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Abstract

In this paper we provide a review of the available

methods for estimating the standard error of M- and

El-estimates in regression. In the case of U-estimates,

we show how to use MINITAB to compute these estimates along

with estimates of their standard errors.

Key words: M-estimate, FX1-estimate, robust regression, standard

error, bootstrap.
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1. Introduction

Over the last two decades there has been much interest

in the statistical literature in alternative methods to least

squares for fitting equations to data. During this time a large

number of estimates of regression coefficients have been proposed

that are not unduly affected by a small percentage of the data

(so-called robust estimates). Although the robustness properties of

these estimates have been studied in great detail, little attention

has been paid to the problem of estimating the asymptotic covariance

matrices of these estimates. Such estimates are necessary if

inferences are to be made about the unknown regression parameters.

%-I4tr this paper ie providea brief description of two popular

robust regression estimates, namely M- and tt-estimates. A4 review7

the available methods for estimating the asymptotic covariance

matrices of each of these estimates. In the case of M-estimates,-we

show, ow to use MINITAB to compute the robust estimates along with an

estimate of their asymptotic covariance matrix. Finally, the

different robust estimates and their estimated covariance matrices are

compared via an example.

2. Methods of estimating the asymptotic covariance matrices of

robust regression estimates.

Consider the linear regression model specified by

Y =XP? +

where YT (yy ,.,Yn), X is an nx(p+l) full rank matrix

of known constants, T = (flopil...,Ip) a vector of unknown

~ ~ .
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parameters, and = a vector of i.i.d. random errors

from a distribution with median 0 and density f.

2.1. M-estimates.

Throughout this section we shall assume that the distribution

of the random errors is symmetric.

An M-estimate is defined as the solution P, of the vector of

estimating equations

n
Z 1(xi,ri)x : 0 (1)

e i i -1T T
where r6 Y1 - and xi is the ith row of X. We will

consider only n(x,r) functions of the form

n(x,r) = vi)%c(v ( ) (2)

where a is a scale factor that may be estimated from the data,

v(x) is a nonnegative weight function, and

t if ItIsc
Ct) csign(t if Itl>c

which is known as Huber's W function. This form of n(x,r), for

the special case with v(xi) = I-hi, hi the leverage of xi, was

proposed in Handschin, Schweppe, Kohlas and Fiechter (1975) and is

referred to as Schweppe's form. It is discussed by Hampel (1978,

Section 6) where he says that this is the most intuitive way to

bound influence in both the residual and design space. Huber

(1981, Section 7.9) recommends this choice for n, and again, in

Huber (1983, Section 6), he reaffirms this recommendation. If we

t Dh qI
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take v(x) a 1, we get Huber's M-estimate which has unbounded

influence in the design points. If, in addition, we specify a

large value for c, the resulting estimate is essentially least

squares. For a more complete description of M-estimates see

Hampel et al (1986, Chapter 6) and Hettmansperger (1987).

The following form of n(x,r) can be used in a weighted

least squares algorithm to compute PM

n(x,r) = w(x,r)r/o (3)

where

w(x,r) = min(l,cav(x)/IrI).

In the Appendix, for a particular choice of v(x), we give the

MINITAB commands to compute a 1-step version of tM using weighted

least squares to solve (1) with weights given by (3).

Maronna and Yohai (1981) show, under mild regularity

conditions, that n 2 (M-) is asymptotically normal with mean 0

and covariance matrix U = M-IQM- l where

M = r Evi x,r)] E- I o)) r E_ xx ]T

r2

E[n 2 (x,r)xxT] E[w 2 (x,r) r2 xxT

d'c(t) I 1 if ItISc

c 0 if ItI>c.

Obvious estimates of M and Q are given by

n 'xiri}iT
__ E ____I Tno i: c

and
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I n w2 (prri2xiT
ncJ j7

respectively, where ri : Xi - xT .. Thus the asymptotic

covariance matrix of M' VM n-lU can be estimated by

V M =n/(n-P-1))n- M- QM- '

The bias correction factor n/(n-p-1) was recommended by Huber

(1981, page 173) and is there to recapture the classical formula

in the least squares case (v(x) a 1 and c = -). If we let d,

ri/lov~xi)} and wi = w(xi,r i ) then V is given by
^_ n n T ] - I n 22 T]

VM -np---i [ 1(dixiI [ w. 2r. 2xx .
n l 1-1 1 1 i

n T -1
[ 11c'(di) i ]i I

To implement M the user has to decide on v(x), a and c.

Welsch (1980) proposed the following choices for v(x) and a

v(x) (1-hi)/v5i

a S(i)

where h. is the leverage of xi, defined to be the ith diagonal
i

element from the least squares projection matrix and SCi) is

the root mean square error from the least squares fit with the

ith case deleted. These choices can be motivated as follows.

First notice that in this case

di  = DFITSi  = tilhi,/(l-hil}
/2

where ti is the ith studentized or t-residual and is given by
1

ti=ri/Cs Ci) Cl-h) 1l/2). The value d, is also a measure of the :
standardized change in the least squares fit when the ith case is

%I
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deleted. It is therefore an important diagnostic quantity for

determining cases with large influence on the least squares fit.

Referring back to (3), we see that as long as Idil S c the ith

case is not downweighted in the robust fit; otherwise, it is

downweighted in proportion to the excess of Idil over c. For

the choice of c, we take

c = 2[(p+1)/nl
1 / 2

as recommended by Belsley, Kuh and Welsch (1980, page 28) for

diagnostic purposes in conjunction with least squares.

In the Appendix, we present the MINITAB commands to compute

and VM based on the above choices of v(x), a and c. Computing

VM using MINITAB can be made easier by reexpressing V. First

nT
recall that Z ax.x.T : X'AX where A is a diagonal matrix

i=1 i.1

with diagonal elements al,...an. Then letting D1 = diagonal

N d iagona 2 2 2 2
( c (dl ) .. c (dn)) and D2  diagonal w ...,wn r we can

reexpress VM as

.2. VM n= (X'D1X) (X'D2X)(X'DXF 
1 .

2.2. tl-estimates.

The El-estimate P. is defined as the value of P that

minimizes

For a review of the historical development of E1-estimates the

reader is referred to Bloomfield and Steiger (1983).

Bassett and Koenker (1978) show, under mild regularity

% .v.t ' . .<. - '. -.. .. . u ?. . . . v-: 2 - ... %2'.'o "."'. .
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conditions, that n1/2(ll-f) is asymptotically normal with

mean 0 and covariance matrix U = T2 (X'X) -1 where 7 = I/{2f(O)).

The problem of estimating r has been, extensively and

almost exclusively, studied in the one-sample location model

setting, which occurs when p = 0 and X consists of a column of

ones. We now review the results from this setting. Let

Y(1) : Y(2 ) 5 .. S Y (n) denote the order statistics and 0 the

sample median of Y1, Y2, .... Yn.

For the case that n is odd (i.e. n=2m+l), Maritz and

Jarrett (1978) and Efron (1979) independently proposed the

following estimator of 72

^2 n 2 n 2MJE = n[i1lW i Y (i) E 1i I W.iYI (i)I

where

,!2 i/n um(lu)mdu 'W) = (., li/n

The following related estimate was proposed by Sheather (1986)
,[n ,* 2 n n;2 : n { Z -Y E * (4 )s i~l IY i) i=l1 i

where

1 n k: -

and

J(u) - ) (l-u)

Under the conditions that f is positive and continuous in a

neighborhood of 0 and E[log(1+{ 11 < -, Babu (1986) has shown

that 72JE - -2 almost surely as n - '.

In a large Monte Carlo study, Sheather and McKe~n (1987)

%* %
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compared various estimates of 7 in terms of their ability to

studentize 0. They found both ,MJE and - performed well

with little difference between them.

The other estimator of r that performed well in the Monte

Carlo study of Sheather and McKean (1987) was first proposed

by Siddiqui (1960). This estimator of r is given by

d = n{Y([n/21+d) - Y [n/21-d+l)}/( 4d)

where d = o(n). Bloch and Gastwirth (1968) found that the value

of d that minimized the first order term in the mean square error

is 0(n4/5). In another Monte Carlo study, McKean and Schrader
(1984) found that the tests resulting from studentizing ; by

_3d/1/2 with d =0(n4 /5 ) were very liberal. Following a proposal

by Lehmann (1963), McKean and Schrader (1984) found that

d =0(n 1/2) was an improvement over d = 0(n4/5 ). Recently, Hall

and Sheather (1987) have developed an edgeworth expansion for the

studentized version of G. They found that the value of d that

minimizes the first order correction term in this expansion is

0(n2/3 ). Unfortunately, the constant involved depends on the

underlying density in a complicated manner, making it difficult to

estimate in practice. A number of other estimators of 7 exist.

For a review of such estimators in the one-sample setting see

Sheather (1987).

We now return to the more general problem of estimating

based on the residuals ri = Yi - Since p + I of these

residuals will be exactly zero, McKean and Schrader 11987), following

a suggestion by Hill and Holland (1977), suggest that these zero

f S
B1
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residuals be eliminated when estimating r. Let n n-p-I and r11 <
$$r (2) - ... r(n$_p) denote the ordered remaining residuals. Then

we recommend the estimate of Sheather (1986) given by (4) with Y(i)
$ $

replaced by r(i) and n replaced by n The resulting estimate of the

asymptotic covariance matrix of P , VI = n- U is given by

12 1
V t (n/(n-p-ll)n-I (X'X)-

where again the factor n/(n-p-1) acts as a bias correction.

3. Example.

The data in Table I are taken from Simkin (1978) and are annual

rates of growth of average prices in the main cities of Free China

from 1940 to 1946. In this example, interest is clearly in the rate

of change of the growth in prices which corresponds to 01 in the

model below.

Table I

Year(x) 40 41 42 43 44 45 46

Growth of prices(y) 1.62 1.63 1.90 2.64 2.05 2.13 1.94

We considered the simple linear regression model

Yi = P0 + flXi +  
1i

and calculated a one-step version of the M-estimate of fll(fliM)

proposed by Welsch (1980) along with the t1-estimate of l(fi~ ).

These appear in Table 2 along with estimates of their standard error.

% %
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The standard error estimates denoted by se(flM) and se(lit1 ) were1

obtained by taking the square root of the second diagonal element of
and Vtfl respectively. As a check on the accuracy of these

estimates, we also calculated estimates of the standard errors of PM

and fl, using the bootstrap. A description of the bootstrap

algorithm as it is applied to residuals in the regression setting can

be found in Efron and Tibshirani (1986). In the case of

R1-estimates, the bootstrap algorithm was applied to the five

residuals that remained after the two that were identically zero were

eliminated. For the M- and tl-estimates, 601 and 1000 repetiticas of

the bootstrap algorithm were performed, respectively. The standard

error estimates seB(#iM) and se(fl? ) were each calculated as 0.75

times the interquartile range of the bootstrap estimates of #l. This

function of the interquartile range was used in preference to the

standard deviation because both histograms of bootstrap estimates,

although normal in shape, had many more outliers than one would

expect from a normal distribution. Note for both the M- and

ke-estimate of Pl the close agreement between the estimates of

standard error obtained from V and the bootstrap. For the purposes

of comparison we also report in Table 2 the least squares estimate

of lflILS) and its estimated standard error. The efficiency gain

by using the M- or t I-estimate of 91 instead of the least squares

estimate is quite striking.



Table 2

j6IM 0.075 Pt 0.102 PILs =0.075

= 0.063
se(film) 0.033 se(#It ) 0.049e#IS

se B(ftlM) 0.033 seB(flit ) 0.045

Appendix

Least Squares:

NAME 'Y', 'XIl.. .... .'XP', 'SRI', 'YHI', 'TR', 'DF', 'HI'

REGR 'Y' on p in 'XI', ... , 'XP', put std resids in 'SRI', fit

in 'YH1';

TRESIDS in 'TR;

DFITS in 'DF';

HI in 'HI'.

PRINT 'Y' 'XI' ... 'XP' 'YHI ''TR' 'DF' 'HI'

PLOT 'TR' vs 'YH1'

Robust:

NAME 'WEL' 'W' 'RESIDS' 'SR2' 'YH2'

LET KI = 2*SQRT((p+l)/nh)

LET 'WEL' =Kl/ABSO('DF')

RMIN I 'WEL' into 'W'

REGR 'Y' on p in 'XI' ... 'XP' 'SR2' 'YH'2'

WEIGHTS in 'W';

RESIDS in 'RESIDS'.

PRINT 'Y' 'YH2' 'W'

AVERAGE 'W'

V:

NAME 'DIFF' 'IND' 'WT'

LET 'DIFF' =KI - ABSO('DF')

LET 'IND' = .5*(SIGN('DIFF',+I) j(
REGR 'Y' on p in 'X1' ... X ;

WEIGHTS in ' IND';

XPXINV in MI. (Vlk-

LET 'WT' = 1W'**2)2f'RESIDS'**2) 
,r

a.S
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REGR 'Y' on p in 'Xl' ... 'XP';

WEIGHTS in 'WT' ;

XPXIV M2. (X' D2X)-

INVERSE M2 into 43

MULT 1 by M3 into N4

MULT M4 by MI into M5 M-IWM-

LET K2 = n/(n-p-l)

MLLT K2 by M5 into M6
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