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-" The purpose of this thesis iv to develop a better model 

of damping that occurs in structural joints due to coulomb 

friction when rotational slip occurs in the joints. 

A one-dimensional, indirect formulation, of the Boundary 

Element Method (BEM) is developed to calculate the 

displacement, rotation, moment and shear in beams which obey 

the assumptions of simple beam theory.  This BEM code is then 

modified to account for friction damping at the joint of two 

beams due to a relative rotation between them.  A gross slip 

model of the friction in the joint is used to establish basic 

behavior of the beam joint with friction damping.  Next, a 

micro-slip model of friction is developed.  The micro-slip 

model, depending on the applied moment, allows for the 

elastic rotation of the joint up to some threshold moment 

where partial slip begins.  As the applied moment Increases 

the region of partial slip expands until the entire joint is 
/ 

i slipping and the gross slip condition exists. - ' ..*.../*   ^ -. « ,. r ."■*r 

Both  the gross slip model and the micro-slip model of "   [f'o^ 
A 

'- S 

the joint friction are used to obtain measures of energy loss s 
I 

per cycle versus clamping pressure in the joint.  Load ■ 

controlled and deflection controlled loading cycles are used ; 

to exercise the joint in a quasi-dynamic model and generate 

viil 
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hysteresis loops in both force-dlplacement and 

moment-rotation space. 

The clamping pressure was varied between 0 Ksi and 20 

Ksi.  The energy loss per cycle curves generated show that 

there is a range of clamping pressures for which the energy 

loss per cycle curve reaches a peak for a given loading and 

amplitude of vibration. 

The micro-slip model developed herein shows better 

behavior than the gross slip model both a. ove and below the 

moment which causes gross slip.  The hysteresis loops 

generated in both the load-deflection and moment-rotation 

space are comparable to other published data, however the 

allowance for the breakaway moment before partial slip begins 

seems to give a more conservative estimate of the energy loss 

per cycle for a given clamping pressure. 

ix 



IMPROVED MODELING OF STRUCTURAL JOINT DAMPING 

v 

:\ 

i. introduction 

1.1  Background. 

The advent of a space based strategic defense and the 

increased push for a permanent space station by the year 2000 

has caused an increased interest in the stability of large 

space structures.  These structures must have sufficient 

damping to keep the vibration response within acceptable 

limits.  In strategic defense applications demanding 

requirements will be placed on the load bearing structures 

supporting missive defense hardware.  Presumably this 

hardware wi'. 1 create wide bandwidth high magnitude mechanical 

disturbances while generating power for the missile 

destroying mechanism.  Structures will also be required to 

support the large rapidly rotating targeting mirrors which 

are called for in some defense schemes.  These structures 

will need tc make use of active as well as passive damping 

techniques to meet the requirements of disturbance isolation 

and target alignment. 

The response of a structure to broad band excitation is 

known to be dominated by contributions at and near its 

■v ** -w S. --  * *w 



resonance (19). The amplitude of response of a system at 

Ifj        resonance Is governed by the damping characteristics of the 

system (11).  Therefore, the response of a system to a broad 

band excitation will depend on the damping characteristics of 

the system. 

/ A primary source of damping in all structures consisting 

of more than one discrete component is the damping that 

occurs as a result of the interface slip between components 

]V at their joints.  Beards estimates that as much as 90 percent 

of the damping in structures takes place in the joints (3). 

Unfortunately, the current design of structures makes use of 

low mass materials and welded construction which eliminates 

the inherent damping mechanisms available to structures and 

as a result, complex artificial damping mechanisms are 

required to provide stability (2). 

£ The damping which occurs in joints as a result of 

interface slip is called friction damping or Coulomb damping. 

Given that friction damping is the primary source of damping 

*s in structures, it provides the greatest potential increase in 

structural damping. Friction damping in joints has specific 

advantages. First, by using friction damping in joints as a 

source of energy dissipation, the use of complex artificial 
y 
N damping systems can be reduced.  Second, by using friction 

damping in joints, the original geometry can be maintained. 

Finally, friction damping is low cost and has the potential 

v*« for high energy dissipation (8). 

>>*.>>>>. 



Beards points to three reasons why this source of 

jo damping has not been used.  First, the possibility of 

fretting corrosion which ultimately causes failure of the 

joint and potentially the entire structure.  Second, it 

reduces the stiffness of the overall structural system. 

P 0? Finally, the nonlinearity of the friction problem presented 

problems in analysis (3). 

The benefits gained by friction damping in joints can no 

£5 longer be overlooked and the disadvantages of allowing 

friction in the joint can be overcome or reduced.  The 

surface preparation of the contact surfaces can reduce the 

A effects of fretting corrosion while still maintaining good 

energy dissipation characteristics (4).  The overall 

stiffness characteristics of the structure can be maintained 

if joints are allowed to slip in rotation and not in 

\'\ translation (5).  New and innovative methods are being 

developed to analyze the nonlinear nature of the Coulomb 

friction damping. 

/; 1.2  Purpose. 

The purpose of this thesis is to develop a better model 

of the damping that occurs in structural joints due to 

Coulomb friction when rotational slip occurs in the joints. 

Ö 1.3  General Approach. 

A one-dimensional Boundary Element Method (BEM) is used 

to symmetrically model a two beam system with a frictional 

•5 joint located at the point of symmetry.  A bilinear gross 

slip model and a nonlinear micro-slip model of the joint 

A 
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friction are used to obtain measures of energy loss per 

cycle versus clamping pressure in the joint. Load 

controlled and deflection controlled loading cycles are used 

to exercise the joint in a quasi-dynamic model and generate 

hysteresis loops in both force-displacement and 

W moment-rotation space.  Figure 1.1 shows the two beam 

geometry and the symmetric case BEM models used in the 

development. 

£<• A literature search showed that interest in the field of 

friction damping has been around for a long time but that the 

difficulty of experimentally verifying results and the 

nonlinear nature of the friction problem caused the 

consideration of friction to be ignored in most vibration 

data.  A considerable amount of vor* is being done in the 

area of BEM but this is the first work done with BEM in the 

P% area of frictional damping due to rotational slip in 

structural joints. 

This thesis is presented in six chapters.  The present 

£s chapter seeks only to familiarize the reader with the basic 

problem and the solution procedure.  Chapter 2 sets forth the 

basic assumptions and theory associated with Coulomb 

friction, beam theory, and the Boundary Element Method. 

y* Chapter 3 discusses the development of the gross slip model 

and the micro-slip model and their implementation in the BEM. 

Chapter 4 presents the results of the gross slip and micro- 

/. slip calculations for both the force and displacement 

controlled loading.  Chapter 5 discusses the conclusions 

>s 



drawn from the results and Chapter 6 provides recommendations 

for further study.  In addition, there is an appendix which 

presents the BEM calculations for several base line test cases 

associated with the beam used in the friction models without 

the Coulomb friction joint. 

:v 
.V 
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FIGURE 1-la  OVERALL MODEL GEOMETRY 
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ii. Thsggy 

2.1 coulomb Pimping ThgqtY- 

Coulomb or sliding friction forces arise whenever two 

or more bodies in contact with each other move relative to 

one another along a common dry surface.  The friction force 

acts parallel to the contact surface.  It is a dissipative 

v- force because the force of friction always opposes the 

relative motion of the objects in contact.  The classical 

law of friction states that the frictional force is directly 

J> proportional to the normal force N,   but is independent of 

the contact area and magnitude of the relative velocity so 

long as sliding exists (9).  The force of friction F- as 

<\ presented by Greenwood is: 

Ff ■ -M N sgn(<^) (2-1) 

where 

F s force of friction 

M a coefficient of sliding friction 

N ■ normal force 
v    - relative velocity 

i; sgn(o ) ■ ± 1 depending on sign of o 

The coefficient of sliding friction M depends only on 

the roughness of the sliding surfaces and the materials used 

\* (9).  The function sgn(o ) has the value of ± 1 depending on * * r 

the sign of the relative velocity v    such that the force of 

•*- «*- tt~  •*- «'_ m' - V~ »"»».». w« i 
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friction always opposes the motion.  For instance if v    is 

positive then sgn(^> ) is also positive and Ff is negative. 

2.1.1  Spring-Mass Model.  The motion of a system with 

a Coulomb friction damping force acting can be demonstrated 

with a spring-mass model.  Consider the system shown in 

Figure 2.1.  A block with mass m sits on a surface such tnat 

a coefficient of sliding friction fj  exists between the block 

and the surface.  A linear spring with stiffness k is 

attached to the mass to provide restoring forces against 

motion away from equilibrium.  The damping force is given 

as: 

Fd = fj  m g (2-2) 

V 

where 

F. = damping force equals Ff 

m = mass 

g = acceleration of gravity 

\ 
/ 
/ 
/ 
/ 
/ 

/ 
/ 

x(t). 

f-= Mmg 

^777777777777777 

FIGURE 2-1  SPRING-MASS SYSTEM WITH FRICTION 
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With the system so defined, Melrovltch (14) gives the 

equation of motion as: 

mx + Pdsgn(x) + kx = 0 (2-3) 

where 

x = acceleration of the mass 

x = velocity of the mass 

k = spring stiffness 

The equation of motion is nonlinear because of the 

switching in the sign due to the sgn(x) function.  This 

nonlinear equation of motion can be separated into two 

linear equations of motion, each valid for a specific range 

of velocities (14).  These equations are: 

mx + kx * -F.        x > 0 (2-4) a 

mx + kx =  F,        x < 0 (2-5) a 

It should be noted that the switching does not occur as an 

explicit function of time but is determined by the response 

of the system and could occur at various times depending en 

the forcing function and initial conditions (8).  The 

solution of the equations of motion must take place over one 

time interval depending on the sign of x. 

For the purposes of this paper the specifics of the 

dynamic behavior are not investigated.  However, some 

characteristics of the behavior are of interest and prove 

useful in the analysis of results. 

'• The response of the system with Coulomb friction 

damping consists of a harmonic component and a constant 

8 
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component superimposed on each other much the same way as in 

viscous damping, however here the decay envelope is linear in 

time as shown in Figure 2.2.  The natural frequency of 

FIGURE 2-2  FREE VIBRATION WITH COULOMB DAMPING (17) 

Coulomb damped systems is the same as the natural frequency 

for free vibration and is given as: 

ui    ~  J   k/m (2-6) 

suggesting that unlike viscous damping, which dissipates 

energy as a linear function of frequency of oscillation, 

Coulomb friction damping energy dissipation is independent 

of the frequency (17).  The change in amplitude per cycle is 

a constant and equal to: 

X -X 
1   2 

4F 

~k 
(2-7) 

where X and X are the amplitudes of successive peaks as in 

Figure 2.2 and the term 4F./k defines the envelope of decay. 

Thomson (17) defines the energy lost per cycle due to 



damping  force  as: 

■f Vd-«bPddx (2-8) 

which upon integration yields 

Wd * 2Fd(V V (2~9) 

where 

W = energy loss per cycle 

Equation 2-8 allows the calculation of amplitude decay per 

cycle given the energy loss per cycle and the damping force. 

2.1.2 Thfi Rotating CUCttlaS Shaft«  As an aid in 

considering the friction in a clamped joint, it is helpful 

to consider first the more general case of sliding friction 

arising from a frictional shear stress equal to M times the 

normal force N,   at the contact area of a rotating shaft of 

radius R,   pressed against a plane surface (9).  Assuming a 

uniform normal pressure at the contact area jtf, there is a 

uniform frictional stress of magnitude: 

U N 
Tf  =  — (2-10) 

n  R 

which is everywhere in direction normal to a radial line 

drawn from the center of the circular contact area (9). 

Figure 2-3 shows the circular contact area as well as the 

shear stress distribution on that surface.  The incremental 

moment due to an annular element of width dr and area 2nrdr 

10 



is: 

. 4 

d 

z 

^ 

dM *   2 n  r dz (2-11) 
7z R2 

which can be integrated to find the total frictional moment 

R 

M - 2H£ | r2 dr - 4" M R        (2-12) 
R2  o 3 

FIGURE 2-3  FRICTIONAL SHEAR STRESS ON 
A ROTATING CIRCULAR SURFACE 

If (J  - 0, the contact surface is said to be perfectly 

smooth.  If M * oo, a perfectly rough surface is present. 

The first of these conditions corresponds to the Ro-clamp 

case in which the friction force is zero.  The second case 

allows no relative velocity at the contact surface and is 

11 
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referred to as the no-slip case (9). It is important to 

realize that in the first case no frictional force is 

present while in the second case the potential for a 

resisting frictional force is so great that the transition 

from static frictional force to a kinetic frictional force 

is not possible.  A? the load builds up to force motion in 

one direction, a static force of friction builds up in the 

other which causes static equilibrium to be maintained. 

For values of y.  between these two extremes the static 

friction force builds up to a peak value and if the applied 

load exceeds this peak value of static friction, the entire 

contact surface of the joint begins to slip.  The contact 

surfaces of the joint move relative to one another and this 

relative motion is resisted by Coulomb friction forces.  As 

an extension to this analysis to the case of the friction 

damping in structural joints, the model developed by 

Richardson and Nolle has been referenced in many published 

articles. 

2.1.3  ThS RlChflEdSvn hVA  FiallS ttaflsl-  The Richardson 

and Nolle Model is a micro-slip model.  A micro-slip model 

allows partial slip in the outer joint radius while the 

inner joint radius behaves like a rigid body. 

The joint under consideration consists of two elastic 

members in contact over a circle of radius R   (see Figure 

2-4).  A constant force is applied normal to the contact 

surface resulting in a uniform clamping pressure P 

throughout the joint.  As seen In Figure 2-4 moments are 

12 
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I 
applied about the joint axis.  These moments about the joint 

axis cause friction shear stresses to build up at the 

interface and micro-slip displacement between the two 

members occurs (15). 

"J 

9 

5 

EXTERNAL 
X    MOMENT 

FRICTION 
INTERFACE 

3 FIGURE 2-4  FRICTION JOINT LOADED BY EXTERNAL HOMBNT(15) 

The analysis proceeds on the basis of the following 

assumptions as stated by Richardson and Nolle: 

B 

•x 

1. The external moment Is transferred between 

the two bodies by shear stresses due to 

friction. 

2. The friction shear stress is of constant 

magnitude, given by ^P  ,   and exists only In 

those parts of the contact surface over 

which relative slip has occurred. 

3. There are no surface shear stresses in 

regions where slip has not occurred. 

13 
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p 
4. There is no twisting of initially axial 

elements. 

5. The deformation takes the form of a relative 

rotation between concentric cylinders of 

material of differing diameter and does not 

resemble that of an elastic shaft in torsion. (15) 

The reason behind these assumptions is to relate the 

externally applied moment to a region of slip in the joint. 

The build-up of frictional shear stresses which causes the 

y slip starts at the outer radius R  and proceeds Inward to 

that radius a which balances the internal moment caused by 

the frictional shear stress in the slipped region and the 

external moment.  These frictional shear stresses create a 

shear strain and thus a relative rotation in the joint which 

dissipates energy.  Figure 2-5 shows the slipped region for 

a particular v^lue of externally applied moment.  A value of 

moment gr^-^er than that shown will decrease a  while a 

moment va^ue less than that shown will increase a. 

: 

\* 

REGION OF 
SLIP 

FIGURE 2-5 SLIPPED REGION AND DISTRIBUTION OP SHEAR STRESSE. 
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The full load cycle Is considered in thre* parts, the 

Initial loading, the unloading and the reloading.  Each of 

these regions has its own set of governing equations which 

relate the applied moment to the region of slip and thus to 

relative rotation. 

The initial loading phase need only be considered for 

the first quarter cycle of the loading and need not be 

considered again no matter how many cycles are run.  The 

external moment is taken from a valuta of 0 to a value of 

M   .  The inner bounding radius is found from equilibrium 
max 

of moments stated as follows: 

M    - M_ .  «0 (2-13) 
ext    frlc 

where 

!fric * I 2rTr^P dr (2-14) 

which upon Integration and rearrangement yield 

3 Mext 

The Richardson and Nolle development requires that the 

external moment applied to the joint be equal to or less 

than the value for gross slip.  By setting a « 0 the 

external moment which causes gross slip is found to be: 

15 
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M  = \ n v P*R3 (2-16) 
gs  3 

This is the maximum moment which the joint can support.  For 

values of moment between 0 and hi  Richardson and Nolle gs 

develop an equation which describes the relative rotation in 

the joint.  Assuming that the material which has not slipped 

behaves as a rigid body, they calculate the net moment 

acting at any radius r between a  and R.  Using elasticity 

equations in polar coordinates, this net moment is equated 

to a circumferential shear strain which is in turn equated 

to displacement in the circumferential direction.  The 

equation for the displacement in the circumferential 

direction is given as: 

u (r) = (MP*rZ/61 G)[2-3(a/r)+(a/r)3]     (2-17) 

where the subscript 1 denotes that this is the displacement 

in body 1 of Figure 2-4 (15).  The value 1     is a geometric 

v property of the joint and determines the length over which 
■ „ 

the shear stress were distributed and the value G is the 
i 

shear modulus of the material.  To maintain rotational 

equilibrium in the whole joint, the moment in body 2 at any 

$ 2> radius r is equal and opposite to that in body 1 and thus 

the equation for v is identical to that of v except that 

the sign is opposite to that in v .  Thus we have: 

vft(r) « -(^pV/612G2)l2-3(a/r) + (*/r)3}    (2-18) 
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The relative rotation between body 1 and body 2 at a radius 

r Is defined as vt(r)-v (r).  The relative rotation, <p, 

across the joint is defined arbitrarily at the outer radius 

R  (15).  Figure 2-6 shows the relative circumferential 

displacement and <p. 

8 

•S 

FIGURE 2-6  RELATIVE CIRCUMFERENTIAL 
DISPLACEMENT AND 4>     (15) 
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The final step in the development is to integrate the 

equation for <p  over the entire slipped region: 

ri    i 1  R T,(r) 

+ * [rs-ra]  J   4~dr (2"19> 

where for simplicity the term in front of the integral is 

defined as S  and T (r) is defined as the net moment acting 

at radius r (15).  The solution of this integral gives the 

rotation in the joint as: 

4>  = (MP*R/6S)[2-3U/R) + U/K)
3
] (2-20) 

where a  is given by equation 2-15.  At the end of the 

initial loading M = M   which is less than H  .  The radius '     max gs 

associated with the slipped region at M   is designated a max m 

and * = ^ • 

This development is similar for the unloading and 

reloading regions of the curve.  During unloading the joint 

undergoes counterslip from 4>        to # . t  The slip region r      max    min w       ^ 

proceeds again from the outer radius R  inward to some radius 

6<     The equation for <p  . is dependent on both the radius a 

and the newly determined radius &.     At the time when M equals 

M .  the rotation Is designated 4>  .  and the radius Is min min 

designated 4   .  The equation developed by Richardson and 

Nolle is given as: 

*„i " (HPtR/6S)[-2-3(WR) + (* /R)' + 6(VR) - 2(*/R)9J ui m       m 
(2-21) 
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which at &  = R  simplifies to equation 2-20 (15). 

Ö During the reloading phase of the cycle the equation 
w 

for <p .   is  dependent on the two previous regions of slip and 

5? 

v 
> 

:«r. 

one expects to see the terms <L    and 4  in the governing mm 

equation.  Physically the dependence of the equation for <p  , 

on a and the dependence of <£ , on both a. and 4  is a m ri        m     m 

measure of the residual stresses which are locked in when 

the external loading moment reaches a peak and begins to 

reverse direction.  Figure 2-7 is a picture of the physics 

of an entire cycle from initial loading to the completion of 

reloading. 

Note, that after the completion of initial loading, 

residual shear stresses are locked in producing a residual 

moment in the joint.  During the unloading phase these 

residual stresses are negated and a residual stress and 

corresponding residual moment are again locked in, acting in 

the opposite direction to those of the initial loading.  Here 

the region of slip in the unloading is shown not to have 

exceeded that produced in the initial loading.  This 

condition is not necessarily the case and for a general 

loading function the slipped region during unloading may 

exceed that of initial loading.  The reloading phase is very 

similar to that of the unloading except now equilibrium is 

balanced between the externally applied moment, the 

frictional moment, and two locked in residual moments. 

The energy dissipated by the cyclic loading can be 

determined by calculation of the area enclosed in a moment- 
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INITIAL LOAD 

FIGURE 2-7  PHYSICAL INTERPRETATION OF 
RICHARDSON AND NOLLE MODEL 

rotation diagram {H-d  diagram) as shown in Figure 2-8 and is 

represented by the equation: 

M 
r-   max 

M 

dM (2-22) 

where the <p  . and <p  , are as defined by Richardson and Nolle 
u 1     r 1 J 

in Reference 15. 
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ENERGY 
LOSS PER CYCLE 

FIGURE 2-8  M-0 DIAGRAM FOR RICHARDSON AND NOLLE MODEL (15) 

$ 

# 

2.1.4  Gross Silo Model.  As a first attempt at 

modelling the behavior of friction in a joint it is common 

to use a gross slip model.  Such a model assumes that no 

rotation occurs in the joint until the value of the 

externally applied moment reaches the value of -M  as 
gs 

defined in equation 2-16.  The joint then rotates through an 

angle <p  and the moment is limited to a maximum value of -M 
gs 

until the cycle reverses itself and then the value of -M 

and cp        are locked in. 
max 

gs 

During unloading the joint &gain undergoes no rotation 

until a value of +M   is reached and again the joint gs 

rotates to a value of <p  .     while a value of +M   Is 
min gs 

maintained until the applied moment reverses direction.  The 

process reverses for the reloadina case.  The +M   is locked 
gs 

in as well as the rotation <p  .  until the external moment 
mln 

reaches a vaxue of -M  when again rotation is allowed to 
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occur.  This model produces a square M-ö diagram as 

shown in Figure 2-9.  Note, the direction of the cycle can 

be reversed without loss of generality. 

M 

Mp^" ■4444- 

1>>■»«> 

"*0 

"M*rfw 

V 

V 

FIGURE 2-9  M-0 DIAGRAM FOR GROSS SLIP MODEL 

The specifics of this model are discussed in more detail 

In Chapter 3.  For now we will move on to describe the 

theory behind the equations used to model the beams which 

are connected at the joint. 

2.2  Elementary Beam Theory. 

2.2.1  Euler-Bernoulll Beam Theory.  The beam under 

consideration in this analysis is generally referred to as 

22 



an Euler-Bernoulll beam and several key assumptions are 

necessary in order for the analysis to have any meaning. 

Therefore, the following assumptions are made: 

1*  Plane sections remain plane under 

conditions of bending. 

2. The beam has linear elastic material 

properties and in homogeneous. 

3. The beam undergoes pure bending with no 

local distortions end neglects the effects of 

shear. 

4. The geometric properties of the beam are 

constant along the length. 

5. Bending of the beam occurs in a single 

plane. 

In addition to the above assumptions it is generally assumed 

that the loading is static in nature.  To avoid confusion in 

the development of the governing equations and to better 

«£ understand the nature of the loading in the beam it is 

advantageous to define a consistent sign convention to be 

used throughout the rest of this analysis.  Figure 2-10 

shows the sign convention chosen for this analysis.  A 

positive moment causes compression in the top fibers of the 

beam and negative moment causes tensile loading in the top 

fibers.  If the normal vector from the cut beam face, 17, is 

in the +x direction and the reaction at the cut is acting in 

the -y direction, the shear is positive.  Likewise, when ri 

is acting in the -x direction and the reaction is +y, the 

shear is positive.  External transverse loads are considered 

positive in the +y direction. 
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FIGURE 2-10 THE SIGN CONVENTION FOR BEAM ANALYSIS 

2.2.2  Built-in Beam Problem.  The geometry of the 

joint friction problem before slip occurs in the joint is 

that of a built-in beam shown in Figure 2-11.  This is a 

statically indeterminate problem and must be solved in a 

piecewlse fashion using the fourth order beam equation. 

Griffel has tabulated the results for a number of beam 

loading geometries and, as seen in Figure 2-11, has plotted 

the shear and moment diagrams for the specific case under 

consideration (10).  It can be seen that at the midpoint of 

the beam a point of symmetry exists. 
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F'ICURE 2-11  BUILT-IN BEAJ4 GEOMETRY AND ANALYSIS (6) 

The symmetric case of the built-in beam problem is the 

geometry that we will use in the analysis of the friction 

damping of a rotary structural joint.  Figure 2-12 shows the 

geometry and loading of this beam.  The boundary conditions 

for the left end of the beam are y(0)«0 and y  (0)*0 and 
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FIGURE 2-12 SYMMETRIC BUILT-IN BEAM GEOMETRY AND LOADING 

* * * 
the boundary conditions at the right end are y   (L/2)« 

-P/2 and y (L/2)»0.  Here y denotes dy/dx and y  denotes 

d y/dx2 and so forth.  The subscript "t" in the statement of 

the boundary conditions refers to the "total" built-in beam 

geometry and loading to distinguish it from the symmetric 

beam geometry and loading.  The solution to this problem in 

terms of the "total" beam geometry, using the fourtf order 

Euler-Bernoulli beam equation, yields the following results: 

% 

s 

Ely      = -Pt/2 

P x    PL 
Ely       - - -*— + 

Ely 

Ely 

where 

8 

P x  P L  x 

8 

P x  P L x 

TF" +  16 

P ■ the load applied to the built-in bear 

L • the length of the built-in beam 

(2-23a) 

(2-23b) 

(2-23c) 

(2-23d) 

26 

fc^^^'N^/v^A/^^"\lvlvW^ W •_*-">■ > ."_•? *r "_>'_•-'>"-* ^V'W^V^ W_V'"ViV^CVjvLV^» 



To avoid confusion, the load applied to the symmetric beam 

is designated P and the length of the symmetric beam is 

designated L.  Thus, the relationship between the built-in 

beam geometry and loading and the symmetric beam geometry 

and loading is given as: 

P - Pt/2 (2-23e) 

L - Lt/ l <2-23f) 

Equations 2-23a through 2-23d can be written in terms of the 

symmetric beam geometry and loading as: 

• * • 

Ely        - -P 

Sty 

Ely' 

Ely 

P L -P x ♦ 

P x   P L  x 
—r + —1— 
P x    P L  x 

(2-24a) 

(2-24b) 

(2-24c) 

(2-24d) 

These equations axe used to construct the shear and moment 

diagrams for the symmetric built-in beam analysis. Figure 

2-13 shows the shear and moment diagrams. 

v- 

-p iiiM 
-i 

PI 
2 

M- ^R 
%L 

FIGURE 2-13  SHEAR AMD MOMENT DIAGRAMS 
FOR SYMMETRIC BUILT-IN BEAM 
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As expected, the shear and moment diagrams for the symmetric 

case match the results as given by Griffel.  Having the 

solution to the built-in beam symmetric case we can now move 

on to the development of the Boundary Element theory. 

2.3 indirect Direct BgundatY Element Hethofl- 

2.3.1  Boundary Elements vs. Finite Elements.  As a 

brief Introduction to the Boundary Element Method (BEH) It 

Is helpful to compare this method to the more familiar 

finite element method (PBH).  The finite element method 

seeks to solve a series of differential equations by 

approximating the solution to these differential equations 

at all interior points of the domain In which they apply. 

The solution at the boundary of the domain may or may not be 

exact.  The boundary element method seeks to solve the same 

set of differential equations exactly at all interior points 

of the domain and approximate the solution at the boundary. 

Sometimes the former is referred to as domain method and the 

latter as a boundary method. 

The boundary element method, sometimes called the 

boundary integral equation method, solves the differential 

equations by transforming them into equivalent integral 

equations.  Like the solution to any integral, the answer is 

obtained by evaluation of the Integral at the upper and 

lower limits of integration - the boundary elements.  Of 

course this is a crude explanation of an elegant method, but 

it allows one to visualize physically what the method does. 

The boundary element method reduces the dimensionality of 
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the problem by one (6).  For instance, a three-dimensional 

problem, as in stress analysis of solids, is reduced to a 

two-dimensional problem; a two-dimensional problem, such as 

the stress analysis of a membrane, is reduced to a 

one-dimensional problem; and a one-dimensional problem, as 

in the analysis of beams, is reduced to the solution of a 

point problem.  Figure 2-14 shows, for a two-dimensional 

problem, the one-dimensional nature of the boundary element 

model and for a one-dimensional problem, the point nature of 

the boundary element model. 

, hD(BEAM)       . 
\ 

BOUNL&RY      S 
ELEMENTS 

FIGURE 2-14 REDUCTION OF DIMENSIONALITY USING BEH 

As   far  as   the  numerical  calculations  go,   the  boundary element 

method  has  no great  advantage  over  the  finite  element method 

for  one-dimensional  and   low order   two-dimensional  problems 

in  terms  of  speed.     The  advantage  comes   in  high  order 
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two-dimensional problems and three-dimensional problems 

&        where the BEM shows a time advantage o£ from four to ten to 

one over the finite element method (6).  This is because the 

BEH always has a fully populated stiffness matrix where the 

^ PEM has a sparsely populated stiffness matrix usually 

distributed along the diagonal of the matrix. However, the 

size of the stiffness matrix increases more rapidly for the 

finite element method than for the BEM as the order of the 

K problem increases, exactly like the increase in area verses the 

increase in perimeter of geometrical problems. 

One final advantage of the BEM over FEM is the amount 

v of input required to set up a problem for calculation.  The 

BEM requires only boundary geometric data where as the FEM 

requires geometric data throughout the domain.  So, in 

general, the BEM requires much less input and thus saves 

time. 

2.3.2  Solution Procedure - Indirect Method.  There are 

two general methods of implementing the BEM, the direct 

method and the indirect method.  The differences between 

these two methods are subtle and a discussion of them is 

beyond the scope of this paper.  The method used in 

this development is the indirect formulation of the BEM. 

Once the boundary value problem has been completely 

stated, the solution procedure proceeds in three basic 

steps as set out in Reference 16. 

1.  Establish the infinite-domain unit singular solution 

appropriate to the boundary value problem. 
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2. Form and solve the auxiliary boundary value problem 

in the infinite domain by employing superposition of the 

established solutions. 

3. Use the solution of the auxiliary boundary value 

problem to obtain the solution to the original 

boundary value problem. 

The unit singular solution is a known solution to the 

governing differential equation of the boundary value 

problem.  The unit singular solution is very much like an 

influence function which gives the response, say displacement, 

at some field point due to a prescribed unit force at some 

other point, called the source point or load point.  Green's 

functions are often the unit singular solutions that are 

used in this step.  The unit singular solutions must be 

known in order for the procedure to be used. 

5 The second step in the solution process calls for the 

formulation of the auxiliary problem and then use of the 

unit infinite solution to solve this problem.  This is 

accomplished by the superposition of the applicable unit 

singular solutions.  The word superposition implies that the 

method is limited to linear elastic material behavior.  The 

boundary value problem is buried within an infinite domain 

j£ and the forces, displacements, etc., that define the true 

boundary value problem are determined in terms of the unit 

Infinite solutions. 

lV The final step in the solution procedure is to use the 
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solution of the auxiliary boundary problem to solve the 

original boundary value problem.  The exact means of solving 

the original boundary value problem from the solution of 

the auxiliary boundary value problem is best understood by 

working through an example. 

2.3.3   Built-in Bam Eiflkl&a SYromstEic Saas.« 
2.3.3.1  Formulation Of The Boundary Value Problem. 

The formal statement of the boundary value problem 

associated with the built-in beam problem is considered in 

Figure 2-15.  It is essentially the fourth order beam 

equation and the associated boundary conditions as follows: 

El  —J  = 0 (2-25) 
dx4 

where 

at x =  0,  y = 0 and ö » 0 

at x = L,     y  = 0 and s  =   -P 

where y  is the displacement and 9  is the rotation of the beam 

and s is the shear.  In addition m will be defined as the 

moment. 

2.3.3.2 unit singular Solutions- The unit 

singular solutions for the boundary value problem at hand 

are given in Reference 6.  The unit singular solutions for 

displacement, rotation, moment and shear due to a 
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L- L/2 

EIYTU-O 
y'(L)=e* 

s FIGURE 2-15  BUILT-IN BEAM SYMMETRIC CASE 

V, 

>. 

concentrated  load 0   are: 
i 

y(x)   =   ^rXL9(2   +   |pj3+   3|p|2)l   =  ^(?)   G(x,n (2-26a) 

ö(x)   =  -^ =  *j3\I,2|p|(|p|-2)(sgn  p)1   =  ^ (< )   F(x,0      (2-26b) 

Jj m(x)   -  Er ^ *  ^J - £  (1   -|P|)1   =  <PtiK)   E(x,Z) (2-26c) 

s(x)   =  El 
dx9 *L    2 J 4 

(2-26d) 
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where       X » 1/12EI 

I p * z/l 
r » (x - O  (Fig 2-16) 

sgn p ■ +1 If p is positive 

» -1 if p is negative 

ff 
x is the  field point of interest  (Fig 2-16) 

? is the location of the load point (Fig 2-16) 

Here the signs of the last two equations have been changed 

£ as presented in the reference to be consistent with the sign 

convention as presented in Figure 2-10.  The function sgn(p) 

is undefined for p ■ 0 and this situation must be avoided in 

> the analysis.  This will be discussed in more depth in a 

later section.  Before formulating the problem in the 

infinite domain ve still need the unit infinite solutions 

for a concentrated moment as the solutions are not the same 

as those for a concentrated force.  Again from reference 6 

we have for the concentrated moment <p  : 

y(x) « <p2   j-j\L2|p|( |p|2-3|p| + 2)(sgn p)1| (2-27a) 

s 

C' 

- <PziZ)   K(x,0 

Six)   -  <P2  {-F\L(3|p|*-6|p| + 2)lj  -  <fiz(Z)   Jf(x,<) (2-27b) 

m(x)   «  <fiz   f(l  -   |g|)<aqn p)     1   - <PziK)  H(x,Z) (2-27c) 

s(x)   -  <pz   f-(l/2L)l   -  *t({)   N(x,Z) (2-27d) 
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where the sane parameters as defined in equations 2-26 apply. 

Again the sign of the last two equations have been changed to 

be consistent with the chosen sign convention. Equations 

2-26 and 2-27 are the complete set of solutions for the 

posed boundary value problem. All of these equations will 

not be required to solve the problem at hand. 

2.3.3.3   DcUninq The AUXUUKY Probte«.   The next 

step in the solution procedure is to define the auxiliary 

problem. To accomplish this we embed the original problem 

in an infinite domain.  Figure 2-16 shows the embedded beam. 

In Figure 2-16 the <p (0),<p  (0),<£ (L) and <p  (L) are the 

applied forces and moments which force the auxiliary problem 

to maintain the same boundary conditions as the original 

problem.  These are at present unknown.  The y(?) is the 

load at point ? which for our problem is P{L). 

Keeping in mind Figure 2-16 the auxiliary problem is now 

£ 

♦OD 

FIGURE 2-16  AUXILIARY PROBLEM FOR SYMMETRIC BEAM 
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stated as: 

Find the concentrated forces and moments applied 

at the points 0 and L  that, together with the load 
point at Z,   satisfy the boundary conditions of the 

original problem. 

In general, the solution for the deflection, rotation, 

moment, and shear at any field point x (double line in 

Figure 2-16) can be written as the superposition of the 

contributions of all concentrated forces and moments acting 

in the domain.  Thus we have: 

y(x) « <PtiQ)G{x,0)   + ^(0)K(x,0) + <p±(L)G(x,L)   + ^(L)X(x,L) 

♦ VMOGU,*) ♦ y,<{)K(x,{) ♦ C±   ♦ {C2- x >    <2-28a) 

0(x) » *t(0)F<x,0) + <p2(Q)X{x,Q)   ♦ <p±(L)F{x,L)   + <pz{L)X(x,L) 

♦ Vt(f )«*#?) + V2< ) + (x,Z)   + Cz (2-28b) 

m(x) = <p  (0)K(x,0) + 0 (0)M(x,0) ♦ <p {L)B{x,D   ♦ 0 (L)M(x,L) 

+ *4<()*<x,{) ♦f|(OM(x,?l (2-28c) 

s(x) » 0(O)D(x,O) ♦ (^2(0)N(x,0) + <PtiL)D(x,L)   + 02<L)N(x,L) 

♦ ^(ODIx,!!) ♦v|(HN(x,n (2-28d) 

where 

- DtE,F,G,K,X,H,  and N are defined in 

equations 2-26 and 2-27 

- 4>   and 4>   are the concentrated forces and moments 

applied at the end points of the embedded beam 

v   and y are the concentrate« 

applied to the original beam 

- v   and v   are the concentrated forces and moments 
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- C is a rigid body displacement 

- C is a rigid body rotation 

For the case of the symmetric beam loaded by the force P 

we have only a y term that shows up in the equations and the 

value of % is L. There is no v> because the original problem 

did not have a concentrated moment applied. 

The constant values C  and C require some additional 

explanation.  Because we could choose to embed the original 

problem in an infinite solution at any arbitrary value of y 

and at any arbitrary angle to the x axis, a summation of 

forces and moments on the auxiliary problem, in general, 

does not satisfy equilibrium.  Mathematically stated: 

Summation of Forces J F  * 0 (2-29a) 

<p  (0) + 4>   (L) + y/ (L) *  0 

in general 

Summation of Moments    \ M *  0 

*(0) ♦ <P2(L)   *  0 (2-29b) 

in general 

By including the values of C and C in the equations and 

making them unknown constants which must be solved for, we can 

enforce the conditions of static equilibrium.  This is more 

clearly understood if the equations 2-28 are stated in matrix 

form.  Following the development in Reference 6 we get: 
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5 

*•'> 

v 

y(*)l 
0(x) 

m(x) 

s(x) 

0 

G(x,0) K(x,0) G(x,L) K(x,L) 

F(x,0) tf(x,0) F{x,L) X(x,L) 

E{x,0) M(x,0) E(x,L) M(x,L) 

D(x,0) N(x,0) D(x,L) N(x,L) 

10 10 

0      10      1 

1 

0 

0 

0 

0 

0 

x 

1 

0 

0 

0 

0 

r^coii 
*2<0) 

■ 

*4CL) 

*2U> 

C 
i 

G 
k              2    ^ 

G(x, L)' 

F(x, L) 

E(x, D 
D(x, L) 

1 

0 

{^(L)} (2-30) 

Notice the last two rows in equation 2-30.  Row five ensures 

that C is chosen such that the summation of forces is 
i 

satisfied thus equation 2-29a is false.  Row six ensures 

that C is chosen such that the summation of moments is zero 
2 

and thus equation 2-29b is false. 

Equation 2-30 presents a clear method with which one 

may solve the auxiliary problem.  Prom equation 2-30 and from 

Figure 2-15 we have the boundary conditions of the original 

problem.  By using a form of equation 2-30 with the correct 

equations for the given boundary conditions we can solve for 

the unknown ^ 's and 4>  's and determine the necessary 

constants C and C to ensure equilibrium.  The properly 

formulated equation is: 
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y(0): =0 

ö(0) = = 0 

Ö(L): = 0 

s(L)'. = 0 

0 

0 

{be} 

G(0+£,0) K(0+£,0) GiQ+s,L)   K(0+£,L) 1  0 

F(0+*,0) #(0+*,0) F(0+ä,L) X{0+£,L)   0 
F(L-<c,0) #(L-<P,0) F(L-.e,L) £{L-c,L)   0 

D(L-*,0) N(L-*,0) D(L-*,L) N(L-c,L)   0 

1        0 10     0 

0        1 0       10 

[K] 

G(0+*,L) 

F(0+r#L) 

F{L-£,L) 

D(L-c,L) 

1 

0 

[H] 

{wt(L)} 

o" '^(Of 
1 *2(0) 

1 *4U) 

0 4>Z(U 
0 c 

1 

0 c 
l                9      J 

{*> 

(2-31) 

Here again some new notation has been introduced. 

Earlier it was mentioned that if p « 0 the function sgn(p) is 

undefined.  For this reason a field point and load point may 

never coincide.  If the load point and field point coincide, 

the load point is adjusted some c  to the left or right of the 

field point except at the left or right boundaries.  At the 

left boundary, 0, the field point is taken to the boundary 

element at 0 from some c   just to the right of the boundary 

element.  At the right boundary, L, the field point is taken 

to the boundary element at L   from some c  just to the left of 

the boundary element.  Thus, the termj (0 + c) and (L-r) appear 

in the kernel functions.  It is important to take the field 

point to the boundary elements from inside the domain or the 

wrong problem is modeled. 
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The solution of the auxiliary problem is now reduced to 

E the solution of the equation 2-31.  Using the notation found 

in equation 2-31 we have: 

{*}»[K]~" A({bc}-(HH«n (2-32) 

I 
r 2.3.3.4   aaltttlM to Original Problem*   The 

solution of the auxiliary problem by use of equation 2-32 

gives a column vector of forces and moments as well as a 

> rigid body displacement and rotation.  The * vector can be 

placed directly into equation 2-30 and, recalling that 0 is 

replaced by c,   and L is replaced by L-cf   the solution for 

the  displacement, rotation, moment and shear at any 

location x in the beam can be found.  A flow diagram of the 

entire process with the appropriate equations referenced 

appears in Figure 2-17. 

A Fortran computer program which follows the flow 

diagram of Figure 2-17 was developed as part of this thesis 

effort.  It takes as input the material properties of the 

v beam, the variable c,   two boundary conditions at each end of 

the beam and the associated values of those boundary 

conditions.  The code also looks for applied loads and the 

location at which they are applied.  The code outputs the 

material properties, the boundary conditions, and the 

displacement, rotation, moment, and shear at up to 500 

locations throughout the beam.  In addition the code writes 

shear and moment Hies which can be plotted to see the shear 

and moment diagrams for a particular loading case. 
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o: 

i 

Determine Boundary Conditions and Loading 

I 
Evaluate Kernel Function Associated With Boundarv 

Conditions From Equations 2-26 and 2-27 

I 
Put Appropriate Values of Kernel Function Into 

Equation 2-31 

1 
Use Equation 2-32 To find $ Vector 

i 
Substitute $ Vector Into Equation 2-30 

I 
Evaluate Kernel Functions, Equations 2-26 

And 2-27 At The Desired Values Of x 

i 
Put Kernel Functions Values In Equation 
2-30 And Carry Out Matrix Multiplication 

I 
Process Complete Desired Information Output 

FIGURE 2-17  FLOW DIAGRAM FOR INDIRECT BEM 

V 

v 

The Appendix contains several computer runs using the 

one-dimensional BEM.  Included are the built-in beam problem, 

the built-in beam symmetric case, and a cantilever beam 

problem.  Both displacement controlled and force controlled 

runs are presented.  In addition, to demonstrate the general 
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versatility of the code, a built-in beam with a distributed 

load applied across the span is shown for both the full 

length and the symmetric case problems.  Also shown are the 

shear and moment diagrams for the loading cases studied. 

As a side note, an extensive literature search was 

accomplished and the only similar code found was in 

Reference 16 where Shugar and Cox develop a code in basic 

which calculates the displacement, rotation, moment, and 

shear for beams on elastic foundations.  The nature of the 

free space Green's functions for such a problem are such 

that the constants C and C need not be determined (6). 

The solutions are already uniquely determined inherent to 

the kernel functions. 

Reference 6 gives a general account of the solution of 

the problem when the calculation of C and C is necessary, 

however several errors were found in this reference which 

required further development before the code functioned 

correctly.  With a reliable method of determining the beam 

response for a given input at the boundary conditions and an 

applied load acting on the beam, we move on to the 

development of the friction model. 
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III.     The  Friction Modal« 

$ 

:•: 

3.1   Joint gcQücttv And gftoasai teauaptlona- 

The built-in beam geometry has already been discussed 

in the theory section.  The present study assumes the same 

geometry with one major change.  The built-in beam geometry 

consists of two cantilever beams extending from opposite 

directions to a common joint where Coulomb friction is 

assumed.  Pigure 3-1 shows a scale drawing of the physical 

dimensions  of  the  two-beam arrangeirent.     A uniform clamping 
t 

pressure P    holds the beams  together at the  joint. 

TOP   VIEW 

Ä 

G = 29X#PSI 

2QIÖ5* 

IP-C^MP PRESSURE L^ 
y 

^ 

3937* 

SIDE  VIEW 

i - L^ ^±i \y 10 

X 

,: 
FIGUR* 3-1 DAMPING MODEL GEOMETRY, MATERIAL AMD LOADING 
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The beams are each o* equal dimension and are both made 

of structural steel with the material properties as shown In 

Figure 3-1.  Under all loading conditions considered herein 

the individual beams observe linear elastic material 

behavior. 

Figure 3-2 shows an enlarged view of the join4" and 

shows that 5. circular contact area is assumed at the joint. 

The joint has a radius of .5 in.  The contact area is assumed 

homogeneous i.e., a hole where a rivet or bolt is connecting 

the beams is not considered. 

/CONTACT 
/ AREA 

.0 

i -*& 

v 

PICURB 3-2 ENLARGEMENT OF BEAM JOINT 
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9 3 

The load Pt is applied at the joint so that no twisting 

of the beams occurs.  The beam joint system undergoes 

deformation in an x-y plane that can be thought of as an 

extension of the contact area of the joint. Figure 3-3 

shows this x-y plane containing the contact area.  All 

'. * 

v, 
>. 

FIGURE 3-3  X-Y PLANE CONTAINING CONTACT AREA OF JOINT 

forces generated are symmetric about this plane and the beams 

sides remain parallel to this plane.  With the joint geometry 

defined and the general assumptions laid out, we can proceed 

with the discussion of the friction models. 
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3,2 Gross Silo Model. 

As discussed in Chapter 2 the first step in the 

analysis of the friction damping in a joint is to assume 

that the joint dissipates no energy until the moment in the 

joint reaches a value that causes the entire contact area of 

the joint to slip.  The value of the moment at which this 

gross slip of the joint occurs is designated M  and is 

given in equation 2-16.  It follows that H  is also the 

maximum moment the joint can support. 

The beam geometry used in the analysis of the joint 

under consideration consists of the symmetric beam case. 

Figure 3-4 shows the original geometry and the boundary 

conditions assumed for the various ranges of the moment 

value in the joint.  The load P is assumed to be applied as 

a sinusoidal time varying load which varies in 1 and 1/4 

cycles from 0 to the maximum value uf load P   to a minimum max 

value -P   and Lack to P   again.  The analysis is max max 

quasi-dynamic, and the inertia effects of the beam are not 

considered.  The loading cycle is broken into three distinct 

regions of interest; the initial loading, the unloading, and 

the reloading, in the same way the Richardson and Nolle 

model was studied. 

3.2.1  Initial Losing-  In the initial loading phase 

the applied load changes between 0 and the maximum load Pr 

The joint does not rotate until the moment in the joint 

exceeds the moment developed by the maximum allowable 

frictional shear stress acting over the contact surface of 

max 
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the joint.  This value of moment is given by equation 2-16 

and is repeated here: 

2 *     s 
Mgs  " 3  n ** P    R (3-1) 

L* 

y 
y 
V 

s 
/i 
/I 

r L 

M<MGc M=M GS 

8 

FIGURE 3-4  ORIGINAL GEOMETRY AND BOUNDARY CONDITIONS 
FOR THE GROSS SLIP MODEL OF FRICTION 

Until this value of moment is reached the boundary 

conditions are given as: 

29 y 
e 
e 
s 

2} 
2} 

at  x «  0 

at  x *L 
(3-2) 

where  the symmetry of  cne built-in Le*m about the  joint 
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allows the s(L)=0 boundary condition.  It should be 

mentioned here that the boundary conditions at x = 0 remain 

the same for the entire analysis. 

Figure 3-5 shows that as the load increases towards P  max 

a moment, M  . , builds up in the joint acting in a negative 

direction.  At the point where the moment in the beam equals 

the moment caused by the frictional shear stress, - - n  ^ P R 

(where the minus sign signifies clockwise direction), the 

limit moment, -M  in the joint is reached.  Thus we have: 
gs 

Mext= -M 
gS (2-3) 

H  .= - r n  p PV „V ext   a 

The value of load P which causes the moment in the joint to 

reach -M   is designated P  .  If P   < P  the M-e diagram 
gs       *      gs      max   gs * 

is a vertical line which encloses no area and thus the 

jointed beam behaves as the continuous beams investigated in 

the Appendix.  The case of interest is where P   > P rr max   gs 

When P   > P  the initial loading curve continues. max gs 

The boundary conditions change to reflect the condition that 

the limit value of moment due to frictional shear stress has 

been reached. This condition relates directly, through 

equation 3-3, to a limit on the magnitude of moment the joint 

can support and the boundary conditions at x = L  change to: 

m = -M  I 

s = 0   > 
at x = L (3-4) 

s = 0 

The joint is allowed to rotate until the loading force P 
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M 

■e 

-M-ili 

M-e CURVE 

V 

II 

FRICTION MODEL 

FIGURE 3-5 GROSS SLIP MODEL INITIAL LOADING (0 < P < P  ) gs 

reaches P     The rotation at P   is designated 6 max max max 
Figure 3-6 shows the M-ö diagram and the friction model. 

3.2.2 Unloading.  The next interval of the loading 

cycle to be considered is the unloading phase where the load 

P varies between P-x and ~Pmmx-     Once the load has reached 
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M 

e 

-M, igsje *   >   H 

M-0 CURVE 

^s=|tr/iPV 

EXT 

FRICTION MODEL 

FIGURE 3-6 GROSS SLIP INITIAL LOADING ( P„ < P < P.) gs       max 

Its maximum value of P    in the initial load phase the max 

boundary conditions change again.  The rotation at the joint 

is fixed at the maximum rotation O       .  Fixing the rotation max 

at 6 locks in the frlctional shear stress built up in the 
max 

initial loading phase of the cycle, -pP , which causes a 
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residual moment M   * -M  in the joint.  The boundary zes gs 

conditions at x ■ L are: 

maxV 
s«0   J 

at x « L (3-5) 

As the applied load now changes from P__v toward -PM . the 

moment in the joint, M  ., builds up in the positive 

direction.  Mex* will continue to build up in the joint 

until moment caused by the frictionai shear stress roaches 

2      * a the limit value of ♦— n ^ P R   and HÄ . « +M  .  For this to 
t 

occur the residual frictionai shear stress of -MP must 

first be negated, giving the value of allowable frictionai 

shear stress for the unloading phase as 2pP .  The load 

associated with the point at which the moment caused by the 

frictionai shear stress is exceeded in the unloading phase 

is designated P     Figure 3-7 shows the loadinq, M-ö ugs     ' 

diagram and friction model for this region of the unloading 

phase. 

The boundary conditions once again change when the 

irictional shear stress moment Is exceeded to reflect the 

limited moment carrying capability of the joint, H  , and 

thus become: 

" " Mgs V at x « L 
3 » 0 } 
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M 
3, 

l ■ 

, 

'H* 
. 1 

M-6 CURVE 

FRICTION MODEL 

3-7  GROSS SLIP UNLOADING (P    > P > P   ) max       ugs 

The load continues to increase in amplitude from P   to r ugs 

-P   and as it does so the joint rotates from B to 9   .   . max max mtn 

Figure 3-8 shows this region of the unloading curve. 

When the load reaches -P   the load cycle changes 
max 

direction again.  The value of ö .  is locked in the joint mi n 

and replaces the moment boundary condition at the right end. 

Formally stated the boundary conditions are: 

S 

3 

e 
mi ■} at x ■ L (3-7) 

Setting the 6  « 6   .     boundary condition locks in residual frlctlonal m n 
shear stress and thus creates a residual moment, M   , in 

rDO 
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-v 
p 

I 

M-e CURVE 

.N* 

s 

>: 

FRICTION MOOEL 

FIGURE 3-8 GROSS SLIP UNLOADING (-P    <  P  <  P        ) max ugs 

the joint.  The joint is now ready to begin the reloading 

phase of the load cycle. 

3.2.3 Reloading.  In this phase of the loading cycle 

the applied load changes from -P   to P   , completing the max    max 

entire 1 and 1/4 cycles.  As the load changes from -P   the max 

frictional shear stress moment again builds up until the 

limit value -M   is acting at the joint.  Figure 3-9 shows 

the allowable frictional shear stress  in the reloading 

phase is -2pP .  The load associated with the limit value of 

frictional shear stress during reload is designated P, 

-P 

zqs 

ugs 
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V 

FRICTION MODEL RELOADS 

_L_i,   V 
RELOO(B 

M-6 CURVE 

FRICTION MODEL RELOAD (B) 

k 
FIGURE 3-9 GROSS SLIP RELOADING (-P    >   P  >  P        ) max max 

\ 

Following the same physics of the unload curve, the 

boundary conditions now change to reflect the fact that the 

limit moment is again acting in the joint.  The boundary 

conditions are given in equation 3-4.  The load continues to 

change from P   to P   and the rotation at the joint goes * rgs max * 

from O to 6        completing the hysteresis loop and the mi n    max 

load cycle.  The entire loop is governed by one equation 
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(3-1) and several different boundary conditions (equations 

3-2,and 3-4 through 3-7). The gross slip model is thus 

easily implemented in a computer code. 

3.2.4 CQmputcE Implementation QE Sta&a Slip nodal- 

The computer implementation of the gross slip model proved 

quite simple given the capability of the boundary element 

method to use any of the four boundary conditions possible 

at either end of the beam.  It requires at the most the 

calculation of six points and in some cases (the no-slip and 

no-clamp cases) only three points are calculated. 

The first step in the computer implementation of the gross 

slip model is to calculate, using equation 3-1, the value of 

M .  If the value of M _ is zero or negligible with respect qs qs * r 

to the maximum applied load the no-clamp case is assumed and 

the program branches to a routine that calculates the M-Q 

diagram and P-6  diagram for this case. 

Next, a combination of equations 3-2 and 3-4 are used to 

set the boundary conditions prior to running the BEM.  In 

Figure 3-5 the point (1) is located at a point where the 

boundary conditions are equation 3-2 and equation 3-4.  This 

collocation of boundary conditions along with equation 2-24a 

is used Instead of incrementing the load in time.  The 

procedure is to set the boundary conditions for the initial 

BEM run to the following: 

;' 
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y(0) -  o 

0(0) »  o 

9{L) «  o 

m(L) » -M 

(3-8) 

The value of applied load Is set to zero and the BEH is 

run.  As a result, the displacement, rotation, moment, and 

shear at any point in the beam is available.  Now equation 

2-24a is used indirectly.  It states that the value of the 

shear at any point in the beam is equal in magnitude and 

opposite in direction to the applied load.  Using this 

information the shear at x ■ 0 is used to determine the 

applied load as follows: 

Ely     (0) » -P 

s(0) * -P 

P  - - s(0) 

(3-9) 

This simple procedure determines directly the point P 

without incrementing through time.  If P   >  P    the no-slip 7      * gs    max r 

condition exists and the code branches to a routine to 

calculate the M-ö and P-6 diagrams and the routine stops. 

When P   < P   the m,s,0  and <5 information for point (1) gs   max     ' ' r 

is stored and the routine continues. 

The next point calculated is point (2) in Figure 3-6.  The 

boundary conditions of equation 3-4 are set in the BBM and 

the applied load Is set to P      The BEN again gives 6,   6,m max 

and s at any point in the beam.  Here the value of &(L) 
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equals 6        and of course m(L) equals -M  from the boundary 

jL conditions. 

The calculation of point (3) in Figure 3-7 follows a 

similar procedure to the one used to calculate point (1). 

The applied load is set to zero and a combination of equations 

> 3-5 and 3-6 are used in the boundary conditions such that: 

6(L)   = 6 
MX (3-10) 

m(L) - +Mgs 

The result of the BEM are used in combination with equation 

3-9 to find the load P ugs 

Q» The calculation of point (4) in Figure 3-8 follows 

closely the development for the calculation of point (2) and 

will not be presented in detail here. Figure 3-10 is a flow 

diagram for the entire cycle of loading.  The details of the 

,J no-clamp case and no-slip case are also not discussed as 

these problems are presented in the Appendix as the cantilever 

beam problem and the built-in beam problem (symmetric case) 

X respectively.  The development for the displacement as the 
■» 

time varying input is not discussed here but follows the 

development for the force varying input very closely.  Figure 

3-11 is the flow diagram for a time varying displacement input 
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FIGURE 3-10  GROSS SLIP ALGORITHM (FORCE CONTROLLED) 

58 

^i&i&Lfc^^ 



y* 

£ 

s 

( START  J 

CALCULATE 

RUN BElf 

RESULTS: 6gc,0,s 
m 
X 

USE EQUATION 3-P 

TO riND:P = -s<o> 
POINT <1> 
POUND IN 

triO 9-31 

RUN     BE VI 

RESULTS . &m<xx , Ömo.x 

jn=   -M 
9« 

,-3 = P max 
X 

SET: P = c 

ÖCL)  = ömax 

m(L) = + M 

POINT <2> 

FOUND IN 
CFIO B-<51 

RUN REM 

RESULTS:6ug*.0 

Ä=  +M     ,  S 
3* 

USE  EQUATION  »-P 

TO FIND: 

P   = -s<o) 

SET: 6    a - 6 
r 

ffl(L>  = M 

p*o      9' 

POINT <a> 

FOUND 
CFIO 1-71 

1 
RUN BEN 

RESULTS:6min,Ömtn 

m<L)=M    ,-S=F 
 go       mm 

I 
SET:  P so 

Q< L > = Ömi n 

ffl(L> = -If 
 9« 

POINT  <4> 

FOUND 

CFIO 3-81 

RUN REM 
RESULTS : Srgmför91 

fll=  -M 
 9J»  

USE EQUATION 3-D 

TO FIND: 

p    = -s<o> 
rg» 

POINT <5> 

FOUND IN 

tFia   a-oi 

SET :    o   =   6     ~ max 
fll<L>= -M 

P    =    O 9« 

RUN REM 

RESULTS: 

POINT (1),(6) 

CYCLE COMPLETE 

WRITE: 6,e,m,s 
da i a and P for 
po into  1- <J 

£ 
CALCULATE NO 

CLAMP CASE 

«CANTILEVER) 

T. 

CALCULATE NO 
SLIP  CASE 

(BUILT  IN REAM) 

( "" > 

FIGURE 3-11  GROSS 

NOTE: EQUATION  ■ - *>  IS USED TO CALCULATE 

THE APPLIED LOAD P. 

SLIP ALGORITHM (DISPLACEMENT CONTROLLED) 

59 

fö£^toÄ£^^^ ^ivi-vsc*:-^ 



As mentioned before the gross slip model is a good 

fg starting point in the analysis of the friction in a clamped 

joint.  Now a more accurate model of the joint behavior will 

be developed, one which allows partial slip of the joint 

prior to the gross slip condition. 

t>* 3.3 MlCEO SUp Model. 

The assumptions which governed the behavior of the gross 

slip model are still applicable in the micro-slip model of 

i«; friction with one major change.  The joint will be allowed to 

undergo rotation prior to reaching the limit of moment 

developed by frictional shear stress in the joint. 

The model is different from the Richardson and Nolle 

'-" model in two major ways.  The first difference is that where 

Richardson and Nolle assume the unslipped region of the 

joint behaves as a rigid body, the model discussed presently 

C-; assumes the unslipped region behaves as an elastic circular 

shaft which tu  ts under any finite level of torque.  The 

second difference shows up in the definition of the rotation 

at the joint.  Richardson and Nolle define the rotation as 

the integration of the displacement due to the shear strains 

in the slipped region of the joint at the arbitrarily chosen 

outer radius of the joint.  The model presented here defines 

>« the rotation in the joint as the angle between the neutral 

axes of the clamped beams. 

Figure 3-12 shows the overall loading and the behavior 

IS- of the clamped joint for different ranges of moment in the 

joint.  Notice that the rotation at the joint, for values of 
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moment less than that required for gross slip, is a function 

of the moment.  The development of the functional 

relationship between the rotation and the moment is the 

focus of the next section. 

l \ 
K 
N 

K 
k 

A 
A 
A 
A 
A 

S=0 
M<MG£ 

S-05 

FIGURE 3-12  MICRO-SLIP LOADING AND GENERAL BEHAVIOR 

3.3.1 Micro-slip Joint Geometry.  The geometry of the 

micro-slip joint is shown in Figure 3-13.  The left and 

right beams are joined at the Coulomb friction joint.  As 

the joint undergoes deformation a region of slip develops 

and works its way in from the outer radius R  to some radius 

a.  The micro-slip model assumes that the region interior to 

the radius a  behaves as a solid elastic circular shaft of 

radius a.  Figure 3-14 shows the geometry of this circular 

shaft of radius a.  As a first approximation, the length of 

the circular shaft ic assumed to be the width of one of the 

connected beams as shown in Figure 3-13.  This is a major 
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tf 

FIGURE 3-13  MICRO-SLIP MODEL OF COULOMB FRICTION JOINT 

Undvforrrad 

D«form«d 

h—Lr—H 

FIGURE 3-14  CIRCULAR SHAFT OF RADIUS a 

assumption and the model is very sensitive to this length 

parameter. 

Because of our earlier assumption that the beams deform 

without twist it can be shown from symmetry considerations 

that the cross-sections of this circular shaft remain planer 

during deformation (1).  Making use of the assumptions of 
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linear elastic and homogeneous material, Reference 12 uses 

the theory of elasticity to develop the classical strength 

of materials equation: 

e = !~£    or    M = K 0        (3-11) 

where 
b = the length  of the shaft 

M = moment applied to shaft 

J = polar moment of inertia 

G = shear  modulus 

K = JG/b 

The polar moment of inertia for a circular shaft is given in 

Figure 3-13.  The rotation, 9,   of the circular shaft and the 

rotation 0{L)   = dy/dx of the beams connected at the Coulomb 

friction joint are one and the same.  Figure 3-15 is an 

exploded view of the joint.  The figure clearly shows that, 

because the rotation was not fixed at zero, for any 

deflection 6  of the beam-joint system a rotation in the 

circular shaft, and therefore the beam-joint, is produced and 

is governed by equation 3-11. 

Figure 3-15 also shows that the total relative rotation 

that the joint undergoes is two times the rotation of just one 

of the beams.  It is important to keep this in mind when 

i» doing energy loss per cycle calculations since the data 

generated fro» a symmetric beam study of the friction problem 

will only take into account one of the beams and thus only 

C^ predict half the actual energy loss. 

The loading for the micro-slip model, like the gross 
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FIGURE 3-15  EXPLODED VIEW OF COULOMB FRICTION JOINT 

slip model, is studied for 1 and 1/4 cycles and is divided 

into the initial loading, the unloading and the reloading 

phases. 

3-3-2 Initial Loading.  Before a load is applied to the 

Coulomb friction joint the following conditions are assumed 

in the Joint.  First, the rotation at the joint is zero; 

second, there is not yet a slipped region in the joint and 
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H 

V* 

the slip radius n equals the joint radius R.  The boundary 

conditions at the joint for the entire initial loading phase 

are: 

6{L)   '  «".!«■> (3-12) 
s(L) = 0 

where 
MÄla„ is from (3-15) 

As a load is applied (we will assume an initially 

positive load without loss of generality) a negative moment, 

M  .. builds up in the joint.  The frictional shear stress 
ext'        r 

on the friction interface resists rotation.  However, a 

rotation is present because of the elastic circular shaft 

assumption for the unslipped region of the joint.  The beam 

undergoes rotation without slip, a  = R, governed by equation 

3-11 until the moment at the joint reaches a value which 

overcomes the frictional shear stress resisting slip in the 

joint.  This value of moment can be determined by use of the 

torsion formula as developed in Reference 12: 

T « M p/J (3-13) 

where 
T = shear stress 

p ■ radius of interest 
M * applied moment to shaft 
J - polar moment of inertia 

Now by making use of the definition of the polar moment of 

inertia, choosing as p the outer radius of the joint R and 

recalling that initially the joint has no slipped region, a 

65 



equals R,  the limit moment for elastic behavior is: 

Mext =  ?•""*«" (3-14» 

where from 3-13 
* 

T = fijP 

M " Mext 

The moment associated with the limit for elastic behavior is 

designated M... and thus for an initial positive load -M... 

equals M  ,.  The load P applied to the beam-joint system at 

-M... is designated P.^w and the rotation 6  is designated 

B       .  Figure 3-16 shows the loading, M-0 curve and friction 

model for this region of the initial loading phase.  If P 
* * * max 

~ Pith  tnen tne beam-joint system behaves linearly for the 

entire load cycle and dissipates zero energy.  For the case 

when P   > P... the beam-joint system goes into the max ith J * 

nonlinear region of the initial loading phase. 

As the load increases from P... to P    the joint 
ith    max 

develops a region of slip and o. <  R,     Equation 3-14 is now 

generalized for the case when the radius is any radius a  < R 

and the moment associated with the new equation is designated 

M .   .  The new equation gives the moment supported by 
CidS 

the  elastic  torslonal  shaft  of   radius  a as: 

"eUs   ■  F»MPV (3-15) 

The moment In the slipped region is found from rearrangement 
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of equation 2-15 to be: 

fl 

M £rlc 
> * *» q 
I- fi /j p (R-A ) (3-16a) 

Therefore the entire moment in the joint.. M  ., from 

equilibrium of moments is: 

M      .    ■   -M   .        -M,   , ext clas       fric (3-16b) 

s 

i 

M 

M-e CURVE 

-e 

J-tTMPV 

FRICTION MOOEL 

FIGURE 3-16    MICRO-SLIP FRICTION MODEL 
INITIAL LOADING ( P < P..) en 

8 
The rotation in this region is found from equation 3-11 by 

setting M »M .   .  Making this substitution yields: 
e l &s 

e b M P 
a G (3-17) 

There are several methods of describing the nonlinear region 
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of M-ö curve using equations 3-15 through 3-17 and the 

discussion of a particular method is presented in the 

discussion of the computer implementation of the micro-slip 

model. 

Figure 3-17 shows the M-Ö curve and friction model for 

the nonlinear region of the initial loading phase.  Notice 

that if the applied load P Ä  > P_ the entire joint will " max        gs 
slip , a « 0, and the model reduces to the gross slip model 

of the joint until P   is reached.  Figure 3-18 shows this 
max 

condition. 

Comparing the micro-slip model to the gross slip model we 

see that the micro-slip model essentially connects the 

vertical (where here the curve actually has as slope K as 

defined in equation 3-11 as opposed to vertical) and 

horizontal lines of the gross slip M-Ö curve with a nonlinear 

curve where 9  = f(M). 

When the applied load reaches P   the load begins to 
max 

reduce and the frictional shear stress and resulting moment 

are locked in the joint by setting the boundary condition at 

the joint to 6 and setting the slip radius a ■ R. 
üläX 

3.3.3 Unloading.  As the applied load reduces to zero 

and then begins to Increase in amplitude in the opposite 

(negative) direction the joint again undergoes linear 

rotation, rotation without slip in the joint, defined by 

equation 3-11 with M * M  ..  The rotation occurs in the 

SJ opposite direction to the rotation that occurred in the 

initial loading.  The residual frictional shear stress 
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allows the slip free rotation to continue until Mext reaches 

the value Mfc. - defined by the following equation: 

M*.u i s  ~M  + 2M^, (3-18) thul    res th 

- - rr p P R 

where the joint again begins to slip and a < R.     The load 

associated with M.. , is designated P.. ,.  Figure 3-19 thul       *      thul    * 

shows the M-0 curve and friction model at the end of the 

elastic counter rotation. 

The moment in the nonlinear region of the unloading 

!'. phase is found from the following equation: 

»* 

M    = -M    ♦ 2M .   + 2Mr , ext    res    »las fric 

A * — n  fj  P R     - - n  fj  P  a 

,% 

ä 

K 

(3-19) 

and the rotation can be found by use of equation 3-11 with M 

equal -2M ,   to be: 

e _     2b n P* (3-20) 
max      a.  G 

where here the 9 term is included to account for the max 

rotation locked in during the initial load phase of the load 

cycle. Figure 3-20 shows the H-O  curve and friction model 

associated with the nonlinear region of the unloading cycle. 
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V 

Once again if the applied load is such that the loading 

forces the entire joint to slip, a = 0, the model reduces to 

the gross slip case and that model can be used.  The gross 

slip model is used to calculate rotation at -P   .  Figure 
too X 

3*21 shows the M-0 diagram and associated friction model at the 

point where the load has reached -Pjnax and the reload phase 

is about to begin. 

?2 

»v—r* M, 

>*, 

M-S CURVE 

K*:=K, 

FRICTION MOOEL 

FIGURE 3-21 MICRO-SLIP FRICTION MODEL 
UNLOADING (P 

9« >  P * -Pmax > 

It should be pointed out that as the model reaches 

the point of gross slip behavior the equations which give 

the rotation in the nonlinear region of both the initial 
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i 
loading curve and of the unloading curve of the M-0 diagram 

are not valid. These equations are based on the assumption 

of an elastic circular shaft in torsion and when a = 0 this 

assumption is not valid.  The method to find the rotation is 

presented in the computer implementation section and 
S 
.5 basically uses a cutoff limit to restrict how far a may move 

in towards a radius of 0 at the center of the joint. 

3.3.4 Reloading.  The reloading phase is the 

[y antisymmetric case of the unloading phase.  At the end of 

the unloading the rotation is set to a value 0 .  and a  = R 

which locks in residual frictional shear stresses and thus 

causes a resid'.ial moment in the joint acting opposite in 

direction to the residual stress locked in at the end of 

initial loading.  The equations for the moments at the joint 

are very similar to the unloading case and o.-ly differ in 

y. sign.  The rotation is defined from the locked in value of 

6   .     and equation 3-11 with M « M ,   used to define the 
min elas 

rotation in the nonlinear region of the reloading cycle. 

\ Finally, for the reloading phase as with the initial loading 

and unloading phase the equations for 6 are not valid in the 

gross slip region. Figure 3-22 shows the friction model and 

the associated equations for the moment acting at the joint 

•\ for the reloading phase of the load cycle.  The moment 

equation which is in effect can be found by a summation of 

moments using the sign convention shown.  With the entire 

v* cycle defined we can move on to the implementation of the 

micro-slip model on the computer. 
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3.3.5 compute Implementation al lbs ttiCM Slip Mgflal« 
The computer implementation of the micro-slip model is 

very similar in nature to the implementation of the gross 

slip model.  The calculation of the moment in the nonlinear 

region of the M-0 diagram involves an incremental approach 

in which the value of a is determined based on an increment 

of the rotation.  The process will be laid out in the three 

different phases of the loading cycle. 

3.3.5.1  Initial Loading.  The implementation of 

the code starts by assuming that the load is starting from 

initial value of zero, the rotation in the joint is zero and 

a  = R.  The value of the M.. is calculated using equation 

3-14.  The rotation 0.. is determined using equation 3-11 as: 

9th   - Mt|| / K (3-21) 

The BEM is used to calculate P...  If P   < p.. then the code tn      max tn 

will calculate Lhe linear response of the beam-joint system 

for the entire cycle.  If P . < P   point (1) in Figure 3-16 

«\ Is found. 

The iiext step in the calculation involves describing 

the nonlinear region of the initial loading curve.  The 

"V value of e  is incremented an amount Ae and the value of a is 
Si 

8 

determined from equation 3-17 in the form: 

b *  P* (3-22) 
(9   + AÖ)G 

Bxterrul moment is determined by equation 3-16b.  BBM is used 
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A 

I 
with the boundary conditions at the right end of 6{L)  ■ 6  * £6 

and m(I») ■ H  . as calculated in equation 3-16.  The results of 

the boundary element method are used to determine when to stop 

incrementing the 9  value.  The loop stops if the value of a  is 

within a given tolerance of zero and the code enters a gross 

;>; slip routine and thus the validity of equation 3-17 is 

maintained.  The loop also stops if the value of the force as 

given by equation 3-9 exceeds the maximum force amplitude.  This 

> latter case is of particular interest as it shows the real 

advantage of the micro-slip model over the gross slip model. 

Figure 3-23 shows the M-0 curve and P-6  curve for the 

initial loading phase of a gross slip model and a micro-slip 

v model.  It is easy to see, if the peak load value lies 

between the load which causes the threshold moment to be 

exceeded and the load at which the gross slip moment is 

V exceeded, the micro-slip model will dissipate energy while 

the gross slip model will not. 

Irregardless of which test caused the code to jump out 

of the 6  incrementing loop the code uses the value of B  at 

that point and sets it to 0    .  The radius a  which has r max 

been moving towards 0 is reset to R  and M    = M  .. * res    ext 

3.3.5.2  Unloading.  The next point on the curve 

that is calculated is point (2) in Figure 3-19.  The 

boundary conditions are set as follows: 
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thul   max 

m(L)   » M.. . » M    + 2M.. 
thul   res    th 

(3-23) 

where equation 3-20 with a = R gives the first boundary 

condition and equation 3-18 gives the second.  The BBM is 

used to calculate the load, P.. . , associated with this 

point.  The code again enters a 6  incrementing loop.  The 

equation used to 

y 
v 

6TH    3iS 

ROTATION (RAD) 

.v« 

:s 
DEFLECTION (IN) 

FIGURE 3-23 THE CASK FOR A MICRO-SLIP MODEL 
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9 
fr 

> 

determine &  is 3-20. The value of the external moment is 

determined by equation 3-19.  Again the BEH is run after 

every increment of 9  and the boundary conditions are: 

9(L)   x (0 + A9) 

XL) - M  , (3"24) ext 

The same two tests are used as in the initial loading phase of 

the code to determine when looping should end.  The computer 

code sets the value of 9  * 9  .  and M   = M   and the value min     res   ext 

of a  ■ R  again. The code is now prepared to calculate the rest 

of the loading cycle. 

3.3.5.3  Reloading  The computer code next 

calculates the point (3) in Figure 3-22.  The associated 

boundary conditions are: 

thrl    min   -s— 

m(L)   = M.. . = M    - 2M.. thrl    zes th 

(3-25) 

The BEM calculates the load associated with these conditions. 

y The code enters the increment on theta for the final time and 

calculates the nonlinear region of the reloading curve.  The 

govt ning equations are the negative of the equations 3-19 and 

3-20.  When the code jumps out of the 9  incrementing loop it has 

generated the entire hysteresis loop for the loading cycle. 

Pigure 3-24 shows the general algorithm for the 

micro-slip model for the time varying applied load.  It is 

general enough that to develop the case for the time varying 
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displacement the only change that needs to be made to the 

algorithm is to replace the check on the force with a check 

on displacement. 

As a last point on the micro-slip model for the case of 

general loading the residual shear stress interference 

/ pattern is shown in Figure 3-25.  This should be compared to 

the interference pattern which occurs in the Richardson and 

Nolle model as shown in Figure 2-8.  It is clear that the 

|s; micro-slip model presented here accounts for an elastic 

residual shear stress in the beam that Richardson and Nolle 

do not account for. 

The friction models have now been described and the 
*>, 
v, 
> general algorithms presented which model the Coulomb 

friction joint.  Chapter 4 presents the results of some 

calculations. 

* 

:< 
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-/ 

4.1 Pataroctcta studied- 

m The gross slip model and the micro-slip model were used 

to calculate the energy loss per cycle verses the clamping 

pressure for both a force controlled and for a displacement 

controlled system.  The applied load or displacement was 

*"J large enough to force the joint model into the gross slip 

region.  In addition a single case was set up to show the 

situation where the micro-slip model predicts an energy loss 

v and the gross slip model predicts no loss as discussed in 

Chapter 3. 

The clamping pressure applied at the joint ranges from 

0 to 20 Ksi.  For a force controlled run the maximum force 

amplitude applied at the joint is 200 lb.  When the 

displacement control is used the maximum displacement 

amplitude at the joint is .1 in.  The P-6 curve and the M-6 

curve for the force controlled and displacement controlled 

loading of both the gross slip model and the micro-slip 

model are presented. 

Figures 4.1-4.5 show a comparison of the gross slip 

model and the micro-slip model P-6 curves for the force 

controlled loading and displacement controlled loading 

for increasing values of clamping pressure.  It can be seen 

that the 0.0 Ksi clamping pressure (no-clamp case) reverts 
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to the cantilever beam as presented in the Appendix on pages 

105 and 106.  At the 20 Ksi load the behavior approaches 

that of the continuous built in beam (no-slip case) as shown 

in the Appendix on pages 103 and 104.  The region of 

Interest for this analysis is between these two extremes. 

Figures 4-6 through 4-10 show the M-0 diagrams that are 

associated with the P-6 curves presented in Figures 4-1 

through 4-5. 

The energy loss per cycle as defined by the area inside 

the hysteresis loops is calculated for both the gross slip 

model and the micro-slip model.  The curves showing the 

normalized energy loss as a function of clamping pressure are 

* shown in Figure 4-11 for the displacement controlled and the 

force controlled loading cycles.  The normalization parameter 

for both cases is the maximum strain energy in the beam for 

/} the no-slip case and can be found from the equation: 

tf 

2 

1 
max  7 " i AE— = j P.6 (4-1) 

/ where P and 6  can be determined as in th<» Appendix on page 

102.  It should be noted that the energy loss calculated from 

the hysteresis loops is only half of the actual energy lost 

by the entire system since only half the beam system was used 

to generate the loops.  This factor of two was taken into 

account when generating the curves in Figure 4-11. 

The curves in Figure 4-11 show that as the clamping 

IS, pressure increases from 0 Ksi to 25 Ksi the energy loss per 

cycle first increases and then decreases.  Torvik shows that 
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the damping Is maximized at a clamping pressure just above 

the clamping pressure required to prevent gross slip (19). 

Lazan shows that the low end clamping pressures are 

dominated by gross slip behavior while the high end clamping 

pressure Is dominated by the micro-slip behavior of joint 

damping (13).  Keeping this In mind, Figure 4-11 shows the 

point at which the behavior of the slip characteristics are 

changing from a gross slip dominated behavior to a 

micro-slip dominated behavior.  Since the gross slip model 

cannot take into account the micro-slip dominated behavior 

it shows a higher energy dissipation than the micro-slip 

model which is accounting for the micro-slip behavior in the 

joint.  Figure 4-11 shows that the micro-slip curves and the 

gross slip curves are identical in the low end clamping 

pressures where gross slip dominates behavior and at 

approximately 4-5 K;i in the displacement controlled and 

approximately 8-10 Ksi is the force controlled loading cycle 

the micro-slip dominated behavior bsgins. 

The highest energy dissipation for a given loading case 

and amplitude of vibration can be determined from the 

micro-slip curves.  This optimum occurs at the peak of the 

energy dissipation versus clamping pressure curves shown in 

Figure 4-11. 

The displacement controlled loading shows a case where 

the moment in the friction joint builds up to the value of 

threshold moment, but in so doing it exceeds the maximum 

deflection allowed for this loading case.  The gross slip 
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model however has a steeper 9-6  and M-ö curve and thus 

reaches a value of M  before 6   is reached.  For this qs max 

case Figure 4-11 shows the gross slip model is dissipating 

energy while the micro-slip model has already gone to zero. 

The final remarks to be made in this section deal with 

the case opposite to the one just discussed.  Figure 4-12 

shows the case where the micro-slip model is dissipating 

energy while the gross slip model shows no energy 

dissipation.  This is a major advantage of the micro-slip 

model over the gross slip model in that energy can be 

dissipated during low amplitude loading or displacement 

cycles.  This case is presented here as a point of interest 

and to validate the discussion in section 3.  Further 

study of this feature is left to other investigators. 

ThE CASE FOR A MICROSLIP MOOEL 
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I v. summary and Conclusions 

5.1 summary- 

fß The objective of this thesis was to develop a better 

model of the damping in structural joints due to dry friction 

when slip occurs in the joint.  In Chapter 1 the motivation 

for the thesis was put forward and the method to meet the 

'/ objective outlined. 

In Chapter 2 the appropriate theory was introduced 

which served as the underlying foundation for the prediction 

;•! of the friction at the structural joint.  The micro-slip 

friction model of Richardson and Nolle was outlined as a 

method to predict the friction response at the joint. 

^ However, the assumption that the unslipped region of the 
v. 

joint behaves as a rigid body was seen to be to restrictive 

and a method to account for the moment carrying capacity of 

the unslipped region of the joint was developed. 

> Chapter 2 also served to introduce the Boundary Element 

Method of the beam joint analysis.  The results of the BEM 

analysis of several beam geometries and loading conditions 

V was confirmed from a simple beam theory analysis of the 

identical problem.  Results from the BEH calculations of 

several geometries and loadings are presented in Appendix A. 

Chapter 3 introduced and discussed in some detail the 

gross slip model and the micro-slip model of joint behavior. 
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Here the method of assuming the unslipped region behaves as 

an elastic shaft under torsional loading, was developed. 

The length, b, of the torsional shaft was assumed to be the 

width of one of the beams.  This length was arbitrarily 

chosen as a first approximation in the analysis process. 

The algorithms to carry out the analysis of both micro-slip 

and gross slip friction models in both a force controlled 

and displacement controlled loading were developed. 

In Chapter 4 the results of the actual computer runs 

were presented.  The energy loss versus clamping pressure 

plots follow the expected trend of Increasing from zero at 

the no-clamp case up to some maximum energy loss at some 

"optimum" clamping pressure and then continuing back to zero 

at the no-slip case. 

5.2 Conclusions, 

The following conclusions are drawn from this thesis: 

1. A one-dimensional indirect Boundary Element Method 

computer code has been developed to calculate the response 

of free span beams.  The code is general enough to allow for 

concentrated and distributed loads as well as concentrated 

moments.  The code calculates the shear, moment, rotation 

&nd displacement at any location in the beam and produces 

files with which shear and moment diagrams can be plotted. 

Based on the literature search conducted, a boundary element 

code for free span beams was not in existence before this 

thesis was started. 

2. The BEM code was modified to calculate moment-rotation 
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friction damping in a structural joint.  Either force controlled 

A* or displacement controlled loading can be specified. 

*        3.  A new micro-slip model of Coulomb friction damping in 

structural joints was developed.  The model, depending on the 

applied moment, allows for elastic rotation of the joint up to a 

F^ breakaway or threshold moment where partial slip begins.  As the 

applied moment increases, the region of partial slip grows until 

the entire joint is slipping. 

Gj 4.  The new model of micro-slip Coulomb friction was implemented 

in the BEM code.  Once again, either force controlled or 

displacement controlled loading of the joint is allowed. 

5.  The results cf computer calculations show that the micro-slip 

V model behaves in a similar manner to previously published reports 

and data.  The variation of energy loss per cycle versus clamping 

pressure, for both the gross slip model and the micro-slip model, 

^, shows that a clamping pressure which yields the greatest energy 

loss per cycle for the given loading case and amplitude response, 

does exist. 

•• 6.  Compared to the gross slip model, the micro-slip model 

developed herein gives more accurate results of damping behavior 

for values of applied moment both above and below the gross slip 

moment value. 

«jj 7.  The micro-slip model developed herein Is more accurate than 

the Richardson and Nolle model in that it accounts for the 

existence of a threshold moment below which the behavior is 

J\ elastic and the energy lost due to Coulomb friction damping is 

zero. 
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H VI.  Recommendations 

This thesis has presented two novel ideas in the 

f| analysis of the Coulomb friction damping, first, the analysis 

of the beam joint system using the boundary element method; 

second, the assumption of a circular shaft under torsional 

loading in the region where the joint has not slipped, and as 

X a result many new questions and ideas have arisen.  Many 

areas for investigation and development have opened up. 

Some additional work could be completed in *:he following 

•J" areas: 

1. A major assumption in this analysis was the assumed 

length of the elastic circular shaft, b.  As a first 

approximation b was chosen to be the width of one of the 

^ beams connected at the joint.  Studies need to be made to 

determine if this length is correct or if a more accurate 

length can be found.  Suggested studies are: 

|y a.  A parametric study to determine the sensitivity of 

the micro-slip model to this parameter, 

b.  A three-dimensional stress analysis of the Coulomb 

/>" friction joint to determine the correct value of b. 

2. The present model should be investigated further to 

study the nature of the hysteresis loops for the case where 

the joint dissipates energy in cicro slip without extending 

into the gross slip region. 
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I 

3. The development of a truly dynamic Coulomb friction 

damping model based on the one dimensional BEM. 

4. A variation of the clamping pressure with radius should 

be implemented to account for nonuniform pressure 

distribution as a result of bolting or riveting of the 

i ,Nj joint. 

5. A variation of the coefficient of friction over time 

should be implemented to account for the wear of the contact 

surfaces that results from Coulomb friction damping. 

6. An experimental analysis of the two-beam model should be 

accomplished in order to experimentally verify the micro-slip 

model.  Equation 2-9 relates the energy loss per cycle to 

the difference in successive peaks of a vibrating system 

with Coulomb friction damping, and could be used in 

conjunction with experimental data to verify the micro-slip 

v 
V model. 
V 
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** CANTILEVER BEAM PROBLEM ** 
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**  CANTILEVER  BEAM  PROBLEM  ** 
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** BUILT-IN BEAM PROBLEM ** 
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RO  TA T   I   ON   -      .7469E-17 
MOM     E  N   T   *   -.6456E+03 
SHEAR*      .1865E-13 

3 

SKEAR DIAGRAM 

-3ee.ee 
e.eee  19.685  39.3 
DISTANCE ALONG BEAM ( IN) 

MOMENT DIAGRAM 
a    ieee.ee 

1 
2 

-eee.ee 

-1eee.ee 
e.eee  19.685  39.37 
DISTANCE ALONG BEAM ( IN) 
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** BUILT IN BEAM PROBLEM ** 

SYMMETRIC GEOMETRY 
DISTRIBUTED LOAD LOADING 

THIS IS BEM RUN W/O FRICTION 

PROBLEM GEOMETRY 

,N 

.V 

•A 

fii 

Young's Modulus 

Moment of Inertia 

Length 

Epsilon 

Dlstr buted Load 

= .29e+8 psi 

* .0417  in.4 

= 19.685 in.4 

= .000001 in. 

/ 

/ 

nmnry 
From x  =  0 
To       x  *  19.68 

Uniform Load = 10 lb/in 

BOUNDARY CONDITONS: 

***LEFT END*** 

DISPLACEMENT = 0 
SLOPE        * 0 

***RIGHT END*** 

3 

SLOPE        = 0 

J", 

SHEAR        ■ 0 

SELECTED OUTPUT POINTS 

</> 

tttt   x   =   .000**** 
DISPLACEMENT  =   -.4996E-15 
RO  TA  T   I   ON   =      . 1093E-16 
MOM     E  N   T  *      .1292E+04 
SHEAR*   -.1969E+03 

****   X   «   19.685**** 
DISPLACEMENT * .5174E-01 
RO TA T I ON « .7469E-17 
MOM E N T = -.6456E+03 
SHEAR»      .0000E-00 

L/2, 

SHEAR DIAGRAM 
380.00 

200.00 

100.00 

0.00 

-100.00H 

-^00.00 

-300.00 
0.000 19.6 
DISTANCE ALONG BEAM ( IN) 

£  1G00.00 

£   1000.00 

ttororr DIAGRAM 

600.00- 

1000.00 
0.000 19.68 
DISTANCE ALONG BEAM ( IN) 

\* 
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