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THE DEMAND FOR INFORMATION AND THE DISTRIBUTION OF INCOME*

by

Kenneth J. Arrow

1. Remarks on the Distribution of Income

The income of an individual is the sum of income derived from the

sale of labor and income derived from the return on wealth. The

increment of wealth in any period is the excess of total income over

consumption. Therefore, the inequality of income among the members of a

population depends at a moment of time on the inequality in labor

income, the inequality in property income, and the covariance between

them. However, the inequality in the holdings of wealth is to some

extent derived from the inequality in past labor Income.

In this paper, I take the inequality in labor income as a fact. --

However, it is well known that the inequality in property income is

considerably greater proportionately. It would be natural to assume

that saving (excess of income over consumption) is proportional to ,Aff

income. In that case, if it is assumed that labor income comes first,

the inequality in wealth should be equal to the inequality in income.

Wealth and income are closely related, in that those with high incomes V *.j

tend to be those with large accurulat ions of property. But the relation

* This work was supported by Office of Naval Research Grant

NOOO14-86-K-0216 at the Institute for Mathematical Studies in the Social

Sciences, Stanford University, Stanford, California and with thp Center

for Research in Economic Efficiency.
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is far from linear. It is well known that the proportion of wealth held
I, 

.

by the high income recipients is much higher than the proportion of

income that they receive.

One can think of a number of possible explanations for this

nonlinearity. Among these is one that does not seem to have been much

explored, namely, that those with high incomes receive higher rates of

return on their investments. The hypothesis that different individuals

receive different rates of return has been suggested by Becker [1967],

where it is one component of a theory of income distribution. Becker

does not, however, offer any explanation why individuals should have

differing rates of return. In particular, he does not suggest that they

will increase with income.

However, a recent paper of Yitzhaki [1986] has shown that the

* rates of return on investments are systematically higher for those with

L3A

higher incomes. It is to be noted that his evidence makes clear tht

there is a line of causation from wealth to higher return in that it is

those who are wealthier at the beginning of a period who get higher

returns. The correlation is not spurious.

There are, it must be admitted, several conceivable explanations

of this correlation. I am going to develop just one. One alternative

is that individuals who have the ability to secure systematically higher

rates of return become wealthier; this is pretty much Bpcker's position.

Actually, the model which follows is consistent with this hypo)thesis

also, in that individuals with lower costs of information acquisition

will buy more information and thprefore get. higher rates of return.

I e
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Another alternative hypothesis, which is suggested by Yitzhaki, is

-'U. that richer individuals have lower relative risk aversion than poorer

ones. The rich will therefore have a higher proportion of high-risk I
..; investments. In equilibrium, high-risk investments must have a higher

expected rate of return, otherwise they will not be held. Hence, the

expected rate of return will be an increasing function of wealth.

The hypothesis that relative risk aversion is decreasing itself

has other difficulties. On general grounds, it may be argued that the --

utility function for risk-bearing is bounded both above and below (see

Arrow [1971], pages 63-65, using an argument orginally due to Menger

-'1934]; this is a generalized version of the St. Peterburg paradox).

But then it can be shown that relative risk aversion must exceed 1 for

arbitrarily large values of wealth and be less than 1 for arbitrarily

small values (Arrow [1971], pages 110-111], which contradicts the

hypothesis that relative risk aversion is decreasing as wealth

increases.,U.

I would like to advance another hypothesis, the more interesting

because It started with a question that had nothing to do with income

distribution. Assume not only that there is uncertainty about the rates
-''U

of return on alternative investments but also that is is possible to

learn something about these distributions at a cost. What is being

learned is information about rates. Hence, the value of the information

dapends on the amount to be invested. The cost, on the other hand,

depends only on the distributions being studied and is therefore

indppendent of the amount invested. Assume that one can invest more or

A%
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less in information; increased expenditures buy more accurate knowledge

of the rates of return. Then the optimal amount of information

purchased by an investor is an increasing function of Initial wealth

(amount to bp invested). Under this argument, it is not at all

surprising that the rate of return will be higher, on the average, the

higher is initial wealth. It follows that the distribution of final

wealth (the return on the investment) will be more unequal than that of

initial wealth.

It is necessary to show that these hypotheses can be embodied in a

consistent story. I will generalize a model that I have studied earlier

(Arrow [1971], chapter 12). In section 2, I consider a situation with

given uncertainty and no possibility of acquiring information. An

individual has resources to invest in a portfolio of different

securities. The allocation among securities is to be optimal according

to the expected utility of wealth achieved by the investment. This case

is analyzed as a preliminary to the case where information can be

acquired, which is studied in section 3. There it is shown that indeed

the amount of information (interpreted as increased accuracy in

j4forecasting) is an increasing functior of initial wealth. From this, it

U' is shown that the rate of return does indeed increase with wealth, and

therefore terminal wealth (at the end of the investment) is more unequal

than initial wealth.

.4"
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2. Portofolio Choice under Uncertainty

As usual, uncertainty is represented by unknown states of

nature. I simplify by assuming that the securities among which choices

are to be made are elementary. By this is meant that each security is a

possible bet, at fixed odds, on one state of nature.l/ Let X be the

random variable, state of nature, x a representative value of X,

and p(x) the probability that X = x. (For the general theoretical

presentation, I assume that X is a discrete variable. But the

specific example will assume that X is normally distributed. I make

the obvious adaptations without comment.) The security x can be

bought in any amount; one unit of security x costs one monetary unit

and pays one monetary unit if the realized state X is equal to x

and 0 otherwise. (The case where security x pays r monetary

units if X = x, the same for all x, is only trivially different. If

the payment for a winning bet depends on the value of x, there are

complications in presentation which obscure the point being made here,

though they do not obviate it.)

The investor has an initial amount of wealth A. This is to be

j• devoted to the purchase of elementary securities. Let a(x) be the

amount invested in elementary security x. This must satisfy the budget

constraint,

Sa(x) -- A .... ( )'

x

X -* -
2,O
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As a result of the investment, there is a payoff when the value

of X becomes known. Call this payoff, W, the terminal wealth. In

this model,

W = a(X). (2)

The choice of the investment allocations, a(x), thus determine a

random variable, W. Among all feasible allocations, as defined by (1),

we wish to choose the one which yields the best distribution of W. In

accordance with standard theory, we assume that random variables ae

ranked by the expected value of the utility obtained. Let U(w) be the

utility of a value, w, of terminal wealth. Then, the measure of merit

for a random variable, W, is, E[U(W)], and this quantity is to be

maximized. In view of (2), the optimal portfolio is defined as that

which maximizes,

E{U[a(X)]} = J p(x) U[a(x)], (3)
x

subject to (1) (and the Implicit condition that a(x) Z 0 for all x).

To get definite results, it will be assumed that the utility

function belongs to a specific class, that of power functions. These

have been the most used in practice and are at least not strongly

contradicted by evidence. Since risk aversion is certainly assumed, the

power functions must be concave. Specifically, It is assumed that,

U(w) = w -L/(1 - a),a > 0. (4)

°j *
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Since utility functions are defined only up to positive linear transfor-

mations, the constant can be chosen to insure that U is strictly

increasing. The case, a = 1 is not covered by (4), but if the

constant, -1/(1 - a), is subtracted from the right-hand side of (4)

and then a is made to approach 1, the limit is the function, Zn a,

which is therefore one of the class of power functions used.

In the terminology of Pratt [1964] and Arrow [1965, Chapter 2;

1971, Chapter 3], the functions (4) are those with constant

proportionate or relative risk aversion.

If we substitute (4) into (3) and then maximize with respect to

the allocations, a(x), subject to (1), we find

a(x) = {[p(x)11// I [p(y)]l/i} A. (5)

y

The proportions of amounts invested in different securities is

independent of initial wealth. More is bet on more probable states of

nature, but the extent to which this is true depends on the coefficient

of relative risk aversion, a. If a tends to 0, the absence of risk

aversion, then the bets are more and more concentrated on the most

probable outcome. If a = 1, then amounts invested are proportional to

probabilities. If a tends to W, then amounts invested in all

securities tend to the same value; the extreme of risk aversion is

concern for only the worst possible outcome.

We will be interested here and in the following section in some

magnitudes derived from the optimal portfolio, (5). One is the maximum

expected utility which is achieved, that, the expected utility obtained

.4A



N 
'."

*"S.:

if the policy (5) is followed. Closely related is the maximum certainty-

equivalent terminal wealth, that, the value of W which, if received

with certainty would have the same utility as that derived from the

optimal policy (5). Finally, we can ask a different question, one more -.

related to the statistics of income distribution: what is the expected

terminal wealth or, equivalently, what is the expected return on initial For

wealth (the expected ratio of terminal to initial wealth)?

The maximum expected utility is obtained simply by substituting

(5) into (4) and that into (3). The algebra is straightforward.

max E [U(W)] = { j [p(x)]''}" A1-c/(1 - ). (6)
x

The certainty-equivalent terminal wealth, Wc is defined by the

equation,

U W C) max E [U(W)]. (7)

From (6) and (4),

x

This result shows already that, in one sense, the effect of pure

uncertainty does not change the distribution of wealth. The certainty-

equivalent terminal wealth is simply proportional to initial wealth.
-p..

This measure represents, so to speak, the ex ante perception of
4...

terminal wealth. An alternative would look at the actual outcomes, at

least on the average.

II'% 5..,



E(W) = Ea(X)] = p(x) a(x)

x

= [P(x)]L + '0J/ I [p(y)] 1 I A, (9)
x y

again proportional to A.

Theorem 1: In the absence of possibility of information-

gathering, the distribution of terminal wealth is the same as the

distribution of initial wealth, when the porfolio has been selected

optimlally for a risk-aversion represented by a power function. This is

true whether the distribution of terminal wealth is measured by

certainty-equivalents or expected value.

The effect of risk aversion on these results may be easily

presented. If a = 0 (no risk aversion), then both We and E(W) ar"

equal to [max p(x)] A. If o, 1 (logarithmic utility), then,
x

W = e-A,
c

% where,

6-
, - . I = - pC×) i.n p(x), ..

4 x

• .the Shannon measure of information, while,

E(W - j [p(x)] 2 A.

X ".

Finally, as a + w, W tends to e-nA, E(W) to A/n, where n is

thp number of distinct values of x for wicn p(x) > 0.
-- p2. ""

we •
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'. placd =y int-.grails, with r = I/a in (6) and the denominator of (9)

and r = I+ i)/a int t th numerator of (9). After straightforward

simplifl cition, we find,
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max E[U(W)] a" ac(h/2,T)( /A 1  /0 a), (12)

W= aC / -a (h/2r) 1/2 A, (13)

E(W) = (1 + a) 1/ 2 (h/2w) I /2 A. (14)

That We and E(W) are proportional to A is not surprising; we F,

already had this result in the general case. It more interesting to see

that, for given A (and given risk aversion a), both W. and E(W)

are proportional to hI /2 The more precise the knowledge of the state

of nature, X, the higher is terminal wealth, however measured. This

suggests, as will be confirmed in the next section, that if the

opportunity to increase h exists, it will be undertaken even for some

decline in assets, A.

The effects of risk aversion may be quickly noted. For a = 0,

the constant factors independent of both h and A in (13) and (14)

are both equal to 1, while for a + -, both constant factors are 0.

For a 1, the constant in (13) is e /2 in (14) 2- /2.

3. The Demand for Information

Suppose the economic agent can observe some random variable, say

S, before choosing the portfolio. To be useful, of course, it should

not be independent of X. Suppose that the purchase of the signal

costs C, to be paid for out of initial wealth. Clearly, once S is

observed, the optimal portfolio is selected according to the same

principles as before, except that the probabilities used are the

., _
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conditional probabili*ies of the different values of X, given the

observed value of S. Let a(x,s) be the amount invested in securities %;

of type x given that S = s, p(xls) = probability that X = x given

that S = s. Then, since the amount available for investment is now

A - C, the optimal portfolio conditional on S is,

S(XS) = {[p(xls)] 'L/ [p(yls)j I/" (A - C), (15)

y

by adaptation of (5) to the conditional case. For a given value of S,

4the parallel to (b) is,

max E['J(W)IS] = { [p(xIs)"/"}V(A - C)1-"/(l - a). (16)
x

This La3t .expression is a function of the random variable, S, and hence

is Still a random variable. To get a measurement of the value of the

.:3gnal, we need its expected value with respect to S, since the

reaLiz-a lon of .S is unknown when the signal is chosen.

i1/cz O
max ELUJ(W)j E5  ( pl) A - C) /01 - a

x

,-. - [(A-C) 1-a/(1-CL)] i p(s) I j [P(xls)]'/'I'°. ( 7

. x

If the choice were simply whether or not to observe the signal S, one

would simply compare (17) with (6). The second factor can easily be

shown (by Jensen's inequality) to be larger than the corresponding

factor in (6), while the first factor is obviously less.

More generally, however, we want to admit many possible signals,

,'. of greater or lesser reliability and correspondingly of greater or

e. 41 

.
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lesser cost. To keep matters tractable, I now assume that X and S

have a joint normal distribution. This will be described by specifying

the distribution of X as in (10) and the conditional distribution of

S given X, which will have a mean which is linear in X and a

precision, to be denoted for reasons of convenience by H-h, which is

independent of X.

If S is not independent of X, E(SIX) is a non-trivial linear

function of X. By making a simple linear transformation on S, we can

assume without loss of generality that,

E(SIX) = X. (18)

It will now be assumed that the portfolio-chooser can select the

conditional precision of S, i.e., H-h. After choosing H-h, he/she

observes S and then chooses a(x,s) for all x in accordance with

(15).

It remains to consider the cost associated with a choice of

precision of the signal. Think of S as a random sample from a

population with unknown mean X. Then the cost may be thought of as

proportional to the size of the sample. But elementary statistical

theory tells us that the precision of S (given X) is proportional to

the sample size (the variance of a sample mean is inversely proportional

to sample size). It will be assumed that the cost of a signal S with

conditional precision H-h is c(H-h), for some constant c. We

substitute this for C in (17).

C
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Under the assumption of normality, the posterior of X given S,

p(xs), can be computed by Bayes' Theorem along well-known lines.

p(xs) = p(slX) p(X)/p(s).

With the notations introduced above,

p(slx) = [(H-h)/2 T]1 2e (H- h)(s
-x) /2 ,

and p(x) is given by (10). Multiply, collect the terms in the

exponent, and complete the square. Then,

2
p(xls) = KeH(xm)2 /2 (19)

where K is independent of x but might depend on s, and,

m [(H-h)s + hu]/H. (20)

Since (19) is a distribution and its integral with respect to x is 1,

112
K - (H/27)

independent of s. Then, as is well known, the posterior distribution

of X given S is normal with mean m and precision H (the latter

independent of S).

If we substitute from (19) and the assumption, C - c(H - h), Into

(16), we have the same result as (12), with h replaced by H and A

by A - C A - c(H - h) = (A + oh) - cH = c(A' - H), where

A' - (A/c) + h, (21)

4..
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the initial level of information or precision plus the ability of

initial assets to buy information. The analogue of (12) is,

E[U(W){S] . o,/2(H/2T)(1 -c)/2 c 1-a(A'-H) 1-a/(1 -a). (22)

The right-hand side is independent of S. Hence, if we take

expectations over S, we get the same expression for E[U(W)] when the

optimal portfolio for a signal with precision H-h is used. The result

takes a slightly simpler form when restated in terms of the certainty-

equivalent terminal wealth as defined in (7).

Wc ~a/2(1-a)c(A,_H)H I /2(2)1/2 (23)

Since Wc is a simple monotone transformation of E[U(W)], the same

value of H will be optimal for both. To maximize (23) with respect

to H, it suffices to maximize,

(A'-H)H ] /2

and clearly this is done by setting,

H = A'/3. (24)

Notice that this is independent of the degree of risk-aversion, a. It

~~is alo independent of the initial information, h, subject to one -

proviso. The optimization should have had the inequality constraint,

H Z h, since initial information cannot be sold, or, otherwise put, the

precision of the signal, H-h, cannot be non-negative. Strictly

speaking (24) holds only if H, so defined, satisfies this constraint;

J 11 M 11, 11 1 111



-16-

otherwise, H = h. I wiLl assume, to avoid minor expository problems,

that the constraint is not binding.

If we substitute (24) into (23), we find,

max We = constant (A')3 /2  (25)
H

Here we see confirmation of the hypothesis presented here. The

magnitude, A', is a measure of initial wealth, where initial informa-

*tion is included. Then terminal wealth (as measured by certainty

equivalents) is no longer proportional to initial wealth but increases

more than proportionately. The possibility of costly information

acquisitions acts to increase the concentration of wealth beyond the

initial.

It may be worth presenting the exact formula for the optimal

portfolio when H has been chosen optimally, as given by (24). We need

only 3ubstitutp (1,9) and (24) into (15).

a(x,s) = (2/3) (H/2a)P1/2e -H(x-m) /2 e A ', (26)

where H is understood to be given by (24).

As in section 2, we also want to look at E(W), the actual (rather

than certalnty-equivalnt) average outcomes. First, note that the

conditional expected terminal wealth, given the signal S, (E(wNS), is

the same as that for E(W), in formula (14), with p(x) replaced by

p(xls). This means replacing h by H and A by CA'.

- 112 112
E(WIS) - (2/3)(1 + -) (H/211) CA'.

S%
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But since the expectation is in fact independent of S, we can write,

E(W) = (213)[(l + a)2,]- 1/ 2 c H'1 2 A' ,  (27)

and, since H is proportional to A' Dy (2 4 ),

E(W) = constant (A') 3 /2 . (28)

Theorem 2: If the state of nature and a signal are jointly

normally distributed, if the precision of the signal (conditional on the

state of nature) can be increased at constant cost, and if the utility

of terminal wealth is a power function, then the amount of total

information (initial and purchased) is 1/3 of the initial wealth

masurpd in information units (including initial information)

indopendent of the amount of risk aversion, and the expected terminal

wp3ltn (in natural units or certainty-equtvalent) is proportional to the

3/2 power of initial wealth (or, to put it differently, the expected

rate of return is proportional to the square root of initial wealth).

Remark: It must be agreed that the prediction of the theorem is

fo,, an anr-ilistically strong relation between initial wealth and rate

3f rpturn. It is not credible that someone with 100 times to invest

receives 10 times the return, nor do Yitzhaki's data support such a

view. One Possible explanation in terms of this model is that wealthier

iidiiliuals have better paid alternative uses for their time, so that

rhe cost, c, of information gathering goes up with A, and therefore

A' ri'ps more slowly. Another is that only part of the initial

uncertainty cin bp decreased by information.

.5 4,.=" '"..." ""' "'""" """" I; ''' " '



4. Remark on Effect of Cost of information on Rate of Return

Becker's hypothesis that individuals have differing rates of

return can be restated in a more fundamental way here as differing costs

of acquiring information. Naturally, an individual who is more

efficient at information-gathering, a loser c in this paper's

notation, will buy more information. The ppecise rplation is seen by *FB*

substituting (21) into (24). Thus, for a given initial wealth, the rate

of return should be higher the lower is c. This is confirmed by using,

for example, (27), wher expected terminal wealth is proportional to,

1/2 3/2 1/2 -1/3 /3)3/2112
c H A' c (A') /3' (Ac + he2 " 3),-'

Tnis is decreasing as c increases if and only if the expression,
0.,

-/3 2/3

Ac ~he

does the same. This will be true for A a 2hc. But for the individual

to purc:ia3e more precision it is necessary and sufficient that H Z h,

i-e., A'/3 > h, or A a 2hc, so that the rate of return increases ,

with decreasing c provided, of course, that A is sufficiently large

so that some information will be purchased.

'.4
a.

0.
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. .'FOOTNOTES
N''-4

1 / It may be noted that every actual security can be regarded as a
function specifying the payoff to a unit security in each state of

-" • nature and therefore as a vector combination of elementary
securities. Conversely, if there is a linearly independent set of

- securities equal in number to the number of states of nature, then
4% each individual can in effect construct elementary securities by

suitable combinations of the existing securities.
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