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Abstract e

In this paper we provide a review of the available W

methods for estimating the standard error of M- and Ny

ll-estimates in regression. In the case of M-estimates, DR

. we show how to use MINITAB to compute these estimates along _45
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with estimates of their standard errors. X
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1. Introduction

N Over the last two decades there has been much interest

in the statistical literature in alternative methods to least
squares for fitting equations to data. During this time a large
number of estimates of regression coefficients have been proposed
that are not unduly affected by a small percentage of the data
{so-called robust estimates). Although the robustness properties of
these estimates have been studied in great detail, little attention
has been paid to the problem of estimating the asymptotic covariance
matrices of these estimates. Such estimates are necessary if
inferences are to be made about the unknown regression parameters.

f}~~¥n’this paper we irovide}a brief descrip§ig§ of two popular
robust regression estimates, namely M- and ;{:estimates. &z reviews;
the available methods for estimating the asymptotic covariance .\
matrices of each of these estimates. In the case of M-estimates, we N
show,pow to use MINITAB to compute the robust estimates along with an
estimate of their asymptotic covariance matrix. Finally, the
different robust estimates and their estimated covariance matrices are

-

compared via an example. NS

2. Methods of estimating the asymptotic covariance matrices of

robust regression estimates.
Consider the linear regression model specified by
R RN

where !T z (Yl,Yz,...,Yn), X is an nx{p+l) full rank matrix

of known constants, gT = (ﬁo,ﬁl,...,ﬂp) a vector of unknown
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parameters, and ET = (tl,tz,...,zn) a vector of i.i.d. random errors
from a distribution with median 0 and density f.

2.1. M-estimates.

Throughout this section we shall assume that the distribution

of the random errors is symmetric.

An M-estimate is defined as the solution g“ of the vector of
estimating equations

n
ifln(fi’ri)ﬁi =0 (1)

T

i g and §iT is the ith row of X. We will

w .2y, =)
here r; Yi

¢

consider only n(x,r) functions of the form

nx,r) = VY GTET) (2)

where o is a scale factor that may be estimated from the data,

vix) is a nonnegative weight function, and

t if |t}<c
ch(t) = . _
csign(t) if |t)>e

which is known as Huber’s ¥ function. This form of nix,r), for
the special case with v(gi) z l-hi, h-1 the leverage of Xj» was

proposed in Handschin, Schweppe, Kohlas and Fiechter (1975) and is
referred to as Schweppe’s form. It is discussed by Hampel (1978,
Section 6} where he says that this is the most intuitive way to
bound influence in both the residual and design space. Huber

{1981, Section 7.9) recommends this choice for n, and again, in

Huber (1983, Section 6), he reaffirms this recommendation. If we

AT AT AN R s -'-.... ORI S I PO Y > ‘_.-..\-..\-.. ...~_..--'

. ‘o )




take v(x) ® 1, we get Huber's M-estimate which has unbounded

influence in the design points. If, in addition, we specify a
large value for ¢, the resulting estimate is essentially least
squares. For a more complete description of M-estimates see
Hampel et al (1986, Chapter 6) and Hettmansperger (1987).

The following form of n{x,r) can be used in a weighted

least squares algorithm to compute ﬁM

nix,r) = wix,rir/o (3)

where

w(x,r}

~

min{l,cov(x}/{r|}.
In the Appendix, for a particular choice of vix), we give the
MINITAB commands to compute a l-step version of EM using weighted

least squares to solve (1) with weights given by (3).
Maronna and Yohai (1981) show, under mild regularity

conditions, that nl/z(ém-g) is asymptotically normal with mean Q

and covariance matrix U = M'IQM'l where

Moz 3 Elutem) = B volghreu)
2 T 2 ré T
Q = E[n(x,r)xx"] = E[w(x,r) 5 xx"]
(2]
| dy_(t) 1 if |t|sc
¥o(t) = =
¢ dt 0 if |t|>c.

Obvious estimates of M and Q are given by

M=

and




T

respectively, where rLTY X EM‘ Thus the asymptotic

covariance matrix of EM' VM H n'lU can be estimated by

-~

Vy = (n/(n-p-1)in~tu"lquL,
The bias correction factor n/(n-p-1) was recommended by Huber
(1981, page 173) and is there to recapture the classical formula

in the least squares case (v(x) ® 1 and ¢ = =). If we let d-1 H

ri/{ov(§i)} and w, = w(§i,ri) then V is given by

e >

, Ty-1p § .2, 2
—__—T [ Z W (di)xx; 17 [1§1" i %i¥%i v
I3 T'l
[iflvc (dirxix; ]
To implement éM the user has to decide on vix), o and c.

Welsch (1980) proposed the following choices for v(x) and o s

vix)

o= 34

where h-1 is the leverage of Xy defined to be the ith diagonal

element from the least squares projection matrix and S(i) is K
1)
the root mean square error from the least squares fit with the »
ith case deleted. These choices can be motivated as follows. R
First notice that in this case ;
- - _ 1/2

d-1 = DFITS-1 = ti[hi/(l hi)l !

where ti is the ith studentized or t-residual and is given by
ti H ri/{s(i)(l-hi)l/z). The value d-1 is also a measure of the K
standardized change in the least squares fit when the ith case is .
®
A
A
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deleted. It is therefore an important diagnostic quantity for

determining cases with large influence on the least squares fit.
Referring back to (3), we see that as long as |di| € ¢ the ith
case is not downweighted in the robust fit; otherwise, it is
downweighted in proportion to the excess of Idil over ¢, For
the choice of c, we take

¢ = 2((p+1)/n11/2
as recommended by Belsley, Kuh and Welsch (1980, page 28) for
diagnostic purposes in conjunction with least squares,

In the Appendix, we present the MINITAB commands to compute

-~ A

QM and VM based on the above choices of vix), o and c. Computing

A

VM using MINITAB can be made easier by reexpressing V. First

n
recall that .zlaiEiEiT = X'AX where A is a diagonal matrix
1=

with diagonal elements ByreeesBp. Then letting D1 = diagonal

2

(¥o (dy)seey ¥, (dy)} and D, = diagonal (wlzrlz,...,wn

2
T, } we can

reexpress V“ as

A~

- n ’ -1 -’ ’ "1

2.2. £1-estimates.

The ll-estimate ézl ig defined as the value of g that
minimizes

n
Z Iy - ou el

i=1

For a review of the historical development of ll-estimates the

3

reader is referred to Bloomfield and Steiger (1983).

PR

Bassett and Koenker (1978) show, under mild regularity
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f

conditions, that nl/z(ézl-g) is asymptotically normal with

mean Q and covariance matrix U = '1'2()(’){)'1 where = = 1/{2f(0)}.

The problem of estimating = has been, extensively and
almost exclusively, studied in the one-sample location model
setting, which occurs when p = 0 and X consists of a column of
ones. We now review the results from this setting. Let
Y(l) < Y(Z) < ... < Y(n) denote the order statistics and é the
sample median of Yl' Y2’ ey Yn.

For the case that n is odd (i.e. n=2m+l), Maritz and

Jarrett (1978) and Efron (1979) independently proposed the

following estimator of 72
72 -n[zw -{zwv 12)
TMJE (1) (i)
where
. i/n
W,z —B g u®(1-u) Bdu.
1 (m!')¢ “(i-1)/n

The following related estimate was proposed by Sheather (1986)

22 2 _ 3wy 2
Te T n(lzlwlY(l) {ifl i (1)} ] (4)
where
. n
who- J(L:%Lz)/kglJ(K:%LZ)
and

J(u) = ?—ﬂff um(l-u)m.
o!

Under the conditions that f is positive and continuous in a
neighborhood of 0 and E[log(1+|:1|] < =, Babu (1986) has shown

2

that TaJE + 7% almost surely as n -+ =,

In a large Monte Carlo study, Sheather and Mckean (1987)

*‘iq"\f‘- 'q"- ISUS \"- . \h o $"*1 “.,\,\ " '. S ‘& ‘. “.‘. " {'--.\('-"',r-'- \¢

Aty el s




compared various estimates of v in terms of their ability to

studentize é. They found both ;ﬁJE and ;2

s performed well

with little difference between thenm.
The other estimator of = that performed well in the Monte
Carlo study of Sheather and McKean (1987) was first proposed

by Siddiqui (1960). This estimator of + is given by

Ta * MY (ny21+d) T Y([ns2)-de1)!/ (4d)
where d = o(n). Bloch and Gastwirth (1968) found that the value
of d that minimized the first order term in the mean square error

4/5)

is O(n . In another Monte Carlo study, McKean and Schrader

(1984) found that the tests resulting from studentizing é by

- o 1/2

T4/n with d = 0(n4/5) were very liberal. Following a proposal
d

by Lehmann (1863), McKean and Schrader {(1984) found that

d = O(nl/z) was an improvement over d = 0(n4/5).

Recently, Hall
and Sheather (1987) have developed an edgeworth expansion for the
studentized version of é. They found that the value of d that
minimizes the first order correction term in this expansion is
0(n2/3). Unfortunately, the constant involved depends on the
underlying density in a complicated manner, making it difficult to
estimate in practice. A number of other estimators of T exist.
For a review of such estimators in the one-sample setting see
Sheather (1987).

We now return to the more general problem of estimating =

based on the residuals ryoTy - grgzl. Since p + | of these

residuals will be exactly zero, Mckean and Schrader {1987), following

a suggestion by Hill and Holland (1977}, suggest that these zero

B8 8 v e

MUK
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residuals be eliminated when estimating r. Let n* = n-p-1 and rtl) <

rtz) < ... g rtnt-p-l) denote the ordered remaining residuals. Then
we recommend the estimate of Sheather (1986) given by (4) with Y(l)
replaced by r?i) and n replaced by nt. The resulting estimate of the
asymptotic covariance matrix of Ell' V[ = n'IU is given by

Ve = (n/(n-p-1ypn~ 2o ) 7
1

where again the factor n/(n-p-l) acts as a bias correction.
3. Example.

The data in Table 1 are taken from Simkin (1978) and are annual
rates of growth of average prices in the main cities of Free China
from 1940 to 1946. In this example, interest is clearly in the rate
of change of the growth in prices which corresponds to Bl in the

model below.

Table 1

-g-

Year(x) 10 41 42 43 14 15 16

Growth of prices(y) 1.62 1.63 1.90 2.64 2.05 2.13 1.94

We considered the simple linear regression model

Vi 2 Bt Bpxy + gy
and calculated a one-step version of the M-estimate of ﬂl(&l“)

proposed by Welsch (1980) along with the Zl-estimate of ﬁl(&lzl).

These appear in Table 2 along with estimates of their standard error.



The standard error estimates denoted by ;e(;lM) and ;e(ﬂlll) were

obtained by taking the square root of the second diagonal element of

VM and Vzl. respectively. As a check on the accuracy of these

estimates, we also calculated estimates of the standard errors of ﬁlM

and ﬁlll using the bootstrap. A description of the bootstrap

algorithm as 1t is applied to residuals in the regression setting can

be found in Efron and Tibshirani (1986). In the case of

Zl-estimates. the bootstrap algorithm was applied to the five
residuals that remained after the two that were identically zero were
eliminated. For the M- and ll—estimates, 601 and 1000 repetiticas of
the bootstrap algorithm were performed, respectively. The standard

N

error estimates seB(ﬁl“) and Se‘ﬂlll) were each calculated as 0.

7

5
times the interquartile range of the bootstrap estimates of ﬁl. This
function of the interquartile range was used in preference to the
standard deviation because both histograms of bootstrap estimates,
although normal in shape, had many more outliers than one would
expect from a normal distribution. Note for both the M- and
Zl—estimate of £ the close agreement between the estimates of
standard error obtained from C and the bootstrap. For the purposes
of comparison we also report in Table 2 the least squares estimate

of Bl(&ILS) and its estimated standard error. The efficiency gain

by using the M- or Zl—estimate of Bl instead of the least squares

estimate is quite striking.
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Table 2 :
L
By = 0.075 plll = 0.102 BlLs = 0.075 N
~ A - -~ ~ _ - » = 0.063
se(ﬁlM) = 0,033 se(ﬁltl) = 0,049 se(ﬂlLS)
SeB(le) - 0.033 seB(ﬂl[l) = 0-045
Appendix :
Least Squares:
NAME ‘Y’, ’X1l’, ..., 'XP’, ‘SRI’, 'YHI’, 'TR’, 'DF’, 'HI"
REGR 'Y’ on p in "X1°, ..., "XP’, put std resids in "SRI", fit
in ‘YH1":
TRESIDS in ‘TR’ :
DFITS in 'DF’; .
HI in "HI'. A
PRINT 'Y’ °X1° ... "XP’ 'YHI' 'TR" 'DF’ 'HIl’ ~
PLOT 'TR’ vs 'YH1’ :
Robust: .
NAME ‘WEL’ ‘W’ ‘RESIDS’ °"SR2’ 'YH2’ :
LET K1 = 2%SQRT((p+l)/n)) :
LET 'WEL’ = K1/ABSO(’'DF’) :
RMIN 1 ‘WEL’ into 'W’ \
REGR "Y' on p in 'X!1" ... "XP' "SR2’ 'YH2": ,
WEIGHTS in "W’ ; K
RESIDS in 'RESIDS’. -
PRINT "Y' 'YH2' ‘W’
AVERAGE 'W’
v ;
NAME ‘DIFF’ ‘IND’ 'WT’ .
LET 'DIFF’ = K1 - ABSO(’'DF') X
LET ‘IND’ = .5%(SIGN({ DIFF’ )+1) ;I(dl)
REGR "Y' on p in 'XI° ... "XP':
WEIGHTS in ‘ IND';
XPXINV in MI. (x'olx»‘l
LET "WT' = ('W $82)%( RESIDS’ 332) Wt




REGR 'Y' on p in '
WEIGHTS 1n "WT",
XPXINV M2.

INVERSE M2 1nto M3
MULT M! by M3 into

MULT M4 by M! into
LET K2 = n/(n-p-1}

MULT K2 by M3 into
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