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1. INTRODUCTION

For low-frequency (LF) cases of nighttime propagation, an elevated antenna, or
distances close to the transmitter, the propagation constants for a large number of modes
must be found to adequately represent the fields in the earth-ionosphere waveguide. Most
of the cost in using MODESRCH (Morfitt and Shellman, 1976) to obtain these mode con-
stants has been in performing full-wave integrations to obtain the reflection matrix, R. Until
recently it was necessary to carry out several full-wave integrations for _!_l_ and its deri-
vative with respect to the angle of incidence, 6, for each waveguide mode.

A means of using interpolated values of R is obtained in MODESRCH. The full-
wave solutions are found at the four corners of each of a number of rectangles, and approx-
imate values of elements of R are found using a third-order interpolation. The functional
forms of the elements of R are sufficiently complicated, however, that they cannot be
adequately approximated by the interpolation except for use in finding preliminary values
used internally in MODESRCH.

It was perceived that some of the nonlinear variation of elements of R, especially
in the LF range, might be due to interference of waves reflected from two fairly distinct
complex altitudes. The relative phases of reflections from the two altitudes depend strongly
on the angle of incidence, 8. The approach taken in the formulation described in sections II
and 111 is to separate the retlection coefficients into ordinary and extraordinary components
at a height that is below most of the ionization. Since neither component is expected to
vanish, the complex logs of the elements of the magnetoionic reflection matrix may be used
in the interpolation.

At each branch point there is an ambiguity in separating the ordinary and extra-
ordinary components. A formulation for locating these points in the 8-plane is described
in section IV. Near a branch point the elements of R are used as in MODESRCH.

There is an ambiguity in the relative number of whole cycles in the complex logs of
the magnetoionic reflection coefficients at the four corners of the seurch rectangle. (figure 1).
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Figure 1. Search area.
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This is resolved by choosing the numbers of cycles so as to minimize the magnitudes of the i
second- and third-order coefficients of the interpolation series. The formulation for obtain- '
\ ing the coefficients and for making the test is described in section V. )

| An example of use of the formulation presented in this report is given in section VIL
l The frequency used is 60 kHz, and a nighttime ionosphere model is used.
|

‘ Il. MAGNETOIONIC COMPONENTS
|
|

Decomposition of the reflection coefficients into ordinary and extraordinary com-
ponents requires the magnetoionic eigenvectors at a height, z4, that is below most of the
ionization, that is, in the limit of small values of electron density. Since an earth curvature
term is included in the full-wave solution for R, this term is also included in the form for

s~y

the eigenvectors.
The differential equation for the propagation of radio waves in the ionosphere, in :f
the vertical direction. is given by Budden (1961) as v
L]
¢ = -ikT¢ | (1)
where the elements of © are Ey. —Ey. . J(y. The matrix, T, is defined by Budden (1961) '
and .
. Ly f
1= (—l ) - )
K = wave number. [
The prime denotes differentiation with respect to height. z. '
Equation (1) may also be written as X
(
-, L e —
wo=-iklw
where the clements of w are labeled. in order. 'r(;' Ls 'KL\l and E(;. Also,
=17 1L
where .
| h
1 Al ] .
qp- 0 —/p- 0 ’
'
0 -1 0 -1 ¢
L= !
0 = 0 q
| 0 ] 0
and
-’ 1 M ~
q =(C=+c1° Reapy 0 -
C = co0
K¢
2 [
r
'h
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e = 2zq-h)r, ¥
p2 =1l+e y
h = reference height for earth curvature

fe = radius of the earth

zg = height at which magnetoionic components are evaluated y

The matrix, L, is defined in a way analogous to that of Budden (1961) but such that the

superscripts u and d refer to upgoing and downgoing waves, respectively, at the height K
- z = z4, where, in general, e # 0. The branch cut for q is shown in figure 2. :
.
qQ = [¢] )
8 = 90° : 8 = 90° R
l L]
1 - --- 00— ¥,
| qQq=0 q=0
! ]
q=0 A
Figure 2a. Branch cut for z4 > h. Figure 2b. Branch cut for 4 <h. J
{
At this height and with a vanishingly small value of electron density, the matrix T :
approaches being a diagonal matrix with elements q, q, -q, and —.q. Hence, the characteris- .
tic upgoing waves at z = z4 are uncoupled from the characteristic downgoing waves. How- .
ever. since for either upgoing or downgoing waves the two eigenvalues of T are the same ‘
(equal to q for upgoing waves and to —q for downgoing waves), it is necessary to consider p
the terms of T which are present for a very small, but otherwise negligible, value of electron .
density in order to determine the polarization of characteristic waves at the bottom of the 3
A
ionosphere model. For this purpose only the upper left 2 X 2 submatrix of T and the lower .
right 2 X 2 submatrix of I are needed. These are used in the pair of matrix equatlons '
W: — :I‘. d ::
ud - -lK ~udwl.ld N ‘.
R
where
’-Ky K
- _ L)
Wud = :
»
E, \
y ud

<
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where the subscript ud refers to there being two sets of variables, one for upgoing waves
and one for downgoing waves.

To form the matrices T 4. the susceptibility matrix for very small values of electron
density is needed. This may be written

-G-1/G -n-¢mG m-¢nG
M= CM n-¢mG —m-G-1 /G -£-mnG ’
-m-¢nG ¢-mnG -n2G-1 /G
where
Cy = IX/[UTY(UT - Y] -
G =YNZ+D
X = normalized clectron density
Y = normalized magnetic field strength
Z =rvw
v = collision frequency
w = angular wave frequency
U= 1-1/
L = smbdcosa
m o = osin d sin o
n = -cosd
& = codip angts
o = aamuth of propagation measured east of north

Note that the value of v must correspond to the height, 74+ which is below most of the ioni-
sation. For MODESRCH. the reference height, b, tor earth curvature has usually been taken
to be 30 km. but it muay be set to the height of the base of the ionosphere or to some other
height., Then

Stm 4+ G p: St - mn(})‘p: 0 Iy
0 0 1 0
L=0n :
~(n - ‘@) Q- m-G - 1/G 0 -S(¢ + mn(})/p2
PG G nt+ G V] —S(m—n&’(;)rp: .
where

Flg = (Q-07G = 1/G)p= + g (n G+ LiGyp*
S o
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P = p2/CM
Q = q?/Cy
Finally,
r-B2G ~A + mBG)p2
_T_ = CT
A - mBG - m2p2G
where

Cr = tudCM/(quz)
A = €8 t,dna
B = -nS* 4%
I = pX2Q-1/G)

tad = for upgoing waves
- for downgoing waves

The condition for determining eigenvalues and vectors is then

-B2G-\ ~(A + mBG)p? Xy 0

= - (2)
709
A - mBG -m~-p-G - A Ey 0

The eigenvalues are found from a solution of the characteristic equation
3 3 3N A
A= +(B-+m-p-)GA + A-p- =

Using the first row of the matrix in (2). the eigenvectors at the base of the iono-
sphere for either upgoing or downgoing waves are then given by

Hy

() _
Eud -

where
Hyp=2A+ mBG)p=

l)] =W t()cg'
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and where
W= (mzp2 - BZ)G
¢ =182+ m2phH2G2-aap?) (3)

It is the choice of the sign t ,, associated with { that distinguishes the “ordinary’’ waves
from the “extraordinary” waves.

Using the second row of the matrix in (2), the matrix of eigenvectors may also
be written

w-¢ W+t
-(2) _
~ud
[,) o hy2
where
’7(_\’3 =W ¢
Evl = 2(A -mBG)

. “ . . . - .
Neither E{xld) nor E(u:l) is in normalized torm. However, it can be seen that the two
column vectors are given in the same order in the two matrices by noting that

b 3y
S”:W“—J(y] Ey:

The torm that is most managcdhk is derived by using the left column vector of E“) and the
right column vector of b ‘a’ and normalizing the matrix so that the determinant is equal to
unity. This results in

Lud = l‘:f‘w*f)]‘:

Wt by o

where the sign ot the square root, representing the value of £ in (3). is chosen so that the
sum W + ¢ has the larger magnitude in any one search rectangle. The eigenvector matrix,

E 4 is singular for values of 6 for which ¢ = 0. that is, for which ordinary waves cannot

be distinguished from extraordinary waves. Although not singular, it is not well conditioned
for Jarge collision frequency when the propagation is cast-west at the equator.

Note that for a small value ot G that is. tor a large value of collision frequency at
the height 7 but not for cast-west propagation at the cquator, the matrix of eigenvectors
1S approximated by

)

- % %) - “a
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p i
]
: X VAR
Eud (large v)
1 p’l .
'
representing nearly circularly polarized characteristic waves.
For cast-west propagation at the equator, £ = n = 0. In this case Eud becomes g
0 1 !
Eud (equator east-west) = X
i 0 .
»
4
The left eigenvector corresponds to ordinary waves since. for this case. H, = 0. For extra- D
ordinary waves b= 0 for cast-west propagation at the equator (Budden, 1961). ’
»
IIl. REFLECTION COEFFICIENTS "
Once the matrices of eigenvectors \l';u and f:d are known, the elements of Eoe may _
he found trom those of R and vice versa. The reflection matrix. R, is as defined by Budden :
(19611, If the first columns of b und Ejy correspond to ordinary waves, then RO is of the ,
torm b
.
|
“ R(m Rm‘ -
ROC = ,
| ~ A
| R(\L‘ RL‘C
‘ U
where the first subscript refers to the polarization ot the upgoing waves and the second 5
subsceript reters to that of the downgoing waves.
Matrices U und DO are used to define upgoing and downgoing waves, respec- N
tively. where the elements of the first row of cach represent values of Hy and the elements N
ot the second row of cach represent values of B The first columns of goc and Q‘)e cor- i
respond to the condition that. for the upgoing wave. K, = 1 and Lk = 0, and the second N
columns correspond to the condition that. for the upgoing waves, Hy. = 0 uand k. = 1. Then
Lov = -1 *)
~ ~U -
DO¢ = E5'R ;
and @
)
ROt = po¢ (Uoc)-l - F‘l RE R
= ~ ~ ~d ~=uw N
The values are used in the interpolation scheme as *“‘given™ values at the upper corners of :
each search rectangle, p
r.
'
¢
L
R
™
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Approximate values of the elements of Eoe found by interpolation must be trans-
formed to values of elements of R. The first step is to form

U=E,
D=E4 R

The elements of the first rows of g and Q represent values of JCy, and the elements of the
second row of each represent values of E,,. The first columns of U and D correspond to the
condition that the upgoing wave is ordinary, and the second columns of Uand D correspond
to the condition that the upgoing wave is extraordinary, if the first columns of E ; and E
correspond to ordinary waves. Then

R=DU™ = £y RO KL

Two effective complex heights of retlection may be found by considering that the
diagonal clements. 1. of R would be expected to vary as

drk/d(‘ = ZiK(hk ALY

where rp = R0 12 = R... 2 is the height at which Boe is defined, and « is the wave num-
ber. Then the effective heights of reflection are given by

hy = 7q + {d[W(r )} /dC}/(2ik)

It would be expected that the ordinary wave is reflected from the upper height (Budden,
1961) and that the reflection from this height is the stronger of the two.

IV. BRANCH POINTS

Fhe reflection matrix R cannot be resolved into ordinary and extraordinary com-
ponents ut points in the complex 8-plane where the argument of the square root. which is
the expression tor & vanishes. Near these points the reflection matrix R must be used in the
search for the waveguide eigenangles without a transtormation to the ROt form.

The expression (3) tor § in section I may be written
N BN
C=M,0) ¢
where
. 3 hl hl .
t, =(B-+m-p~); + 2Ap

and where Retp) > 0. There is a branch point at each value of 6 for which either f, or f_
vanishes. This pair of conditions vields

.= Ip‘j—(k‘Si + ny; )3I G _‘plkSi + g, = 0 . (4)

-

AR A

AR RS



¢
0
for which a partial solution is
2% : -
(£S; +ng;) = t; = p (1.0 £ (1 +G)?]/G i=1,2
= -p[10:t(1+GHAG  i=34 , -
where
Y1
S;=(?-af)®  Re(S)>0.
Note that the £ 4 sign has been omitted so that values of q for both upgoing and downgo- ‘
ing waves are included in (4). The values of q at the branch points are then the solutions to ;
f; = ;- (€S, -nq) =0 } i
The solutions for € = 0 are q; = t;/n. For daytime ionosphere models. G is small at :
the base of the ionosphere model since Z >> Y. In the limit of large collision frequency.
G - 0. and the two solutions are q; = 0, . For this case. then, there are branch points at
8 = cos “litie' %). These are usually within about 10 deg of the 90-deg point in the 8-plane.
The solutions for a nonzero given value of €, which is a function of the given values i
of codip and azimuth of propagation, are found by solving (5) for successively larger values
of €. Use is made of the derivatives
dfl/dql =n- qu/Sl
Qe 2 , 22 )
d ti/dqi = —(Q/Si) (1 - q; "Si ),
For cach new value of €. the increment in q; is "
. RN SR !
A L1y i '-
= ooyl M otherwise
L)
where ,
~ N Cls 2 "
Yi= (dti/dqi)/(d'ti/dqi")
and where the sign is chosen that yields the smallest magnitude of Aq;. \
Fhe search is terminated when € becomes equal to its origimally specitied value.
Note that. with the condition Re(S) > 0. this viclds tour values ot g;. The branch points
are then given by
. = '1
6; = cos G
9 ,
e e N e e ey N N N N




where

SRS N
Cl"(ql_ﬁ) .

The sign of C; is chosen so that the real part of C; has the same sign as the real part of q;.
If the real part is positive, the branch point pertains to upgoing waves and to E,|. Otherwise
it pertains to downgoing waves and to E ;.
V. INTERPOLATION
The interpolation, within each rectangle, is based on the reflection coefficients

found from the fuil-wave solution at the corners of the rectangle. The four sets of reflection
coefficients provide for interpolation in the third-order form

R=R.+R.(O-00+R"(0-0.)72+R (0 -8.3/6

where 0 is the value of 8 at the center of the rectangle. The values of B,c and its derivatives
are considered to be in terms ot coetticients such that

Re™ &
R = aft

where tis a real number representing the tength in the 8 plane from the center of the
rectangle to any one of the corners.

For simplicity, the matrix notation is dropped at this point and the scalar vanables
are taken to retfer to any one of the tfour elements of the reflection matrix. The elements of
the coetticients are then given by

a9 = W3 (Rup + RER) - Ry + RLDIDY

ap = 103 (Ryp - R g) - dJ(RyR - Rp I /D)

a3 = |-(RypL + R R)+(RyRp + R I/D3

ay = 1=dsRyp =R gy +d(Rpp =Ry /D)
where

dy =0y -0 Mt==0 g -0/

\l: E 10[R -UL.Ll = - (()ll - {)C)‘[
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D, = 2d3 - d})
D, = 2d;do(d3 - dd).

The letter subscripts refer to the four corners of the rectangle (figure 1).

A measure of the adequacy of the interpolation series is needed so as to determine
which rectangles need to be subdivided into smaller rectangles. For this purpose the two
eigenvalues of the reflection matrix are used since it is inappropriate to require a close
relative tolerance on weak elements of the matrix. They are given by

Ry= {Ry| +Ryp * [(Ry] - Ryp)2 +4R Ry 1%}/2
For purposes of determining the adequacy of the interpolation series, the values of
the R, found from the elements of the reflection matrix obtained from the full-wave

solution are compared to the values of R, found from elements of a best-fit second-order
interpolation series. For this series a3 is set to 0, and ay is found from

(ap)Ls = [4](Ryp - RLR) +d5(RyR - R DI/(2(d7d) +d3dy)]

The measure of adequacy is then taken to be inverse to the largest of the eight values
ey = (R s - RYpwI /IRYLs + (RYpW]|
e_ = IR g - (RIpwl/I(RY g+ (RO)pw]!

at the four corners of the rectangle.

The same formulation for interpolation is used for the complex logs of the magneto-

ionic reflection coefficients. In the above equation R is then replaced by Qn(goe). However.

for the case of complex logs of reflection elements there is an ambiguity in cycles of phase
to be resolved. For this purpose it is noted that this phase ambiguity implies an ambiguity
in the value of the coefficient a3 such that its value might be different by

Aa3 = (dln] - dzﬂ:)Zﬂ'l/Dl

where n| and n are mteg__ers Those values of n| and n» are chosen for which a3y + Aajl
is the smallest. Then 2n( RUR) and Qn(RUL) are modified by

Qn(RUR)<-9Zn(R )+n121r1
en(RY), )*—Qn(RUL)+num

There is also an ambiguity in a7 such that the value of a5 might be different by

Aay = 4n1ri/02

b

where n is an mtegtr That value of n is chosen for which lay + Aa-»l is smallest. Then
Qn(R ) and Qn(RLL) are modified by

11
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Qn(R%eR) “« Qn(R%eR) + 2nmwi

Qn(R}’fL) - szn(R?fL) + 2nmi

V1. EIGENANGLE SEARCH USING TRIANGULAR MESH UNITS

The search scheme formerly used in MODESRCH has been replaced with an
algorithm using a mesh of equilateral triangles. A mesh of squares was used in the earlier
algorithm. The basic principles are the same in the two versions. The mesh of equilateral
triangles is used because it leads to simpler coding and because the function need only be
evaluated at three corners of each mesh unit considered rather than at four.

As with the earlier version, each of one or more lines of constant phase is followed
from one point on the perimeter of the search area to its point of exit, provided that any
such line passes through the search area. The lines are defined by the condition that
Im(F)=0.

The chosen rectangular search area is shown in figure 3 along with the triangular
mesh and hypothetical lines of Im(F) = 0. The search begins at the upper left corner of the
mesh pattern and proceeds counterclockwise around the perimeter of the pattern. A phase
line of Im(F) = 0 is detected by a change in sign of the Im(F). Note that on one side of the

Figure 3. Search rectangle and associated triangular mesh pattern shown with hypothetica! lines
of Re(F) = 0 and Im(F) = 0 and eigenangles.
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phase line Im(F) > 0 and on the other side Im(F) <0. Each triangle along the line is checked
for a line of Re(F) = 0 also passing through the triangle. Such a crossing of phase lines indi-
cates the presence of a zero of the function F, hence a waveguide eigenangle. A Newton
iteration is then used to locate the eigenangle in or near that triangle.

VII. EXAMPLE

The example given is that of a nighttime ionosphere model at a frequency of 60 kHz.
In terms of parameters used in MODESRCH the electron density is specified as § = 0.5,
h' = 87. The codip angle is 30 deg, and the geomagnetic azimuth of propagation is 35 deg
east of north. The full-wave integration was carried out over a height range of 97 to 77 km
altitude.

The elements of (R + 1)/C are listed in table 1. These are the variables that were used
in the previous version of MODESRCH for all search rectangles in the interpolation required
for approximate starting values of eigenangles. They are used in the present version only for

Table 1. Reflection coetficients.

o (11Ry + DIC 1R /C Rp/C (Rp+1C
88 11.887+i9.143 -2.274+i9.323 -634+i7.358 13.380-i15.865
86 11.280+i5.771 1.046+i5.148 1.498+i3.861 6.028-i7.086
84 9.948+i3.115 2.505+i2.021 2.353+i1.237 2.216-i0.907
82 8.488+i1.367 1.981-i0.525 1.631-i0.847 3.318+i3.994
80 7.197+i0.111 036-i1.258 -.277-i1.266 7.848+i3 892
78 5.684-i0.900 ~.805+i0.065 -910+i0.150 8.267-i1.395
76 3.958-i1.058 .172+i0.684 168+i0.759 3.385-i3.183
74 2.859-i0.383 717-i0.141 .764-10.125 754+i0.037
72 2.703+i0.305 -.038-i0.768 -0.32-i0.817 2 B58+i2 483
70 2.921+i0.355 -.771+i0.082 -.839-i0.072 5.094+i0.467
68 2.790+i0.065 -.200+i0.697 -.179+i0.802 3182-i1.052
66 2.452+i0.007 .573+i0.292 .729+i0.284 714-i0.653
64 2.317+i0.096 .336-i0.447 373-i0.652 1.491+i1.521
62 2.302-i0.014 -.345-i0.336 -.579-i0.438 3.454+i0.856
60 2.049-i0.222 ~.3154i0.265 -490+i0.503 2.903-11.150
SR 1.665-i0.139 .200+i0.292 415+i0.545 940-10.978
56 1.569+i0.167 .275-i0.150 .608-i0.312 .747+i0.707
54 1.782+i0.263 -.111-i0.265 -.188-i0.668 2.169+i1.053
52 1.890+i0.009 -.262+i0.072 -.705+i0.032 2.649-10.247
50 1.647-10238 .023+i0.259 -.156+i0.699 1.530-i0.969
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some selected rectangles and for very low ionosphere models. In table 2 are listed the values
of the natural logs of the elements of the magnetoionic reflection coefficients. These vari-
ables are used for the interpolation used in the newer version of MODESRCH for most
search rectangles.

Table 3 shows the magnitudes and phase values of the magnetoionic reflection
matrices at ‘‘given’” points on the real §-axis. These points are at 2-deg intervals from 50 to
88 deg. Note that [,R,[ (upper left element) is much larger than [«Rq! (lower left element)
for all values of 6 and that | R, i (lower right element) is larger than loRe! for the stronger
modes. This indicates that reflection is principally from two distinct complex heights.
These effective heights are also listed in table 3.

Propagation parameters from the previous version of MODESRCH for the highest
b 44 modes are listed in table 4. In table § are given the propagation parameters from the
newer version of MODESRCH. The cigenangles agree to £0.001 deg. The agreement for
attenuation, phase velocity, excitation factor, and polarization is also more than adequate.

T

Table 2. Complex logs of magnetoionic reflection coefficients.

0 eRe (’RU ORC ORO

88 -.215+i30.182 -2.743+4i27.490 -2017+17.119 -.554+i20.463
86 -.199+{29.487 -2.7114i26.831 -2.063+4i16.672 -.656+i20.178
84 -.173+i28.525 -2.651+i25.860 -2.204+i16.050 -.806+i19.765
82 -.147i+27.399 -2.546+i24.694 -2.498+i15.333 ~.992+i19.259
80 -.128+i26.156 -2418+i23.421 -3.046+114.624 -1.206+i18.677
7R - 1144124 822 -2.303+122 0068 -3.066+114 426 -1.436+i18.021
76 -.097+i23.428 =2 1954120637 -3.599+114. 726 -1.659+i17.288
4 - 07521 998 ~20610119 161 -3 1034113892 -1 845+i16.477
72 -.050+120.549 -1 908+11 7 6KY S2RATHI2KLG -1.9754115 611
70 - 0274119091 17004116226 27094111 T4 20634114724
OR -0024117.026 -1 639n 14 78 26834110642 -2 1824113 841
66 Oiltqilo ol 1802813270 -2 RINH 65K -2.286+11 2957
64 073414713 -1 3400 ] 8ol ERNE LR AP I F . -2 490412067
62 1234113.295 -1.184+i10.376 S3 524K 327 -2.747+i11.162
60 1764111921 -1.032+i8 989 339241797 -3.015+4i10.235
S 2164110 6007 SURTVAR SIS & RIOITEC TR ) S3 JUSH9 3]
So 203019 350 S RE LTI R SRS LTI 33008447
54 130+i8.110 - TBINS 01T 24564154203 -3 1R7+417 584
52 027416 .868 - I8243.697 -2.468014 519 -3.124+i6.677
S0 - O8O+ 15 632 S TN AN S 03043 SN -3 100415 690




Table 3. Magnitude and phase of magnetoionic reflection coefficients and
apparent complex heights of reflection.

0 = 88°
807 133 -70.7° -99.2° 82.80+i0.11
064 .575 135.1° 92.4° 79.32-i0.83 '
0 =86°
820 127 -110.5° -124.8° 88.74+i0.25
066 519 97.3° 76.1° 81.07-i1.47 o
0 =84 o
841 110 -165.7° -160.4° 89.08+i0.31
071 447 41.6° 52.5° 8§2.31-i1.94
6=82°
.863 .082 129.9° 158.5° 90.68+i0.26 X
078 371 -25.2° 23.5° 83.27-i2.32 X
[)
0 =80°
880 048 58.6° 117.9° 91.96+i0.18
.089 1299 -98.1° -9.9° 84.16-i2.60 !
6=78 .
893 019 -17.8° 106.5° 92.96+i0.17 ;
.100 238 -175.6° -47.5° 85.08-i2.69
v =76 :
908 027 97.8° 123.7° 93.64+i0.23 p
111 190 102.4° -89.5° 86.09-i2.46 d
"n=74
928 045 -179.8° 76.0° 94 06+i0.28 .
127 158 17.8° -135.9° 87.00-i1.88 .
"=1
951 058 97.3" 14.3" 94.39+i0.29 )
148 139 -66.5° 174.4° 87.56-i1.24
8 =70°
973 067 13.8° -49.4° 94.73+i0.28 N
171 127 -150.3" 1236 87.76-i10.98
0 = 68 :
998 068 -70.1° -110.3° 95.03+i0.35 y
194 116 125.3° 73.0° 87.85-i1.30 D
9= 66° .
103 060 -154.0° -166.6 95.19+10.47
223 102 40.3° 22.4° 88.03-i2.10 ~
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Table 3. Continued.
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95.19+i0.59
88.39-i3.07

95.04+i0.68
88.86-i3.59

94.71+i0.67
89.23-i3.14

94.19+i0.26
§9.07-i1 48

94.07-i0.65
88.77+i0.23

94.48-i1.33
89.36+i0.96

94.93-i1.61
90.61+i0.71

95.28-i1.70
92.42+i0.01
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VIII. SUMMARY

A formulation has been described that has made it possible to find LF earth-iono-
sphere waveguide mode constants at a much reduced cost and very low frequency (VLF)
mode constants at less cost than previously. The most relevant cases are those for which a
large number of modes are required. such as for short distances from the transmitter, night-
time propagation, or elevated antenna.

In contrast to the previous version of MODESRCH, the mode constants are func-
tions of interpolated values of ionosphere reflection coefficients rather than of reflection
coefficients found by a full-wave solution for the eigenangle associated with each mode.
The given values for the interpolation are found with the full-wave solution only at selected
points in the §-plane. Examples indicate that the interpolated values are more than ade-
quate for finding the values of the propagation mode constants.

A formulation is presented that appears to be effective in separating waves retlected
from two rather distinct complex heights in the ionosphere. The advantage is that comph-
cations from the interference of the two waves tend to be avoided. Values of magnetoionic
retlection coetficients found in the example indicate that adequate separation of compon-

ents was accomplished for all values of the incidence angle. 0, required. The separation need

not be complete for successtul interpolation. It was more than adequate in the example,
however. and especially complete for values of € near 90 deg. where cigenangles sometimes
are ditficult to find using the previous version of MODESRCH.

The separation cannot be carried out in the vicinity of branch points. where muag-
netoionic engenvectors cannot be clearly distinguished. In the example. no branch points
occurred in the vicinity of the eigenangles. The formulation does allow for these branch
points to be located. however. and their occurrence should present no problem since the
procedure allows for defaulting to a method of solution more nearly like that used in the
previous version of MODESRCH in the neighborhood of a branch point. Such cases are
more likely to occur for cases of daytime ionosphere models than tor nighttime,

The example is for a nighttime ionosphere at 60 KHy and tor propagation over sea-
water. Forty-four eigenangles and associated mode constants were found m the internal ot
50 to 90 deg in the real part of the incidence angle. 8. The cost was only about one-sinth
that required for finding the same cigenangles and mode constants using the previous
version of MODESRCH . Eigenangles ditfered at most by 0.001 deg.
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