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—~ The purpose of this thesis i+ to develop a better model

of damping that occurs in structural joint:s dAue to coulomb
friction when rotational slip occurs in the joints.
A one-dimensional, indirect formulaticn, of the Boundary
Element Method (BEM) is developed to calculate the
displacement, rotation, moment and shear in beams which obey
the assumptions of simple beam theory. This BEM code is then
nodified to account for friction damping at the joint of two
beams due to a rciative rotation between them. A gross slip
model of the friction in the joint is used to establish basic
behavior of the beam joint with friction damping. Next, a
wicro-sliip model of friction is developed. The micro-slip
model, depending on the applied moment, allows for the
elastic rotation of the joint up to some threshold moment
where partial slip begins. As the applied .noment Increases
the region of partial slip expands until the entire joint is
slipping and the gross slip condition exists. -:f,,ug ey
Both the gross slip model and the micro-slip model of
the joint friction are used to obtain measures of energy loss
per cycle versus clamping pressure in the joint. Load

controlled and deflection controlled loading cycles are used

to exercise the joint in a quasi-dynamic model and generate
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hysteresis loops in both force-diplacement and

moment-rotation space.
The clamping pressure was varied between 0 Ksi and 20

Ksi. The energy loss per cycle curves generated show that
there is a range of clamping pressures for which the energy
loss per cycle curve reaches a peak for a given loading and
amplitude of vibration.

The micro-slip model developed herein shows better
behavior than the gross slip model both a.2ve and below the
moment which causes gross slip. The hysteresis loops
generated in both the load-deflection and moment-rotation
space are comparable to other published data, however the
allowance for the breakaway moment before partial slip begins
seems to give a more conservative estimate of the energy loss

per cycle for a given clamping pressure.
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IMPROVED MODELING OF STRUCTURAL JOINT DAMPING

I. lIntreoduction

1.1 Backdround.

The advent of a space based strategic defense and the
increased push for a permanent spdace station by the year 2000
has caused an incrzased interest in the stability of large
space structures. These structures must have sufficient
damping to keep the vibration response within acceptable
limits. 1In strategic defense applications demanding
requirements will be placed on the load bearing structures
supporting missi‘e defense hardware. Presumably this
hardware wi.l crcate wide bandwidth high magnitude mechanical
disturbances while generating power for the misslile
destroying mechanism. Structures will also be required to
support the large rapidly rotating targeting mirrors which
are called for in some defense schemes. These structures
wil]l need tc make use of act.ve as well as passive damping
techniques to meet the reguirements of disturbance {solation
and target alignment.

The response of a structure to broad band excitation 1is

known tc be dominated by contributions at and near its
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resonance (19). The amplitude of response of a system at

resonance {s governed by the damping characteristics of the
system (11). Therefore, the response of a system to a broad

band excitation will depend on the damping characteristics of
the system.

A primary source of damping in all structures consisting
of more than one discrete component is the damping that
occurs as a result of the interface slip between components
at their joints. Beards estimates that as much as 90 percent
of the damping in structures takes place in the joints (3).
Unfortunately, the current design of structures makes use of
low mass materials and welded construction which eliminates
the inherent damping mechanisms available to structures and
as a cesult, complex artificial damping mechanisms are
required to provide stability (2).

The damping which occurs in joints as a result of
interface slip iIs called friction damping or Coulomb damping.
Given that friction damping is the primary source of damping
in structures, it provides the greatest potential increase in
structural damping. Frictlion damping in joints has specific
advantages. First, by using friction damping in joints as a
source of energy dissipation, the use of complex artificial
damping systems can be reduced. Second, by using friction
damping in joints, the original geometry can be maintained.
Finally, friction damping is low cost and has the potential

for high energy dissipaticn (8).

..........................
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Beards points to three reasons why this source of
damping has not been used. First, the possibility cof
fretting corrosion which ultimately causes failure of the
joint and potentially the entire structure. Second, it
reduces the stiffness of the overall structural system.
Finally, the nonlinearity of the friction problem presented
problems in analysis (3).

The benefits gained by friction damping in joints can no
longer be overlooked and the disadvantages of allowing
friction in the joint can be overcome or reduced. The
surface preparation of the contact surfaces can reduce the
effects of fretting corrosion while still maintaining good
energy dissipation characteristics (4). The overall
stiffness characteristics of the structure can be maintained
if joints are allowed to slip in rotation and not in
translation (5). New and innovative methods are being
developed to analyze the nonlinear nature of the Coulomb
friction damping.

1.2 Purpgse.

The purpose of this thesis is to develop a better model
of the damping that occurs in structural joints due to
Coulomb friction when rotational slip occurs in the joints.
1.3 General Approach.

A one-dimensional Boundary Element Method (BEM) is used
to symmetrically model a two beam system with a frictional
joint located at the point of symmetry. A bilinear gross

slip model and a nonlinear micro-slip model of the Jjoint

3
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friction are used to obtain measures of energy loss per

cycle versus clamping pressure in the joint. Load
controlled and deflection controlled loading cycles are used

to exercise the joint in a quasi-dynamic model and generate
hysteresis loops in both force-displacement and
moment-rotation space. Figure 1.1 shows the two beam
geometry and the symmetric case BEM models used in the
development.

A literature search showed that interest in the field of
friction damping has been around for a long time but that the
difficulty of experimentally verifying results and the
nonlinear nature of the friction problem caused the
consideration of friction to be ignored in most vibration
data. A considerable amount of wor: is being done in the
area of BEM but this is the first work done with BEM in the
area of frictional damping due to rotational slip in
structural joints.

This thesis is presented in six chapters. The present
chapter seeks only to familiarize the reader with the basic
problem and the solution procedure. Chapter 2 sets forth the
basic assumptions and theory associated with Couloumb
friction, beam theory, and the Boundary Elemcnt Method.
Chapter 3 discusses the development of the gross slip model
and the micro-slip model and their implementation in the BEM.
Chapter 4 presents the results of the gross slip and micro-
slip calculations for both the force and displacement

controlled loading. Chapter 5 discusses the conclusions

4
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drawn from the results and Chapter 6 provides recommendations
ﬁ for further study. In addition, there is an appendix which

presents the BEM calculations for several base line test cases

associated with the beam used in the friction models without

the Coulomb friction joint.
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E II. Theory

2.1 Coulomb Damping Theory.

.’ Coulomb or sliding friction forces arise whenever two
or more bodies in contact with each other move relative to
! one another along a common dry surface. The friction force

acts parallel to the contact surface. It is a dissipative

B
& force because the force of friction always opposes the
by
:
! relative motion of the objects in contact. The classical
law of friction states that the frictional force is directly
:; proportional to the normal force N, but ils indeperdent of
the contact area and magnitude of the relative velocity so
long as sliding exists (9). The force of friction Ff as
' presented by Greenwood is:
s
Ff = -y N sqn(ur) (2-1)
.ﬁ where
S F = force of friction
pu = coefficient of sliding friction
N = normal force
v, = relative veloclity
’; san(v ) = t 1 depending on sign of o_

The coefficlent of sliding friction i depends only on
the roughness of the sliding surfaces and the materials used

(9). The function sqn(ux) has the value of * 1 depending on

the sign of the relative velocity v, such that the force of

B e et ATttt chmatateTANt A" my o,
S D R T T L
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friction always opposes the motion. For instance if v, is
positive then sgn(ur) is also positive and Ff is negative.
2.1.1 Spripng-Mass Model. The motion of a system with
a Coulomb friction damping force acting can be demonstrated
with a spring-mass model. Consider the system shown in
Figure 2.1. A block with mass m sits on a surface such that
a coefficient of sliding friction n exists between the block
and the surface. A linear spring with stiffness k is
attached to the mass to provide restoring forces against
motion away from equilibrium. The damping force is given

as:
F, =umg (2-2)

where

LS
n

damping force equals Ff

m = mass

acceleration of gravity

X{t)—-

K
— A\ N\ — m Fﬁ*}“ﬂg

LSS S S S S

SOMUONNNNNNNNNN

FIGURE 2-1 SPRING-MASS SYSTEM WITH FRICTION

-



B

-

f. .l"-{ X

£

whY

.l' S

-

with the system so defined, Meirovitch (14) glves the

equation of motion as:

mX + Fgsgn(%) + kx = 0 (2-3)
where
¥ = acceleration of the mass
X = velocity of the mass
k = spring stiffness

The equation of motion is nonlinear because of the
switching in the sign due to the sgn(x) function. This
nonlinear equation of motion can be separated into two
linear equations of motion, each valid for a specific range

ot velocities (14). These equatlons are:

-F x>0 (2-4)

mx + kx a

Fd x <0 (2-5)

mX + kx
It should be noted that the switching does not occur as an
explicit function of time but is determined by the response
of the system and could occur at various times depending cn
the forcing function and initial conditions (8). The
solution of the equations of motlion must take place over one
time interval depending on the sign of x.

For the purposes of this paper the specifics of the
dynamic behavior are not investigated. However, some
characteristics of the behavior are of interest and prove
useful in the analysis of results.

The response of the system with Coulomb friction

damping consists of a harmonic component and a constant



3

B

2

F

-

e

ry

component superimposed on each other much the same way as in

viscous damping, however here the decay envelope is linear in

time as shown in Figure 2.2. The natural frequency of

FIGURE 2-2 FREE VIBRATION WITH COULOMB DAMPING (17)

Coulomb damped systems is the same as the natural frequency

for free vibration and is given as:

w = k/m (2-6)
u

suggesting that unlike viscous damping, which dissipates
energy as a linear function of frequency of oscillation,
Coulomb friction damping energy dissipation is independent
of the frequency (17). The change in amplitude per cycle |is

a constant and equal to:

x-x = 2Fg (2-7)
X

1

where x‘ and xz are the amplitudes of successive peaks as in
Figure 2.2 and the ternm 4?d/k defines the envelope of decay.

Thomson (17) defines the energy lost per cycle due to
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damping force us:

‘d = § F ddx (2-8)

which upon integration ylelds
W, = 2Fd(x‘+ X)) (2-9)
where

Wh = energy loss per cycle

Equation 2-8 allows the calculation of amplitude decay per

cycle given the energy loss per cycle and the damping force.

2.1.2 The Rotating Circular Shaft. As an aid in
considering the friction in a clamped joint, it is helpful

to consider first the more general case of sliding friction
arising from a frictional shear stress equal to i times the
normal force N, at the contact area of & rotating shaft of
radius R, pressed against a plane surface (9). Assuming a
uniform normal pressure at the contact area s, there is a

uniform frictlonal stress of magnitude:

(2-10)

which is everywhere i{n direction normal to a radial line
drawn from the center of the circular contact area (9).
Figure 2-3 shows the circular contact area as well as the
shear stress distribution on that surface. The lncremental

moment due to an annular element of width dr and area 2nrdr

10
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) wn
. dM = —— 2 n " dr (2-11)
2
n R
which can be integrated to find the total frictional moment i

M = 228 rzdr--—g—pNR (2-12)

s ¢ v
LN atatal
R AP O e S

A

b

™ FIGURE 2-3 PFRICTIONAL SHEAR STRESS ON i
A ROTATING CIRCULAR SURFACE ]

o If 4 = 0, the contact surface is said to be perfectly “
D 2
smooth. If 4 = o, a perfectly rough surface is present. !

The first of these conditions corresponds to the ro-clamp .

" case in which the friction force is zero. The second case .
108 K
allows no relative velocity at the contact surface and s |
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referred to as the no-slip case (9). It is important to

realize that in the first case no frictional force is
present while in the second case the potential for a

resisting frictional force is so great that the transition
from static frictional force to a kinetic frictional force
is not possible. A= the load builds up to force motion in
one direction, a static force of friction builds up in the
other which causes static equilibrium to be maintained.

For values of u between these two extremes the static
friction force builds up to a peak value and if the applied
load exceeds this peak value of static friction, the entire
contact surface of the joint begins to slip. The contact
surfaces of the jocint move relative to one another and this
relative motion is resisted by Coulomb friction forces. As
an extension to this analysis to the case of the friction
damping in structural joints, the model developed by
Richardson and Nolle has been referenced in many published
articles.

2.1.3 The Richardson And Nolle Model. The Richardson
and Nolle Model is a micro-slip model. A micro-slip model
allows partial slip in the outer jolint radius while the
inner joint radius behaves like a rigid body.

The joint under consideration consists of two elastic
members in contact over a circle of radius R (see Figure
2-4). A constant force is applied normal to the contact
surface resulting in a uniform clamping pressure P.

throughout the joint. As seen in Figure 2-4 moments are

12
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applied about the joint axis. These moments about the joint
axis cause friction shear stresses to build up at the
interface and micro-slip displacement between the two

members occurs (15).

M
EXTERNAL
™\ MOMENT

/,FR@TKN
INTERFACE

FIGURE 2-4 FRICTION JOINT LOADED BY EXTERNAL MOMENT(15)

The analysis proceeds on the basis of the following

assumptions as stated by Richardson and Nolle:

1. The external moment is transferred hetween
the two bodies by shear stresses due to
friction.

2. The friction shear streass is of constant
magnitude, given by pP., and exists only in
those parts of the contact surface over
which relative slip has occurred.

3. There are no surface shear stresses in

reglions wvhere slip has not occurred.

13



l"l' "r*'»

> .
LY,

.,
F

@

Y

4. There is no twisting of initially axial
elements.

5. The deformation takes the form of a relative
rotation between concentric cylinders of
material of differing diameter and does not
resemble that of an elastic shaft in torsion. (15)

The reason behind these assumptions is to relate the

externally applied moment to a region of slip in the joint.

The build-up of frictional shear stresses which causes the
slip starts at the outer radius R and proceeds inward to
that radius o which balances the internal moment caused by

the frictional shear stress in the slipped region and the

external moment. These frictional shear stresses create a
shear strain and thus a relative rotation in the joint which

dissipates enerqgy. Fligure 2-5 shows the slipped region for

a particular vilue of externally applied moment. A value of |
moment gr~-ter than that shown will decrease a while a

moment va.ue less than that shown will increase a.

REGION OF '

SLIP % M et

FIGURE 2-5 SLIPPED REGION AND DISTRIBUTION OF SHEAR STRESSE.

14



The full load cycle is considexred in three parts, the

initial loading, the unloading and the reloading. Each of

these regions has its own set of governing equations which

relate the applied moment to the region of slip and thus to
relative rotation.

The initial loading phase need only be considered for
the first quarter cycle of the loading and need not be
considered again no matter how many cycles are run. The
external moment is taken from a value of 0 to a value of
M . The inner bounding radius is tound from equilibrium

max

of moments stated as follows:

M = 0 (2-13)

ext Hfric

where

R

2 ®x
Meric ™ { 2nr uP dr (2-14)

which upon integration and rearrangement yleld

3 Hext

e = R 2nuPi (2-15)

The Richardson and Nolle development requires that the
external moment applied to the joint be equal to or less
than the value for gross slip. By setting a = 0 the

external moment which causes gross slip 1s found to be:

15

...............

- - c c_S _a 5 -~ . e e e = = o o .. 5 > O
VL B ol WL V. s M e e M O, W . WM tm oW WM W Y . C, om e B oA . e, wm owm oW W LS. a oA el e e, s e e & . S T

O N AR - AN WNIh PP P LS S WIESWR_ BB Sial  Pox™ ™

A PP I IR P WY NI BV Y SN W N R I, T NE W e

L ata A A R U W SRS L, & W

r 2



P

s |

LSS
o :

AN

e e

L= rol

*
nm u PR (2-16)

4
"
WITN)

gs

This is the maximum moment which the joint can support. For
values of moment between 0 and Mgs Richardson and Nolle
develop an equation which describes the relative rotation in
the joint. Assuming that the materlal which has not slipped
behaves as a rigid body, they calculate the net moment
acting at any radius r between e« and R. Using elasticity
equations in polar coordinates, this net moment is equated
to a circumferential shear strain which is in turn equated
to displacement in the circumferential direction. The
equation for the displacement in the circumferential

direction is given as:
* 2 3
ul(r) = (uP r /61‘61)[2—3(a/r)+(a/r) ] (2-17)

where the subscript 1 denntes that this 1iIs the displacement
in body 1 of Figure 2-4 (15). The value 11 i1s a geometric
proycrty of the joint and determines the length over which
the shear stress were distributed and the value G‘ is the
shear modulus of the waterial. To maintain rotaticnal
equilibrium in the whole joint, the moment in body 2 at any
radius r Is equal and opposite to that in body 1 and thus
the equation for v, i{s identical to that of v except that

the sign 1s opposite to that in v . Thus we have:

2 3
v (r) = -(uP r°/61 .G )12-3(a/r)+(a/1)?) (2-18)
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The relative rotation between body 1 and body 2 at a radlus
E r is defined as v (r)-v,(r). The relative rotation, ¢,
across the joint is defined arbitrarily at the outer radius
R (15). Figure 2-6 shows the relative circumferential
displacement and ¢.
®
'\w
:
Y
2
o
N
)
3
¢
3
h —
oY
3 ~—
,
.
bt
b
- :
3
&.
§ FIGURE 2-6 RELATIVE CIRCUMFERENTIAL

DISPLACEMENT AND ¢ (15)

17




sy ol

o

-

&

-

e

The final step in the development is to integrate the

equation for ¢ over the entire slipped region:

R T1(r)

1 1
@ = [——-- ———] dr (2-19)
11G1 lsz a 2nr

where for simplicity the term in front of the integral is
defined as S and 1;(:) is defined as the net moment acting
at radius r (15). The solution of this integral gives the

rotation in the joint as:

¢ = (uP R/6S)[2-3(a/R)+{a/R)%] (2-20)

where a is given by equation 2-15. At the end of the
initial loading M = M which is less than M__. The radius
max gs

assocliated with the slipped region at Mm

o is designated a

and ¢ = ¢hax‘

This development is similar for the unloading and
reloading regions of the curve. During unloading the joint

undergoes counterslip from ¢ to ¢ . The slip region
ina min

X

proceeds again from the cuter radlus R inward tc some radius
&. The esguation for ¢ul is dependent on both the radius a.
and the newly determined radius &. At the time when M equals

M the rotation is designated ¢min and the radius is

min

designated Gm. The equation developed by Richardson and

Nolle is given as:

Py

. (up'n/ss)(—z-a(am/n) + (a /R)® + 6(8/R) - 2(8/R)7)

(2-21)
18
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which at 8§ = R simplifies to equation 2-20 (15).

a During the reloading phase of the cycle the equation

for ¢t1 is dependent on the two previous regions of slip and
one expects to see the terms e and 6m in the governing
equation. Physically the dependence of the equation for ¢u1

on a and the dependence of ¢rl on both a, and Jm is a

T RN N N § A S
e

measure of the residual stresses which are locked in when
the external loading moment reaches a peak and begins to
reverse direction. Figure 2-7 is a picture of the physics
of an entire cycle from initial loading to the completion of
reloading.

Note, that after the completion of initial loading,

Hat

residual shear stresses are locked in producing a residual

W N S e m—y

moment in the joint. During the unloading phase these

residual stresses are negated and a residual stress and
corresponding residual moment are again locked in, acting in
the opposite direction to those of the initial loading. Here
the region of slip in the unloading is shown not to have

exceeded that produced in the initial loading. This

condition is not necessarily the case and for a general
loading function the slipped reglon during unloading may
exceed that of initlal loading. The reloading phase is very
similar to that of the unloading except now equilibrium is
balanced between the externally applied moment, the
frictional moment, and two locked in residual moments.

The energy dissipated by the cyclic loading can be

determined by calculation of the area enclosed in a moment-

19
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FIGURE 2-7 PHYSICAL INTERPRETATION OF
RICHARDSON AND NOLLE MODEL

rotation diagram (M-8 diagram) as shown in Fiqure 2-8 and is

represented by the equation:

M
AE = J (¢u1 - ¢r1)dH (2-22)
M

mun

where the ¢u1 and ¢t1 are as defined by Richardson and Nolle

in Reference 15.
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FIGURE 2-8 M-6 DIAGRAM FOR RICHARDSON AND NOLLE MODEL (15)

2.1.4

. As a first attempt at
modelling the behavior of friction in a joint it is common
to use a gross slip model. Such a model assumes that no
rotation occurs in the joint until the value of the
externally applied moment reaches the value of "Mgs as
defined in equation 2-16. The joint then rotates through an
angle ¢ and the moment is limited to a maximum value of -Mgs
until the cycle reverses itself and then the value of -Hqs
and ¢ are locked in.

ma x

During unloading the jJoint &gain undergoes no rotatlon
until a value of *Hgs is reached and again the joint
rotates to a value of ¢ while a value of +M is

min gs

maintained until the applied moment reverses direction. The
process reverses for the reloading case. The *Hga is locked

in as well as the rotatlion Omin until the external moment

reaches a vaiue of -Hgs when again rotation is allowed to

21
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occur. This model produces a square M-6 diagram as
shown in Figure 2-9. Note, the direction of the cycle can

be reversed without loss of generality.

¢ M’s 5¢min €<

P -

~6

—;> -hA?fbmu

FIGURE 2-9 M-8 DIAGRAM FOR GROSS SLIP MODEL

The specifics of this mocdel are discussed in more detalil
in Chapter 3. Por now we wlill move on to describe the
theory behind the equations used to model the beams which

are connected at the joint.

2.2 Elementary Beam Theoxy.

2.2.1 Euler-Bernoulll Beam Theory. The beam under

consideration in this analysis 1s generally referred to as

22
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an Euler-Bernoulli beam and several key assumptions are

'E necessary in order for the analysis to have any meaning.
| Therefore, the following assumptions are made:
|

1. Plane sections remain plane under
conditions of bending.
% 2. The beam has linear elastic material
h properties and is nomogeneous.
3. The beam undergces pure bending with no
local distortions ond neglects the effects of
o shear.
iﬁ 4. The geometric properties of the beam are
constant along the length.
5. Bending of the beam occurs in a single
plane.

In addition to the above assumptions it is generally assumed
that the loading is static in nature. To avoid confusion in

the development of the governing equations and to better

understand the na.ure of the loading in the beam it is

AR

advantageous to define a consistent sign convention to be
used throughout the rest of this analysis. Figqure 2-10

o shows the sign convention chosen for this analysis. A
positive moment causes compression in the top fibers of the
beam and negative moment causes tensile loading in the top

fibers. If the normal vector from the cut beam face, n, is

[ A Ba ]
e

in the +x direction and the reaction at the cut is acting in
the -y direction, the shear is positive. Likewise, when n

is acting in the -x direction and the reaction is +y, the

» v
»

shear i3 positive. External transverse loads are considered

positive in the +y direction.

23
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:: FIGURE 2-10 THE SIGN CONVENTION FOR BEAM ANALYSIS

o

2.2.2 PBuilt-In Beam Problem. The geometry of the

- joint friction problem before slip occurs in the joint is

k) that of & built-in beam shown in Figure 2-11. This is a
statically indeterminate problem and must be solved in a
plecewise fashion using the fourth order beam equation.

)\

S Griffel has tabulated the results for a number of beam
loading geometries and, as seen in Flilgure 2-11, has plotted
the shear and moment dlagrams for the specific case under

2 consideration (10). It can be seen that at the midpoint of

‘ the beam a point of symmetry exists.
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FICURE 2-11 BUILT-IK BEAM GEOMETRY AND ANALYSIS (6)

.

2! The symmetric case of the built-in beam problem is the
geometry that we will use in the analysis of the friction
damping of a rotary structural joint. Fligure 2-12 shows the

L]

SE geometry and loading of this beam. The boundary conditions
for the left end of the beam are y(0)=0 and y (0)=0 and

25
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FIGURE 2-12 SYMMETRIC BUILT-IN BEAM GEOMETRY AND LOADING

the boundary conditions at the right end are y"'(Ll/Z)t
-Pv/2 and y'(Ll/2)=0. Here y' denotes dy/dx and y" denotes
dzy'/dxz and so forth. The subscript "t" in the statement of
the boundary conditions refers to the "total"™ bullt-in beam
geometry and loading to distinguish it from the symmetric
beam geometry and loading. The solution to this problem In
terms of the "total" beam geometry, using the fourtl order

Euler-Bernoulli beam equation, yields the following results:

Ely = ~P /2 (2-23a)
N P x P L
EI}’ & - *—7—-'- + ‘—8— (2"23b)
) Plxz P L x
Ely = - i ¥ 3 12-23c)
P‘x Plle
Ely * - 13 + i€ (2~-234)

wvhere

Pl = the load applied to the built-in beam

L = the length of the bulilt-in beam

26
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To avoid confusion, the load applied to the symmetric beam
is designated P and the length of the symmetric beam is

designated L. Thus, the relationship between the built-in
beam geometry and loading and the symmetric beam geometry

and loading is given as:

-----

P =PJ/2 (2-23e)
L = L{*i (2-23f)
Ea Equations 2-23a through 2-23d can be written in terms of the
symmetric beam geometry and loading as:
Ely = = -p (2-24a)
» x P
- Bly = -P x + 5 (2-24b)
= P x* P L x
Ely = - 3 + % (2-24c)
] 2
2 Ely =-2% ,PLx (2-244)
= 6 4
These equations are used to construct the shear and moment
diagrams for the symmetric built-in beam analysis. Figure
2-13 shows the shear and moment dlagrams.
Py
' 2 hm
% v 1 M
-0-}
-p YYYYYYS ~PL
L i 2
! FPIGURE 2-13 SHEBAR AND MONENT DIAGRAMS
FOR SYMMETRIC BUILT-IN BRAM
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As expected, the shear and moment diagrams for the symmetric
case match the results as given by Griffel. Having the
solution to the built-in beam symmetric case we can now move
on to the development of the Boundary Element theory.

2.3 Indirect Direct Boundary Element Metheod.

2.3.1 pBoundary Elements vs, Finite Elemepnts. As a
brief introduction to the Boundary Element Method (BEM) it

is helpful to compare this method to the more familiar
finite element method (FEM). The finite element method
seeks to solve a series of differential equations by
approximating the solution to these diffcerential equations
at all interior points of the domain in which they apply.
The solution at the boundary of the domain may or may not be
exact. The boundary element method seeks to solve the same
set of differential equations exactly at all interior points
of the domaln and approximate the solution a2t the boundary.
Sometimes the former is referred to as domain method and the
latter as a boundary method.

The boundary element method, sometimes called the
boundary i{ntegral eqgquation method, solves the differential
equaticns by tranaforming them into eguivalent integral
equations. Llke the solution to any integral, the answer is
obtained by evaluztion of the integral at the upper and
lower limits of integration - the boundary elements. Of
course this is a crude explanation of an elegant method, but
it allows one to visuallize physicaily what the method does.

The boundary element method reduces the dimensionality of

28
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the problem by one (6). For instance, a three-dimensjonal
‘ problem, as in stress analysis of solids, is reduced to a
two-dimensional problem; a two-dimensional problem, such as
the stress analysis of a membrane, is reduced to a
one-dimensional problem; and a one-dimensional problem, as
E in the analysis of beams, is reduced to the solution of a
point problem. PFigure 2-14 shows, for a two-dimensional

problem, the one-dimensional nature of the boundary element

‘{2 model and for a one-dimensional problem, the point nature of
N,
the boundary element model.
R
i . >
S \ A
= ~ BOUNDARY

ELEMENTS

FIGURE 2-14 REDUCTION OF DIMENSIONALITY USING BEM

| de

As far as the numerical calculations go, the boundary element
method has no great advantage over the finite element method
for one-dimensional and low order two-dimensional problems

in terms of speed. The advantage comes in high order

29
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B

two-dimensional problems and three-dimensional problems

‘ﬁ where the BEM shows a time advantage of from four to ten to
one over the finite element method (6). This is because the
BEM always has a fully populated stiffness matrix where the

FEM has a sparsely populated stiffness matrix usually

..y‘

distributed along the diagonal of the matrix. However, the
size of the stiffness matrix increases more rapidly for the

finite element method tharn for the BEM as the order of the

:; problem increases, exactly like the increase in area veirses the
increase in perimeter of geometrical problems.
One final advantage of the BEM over FEM is the amount
if of input required to set up a problem for calculation. The
55 BEM requires only boundary geometric data where as the FEM
requires geometric data throughout the domain. 8o, in
. general, the BEM requires much less input and thus saves
t& time.
2.3.2 QJolution Procedure - Indirect Method. There are
two general methods of implementing the BEM, the direct
i: method and the indirect method. The differences between
v these two methods are subtle and a discussion of them is
beyond the scope of this paper. The method used in
- this development is the indirect formulation of the BEM.
& Once the boundary value problem has been completely
stated, the solution procedure proceeds in three basic
steps as set out in Reference 16.
;; 1. Bstablish the infinite-domain unit singular solution
appropriate to the boundary value problem.
30
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2. Form and solve the auxiliary boundary value problem
ﬁ in the infinite domain by employing superposition of the
" established solutions.
3. Use the solution of the auxiliary boundary value
problem to obtain the solution to the original
N boundary value problem.
The unit singular solution is a known solution to the
governing differential equation of the boundary value
U problem. The unit singular solution is very much like an
influence function which gives the response, say displacement,
at some field point due to a prescribed unit force at some
other point, called the source point or load point. Green's
7 functions are often the unit =singular solutions that are
used in this step. The unit singular sclutions must be
known in order for the procedure to be used.

The second step iIn the solution process calls for the

N
‘\l-’,

formulation of the auxiliary problem and then use of the
unit infinite solution to solve this problem. This is
accomplished by the superposition of the applicable unit
singular solutions. The word superposition implies that the
method is limited to linear elastic material behavior. The
boundary value problem is buried within an infinite domain
and the forces, displacements, etc., that define the true
boundary value problem are determined in terms of the unit
infinite solutions.

The final step in the solution procedure is to use the
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solution of the auxiliary boundary problem to solve the
original boundary value problem. The exact means of solving
the original boundary value problem from the solution of
the auxiliary boundary value problem is best understood by
working through an example.
2.3.3 Built-In Beam Problem Symmetric Case.
2.3.3.1 Formulatjion Of The Boundary Valye Problem.

The formal statement of the boundary value problem
associated with the built-in beam problem is considered in
Figure 2-15. It is essentially the fourth order beam

equation and the assocliated boundary conditions as follows:

d‘
E1 ¥ =0 (2-25)
dx
where
at x = 0, y=0and @ =0
at x = L, y=0and s = -P

where y is the displacement and 6 is the rotation of the beam
and s is the shear. 1In addition m will be defined as the
moment.

2.3.3.2 Upit singular Sclytions. The unlit
singular solutions for the boundary value problem at hand
are given in Reference 6. The unit singular solutions for

displacement, rotation, moment and shear due to a
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< FIGURE 2-15 BUILT-IN BEAM SYMMETRIC CASE
concentrated load ¢>1 are:
«
.('
y(x) = 4)‘[>\LB(2 + o™+ 3|p|2)] = ¢,(Z) G(x,%) (2-26a)
e(x) = g—i = ¢1[3)\Lz|p|(|p|-—2)(sgn p)] = ¢ () F(x,Z) (2-26b)
\ 2
2 m(x) = g1 3 - ¢‘[ -3 —|p|)] = ¢,(£) E(x,2) (2-26c)
dx
- ]
r; stx) = B1 2L = ¢ [1390 O] =g () Dex, 1) (2-264)
- dx 2
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where A= 1/12E1
p =1r/L
r=(x-2%) (Fig z-16)
sgnh p = +1 If po is positive
= -1 i{f p is negative
x is the field point of interest (Fig 2-16)
Z is the location of the load point (Fig 2-16)

Here the signs of the last two equations have been changed
as presented in the reference to be consistent with the sign
convention as presented in Figure 2-10. The function sgn(p)
is undefined for p = 0 and this situation must be avoided in
the analysis. This will be discussed in more depth in a
later section. Before formulating the problem in the
infinite domain we still need the unit infinite solutlons
for a concentrated moment as the solutions are not the same
as those for a concentrated force. Agaln from reference 6

we have for the concentrated moment ¢z:

y(x) = ¢, {—[u.’|p|(|p|’-3|p| + 2)(sgn pl]} (2-27a)
= ¢,(L) K(x,T)
8(x) = @, {-[M(3]p|z-6|p|+2l:} = ¢,(2) 2(x,7) (2-27b)
m(x) = ¢ lpl)ﬂ:i: = ¢,(L) M(x,Z) (2-27¢)
s(x) = ¢, :-(1/2r.)] = ¢ (Z) N(x,2) (2-279)
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where the same parameters as defined in equations 2-26 apply.

i Again the sign of the last two equations have been changed to
be consistent with the chosen sign convention. Equations
2-26 and 2-27 are the complete set of solutions for the

posed boundary value problem. All of these equations will

NFs

not be required to solve the problem at hand.

2.3.3.3 Defining The Auxjliary Problem. The next

step in the solution procedure is to define the auxiliary

&T problem. To accomplish this we embed the original problem

l?.
in an infinite domain. Figure 2-16 shows the embedded beam.
In Figure 2-16 the ¢u(0),¢z(0),¢u(L) and ¢;(L) are the

i applied forces and momerts which force the auxiliary problem

4

*

v to maintain the same boundary conditions as the original
problem. These are at present unknown. The w(Z) is the
load at point ¢ which for our problem is P(L).

-

"~ Keeping in mind Figure 2-16 the auxiliary problem is now

/o)
-

o

N

>

FIGURE 2-16 AUXILIARY PROBLEM FOR SYMMETRIC BEAM
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stated as:

Find the concentrated forces and moments applied
at the points 0 and L that, together with the load
point at ¢, satisfy the boundary conditions of the
original problem.

In general, the solution for the deflection, rotation,
moment, and shear at any field point x (double line in
Figure 2-16) can be written as the superposition of the
contributions of all concentrated forces and moments acting

in the domain. Thus we have:

y(x) = ¢‘(0)G(X.0) + ¢,(0)K(x,0) + ¢ (L)G(x,L) + ¢2(L)K(x,L)
ty (X)G(x, L) + v (D)K(x, L) +C + {C - x} (2-28a)
8(x) = ¢ (0)F(x,0) + ¢ (0)2(x,0) + ¢ (L)F(x,L) + ¢ (L)Z(x,L)
+ v (DF(x,Z) +y, ( )(x,Z) +C, (2-28b)
m(x) = ¢ (0)E(x,0) + ¢2(0)H(x,0) + ¢ (L)E(x,L) + ¢2(L)H(X,L)
+ v (DE(x,Z) + v (IN(x,Z) (2-28c)
s(x) = ¢‘(0)D(x,0) + ¢z(0)N(x,0) + ¢‘(L)D(x,L) + ¢Z(L)N(x,L)
+ v (L)D(x, L) + v (LIN(x,Z) (2-284d)
where

- D,E,F,G,K,2,M, and N are defined in
equations 2-26 and 2-27

- ¢‘ and ¢l are the concentrated forces and moments
applied at the end points of the embedded beam

v and v, are the concentrated forces and moments
applied to the original beam
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= Ci is a rigid body displacement

= C; is a 11914 body rotatlon

For the case of the symmetric beam loaded by the force P
we have only a ¥, term that shows up in the equations and the
value of £ is L. There is no v, because the original problem
did not have a concentrated moment applied.

The constant values C‘ and C; require some additional
explanation. Because we could choose to embed the original
problem in an infinite solution at any arbltrary value of y
and at any arbitrary angle to the x axis, a summation of
forces and moments on the auxiliary problem, in general,

does not satisfy equilibrium. Mathematically stated:

Summation of Forces z Fy 0 (2-29a)

¢ (0) + ¢ (L) + w (L) 0

in general

Summation of Moments z Hz = 0

¢z(0) + ¢, (L) %0 (2-29b)

in general

By including the values of C‘ and Cz in the equations and
making them unknown constants which must be solved for, we can
enforce the conditions of static equilibrium. This is more
clearly understood {f the equations 2-28 are stated in matrix

form. Following the development in Reference 6 we get:
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[ y(x)) " G(x,0) K(x,0) G(x,L) K(x,L) 1 x 7] ( ¢‘(0)"
e(x) F(x,0) £(x,0) F(x,L) £(x,L) 0 1 ¢E(°)
| mx)| _ | E(x,0) M(x,0) E(x,L) M(x,L) 0 0 e (L)
s(x) D(x,0) N(x,0) D(x,L) N(x,L) 0 O ¢, (L)
0 1 0 1 0 6 O C‘
Lo J | o 1 0 1 o o] | ¢ |
[ G(x,L)]
F(x,L)
E(x,L)
D(x,L) {“’“L’} (2-30)
1
- 0 e

Notice the last two rows in equation 2-30. Row five ensures
that C; is chosen such that the summation of forces is
satisfied thus equation 2-29a is false. Row six ensures
that C; is chosen such that the summation of moments is zero
and thus equation 2-29b is false.

Equation 2-30 presents a clear method with which one
may solve the auxiliary problem. From eguation 2-30 and from
Figure 2-15 we have the boundary conditions of the original
problem. By using a form of equation 2-30 with the correct
equations for the given bouundary conditions we can solve for
the unknown ¢"s and ¢z's and determine the necessary
constants (aand C;to ensure equilibrium. The properly

formulated equation lis:

38

TR LI S P P P .ttt ata et R L L P TR ML S L S SIS S L P A S T
R R .‘-’.\ \"\"\"‘-,"\' NN '-“'\'\"-."-:' LA PO AP RZRE AT WA




R

ey

.
A A

[ ¥(0)=0) [G(0+£,0) K(0+5,0) G(0+s,L) K(0+g,L) 1 0] ’¢‘(0)‘
6(0)=0 F(0+e,0) £(0+s,0) F(0+e,L) £(0+s,L) 0 1| ¢ (0)
6(L)=0 F(L-£,0) £(L-£,0) F(L-&,L) £(L-¢,L) 0 1| | (L)
s(L)=0P " |p(z-<,0) N(L-¢,0) D(L-¢,L) N{(L-¢,L) O O <¢2(L7P

0 1 0 1 0 0 0 c,
0o | | o0 1 0 1 o of | ¢, |
{bc} (K] {3}
[ G(0+e,L)
F(0+£,L)
F(L-¢£,L)
D(L-¢,L) { Wx‘L’} =l
1 (¥}
L.
[H)

Here again some new notation has been introduced.
Earlier it was mentioned that if o = 0 the function sgn(p) is
undefined. For é%is reason a field point and load point may
never coincide. If the load point and field point coincide,
the load point is adjusted some £ to the left or right of the
field point except at the left or right boundaries. At the
left boundary, 0, the field point is taken to the boundary
element at 0 from some £ just to the right of the boundary
element. At the right boundary, L, the field point is taken
to the boundary elem=nt at L from some <« just to the left of
the boundary element. Thus, the terms (0+c) and (L-¢) appear
in the kernel functions. It is important to take the field
point to the boundary elements from inside the domain or the

wrong problem is modeled.
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The solution of the auxiliary problem is now reduceé to
i the solution of the eguation 2-31. Using the notation found

in equation 2-31 we have:

{8}=(K]) *({bc}-(HI{¥}) (2-32)

]

2.3.3.4 Jolution to Original Problem. The
solution of the auxiliary problem by use of equation 2-32

L W SR e B B T N I R R ey e T Y Ny A N T O R

gives a column vector of forces and moments as well as a
rigid body displacement and rotation. The 2 vector can be
placed directly into equation 2-30 and, recalling that 0 is
replaced by ¢, and L is replaced by L-£, the solution for
the displacement, rotation, moment and shear at any

location x in the beam can be found. A flow dlagram of the

2 52 W A R W Wman agh. e - pmar g E AR B e -

entire process with the appropriate equations referenced
appears in Figure 2-17.
A Fortran computer program which follows the flow

diagram of Fiqgure 2-17 was developed as part of this thesis

- Spmm ® B » B 8 ¥ B _Syak &

effort. It takes as input the material properties of the
o beam, the variable &£, two boundary conditions at each end of
the beam and the associated values of those boundary

conditions. The code also looks for applied loads and the

S B P e o s X ¥ e

locatiorn at which they are applied. The code outputs the

e

materlal properties, the boundary conditions, and the f
displacement, rotation, moment, and shear at up to 500

locations throughout the beam. In addition the code writes
shear and moment itles which can be plotted to see the shear

and moment dlagrams f¢: a particular loading case.
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-2

Determine Boundary Conditions and Loading

-

Evaluate Kernel Function Assoclated With Boundarv
Conditions From Equations 2-26 and 2-27

P

Y
Put Appropriate Values of Kernel Function Into
Equation 2-31

£ ]

v
.

Y
Use Equation 2-32 To find % Vector
7
g -
Y ]
Substitute & Vector Into Equation 2-30 :
|
Y -
“ Evaluate Kernel Functions, Equations 2-26 :
.} And 2-27 At The Desired Values Of x '
Put Kernel Functions Values In Equation :
s 2-30 And Carry Out Matrix Multiplication :
¥ :
Process Complete Desired Information Output
., ‘
o '
FIGURE 2-17 FLOW DIAGRAM FOR INDIRECT BEM |
3 The Appendix contains several computer runs using the
'J |
one-dimensional BEM. Included are the built-in beam problem,
the built-in beam symmetric case, and a cantilever beam
o problem. Both displacement controlled and force controlled

runs are presented. In addition, to demonstrate the general
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versatility of the code, a built-in beam with a distributed
‘ load applied across the span is shown for both the full
length and the symmetric case problems. Also shown are the
shear and moment diagrams for the loading cases studied.
As a side note, an extensive literature search was
Tu accomplished and the only similar code found was in
Reference 16 where Shugar and Cox develop a code in basic

which calculates the displacement, rotation, moment, and

« & B 9 WMo - R X OB B D P PR IR,V e ey e~ G G BadP o o Y SR D S Pl W W Y%, e M

§ shear for beams on elastic foundations. The nature of the
E | free space Green's functions for such a problem are such
' that the constants C and C, need not be determined (6).
% The solutions are already uniquely determined inherent to
E R the kernel functions. |
| Reference 6 gives a general account of the solution of ;
| the problem when the calculation of C‘ and Cz is necessary, !
!23 however several errors were found in this reference which i
required further development before the code functioned i
correctly. With a reliable method of determining the beam 3
3 response for a given input at the boundary conditions and an ;
d applied load acting on the beam, we move on to the ;
development of the frictior model. )
4
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I11. The Friction Models

3.1 Joint Geometry And General Assumotions.

The built-in beam geometry has already been discussed
in the theory section. The present study assumes the same
geometry with one major change. The built-in beam geometry
consists of two cantilever beams extending from opposite
directions to a common joint where Coulomb friction is
assumed. Plgure 3-1 shows a scale drawing of the physical
dimensions of the two-beam arrangement. A uniform clamping

pressure P’ holds the beams together at the joint.
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fproreran |05 L
L1 f r
" . RN T
EI= 12093 x10° L8-1n?
o S SIDE_VI

’R:T’"AB‘ X ; . .

RS P

L /7

/ | 1
201857 .

NS

L

A

FIGURKE 3-1 DAMPING MODEL GEOMETRY, MATERIAL AND LOADING
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The beams are each 0¢ equal dimension and are both made

i of structural steel with the materlal propertles as shown in
Figure 3-1. Under all loading conditions considered herein

the individual beams observe linear elastic material
behavior.
g Figure 3-2 shows an enlarged view of the joir* and
shows that a circular contact area is assumed at the joint.
The joint has a radius of .5 in. The contact area is assumed
~ homogeneous i.e., a hole where a rivet or bolt is connecting

the beams is not considered.

. | /CONTACT /
) \ 10" @
; ) Z )

|

O

MWJH

:
1

v

FIGURE 3-2 ENLARGEMENT OF BEAM JOINT
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The load Pt is applied at the joint so that no twisting
of the beams occurs. The beam joint system undergoes
deformation in an x-y plane that can be thought of as an
extension of the contact area of the Jjoint. Figure 3-3

shows this x-y plane containing the contact area. All

{L\’

FIGURE 3-3 X-Y PLANE CONTAINING CONTACT AREA OF JOINT

forces generated are symmetric about this plane and the beams
sides remain parallel to this plane. With the joint geometry
defined and the general assumptions laid out, we can proceed

with the discussion of the friction models.
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Shet,

3.2 gross S11p Model.

As discussed in Chapter 2 the first step in the
analysis of the friction damping in a joint is to assume
that the joint dissipates no energy until the moment in the
joint reaches a value that causes the entire contact area of
the joint to slip. The value of the moment at which this
gross slip of the joint occurs is designated Mgs and is
given in equation 2-16. It follows that qu is also the
maximum moment the joint can support.

The beam geometry used in the analysis of the Jjoint
under consideration consists of the symmetric beam case.
Figure 3-4 shows the original geometry and the boundary
conditions assumed for the various ranges of the moment
value in the joint. The load P is assumed to be applied as
a sinusoidal time varying load which varies in 1 and 1/4
cycles from 0 to the maximum value <f load pmax to a minimum
value -Pmax and Lacn to pmax again. The analysis is
quasi-dynamic, and the inertia effects of the beam are not
considered. The loading cycle is broken into three distinct
regions of interest; the initial loading, the unloading, and
the reloading, in the same way the Richardson and Nolle
model was studied.

3.2.1 Ipjtial Loading. In the initial loading phase
the applied load changes between 0 and the maximum load pmax'
The joint does not rotate until the moment in the joint
exceeds the moment developed by the maximum allowable

frictional shear stress acting over ‘:he contact surface of
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the joint. This value of moment is given by equation 2-16

ﬁ and is repeated here:
2 t 3
“gs = '§' L S 7] p R (3 1)

og

=~

K-

f%
> A Ly %
o’

s

al
NOOMNNUNNNNN

'—L

=0 S yo M=M_;
‘jzo S’C O O S=Oj
< —
- M MGS M_MGS
:l
FIGURE 3-4 ORIGINAL GEOMETRY AND BOUNDARY CONDITIONS
FOR THE GROSS SLIP MODEL OF FRICTION
'
i
Until this value of moment is reached the boundary
conditions are given as:
o
A =
:E.'; g = g } at x = 0
(3-2)
e =0
s = 0 } at x =L

where the symmetry of cne bullt-in Liam about the joint
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allows the s(L)=0 boundary condition. It should be

E mentioned here that the boundary conditlons at x = 0 remain
the same for the entire analysis.

Figure 3-5 shows that as the load increases towards Pmax

a moment, Mext , bulilds up in the joint acting in a negative

-

'a

LR - _ -~

5 direction. At the point where the moment in the beam equals ‘4

* h

the moment caused by the frictional shear stress, - ; nuPR E

(where the minus sign signifies clockwise direction), the i

i% limit moment, —Mgs in the joint is reached. Thus we have: E

x

Mext= -M )

a8 (2-3) ]

o - _ _ € p * R® d

b Text- "~ 3 " H ;

' !

The value of load P which causes the moment in the joint to :

[

reach -M is designated P__. 1If P <P the M-9 dlagram !

gs gs max gs :

:Q is a vertical line which encloses no area and thus the *

o~

jointed beam behaves as the continuous beams investigated in

the Appendix. The case of interest is where P > P . !

max gs ;

- When P > P the initial loading curve continues. 5

> max gs y

o The boundary conditions change to reflect the condition that 3

the limit value of moment due to frictional shear stress has !

been reached. This condition relates directly, through ;

¥ equation 3-3, to a limit on the magnitude of moment the joint )

(

can support and the boundary conditions at x = L change to: ¢

L -Mgs} at x = L (3-4) ;

N s =0 ;

The Jjoint is allowed to rotate until the loading force P !

!
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FIGURE 3-5 GROSS SLIP MODEL INITIAL LOADING (0 < P < Pgs)

reaches P The rotation at P is designated ©
ma ma ma x

x’ x

Figure 3-6 shows the M-6 dlagram and the friction model.
3.2.2 Unlcading. The next interval of the loading
cycle to be considered is the unloading phase where the load

P varles between Pna and _Pnax' Once the load has reached

X

I
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Y

Y
\
M{_,_H

M-8 CURVE

FRICTION MODEL

FIGURE 3-6 GROSS SLIP INITIAL LOADING ( qu~< p < pmax)
its maximum value of pmax in the itnitial load phase the
boundary conditions change again. The rotation at the joint
is fixed at the maximum rotation enax' Fixing the rotation
at emax locks in the frictional shear stress built up in the

initial loading phase of the cycle, _“P,’ which causes a
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residual moment Hres = -Hgs in the joint. The boundary

conditions at x = L are:

egemax} at x =L (3-5)
s=0

As the applied load now changes from pmax toward -P the

max’

moment in the joint, M builds up in the positive

ext’

direction. Mext will continue to build up in the Jjoint

until moment caused by the frictional shear siiess rcaches |
the limit value of +; nu P R' and Hext = +Hgs' For this to i
occur the residual frictional shear stress of -uP. must !
first be negated, giving the value of allowable frictional !
shear stress for the unloading phase as ZuP.. The load ;
assoclated with the point at which the moment caused by the |
frictional shear stress is exceeded in the unloading phase
is designated pugs‘ Figure 3-7 shows the loading, M-6
diagram and friction model for this region of the unloading
phase.,

The boundary conditions once again change when the
frictional shear stress moment is exceeded to reflect the

limited moment carrying capability of the joint, "qs' and

thus become:

o= Hqs } at x = L {3-6)
s =0
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3-7 GROSS SLIP UMLOADING (P > P 2P
max ugs

The load continues to increase in amplitude from Pugs to
-P and as it does so the Jjoint rotates from € to ©
max max min

Figure 3-8 shows this region of the unloading curve.
When the load reaches _Pmax the load cycle changes

direction again. The value of am is locked in the joint

AT EEAAMNMASNIWE” AL Y s Ll

in
and replaces the moment boundary condition at the right end. i
ha
: Formally stated the boundary conditions are: :
q
h’
= N
¢ anin} at x = L (3-7) :
s =0 5
‘\
Setting the 6 = amln boundary condition locks in residual frictional s
¢
shear stress and thus creates a residual nmoment, Htes' in :
LS
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FRICTION MODEL

FIGURE 3-8 GROSS SLIP UNLOADING (-P <P CP )
max ugs
the joint. The Jjoint is now ready to begin the reloading
phase of the load cycle.

3.2.3 Reloading. In this phase of the loading cycle

the applied load changes from 'pma to P oax’ completing the

x
entire 1 and 1/4 cycles. As the load changes from -pmax the
frictional shear stress moment again builds up until the
limit value -Hqs is acting at the joint. Pigure 3-9 shows
the allowable frictional shear stress in the reloading
phase is -ZyP.. The load assoclated with the 1limit value of
frictional shear stress during reload is designated Pr =

gs

-P
ugs
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FIGURE 3-9 GROSS SLIP RELOADING (-P > P 2P )
max max

Following the same physics of the unload curve, the
boundary conditions now change to reflect the fact that the
limit moment is again acting in the joint. The boundary
conditions are given in equation 3-4. The load continues to

change from P to P and the rotation at the joint goes
rgs max
to &
ma

from e. completing the hysteresis loop and the

in
load cycle. The entire loop 1s governed by one equation

X
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(3-1) and several different boundary conditlions (equations
3-2,and 3-4 through 3-7). The gross slip model is thus
easily implewmented in a computer code.

3.2.4 Computer Implementation Of Gross S1ip Model.

The computer implementation of the gross slip model proved
quite simple given the capability of the boundary element
method to use any of the four boundary conditions possible
at either end of the beam. It requires at the most the
calculation of six points and in some cases (the no-slip and
no-clamp cases) only three points are calculated.

The first step in the computer implementation of the gross
slip model is to calculate, using equation 3-1, the value of
Hgs‘ If the value of Hgs is zero or negligible with respect
to the maximum applied load the no-clamp case 1s assnmed and
the program branches to a routine that calculates the M-6
diagram and P-6 diagram for this case.

Next, a combination of equations 3-2 and 3-4 are used to
set the boundary conditions prior to running the BEM. In
Figure 3-5 the point (1) 1s located at a point where the
boundary conditions are equation 3-2 and equation 3-4. This
collocation of boundary conditions along with equation 2-24a
is used instead of incrementing the load in time. The
procedure is to set the boundary conditions for the initial

BEM run to the following:
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y(0) =

o(0) = (3-8)
o(L) = 0

m(L) = -M_

The value of applied load is set to zero and the BEM is
run. As a result, the displacement, rotation, moment, and
shear at any point in the beam is available. Now equation
2-24a is used indirectly. 1t states that the value of the
shear at any point in the beam is equal in magnitude and
opposite in direction to the applied lozd. Using this
information the shear at x = 0 is used to determine the

applied load as follows:

Ely "{0) = -P
5(0) = -P (3-9)
P = - s(0)

This simple procedure determines directly the point pgs

without incrementing through time. If P 2 P the no-slip
gs ma x
conditicn exists and the code branches to a routine to
calculate the M- and P-4 dlagrams and the routine stops.
When P < P the m,s,6 and 6 Information for point (1)
gs max
is stored and the routine continues.
The next polnt calculated is point (2) in Figure 3-6. The
boundary conditions of equation 3-4 are set in the BEM and
the applied load !s set to Pmax . The BEM again gives &6, 9,m

and s at any polint in the beam. Here the value of 6(L)
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equals 2 and of course m(L) equals -M from the boundary
max gs
conditions.
The calculation of point (3) in Figure 3-7 follows a
similar procedure to the one used to calculate point (1).
The applied load is set to zero and a combination of equations
3-5 and 3-6 are used in the boundary conditions such that:

e(L) = 8o
(3-10)

m{L) = *Hgs

The result of the BEM are used in combination with equation
3-9 to £ind the load puqs

The calculation of point (4) in Figure 3-8 foliows
closely the development for the caiculation of point (2) and
will not be presented in detail here. Figure 3-10 is a flow
diagram for the entire cycle of loading. The details of the
no-clamp case and no-slip case are also nct discussed as
these problems are presented in the Appendix as the cantilever
beam problem and the built-in beam problem (symmetric case)
respectively. The development for the displacement as the
time varying input is not discussed here but follows the

development for the force varying input very closely. Figure

3-11 is the flow diagram for a time varying displacement input.
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CALCULATE

M o= 2 gup*e®
ge 2 H

no

SET: 6««(L)
mcL)
P = O

nou
1 O
4

RUN BEM
RESULTS: 6,6.m,s

1

USE EQUATION 9-9
TO FIND:P = -S(0)
gs

SET: P = P
max
S(L)=0

mcL)>= -M
G
RUN BEM
RESULTS : & ,8max
-M .80
ge
I
SEET: P = O
@é<«(L) = BOmax
miL) = +M
g.
T
RUN BEM

RESULTS: 6,68.8.m

1

USKE KEQUATION 9-9
TO FIND:

r = ~-8(0)
ugs
T
SET: P = - P
ma x
S(L) = O
ML) = M
gs

FIGURE 3-10 GROSS SLIP ALGORITHM

POINT (1)
FOUND IN
(FIG 8-3)

(®)

POINT (2)
FOUND IN
(FIG 9%-46]

POINT (8)
FOUND
(FIG 3-7)
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RUN BEM
RESULTS :5,0min
mMcLY)=M ,8S=0
g.

1

S8ET: P =0

B(L) = Omin
m«L) = -M
ge
I
RUN BEM

RESULTS :6,6.,m, S8

USE EQUATION 3-9
TO FIND:

P = =80
rge
SET: P =
max
mL)= -M
ge
8(LY= O
RUN BEM
RESULTS :

POINT (1),(6)

CYCLE COMPLETE

WRITE: &6,68.m,8
data and P for
points ¢-6

L

POINT (4>
FOUND
(FIqQ 385-81

POINT (3)
FOUND IN
{FIG 3-91}

®

CALCULATE NO
CLAMP CASKE
(CANTILEVER)

|

CALCULATE NO
SLIPFP CASEK
(BUILT IN BPEAM)

(FORCE CONTROLLED)




I
t
START (;>
ALCULATE L
— c ch RUN BEM
= = RESULTS :Smin,Omin
i "g- a "HF R mrn.om POINT (4)
i M(L)=M ,-8=P
ge min FOUND
1 {FIG 3-81
Q SET: P =0
(L) = Omin
ng m(L) = -M
SET: 8«¢L) = O ge
a mL) = -M 1
'ﬁq ge RUN BEM
i P = O
I.l‘:ﬂt.ll..'l'li:érg.,erg.
m= -M
g.
RUN BEM |
RESULTS: &6gs,0,8 USE EQUATION 8-0
; TO FIND:
% = ’ - _s(0) POINT (5)
o USE EQUATION 8-9 rge FOUND IN
TO FIND:P = -8(0) {FIG 8-91
gse POINT (1)
FOUND IN
SET: 6 =
(FIG 3-3] max
ML= -M
- gs
."':, P =0
o, 1 »
e RUN BEM |
SET: & = &
max RESULTS:
POINT (1 6
mcL) = -M (1),(6)
=0 ge |
T CYCLE COMPLETE
o) L WRITE: 6,6.,m,8
Lo RUN BEM
O data and P for
' RESULTS :Smax ,Omax .
POINT (2) points t1-6
m= -M ,~S=pP
gs max FOUND IN T
1 trxa s-o1
SET: P = O
(L) = Bmax @
o meL) = +M
re gs CALCULATE NO
“a 1 CLAMP CASE
RUN BEM
(CANTILEVER)
RESULTR : Sugse , 68
max L
M= +M , 8
g.
x ®
USE EQUATION 8-9
CALCULATE NO
o TO FIND:
s POINT (8) SLIP CASEK
~ r = -%¢(0)
‘ uge FOUND (BUILT IN BEAM)
1
(F1a 9-7)
8kT: & = - &6
max
mL) = M m
P=0O bl »
e NOTE: EQUATION 8- IS USED TO CALCULATE
e (:) THE APPLIED LOAD P.
FIGURE 3-11 GROSS SLIP ALGORITHM (DISPLACEMENT CONTROLLED)
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As mentioned before the gross slip model is a good
ii starting point in the analysis of the friction in a clamped
joint. MNow a more accurate model of the joint behavior will
be developed, one which allows partial slip of the joint
prior to the gross slip condition.
) 3.3 Micro S1ip Model.

The assumptions which governed the behavior of the gross

slip model are still applicable in the micro-slip model of

fj friction with one major change. The Jjcint will be allowed to

T undergo rotation prior to reaching the limit of moment
developed by frictional shear stress in the joint.

o The model is different from the Richardson and Nolle

ﬁ; model in two major ways. The first difference is that where
Richardson and Nolle assume the unslipped region of the
jcint behaves as a rigid body, the model discussed presently

:é assumes the unsllpped region behaves as an elastic circular

| shaft which tw.:ts under any finite level of torque. The
second difference shows up in the definition of the rotation

2 at the joint. Richardson and Nolle define the rotation as

E the integration of the displacement due to the shear strains
in the slipped region of the joint at the arbitrarily chosen

. outer radius of the joint. The model presented here defines

ES the rotation in the Jjoint as the angle between the neutral

axes of the clamped beams.
Figure 3-12 shows the overall loading and the behavior
of the clamped joint for different ranges of moment in the

jJoint. Notice that the rotation at the joint, for values of
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moment less than that required for gross slip, is a function

of the moment. The development of the functional
relationship between the rotation and the moment is the

focus of the next section.
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FIGURE 3-12 MICRO-SLIP LOADING AND GENERAL BEHAVIOR

3.3.1 Micro-slip Joint Geometry. The geometry of the

micro-slip joint is shown in Figure 3-13. The left and
right beams are joined at the Coulomb friction joint. As
the joint undergoes deformation a region of slip develops
and works its way in from the outer radius R to some radius
a. The micro-slip model assumes that the reglion interior to
the radius a behaves as a solid elastic circular shaft of
radius a. Figure 3-14 shows the geometry of this circular
shaft of radius a. As a first approximation, the length of
the circular shaft iz assumed to be the width of one of the

connected beams as shown in Figure 3-13. This is a major
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= FIGURE 3-13 MICRO-SLIP MODEL OF COULOMB TRICTION JOINT
i:
3 g >
—L—
d FIGURE 3-14 CIRCULAR SHAFT OF RADIUS o
assumption and the model is very sensitive to this length
n:
E} parameter.
Because of ocur earller assumption that the beams deform
without twist {t can be shown from symmetry considerations
o that the cross-sections of this circular shaft remain planer
during deformation (1). Makling use of the assumptlons of
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linear eiastic and homogeneous material, Reference 12 uses

the theory of elasticity to develop the classical strength

of materials equation:

6 = ?—g or M=KS®é (3-11)
where
b = the length of the shaft
M = moment applied to shaft
J = polar moment of inertia
G = shear modulus
K = JG/b

The polar moment of inertia for a clircular shaft is given in
Fiqure 3-13. The rotation, &, of the circular shaft and the
rotation €(L) = dy/dx of the beams connected at the Coulomb
friction joint are one and the same. Figure 3-1%t is an
exploded view of the joint. The figure clearly shows that,
because the rotation was not fixed at zero, for any

deflection & of the beam-joint system a rotation in the

O ——

circular shaft, and therefore the beam-joint, is produced and |

is governed by equation 3-11.

Figure 3-15 also shows that the total relative rotation

that the joint undergoes is two times the rotation of just one

of the beams. It is important to keep this in mind when

doing energy loss per cycle calculations since the data

generated frcm a symmetric beam study of the friction problem

will only take into account one of the beams and thus only
predict half the actual energy loss.

The loading for the micro-slip model, like the gross
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!
slip model, is studied for 1 and 1/4 cycles and is divided -
into the initial loading, the unloading and the reloading ::
N :
3& phases. )
3.3.2 Initial Loading. Before a load is applied to the 5
R
Coulomb friction joint the following conditions are assumed >
. ¢,
v in the joint. Flirst, the rotation at the Joint is zero; "
- 7
' second, there is not yet a slipped region in the joint and l:‘.
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the slip radlus 2 equals the Jjoint radius R. The boundary

: conditions at the joint for the entire initial loading phase
are:
SUT fmelas) (3-12)
s(L) =0

where

x|

Helas is from (3-15)

As a load is applied (we will assume an initially
;fﬁ positive load without loss of generality) a negative moment,

M builds up in the joint. The frictional shear stress

ext’

on the friction interface resists rotation. However, a

rotation is present because of the elastic circular shaft

assumption for the unslipped region of the joint. The beam

- e .
A\l

undergoes rotation without slip, e« = R, governed by equation

3-11 until the moment at the joint reaches a value which

overcomes the frictional shear stress resisting slip in the

- .Y .
.'

joint. This value of moment can be determined by use of the

torsion formula as developed in Reference 12:

y .

= :-_ T = M p/d (3-13)
' where

E T = shear stress

E e = radius of interest

E ~ M = applied moment to shaft

) - J = polar moment of inertia

!

Y

: Now by making use of the definition of the polar moment of
i R inertla, choosing as p the outer radius of the Joint R and

recalling that initially the joint has no slipped region, a
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equals R, the limit moment for elastic behavior is:

Lnu PR (3-14)

X
"

ext

where from 3-13

The moment assocliated with the limit for elastic behavior is

designated M and thus for an initlial positive load -M

ith ith
equals Mext' The load P applied to the beam-joint system at

-"ith is designated pith

eith' Figure 3-16 shows the loading, M-6 curve and friction

and the rotation 8 is designated

model for this region of the initial loading phase. 1If pmax

< Pith then the beam-joint system behaves linearly for the

entire load cycle and dissipates zero energy. For the case
when Pmax > Plth the beam-joint system goes into the
nonlinear region of the initlial loading phase.

As the load increases from P to P the joint

ith max

develops a region of slip and « < R. Equation 3-14 is now
generallzed for the case when the radius i{s any radius e« < R
and the moment assocliated with the new equation is designated
Helas The new equation gives the moment supported by

the elastic torsional shaft of radius a as:

s
"elas = o nu P a (3-15)

The moment in the slipped region is found from rearrangement
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of equation 2-15 to be:
M = 2 p* (R*-a®) 3-16
fric =3 " H @ ( a)

Therefore the entire moment in the joint. “ext' from

B

equilibrium of moments is:

M = -M

ext elas Meric (3-16b)

M
N
i’
0
v
Y
| »
v} -M '
;z e 78
M-8 CURVE
g FIGURE 3-16 MICPRO-SLIP FRICTION MODEL
INITIAL LOADING ( P = pth)
- The rotation in this region is found from equation 3-11 by
W
5 setting M =M_, _ . Making this substitution ylelds:
boup
- “ -
[} < G (3-17)

There are several methods of describing the nonlinear reglon
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of M-8 curve using equations 3-15 through 3-17 and the

discussion of a particular method is presented in the
discussion of the computer implementation of the micro-slip
model.

Figure 3-17 shows the M-6 curve and friction model for

the nonlinear region of the initial loading phase. Notice

that if the applied load pmax > pqs the entire joint will

o

slip , 2 = 0, and the model reduces to the gross slip model
of the Joint until pmax is reached. Figure 3-18 shows this
condition.

Comparing the micro-slip model to the gross slip model we
see that the micro-slip model essentially connects the
vertical (where here the curve actually has as slope K as
defined in equation 3-11 as opposed to vertical) and
horizontal lines of the gross slip M-€ curve with a nonlinear
curve where @ = f{M).

When the applied load reaches pmax the load begins to
reduce and the frictional shear stress and resulting moment
are locked in the joint by setting the boundary condition at
the joint to emax and setting the slip radius a = R.

3.3.3 Unleoading. As the applied load reduces to zero
and then begins to Increzse in amplitude in the opposite
(negative)} direction the joint again undergoes linear
rotation, rotation without slip in the joint, defined by
equation 3-11 with M = Hext‘ The rotation occurs in the
opposite direction to the rotation that occurred in the

initial loading. The residual frictional shear stress
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FIGURE 3-18 MICRO-SLIP FRICTION MODEL
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allows the slip free rotation to continue until “ext reaches

the value M defined by the following equation:

thul

= - + -
Mthul Mres 2ch (3-18)

= % nop P°R®

where the joint again begins to slip and a < R. The load

associated with chul is designated pthul'

shows the M-© curve and friction model at the end of the

Figure 3-19

elastic counter rotation.
The moment in the nonlinear region of the unloading
phase is found from the following equation:

Hext = -Hres + 2Helas * 2"fric

(3-19)

2 ®_3 1 ® 9
s M H PR - s T H P a

and the rotation can be found by use of equation 3-11 with M
equal *2Helas to be:

%
2b 1 P (3-20)
max a G

where here the emax term is {ncluded to account for the
rotation locked in during the initial load phase of the load

cycle. Flgure 3-20 shows the M-@ curve and frictlon model

assoclated with the nonlinear regicn of the unloading cycle.
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FIGURE 3-19 MICRO-SLIP FRICTION MODEL
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FIGURE 3-20 MICRO-SLIP FRICTION HODEL
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once again if the applied load is such that the loading
forces the entire joint to slip, @ = 0, the model reduces to
the gross slip case and that model can be used. The gross
slip model is used to calculate rotation at —pmax . Figure
3-21 shows the M-6 diagram and assoclated friction model at the

point where the load has reached -pmax and the reload phase

is about to begin.

‘\:Aﬁ‘d R
\
2 \ 2 \Me xT
\‘\ \\\ \\ / i
0 [ =
- M\ ‘\ M F(‘: - M:.
W
= V,”% -
M-8 CLRVE FRICTION MODEL
FIGURE 3-21 MICRO-SLIP FRICTION MODEL
UNLOADING (P > Pz -P )
gs max

It should be pointed out that as the model reaches
the point of gross slip behavior the equations which give

the rotaticn in the nonlinear region of both the initial
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loadirg curve and of the unloading curve of the M-© diagram
are not valid. These equations are based on the assumption
of an elastic circular shaft in torsion and when a = 0 this
assumption is not valid. The method to f£ind the rotation is
presented in the computer implementation section and

basically uses a cutoff limit to restrict how far o may move
in towards a radlius of 0 at the center of the joint.

3.3.4 Reloading. The reloading phase is the
antisymmetric case of the unloading phase. At the end of
the unloading the rotation is set to a value smln and ¢ = R
which locks in residual frictional shear stresses and thus
causes a residual moment in the joint acting opposite in
direction to the residual stress locked in at the end of
initial loading. The equations for the moment:s at the joint
are very similar to the unloading case and only differ in
sign. The rotation is defined from the locked in value of
amln and equation 3-11 with M = Helas used to define the
rotation in the nonlinear region of the reloading cycle.
Finally, for the reloading phase as with the initial loading
and unloading phase the equations for 6 are not valid in the
gross slip region. Figure 3-22 shows the friction model and
the associated equations for the moment acting at the joint
for the reloading phase of the load cycle. The moment
equation which is in effect can be found by a summation of
moments using the sign convention shown. With the entire
cycle defined we can move on to the implementation of the

micro-slip model on the computer.
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3.3.5 Computer Implementation of The Micro S1ip Model.
ﬁ The computer implementation of the micro-slip model is
very similar in nature to the implementation of the gross
slip model. The calculation of the moment in the nonlinear
region of the M-8 diagram involves an incremental approach
po in which the value of o is determined based on an increment
of the rotation. The process will be laid out in the three

different phases of the loading cycle.

o

o 3.3.5.1 Initial Loading. The implementation of
the code starts by assuming that the load is starting from

initlal value of zero, the rotation in the Joint is zero and

a = R. The value of the Mth is calculated using equation

3-14. The rotation ath is determined using equation 3-11 as:

eth =M, / K (3-21)
2
i The BEM is used to calculate pth' If pmax < pth then the code
will calculate ¢he linear response of the beam-joint system
‘ for the entire cycle. If Pth < Pmax point (1) in Flgure 3-16
;? is found.
The aext step in the calculation involves describing
the nonlincar region of the initial loading curve. The
o value of € is incremented an amount 46 and the value of a is
S determined from equation 3-17 in the form:
”
o (3-22)
5

Exterr.]l moment is determined by equation 3-16b. BEM is used
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with the boundary conditions at the right end of 2(L) = 2 + A2
and m(L) = "ext as calculated in equation 3-16. The results of
the boundary element method are used to determine when to stop
incrementing the & value. The loop stops if the value of a is
within a given tolerance of zero and the code enters a gross
slip routine and thus the validity of equation 3-17 is
maintained. The loop also stops if the value of the force as
given by equation 3-9 exceeds the maximum force amplitude. This
latter case is of particular interest as it shows the real
advantage of the micro-slip model over the gross slip model.

Figure 3-23 shows the M-6 curve and P-4 curve for the
initial loading phase of a gross slip model and a micro-slip
model. It is easy to see, iIf the peak load value lies
between the load which causes the threshold moment to be
exceeded and the load at which the gross slip moment is
exceeded, the micro-slip model will dissipate energy while
the gross slip model will not.

Irregardless of which test caused the code to jump out
of the 8 incrementing loop the code uses the value of 6 at
that point and sets it to emax . The radius e which has
been moving towards 0 is reset to R and Hzes = Hext'

3.3.5.2 Uploading. The next point on the curve

that is calculated is point (2) in Figure 3-19. The

boundary conditions are set as follows:
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th
e(L) = € = - ———
thul max K (3-23)
m(L) = "thul = Mres + ZNth

where equation 3-20 with a = R gives the first boundary
condition and equation 3-18 gives the second. The BEM is

used to calculate the load, 17 associated with this

Pthu
point. The code again enters a 8 incrementing loop. The

equation used to
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determine 2 is 3-20. The value of the external moment is

determined by equation 3-19. Again the BEM is run after

every increment of € and the boundary conditions are:

e(L) (6 + A9)
m(L) = M

(3-24)
ext

The same two tests are used as in the initial loading phase of
the code to determine when looping should end. The computer
code sets the value of © = 8 and M = M and the value
min res ext

of a = R again. The code is now prepared to calculate the rest
of the loading cycle.

3.3.5.3 Reloading The computer code next
calculates the point (3) in Figure 3-22. The associated

boundary conditions are:

- - . 2M
LY = O¢pr1 ™ Cnin t —K”’
(3-25)
WL = Mthrl = Hres - Zch

The BEM calculates the load associated with these conditions.
The code enters the increment on theta for the final time and
calculates the nonlinear region of the reloading curve. The

gove ‘ning equations are the negative of the equations 3-19 and

3-20. VWhen the code jumps out of the & incrementing loop it has

generated the entire hysteresis loop for the loading cycle.
Figure 3-24 shows the general algorithm for the
micro-slip model for the time varying applied locad. It is

general enough that to develop the case for the time varying
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displacement the only change that needs to be made to the
algorithm is to replace the check on the force with a check
on displacement.

As a last point on the micro-slip model for the case of
general loading the residual shear stress interference
pattern is shown in Figure 3-25. This should be compared to
the interference pattern which occurs in the Richardson and
Nolle model as shown in Pigure 2-8. It is clear that the
micro-slip model presented here accounts for an elastic
residual shear stress in the beam that Richardson and Nolle
do not account for.

The friction models have now been described and the
general algorithms presented which model the Coulomb
friction joint. Chapter 4 presents the results of some

calculations.

79

i
51
p
}
:
A
L
s
:
3'
!
:



el

Al
e .

~

e

[}
h

“ .

f“‘a_q

START
| CALCULATE: O
thul
CALCULATE M
Lth C————— M
thul
FROM EQUATION 8-1i8
WITH EQUATION 8-289
[ S8ET B.C. ‘8 TO:
SET: a4 = R 6cL) = 8thul
CALCULATE elhusxno mcL) = Mthul
RUN BEM
EQUATION 8-21 T
EQN 8-9 P =-8(0)
SET B. C. ‘8 TO: thul
OcL) = Oth | no
mcL) = Mth p—
P < r —
RUN BEM max
nNOoO
USK EQUATION 8-9
a < TOL B
TO FIND P = -S(0O)
th
- O = 9 + A8
es FIND @ EQN. 8-20
r <r 4 > A
max th FIND M | EX ¥
I oxt
no
—p P < p T
max SET B.C. ‘'S
L ]
8«L)1=6 + AO
ML) M
no oext
RUN BEM
a ¢ TOL » B —
FIND P FROM EQ 3-9
& = 0 + A6 ]
FIND Q4 EQGN. 8-22
FIND M s-10
ext *
= emtn
SET B.C. 'S v = M .
re -
OcL)=0 + AZ e x
a = R
moL>= M
oxt
RUN BEM |
RUN THROUGM THE
FIND P FROM XQ J-9
AROVE LOOP ACAIN

1 TO CALGCULATE THK

KELOAD CURVE
THE SAME KGUATIONS
& = Omax CAN BX USE BUTY A
MULTIPLICATION OF
-1 IS8 REQUIRKD
FOR THEN TO BREK
CORRECT THX SION

K
]
4
Y
O

[ ]
NOTEK: CHANOEKE TO &max FOR

DISPLACKMENTY CONTROLLED CYCLEK ‘
sTOP
A - LINKAR FOR ENTIRE CYCLEK B - OROSS SLIP MODEL

FIGURE 3-24 GENERAL ALGORITHM FOR MICRO-SLIP MODEL

80

P P e s W YW R M woema g, & A N 8- B

e i Ye » 3 'm 8 R Y e W S ¥ B @ ® et maamm = e~ 2 P P A e & W W o T B S i BROAD

e e e L ow

> s e a4t = e



xS

to calculate the energy loss per cycle verses the clamping
pressure for both a force controlled and for a displacement
controlled system. The applied load or displacement was
large enough to force the joint model into the gross slip

region. In addition a single case was set up to show the

Pl i

situation where the micro-slip model predicts an energy loss
and the gross slip model predicts no loss as discussed in

Chapter 3.

!
i
s IV. Results
4.1 Rarameters Studied.
The gross slip model and the micro-slip model were used

The clamping pressure applied at the joint ranges from
0 to 20 Ksi. For a force controlled run the wmaximum force
amplitude applied at the joint is 200 lb. When the

displacement control is used the maximum displacement

amplitude at the joint is .1 in. The P-4 curve and the M-8

curve for the force controlled and displacement controlled

loading of both the gross slip model and the micro-sllip
model are presented.

Figures 4.1-4.5 show a comparison of the gross slip
model and the micro-slip model P-& curves for the force
controlled loading and displacement controlled loading
for increasing values of clamping pressure. It can be seen

that tke 0.0 Kai clamping pressure (no-clamp case) reverts
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to the cantilever beam as presented in the Appendix on pages
105 and 106. At the 20 Ksi load the behavior approaches
that of the continuous built in beam (no-slip case) as shown
in the Appendix on pages 103 and 104. The region of
interest for this analysis is between these two extremes.
Figures 4-6 through 4-10 show the M-6 diagrams that are
associated with the P-6 curves presented in Figures 4-1
through 4-5.

The energy loss per cycle as defined by the area insiic
the hysteresis loops is calculated for both the gross slip
model and the micro-slip model. The curves showing the
normalized energy loss as a function of clamping pressure are
shown in Figure 4-11 for the displacement controlled anéd the
force controlled loading cycles. The normalization parameter
for both cases is the maximum strain energy in the beam for

the no-slip case and can be found from the equation:
AE=1L1ps (4-1)
max 2 ¢t

where Pt and & can be determined as in the Appendix on page
102. It should be noted that the energy loss calculated from
the hysteresis loops is only half of the actual energy lost
by the entire system since only half the beam system was used
to generate the loops. This factor of two was taken into
account when generating the curves in Figure 4-11.

The curves in Figure 4-11 show that as the clamping
pressure increases from 0 Ksi to 25 Ksi the energy loss per

cycle first increases and then decreases. Torvik shows that
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the damping is maximized at a clamping pressure just above
the clamping pressure required to prevent gross slip (19).

Lazan shows that the low end clamping pressures are
dominated by gross slip behavior while the high end clamping
pressure is dominated by the micro-slip behavior of Jjoint
damping (13). Keeping this in mind, Figure 4-11 shows the
point at which the behavior of the slip characteristics are
changing from a gross slip dominated behavior to a
micro-slip dominated behavior. 8Since the gross slip model
cannot take into account the micro-=1ip dominated behavior
it shows a higher energy dissipation than the micro-slip
model which 1s accounting for the micro-slip behavior in the
joint. Figure 4-11 shows that the micro-slip curves and the
gross slip curves are identical in the low end clamping
pressures where gross slip dominates behavior and at
approximately 4-5 K:1 in the displacement controlled and
approximately 8-10 Ksi is the force controlled loading cycle
the micro-slip dominated behavior b=gins.

The highest energy dissipation for a given loading case
and amplitude of vibration can be determined from the
micro-slip curves. This optimum occurs at the peak of the
energy dissipation versus clamping pressure curves shown in
Figure 4-11.

The displacement controlled loading shows a case where
the moment in the friction joint builds up to the value of
threshold moment, but in so doing it exceeds the maximum

deflection allowed for this loading case. The gross slip
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model however has a steeper P-6 and M-8 curve and thus
rzaches a value of Hgs before 6max is reached. For this
case Figure 4-11 shows the gross slip model is dissipating
energy while the micro-slip model has already gone to zero.

The final remarks to be made in this section deal with
the case opposite to the one just discussed. Figure 4-12
shows the case where the micro-slip model is dissipating
energy while the gross slip model shows no energy
dissipation. This is a major advantage of the micro-slip
model over the gross slip model in that energy can be
dissipated during low amplitude loading or displacement
cy~les. This case is presented here as a point of interest
and to validate the discussion in section 3. Further

study of this feature is left to other investigators.

THE CASE FOR A MICROSLIP MODEL
2.00

FORCE CONTROLLED

EI=51. 200306
CLAMPING PRESSURE: 6100LD

1.00 A

-1.00

NORMAL 1ZED MOMENT
S
8

=37. ¢ LD
o -1.1.
max *1- 18E-6 RADS

‘2-% v v T

-2.00 -1.80 0.0 1.00 2.2
NORMAL IZED ROTATION

OMICROSLIP MODEL. AGROSS SLIP . .00€EL

FIGURE 4-12 THE CASE FOR MICRO-SLIP MODEL

96



5.1 Summagy.

L |

. A

The objective of this thesis was to develop a better
model of the damping in structural joints due to dry friction
when slip occurs in the joint. 1In Chapter 1 the motivation
for the thesis was put forward and the method to meet the
objective outlined.

In Chapter 2 the appropriate theory was introduced
which served as the underlying foundation for the prediction
. of the triction at the structural Jjoint. The micro-slip
) friction model of Richardson and Nolie was outlined as a
method to predict the friction response at the joint.

However, the assumption that the unslipped region of the

R

joint behaves as a rigid body was seen to be to restrictive
and a method to account for the moment carrying capacity of
the unslipped region of the joint was developed.

Chapter 2 also served to introduce the Boundary Element
Method of the beam joint analysis. The results of the BEM

analysis of several beam geometries and loading conditions

A
(2

was confirmed from a simple beam theory analysis of the

>,

identical problem. Results from the BEM calculations of
several geometries and loadings are presented in Appendix A.
Chapter 3 introduced and discussed in some detail the

gross slip model and the micro-slip model of joint behavior.

97




ht

e

[}

S |

L]

Here the method of assuming the unslipped reqion behaves as

an elastic shaft under torsional loading, was developed.
The length, b, of the torsional shaft was assumed to be the
width of one of the beams. This length was arbitrarily

chosen as a first approximation in the analysis process.
The algorithms to carry out the analysis of both micro-slip
and gross slip friction models in both a force controlled
and displacement controlled loading were developed.

In Chapter 4 the results of the actual computer runs
were presented. The energy loss versus clamping pressure
plo%s follow the expected trend of increasing from zero at
the no-clamp case up to some maximum energy loss at some
"optimum®™ clamping pressure and then continuing bac:k to zero
at the no-slip case.

5.2 gonglusions,

The following conciusions are drawn frcm this thesis:
1. A one-dimensional indirec. Boundary Element Method
computer code has been developed to calculate the response
of free span beams. The code i{s general enough tu allow for
concentrated and distributed loads as well as concentrated
moments. The code calculates the shear, moment, rotation
and dlsplacement at any locali:on in the beam and produces
files with which shear and moment diagrams can be plotted.
Based on the literature search conducted, a boundary element
code for free span beams was not in existence before this
thesis was started.

2. The BEM code was modified to calculate moment-rotation
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friction damping in a structurai joint. Either force controlled
or displacement controlled loading can be specified.

3. A new micro-slip model of Coulomb friction damping in
structural joints was developed. The model, depending on the
applied moment, allows for elastic rotation of the joint up to a
breakaway or threshold moment where partial slip begins. As the
applied moment increases, the region of partial slip grows until
the entire joint is slipping.

4. The new model of micro-slip Coulomb friction was implemented
in the BEM code. Once again, either force controlled orx
displacement controlled loading of the joint is allowed.

S. The results cf computer calculations show that the micro-slip
model behaves in a similar manner to previously published reports
and data. The variation of energy loss per cycle versus clamping
pressure, for both the gross slip model and the micro-slip model,
shows that a clamping pressure which yields the greatest energy
loss per cycle for the given loading case and amplitude response,
does exist.

6. Compared to the gross slip model, the micro-slip model
developed herein gives more accurate results of damping behavior
for values of applied moment both above and below the gross slip
moment value.

7. The micro-slip model developed herein Is more accurate than
the Richardson and Nolle model in that it accounts for the
existence of a threshold moment below which the behavior is
elastic and the energy lost due to Coulomb friction damping lis

zZerxo.
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VI. Recommendatlions

This thesis has presented two novel ideas in the
analysis of the Coulomb friction damping, first, the analysis
of the beam joint system using the boundary element method;
second, the assumption of a circular shaft under torsional
loading in the region where the joint has not slipped, and as
a result many new questions and ideas have arisen. Many
areas for ianvestigation and development have opened up.

Some additional work could be completed in “he following
areas:

1. A major assumption in this analysis was the assumed
length of the elastic circular shaft, b. As a first
approximation b was chosen to be the width of one of the
beams connected at the joint. Studies need to be made to
determine if this length is correct or if a more accurate
length can be found. Suggested studies are:

a. A parametric study to determine the sensitivity of

the micro-slip model to this parameter.

b. A three-dimensional stress analysls of the Coulomb

friction joint to determine the correct value of b.
2. The present model should be investigated further to
study the nature of the hysteresis loops for the case where
the joint dissipates energy in wicro slip without extending

into the gross slip region.
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3. The development of a truly dynamic Coulomb friction
damping model based on the one dimensional BEM.

4., A variation of the clamping pressure with radius should
be implemented to account for nonuniform pressure
distribution as a result of bolting or riveting of the
joint.

5. A variation of the coefficient of friction over time
should be implemented to account for the wear of the contact
surfaces that results from Coulomb friction damping.

6. An experimental analysis of the two-beam model should be
accomplished in order to experimentally verify the micro-slip
model. Eguation 2-9 relates the energy loss per cycle to
the difference in successive peaks of a vibrating system
with Coulomb friction damping, and could be used in
conjunction with experimental data to verify the micro-slip

model.
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THIS IS BEM RUN W/O

BUILT-IN BEAM PROBLEM **

FRICTION PROBLEM GEOMETRY

Young's Modulus = ,29e+8 psi ' ? /
.4 t
Moment of Inertia = .0417 1in. T 4
Length = 39.370 in.? | ?
Epsilon = .000001 in. /
) T, L
Point Load At x = 19.685 in.
Load = 400.0 1b. SHEAR DIAGRAM
300 .00
BOUNDARY CONDITONS: -
X*xLEFT END2*X* 9 200 .00 -
DISPLACEMENT = 0 r  100.00 -
SLOPE =0 é
XXXRIGHT END®*% 0.00
Z
DISPLACEMENT = 0 " _-109.00 -
SLOPE =0 5
W -200.00
SELECTED QUTPUT POINTS P
k2 X = _QO0rRR® -300.00 \
DISPLACEMENT = -.5551E-1% 0.000 19.686 39.3
ROTATTI ON = -.9527E-17 DISTAICE ALONG BEAM (IN
MOM ENT-= .1969E+04
S H E AR = -.,2000E+03 MOMENT DIAGRAM
o 3000.00
XEkt Y = 19 .685nnnn -
DISPLACEMENT = .1051E+00 i 2000 . 00 -
ROTATI ON = .6511E-07
MOM ENT = -.1968E+04 1000. 00 -
S H E AR = -,2000L+03
O.w
RRRXRX Y = 39, 370%RtR
DISPLACEMENT = .1117E-15 & -1000.00 -
RO TA T I ON = ,2604E-16
MNM ENT= .1969E+04 - 2000 .00 -
S H E AR = _,2000E+03
- 3000 .00

0.000 19.686 39.37
DISTANCE ALONG BEAM ( IN)
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** BUILT-IN BEAM PROBLEM **#

SYMMETRIC GEOMETRY

FORCE CONTROLLED LOADING PROBLEM GEOMETRY
THIS IS BEM RUN W/0 FRICTION ,
y Py
Young's Modulus = ,29e+8 psi /
Moment of Inertia = .0417 ln.4 A
Length = 19.685 in.* / L
Epsilon = .000001 in. /
Point Load At x = 19.685 in. SHEAR DIAGRAM
Load = 200.0 1b. 300.00
BOUNDARY CONDITONS: T 200.00 4
***LEFT END%2% et
100. 00 -
DISPLACEMENT = 0
SLOPE =0 0.00
**XRIGHT END*%# Z
™ -100.00 -
SLOPE = 0
SHEAR =0 a -200. 00
»
SELECTED OUTPUT POINTS - 300.00
xxxx ¥ = .000rxr% Q.00 19.6
DISPLACEMENT = .0000E+00 DISTANCE ALONG BEAM ( IN)
ROTATI ON = .0000E+00
MOM ENT-= .1969E+04 MOME
S H E AR = ~,2000E+03 a 3000 . 00 NT DIAGRAM
1
*x2% X = 19 685%%AN n )
DISPLACEMENT = .1051E+00 Z 2000.00
ROTATI ON = .3469E-17 ~ 4005 ag |
MOM ENT-= -.1968E+04 5 L -00
S H E AR = .0000E+00 B 0.00 h
Z -1000.00 -
- 2000 . 00 -
- 3000 .00
0.000 19.68

DISTANCE ALONG BEAM ( IN)
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*%* BUILT-IN BEAM PROBLEM **

SYMMETRIC GEOMETRY
DISPLACEMENT CONTROLLED LOADING

THIS IS BEM RUN W/0 FRICTION

Young's Modulus = .29e+8 psi
Moment of Inertia = .0417 1n.4
Length = 19.685 in.?
Epsilon = ,000001 in.

= Lot |

NANNS S AN

SHEAR DIAGRAM

Point Load At x = 19.685 in 300.00
Load = 0.0 1b ~
D 200.00 -
BOQUNDARY CONDITONS: ~
*2RLEFT END### T 100.00-
DISPLACEMENT = 0 i 0.00
SLOPE =0 z
***RIGHT END%%*% -100.00 -
DISPLACEMENT = .10 § -200.00
SLOPE =0
- 300.00
SELECTED QUTPUT PQINTS 0.000 19.6
xxxx X = ,0Q0rRR% DISTANCE ALONG BEAM (IN)
DISPLACEMENT = .0000E+00
ROTATI ON = .0000E+00
MOM ENT= .18T2E404 _ o0 o MOMENT DIAGRAM
S H E AR = -.1902E+03 O >
RRxX% Y = 19.685%%t% Z' 2000 . 09
DISPLACEMENT = .1000E+00 *
ROTATI ON = -.1735E-17 _  1000.00 -
MOM ENT = -.1872E+04 & J
S H E AR = -.1902E+03 g{ 0.00
Z -1900.00 -
- 2000 . 00 -
- 3000 . 00
0.000 19.68
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** CANTILEVER BEAM PROBLEM **

FORCE CONTROLLED LOADING PROBLEM GEOMETRY

THIS IS BEM RUN W/0 FRICTION P
v A

Young's Modulus = .29%9e+8 psi ;

8 Moment of Inertia = .0417 in.? :" J
’ =~ Length = 19.685 in.? e L -
F Epsilon = ,000001 in. y

Point Load At x = 19.685 in.
Load = 200.0 1b. SHEAR DIAGRAM
; 300 .00
BOUNDARY CONDITONS: -
: **XLEFT END**# T 200.00-
DISPLACEMENT = 0 E 100.00 -
CLOPE =0 H
E :3 *%*XRIGHT ENDX** > 0.0
; MOMENT =0 " _100.00 -
\ SHEAR =0 %
y -200.00
SELECTED QUTPUT POINTS 7,3

- txxx X = .000%%k%% -300.00
e DISPLACEMENT = .0000E+00 9.000 19.6

=¥ ROTATI ON = -,1577E-17 DISTANCE ALONG BEAM (IN)

MOM ENT-= .3937E+04
) S H E AR = -.2000E+03
: MOMENT DIAGRAM
i' XxKk% X = 19.685%%%k% @ 4000 .00
S DISPLACEMENT = .4205E+00 -+
i > ROTAT I ON = .3204E-01 Z

] MOM ENT = -.3411E-12 _ 20008.00 1
S H E AR-= .0000E+00
i o

. z

s =

x -m.w’

E 'm.m
0.000 19.68

DISTANCE ALONG BEAM (IN)
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** CANTILEVER BEAM PROBLEM **

DISPLACEMENT CONTROLLED LOADING BROELEM GEOMETRY
THIS IS BEM RUN W/0 FRICTION
Vs
Young's Modulus = ,29e+8 psi y
Moment of Inertia = .0417 in.‘ ; §
Length = 19.685 in.? 7 =7
Epsilon = ,000001 in. A .
P ; L |
Point Load At x = 19.685 in
Load = 0.0 1b SHEAR DIAGRAM
100.00
BOUNDARY CONDITONS: =
**XLEFT END*** 9
- 50.00 -1
DISPLACEMENT = 0 T
SLOPE =0 Fé
X% *RIGHT ENDX%* > 0.00
DISPLACEMENT = .10 =
MOMENT = 0 3 -50.00
SELECTED OUTPUT POINTS &
XXX X = _0000%%%% -1006.00
DISPLACEMENT = .0000E+00 0.000 19.6
RO TA T I ON = -.4418E-18 DISTANCE ALONG BEAM ( IN)
MOM ENT-= .9362E+03
S H E AR = -.4756E402
MOMENT DIAGRAM
XREXRX Y = ]19.685%kx% & 1600. 0@
DISPLACEMENT = .1000E+00 _I
ROTATTION = .7620E-02 2 1000.00 -
MOM ENT-= -.5684E-13 ™
S H E AR = -.4756E+02 ; 500. 00
o 9.00 1
Z -600.00 -
-1020. 00 -
- 1600.00
0.000 19.68

DISTANCE ALONG BEAM ( IN)
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** BUILT-IN BEAM PROBLEM **

DISTRIBUTED LOAD LOADING PROBLEM GEOMETRY
THIS IS BEM RUN W/0 FRICTION
A q r
Young's Modulus = .29e+8 psi y ! !
Moment of Inertia = .0417 in.‘ l
Length = 39.370 in.*
Epsilon = .000001 in. 7 L 2
Distributed Load
From x = 0 SHEAR DIAGRAM
To x = 39.370 300 .00
Uniform Load = 10.0 1b/in & 20g. o -
BOUNDARY CONDITONS: g 100.00
* 2L EFT END**#
e.00
DISPLACEMENT = 0 -
SLOPE =0  100.00 -
***RIGHT END®*#* x
-200.00 -
DISPLACEMENT = 0
SLOPE = 0 -300.00 '
0.000 19.685 39.3
SELECTED QUTPUT POINTS
DISTANCE ALONG BEAM (IN)
XXX X = ,Q00Xr%X
DISPLACEMENT = -.4996E-15
RO TAT I ON = .1093E-16 _ o0 oo MOMENT DIAGRAM
MOM ENT-= .1292E+04 O .
S H E AR = -.1969E+03 3
XERX Y = 19.685%%%% S 1000.00 -
DISPLACEMENT = .5174E-01
ROTATTI ON = .7469E-17 500 . 00
MOM ENT = -.6456E+03
S H E AR = .1865E-13 ,
z e-w
=
-500. 00 - \u
-‘m-%

0.200 19.685 39.37
DISTANCE ALONG BEAM (IN)

1067

LG T T AL AP L U SR T S N o A SRS S ST L P S S EIEE IO ST 2R I IR BN RA Y AT 2PN JURE RO IR AR
DR - - oI TR LIPS a®. Ve, RNt et s Tat A TAa T A, R YL, M eTa%a"nTevae",
e L R R S R N A I ey T o T I s M R T » ‘a' .



-~

R

SSS

i 2

"

Ay

»

*%* BUILT IN BEAM PROBLEM **
SYMMETRIC GEOMETRY
DISTRIBUTED LOAD LOADING PROBLEM GEOMETRY
THIS I8 BEM RUN W/0 FRICTION
Young's Modulus = ,29e+8 psi % L
[ [
Moment of Inertia = .0417 1n.4 4 j ‘
Length = 19.685 in.*
/
Epsilon = ,000001 in. >
Distr buted Load L/e
From x = 0
To x = 19.68 SHEAR DIAGRAM
300.00
Uniform Load = 10 1b/in -
D 200.00 -
BOUNDARY CONDITONS: -
222 ,EFT ENDtt# ﬁ 100.00 -
DISPLACEMENT = 0 0.00
SLOPE 0 >
2 *RIGHT END%*% ™ -100.00 -
SLOPE = 0 3 -200 .00 -
SHEAR =0 & :
. -300.00
SELECTED QUTPUT POINTS 0.000 19.6
kxkk X = ,000%%%* DISTANCE ALONG BEAM (IN
DISPLACEMENT = -.4996E-15
ROTATI ON = .1093E-16
MOM ENT= .1292E+04 _ MOMENT DIAGRAM
S H E AR = -.1969E+03 B 1600. 00
xRkt Y = 19,6852 i
< .
DISPLACEMENT = .5174E-01 = 1000. 20
ROTATTI ON = .7469E-17 ~
MOM ENT-= -.6456E+03 600 . 00
S H E ARS= .00C0E-00
z 0.0
b4
-500. 00 - WL
- 1009. 00
0.000 19.68

.....

DISTANCE ALONG BEAM ( IND
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Block 19

The purpose of this thesis is to develop a better modeal
of damping that occurs in structural joints due to coulomb
friction when rotational slip occurs in the joints. F
A one-dimensional, indirect formulation, of the Boundary
Element Method (BEM) is developed to calculate the
displacement, rotation, moment and shear in beams which obey
the assumptions of simple beam theory. This BEM code is then
modified to account for friction damping at the joint of two
beams due to a relative rotation between them. A gross slip
model of the friction in the jeint is used to establish basic
behavior of the beam joint with friction damping. Next, a
micro-slip m.del of friction is developed. The micro-slip
model, depending on the applied moment, allows for the
elastic rotation of the joint up to some threshold moment
where partial slip begins. As the applied moment increases
the region of partial slip expands until the entire joint is 3
slipping and the gross slip condition exists.

Both the gross slip model and the micro-slip model of
the joint friction are used to obtain measures of energy loss
per cycle versus clamping pressure in the joint. Load
controlled and deflection controlled loading cycles are used
to exercise the joint in a quasi-dynamic model and generate .
hysteresis loops in both force-diplacement and "
moment-rotation space.

The clamping pressure was varied between 0 Ksi and 20
Ksi. The energy loss per cycle curves generated show that
there is a range of clamping pressures for which the energy
loss per cycle curve reaches a peak for a given loading and
amplitude of vibration. ‘

The micro-slip model developed herein shows better ’
behavior than the gross slip model both above and below the
moment which causes gross slip. The hysteresis loops
generated in both the load-deflection and moment-rotation
space are comparable to other published data, however the
allrwance for the breakaway moment before partial slip begins

Rl

T,

seems to give a more conservative estimate of the enersv less f
per cycle for a®given clamping pressure. \
“
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