler are continuous with

respect to ED in the following metrics:

d(V,V')- I lvv Idx

(3.5)
d (q,q') J lq (x2 .. . d)- q ' (x 2 . . xd  Idx 2  . . dx d  i

2' d 2d 2 dI (3.6)
and
d (g. g') -fl*  g(Xl . ... Xd -_9- I (x I O . ... d_- )  Id . ... ,dxd I

(3.7)

where g = 112(x d+X d) and g' is similarly defined for another subject

The most difficult thing in reconstruction is that there is no unique solution. We

have the following example.

Example 1. Suppose V and V 2 are two identical ellipses except the long axis of

V coincides with the line y=x and the long axis of V 2 coincides with y=-x. Both

of their centers are at origin. Then V and V have the same constructors and1 2

rulers.

To make the solution unique, we have to make further assumptions which can be

justified by practical knowledge. For instance, the doctor can say the heart of a

patient is tilted towards left by his experience.

In the following we will consider the case d = 2 Suppose p(x) is a continuous and

unimodal function defined on the interval D = [ab] with p(a) > 0, p(b) > 0, and p(x)

> 0, x c(a,b). Let f be a function defined on [a,b].

Define

V (f) {(x,y): x cD,f (x) - 1/2p(x) <y<f (x)+1/2p (x) I
and define

(f)
q (y),-Max{x -x 2 ; (X1 , y ) V (f)and (x 2,y) r (c) V (f)},

(3.8)

if V(f) is regular and if there is at least one point x such that (xy) c V(f), and

q(~y)= 0 otherwise

,--- . -- .• - , -.--:- -',. -" ,: v. .-.. " . .,-..-.-.':...-v.-- ' " " ';"" " " "
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Suppose F is a class of functions defined on [a,b] satisfying:

(i) each f in F is nondecreasing and continuous,

(ii) for each f cF, V(f) is regular,

(iii) for any pair f 1 f2 c F, the set {x £ (a,b), f (x) f 2(x)} consists of at most

two pieces of open intervals.
v = V(f) :f F}

(3.9)

and

R Mq f):f £ F)

(3.10)

We have the following basic theorem.

Theorem 3.1 Under the assumptions given above, we have

F -1. V4--. R

(3.11)

Where -- denotes one-to-one correspondence. The proof of Theorem 3.1 is given

in a companian paper by some of the present authors.

Theorem 3.2 (Basic Reconstruction Theorem). Suppose V is a subject to be

reconstructed, and suppose the constructor of V is P(x). Let F be a function class

satisfying the conditions given in (3.9). Suppose the ED of V belongs to F (of

course, this implies V is regular). Then V is uniquely determined by its ruler among

V with respect to F.

Example Suppose V is convex region in R2 with ED being a straight line up-

sloped P(x), x £ [Oa] and q(y), y c [O,b] are its constructor and ruler

respectively. Take

F = f{:x + 0, 0 < x < b/a, 0 < 0 < b}

Use P and F, we get the set V, then by Theorem 3.2 V is the only element in V

,-
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which has q(y) as its ruler. This example explains why our procedure given in

section 4-1 works. Now let us extend the result from d = 2 to the general case.
dLet V be a convex region in R , d > 2. As earlier defined, let p and q be its two0 0

projections and let g be its ED. For any fixed x 2 = x2 . . . . . xd = x d-I' define

*o 0
V MC(X 1,xd) (xl,x 2 .... ,Xd- 1 ,x) C V3

, 0 0
1 1 2 d-1

, 0 0q (x d) q (x 2' " x d 1 Xdl

and

* 0 0

2  d- 1

provided that V is not empty. Then V can be regarded as the cross section of V,
00 * *

cut out by the hyper plane 2 d-1 d-1

constructor, ruler and ED of V respectively. It is easy to see that for each

x2= x2 .... Xd-1 = x d- 1' g is continuous and nondecreasing if and only if g is

continuous and nondecreasing in x for each fixed x2 '. x d-. Hence by theorem

3.2 we have

Theorem 3.3 Suppose that V is a regular subject in Rd to be reconstructed with
nondamaged profiles P(x1 . . xd_1) and q(x 2 ..... x d). Let F be a family of

functions satisfying the conditions (3.9) for each given multiple (x2'.  xd_). Then

the true subject V is the only one which has q as its ruler, among the family of

subjects constructed by p and each element in F.

d 2Here the regularity of region in R is similarly defined as that in R . Namely, a

region V in R is called regular, if each line {x,= x...x X I or1 1d-1 dI-1

{x2 0 0} = x d can only intersect V in a closed interval (or a single point22d d
or empty).

Remark 1. Since the regions under usual consideration are assumed to be convex,

thus the condition of regularity is satisfied.
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By Theorems 3.2 and 3.3, the task of reconstruction turns out to estimate the ED
of the region by using its two projections. Thus our problem becomes to fine a _
function among a given class of functions such that the derived projection along

x -axis is closest to the observed one, the ruler.1I
By Weierstrassian approximation theorem, for any continuous function, we can find

a polynomial uniformly approximating it Thus we can restrict our attention to finding

a polynomial as the estimate of the ED of V. The detail description of the

reconstruction algorithm will be given in the following section.

Next, let us consider the case where noise arises. Because the projections p and

q are damaged by the noise, we can riot use R1 and R2 to do reconstruction and

we have to smooth them to eliminate the affect of noise. There are many ways to

do so. We only state several simple methods here.

(i) Kernel smoothing. Suppose K is a probability density. Choose a positive number
h, then let

p () .. = 1 r 1 ( K( -- ) dy

hd - 1 Rd-I h

1 X' - Y'qx 2 Wf R2(')K(-)dy'2xh d-1 Rd- 2 h

(ii) Histogram smoothing. Split D into small regions as D1. D2 . . . . . D . Then

define

IDx - f Rl"(y')dy,ifx DiD 
i

Similarly smooth q as q.

(iii) Median smoothing. Choose 6 > 0, for each x, take the median of the

observations of p observed in the interval (x-6,x+6) as the estimate p of R1 ..

Similarly define q. This approach is available only for discrete case.

(iv) Polynomial fitting. Find a polynomial p which minimizes
A A 2f [R1 (x)-(p(x) 1 a (x)+X)] dx
[ab

Similarly define q.

• . ,. . .,. . .. .. -,.. -. . . . . . .,,. -,- .... . -.- ... . -. ,-.- . . .-. ',, . ' ...- " ,."". .- ,..
P.-". "," .""..','.,._'-: ,....... ..'. . .',..,.., . ,.... ." ,7 -. ," - - .. . ,, .. •.,, .-. • . .- ,. .,- .-... ,. .... ,,- ,, .- .,-.,.. ,-,,• ." , . -',,-,-
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Under certain. conditions, we can prove all the above approaches get consistent

estimates of the true profiles. The proof will be found on the other technical report

which will be filled later soon.

%
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CHAPTER 4

SHAPE RECONSTRUCTION

For a given cross section as in Fig. 2, one can have the two profiles from the
column and row projections, where

m

x ij - pig j - ], ... .n ;

i=1 lm

I xij " Qi' i ,. m ;
j=1

(4. 1)

P and 0 denote the two projection profiles and x 's c {0, 11 are the cells in
J 1 1)

the given matrix. We assume that a cross section of a left ventricle is a connected

region without holes in the m x n binary matrix X Therefore, we can get the mass

center of the cross section which can always be unambiguously determined from

any given sets of profiles.
m n

Si.Qi -p

mirm and c "
m n

= 1 J= 1

(4.2)

In general, we can find an ED curve, along which one of the projection profiles

can be divided into two equivalent halves. For instance, in Figure 4-1, we can see

the real ED curve divides P' into two halves at j j. where one half is above the
J

ED curve and the other half beneath it Consequently, if we repeat this operation

f or j = 0, .n, along the real ED curve, the cross section can be correctly

reconstructed from P In other words, the proposition, that a cross sect.n, can

JU
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always be uniquely determined by one of its projection profiles and its

corresponding ED curve, is always valid for any regular cross sections Therefore.

our problem is simply to estimate the real ED .,jrve with respect to P or, similarly

the real ED curve with respect to 0, which can divide Q, i = 1, m into two

equivalent halves rowwise. Let us use the following equation to approximate the ED

curve in Figure 4- 1
(J 0 C +ac a 1 -i +a 2 0 )2 +a 3 01-c

(4.3)

where (i .j ) are the coordinates of the weight centerj' is the given j coordinate,

and a, i = 0, ,3 is the parameter of vector A, with which we aproximate the
I

real ED curve Then we can assign

1 I ~'-cIf/'j/
iJ j 0 otherwise,

(4.4)

If the approximation of ED curve in (3) is perfect, we can have

n, -
Q i - I . x i j , i = .. M

J=1

and
m

EQ- 1Q1-Q I,
,=1

(4.5)

where E equals to zero.a

From the same approach for P, we can also have

nJEp- 1Pj- Pji
1=1

(4 6)

,and E equals to zero if the estimation of ED curve is correct. The regularity

* P. .- I.~ \

C C C C C C C C C . S-
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constraint in our algorithm is much less restrictive than the convexity constraint,

since even the concave cross section can also be regular. Therefore, the regularity

constraint fits the ventricular shapes much better. From a normal shape of ventricle,

which does not have abrupt changes on its boundary to cause large discontinuities

on ED curves, we usually can expect E and/or E close to zero. So the crossP Q
section can be reconstructed if A can be obtained. Now we state that our problem

is to find a optimal vector A which will minimize E or EQ.
P

In the sequel, let us summarize our algorithm of reconstruction in several steps as

follows. The detail of each step will be illustrated in the subsequent subsections.

d' r. . 4 '
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Algorithm:

1. Find the weight center (i, j) of two projection profiles by using
C C

equation (4.2)

2. Assume ED is linear and passing through (i ,J ), i.e.,
C C

ED i - i = a • (j-jc 1 c

or j - j = a (i-i).
C 1 c

By using the coarse-to-fine approach, obtain a s, which minimize E
or E

P

3. Perform the consistency test to obtain the unique solution of a on
each layer of cross sections.

4. Let ED be a curve approximated by a third order polynomial, such that

2ED: i-i = (a ±Aa) + (a ± Aa)(j-j)+(a ± a)(j-)+
c 0 0 1 1 c 2 2 c

(a3 ±Aa 3)lj- )3

(Similarly for j coordinates)
to minimize E with respect to A=['a a ,a 2,a 3]' by a gradual descent

method with a fixed step AA The a* obtained in the last step is used

as the initial value of a

5. A contour relaxation procedure is then applied to obtain the higher
order terms of the polynomial used to estimate ED curve Therefore, it
further refines the reconstruction results.

6. Regenerate each cross section. Pile them up slice by slice to construct
the 3-D shape.
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4.1. A COARSE-TO-FINE APPROACH TO FIND A *

For a convex or slightly concave cross section, ED curve can roughly be

approximated by a line. The direction of the estimated ED line implies the major

orientation of the cross section. To obtain it, let us assume

i ( j' )= j c+ (-i) at j=j'

(or similarly j (i I = j +a (i-i), at i=i'

(4.7)

and find an optimal a such that from the reconstructed x c {0,11, we can obtain

E or E ,where

E Min E =Min IQ.-Q 11Qa Qa,

orE -Min E =in z I .- j. I
pa Q a

The procedure to find EQ (E p) has been described in the previous subsection by

equations 4.4)4.5)1,(4.6).

Since the minimum of E Q(or E p) can not be obtained analytically, we use a coarse-

to-fine approach in finding a. As illustrated in Figure 4-2, we start with an array

of five equally spaced a values covering the possible range of a 1[-.cal. The three1 1

neighboring a 's which contribute the least sum of three neighboring E 's (or E 's)
1 0 P

are picked up after each iteration. By inserting two new a 's into the two slots

between three picked a l 's, another array of five equally spaced a 's is formed again.

The array is then used to initiate another iteration. Ultimately, the optimal a is1 %
picked up from one of the five remaining al's which generate the smallest values of

1*

EQ (or E p) after four iterations of this procedure. Nevertheless, the a is not always

unique. Two possible a 's can be generated if the project profiles of the ruler is

symmetric with respect to its weight center The ED lines of the reconstructed

cross sections are symmetrical with respect to the axis passing through the weight
0

center and parallel to the constructor. In other words, these two a 's are similar in1I
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a 1,E) is the selected center of group

at each iteration.

Figure 4-2:

%I

% %.
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value but with different signs. Therefore, the other possible a 's, if available, can be

found from the opposite portrait of the last five remaining a s. In this

implementation both a 1and a are recorded for the next process, if the a s is not

larger than a 1by 15%.

The reconstruction results from a vertical and horizontal constructor are usually

different Thus, the above process can be applied to both horizontal and vertical

directions, but generate only one set of a from one of the directions. However,

both sets of a* are stored if both directions generate similar E and E This
1 P Q

ambiguity may be caused by a cross section highly symmetric with respect to the

origin. The consistency test procedure in the next subsection can be utilized to cope

with this problem.

4.2. TEST OF CONSISTENCY

From a symmetrical ruler projection profile. two cross sections, which are

symmetrical to each other with respect to the direction parallel to the direction of

the constructor, can be reconstructed equally well. Therefore, the ambiguity arises

when more than one cross section can be reconstructed from the same pair of

projection profiles.

The first step of the reconstruction process under the assumption of a linear EDI

is performed exclusively with the two projection profiles given in the corresponding

layer. In fact, it estimates the major orientation of the cross section on the currentV

layer, Thus, the major orientation of the cross sections on all the layers can be

obtained independently The orientations and error indices of both possible answers

on every ambiguous layer are stored. After computing cross sections on all the

layers. the ambiguities can then be resolved by using the property that the cross
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sections onl neighboring layers are smoothly and continuously connected. ThereforeI

their major orientations are consistent in similar directions.

To pick up the real orientation from the possible solutions of an ambiguous layer,

the following two simple rules need to be applied.I

Rulel: If both neighboring layers are unambiguous, then pick the one that gives

minimum difference of orientations to both neighboring layers.

Rule2: If only one of the neighboring layers is unambiguous, then pick the oneI

that gives minimum difference of orientation to the unambiguous cross section.

In general, the ambiguities generated by symmetric projection profiles on the rulerI
can be determined by inference from the neighboring layers.

The consistency of the major orientations affects the 3-D shape reconstruction

substantially only when the reconstructed cross sections are elongated in shape.I
Due to the nature of the algorithm, the cross section reconstruction is more

accurate when ED lies along the elongated direction. Therefore, the optimal ED lines

obtained in step one usually are from the same side of constructors. One from the N

two possible solutions can be determined easily by using the two given rules. If the

orientation of the cross section is tilted about ±45 degrees. the reconstructions by

using horizontal or vertical projection profiles as constructors can both obtain fairly
good results. It is preferred to use the same side of constructor as its two

neighboring layers. However, the two neighboring layers may not use the same side

of constructors in the transition area where the orientations of the cross sections

change from less than to more than ±t45 degrees, The two given rules are still

applicable since the real ED lines of the horizontal and the vertical constructors are

in similar orientations when their major direction of the cross section are around

±45 degrees. The orientation that generates minimum projection error(E P or E a) and

satisfies the two given rules is picked up in the transition case.

The process of the consistency test can be performed from top layer to bottom

layer (and then in reverse if necessary) by using the results from the first step
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It is comparatively less expensive in computation because point to point matching

is unnecessary in our approach. Instead, the properties of ED line can be utilized.

Thus , the consistent shape of 3-D objects is available, after this test. for the

detailed adjustment in the following steps.

4.3. ITERATIVE DESCENT PROCEDURE TO ESTIMATE ED
CURVE BY A POLYNOMIAL

The ED curve is not linear on some of the convex cross sections and most of

the concave cross sections. The ED line obtained from the above process needs to

be adjusted to better fit the real ED curve. Therefore, a third order polynomial is

used to approximate the ED curve under the constraint that the weight center of

the cross section is invariant A higher order polynomial is intuitively easier to fit an

arbitrary curve. In practice, a third order polynomial is usually moderate to simulate a

nonlinear ED curve and computationally less expensive.

It is known that the weight center of the real cross section can be uniquely

determined from the given two projection profiles. So. the weight center of the

reconstructed cross section certainly should be always kept identical to the real one.I
As a result of this constraint, only three parameters need to be adjusted in the
optimization process. Now, we begin to further refine the ED curve by using

=(' i + (a 0 4-Aa 0 )( 1 ±)( )+(a ±Aa20 2

(a0 ± ) C' 0 0 )0-c+(a2 a2

(4a 3 i

(Similarly, for the other projection

0 0 0

c + a 0+Aa )+(a ta, + ( 2 ~a 2(i -i

(a 0 +-Aa
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At first, let a be the initial value of a and zero be the initial values of a a2' a

to form an initial vector of parameters, denoted by A . A fixed array of La,0

i=1,2,3 are given such that the external boundary points are changed by at least one

cell when the corresponding a varies with the amount La. The change of a valuei i 0

simply moves the weight- center of the reconstructed cross section away from the

real weight center. So the a value is only adjusted by the other parameters in0

order to compensate the generated deviations to the weight center when those

parameters are changed. The iterative descent procedure is therefore applied only

to three parameters of A0; a is kept updated when necessary. Four points0

denoted as a = a ± L.a, where a has not been adjusted in the previous iteration
I I I I

and i c [1,2,3}, are checked to find the optimal a which results in a minimum

E (E ), called E*(EI. If E(E ) < E (E 1, then a = a This process is repeated till no
a P JP P a P

further improvement can be made. The final vector of A0 is then the optimal

solution of the problem that generates minimum sum of error between the real and

estimated projection profiles.

4.4. CONTOUR RELAXATION

The real ED curve of a cross section can fairly be approximated by a third order

polynomial. However, the attempt to obtain the exact ED curve still involves some

higher order terms. To resolve these higher order terms by increasing the order of
the polynomial which is used to approximate ED curve is too computationally
expensive. The contour relaxation algorithm is designed to solve this problem

without directly computing the higher order polynomials. Based on the theory, it

minimizes the difference between the given and estimated projection profiles in

order to minimize the difference between given and estimated cross sections under

the condition that the regularity constraint on the contour of the cross section

V
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should not be violated. The difference between the real and estimated ED curves

introduces error" represented as the difference between the estimated and given

projections along the ruler coordinate. It is clear from our proposition that the real

cross section can be uniquely reconstructed from a given constructor and its

corresponding real ED curve. Therefore, the contour relaxation algorithm intends to

eliminate the difference between given and estimated projection profiles to obtain

the estimated ED as correct as possible. Now let us introduce the algorithm in the

following.

To simplify the illustration, we use a horizontal constructor as in Figure 4-3; the

alternative case can be solved similarly. First, let us set the projection error e(j) as

the projection of estimated cross section minus the real given projection at each

row j along the ruler coordinate. The upward potential U (k), and downward potential

D (k), which will be explicitly defined later, at each column i along the constructor

coordinate are used as the basic measures in this algorithm. As we know, the

deviation between real and estimated ED's generates the difference between

estimated and ruler projection profiles, and contributes error to the projection error

e(j). This error can obviously be compensated by shifting the estimated ED upward

or downward toward the real ED. However, the real ED is unknown. Therefore, the

adopted U (k) and Di(k) represent the potential to reduce error by shifting upward or

downward along column i from point k-1 to point k away from the current

estimated ED. It is obvious that the potential of shifting upward or downward

increases when large projection error can be compensated after the shifting. From

Figure 4-3, we define U(k) and D (k) as below.

Let m and n denotes the row coordinates of the upper and lower boundaries of

the estimated cross section at column i. Moving this column one point upward (k=l)

will make the projection error e(m + 1) increase one while e(n) will decrease one.

Therefore, larger e(n) and smaller elm +1) implies more potential to move this

column upward. Thus, we define

U(1) = e(n)- e(m +1),I I I

I



27

and

U(k) = e(n+k-1) - e(m+k),
I I I

when the column is moved from point k-1 to point k upward. Similarly, for

shifting downward, we define

D.(1l = e(m) - e(n-1),
II I

and
D (k)= e(m-k+1) - e(n.-k).i I I

Using U and D, we then define
I I

TU = 2 - U.0) + U(2) + U(3)

TD = 2 • D(1) + D(2) + D(3)
I I I I

and

f(i) = TU., d(i)=1, if TU - TD > T

f(i) = TD, d(i)=-1, if TD - TU > T,

f(i) = 0, d(i)=0, ortherwise,

where T = 0.75 Max( TU , TD ).

To include the influence from the neighboring columns, we then assign

g(i) = d(i-1)°f(i-1) + 2d(i)ofli) + d(i+1)°f(i+1),

to be used in the iterative process.

The TU (or TD) from the linear combination of U (or D) assigns more weight to

the columns need to be shifted more deeply upward(downward). The f(i) and d(i) are

then defined so that each column i can only be shifted upward, downward, or kept

still. The larger the f(i) implies the more potential to move this column. Considering

neighboring columns are usually shifted smoothly in the same direction, g(i) grants

priority to the column where both its neighbors and itself have a strong tendency to

be adjusted. Now let us state the contour relaxation algorithm as follows:

• .r _-
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1. Adjust those columns which exceed the upper and lower end points of
the ruler to assure the contour is within the possible region of cross
section.

2. Let k=O. Obtain the initial e k(j) for each row on the ruler from the
estimated cross section.

k k k-i

3. k=k+ 1. Compute g (i) and d ki) from e k1i) for each column i on the
constructor

4. For each row j with e k - (j ) 0 0, pick up a column with maximum

g k(i) among those candidates, which reduce e k - 1(j) l by shifting

according to d k(i), without violating the regularity constraint of the
boundary.

5. For each picked column i, adjust it by shifting toward the direction

given by dk (j) and then set d k(j)=O If the d k(j) has been set to zero, do
no adjustment Compute e k(i) after all columns have been adjusted.

6. If E= e k(j) I is reduced, go to 2, else stop. I
Figure 4-4 demonstrates an example for the use of the contour retaxaton

algorithm. Figure 4-4(a) is obtained from the ED curve approximated by a third

order polynomial. Figure 4-4(b) shows the results after applying this algorithmI

Considerable improvement has been made by the contour relaxation. In fact, the

algorithm can generally further refine the reconstructed cross section as long as the

regularity is satisfied. The higher order terms of the estimated ED curve are

resolved implicitly.

.1

ir

.1
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4.5. SOME EXAMPLES OF THE CROSS SECTIONI
RECONSTRUCTION

Some examples of the cross section reconstruction are given in this section

Figures 4-5 to 4- 10 illustrate some of the experimental results with our algorithm

f or six randomly drawn cross sections Each cross section is drawn by a graphic

program into a 60 x 60 matrix. The projection profiles are constructed by summing

up the elements belonging to the region of cross section columnwise or rowwise

The reconstructed cross section is compared with the original. The relative mean

error used in (6,1 11,1 2) is adopted to measure the performance. It is defined as

M n

E Q *i-x.j I
=1 J=1

(4.9

The Q are the elements of the original cross section and x are the elements of
Ii Ii

the reconstructed one. As mentioned above, the reconstruction does not refer to

any predefined binary mask models. However the results are quite good even when

the original cross section is very irregular. Table 4-1 summarizes the experimental 1

results for the cross sections shown in Figure 4-5 to 4-10. For each figures set,

(a) shows the original cross section, (b) illustrates the reconstructed results and the

estimated ED curve given by our method, (c) is the reconstruction results obtained

by the ellipse approximation method. The dark curve inside the reconstructed region

in (b) is the ED curve obtained by our algorithm. From 50 randomly drawn pictures.

the reconstruction results for a regular shape ususlly can achieve more than 96%

conformity, which is better than thi results shown in (4 5). The conformity measure
Ik

is given by the number of elements common to the original and the reconstructed

cross sections Thus the conformity measure is one hundred minus half of the

relative error R in percent. As to the cross sections of irregular shape, we usually

get less than 20% R, in other words, it is around 90%/1 conformity. Figure 4-5 to

4-10 show fairly regular cross sections. the results are as good as predicted

%a
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Figure 4-9 and 4-10 show cross section with obvious irregularity, which is

generated by large concavity and sharp changes on boundary. Although the cross

sections are irregular, the reconstructed results still keep the approximate shapes

for visual recognition. In the next section, we are going to do the experiments with

real X-ray pictures.

Table 4-1: Experimental results for Figures 4-5 to 4-10

Figure Total No. Our Method Ellipse Approxmatimon
No. of Points

No. of R Conformity No. of R Conformity
Mismatch Mismatch

-7... 1382.......... 4.... . 2...... ...... 840............ 1. 7% 79.. ..... %
4-5 1733 128 7.4% 96.3% 778 44.9% 76.5%
4-6 1296 20 1.5% 99.2% 505 39.0% 80.5%
4-7 1362 44 3.2% 98. 4% 840 61 .7"% 79.1%

4-8 970 24 2.5% 98.8% 298 30.8% 84.7%
4-9 1743 110 6.3% 96.8% 603 34.7% 82.8%
4-10 1322 10 11.3% 94.3% 624 47.2% 76.4%
US U U* h U SURSSSS SBIBII I ibB3S Bil 333S.3SS iri=l== B8 U** U S S S* 3 S SES 33333333333333333= 333SO I I

I
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CHAPTER 5

AN EXPERIMENTAL RESULT

In this section, we will demonstrate an example with two X-ray films of a bag of

dye to show the applicability of the object reconstruction technique described in

Section 3. The procedure of object reconstruction is shown in Figure 5- 1. The

films were digitized by an Optronix drum scanner into 512 by 512 arrays of pixels.

The grey value of each pixel is recalled by an 8-bit integer which scales the

intensity of brightness into the range between 0 and 255. Low grey value

represents low intensity (dark pixels), while high grey value represents high intensity

(bright pixels). The second step is to apply the logarithmic transformation to both

left and right digitized images, such that the exponential absorption of the radiation

is compensated. Then, the grey value of the dye free region is subtracted from the

image since we are only interested in the net X-ray absorption by dye, which is

proportional to the depth of the ventricle.

For a real ventricular reconstruction, we have to do some averaging work to

assure the quality of image because the mixture of the injected dye is usually

incomplete. However, this experiment utilizes a full bag of dye, so the incomplete

mixture problem does not have to be considered in this case. The next step is the

ventricular boundary detection. Several papers have been presented for this problem.

Pope et al. utilize the Dynamic Search Algorithm ( 1) and Bocker utilizes the
Laplacian-Gaussian operator (12), which are pretty reliable for the ventricular

boundary detection . In this experiment, we utilize a simple threshold method to

segment the region of object The detected boundary is satisfactory since the used

object is 150 cc of pure dye in a plastic bag whose shape is regular and

unambiguous
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After the boundary detection, the segmented region is smoothed by a medium

filter for eliminating the corrupted noise at the present experiment The processed

images are ready to use except their sizes are different since they were taken by

two different sets of cameras. Therefore, these two images are scaled and aligned

so that we can slice the two images into corresponding arrays of pixels. Each cross

section will then be reconstructed from the grey values of the corresponding pair

of pixel arrays. However, we can not apply these grey values directly into the

binary reconstruction process because grey value is not equivalent to the depth of.

the object Fortunately, the depth of the object and grey level are proportional to

each other. It can be expressed by

D Wi = a1 -IW
X X

where D is the depth, I is the grey value, and a is an adjustment coefficient
X X

decided by the characteristics of the X-ray machine. In this experiment, the a

values for both projections are unknown. For simllicity, we assume the highest grey

value corresponds to the width of the grey level profile on the other projection. So

these two adjustment coefficients can be decided and used to transfer grey level

profiles into depth profiles. The generated depth profiles are then used to

reconstruct the cross sections. The reconstructed cross sections are put into aI
stack to represent the three-dimensional objects. On the other hand, the volume of

the object is also computed with a Simpson integration formula,

Volume =h/3 4 -4area) + ( Z 2 -area)
odd even

Figure 5-2 shows the original X-ray pictures for both left and right projections.

Figure 5-3 shows the same image after preprocessing. Figure 5-4 shows the

reconstructed three-dimensional object by piling up each reconstructed cross

section. The estimated volume of this object is 153.2 cc, which is around 97.9%

accurate with respect to the real volume 1 50 cc. The ellipse method by the H.P.
ventricle estimation system obtains 163 cc for the object, which is around 91.4%

accurate. Our method obtains better volume estimation, and the reconstructed shape

(Fig. 5-4) is close to the real shape of the object according to doctor's observation.
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Figure 5-2:
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS
FOR FURTHER IMPROVEMENT

In this report, we present a new method to reconstruct the three-dimensional

shape and estimate the volume of an object by using its two orthogonal projections.

We have proved that the cross section can be optimally reconstructed by minimizing

an error index which is generated by the sum of the absolute difference between

the original and the estimated projection profiles. This error index is uniquely and

continuously proportional to the sum of error between the original and the estimated

cross sections under the condition that the original cross section is regular and has

a monotonically non-decreasing or non-increasing equal-divisor curves. A new

algorithni has been designed based on these properties.

The algorithm has been tested on synthetic cross section as well as real X-ray

pictures. From synthetic pictures, it achieves better than 96% conformity for regular

cross sections and better than 91% conformity for irregular ones. The

reconstruction for X-ray pictures is also better than 95% conformity in every layer

of cross section. The processing speed is less than 3 seconds for each cross

section by a Fortran implementation in VAX 780. Thus, the algorithm are reliable and

fast for the different experiments that we have done so far.

In the next phase of this project, we are going to apply this algorithm to real

ventricular images To obtain better results in real ventricular images, we suggest to

further investigate the adjustment coefficient a of X-ray absorption. We also

propose some methods to depress the corrupted noise in real X-ray images. At

last, some more detail consideration will be made to directly reconstruct 3-D

objects from the two projection images. Some more studies for the irregular case

is also of interest.
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