
fMELE ~ ~ c~zunivLS WETR LNEMSIEC TANGW IO
NOY SE MSSS4-75-C-MUM'

UNCLASSIFIED F/6 9/2

:00000000000il

Jj~j~ I~122

1"-8

111L.2 0il 1

''1

% %

, ,IR COPY RESOLUTIONI TEST CHART

q4..

6 6 6 • .6 6• .6 .6 .'• 6 .1 . .• • , 6• 3I • .

W , k
+
%.. -< * I . 'h* , ,°,""." , '" . "d.P &.. % ."" ." ." *. ~ ". -, . ."+%..".' "" ," " " ""

OTIC FILE CoPy 9

WorUn pper No. 343

N1

INTEGRATED MODEUNG SYSTEMS

by

ARTHUR M. GEOFFRION

November 1986

Contract N00014-7 5-C-O 570

i1 '. 33

%xESTEN MANAGEMENT SCIENCE INSTITUTE

Lnvcrsitv of California. Los Angles

WESTERN MANAGEMENT SCIENCE INSTITUTE
University of California, Los Angeles

Working Paper No. 343

November 1986

INTEGRATED MODELING SYSTEMS

by

Arthur M. Geoffrion h

Acknowledgments

This paper was prepared for presentation at, and will be
published in the Proceedings of, the Conference on Integrated
Modeling Systems held at the University of Texas, Austin, October
23-24, 1986.

The author appreciates the constructive suggestions made by
Sri Chari, Dan Dolk, George Geis, Jim Jackson, Melanie Lenard,
and Yao-Chuan Tsai.

This work was supported by the National Science Foundation,
the Office of Naval Research, and the Naval Personnel R&D Center.
The views contained in this report are the author's and not to be _

attributed to the sponsoring agencies.

A4

ABSTRACT

This paper examines in some detail the concept of
an integrated modeling system. Three main types of inte-
gration are distinguished: model integration, solver
integration, and integration of various utilities. Model
integration is further divided into four subtypes based
on a four-level model abstraction hierarchy: specific
models, model classes, modeling paradigms, and modeling
traditions.

The paper then goes on to consider how structured
modeling supports the various types of integration.
The overall conclusion is that the structured modeling
approach offers an attractive approach to the design of
integrated modeling systems.

ACPon For

NT"

. ; i l cn/ -

Al i Ue

4 ~mh~ *.* * %'V ~. *- .. .S* . . 5 .. '

1 INTRODUCTION

One of the more common phrases one hears these days is
"integrated modeling system". Just what does it mean? Below I
attempt an informal answer to this question that, in turn,
determines the general plan of this paper.

The phrase has two parts. I take "integrated" to mean unit-
ing things that can stand alone usefully but that are even more
useful when put together; and "modeling system" to mean computer
software that supports (part of) the modeling life-cycle.

The most important part of the second definition is "model-
ing life-cycle." One rendering of the life-cycle stages for a
typical computer-based MS/OR application is as follows (cf Agin
<1978>, Gass <1985>, Hammond <1974>, Ch. 10 of McFadden and
Hoffer <1985>, and Ramamoorthy et al <1984>):

Recognize modeling need or opportunity
Analyze feasibility and requirements
Obtain charter and make project plan

L Design in detail
Build (implement, develop data)
Test (verify, validate) and revise
Prepare for use (install, train, educate)
Use (solve, operate, study model properties)
Analyze results
Maintain and update
Report and explain findings and conclusions
Document
Evaluate and review
Growth and evolution of model/system
Terminate or replace.

Of course, these stages do not necessarily occur sequentially;
often several stages co-exist and earlier stages are revisited.
Also, life-cycles can be quite different for one-time applica-
tions as distinguished from applications designed for repeated
use over time, and for situations where prototyping is used
versus where it is not used.

What is particularly evident from a life-cycle point of view
is the great variety of activities requiring modeling system sup-
port. A little reflection shows that nearly everything that is
required falls in just three main categories: support for models,
support for solvers, and utilities of various sorts. (These
notions are explained, respectively, in Sections 2.1, 2.2, and
2.3.)

A modeling system worthy of the name must therefore support
models and solvers and provide needed utilities. Integration
across these three categories is essential.

:'..

Beyond this essential between-category integration, there
remain fertile opportunities for within-category integration.
That is the focus of this paper: uniting different models with
one another, uniting different solvers with one another, and
uniting different utilities with one another. The next section
examines each of the three in turn. Then Section 3 discusses how
structured modeling does or does not support these types of
integration. Finally, Section 4 presents a brief summary.

2 THREE KINDS OF INTEGRATION

2.1 Model Integration

To think fruitfully about model integration, it is useful to
think in terms of a natural four-level hierarchy of model ab-
straction:

* "specific models" within a single model class

* "model classes" within a single modeling paradigm

* "modeling paradigms" within a single discipline's
modeling tradition

* discipline-specific "modeling traditions".

More than four levels can sometimes be recognized, but a four-
level hierarchy is convenient for present purposes. A few words
are in order to explain each of these levels.

A "specific model" is a completely definite instance
of a model, including all data values (e.g., a par-
ticular Hitchcock-Koopmans transportation model).

A "model class" is a collection of conceivable, sim-
ilar, specific models; it is definite neither as to
data values nor as to the identity or even number of
items of various types, but otherwise is quite defi-
nite as to mathematical form (e.g., the class of all
Hitchcock-Koopmans transportation models).

A "modeling paradigm" is a collection of similar
model classes that has established its conceptual
value and influence (e.g., the class of all network
flow models).

A discipline-specific "modeling tradition" is a
collection of modeling paradigms that tend to be
associated with one another in the academic and
practitioner communities owing to similarities of
the technical apparatus they commonly involve. Of

-2-

particular interest are the distinct modeling tra-
ditions of MS/OR, database management, computer
programming languages, and artificial intelligence.

For future reference, here are some of the modeling para-
digms of the four fields just mentioned:

Management Science/Operations Research
Decision Tree
Discrete Event System
Linear Program
Markov Chain
Network Flow
Project Management (CPM-based)
Queueing System

Database Management (Tsichritzis and Lochovsky <1982>)
Hierarchical Data Model
Network Data Model
Relational Data Model

Programming Languages (Hailpern <1986>)
Functional
Object-Oriented
Procedural (Imperative)

Artificial Intelligence (Brachman and Levesque <1985>)
Frames
Logic
Production Rules
Semantic Network.

Four kinds of model integration follow from the four-level
hierarchy. In each case. all higher levels are held fixed. Each
kind is now discussed individually.

2.1.1 Different Specific Models Within One Model
Class

Intearation of different specific models within a single
model is one of the simplest kinds of integration.

This kind of integration often goes by the name "consolida-
tion" in the context of spreadsheet modeling. For example, imag-
ine 12 activity reports for a given department that are identical
in design but specific to different months of the year; now con-
solidate them into a single year-end report of essentially the
same design. Or imagine several financial statements that are
identical in format but specific to different divisions of a
company, consolidated into a single company-wide financial state-
ment of the same general format (e.g., Spiegelman <1986>).

4

C 7

b

Another example of this kind of integration occurs when two
echelons of a distribution system are first modeled separately
but in a similar way, and then the two models are combined into
one overall multi-echelon model.

Whereas the first pair of examples result in a new specific
model within the original model class (perhaps with minor revi-
sions of the model class in some cases), the second example
results in a new specific model within a new model class that is
essentially a union of the original model class with itself.
Examples of the first general type can capture much of what
typically is meant by the term "aggregation".

This kind of integration is important when summaries must be
produced from similar but distinct reports or models; when it is
expedient for different people or groups to build different sub-
models using a standardized model template; and, sometimes, when
sub-optimization needs to be avoided.

2.1.2 Different Model Classes Within One Modeling Paradigm

Intearation across different model classes within a single
modelina 2aradiam is somewhat more challenging than the first
type of integration because of the greater degree of possible
dissimilarity among the models being integrated.

Integration of this type occurs when two or more linear pro-
gramming models are combined into one comprehensive model, as
happens quite commonly.

This type of integration is also quite common among network
flow models, another modeling paradigm that lends itself readily
to integration. A recent example is the award-winning work at
Citgo (Klingman et al <1986>). The complete model "integrates the
supply, distribution, pricing, financing, and sales functions of
the short-term, 'downstream' petroleum products operations." I

Large-scale economic models are often built using this kind
of integration. See, for example, Phillips <1981>, which discus-
ses a methodology for constructing a large generalized equilib-
rium model as a network of simpler process submodels. All process
submodels fall within the general process model paradigm, and it
is this similarity that makes a general integration methodology
possible. Another good paper in this general vein, but with more
of an optimization orientation, is Hogan and Weyant <1980>. 6

This kind of integration is important because real problems
often transcend the boundaries of individual model classes. This
is particularly likely to be the case when different business w

functions must be dealt with simultaneously. Avoiding piecemeal
treatment and suboptimization may require model integration in
this sense.

-4-

In the neighboring field of programming languages, the ana- U
log of a "model class" is a particular programming language and
the analog of a "specific model" is a specific computer program.
The analog of this kind of integration is the linking of programs
written in different languages within, say, the procedural para-
digm. An analog for the first kind of integration (Section 2.1.1)
is the use of subroutine calls to weld together different proce-
dures, written in the same language, into a single program.

2.1.3 Different Modeling Paradigms Within One Modeling Tradition

Integration across different modeling paradigms within a
single discipline-specific modeling tradition has two distinct
subtypes. The first is integration of model classes from differ-
ent paradigms. The second is integration of different paradigms
themselves. Both are important for reasons similar to those that
apply to the previous type of integration, and are still more
difficult owing to still greater dissimilarity of what must be
integrated. Paradigm integration is especially valuable to the
extent that it enables integration of model classes from differ-
ent paradigms to be reclassified as integration of model classes
from a single (more general) paradigm.

This kind of integration occurs within the MS/OR tradition
when a queueing model is combined with a network flow model in
order to describe a computer communication network, or when aresource allocation model is co-mbinr with a CPM-style project
management model.

Damon and Schramm <1972> can be viewed in terms of this type
of integration. It combines a quadratic programming model for the
"production sector", a simple nonlinear demand model for the
"marketing sector", and a deterministic financial planning model
for the "financial sector". Integration is achieved by recasting
all three submodels within the nonlinear programming paradigm.
This can be thought of as integration by "subordination" of mul-
tiple paradigms to a more general paradigm.

Another example is Federgruen and Zipkin <1984>, which in-
tegrates the basic vehicle routing and resource allocation
paradigms.

Examples of this kind of integration in the related field of
programming languages can be found in the special issue introduc-
ed by Hailpern <1986>. Conscious integration of programming lang-
uage paradigms is a major contemporary research theme.

An example of this kind of integration in the related field
of artificial intelligence can be found in Brachman, Fikes, and
Levesque <1985>, which integrates the frame and logic paradigms.

-5-

.., ,.,...... :...&.&'/ .,..-.' , , , %, *,*, ,.- , % ,*

An example of this kind of integration in the related field
of economics can be found in Weyant <1985>, which shows how the
general economic equilibrium paradigm subsumes four other
modeling paradigms in the context of energy-economic modeling:
variable-coefficient input-output theory, process networks,
linear programming, and general nonlinear optimization.

2.1.4 Different Modeling Traditions

Integration across different discipline-specific modeling
traditions is the fourth and final type suggested by the four-
level hierarchy. Such integration typically carries with it the
requirement of solver integration as well, since different disci-
plinary traditions usually involve distinct solver technologies.

The most common examples of this kind of integration for
MS/OR are those that involve database management. Obviously one
can view the data needed for a MS/OR application in terms of one
of the popular data models and use a database system to manage
the data. Integration occurs at a conceptual level to the extent
that the MS/OR model and the data model are unified rather than
separate, and at a practical level to the extent that the MS/OR
software and database software are unified.

Work toward integrating the modeling traditions of MS/OR and
database management includes Beulens <1986>, Bianning <1985>,
Bonczek, Holsapple, and Whinston <1978>, Burger <1982>, Colk
<1985>, Sprague and Carlson <1982>, and Stohr and Tanniru <1980>.

Integration across the MS/OR and AI modeling traditions has
recently been receiving a lot of attention. See, e.g., Hokans
<1984> and some of the papers presented at the ORSA/TIMS Joint
National Meeting in Miami Beach, October 1986; the theme of this
meeting is "Artificial Intelligence and MS/OR: Some Unifying
Themes".

See Bonczek, Holsapple, and Whinston <1981> for a book-
length discussion attempting to integrate MS/OR (from the DSS
point of view) both with database management and with artificial
intelligence.

This kind of integration is likely to become more important
in the future as the common modeling concerns of MS/OR, database
management, programming languages, and artificial intelligence
come to be better recognized. See Brodie, Mylopoulos, and Schmidt
<1984> for the results of a research conference on precisely this
issue for the last three fields mentioned. See also Brodie and
Mylopoulos <1986> for an in depth discussion of this issue for
database management and artificial intelligence.

.d

-6- .

2.2 Solver Integration

A solver is a method or program for purposefully manipu-
lating a model. Several types of manipulation are important:

"Definitional Calculation" (as in a spreadsheet; in
structured modeling this is called "evaluation")

"Satisfaction" (solve a system of linear or nonlinear

equations and/or inequalities)

"Optimization"

"Query Processing" (as in a database management
system)

"Inference" (as in artificial intelligence).

The first three of these are associated with MS/OR, and the last I
two with the disciplines noted.

A solver is always paired with a model class, modeling para-
digm, or even modeling tradition. Thus a solver can be catego-
rized by the type of manipulation it can perform, per the above
list of five, in conjunction with its associated particular model .
class, paradigm, or tradition. This categorization sets the stage
for thinking meaningfully about solver integration.

Solver integration is a common concomitant of model integra-
tion across modeling paradigms because different paradigms
usually have different kinds of solvers associated with them. A
similar observation holds with respect to model integration
across modeling traditions. These observations are sufficient to

*establish the importance of solver integration. Both observations
are now illustrated.

Roy, Lasdon, and Lordeman <1986> provides an example of how
model integration across paradigms can induce the need for solver
integration. This paper combines the multi-period spreadsheet
paradigm for financial planning with the optimization modeling
paradigm in a mainframe environment. Associated with the finan-
cial planning paradigm is an algorithm for solving simultaneous
equations, and associated with the optimization modeling paradigm
are linear and nonlinear programming algorithms. Similar work has
been done in the personal computer environment to marry the pop-
ular spreadsheet modeling paradigm with the LP model paradigm
(Cunningham and Schrage <1986>).

The Guru package (from Micro Data Base Systems) provides an
example of how model integration across modeling traditions can
induce the need for solver integration. It combines solvers for
spreadsheets, relational database query processing, and rule-
based inference.

-7-

VV V4nN% t. 4

Integrating distinct solver technologies applicable to the
same modeling paradigm can yield improved hybrid technologies.
This gives another reason for the importance of solver integra-
tion. A good example in the context of optimization-oriented
models is the union of implicit enumeration and linear program-
ming technologies to produce the branch-and-bound approach that
has dominated the integer programming scene for the past two
decades. See also Geoffrion <1977>, which explores some of the
ways in which discrete/combinatorial optimization techniques can
be integrated with linear/nonlinear programming techniques.

Decomposition theory from large-scale mathematical program-
ming furnishes a powerful framework for integrating optimization I
algorithms for special model classes.

Birta <1984> discusses some of the ways in which simulation
and optimization can be integrated.

Glover <1985> discusses several techniques from artificial
intelligence that appear to be useful for integer and combina-
torial programming. An early paper in a similar vein is Leuriere
<1978>.

Kendrick, Krishnan, and Carl-Mitchell <1984> discusses some
of the particulars of sequentially integrating a database system
(Ingres) and an optimization system (GAMS).

Nygard and Shapiro <1986> demonstrate that some optimization
algorithms (e.g., shortest path, bin packing, simplex) can be
coded in the query language of a database management system, with
surprisingly good performance. This opens up a possible path for
integrating the previously distinct solver technologies of opti-
mization and query processing.

A final point about the importance of this type of integra-
tion: different kinds of solvers may be needed at different
stages in the life-cycle of a modeling application. For example,
a query processor may be needed to facilitate management access
to a database containing optimization results after an optimizer
is run. Supporting the whole life-cycle is the need behind the
third and final kind of integration.

2.3 Utility Integration

Recall the modeling life-cycle description in Section 1.
There are at least three main categories of utilities that could
be useful at different stages of the life-cycle, and within these
categories several specific utilities come to mind:

Communication
Business Graphics
Report Writer
Telecommunications

-8-

* ~ 1 4r..~

-. , j~ ..~---' ~ -. ~ . 4 4~' . 4

Word Processing ,4

Organizing Things and Ideas
Database
Filing
Outlining
Project Management

Quantitative Analysis
Interactive Data Analysis
Mathematical Computation
Statistical Analysis

The advantages of having access to such utilities as an integral
part of a modeling environment throughout the entire life-cycle
should be obvious.

Conventional modeling systems do not provide many of these
facilities. Consequently, it is common practice for MS/OR pro-
fessionals to use several relatively specialized systems for
different functions. This involves a good deal of inefficiency.

In recent years there has emerged a class of systems of
sufficiently broad capability to provide many of the required
utilities to some degree. These are the "integrated personal
productivity" packages for personal computers: Framework, Sym-
phony, and others (e.g., Bonner <1985>). By making one of these
the host environment of a modeling system, many important activi-
ties can be supported directly (word processing, flat file data
management, spreadsheets, business graphics, telecommunications)
and other more specialized functions can be developed in the
special programming languages that come with such packages or in
standard languages via programs that can be run without leaving
the system's environment.

. 4

-.9-

3 AN ASSESSMENT OF HOW SN SUPPORTS INTEGRATION

This section considers how structured modeling does or does
not support each of the kinds of integration discussed in Section
2. The reader needs to be familiar with structured modeling at
the level of Geoffrion <1986> in order to understand what
follows.

The four-level abstraction hierarchy of models introduced at
the beginning of Section 2.1 has a counterpart in structured
modeling:

4.

Abstraction Level Structured Modeling Counterpart

Specific model Elemental detail tables (together
with a schema)

Model class Schema
.5

Modeling paradigm Non-recursive definitional system

Modeling tradition MS/OR (by genesis).

A clarification is in order concerning the "paradigm" used by
structured modeling. Mathematically speaking, structured modeling
can be viewed as using acyclic, attributed, directed graphs as
its paradigm; however, structured modeling aspires to be
paradigm-free. It is intended as a lingua franca within which
model classes from a wide variety of modeling paradigms can be
expressed -- much as English is so used, except that the language
of structured modeling is much more structured and amenable to
direct computer execution. The structure comes from the require-
ment that each model class be expressed as a system of defini-
tions without recursion, that is, without circular references.

3.1 Model Integration

3.1.1 Different Specific Models Within One Model Class

Integration of different specific models within a single
model class seldom poses serious problems for any modeling system
so long as it is acceptable for the user to perform the integra-
tion under manual direction, and so long as total model size re-
mains within reasonable limits. If a modeling system can handle
one submodel, then it should be able to handle the others since
they all have the same structure. Of course, if the number of
submodels or their size is significant, then the issue of effi-
ciency arises.

-10-

* *, ~ .. 5.55 * 5h.

Structured modeling has no particular difficulty accommodat-
ing the integration of specific models that all have the same, or
nearly the same, schema. It is largely a matter of manipulating
elemental detail tables. Some simple schema changes may be
necessary.

3.1.2 Different Model Classes Within One Modeling Paradigm

Integration across different model classes within a single
modeling paradigm can pose serious problems for a modeling sys-
tem, depending on how flexible the modeling system is as a host
for models within the given modeling paradigm.

Dealing with a wide variety of model classes is one of the
explicit aims of structured modeling. To the extent that this aim
is achieved, a structured modeling system will be able to repre-
sent as schemata the model classes to be integrated. Integration
of these schemata ought not to be difficult because they are rep-
resented in the same language and style; it should mostly be a
matter of concatenating them (actually, their modular outlines)
and then editing the result.

Section 3.2 of Geoffrion <1986> gives an example of this
kind of integration wherein the classical transportation model
is combined with the classical multi-item EOQ model.

Structured modeling should prove to be well suited to this 6
kind of integration in general because generic structure is most
explicit about the very thing that usually causes the greatest
difficulty when one tries to combine two model classes: the
(often hidden) interdependencies among model components. With
proper attention to modular structure, the final integrated model
usually will preserve the conceptual integrity of the parts from
which it was composed.

3.1.3 Different Modeling Paradigms Within One Modeling Tradition

Structured modeling is not tied to any one of the tradition-
al modeling paradigms. Its expressive power is sufficient that it
can represent models and model classes from a wide variety of
different paradigms, and it can also represent many paradigms
themselves. This facilitates integration across modeling para-
digms, whether paradigms per se are to be integrated or just
model classes from different paradigms.

Either way, integration across different modeling paradigmswithin a single discipline-specific modeling tradition usually
reduces to the type of integration discussed in the previous
subsection.

0.

-11- .

I5

3.1.4 Different Modeling Traditions

The expressive power of structured modeling is great enough
to encompass a variety of paradigms from a variety of modeling
traditions. For example, it has been shown that structured model-
ing subsumes the relational and entity-relationship data model
paradigms from database management, the spreadsheet paradigm, and
some versions of the semantic network paradigm from artificial
intelligence. It can also be shown that structured modeling sub-
sumes paradigms from accounting, finance, marketing, and other
functional areas of business.

For work on using structured modeling to integrate different
discipline-specific modeling traditions, see Farn <1985> (MS/OR
and DBMS) and Chari <1985> (MS/OR and AI).

pi
To the extent that the expressive power of structured model-

ing crosses disciplinary boundaries, integration across different
discipline-specific modeling traditions tends to reduce to the
type discussed in Section 3.1.2.

3.2 Solver Integration

Structured modeling does not directly support solver inte-
gration at the algorithmic level; structured modeling is about
modeling rather than solving. However, structured modeling can
support solver integration in most aspects external to algo-
rithmics.

For example, integrated capabilities for answering ad hoc
queries (in the tradition of database management systems) and for
doing definitional calculation (in the tradition of spreadsheet
programs) is an explicit requirement for a structured modeling
system (Section 1.2 of Geoffrion <1986>). The prototype system
currently in development will achieve this when completed.

Structured modeling views models and solvers as being total-
ly independent. Provision is made for a library of solvers, and
the fact that standard model representations are always used en-
ables solver interface routines to be built that can be invoked
easily by the user. Thus solver integration can be well supported
from the user's viewpoint.

3.3 Utility Integration

The ability to support most of the things that need to be
done over the course of the typical modeling life-cycle is an ex-
plicit requirement for a structured modeling system (Section 1.2
of Geoffrion <1986>). If this is to be done effectively, then
various utilities like those listed in Section 2.3 must be well
integrated in the user interface.

-12- A

Structured modeling provides a rather unusual opportunity to
achieve user interface consistency across utilities because it is
expressive enough to be able to model the behavior and/or invoca-
tion conditions of many utilities. Thus it is possible to view
many of the utilities in structured modeling terms, and therefore
to design a user interface for customization and use that is
based on structured modeling ideas and operations.

4 SUNMARY

The notion of an integrated modeling system involves a
tangle of concepts worth distinguishing from one another. This
was done in Section 2, and a variety of examples were given.

Section 3 examined the aspects of structured modeling that
bear on each type of integration. Overall, it appears that struc-
tured modeling presents a promising approach for achieving most
kinds of integration.

Not examined at all in this paper, but certainly an impor-
tant topic for designing integrated modeling systems in the
future, are technical mechanisms by which the various types of
integration can be implemented efficiently. Work on this topic is
in progress and will be reported at a later date. 4

-13- A

-%. U* V

REFERENCES

Agin, N.I. <1978>. "The Conduct of Operations Research Studies,"
in J.J. Moder and S.E. Elmaghraby (eds), Handbook of Operations
Research, Van Nostrand Reinhold Company, New York.

Beulens, A.J.M. <1986>. "Transforming Algebraic Data Structures
into Relational Data Structures in DSS," Working Paper, Rotterdam
School of Management, Erasmus University.

Birta, L.G. <1984>. "Optimization in Simulation Studies," in
Oren, T.I., B.P. Zeigler, and M.S. Elzas (eds), Simulation and
Model-Based Methodologies: An Integrative View, NATO ASI Series,
Springer-Verlag, Berlin, 1984.
Blanning, R.W. <1985>. "A Relational Theory of Model Management,"
Working Paper 85-106, Owen Graduate School of Management, Vander-
bilt University, June.

Bonczek, R., C. Holsapple and A. Whinston <1978>. "Mathematical
Programming Within the Context of a Generalized Database Manage-
ment System," R.A.I.R.O., 12:2 (May), pp. 117-139.

Bonczek, R., C. Holsapple and A. Whinston <1981>. Foundations of
Decision Support Systems, Academic Press, New York.

Bonner, P. <1985>. "Forks in the Road to Integration" and "Inte-
grated Packages," Personal Computing, 9:1 (January), pp. 82-95.

Brachman, R.J. and H.J. Levesque <1985>. Readings in Knowledge
Representation, Morgan Kaufmann, Los Altos, CA.

Brachman, R.J., R.E. Fikes and H.J. Levesque <1985>. "KRYPTON: A
Functional Approach to Knowledge Representation," in Brachman and
Levesque <1985>.

Brodie, M.L. and J. Mylopoulos <1986>. On Knowledge Based Manage-
ment Systems: Integrating Artificial Intelligence and Database
Management Systems, Springer-Verlag, New York.

Brodie, M., J. Mylopoulos and J. Schmidt <1984>. On Conceptual
Modeling, Springer-Verlag, Berlin.

Burger, W.F. <1982>. "MLD: A Language and Data Base for Model-
ing," IBM Research Division, San Jose, Research Report RC 9639
(#42311), September 14.

Chari, S. <1985>. "Knowledge Representation Using Structured
Modeling," Research Proposal, Graduate School of Management,
Computers and Information Systems, UCLA, December.

-14-

Cunningham, K. and L. Schrage <1986>. "Optimization Models with
Spreadsheet Programs," The Institute of Management Sciences,
Providence, RI.

Damon, W.W. and R. Schramm <1972>. "A Simultaneous Decision Model
for Production, Marketing, and Finance," Management Science, 19:2
(October), pp. 161-172.

Dolk, D.R. <1985>. "A Generalized Model Management System for
Mathematical Programming," Naval Postgraduate School, to appear
in ACM Transactions on Mathematical Software.

Farn, C.K. <1985>. An Integrated Information System Architecture
Based on Structured Modeling, Ph.D. Thesis, Graduate School of
Management, UCLA.

Federgruen, A. and P. Zipkin <1984>. "A Combined Vehicle Routing
and Inventory Allocation Problem," Operations Research, 32:5
(September/October), pp. 1019-1037.

Gass, S. <1985>. "Managing the Modeling Process," Working Paper
MS/S 85-002, College of Business and Management, University of
Maryland at College Park, January.

Geoffrion, A.M. <1977>. "How Can Specialized Discrete and Convex
Optimization Methods Be Married?," Annals of Discrete Mathematics
1, pp. 205-220.

Geoffrion, A.M. <1986>. "An Introduction to Structured Modeling,"
Working Paper 338, Western Management Science Institute, Graduate
School of Management, UCLA, June. Forthcoming in Management I
Science.

Glover, F. <1985>. "Future Paths for Integer Programming and
Links to Artificial Intelligence," CAAI Report 85-8, Center forApplied Artificial Intelligence, University of Colorado, October.

Hailpern, B. <1986>. "Multiparadigm Languages," IEEE Software,
3:1 (January).

Hammond, J.S., III <1974 "Do's and Don'ts of Computer Models
for Planning," Harvard .s.ness Review, 52:2 (March-April), pp.
110-123.

Hogan, W.W. and J.P. Weyant <1980>. "Combined Energy Models,"
EPRI EA-1420, Project 1016-2, Electric Power Research Institute, 4
3412 Hillview Avenue, Palo Alto, CA 94304, May.

Hokans, R.H. <1984>. "An Artificial Intelligence Application to
Timber Harvest Schedule Implementation," Interfaces, 14:5 (Sep-
tember-October), pp. 77-84.

-15-

0 %* *. % . * . . ,* . -. * . . .'...-. , . . •.. * ~% w • •* .: • • •. - .. * -. aP * ". P" .

Kendrick, D., R. Krishnan and S. Carl-Mitchell <1984>. "Inter-
faces Between Database and Modeling Systems," Paper 84-12, Center
for Economic Research, Department of Economics, University of
Texas, Austin, September.

Klingman, D., N. Phillips, D. Steiger, R. Wirth and W. Young
<1986>. "The Challenges and Success Factors in Implementing an
Integrated Products Planning System for Citgo," Interfaces, 16:3
(May-June), pp. 1-19.

Lauriere, J.-L. <1978>. "A Language and a Program for Stating and
Solving Combinatorial Problems," Artificial Intelligence, 10:1
(February), pp. 29-127.

McFadden, F.R. and J.A. Hoffer <1985>. Data Base Management,
Benjamin/Cummings, Menlo Park, CA.

Nygard, K. and L. Shapiro <1986>. "Data Base Management Systems
in Operations Research," draft working paper, CS/OR Department,
North Dakota State University, August.

Phillips, R.L. <1981>. "A Methodology and Software System for
Linking Economic Models," Decision Focus Incorporated, 5 Palo
Alto Square, Suite 410, Palo Alto, CA 94304, paper presented at
the ORSA-TIMS Joint National Meeting in Houston, October 11-14.

Ramamoorthy, C.V., A. Prakash, W. Tsai and Y. Usuda <1984>.
"Software Engineering: Problems and Perspectives," Computer,
October, pp. 191-209.

Roy, A., L.S. Lasdon and J. Lordeman <1986>. "Extending Planning
Languages to Include Optimization Capabilities," Management
Science, 32:3 (March), pp. 360-373.

Spiegelman, L. <1986>. "Firm Chooses 1-2-3 Clone to Consolidate k

Data," InfoWorld, November 3, p. 9.

Sprague, R.H., Jr. and E.D. Carlson <1982>. Building Effective p.

Decision Support Systems, Prentice-Hall, Englewood Cliffs.

Stohr, E.A. and M.R. Tanniru <1980>. "A Database for Operations
Research Models," International Journal of Policy Analysis and
Information Systems, 4:1, pp. 105-121. i
Tsichritzis, D.C. and F.H. Lochovsky <1982>. Data Models,
Prentice-Hall, Englewood Cliffs.

Weyant, J.P. <1985>. "General Economic Equilibrium as a Unifying
Concept in Energy-Economic Modeling," Management Science, 31:5
(May), pp. 548-563.

-16-

Now

