
AGARD-R-741 

AGARD REPORT No.74l 

Computation of Three-Dimensional 
Boundary Layers Including Separation 

AEDC TECHNICAL LIBRARY 

0. 2 

U| 5    11 

DISTRIBUTION AND ÄVAILÄBJL1TY 

;CAL L 
»* 

WRrnpFmY OF U.S. ÄFORCE 
AEDC TECHNICAL LB3RASY 



AGARD-R-741 

NORTH ATLANTIC TREATY ORGANIZATION 

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT 

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD) 

AGARD Report No.741 

COMPUTATION OF THREE-DIMENSIONAL BOUNDARY LAYERS 

INCLUDING SEPARATION 

The material assembled in this book was prepared under the combined sponsorship of the Fluid 
Dynamics Panel, the von Kärmän Institute and the Consultant and Exchange Program of AGARD and 

was presented as an AGARD Special Course at the von Kärmän Institute, Rhode-St-Genese, Belgium on 
14-18 April 1986. 



THE MISSION OF AGARD 

The mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and 
technology relating to aerospace for the following purposes: 

— Exchanging of scientific and technical information; 

— Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture; 

— Improving the co-operation among member nations in aerospace research and development; 

— Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research 
and development (with particular regard to its military application); 

— Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in 
connection with research and development problems in the aerospace field; 

— Providing assistance to member nations for the purpose of increasing their scientific and technical potential; 

— Recommending effective ways for the member nations to use their research and development capabilities for the 
common benefit of the NATO community. 

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior 
representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of 
experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications 
Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through 
the AGARD series of publications of which this is one. 

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations. 

The content of this publication has been reproduced 
directly from material supplied by AGARD or the authors. 

Published February 1987 

Copyright© AGARD 1987 
All Rights Reserved 

ISBN 92-835-0407-0 

Printed by Specialised Printing Services Limited 
40 Chigwell Lane, Loughton, Essex IG10 3TZ 



PREFACE 

The aim of this special course was to present the current state of knowledge on three-dimensional boundary layer 
computations. The emphasis was placed on turbulent boundary layers which develop on wings or fuselages including 
separation. 

Introductory lectures presented basic information about the fundamental equations, boundary and initial conditions, 
coordinate systems, integral and differential methods, turbulence models, and interactive procedures. 

The discussion of experimental aspects of three-dimensional boundary layers was directed towards the use of 
fundamental experiments to improve models for turbulence and for transition. 

A review of various calculation methods was given: it included the presentation of available techniques for calculating 
transition and the discussion of turbulence models. In addition, a few lectures were devoted to the evaluation of results of 
boundary layer calculations with regard to design aerodynamics, in particular when boundary layer separation is involved. 

An important part of the course was reserved for viscous-inviscid interactive schemes. The numerical procedures were 
described in detail and applications were presented. 

Finally, the calculation of corner and tip region flows was discussed. 
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THREE-DIMENSIONAL BOUNDARY LAYERS. 
INTRODUCTION TO CALCULATION METHODS 

Jean COUSTEIX 

Office National d'Etudes et de Recherches Aerospatiales 
Centre d'Etudes et de Recherches de TOULOUSE 

Departement d'aerothermodynamique 
2 avenue Edouard Belin - 31055 TOULOUSE Cedex (FRANCE) 

SUMMARY 

This paper gives an outline of problems encountered when faced with the calculation 
of three-dimensional boundary layers. The various topics which are discussed are : 
geometry of axis-systems, boundary layer equations, global equations, nature of the 
system of equations, integral methods, singularities in boundary layer calculations, 
numerical techniques, turbulence modelling. — 

The classification of flows into mono-, two- and three-dimensional flows is clear 
as far as laminar flows are considered. In a turbulent flow, the definitions need to be 
completed because turbulence is always three-dimensional. As it is usual to do in most 
analyses, any characteristic of a turbulent flow is decomposed into a mean quantity and 
a fluctuating quantity. So, the classification into mono-, two- and three-dimensional 
flows refers to the nature of the mean flow. 

For convenience, three-dimensional flows may be classified into three categories 
according to the number of main directions of diffusion : 

1) Thin shear layers in which the (mean) momentum is diffused in a preferred 
direction. 

2) Slender shear flows in which a main flow can be defined along which the 
diffusion is negligible. 

3) Full three-dimensional flow. 

Let us notice that the word "diffusion" is used to denote a process due to 
viscosity or to turbulence. 

For categories 1) and 2), a main flow direction can be defined and the flow lying 
in a plane normal to the main direction is called secondary flow, 

The archetype of the first category is the boundary layer flow developing on a wing 
at low incidence. The diffusion takes place along the normals to the wall. This kind of 
flow is associated with simplifications of the batic equations. In a first 
approximation, let us say that the equations are the extension of the classical two- 
dimensional boundary layer equations : the normal pressure gradient is zero and the 
components of the pressure gradient parallel to the surface are known. 

The second category of three-dimensional flows is represented by the flow in the 
neighborhood of the corners of a square duct or by the flow near the junction of a wing 
and of a fuselage. Another example is the development of a longitudinal vortex imbedded 
in a boundary layer. These flows are associated with another kind of simplification of 
the basic equations. Roughly speaking, the diffusion in the main flow direction is 
neglected and the streamwise component of pressure gradient is known. 

The third category of flows is governed by the full NAVIER-STOKES equations. No 
particular'approximations can be applied. 

The first two categories of three-dimensional flows are characterized by the 
formation of secondary flows which are associated with the formation of longitudinal 
vorticity. The sources of this vorticity are determined by a few basic mechanisms. 

The first source of secondary flows can be explained from purely inviscid 
considerations. In a three-dimensional inviscid (or viscous) flow, a longitudinal 
vorticity can be induced by the skewing of an existing lateral vorticity component or by 
the interaction between the velocity field and the- vorticity field. The corresponding 
secondary flows are called secondary flows of the first kind, following the PRANDTL 
nomenclature. A second possible mechanism is purely turbulent ; a mean longitudinal 
vorticity can be induced by correlations between the fluctuating velocity and vorticity 
fields because of the non linearity of the basic equations. These secondary flows are 
called secondary flows of the second kind. Finally, the third mechanism is associated 
with wall boundary conditions and can occur in a laminar or in a turbulent flow ; in 
both cases, the no-slip condition at the wall applies so that a lateral motion of the 
wall leads to a cross flow : this is what happens in a flow over a spinning body (see 
for example the experiments of FULACHIER et al, 1982). 
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In fact, it is often very difficult to separate the various origins of three- 
dimensionality in a given flow. For example, on a swept wing, we will see that the three- 
dimensionality in the outer part of the boundary layer can be explained by the first 
mechanism but, near the wall, it is clear that the no-slip condition inforces the 
secondary flow to be zero. Therefore, near the wall, the third mechanism is involved. 

A fourth source of secondary flow, as mentioned by BRAOSHAW, 1966, is the formation 
of streamwise vorticity due to an instability process. In fact, several types of 
instability can develop. This is for example the formation of TAYLOR-GORTLER vortices in 
laminar or turbulent flows on a longitudinally curved wall. Another form of instability 
leading to streamwise vorticity occurs in a laminar three-dimensional boundary layer 
which develops on a swept wing for example. This instability comes from the development 
of crossflow in the laminar boundary layer and participates in the process of laminar- 
turbulent transition. Finally, let us mention the very interesting recent results 
obtained in the study of a three-dimensional boundary layer generated by a discontinuity 
in the wall velocity (FULACHIER et al, 1962) : a turbulent boundary layer develops on an 
axial circular cylinder whose forward part is stationary and rearward part rotates 
around the axis. Downstream of the discontinuity, visualizations in a water tunnel have 
shown very regular longitudinal structures which become more random as the boundary 
layer develops and restructures (COLLINI-FULACHIER, 1986). 

1 - PRELIMINARY REMARKS 

As it is usual in most analyses of turbulent flows, any characteristic of the flow 
is decomposed into a mean quantity and a fluctuating (or turbulent) quantity. For the 
sake of generality, it is convenient to define a mean value as an ensemble average 
this is a statistical average determined from a sampling of instantaneous values taken 
over a large number of independent realizations of the same flow. In this way, the case 
of unsteady turbulent flows is not excluded from the study .: the flow is unsteady if the 
ensemble averages are time-dependent. 

If the flow is incompressible (Q = cst), the mean velocity and the mean pressure 
are defined as : 

= U. Ü.42 

üiiü 

i  u(nl 
i 

N 

Z   P'
n) 

where u^ and p are the instantaneous values, U^ and P are the mean values, u^ and p' 
are the fluctuations. u!n) and p are samples determined from independent 
realizations of the same flow. 

In the case of a compressible flow,, a mass-weighted average is often used as 
recommended by FAVRE (see for example FAVRE et al, 1976). 

1.1. Mean flow 

The general effect of turbulence on the mean flow is to smooth out the variation of 
mean momentum or of temperature because turbulence acts as a good mixer. In a boundary 
layer, it follows that the mean velocity profile is fuller than in the case of a laminar 
flow because the velocity is close to the external velocity. Indeed, it is known that 
the velocity defect Ue - U between the external velocity and the boundary layer velocity 
decreases as the REYNOLDS number increases. Obviously, the no-slip condition at the wall 
remains valid and it results that the slope of the mean velocity profile at the wall is 
larger than in laminar flow. Therefore, the skin friction coefficient is larger in 
turbulent flow. In the same way, the heat exchange coefficient at the wall is larger in 
turbulent flow. 

Another consequence is that the mean kinetic energy is larger and a turbulent 
boundary layer is able to sustain a much larger adverse pressure gradient without 
separation than a laminar boundary layer. 

The basic equations describing a turbulent flow are the NAVIER-STOKES equations. 

Indeed, it is generally accepted that the NAVIER-STOKES equations are valid for 
describing the instantaneous flow because the smaller turbulent length scales and time 
scales are very different from the molecular scales. This means that the entire 
turbulent motion can be considered as the flow of a continuum. Then, in the case of an 
incompressible flow, the mean flow equations are derived by taking tfre average of the 
continuity equation and of the NAVIER-STOKES equations. In a cartesian axis system, the 
mean flow equations are (for an incompressible flow) : 

oU. 
(1.3) -5-^  =  „ 

dx . 
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DU.      9U. 9U.      -       - 
(1.4) Q -r-r^ = Ö äT~^ + C U . -5—i- -    -   -5  + -3  (2uS. . - p <u ! U '. > ) Dt      dt       n ox .     3x.   OX/.     13       13 

3       13 

SJJ is the rate of strain tensor 

au.     au r OU .    OU . -1 

"•5) si, • 1 \_*r. • 55? J 

and 2pSj . is the viscous stress tensor. 

The quantity - Q <u^uj;> involves the average of the product of velocity 
fluctuations ; it is called the REYNOLDS stress tensor. Because of it, the mean flow 
equations do not form a closed set of equations as the number of unknowns is larger than 
the number of equations. The equations and hypotheses which are developed to close this 
system are called the closure assumptions. 

The origin of the REYNOLDS stresses lies in the non linearity of the convection 
term. In incompressible flow, the NAVIER-STOKES equations for the instantaneous flow can 
be written in a vectorial form as : — 

f    3v      f   ••  -»-»       f  -» 
(1.6) 0 gr dT +    QV (vn) do = I  t do 

where the components of the vector ? are : 

3u.   du. 1 r_üi —ii 
'il " 2 I 3x, + 3x. I u  1    1 J 

where n, are the components of the outer normal to the surface S bounding the volume D. 

Taking the average of (1.6), we get : 

(1.7) In e ft dT + Is C^ (^"' do *  s ° *"  <v'n)> do =    T do 

The i-component of the turbulent term can be written : 

Is e <uiui> nido 

which shows that the REYNOLDS stresses are due to a flux of momentum. From the momentum 
theorem, this term can be put in the right member of (1.7) as this is done in eq. (1.4) 
and interpreted as an apparent turbulent stress having the same modulus but the opposite 
direction as the flux of momentum. 

Another interpretation of this term is given by  TENNEKES-LUMLEY,  1972,  who  write 
the equation (1,4) as : 

(1.8) g g-r- + 2gfiXV + o grad — = - gradP - 2Q <w'Xv'> - o grad <V  > + uAV 

with        J? = 1/2 curl \? 
ui' = 1/2 curl v' 

Generally, the turbulent kinetic energy : 

„ ,2^  <u:u:> 
,    <v  >      1 1 

2        2 
is small compared with the kinetic energy of the mean motion so that the contribution of 
turbulence in eq. (1.8) occurs mainly as an apparent volume force - 2o<iu' X v' > due 
to the interaction between the fluctuation of the velocity field and of the vorticity 
field. Indeed this is a very important property of a turbulent flow to have very strong 
vorticity fluctuations. 

The turbulent shear stresses are also present in the  equation  for  the  mean  flow 
vorticity. For an incompressible flow, this equation is : 

äa. da. d2a 
(1.9) äF 1 +  ui äxf • Vii + v ölTäx- " it [ ^ if < Vi> ] 

1 1111- 3 J 

where ei;jk is the permutation tensor (e^k = 1 if i, j, k are in cyclic order ; 
ei-jk = ~ ' if i. d, k are not in cyclic order ; e^m. = 0 if  two  or  three  indices  are 
equal). 13K 

As in the case of an inviscid flow, the interaction between the velocity  field  and 
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the vorticity field (term Q^S^) can be a source of vorticity. Let us 
is possible only in a three-dimensional flow : in a two-dimensional 
vorticity is constant. Vorticity can be generated (or destroyed) by a 
(or squeezing) mechanism : in the Qx-equation, for example, the corre 
Qx 9U/9x. If 9u79x > 0, there is a production of Qx. Let  us  remind 
flow, a vortex surface or a vortex tube are also a stream surface or 
fluid particle belonging to the vortex surface or the vortex tube is 
same vortex surface or vortex tube. Then, if 9u79x > 0, a vortex tube 
axis is stretched. If 9U/9x < 0, there is a destruction of Qx : 
with the x-axis is compressed. Another mechanism of vorticity generat 
tilting : in the °.x-equation , the corresponding terms are 
„  1 r 9U   9V -i   _  1 r 9U   9W T . ,_, 
yILFy + 9x-l +nzIL9z + 9x-l' Thls term ls responsible for Ion 

production in the outer part of a three-dimensional boundary layer, 
boundary layer which is initially two-dimensional and let us assume t 
are forced to incurve in a plane parallel to the surface (under the a 
gradient). The flow cannot remain two-dimensional (fig. 1.1). In th 
layer, the velocity gradient 9u/9y leads to a z-vorticity component, 
vorticity production, this vorticity vector would be simply conserved 
the rotation of streamlines implies the existence of a 9w/9x term wh 
9u/9y to create a x-vorticity component. For a small turning a of th 
respect to the x-axis, the vorticity vector turns by an angle - a wit 
axis. Then the rotation of the vorticity vector with respect to th 
: this result is known as the SQUIRE-WINTER formula. In a boundary la 
is zero at the outer edge and the sign of the induced longitudinal vo 
creation of a secondary flow directed towards the inner side of the 
external streamlines (fig. 1.1). 
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Obviously, the no-slip condition at the wall inforces the secondary flow to be 
at the wall and the velocity gradient component 9W/9y changes sign near the wall. 

Fig.  1.1 - Generation of crossflow in a boundary layer 

Another explanation of the formation of a crossflow in a boundary layer is as 
follows. The curvature of the external streamlines is due to a crosswise pressure force 
directed towards the inner side of the curvature. In a boundary layer, the normal 
pressure derivative 9P/9y is zero and therefore, the crosswise pressure force is 
constant within the boundary layer. Due to the smaller velocity in the boundary layer, 
the inertia is smaller and the fluid particles tend to move towards the inner side of 
the curvature of the external streamlines. When the external streamlines have an 
inflexion point, the crossflow reverses but the change of sign does not occur at the 
same time in the whole boundary layer. The crossflow changes sign near the wall at 
first, because the inertia is smaller in this region. Then, S-shaped crossflow velocity 
profiles can be observed. 

The vorticity equation (1.9) also shows that the turbulence stresses can be a 
source of vorticity. More precisely, the gradient of the REYNOLDS stress tensor can be 
responsible for vorticity flux. If equation (1.9) is integrated over a volume D and if 
the gradient of the REYNOLDS stress tensor is zero on the surface bounding D, it appears 
that the turbulence term contributes to transport vorticity from one point to another 
point inside D without global production or destruction. There can be concentration of 
positive vorticity in certain zones and, by compensation, concentration of negative 
vorticity in other zones. 

In the fi -equation for example, the turbulence term is : 

H- 9y9x <w u > + 9z9x 
<v'u'> 9y9z <w' > 9y9z 

<V2> <w v > + 
ay 

a2   . . 1 — <v w > 
9z        J 

This expression shows that there is no effect of turbulence on  the  mean  vorticity 
if turbulence is isotropic. 
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1.2. General background of classical turbulence modelling 

In eq. (1.4), the apparent turbulent stress is combined with the viscous stress and 
contributes to the diffusion of mean momentum. This analogy is often advocated to 
introduce the concept of eddy viscosity to express the REYNOLDS stresses as a function 
of the mean velocity gradient in the same way as the viscous stresses ; the reasoning is 
based on a hypothetical resemblance between the molecular motion and the turbulent 
motion and it leads to the mixing length scheme. In fact, it is better to introduce 
these concepts as resulting from a dimensional necessity (TENNEKES-LUMLEY, 1972). Let us 
consider a shear flow in which the velocity gradient has a predominant component, let us 
say 3u/3y. On the other hand, it is assumed that the energy-containing eddies can be 
characterized by a velocity scale u and a length scale 1. The mixing length hypothesis 
consists of assuming that the mean flow imposes its time scale to the turbulent flow and 
we get : 

u  .  9U 
1  =  3y 

The mixing length model is deduced by assuming a good correlation between the 
fluctuations u' and v'. 

Let us notice that the analogy between the viscous stresses and the apparent 
turbulent stresses is unfortunate because the viscosity is a property -of the fluid 
whereas the turbulence is a property of the flow in the sense that the viscosity exists 
even if the fluid is at rest whereas turbulence disappears if the fluid is at rest. 
However, this does not mean that the turbulence is independent of the fluid properties. 
In particular, another important characteristic of turbulence is the dissipation process 
which is directly connected to the viscosity. From the comparison between the kinetic 
energy equation and the enthalpy equation, it is shown that the work performed by the 
viscous stresses transforms the kinetic energy into heat. In compressible flows, these 
equations written for the instantaneous flow read : 

~  u.u. -u.U.     3u .    ~ 
,..„> oil oil       i    9  ,.    . 
(1-10a)        eaT—— + e u?b^.—F-=p9^- + Sx- (ti3ui' " •D 

a ID 

,. .„^,              oh        3h 9 r A  9h -i dp dp 
1.10b)              Q T7- t o u . -3  = -s  I 7T- 3  + äX + U . •rr—   + U(j>_ 

9t      3 3x . 3x. L Cp ox. J dt 3   3x .     D 
D 1        1 3 

where t^ = - po^ + 2usii ~ 2/3 u (3uj_/9xi' 6ij 

and ipn is the dissipation function : 

ou. 
2s . . - — -j  5 . .1 s . . 

13   3 dx.  13J  ID 

From equations (1.10a) and (1.10b), it is clear that the work u<pn of the viscous 
stresses represents an exchange between kinetic energy and heat. In addition, ipn is 
always positive because : 

,,,-,. f äu        9v "] 2   r 3v   3w 1 2   T 9w ^ 9u 12   2   IT 8u  9v 1 ; 

+   L Sy - öz J    +  L 9z - -dK  J J 

In the case of an incompressible flow, we have : 

fo = 2 sijsij 

The average value of the total kinetic enrgy is 

<u. u.>   U.U. 
L.        I 1   1 1   1 K + k =   

2       2       2 

The dissipation rate of the kinetic energy K of the mean flow (for a unit mass) is : 

(1.12) D = 2v Si.Sij 

and the dissipation rate of the turbulent kinetic energy k (for a unit mass) is : 

(1.13) e = 2v <si-jS^j> 

This dissipation e comes from the work performed by the fluctuations of viscous 
stresses. When the REYNOLDS number is large, as required to have a fully developed 
turbulence, e is much larger than D. 

The dissipation e plays a central role in the classical description of turbulence 
which can be summarized as follows. Let us consider a shear flow with a dominant 
velocity gradient component 3u/3y. The source of turbulence is the shear 3u/3y which 
imposes its time scale to the energy-containing eddies. 
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By considering the equations for the kinetic energy of the turbulent motion and of 
the mean motion, it is shown that an exchange of energy takes place between the 
turbulent and the mean flow at a rate - <u'v'> dU/dy j generally, this term contributes 
to a production of turbulent kinetic energy and therefore to a destruction of mean 
kinetic energy. If the REYNOLDS number ul/v. characterizing the energy-containing 
eddies, is large enough, an inviscid process takes place in which the turbulent eddies 
form smaller and smaller eddies in connection with a vortex stretching mechanism. This 
process continues until the REYNOLDS number characterizing the smaller eddies is of 
order unity : the viscosity becomes effective and the energy is transformed into heat by 
the viscous dissipation. The scales of these dissipative eddies are obtained from a 
dimensional consideration of (1.13). If T is the characteristic time scale of the 
fluctuation s^j responsible for the dissipation, we have : 

(1.14) e «< — 
2 

T 

On the other hand, if n and u are characteristic length and velocity of 
the dissipation eddies, the hypothesis that their characteristic REYNOLDS number is of 
order unity gives : 

i 1 . 1 5 ) 
un 

Finally the relationship between scales 

(1.16) u a 
T 

leads to the KOLM0G0R0V scales which characterize the dissipative eddies 

1/4 .  ., r, -I 1/2 
(1.17) [£]W4    --«.v,-   ,.m 

These scales are related to those characterizing the energy-containing eddies. To 
show this, let us consider the fully developed flow in a pipe (FAVRE et al, 1972). The 
equations of the flow show that the dissipation rate of (K + k) averaged over the pipe 
section is : 

(1.18) D   =  A -ß£ 

where A is the pressure drop coefficient, TJ the velocity averaged over the pipe section 
and R is the pipe radius. As said before, if the REYNOLDS number is large enough, the 
dissipation rate D is nearly equal to the average of e over the pipe section. 

In the case of a smooth wall, A varies as (ÜR/v)-1'4 and in the case of a fully 
rough wall, A is independent of the REYNOLDS number. Let us notice that in the case of 
the smooth wall, the viscous stresses are larger than the REYNOLDS stresses in a thin 
layer near the wall ; therefore, the flow is not fully turbulent over the entire cross 
section of the pipe. On the contrary, in the case of the fully rough wall, the flow can 
be considered as fully turbulent everywhere. Then, it appears that in a fully turbulent 
flow, the non dimensional dissipation rate is independent of the REYNOLDS number and, in 
particular, of the viscosity v. The problem is that, from its definition (1.13), e is 
apparently proportional to v. 

The solution to solve this paradox is to assume that the dissipative rate is 
determined from the characteristic scales u and 1 of the energy-containing eddies. From 
a dimensional analysis, it results the following crucial relationship : 

(1.19) 
3 

u 

In fact, the consideration of the spectral energy equation leads to assume that the 
dissipation rate e is nearly equal to the rate of energy transfer from the large to the 
small eddies. As this process does not involve the viscosity, the relationship (1.19) 
seems natural. 

The comparison between (1.14) and (1.19) shows that the dissipative eddies have to 
adjust their time scale T in order that e is independent of v. precisely, T is 
proportional to v 'z. 

Using (1.19), the ratios of scales characterizing the energy-containing eddies (u, 
1, 8) and the dissipative eddies (u, n. T) are : 

(1.20) H . «-I/*        n . R;
3"        i = R-i'

2 

u    1 11 8    1 

with R, = — 
1   v 
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2 - GEOMETRY OF BOUNDARY LAYER AXIS SYSTEM 

The boundary layer equations are written in a curvilinear axis system formed from 
two families of lines drawn on the surface along which the boundary layer develops. 
Before writing the equations, it could be useful to remind a few geometrical definitions 
and properties. 

2.1. Geometrical definitions 

Let us consider a curve (D drawn on the surface (S). ?,, ?2, E"3 are unit 
vectors and define the FRENET reference system. E^ is tangent to (T) ; ?2 

is along the 
normal to (D ; ?3 is orthogonal to 2., and ?z. If s is the length along (D, we have : 

dE. 
(2.1a) 

(2.1b) 

(2.1c) 

ds 

ds 

where 1/R is the curvature of (D and 1/T is the torsion of (D. 

plane   taAaeat 

~ToCS) 

Fig.  2.2 - Definitions 

Fig.   2.1 - Reference s. 

The base vectors (E, 
second system (<?-, 2 

',, ?,) are associated with the curve (T).  We  now 
Sj) associated with the curve (D  and  the  surface  (S).  2,  is 

a unit vector tangent to (f) ; 32 is normal to 21 in the plane tangent to  (S) 

define 

|l 

normal to (S). We have the following relationships 

(2.2a) 

(2.2b) 

(2.2c) 

ds = 
2 

Rg 
3 

Rn 

= 

-» 
G1 
Rg 

G3 
* Tg" 

Gi 
-» 
G2 

Rn Tg 

where 1/Rg 
1/Tg = 1/T 

sinB/R is the geodesic curvature ; 1/Rn = cos8/R is the normal 
d8/ds is the geodesic torsion (fig. 2.2). 

curvature 



2.2. Surface oriented locally monoclinic coordinates 

The boundary layer equations are conveniently written in an axis system formed by 
two families of curves drawn on the surface. These curves are not necessarily 
orthogonal. The system is completed with a third axis which is normal to the surface. 

The theory of such axis systems has been presented by HIRSCHEL-KORDULLA, 1981. 

In figure 2.3, a surface oriented locally monoclinic coordinate system is depicted. 

^ficonst 

% y 
Fig.   2.Z - Definition of surface-oriented locally monoclinic coordinates 

The vectors a^ are covariant base vectors : a^ and az are tangent to the surface 
and are not necessarily unit vectors ; a3 is a unit vector normal to the surface. x1, 
x , x are the associated contravariant coordinates. A cartesian system is defined with 
e^^ as unit vectors and E1 are the associated coordinates. 

Let us notice that the base vectors a1 and a2 are known at  point  Ps  belonging  to 
the surface (S) and not elsewhere. We have : 

(2.3) ? = xa2a = E£e\     a = 1, 2   i 

where the subscript S denotes the point P$ (fig. 2.3). 

The base vectors 

1,2,3 

•1 

( 2 !>, ) 
3r_ 

ÖX 

3E 3E2      3E3 
^S ••     QS -»   e. +   e. + a a  1   . a  2 ox       ox a a  3 ox 

The position of a point P off the surface S is given by : 

(2.5) ci-»    -»,1   2.    3-» , 1   2, E e. = r(x , x ) + .x a (x , x ) 

(2.6) SR    3E  -» 
a 3 " a 3 Ei ox    ox 

Local base vectors g^ can be associated with the coordinates x- 

(2.7) E1^ x3^ 

The base vectors g_, are such as 

(2.8) 3R    3E,1 1 
ax3' " ax3 e± 

(2.9a) OR" 3? 3 »., -+ 3 ••3 + X + 
3xa 3xa a   a ox a a   a 

ox 

(2.9b) 8R 

3x: 
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Then, from (2.8) and (2.9), we get : 

(2.10a) 9„  = a 
3 ^3 a = 1 or 2 

(2.10b) 9^ 

Noting that a, is normal to a  and a„ and that a    = — —r(a-,a,> = 0, the 3 1      2 3 3)<a   2 Sxo  3 3 

relationships (2.10) show that the metric tensor g^     _ jj.g. takes the form : 

(2.11) 

r 9ii 912 
0 -I 

921 922 
0 

I- 0 0 1 J 

On the surface S, this metric tensor reduces to 

(2.12) C9-.H3 ij-'x =0 

11 312 
0 -I 

21 a22 
0 

0 0 1 -I 

with : 
(2.13) äaß '   ao.ap (o = 1 or 2) ; ß = 1 or 2) 

From (2.4), these coefficients are given by 

(2.14) 
K K   **l **l **l  «s 

"ap 8xa SxP   oxa dxP   3xa 9xS 

Let us consider an element of curve given by : 

(2.15) dft = dx^gj 

The length ds of this element is given by : 

(2.16) (ds)2 = gn(dx1)2 + 2g12 dx
1dx2 + g22<dx

Z)2 • (dx3)2 

If the curve is drawn on the surface, its length is 

1 2 
1 I , IdX   )     +   23 . n  W/\  U/\    T   a _ _ ( 

2.3. Application to boundary layer equations 

Generally, the tensorial notation is  not  used  in  literature  on  boundary  layer 
theory. 

The axis system is defined by X = cst- and Z = cst-lines drawn on the surface  along 

which the boundary layer develops (fig. 2.4). The y-axis is normal to the wall. 

h,<!Z 
Fig.  2.4  - Non orthogonal axis system 

kdX 

previously (eq. 2.13) : 

(2.18) 

The metric element h3 along y is unity 

(2.19) h3  = 

The coefficient g is defined as : 

(2.20) g=h1h2 cosA 

aaß 

h2 = **Z2 

(g = a,,) 
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According to the boundary layer assumptions, the thickness 6 of the boundary layer 
is small compared with the radii of curvature of the surface. It results that the 
variations of the metric tensor g^ within the boundary layer can be neglected ; this 
means we can take gaH = aaß- In other words, h, and h2 are functions of X and Z only : 

(2.21a) 

In the same way, we have : 

(2.21b) MX, Z) 

The metric coefficients are given by (2.14) 

(2.22a) 

(2.22b) 

;2.22c) 

»:•[£]'.[SMS]' 3z 

K   K a*s ö4 < 3Es 
a " ax   az       ax   az       ax   az 

where Ei are the cartesian coordinates of a point Ps on (S). 

The length of any element of curve is : 

(2.23) ds2 = h2dX2 + 2gdXdZ + h|dZ2 + dy2 

In the boundary layer equations, the geodesic curvatures K1 and K- of the X- and  Z- 
axes are present. The geometrical meaning of the geodesic curvature has  been  presented 
in § Z.1.. From (2.2), (2.4) and (2.13), the values of K, and K2 can be calculated  as  a 
function of aap or as a function of h,, 

an. 
(2.24a) 

(2.24b) 

_l    [8     ,„ .,       onl  1 K1   =   hhsinA   L ^  (h2cosA)   -  •w- J 
1    2 

Sh, 

h1h2 

1 r a n2 1 -I^ Lai <n,cosM - ^r1 

3 -' BOUNDARY LAYER EQUATIONS 

3.1. Equations in a curvilinear axis system 

The boundary layer equations are written in a non orthogonal curvilinear axis 
system defined in fig. 3.1. The X- and Z-axes form two families of curves drawn on the 
surface and the y-axis is normal to the wall. A is the angle between the X- and Z-axes. 
The metric elements along X and Z are h1 and h,. 

The physical velocity components along X-, Z-, y are respectively U, W, V. 

The total enthalpy h^ is related to the static enthalpy by ; 

(3.1) U2 + W2 + 2UWcosA 

Let us notice that the contribution of the velocity component v is neglected in  the 
boundary layer approximation. 

Fig.   Z.l - Boundary layer axis system 
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In compressible flow, the mass-weighted averages are equivalent to the classical 
average if the MACH number is not too large. In addition, we neglect the correlations 
between the fluctuations of density and velocity. The boundary layer equations are : 

ff^ifxC^a-] .±1^1:^^] a 
B7 ev 

,, „_, 3U     U  3u     W  dU      3U   cosA „  „2    K2   ..2   „ (3.2b)       D _ + e __ + e __ + DU _ - __ KlQU  • —j oW  • K12QUW 

3P     3P  3  r  3U    .... 1 
" ai ax + a2 az + ä7 [ M 57 " ° <u u * •• 

• -, s -2 e• fc [M e -. <w-> ] 

3hi      £Uöhi      oü8hi dhi      3P      3     r      
8hin 

(3-2dl c 3T" + h7 55T + ^7 W * ov ay" " 3T + 37 [ M 37~] 

•fc   [[£-   1]   Mg]    -fc   l»Cp<Vr>. 

+    TT—     [-     Q<U'V'>     U     -     Q<W'v'>     W    -     p<U'v'>     W    COSA     -     Q<w'v'>     U    COS    A    ] 

K, and K2 are the geodesic curvatures of the X- and Z-axes  (eq.  2.24).  P  is  the 
PRANDTL number. 

The other coefficients are : 

«12 = uk [- <", • F7§5» • «** «K2 -^fr' ] 

K2, -USA C- 'S •^fi» • <="* «", + hri' ] 

1 cosA . cosA 
b.   =    r—   ;    b„ 1 22 2        '        1 2        '        2 2 

h sin A       h sin A       h sin A h2sin A 

The wall boundary conditions are the no-slip condition : U = W = V = 0 (in the case 
of an impermeable wall) ; the wall temperature distribution or the heat flux 
distribution is prescribed. 

At the boundary layer edge, we have : 

U = ue     W = We     hi   . hie 

The external boundary conditions are such as : 

3U       U  3U       W  3U K      . 

e 3t    "e h  3X    "e h  3Z    sinA  re e   sinA *e e    12*e e e 

ap ap 

awo u    aw W 3W    K i   , 
(3.3b)      o ^~   + C XT -SZT-   *   0  r* TT^   *   ~^T 0 U  - K„ -^£ p W^ + K„,0 U W e 3t     e h  3X     e h  3z    sinA *e e    2 sinA *e e    21 e e e 

„   ap     ,    ap 
= bi 3x + b2 az 

3h.       u  3h.       W  3h.    ,„ it   i^i ie       e   le       e   le   3P 
(3-3C' Qe -8t" + Ce h7 -53T + Pe T^ TT = oT 

Let us remind that the normal pressure gradient 3P/3y is zero  within  the  boundary 
layer. 

In steady flow, the outer condition simplifies as hie = cst. 

The calculation methods are based on the solution of equations (3.2). However,  this 
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set of equations is not closed : the turbulent stresses -  p<u'v'>,  -  p<w'v'>  and  the 
turbulent heat flux - QCp<v'T'> need to be represented by some turbulence model. 

3.2. Integral eouations 

Very often, practical calculations are performed by using global equations which 
are an integrated form of equation (3.2) : the integration is performed between the wall 
and the boundary layer edge. Such a set of equations is the basis of integral methods. 
In fact, an infinity of global equations can be imagined : the most evident equations 
are the integrated equations (3.2) but sometimes other equations are used, for example, 
the global kinetic energy equation ; the momentum equations can also be multiplied by y 
before integration and we obtain moment of momentum global equations. 

The most often used integral equations are the integrated forms of the continuity 
and momentum equations. In the case of an unsteady compressible flow, these equations 
are : 

(3.3a) 
36 
3X 

85 
32 

35 
3t ft Cee«6 " 5 )] 

Q 

0 u q 3 .[^R-'.ll-^M^R-'J] 
(3.3b) 

Cf. 

e " 
T 3t (ceueV tr loJJ 2 3t vtfevo 

2 re u a A„ 3u 
 e 
32 

r^rpuq    -\         ,,  r-Q u q    -in    A.  du     A„ 
1    3   *e eH   a 3_  *e e^ 1   e    2_ 
2  lax I  h,  U11J + 32 I  h,  °12jJ * u h, 3X  + u h, 

p u q L   •-   1     J       u   2     JJ    e1 e 2 Be eH 

*i fi& [ ir Ai + eii] + TiSÄ [ TT A2 • 922] 
+ K,2 [ !r *2 * 0i2] 

(3.3c) 
1 3      , .    . e     3      ,       . 
 2  ät   (eeueV 2   3t   (ceV C   u e   u 

r»     ro u Q        i » re u q        -I-I A,     3w          A„ 1      3      I    e   eM   Q 3 I    e   e^   „                    1       e             2 
~~T |5x  I-h~ 02iJ + 3z L~h7~    22J I + ÜT 3x~ + TTTT uqLL1              J u2              JJ e1 e2 

3w  e 
h2   32 

2   s 

.rW -i K,        r   U -i rW -i 

l£   [ TT  *2   '   S22]    '   IlnT   [V  *1    +   91l]    *   ««,    [ TT  *,    *   92l] 

The 
SWAFFORD, 

global kinetic energy equation is used sometimes. It: 
1983, for example. 

expression  is  given  by 

The 
is limitc 

(3.3d) 

global energy equation is used when the wall heat flux is involved but  its  use 
d to steady flows. In this case, this equation is : 

*W !_ r 3_ r Qeuehieq    ] + 3_ \  eeuehieq    ] 1 
eeUehie " eeUehieq L **    L    *,      ItJ   3Z |_    hg    

B2tJ J 

The 

6 : 

Cf„ 

definition of the various global quantities is 

boundary layer thickness 

WX 
2 

e  u e e 

Cf2   TW2 

QeUe -  QU 
dy 

p W  - pW 
dy 

r-6 

dy 

• U(h. - h. ) 
l    le 

Q   u h . 
e e le 

dy 
pW(h. h. ) 

le 
p u h . 
e e le 

dy 
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QU(U  - U) ,-6 pwiw - w) 

2 
P u e e 

dy 22 2 
C u 
e e 

dy 

»I«" in 
ew(u - u) p6 

dy 

e " 

oU(W  - w) 

2 
e u e e 

dy 

to the X- and Z-components by 

j| = u| + w| + 2UeWecosA 

3.3. Streamline coordinate system 

The boundary layer equations are often written in a streamline coordinate system. 
The x-axis is formed by the streamlines and the z-axis by the orthogonal^ lines. Then, 
equations (3.2) are slightly simplified since : 

A = ir/2 W„ U„ = u„ 

In the streamline coordinate system, the velocity components are u  and  w  and  the 
boundary layer characteristics are noted with small letters (5, 8, ...) : 

Cf  > 
2 2 

Q u e e 

Cf 
 2 

2 2 
e u e e 

[1 - -fiü_ ] dy 
I-     n it  J   * r pW 

dy 

11 

r6 r". i _£^ r^_. ,i dy 
0 °eue L hie    -I 0  e e L  le    J 

11    Jn P"» L     U J 22    Jo    Q U2 
e e 

dy 

^'i pW  r. U -i _ 
-»—  1 - — dy 
3 u  L    u J 9   -    _ ouw 

21 " J«       2 °  e„u = 
dy 

The shape parameter of the streamwise velocity profile is : 

6. 
H 

1 

'l1 

The ratio of the wall shear stress components defines the angle fan (or ß   )      between 
the limiting wall streamline and the external streamline (fig. 3.2) : 

tanß 
0   T 

Sw 
9y 
au 

i- 3y 
y-»u  u 

y = 0 

Fig.  3.2 - Velocity profiles in the 
streamline coordinate system 
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3.4. Displacement thickness - Equivalent wall transpiration velocity 

The effect of the boundary layer on the external flow is determined with the help 
of a matching condition between the boundary layer and the external flow. The boundary 
layer is often represented by its displacement thickness or by the equivalent wall 
transpiration velocity. 

These concepts are introduced by defining a fictitious flow which is the extension 
of the external flow within the boundary layer. Let v* be the velocity normal to the 
wall of this fictitious flow at any point y within the boundary layer. If the wall 
curvature radii are large compared with the boundary layer thickness, the density and 
the streamwise velocity of the extended flow are constant and equal to the edge boundary 
layer values Qe and ue. 

The normal velocity v  is defined by a TAYLOR series expansion around y = 6 : 
* 

(3.1) v*(y) = v*(6) • (y - 6) [|7-]y=B 

The term [ s^—  1  -is expressed from the continuity equation written for the 
oy Jy = o 

fictitious flow and we get : 

v_üd . v_!»i _ ,   . 5) r -1—  flu     1   9  f CeUeq 1     1   3 \  eeV 11 
L ee"e at   + eeueq ax L    hi   J + eeueq az L    h2 JJ 

The matching between the boundary layer flow and the external flow is given  by  the 
condition : 

v (6) 

wh where ve is the normal velocity at the boundary layer edge  calculated  by  the  boundary 
layer global continuity equation (3.3a). Then, the velocity v  of the fictitious flow is : 

v*(y)    1   3_ ,  . ,   _1_ 3_ r Qe"eq . 1     1   3 [  QeUeq .  1 
ue   = eeue 8t   e e  + eeueq SX L   h1   'J + eeueq oZ L   h2   

2 J 

r_L_!£e     1   3  r QeUeq 1     1   8  f geWeq 1] 
L ee"e at    + Qeueq 3X |_ h,  J + eeueq az   L    n2      JJ 

In unsteady flow, we can define the displacement surface  in  such  a  way  that  at 
every time,  the  inviscid  flow  is  tangent  to  it.  Following  this  definition,  the * *  * 
displacement thickness 6  and the velocity v (6 ) are given by : 

1 3  r CeUeq |> Ue   . 11   1 3  [W |> We   . 11    * 8°e   8" 
q M [ — L5 ~e-  *iJJ + q" 8T L — L5 v" A*JJ + 6 St" " 3T (Q 6 ) = 0 

e e 

v*(5*)   ^e ^Ml   \  J_ 36* 
%   " Ue h1 3X  + Ue h2 9Z 

In the case of a streamline coordinate system, this condition reads : 

*  *     » * 
v (6 ) _  36  

u       h,3x 
e       1 

Let us notice that we could define a thickness A  giving expressions which are  more 
symmetrical with respect to time and space : 

18  r eeueq I" « Ue   .11   18 \  W [.*   We   .II    1   8  r    *     , 

v*(A*)   J_8A*  üe_J_Ml   "e 1  3A* 
Ue   " ue 8t + ue  h1 dX     * ue h2 8Z 

The effect of the boundary layer can also be interpreted  as  a  wall  transpiration 
velocity : in this case, the velocity v  is calculated at the wall (y = 0) and we have : 

v (0) 1   [ a  ,  * ,   1 Ö  r Qe"eq A 1   1 3  r BeUeq   11 
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NATURE OF THE SYSTEM OF BOUNDARY LAYER EQUATIONS 

The system of boundary layer equations  will  be  analyzed  in  laminar  flow  only, 
because the study of the turbulent case depends on the chosen model. 

Before presenting the analysis of the three-dimensional equations, we will  consider 
a simple problem which depicts most of the properties of the boundary layer equations. 

*.1. Analysis of a simple problem 

Let us consider the partial differential equation : 

(4.1 ) 

where a and V are constants. 

at 3x 
2 9Zf 

By 

We assume that this equation represents a certain phenomenon in an infinite medium 
and we look for the response to a perturbation which represents a OIRAC distribution at 
x = 0, t = 0, y = 0. 

The new system of variables (X, Y, T) is introduced 

T = t 

In this new system, eq. (4.1) becomes 

3f 
3T 

and the solution to our above problem is : 

2 d2f 
'   2 

ÖY 

4aZT 

2avT7T 

Returning to the original variable, the solution is : 

_ _X  

1 
(4.2) f = 

2a4 irt 

f =' 0 

ta^t for x = Vt 

for x * Vt 

< y < + 

< y < 

The solution (4.2) shows that a perturbation introduced at a point (x, y, t) 
propagates immediately along the entire y-axis whereas the (x, t) plane is affected 
along the line x « Vt ; the perturbation contaminates a semi-infinite plane (P) defined 
by the y-axis and the line x = Vt (t > 0) (fig. 4.1). 

. The propagation in the (x, t) plane is due to the convective nature of equation 
(4.1) (left hand side of 4.1) ; the propagation velocity is V since the perturbed domain 
is characterized by x = Vt. 

. The propagation along the y-axis is due to the diffusive nature  of equation  (4.1) 
(right hand side of 4.1) ; the propagation velocity along y  is  infinite because  at a 
small time t, the entire y-axis is affected by the perturbation. However, it  should  be 
noticed that the perturbation is damped as t increases. 

Fig.  4.1 - Domain influenced by a pertur-       ' 
bation introduced at point x = 0 
y  = 0 t = 0 
I 

T;*=Vt 

Fig.  4.2 - Practical domain of 
influence of a point 

4JT 

The above analysis has defined the mathematical domain of influence of a point. 
However the intensity of the perturbation is not the same everywhere. In certain regions 
of the perturbed space, the value of f is very very small and, in practice, we can say 
that the regions are not perturbed. Then we can try to define the domain where the 
perturbation is significant. Obviously the definition of "significant" will be 
arbitrary. For example, we can decide that the perturbation is significant, if f > 0.001. 
This leads to a "practical domain" of influence which is finite as shown in figure 4.2. 

The solution (4.2) also shows that the perturbation is amplified when time 
decreases (t < 0). This means that the solution of (4.1) should be sought for increasing 
values of t only. 
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4 • Z • Analysis of boundary layer equations 

Let us consider a quasi linear system of partial differential equations : 

C * . 3 ) A. |£- = B i = 1, m 1 ox . 
i 

The number of coordinates is m ; F is a n-dimensional column vector ; A± are n x n 
matrices and B is a n-dimensional column vector containing coefficients which depend 
only on x±   and F. 

The nature of the system (4.3) is studied by means of the characteristic 
determinant : 

lA^I  =  0 

where A± are the components of the vector normal to the characteristic surfaces. 

Me consider the laminar incompressible three-dimensional equations written in a 
cartesian axis-system (in fact, the results of the analysis are the -same if the 
equations are written in a general curvilinear axis-system). 

The system is reduced to a quasi linear system by writing : 

(4.4.) g  -  0 

(4.4b) §*  =   « 

öu  3v  3w 
U-4C» 8X + 37 + 37 * ° 

oU  „ 3u  ,, 3W    ao 
(4.4d) U 3x + V 37 + g SI " v 37 = 

3P 
8x 

0 
dP 
oz 

, , , , „ 3w  „ 3w  .. 3w    3«) 
U'*e> U3x-+Väy-+WäT"V5y-: 

where p(X, Z) is a given function. 

The characteristic determinant is : 

(4.5) vZ A* =  0 

, According to the classical classification. the system is parabolic as all the 
characteristic roots are real and identical. The characteristic planes are normal to the 
surface. This property is associated with the diffusive nature of momentum equations 
(second y-derivative in equations (4.4a) and (4.4el) and with the term 3v/3y in the 
continuity equation. 

The presence of the viscous terms hides the role of the convective terms in 
momentum equations. To appreciate their influence, we study the subcharacteristics of 
the system formed with the next lower order derivatives (WANG, 1971, KRAUSE, 1973). The 
system is written as : 

, , „ , 3u  3V  3w  „ U-6a) ox + 37 * 37 ' ° 

,, 3U   „ dU   ,, 9u     1 3p     32U u-6b) u3x + v37+waT=-e3x + v^T 

(4.BC u »a t vfw + w |H . -!§!• vi!| 
3X     3y     OZ     0 oZ     g 2 

The characteristic determinant is : 

(4.7) Ay (UXX + VAy + WXZ)
2 = 0 

This shows that the surfaces normal to the wall and the stream surfaces are 
subcharacteristic surfaces. The root A = 0 is related to the continuity equation 
whereas the roots<UXx + VX + WXZ = 0 are related to the convective terms of momentum 
equations. 
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These subcharacteristi.es associated with the diffusive nature along normals to the 
wall determine zones of influence and dependence. A perturbation at a point P is carried 
along the y-axis by the diffusion process and along the boundary layer streamlines by 
convection in the downstream direction. Let us notice that, because of the diffusion 
process, a perturbation which travels along a streamline affects the whole surface 
normal to the wall containing this streamline. Therefore the domain of influence of a 
point P is a volume delimited by surfaces normal to the wall containing the outermost 
streamlines which cross the normal to the wall passing through P. In the same way, a 
domain of dependence of P can be defined (fig. 4.3). In fact, as for eq. (4.1), the 
practical domains of influence do not extend to infinity. 

domain 

of  dependence 

domain   oF 

influence 

Fig.  4.3 - Domains of influence and of dependence 

4.3. Initial and boundary conditions 

The definition of the domains of influence and of dependence dictates the initial 
and boundary conditions. As a general rule, if we wish to calculate the boundary layer 
in a,domain D bounded by a surface normal to the wall, initial or boundary conditions 
must be prescribed along the sides through which the fluid enters the domain D. 

In principle, the velocity normal to the wall cannot be prescribed but must be 
calculated from the initial conditions. Only the U- and W-profiles need to be specified 
because the continuity equation provides a compatibility condition for the normal 
velocity component (KRAUSE, 1973). In practice, the initial conditions are provided by 
particular solutions, for example self-similar solutions. 

The boundary layer calculation on a fuselage-like  body  can  be  initiated  at,  or 

near, the stagnation point where self-similar solutions exist (see for example CRABTREE 
et al, 1963). In the immediate vicinity of the stagnation point and by using a suitable 
axis system (locally cartesian), the outer flow is given by : 

(4.8) IT AX 

where the coefficients A and B depend on the local geometry.  The  self-similar  solution 
is such as : 

(4.9) IT - f,,ni = g'(n) J5 N wV 

and the velocity profiles are solutions of the following system 

(4. 10a) f" + ff" - f 
, 2 

j  gf" = o 

(4.10b) • fg- -f (g'Z 1 ) 

where the primes denote n-derivatives. 

If B/A is small, the solution for f is the classical solution for a  two-dimensional 
stagnation point. 
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Another useful self-similar solution is the solution along the attachment line of 
an infinite swept wing. Let Z be the coordinate parallel to the leading edge and X the 
coordinate normal to it. The outer velocity is given by : 

(4.11) Ue = kX We = W„ = cst 

The self-similar solution is such as : 

(4.12) ij_=f(n.) ^_=g.(n, n = y J_£ 
e e 

and the velocity profiles are solutions of the following equations : 

(4.13a) f" ' • f f" 

(4.13b) g" ' • fg" = 0 

The numerical integration gives : 

(4.14) 

A, = 0.648 \% 9n = 0.292 J^ 

A2 = 1-02B ^ 922 = °-404 ^      TWZ = °'57 We {**» 

In the X-direction, the solution is the solution for a two-dimensional stagnation 
point. In fact, this results from a general property of the laminar boundary layer flow 
on an infinite swept wing : the flow along the X-direction is independent of the flow 
along the Z-direction and is solution of two-dimensional equations. This follows from 
the infinite swept wing equations : 

(4.15a) 

(4.15b) 

(4.15c) 

3u av 
ay = 0 

u du 
3X 

+ 
8y = - 

1 
c 

3P 
dx 

u 3W ax + v M v Sv = v i: 
> 
2 

a2u 
3y 

with the boundary conditions 

U = W = V = 0      y = 0 
U = UQ(X) W= = W„ = cst 

Let us notice finally that if the swept wing is not "infinite", the solution (4.13) 
is often used to start the boundary layer calculations by assuming that the flow is 
locally identifiable with the flow on the leading edge of an equivalent infinite swept 
wing. 

5 - INTESRAL HETHODS 

As demonstrated by the 1968 and 1980-1981 STANFORD Conferences, integral methods 
remain a valuable engineering tool to calculate the effects of boundary layers. 

In this section, the principle of integral methods will be first presented in two- 
dimensional flows. Afterwards, various types of methods will be discussed in three- 
dimensional flows and finally the method we have developed will be presented. 

5.1. Integral methods in two-dimensional laminar flows 

Nearly all integral methods use the global momentum equation known as the Von 
KARMAN equation. In incompressible flow, this equation is : 

(5.1) 

To solve this equation, closure relationships are needed. 

In the Von KARMAN-POHLHAUSEN method, these relationships are obtained by describing 
the velocity profiles by means of a polynomial representation, for example : 

62 du 
(5.2) *j- = Zn - 2n3 • n* + j  nd - n)3 ;  n = f-    A = ~ dlT 

de Cf B (H • 2» dU 

' B    u    dx dx 2 
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The formula (5.2) represents a family of velocity profiles which depends on the 
POHLHAUSEN pressure gradient parameter A. In fact, the boundary layer thickness 6 does 
not appear in equation (5.1) and it is more appropriate to replace the parameter A by A2 
defined as : 

B2 du 

<5-3' A2 - — dlT 

Indeed, it is easy to express A2 as a function of A because 8/6 can be calculated 
as a function of A by using (5.2) : 

,5-4) A2 = A L IT? " IT? - FW J 
The closure relationships needed to solve the Von KARMAN equation are deduced from 

(5.2). The skin friction coefficient and the shape parameter are expressed as : 

Cf „    r 37     A     A2 
(5.5) y-   R = T 37_ _ _A A  -I r   + A -i 

L 315   945   9 072 J L     6 J 

(5.6) H = 
37     A      12 
315 " 945 " 9 072 

Another way for constructing the closure relationships is to use the properties of 
the self-similar FALKNER-SKAN solutions. Indeed, from these solutions, it is 
straightforward to get the relationships H(A2) and (Cf/2)RS(A2). 

One drawback of these methods is that the properties of the family of velocity 
profiles are parametrized by A2. This implies, for example, that if the velocity 
distribution has a maximum, the boundary layer characteristics are given by the flat 
plate solution. This is not true because the boundary layer does not respond immediately 
to the pressure gradient. To overcome this difficulty, the Von KARMAN equation is 
complemented with a second integral equation. Generally, this equation is chosen as the 
global kinetic energy equation. Another possible choice is the global continuity 
equation (entrainment equation). It has often been argued that this latter choice is not 
convenient as the boundary layer thickness 6 is not well defined. In fact, it has been 
shown (COUSTEIX, 1984) that it is possible to define 6 in such a way that the solution 
of the global momentum and continuity equations is compatible with the FALKNER-SKAN 
solutions and the global kinetic energy equation. Then, the constructed method is based 
on the following set of equations : 

(5.7a) dB 
dx 

Cf 
2 

n (H • 2) dUe 
u    dx 
e 

k" 
6 - 5. du 

E     u    dx 
- 6,1 (5.7b) 

In the global continuity equation, the quantity CE = (dö/dx)  -  (ve/ug)  is  called 

the entrainment coefficient because it represents the rate at  which  the  external  flow 
enters the boundary layer through its external edge. 

The closure  relationships  are  deduced  from  the  FALKNER-SKAN  solution  as  the 
following functions : 

6-5 
(5.8a) H = H(H*)        H* =  jj - 

15.6b) fi RB = fi Re(H) 

CFRB    CFRB 
(5.8c) -LJi = -iyi (H) 

H      H 

The analytical expression of these functions are given below : 

H < 4.02923 
H >   4.02923 

* 
H 0     r 1 

• a — = b [ H H 

H      L 

H 
* 

H (4.02923)2 

a = 1.2706 b = - 1.5022 c = 3.1924 
a = 0.33044 b =   0.31993 c = 1.03094 

Hj  = 12.37 
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B = 2.99259  1 77 - „   ' ;e I     - I .   ' •- I       ; H < 4.02923 [> 1       1     I''7 - T     1     I1'7 1  • H 
LL H   8.05846 J       L 8.05846 J    J ' 

r 2.095065] 
D = B - (H - 1)   - 0.06815 + 4.336355 [ „ - i    02923 ] J: H < 4.02923 

T     1      111   13.35661 
D = 0.2064 4 - 90.3 0936 |^[ ,, 02923 ]     " -773" j ; H. > 4.02923 

B = D + (H - 1) [ - 0.068 15 + 46.34236 f  ^    -    ^—  "I2-338236 1  . H 

«- L (4.02923)    H  J J 
> 4.02923 

CERB        2   ,    H *    1 „ 
—r - - H-^-T B * TT=-r D 
M 

£i R - B 
2 Re " B 

5.2. Integral methods in two-dimensional turbulent flow 

As in laminar flow, the integral methods in turbulent flow  are  based on  the  Von 
KARMAN equation and most  of  them  use  a  second  global  equation  which can  be  the 
entrainment equation or the global kinetic  energy  equation  or  a  moment of  momentum 
integral equation. 

Various techniques have been employed to determine the closure relationships. A few 
of these techniques are described below. 

5.2.1. Velocity profiles 

The velocity profiles are sometimes represented by the classical power law : 

H - 1 

(5.9) •!_ „ [X] 2 
u    L 6 J 

e 

More elaborate models have been proposed on the basis of a physical understanding 
of the boundary layer. These models are derived from the decomposition of the boundary 
layer into an inner region and an outer region, between which a logarithmic overlap 
exists ; this property is certainly the key to the success of such representations. 

•Let us recall that in the inner region, it is assumed that the  velocity  scales  on 
the friction velocity : 

(5.10) u, 

and the velocity profile follows a universal law : 

y u 
(5.11) u+ = f(y+)      u+ = 77-     y* = ——• 

In the outer region, the velocity defect u - u scales on the friction velocity and 
we have : 

u  - u 
(5.12) -^  = F' <n>      n. = I 

T 

Compatibility of the behaviour of the velocity profile in the two regions leads to 
a logarithmic form in the overlap region (y* •• ~ and r) "* 0) which, in terms of inner 
variable, is : 

(5.13) u+ = - In y+ + C1 

where x and C. are universal constants (x = 0.41, C, = 5). In terms of  outer  variables, 
the logarithmic form in the overlap region is : 

u  - u 
(5.14) . —  = - -  inn • C, 

"T        X 2 

where C2 is a constant depending on the pressure gradient. 
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The compatibility between (5.13) and (5.14) leads to the skin friction law : 

(5.15) — = [ 77 ]     = -1 I" — + C, + C, 
u    L Cf J      x     v     1    2 

In terms of physical distances, the inner region • is very thin (if the REYNOLDS 
number is high enough). Therefore, a representation of the velocity defect law is 
sufficient to calculate the integral thicknesses. One of the well-known representations 
has been proposed by COLES, 1956. This is based on eq. (5.12) and (5.14) 

(5.16) F'(n> « - - mo + f (z " <u(n>) 

The wake function u> is approximated by : 

(5.17) u) = 1 - cos(trn) 

where B is the parameter of the velocity profiles family. 

Other analytical forms have been proposed to represent the velocity profiles. A 
rather sophisticated formulation has been given by WHITFIELD, 1980, which is valid over 
the whole thickness of the boundary layer. 

Another method to generate a velocity profiles family consists of establishing self- 
similar solutions. Such solutions have been studied by MELLOR-GIBSON, 1963, and, later, 
MICHEL et al, 1968, used them in a systematic way to develop an integral method. The 
principle of these solutions is to assume that, for a certain class of boundary layers, 
the velocity defect profiles are a function of n alone and not of n and x. These 
boundary layers are called equilibrium boundary layers. This hypothesis transforms the 
partial differential equations into ordinary differential equations. For increasing 
REYNOLDS number, the skin friction tends to zero and this leads to simplification of the 
resulting equation. In the outer region, the momentum equation becomes : 

(5.18) — • ' e<u'v'> -  i - ^n- + PnF' 

with : 

u  - u -n 6. x  du 

F" = -^-  ;F(n)=    F'(n) dn : F. = F(1) = ; P = ~   + 20 ; 8 = - £- —- 
U
T        

Jo 1       ö^fTT     F1 ux dx 

Let us notice that the existence of (approximate) equilibrium boundary layers has 
been proved experimentally : these flows are such as B is constant (CLAUSER, 1954 ; 
ROTTA, 1950). 

' The equation (5.18) has been solved by using a mixing length scheme to express the 
REYNOLDS stress - o<u'v'>. This produces a one-parameter family of velocity profiles 
which can be used in an integral method. The parameter which caracterizes a particular 
profile of the family is any quantity associated with the profile. MICHEL et al, 1968, 
use the CLAUSER parameter G : 

r1    2 (5.19) F'  dri 

1 1/2 
H(Cf/2) ' f F' dn Jo 

5.2.2. Skin friction law 

The skin friction law is obtained either empirically or from the  velocity  profiles 
representation. 

The most famous empirical skin friction law is due to LUDWIEG-TILLMAN, 1949 : 

(5.20) 

This law is valid over a wide range of attached boundary layers. 

Another method is based on equation (5.15).  For  example,  the  use  of  the  COLES 
velocity profiles gives the logarithmic law : 

(5.21) CTT]
1
'
2
 - J-ln^ • C, • ^ L Cf J       X      V      1    X 
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5.2.3. Entrainment function 

If the entrainment equation is used, a closure relationship is needed to express 
the entrainment coefficient. This function i-s very important because it describes the 
rate at which the outer fluid is entrained into the boundary layer. This process 
controls the growth of the boundary layer to a large extent and is intimately associated 
with the structure of turbulence in the boundary layer. 

In many methods, the entrainment coefficient CE is estimated with reference to 
equilibrium boundary layers. For such boundary layers, the x-dependence is eliminated, 
so the integral equations give algebraic relationships between CE and the boundary layer 
characteristics. From the self-similar solutions, it has been shown that the entrainment 
coefficient is : 

cE . P, - ^ f* [ 1 - 2 Ji 0eu 

From this expression, experimental results such as those given by EAST-SAWYER, 
1979, can be used to get the entrainment coefficient. Another way to get it is to use 
the results of the self-similar solutions. 

In certain circumstances, history effects can be very important, for example in 
flows which have first increasing and then decreasing positive pressure gradient. It has 
been argued that the flow near the wall adjusts very rapidly to change in some 
parameter, for example the pressure gradient (TANI in KLINE et al, 1968). On the other 
hand, the outer layer dominated by large eddies and the inertia of which is large, does 
not respond instantaneously to external variations when the boundary layers are in nor 
equilibrium. This physical idea led some investigators to the use of a lag-equation for 
calculating the entrainment coefficient. GREEN et al, 1972, have used as guidelines the 
turbulent kinetic energy equation as modelled by BRADSHAW et al (in KLINE et al, ed., 
1968) from which they inferred a lag entrainment equation. Essentially, the effects of 
history are included through the difference between the actual pressure gradient and a 
fictitious equilibrium pressure gradient, which would give the same boundary layer 
characteristics. 

Let us notice that if the global kinetic energy equation is used instead of the 
global continuity equation, a dissipation function D has to be modelled 

J  [- <u v > • v ^ ] ^ dy 

A similar discussion as above can be done because in the same way as the 
entrainment coefficient, the dissipation function is strongly associated with a 
turbulence model. 

5.3. Integral methods in three-dimensional turbulent flows 

As in the two-dimensional case, the integral methods are based on the global 
momentum equation but, in the three-dimensional case, there are two momentum equations 
whicti have been given in § 3.2.. Most of the methods use a third equation which can be 
the global continuity equation (MYRING, 1970, SMITH, 1972, COUSTEIX, 1974, STOCK, 1979, 
CROSS, 1979, 0KUN0, 1976) or the global kinetic energy equation (SWAFF0R0, 1983). 0KUN0 
uses a fourth equation which is the moment integral equation of the crosswise momentum. 

The closure relationships are often obtained from the use of streamwise and 
crosswise velocity profiles. It is generally assumed that the streamwise velocity 
profiles behave in the same way as the velocity profiles in a two-dimensional boundary 
layer. MYRING, SMITH, 0KUN0 use the power law profiles ; COUSTEIX uses the self-similar 
solution developed by MICHEL et al, 1968 ; STOCK uses the COLES velocity profiles. 

The streamwise skin friction coefficient and the entrainment coefficient are also 
generally calculated from two-dimensional relationships. 

The modelling of crosswise velocity profiles is often very empirical. 

The MAGER representation is often used (MYRING, SMITH, STOCK) ; this is written : 

(5.23) ^ = tan|3„ (1 - n >2 

u       0 

Even when the crossflow profile is simple, such a formulation often gives rather 
crude relationships for the dependence between the crossflow characteristics. 

A triangular representation of the polar plot w(u) has been proposed by GRUSCHWITZ, 
1935, and re-used by JOHNSTON, 1960. The location of the apex of the triangle at a fixed 
y value (yf = 13) allows a relationship to be set up from which the limiting angle pQ 
is calculated. In many cases, this formulation yields satisfactory relationships for the 
thicknesses. However, the law for the limiting angle ßQ seems to be less well founded. 
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More generally, polynomial representations have been proposed (EICHELBRENNER, 1965, 
SHANEBROOK-HATCH, 1970, OKUNO, 1976) ; for example : 

(5.24) "- = tanppP^n) + C P2<n.) 
e 

In the method proposed by EICHELBRENNER, an equation is provided to calculate the 
second parameter. This equation can be considered as an extension of the SQUIRE-WINTER 
relation discussed in § 1.1.. In the method developed by OKUNO, a moment of momentum 
integral equation is used to calculate the second parameter. 

In the method developed by COUSTEIX, the crossflow velocity profiles have been 
generated from an extension to three-dimensional boundary layer of the self-similar 
solutions. The resulting closure relationships are given in appendix. 

Finally, let us mention the method proposed by COLES which gives a vectorial 
representation of the velocity profile within the boundary layer. This is an extension 
of the law of the wall-law of the wake used in two-dimensional flow. The boundary layer 
velocity vector is given by : 

15. 25) 
[y u T 

where Q  is parallel to the skin friction vector T  and its modulus is NTT 7Q .   i is a 

tensor such that lrÖ  is parallel to the external velocity. 

In this formulation, the velocity vector turns from the direction of the limiting 
wall streamline to the direction of the external velocity. A similar model has been used 
by CROSS, 1979 and LE BALLEUR, 1983. 

From the brief presentation of the various hypotheses used to establish the closure 
relationships, two main difficulties can be discussed. 

The first difficulty is the modelling of the entrainment coefficient. As already 
said for the two-dimensional case, this coefficient is intimately associated with the 
boundary layer turbulence structure. Now, the experiments of ELSENAAR-BOELSMA, 1974, and 
BRADSHAW-PONTIKOS, 1985, have shown that the turbulence structure is modified by the 
three-dimensionality of the flow. In particular, the main axes of the stress tensor are 
no longer aligned with the main axes of the velocity gradient tensor ; the transport 
velocity for the turbulent kinetic energy decreases ; the magnitude of the shear stress 
decreases compared with an equivalent two-dimensional boundary layer. These effects 
result from the effect of crossflow on large eddies and it is probable that the 
entrainment rate decreases when the three-dimensionality develops. This is not taken 
into account when it is assumed that the entrainment coefficient follows the same rules 
as in two-dimensional flow. 

The second difficulty to establish the closure relationships is that there is no 
counterpart of the two-dimensional law of the wall which is important for the success of 
the representation of velocity profiles. Several attempts have been made to extend this 
law of the wall. Generally, the behaviour of the velocity profile is obtained by solving 
the basic equations with a similarity hypothesis and by using a turbulence model, for 
example a mixing length model (Van den BERG, 1975). In two-dimensional flow, the 
reasoning is not at all the same : the logarithmic law of the wall comes from the 
analysis of the double-layer structure of the boundary layer and turbulence models are 
devised to reproduce the properties of the velocity profile. Recently, GOLDBERG- 
RESHOTKO, 1984, have performed an asymptotic analysis of the three-dimensional boundary 
layer. They found that the direction of the velocity is constant in the inner layer ; at 
very large KttnuLDi number, this result is certainly true but, in practice, it is 
insufficient because the experimental results show that the velocity direction can vary 
rapidly near the wall. In the JOHNSTON'S model, the apex of the polar plot is around 
y+ = 13 ; this means that it cannot be assumed that the velocity direction in the 
logarithmic region is equal to the wall limiting angle p_. 

5.4. Calculation of the transition region 

A review of problems arising from the laminar-turbulent region is provided by the 
AGARD Special Course on Stability and Transition in Laminar Flow (AGARD Report N" 709) 
and the paper by ARNAL, 1986. 

The practical calculation of a laminar-turbulent transition region involves two 
problems. The first one is the determination of the onset of transition , and the second 
one is the calculation of the transition region itself. 
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The calculation of the transition region can be performed by weighting the 
properties of a fictitious laminar boundary layer and a fictitious turbulent boundary 
layer ; this is the so-called "intermittency" method. The weighting function -y is 
defined from the evolution of the momentum thickness : 

Y = 1 - ~[-'-[fr-']] 
where 6n  is the value of the momentum thickness at the onset of transition. 

Although this treatment is crude, the influence on the downstream boundary layer  is  not 
very large. It is more important to predict accurately the location of transition onset. 

In two-dimensional flow, transition can be caused by several mechanisms. In the 
case of the so-called natural transition, the first stage of the process is described by 
the occurrence and the amplification of unstabilities which are called TOLLMIEN- 
SCHLICHTING waves. The linear stability theory enables .us to calculate the 
characteristics of these waves as eigensolutions of the linearized NAVIER-STOKES 
equations. From this theory, there exists a REYNOLDS number below which all the 
disturbances are damped. We will call this REYNOLDS number R- 

One of the most successful criterion for the onset of transition is based on the 
calculation of the amplification of the TOLLMIEN-SCHLICHTING waves when the REYNOLDS 
number is larger than Rins. The en-method (SMITH-GAMBERONI, 1956, Van INGEN, 1956, 1977) 
says that the onset of transition occurs when the amplification is equal to en where n 
is a coefficient which depends on the turbulence level of the external flow. ARNAL et 
al, 1984, have applied this technique to the FALKNER-SKAN laminar self-similarity 
solutions and they deduced a practical criterion for the onset of transition which 
extends the GRANVILLE criterion (1953) by taking into account the effects of external 
turbulence. This criterion also includes the effects of pressure gradients. It is qiven 
by (fig.5.1): 

(5.26) 
6. 206 exp (25.7 A2)(ln 16.8 Tu - 2.77 A ) 
T     ins 

where Tu is the turbulence intensity in the external flow 

(5.27) Tu 

Ä~2 is a mean value of the POHLHAUSEN parameter 

rx 

((<uZ> • <v,Z> <• <w'2>)/3u2 )1/2 

(5.26) *>-^r-l 
,2 du 

i     dx 

The location xy   of the  transition  onset  is  determined  when  the  value  of  the 
REYNOLDS number Rg calculated in laminar flow is equal to the value of Rg  given by the 

formula (5.26). This formula also involves the calculation of x-   and R.     The 
lns      8ins' 

values of xins and Rfl    are determined when the REYNOLDS number Rg calculated in 

laminar flow is equal to the value of a critical REYNOLDS number Rn   (at the point 
cr 

* = xinS' 
we nave Re = Re  = Re  )• Tnis REYNOLDS number R„ 

cr    "ins 

analysis of the stability properties of the self-similar solutions. It  is  assumed  that 
Rg   is a function of the shape parameter H : 

<B   is obtained from the cr 

(5.29a ) 
>•27 + 17.2    £  " 0.39]0'5     • 

H . H < 2.5 

2.897 22 230i 
,10 

H > 2.5 

where H is the value of the shape parameter of the boundary layer calculated  in  laminar 
flow. 

Other mechanisms than the TOLLMIEN-SCHLICHTING waves can lead to transition and a 
number of parameters can delay or promote the location of "natural" transition given by 
(5.29). In these cases, specific criteria are needed. 
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Fig.   5.2 - Transition criterion for the cross flow 
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Fig.  5.1 - Transition criterion in two-dimensional 
flow  (ARNAL et al,   1984) — *&2 
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In a three-dimensional flow, the "natural" transition can occur from the same type 
of instability as in two-dimensional flow. For practical calculation, it is assumed that 
the properties of stability of the streamwise velocity profiles are the same as those of 
a two-dimensional velocity profiles. The transition can also occur from an instability 
of the crossflow and this crossflow instability can develop in regions where the 
streamwise velocity profile is stable. On a swept wing, it results that this crossflow 
instability can cause a transition very close to the leading edge even if the streamwise 
velocity profile is stable in this region. 

From experimental data,  ARNAL  et  al,  198*,  have  extended  the 
criterion for predicting the onset of crossflow transition (fig. 5.2) : 

BEASLEY, 

(5.30) (RS2). = 3££ atan r_ 
T    TT        L (H 

0. 106 

2.3) 
2.052 

2.3 < H < 2.7 

dy 

For practical calculation, it is assumed that the streamwise and crosswise 
transition processes are uncoupled. This means that transition occurs when one of the 
two criteria (5.29) or (5.30) is first satisfied. The criterion (5.29) is applied to the 
streamwise boundary layer and the criterion (5.30) is applied to the crossflow. 

A third kind of transition can occur due to the so-called leading edge 
contamination. In this process, the boundary layer developing along the leading edge 
(attachment line) can be perturbed by the boundary layer coming from the fuselage. From 
various experiments (see, for example, POLL, 1984), it results that the boundary layer 
along the leading edge is laminar if the REYNOLDS number WeB/v is less than 100 (We is 
the external velocity component along the leading edge and 8 is the momentum thickness 
of the corresponding boundary layer). If the REYNOLDS number We8/v is larger than 100 
(or 150), it is probable that the leading edge is turbulent. However, due to the 
negative pressure gradient downstream of the leading edge, the boundary layer can 
relaminarize. A criterion used by LAUNDER-JONES, 1968, in two-dimensional flow and by 
BEASLEY, 1973, in three-dimensional flow is : 

(5.31 ) = 5 10 

where s is the distance along an external streamline. 
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5.5. Description of an integral method 

The integral method we have developed (COUSTEIX-QUEMARD, 1972, COUSTEIX, 1974)  for 
calculating three-dimensional  boundary  layers  is  based  on  the  solution of  global 
equations of continuity and of momentum (eq. 3.3). The equations are  written in  a  non 
orthogonal curvilinear axis system. 

The method has been developed in laminar and turbulent flow. The transition 
location can be prescribed a priori or calculated as described in § 5.4.. 

The closure relationships, in the laminar and turbulent cases, have been obtained 
from self-similar solutions. They are valid in compressible flow (Me < 4) on an 
adiabatic wall. These relationships are given in appendix. For convenience! they are 
given in a streamline coordinate system but they can be transformed into relationships 
for the boundary layer characteristics expressed in any curvilinear non orthogonal axis 
system. These relationships have also been extended to calculate a three-dimensional 
wake. 

The procedure is first illustrated in the case of an incompressible two-dimensional 
dissymmetrical wake, we define an upper half-wake and a lower half-wake separated by the 
line y0 which is the minimum velocity line. Along this line y0, it is assumed that the 
shear stress is zero. Then the global equationsfor each part of the wake are : 

- upper half wake (subscript u) 

(5.32a) 

,«,„*, d'5 - 6l'u   r 
v0   '6 - 6l'u due (5.32b)  = C_  •   -   -:— dx Eu   u        u      dx e       e 

- lower half wake (subscript 1) 

(5.33a) 

d(6 - 5,), v„   It - 6,1, du 
(5.33b)   1 * = CE, - -* L-i 3-2 dx 1   u       u      dx e       e 

where vQ is the vertical velocity along the yQ-line and um is the minimum velocity. 

, For each part of the wake, the velocity profile is modelled by : 

y - y„ 

d8           v„   u     -   u 
u           0     e          m 

H     +   2   du 
0 

dx           u             u "u           u        dx 

dB, v„   u u H,   +   2   du 
1 0     e m 

•8, 1          u        dx dx u             u 

5.34)   = I n    - 1 I     ;    n = 
u  - u     L J 

e    m 

We deduce the following relationships : 

(5.35a) e    m     h   I 
u      0.7013 H 
e 

5, 
(5.35b) T-!- = 0.45 —  

6 u e 

For each part of the wake, the entrainment coefficient is given by : 

u  - u 
(5.36) C£ = 0.14 -S-JJ - 

e 

For a given value of v0, the systems (5.32, 5.35, 5.36) and (5.33, 5.35, 5.36) for 
the upper half-wake and the lower half-wake can be solved separately. In general, these 
solutions will lead to different values of um for the upper half-wake and the lower half- 
wake. The value of vn is calculated step by step to have the same value of um ; this 
calculation is performed by a shooting method. 

In the case of a three-dimensional wake, the principle is the same except that the 
crosswise global momentum equations are used to calculate the crossflow. 

It is assumed that the streamwise velocity profile behaves like in a two- 
dimensional flow and relationships (5.34), (5.35), (5.36) are used to model the 
streamwise velocity profile. 
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Fig.   5.3 - Modelling of the orossflow in a three-dimensional wake 

The crosswise velocity profile is obtained by assuming a triangular polar plot 
(fig. 5.3). From this modelling, we deduce the following relationships for each part of 
the   wake   : 

ce, B, C(H   -    1 >( 1 1 '22 CMH   -    1 )( 

The values of C. and C2 result from the solution of crosswise momentum equations 
written for each half-wake. 

In compressible flow, the total enthalpy hj in the wake can be assumed constant if 
the wake develops behind a wing with an adiabatic wall. If it is also assumed that the 
velocity profiles can be modelled by the same representation as in incompressible flow, 
it is easy to extend the method to this case. 

5.6. Examples of application 

A first example of application of the integral method in turbulent flow is given in 
fig. 5.4. This is the study of the flow around the M6 wing (SCHHITT-COUSTEIX, 1975). 
Calculated wall streamlines are compared with experimental wall flow visualization. The 
free stream velocity is 90 ms ; the angle of attack is 15". The initial condition for 
the boundary layer calculations have been prescribed from cross-checking with boundary 
layer measurements at a few stations on the wing. 

Fig.   5.4  - Boundary  layer calculations on the M6 wing 

  •   calculated wall streamlines 
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Another example is the study of the turbulent boundary layer in supersonic flow in 
a curved channel (COUSTEIX-MICHEL, 1975). The MACH number is about Me = 1.6. The initial 
conditions have been prescribed from boundary layer measurements at the initial station. 
In addition,- boundary conditions have been prescribed along the upper wall bounding the 
nozzle. The crossflow is assumed to be zero along this boundary. Samples of results are 
given in fig. 5.5. 

streamline N° 

10   20   30   40  50   60  70   80  90 

Fig.   5.5a  - Boundary layer calculation in a curved supersonic nozzle 

Fig.   5. 5b  - Experimental and calculated Wall streamlines  (integral method) -    Calculations 

LA., 
_j——\— 

'   I    I 
t y |    I 

y" 
* 

^\ 

;— 
i 
i 

-line rfl 7 
^ 

I ^ \ • 
y 

y 
line no to 

s*C 

i   i J—  .  
1 H" l 

linen" U ! \   \ 
. * 

1 ^>-T    1     1 line n H T"    • 1       1       1       1 

H 1    1    1    1 
\ __!__ 1        T  

I    '    ' lire: if 4- 
i      J 1    i    i 

1      1 
 1      J 

line if 7 - 

2,8 
1 ! 

~~~T-*— 
line if 10 1 

2,8 

2.4 

• line if 14 

2,8 -* 
1 

2,4 
I , 

? 
line no 16 

Fig.  5.5c - Boundary layer characteristics 
calculated with an integral 
method 

70      SO     SO 

Fig.   5.5d - Boundary  layer characteristics     oj 
calculated with an integral <U 
method 

o.i 
oj 

I _ '      i      l i       1 ! 
—~~T~ 

• 1    1 1       1       1 
-* 

F«! 

-line no 4- 

1 1 
1^- 

^"1 1- 

""} 1 ••"" 

1 -111 1   j-M 
• ^_^- --" 1 

1 ..III 

1 
e V^ " \ line n° 14 

1 0 I 1 
-4 

1 
^""T no ie\ 

1 1 
10     20      30 20      30      40      50       60       70      80     90 



1-29 

The integral method has also been applied to the boundary layer developing on a 
swept wing (PAILHAS, 1979). The experimental set up and the external velocity 
distribution are shown in fig. 5.6a. The section of the model is an ONERA D airfoil ; 
the sweep angle is 22.5' ; the normal incidence is 8" ; the free stream velocity is 
35 ms"1. Initial conditions for the boundary layer calculations have been prescribed 
from experimental results. The evolution of the calculated results is presented in fig. 
5.6b. 

Fig.  5.6a - Study of a boundary layer developing on a swept wing 
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Fig.   5.6b  - Calculation of the boundary layer developing on a swept wing  (integral method) 
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Another application of the integral method has been provided by the experiment 
performed by MEIER et al, 1984, on an ellipsoid. In these experiments, the external flow 
conditions (magnitude and direction of external velocity) have not been measured. These 
data have been calculated from the measured wall pressure distribution as described in 
GLEYZES-COUSTEIX, 1984. Several cases have been calculated. The first one is at low 
REYNOLDS number, in laminar flow, for an angle of attack of 10". The calculated wall 
streamlines are compared to the experimental wall streamlines obtained from measurements 
with directional skin friction gauges (fig. 5.7). The calculations stop when a 
singularity is detected ; this problem will be discussed further in paragraph 6. The 
locus of the termination points suggests the formation of a separation line whose 
location compares rather well with experiments. 

X/L 

b) tiiiP^ 
Fig.   5.7 - Boundary layer on an ellipsoid -  Wall streamlines - Laminar flow - a = 10° - Re = 1.6 10B 

a) Experimental results   (MEIER et al,  1984) - b)  Calculated results  (integral method) 
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The last example is an application of the integral method to the experiment 
performed by BRADSHAW and PONTJKOS, 1985 (GLEYZES-COUSTEIX, 1986, unpublished). This 
experiment is a study of a three-dimensional boundary layer developing on an "infinite 
swept wing". The conditions are similar to those of the Van den BERG et al experiment, 
except that the initial boundary layer is thinner so that separation is not reached. The 
main set of data has been taken at four stations on a line parallel to the tunnel axis. 

The comparisons between the calculated results and the  experimental  r 
5.9)  show  a  good  overall  agreement  on  the  streamwise   and   on   th 
characteristics. However it should be noticed that  the  calculations  are 
initial data as described below. In principle, the experiment has been devis 
way that the boundary layer characteristics are invariant along the  spanwis 
In fact, there are slight variations of the  boundary  layer  characteristic 
inital data line parallel to the span (PONTIKOS, 1982). At first sight, thes 
are within the accuracy of measurements but if calculations are performed  b 
different sets of initial data taken at two stations along the initial data 
seen that the  results  are  significantly  different  (fig.  5.9).  Indeed 
differences between the data are not damped but they are amplified. This  me 
avoid misinterpretations, a very high accuracy of measurements is  needed  e 
the initial data. 
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6 - SINGULARITIES IN BOUNDARY LAYER CALCULATIONS 

The boundary layer equations (either local or global) are completed by closure 
relationships and are associated with appropriate initial and boundary conditions. Then, 
it is assumed that the problem is mathematically well posed and numerical means are 
employed to solve it. However, it is not known a priori that a solution exists in any 
preassigned domain. 

From the local equations, the analysis of this problem is generally performed in 
laminar flow although it has not been shown that the turbulence model has no influence. 

6.1. Steady two-dimensional boundary layer 

The GOLDSTEIN, 1948, analysis of local equations in laminar flows has shown that a 
possible stop of computations is due to a singularity in the equations which is 
characterized by an unbounded vertical velocity and a zero skin friction. This  has  been 

confirmed by a number of numerical results. The wall shear stress vanishes as the  square 
root o.f the distance from where it is zero and no solution exists downstream. 

Obviously the singularity is not physical, but it is often argued that the 
behaviour of the solution near the singularity is an exaggeration of the actual flow. 

The properties of integral methods (in laminar or turbulent flow) have strong 
similarities with local methods. Let us consider the system of the global continuity and 
momentum equations : 

d(5 - 5 )   6 - 6  du 
(6-1> —35— + ——dir - CE e 

(6 2) — • a H * 2 ^ = ££ (62) dX "   u   dX    2 e 

The closure relationship for H  = (6 - 6f)/8 has the form : 

(6.3) H* = H*(H) 

This is exactly the form of the relationship used in laminar flow. In turbulent 
flow, this form is an approximation of the "actual relationship because H depends also 
slightly on the REYNOLDS number, but this dependence is weak. 

If equation (6.3) is used in equations (6.1) and (6.2), we obtain the following 
system : 

( 6 . 4') 

* *.  d8    *,   1 * 8    e (6-5) (H - HH ' d!+ H  dir * C
E " H TTüT e 

* .   dH* where   H   =  . dx 

From equations (6.4) and (6.5), the derivatives d8/dx and dfi^/dx can  be calculated 
if H ' *   0.    In fact, the case H ' = 0 can occur because the function H (H) has a  minimum 
at a point H  = Hc, H = Hc. This minimum is obtained for Hc = 4.03 in  laminar flow  and 
around H  = 2.6 in turbulent flow.  These  values  are  associated  with  the zero  skin 
friction point. 

As with the local equations, it is not possible to continue the calculation beyond 
the point H = Hc because equations (6.4) and (6.5) can be combined to give : 

(6.6) 8 £L , c    „* "   H*(H • ,, °-!^ 
dx     E      2 u  dx e 

In a calculation, when a point x = x  is reached where H = Hc, the right  member  of 
(6.6) is generally non zero  and  negative  so  that  H 
equation (6.3) gives no solution for H. 

Another problem related to the occurrence of a singularity is that the results 
obtained at locations close to a possible singularity are very sensitive to various 
factors, such as (for example) the numerical scheme, the evaluation of the pressure 
gradient, the closure relationships. Small modifications in these factors can lead to 
large differences in the results. Therefore, it is difficult to separate the influence 
of each factor, particularly the influence of the closure relationships (when working 
with the local equations, these relationships are the turbulence model). This can lead 
to unfortunate misinterpretations. 

dB Cf 8(H   + 2) 
du 

dx 2 u dx 
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6.2. Inverse method in two-dimensional flow 

Instead of solving equations (6.1), (6.2), (6.3) with a prescribed velocity 
distribution u (x), it is possible to consider that ue is an unknown and that 6,(x) is 
prescribed. This is the so-called inverse mode (CATHERAIL-MANGLER, 1963). In fact, an 
infinite variety of inverse modes can be imagined ; instead of prescribing 6.(x), it is 
possible to prescribe the function H(x) or any other function of boundary layer 
characteristics. 

If 6-(x) is prescribed, equations (6.1) and (6.2) can be rewritten as a  system  for 
and u. 

(6.7) d8 
dx 

du 
 e 
dx 

Cf 
2 

(6.8) 
*     *   dB    * 8    e 

(H  - HH ' ) 2s-   *   H  — -p-5 dx      u  dx dx 

In general, the calculation of d8/dx and d6,/dx is possible even when H > Hc. 

The inverse methods can be used in design techniques where a certain optimisation 
condition is prescribed. 

The inverse methods have also been widely used in viscous-inviscid interaction 
techniques. In this case, the problem is not to solve the boundary layer equations alone 
but the coupled system of boundary layer equations and inviscid equations. A very clear 
presentation of the problem is given for example by VELOMAN, 1980. 

6.3. Three-dimensional boundary layer 

The nature of the system of global equations used in an integral method has been 
studied by MYRING, 1970 and C0USTEIX-HOUDEVILLE, 1981. The integral method is based on 
three global equations (continuity and momentum equations) which are complemented 
with closure relationships. 

The equations form a system of three first order partial differential equations. It, 
has been shown that the system has three characteristic directions which are always real 
and distinct. The system is hyperbolic. This property is related to the fact that the 
boundary layer streamlines are subcharacteristics of the system of local equations and, 
due to the integration with respect to y, the number of characteristics reduces. • This 
number is equal to the number of global equations. 

The calculation of characteristic roots of the set  of  global  equations  has  been 
performed (COUSTEIX-HOUDEVILLE, 1981) with approximate closure relationships.  The  angle 
of the characteristic directions is defined with respect to  the  external  streamline  ; 

• -1 • its value is tan  Y. The three characteristic roots are : 

(6.9) C(H - 1) 
1 - ßH 

(6.10) 

(6.11) 

0.631 

= C(H - 1 ) 

P = 

C(H 1) 
(2a + 0)H + 1 

i + •Ja2 + a  = 0. 382 

The coefficient C in eqs. (6.9), (6.10), (6.11) is a parameter defining the 
crossflow velocity profiles : for the calculation of Y, the crosswise integral 
thicknesses are calculated with an approximate crossflow velocity profile : w/ue=CI1-u/u I, 

From the closure relationships used in the integral method, it has been shown that 
the Y^-characteristic line is very close to the limiting wall streamline. The other two 
characteristic lines lie between the limiting wall streamline and the external 
streamline (fig. 6.1). 

H<Ht H = HC 

Fig.   6.1 - Charaateristio lines of the set of 
global equations 

Fig.  6.2 - Variation of the direotion of the Yj charac- 
teristic line with the value of the shape 
parameter 
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The hyperbolicity of the set of global equations leads to the concept of dependence 
and influence domains which are very similar to the domains defined from the analysis of 
the nature of local equations. From the global equations, the domain of dependence of a 
point P is bounded by the •y^- and -^-characteristic lines passing through P. Roughly, 
this domain can be approximated by the domain bounded by the limiting wall streamline 
and the external streamline. 

The values of the characteristic roots depend on the value of the shape parameter  H 
and therefore the opening of the domain of dependence depends on H. In the range 
1 < H < —, the angle between the Tj- (and  ^3-)  characteristic  line and  the  external 
streamline is between - TT/2 and TT/2 : 

- TT/2 < tan"1 -y, 

- IT/2 < tan"1 v. 

< Tf/2 

< Tf/2 

1 < H < ~ 

but the angle between the •y1-characteristic line 
larger (fig. 6.2) : 

and  the  external  streamline be 

TT < tan" < TT 

Obviously, this opening of dependence domain must be taken into account in 
the numerical methods because the equations cannot be integrated against the direction 
of the characteristic lines. 
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onal case, the singularities are not local. They 
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f characteristics). In fact, it has been shown 
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suits from the use of the direct mode. It is 
a discontinuity line is a signal that reveals the 
viscous-inviscid coupling technique. 

An example of computed results is presented in fig. 6.3. The support of the 
calculations is an experimental study by LINDHOUT et al. This experiment has been used 
as a test case for a workshop on three-dimensional boundary layers held in AMSTERDAM, 
September 1979. The objective was to calculate the boundary layer developing on a wing 
root. The data consist of the magnitude and direction of the velocity in inviscid flow. 
Boundary layer characteristics were given as initial data along a starting line close to 
the leading edge. The calculations were performed by using full closure relationships 
that are more accurate than those used to analyze the properties of equations. 

The computed results given in fig. 6.3 show the external streamlines and the wall 
limiting streamlines. They also show the contours of the leading and trailing edges. The 
calculated wall streamlines form a line of convergence and the overall topology of these 
wall streamlines suggest the occurrence of a separated zone. The experimental results, 
based on wall flow visualizations, confirm the existence of a three-dimensional 
separation in the same region. In the experiment, this separation leads to a strong 
vortex flow. 

In the domain (X/b > 0.3, Z/b < 0.2), we note the 
computed wall streamlines and we note also the existence of 
also revealed by the experiment. 
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1 that a boundary layer calculation method can reproduce  the  flow  in 
low. In addition, it is clear that the flow  should  be  calculated  by 
strong viscous-inviscid interaction which has not  been  done  in  the 
. However it is interesting to note that a  rather  simple  method  is 

useful information. 
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Fig.   6,3 -  Calculation of the three-dimensional 
boundary layer on a wing root section 
(calculated by COVSTEIX & AUPOIX in 
LINDHOUT et dl,   1981) 
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 Wall streamlines 
,E.   :   leading edge ;  T.E. trailing 
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The following example also involves a separation phenomenon. This is the boundary 
layer flow on an "infinite" swept wing investigated experimentally by Van den BERG et al 
and ELSENAAR-BOELSMA. The boundary layer flow was generated on a 35" swept flat plate j 
a pressure-inducing body placed above the plate was designed to produce a pressure 
gradient which causes the separation of the boundary layer on the plate. In this case, 
the separation is characterized by the wall streamlines which become parallel to the 
plate leading edge. 

The calculations presented in fig. 6.+ have been performed with an integral method. 
In fact, the results of two calculations are presented. Firstly an inverse method has 
been applied. 

In these calculations, the input is the experimental 
whereas the distributions of the modulus and of the direction of  the 
are results of the calculation. The characteristics of the boundary layer other 

distributions  of  51  and  52 

external  velocity 
than  6. 

As shown in figure 6.4, good agreement with experiment is obtained for H, ßQ, the 
modulus u of the external velocity and its direction a defined with respect to a normal 
to the leading edge. In particular, the experimental location of separation is well 
reproduced (the separation is characterized by a + 0n = 90* : the wall streamlines are 
parallel to the leading edge). 
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ulus ue and its direction a)      is  the  input  whereas  the 

of the other characteristics of boundary layer are 
n these calculations, the distributions of u0 and o are 
ts  but  from  the  outputs  of  the  inverse  calculations 

the  calculated  distributions  of  H  and  ß0  are  very 
verse methods. In particular, the  direct  calculations  do 
This  discrepancy  is  obviously  a  result  of  numerical 
caused by the proximity of a singularity. Let us notice 

rmed with the experimental distributions of ue and a lead 
o those obtained with the distributions of u„ and  a  taken 

These results clearly demonstrate the kinds of misinterpretations that can result 
in the neighborhood of an expected singularity if the calculations are performed in the 
direct mode. They also imply that it is incorrect to calibrate a calculation model from 
direct mode calculations of a boundary . layer close to separation because it is 
impossible to attribute such and such a cause to such and such an effect. It is believed 
that the same problems occur with a method solving the local boundary layer equations. 
In this case, it is incorrect to try to calibrate the turbulence model from direct mode 
calculations near separation. Moreover, as stressed by CEBECI, 1984, a kind of flow as 
the Van den BERG et al experiment, which involves separation, is mainly pressure driven 
and the turbulence model is unimportant. Other parameters such as the normal pressure 
gradient should be considered very carefully. 

i   i   i  i   i   i  r 
1   2.3   A   5 6   7   8 9 10 

1   I   I    TH    I    I    I    I 
1   234567!  910 

Stations 

Fig.   6.4 - Calculation of Van den BERG et al's   (1975) experiments with an integral method (COUSTEIX,  1982) ; 

 inverse mode  (&    and S„ prescribed from experiment) j direct mode .(-external Velocity 
distribution prescribed from the results of the inverse mode calculations)  ;'+ experimental exter- 
nal velocity from wall pressures ;   X experimental external velocity from boundary layer edge 
measurements  ; to experimental values 
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7 - SOLUTION OF LOCAL EQUATIONS 

In laminar flow, the set of continuity equation and momentum equations form a 
closed system of equations for the three components of velocity because, according to 
the boundary layer approximation, the pressure distribution is known (here we assume 
that the boundary layer problem is posed in the direct mode). 

In turbulent flow, the system of  equations  is  not  closed  because the  REYNOLDS 
stress - p<u'v'> and - Q<W'V'> are additional unknowns. A turbulence model needs  to  be 
used to calculate these terms : this problem will be discussed in § 7.2.. If  we  assume 
that a turbulence model is available, the system of equations is closed. 

Except for a few particular solutions, the boundary layer equations cannot be 
solved analytically. Then, numerical methods are employed. The general principle of 
these methods is nearly the same for laminar or turbulent boundary layers. In the 
literature, several papers are devoted to the description of the numerical methods (see 
for example the review papers by KRAUSE, 1972, SMITH, 1982). Here we will describe only 
the general features of two simple and representative schemes. 

7.1. Numerical methods 

Most of the numerical methods are based on finite-difference approximations of the 
X-, Z- and y-derivatives. In this way, the equations are transformed in a set of 
algebraic equations. 

One of the rules to construct a correct numerical approximation is the CQURANT- 
FRIEDRICHS-LEWY condition which states that the numerical domain of dependence of a 
difference scheme should include the domain of dependence of the differential equations. 
Let us remind that the domain of dependence of the differential equations is determined 
by normals to the wall and boundary layer streamlines ($ 4.2). 

The finite difference  approximations  are  developed  from 
reference points (X^, Z^, yk) which form a regular network. 

grid  consisting  of 

A first example of a finite-difference molecule is given in fig. 7.1i 

In the scheme associated with fig. 7.1a, the equations are written  at 
Zj, yk). The y-second derivatives are approximated by using the points  (X^, 
(x^, Zj, yi,), (Xj^, Zj, y k_ 1 ) whereas the X- and Z-derivatives are given by : 

(7.1) 
f        - f 

r Jf -I  _  i+1 , j ,k    i, j ,k 
L OX JM       X. . - X. x+1    x 

point M(Xi, 

ykn1' 

(7.2) r ^ i L 8z JM 
*i.j«l. 

z. - z. 
3*1    3 

i-J,K 

In this way, the calculated point represented by a star (*) in fig. 7.1a, is 
obtained explicitly as a function of the other points which are assumed to be known. 
Then, the points belonging to a complete y-column can be calculated successively. After 
a y-column has been calculated, a next y-column is calculated as shown in fig. 7.1b 
which gives the scanning sequence of the calculation domain. 

This is a very simple scheme which is easy  to  code  but  it  suffers from  a few 
drawbacks associated with the CFL condition. This scheme is correct only if W < 0 and if 
the X-step is  restricted  by  the  condition  AX/AZ  <  min   |W|/U.  (If W  >  0, the 
symmetrical molecule shown in fig. 7.1a can be used). 

Cx-..2j,i,Yk) 
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X Y derivatives 
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w>o 

f® f® |® 

j© t® j 

f   t@ I® t® j©  f© 
)> l) lit inTTfiTTi i/tnrrjinir/int/r/t 

vUl naif., 

no Doondorv 
nditio 

»X 

a) Finite difference moleoule 

Fig,   7.1 - Example of an  "explicit" scheme 

b) Scanning sequence of the calculation domain 
(W < 0) 
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A second example of a finite-difference molecule is given in fig. 7.2a. The 
equations are written at point M and the convention for writing the various derivatives 
is the same as in fig. 7.1. The solution is now sought at point M. The difference with 
respect to the scheme of fig. 7.1 is that the solution at point M cannot be determined 
explicitly as function of the known points. In effect, the solution at point M depends 
on the solution at all the points belonging to the y^-column : in this sense, the scheme 
is implicit and the solution is sought simultaneously along a complete yk-column. (The 
use of three points to express the y-second derivatives leads to solve a three-diagonal 
matrix). The CFL condition restricts the application of this scheme to the case W < 0, 
but there is no restriction on the X-step (if W < 0). If W > 0, the symmetrical molecule 
shown in fig. 7.2a, is used. 

This scheme seems very interesting as there is no restriction on the X- 
problem is that, in general, the W-component is not positive  (or  negative) 
When W changes sign in the calculation domain, it is necessary to switch ope 
method has been used by LINOHOUT et al, 1981, who have constructed an algori 
the scanning sequence shown in fig. 7.2c. According to the sign of W, a left 
implicit operator (fig. 7.2a) is used and the switch is performed by  using 
operator. In the sequence shown in fig. 7.2c, the first operation  is  to  d 
point 1 by using the explicit operator  ;  afterwards,  the  points  2,  3, 
calculated by using the implicit operator (W > 0) and finally, the points _9, 
calculated by using the implicit operator (W < 0). The  advantage  of  this 
that the restriction on the X-step is minimized because the  explicit  opera 
when W changes sign, that is, when W is small. 
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b) Scanning sequence  (W < 0) 

o—-o—^o—=o—^o—<>—b—A—o—o    a) Sequence used by LINDH0UT et al  (W < 0 and W > 0) 

Fig.   7.2 - Example of an "implicit" scheme 

Other efficient numerical schemes have been developed to calculate three- 
dimensional boundary layers. Let us mention the zig-zag scheme by KRAUSE et al, 1969, 
and the box scheme, the zig-zag box scheme and characteristic box scheme developed by 
CEBECI et al, 1979. 
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7.2. Turbulence modelling 

The simplest three-dimensional turbulence models are direct extensions of two- 
dimensional models. For example, the mixing length model used by COUSTEIX et al, 1971, 
reads : 

l7'3)     Ttx * M §7 " e<"'v'> = e(v • vt)|^ i xtz « N | - 0<Wv"> = o(v • vt)|ä 

with 

, , , , c2,2 fr 8U n2    r ÖW n2   , SU 9W „„ . 1 
<7-41 vt = F x    L[ *y J    + [ äV ]    +2ä7ä7cosXJ 

1/2 

The mixing length is expressed by the same formula as in two-dimensional flow 

(7.5a) i . o.oe5 t,nh [_l_Jt]     x = 0.41 

and the viscous damping function is given by : 

r     1  , , 2     2    ., ..1/2-rl/2i (7.5b) F = 1 - exp [ - —— <(T.  • T.  • 2T  T   COSA)   O)   ] 

In compressible flow, this scheme is completed by the heat flux modelling  with  the 
hypothesis of a constant "turbulent PRANDTL number" : 

/,,.. i. rvtndh n.6) • = - c [? • —] ^ 

P    =    0.725 Pt    =   0.89 

In the same way, the extension of the classical k-e model in  fully  turbulent  flow 
gives : 

(7.7. - <„•„•> = CM fl%   :    ~   <WV> . CM £g 

where k and e are calculated from : 

Dü=p_eta_rCEJ<f.aj<i (7.8a) 

(7.8b) ^f=C,Pf"C 
2 2 

0c   ,   „ E   .   E   3  r CM k  de e    ö_ r C£ k_ d_e -i 
k   9y L „ e 9y J 

with 

Dt    e1   k    E2 k    oy L o  e  3y 

oU   , , ,. 3W   r . • •. ÖW   , , ,, dU 
(7.9) P   =   -    <u'v'>   ^  -   <w'v'>xi-    r<u'v">-5

2i+   <w'v'>§iL]    cos A oy oy   u       oy oy J 

and 
(7.10) CM = 0.09   Ce1 = 1.44   Ce2 = 1.92   ok = 1     oe = 1.3 

Among the various problems encountered in the turbulence modelling of three- 
dimensional boundary layer, the near wall treatment is one which is difficult to solve. 
In two-dimensional flow, all the models are based, explicitly or implicitly, on the 
existence of the law of the wall. This leads to express the turbulent shear stress in 
the near wall turbulent region (the logarithmic region) as : 

.7.11)    . -<UV> = xV[g]2 

This formulation is accepted, at least, with moderate pressure gradient. 

In three-dimensional, the opposite reasoning is done because the starting point is 
the assumption that the three-dimensional counterpart of (7.11) is valid. This is 
clearly what is done with the mixing length model (7.4). this is also the case of the Ik- 
el model j indeed, in the near wall turbulent region, the classical approximations 
reduce this model to : 

(7.12a) P = e 

(7.12b) c   p £ _ c   £!   3  [ CM k! |e -j = o 
E1   k    e2 k    ay u o  e  oy J 
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From these equations, we deduce : 

, 3/Z 

(7.13a) 

(7.13b) 

(7.13c) 

(7.13d) 

with 

CM 
o (C „ - C , I 
e  eZ    el 

- <u v > £ä k1/2   du 
C  K   y 3y 

<w'v > = 
Cu.  1/2   |w 
c K   y 9y 

ek 
cp 1/2 

T  =  0 [^]V[[g]Mgr-«gg«-] 
[ <u'v'>2 • <w'v'>2 + 2 <u'v'> <w'v'> cosA ] 

Then, by using the momentum equations, it is possible to deduce a "three- 
dimensional law of the wall" which results from the hypothesis of a mixing length 
formula. 

As already said in § 5.3., an asymptotic analysis of the three-dimensional 
turbulent boundary layer has been performed by GOLDBERG-RESHOTKO, 1984. They found that 
the direction of the velocity is constant in the inner layer. At very large REYNOLDS 
numbers, this result is certainly true but the experimental results show that the 
velocity direction can vary very rapidly near the wall. 

In spite of these restrictions, most of the available methods use the hypotheses 
which have been described above. These methods produce satisfactory results, at least 
for the mean flow. 
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Fig.   7.3b  - Evolution of the ratio of shear stress 
and turbulent energy 

Therefore, the classical turbulence models do not represent the -physics of the 
phenomena. This is not at variance with the fact that the associated calculation methods 
are able to reproduce the mean flow with a certain success. In fact, if we consider the 
Van den BERG et al experiment, the flow is pressure driven and the turbulence model is 
not too much important. Nevertheless, many endeavours have been devoted" to elaborate 
models that remove the hypothesis of isotropic eddy viscosity but serious numerical 
difficulties in the calculations of Van den BERG et al experiment (in the direct mode) 
due to the problem of singularity have prevented a correct discussion of the turbulence 
modelling : this has been shown by COUSTEIX. 1982 and  has  been  discussed  in  §  6.3.. 
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we deduce : 

(7.14a) 

On the other hand, we can calculate this slope from inviscid considerations (SQUIRE- 
WINTER formula). A simplified form gives : 

(7.14b) 2(ot 

where (ct - a0 ) represents the turning angle  of  the  external streamlines  and  a0  the 
starting point. By adjusting the value of an, a  good  correlation  is  obtained  between 
(7.14a) and (7.14b) (fig. 7.3). The same has been observed  by BRADSHAW-PONTIKOS,  1985, 
and these authors argued that such a good agreement is partly a coincidence  because  the 
entrainment into the boundary layer is neglected but they think that it is  certainly  an 
indication that the flow is pressure driven. Obviously, this is not true  near  the  wall 
and, in this region, the turbulence model is important. 

Fig.   7.4 -  Calculation of the slope of the polar plot in the outer part of the boundary 
layer  - Experiments   : Van den BERG et al 

Among the various attempts at improving the classical models, let us mention the 
approach proposed by ROTTA, 1979, who tried to reproduce the anisotropy of the eddy 
viscosity as evidenced by the Van den BERG et al experiments. In a cartesian axis- 
system, this model is : 

(7.15a) 

(7.15b) 

<U V > = v t [' 
du 

au - <w v > = v  [a   «- 

3w 
XX öy    XZ 8y 

OW -] 
a« -1 

t L"ZX 3y   "ZZ dy 
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In the above equations, T is a constant which represents the ratio of transverse 
and longitudinal eddy viscosities expressed in an axis system based on the local 
boundary layer velocity. This model is able to reproduce the non isotropy of the eddy 
viscosity if T * 1. A first drawback is that T is not a universal constant. A second 
drawback is that T depends on the axis system because the model is not invariant by a 
galilean transformation. 

Fig. 7.5 shows an example of applications of a few models to the BRADSHAW-TERRELL, 
196S, experiments. These authors studied the relaxation of a three-dimensional boundary 
layer towards a two-dimensional boundary layer. The mixing length model and the k-e 
model (with T = 1) give the correct decay of the wall limiting streamlines angle ß0 
whereas the integral method underpredicts the rate of decay of ß0 at the beginning of 
the relaxation. This illustrates the greater flexibility of the solution, of local 
equations. In addition, this comparison shows that the classical models work well in 
this situation. Indeed, results not given here, show that if T is given a value 
different from T = 1, the rate of decay of ßp is not well predicted ; if T < 1, the rate 
of decay of ßn is too low. 

X (m) 

Fig.   7.5 - Calculation of BRADSHAW-TERRELL experiments  (46° infinite swept wing)   : 
relaxation of an initially three-dimensional boundary layer towards a two- 
dimensional boundary layer - x': distance from leading edge along tunnel 
oenterline -  B    .' cross flow angle at surface -  mixing length - 
 k-z    •  integral method 

w/ue 

-10 10     V mm 

Fig,   7.6 - Cross flow velocity profile in a wake behind a swept wing - Exp. 
  T = 1   : T = 0.5 

Calc.   ;/k-z-u'v'-w'v ' model 
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Another possible solution to the modelling problem is to use a full transport 
equation model for the REYNOLDS stresses. In a cartesian axis system, these equations 
are : 

— <u:u\> = P.. + •.. - D.. + T . . 
Dt   l ]     13    13    13    13 

where P^j is the so-called production term : 

ÖU . dU. 
P . . = - < u '. u,' > -z—"• - < u '. u,' > ä— 13       lk  8xk     3 k  3xk 

where *^j. nj.-ji Tj.j are respectively the velocity pressure correlations, the  destruction 
term and the transport term. 

According to the modelling proposed by LAUNDER et al (see for example the  1980-1981 
STANFORD Conference, KLINE et al), these terms are given by : 

T. . = C0 -5  [ <u; u*> - -5  <u:u\> ] 13    S ox  L   k 1  e ox    1 3  J 

D. . = T e 6. . 
13   3    13 

*ij = *ia. 1 + *ij.2 + *i3',W 

and 

• ... = - c. r [ <u:u\> - -| 6. .k] 13.1 1 k L   13    3  13 J 

• • • , = - c„ r p.. - 4- 0.. p.. ] 13.2 2 L  13   3  13  kk J 

+ . . ,, = I* C! —   r <u,'u'> n,n 6. . - — < u,' u'. > n.n. - — <u,'u'.> n,n. I 13,W   L1kL  km   km 13   2   ki   k3   2   k3   k 1 J 

+ C2 C *km,2nknm6i3 • 2 *ik,2 nknj " I + 3k.2 nkni H f 

. ' k3/2 

2.5ex n 

where n^ are the components of a unit vector normal to the surface and xn is  the  normal 
distance from the wall. 

'If the boundary layer approximation are applied, the transport equations are 
simplified because the velocity gradient components other than 3u/9y and 9w/9y are 
neglected. Calculations with a model of this type (with •i-jw = 0) have been performed by 
COUSTEIX-AUPOIX-PAILHAS, 1980. The results have shown that this model is not sufficient 
to explain a departure from the isotropic eddy viscosity. 

The modelling of transport equations is often simplified to give the so-called 
algebraic stress model which also leads to an isotropic eddy viscosity. This model is 
obtained with the following approximations : 

. < u '. u '. > < u ! u '. > 
5- <u:u'> - T   =   x ?  r — - T   1 =   x   3  IP - e> = P   • •   - ^ ö  E Dt   13     13     k    L Dt   'kk J      k   f 

e'   f'i-j   »i;j   3 0
i;ie 

where P = pt<k/2 is tne Production rate of k. 

From these equations, we get : 

<u!u'.> = f- 6. .k 

:1 . C,)[^i- fs.^l • *-±L» 
2 L  e    3  13 E J     e 

i 3    3  i3 + P . 
1     E 

If the velocity gradient components other than dU/9y and 9W/3y are neglected, we get : 

c, [ 1 - 7 c: f ] - 1 2 L     2  2   J k _ ,2  3U 
•-u v ?   -  — <v  > -~ — 

c, + f. - 1 • I c; f e     av 
1   e       2  1 

, •  •,   °*    [ 1 ' t C2 f 3 - , k {    ,2S 8W <w v > =  — <v  > -5— 
c, • I - 1 • 2 c; f e     ay 

1     E 2   1 
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Then, these expressions give an isotropic eddy viscosity. Calculations performed by 
ABID-SCHMITT, 1984, have shown that this model works well when applied to the Van den 
BERG et al experiments. The good agreement results probably from a reduction in the net 
production of REYNOLDS stresses - <u'v'> and - <w'v'>, but it is not clear if this 
result comes from an effect of the three-dimensionality or if a similar effect would be 
obtained also in two-dimensional flow. 

Possibly, it is not correct to neglect the velocity gradient components other than 
8U/8y and 3W/8y. Indeed it is known that small extra rate of strain can strongly affect 
the development of REYNOLDS stresses. Now, the three-dimensionality is characterized by 
a curvature of the streamlines and this effect is not taken into account if only 3U/9y 
and 8w/3y are retained. This means that practically all the velocity gradient components 
should be retained ; it has not yet been shown that this could improve the model. 

8 - CONCLUSION 

It is clear that our capacity to predict the three-dimensional turbulent boundary 
layers developing on wings or on fuselages is not very large. This is partly a result of 
a poor knowledge of the turbulence mechanisms in general. In addition, it should be 
recognized that the advanced studies on turbulence deal with rather simple 
configurations where the effects of three-dimensionality are avoided. On^the other hand, 
the mathematical tools to model the effects of turbulence are rudimentary. 

For attached three-dimensional boundary layers, the situation is not too bad 
however. Several calculation methods have been developed and widely applied. The 
earliest techniques solve the global equations and these integral methods have been 
shown to be a very valuable tool for practical purposes. Solutions of local equations 
have been developed more recently. Even with simple eddy viscosity models, they add a 
degree of flexibility and are able to reproduce the mean velocity profiles with 
reasonable accuracy. The REYNOLDS stress transport equations are potentially superior, 
but this advantage has not been clearly proven yet. The current tendency is to prefer 
the use of the so-called algebraic stress model instead of the full REYNOLDS stress 
equations. 

This optimistic aspect should not hide that many problems remain unsolved. One of 
them is the near wall treatment and the associated difficulty of the extension of the 
law of the wall in three-dimensional boundary layer. 

The major problem is the three-dimensional separation. Very often, a three- 
dimensional separation is associated with an increasing three-dimensionality of the flow 
and we have seen that this affects the structure of turbulence. Fortunately, the mean 
flow is generally pressure driven and a very accurate turbulence model is probably not 
needed, but this point is not completely clear because other factors such as variations 
of pressure normally to the wall are important. A recent positive result is that 
singularities occurring in boundary layer calculations are now slightly better 
understood, but the link with separation is hypothetical. At the best, the singularity 
is a'sign for the need of a strong coupling between the boundary layer and the inviscid 
flow. 

In the case of attached boundary layers, techniques of interaction between the 
viscous and inviscid flows are well appropriate to calculate the whole flow field. In 
the case of separated boundary layers, the advantage of these interactive techniques 
tends to disappear. If the separated zone is developed, the classical boundary layer 
approximations are no longer valid. In particular, the component of the pressure 
gradient normal to the wall is not negligible. In addition, a separation in a three- 
dimensional flow often leads to a formation of vortices in which it is very difficult to 
recognize a familiar boundary layer. 

In two-dimensional flow, other techniques than viscous-inviscid interactions have 
proved fruitful. These methods consist of solving the so-called parabolized NAVIER- 
STOKES equations or thin layer equations (RUBIN-REDDY, 1983). These techniques can be 
considered as an extension of classical boundary layer solutions that include the direct 
and inverse methods ; in addition, the effects of the normal pressure gradient are taken 
into account. The extension to three-dimensional flow deserves to be considered. 

A last problem which should be mentioned is the laminar-turbulent transition. It is 
often argued that this transition is unimportant at high REYNOLDS numbers, but this is 
not always true. For example, the design of "laminar wings" or the presence of 
favourable pressure gradients can require an accurate determination of the transition 
region. The three-dimensionality adds a further difficulty due to the crossflow 
instability. Experiments on swept wings have shown that this instability can lead to 
transition in a favourable pressure gradient. Thus, the advantages of the properties of 
a laminar airfoil at zero sweep angle can be lost when the sweep angle Increases. Then, 
methods for calculating transition in three-dimensional flow are being developed as they 
should be a tool of aerodynamic design (ARNAL, 1986). 
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APPENDIX 

CLOSURE RELATIONSHIPS USED IN THE INTEGRAL METHOD 

A.1. Closure relationships in laminar flow 

In compressible flow, intermediate transformed variables have been introduced ; 
between these variables, we have the same closure relationships as between variables in 
incompressible flow. The transformed variables are noted with an overbar (—). The 
closure relationships given below are valid for H < 4.029 ; they are given in a stream- 
line coordinate system : 

H*  • 1.2706 12-37 

12.37 —* 
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1.5022 r i     H    i 
I -  +  2   + 1
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3. 1924 
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A . 2 . Closure relationships in turbulent flow 

The  closure  relationships  are  expressed  in  a  streamline  coordinate   system. 
"Incompressible" thicknesses are defined as : 

dy 
1i 

1 U 
.,. - r c 1 - —] dy 8,,. . r H_ [,. a_] 

» " JÜ - £ "" '«» • J[ - ^ t "" a12i = J* S- [ 1 - S- ] -„ e22i . £ - * 
5    2 

dy 
0    e 

The relationships for the "incompressible" or transformed variables are : 
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PHYSICS AND MODELLING OF THREE-DIMENSIONAL BOUNDARY LAYERS 

by 

PBradshaw 
Department of Aeronautics, Imperial College 

Prince Consort Road 
London SW7 2BY 
United Kingdom 

SUMMARY 

This section of the course is an introduction to the physics of 
three-dimensional (3D) turbulent flows and a discussion of "modelling* - the use of 
experimental data in developing calculation methods. Only conventional 
Reynolds-averaged calculation methods will be discussed: for simplicity, only 
"differential" methods, in which variables are predicted at each point in the 
boundary layer, will be treated, but similar principles should apply to "integral" 
methods. — 

1.0  INTRODUCTION 

The term "Three-dimensional boundary layers" is taken to include flows such as 
wakes or jets - which obey a 3D version of the boundary layer approximation even 
though they are not layers on boundaries - and "slender" flows, such as those in 
wing/body junctions (Figs. 1 and 2), which grow slowly in the streamwise direction 
even though they do not obey the 3D boundary layer approximation completely. In 3D 
flow with the X axis in the general direction of motion, e.g. along the centre line 
of an aircraft or a duct, the W-component motion, and the associated V-component 
motion, are called "secondary" flow, as distinct from the "primary" flow in the X 
direction. Our theme, therefore, is the generation of "secondary" motion in boundary 
layers and other 3D turbulent flows. We exclude highly three dimensional flows with 
massive separations, such as those behind bluff bodies. 

Even within this restricted class, corresponding roughly to the different 
sub-regions of flow over an aircraft, a bewilderingly large variety of flow 
geometries can appear. Since, as usual, the number of flow phenomena is much smaller 
than the number of hardware configurations, we restrict ourselves to a general 
discussion of physical principles and do not consider particular aerospace 
geometries. 

As always in turbulence studies intended for engineering application, the main 
question is "what do the Reynolds stresses do, and why?" strictly, the effect of 
turbulent velocity fluctuations in a fluid flow is to provide an extra rate of 
momentum transfer, in addition to the convection of momentum by the mean flow and the 
diffusion of momentum by collisions between molecules. However, just as momentum 
transfer by molecular collisions is commonly regarded as equivalent to internal 
viscous stresses, turbulent momentum transfer is equated to extra (Reynolds) 
stresses, since the Navier-Stokes equations represent Newton's second law of motion 
"rate of change of momentum equals applied force" for a viscous fluid, the 
mathematical process of transferring the velocity-fluctuation terms from the left 
hand side of the equation to the right hand side is exactly equivalent to 
interpreting the extra rates of momentum transfer as an extra stress (force per unit 
area). 

The Reynolds stresses are extra unknowns in the time-averaged equations of 
motion for the rate of change of velocity, and although we can use the original 
time-dependent equations of motion to deduce equations for the rates of change of the 
Reynolds stresses, the latter equations contain extra unknowns, and an infinite 
series of higher-order time-averaged equations would be required to contain all the 
information provided by the original time-dependent Navier-Stokes equations. 
Therefore, experimental data or other sources of inspiration must be used to truncate 
the series. The current approach is to model the terms on the right hand side of the 
Reynolds-stress "transport" equations as functions of (i) the Reynolds stresses 
themselves, (ii) the mean velocity gradients, and (iii) one or more length scales of 
the turbulent eddies, which obey independently-determined equations. 

Turbulence is essentially-three-dimensional, in the sense that the fluctuating 
parts of all three velocity components are of the same order, and it might be thought 
that the essential processes of turbulence development would be unaffected by mild 
three-dimensionality of the mean flow. This is, indeed, the principle on which most 
turbulence models initially developed for two-dimensional mean flows have been 
extended to 3D flows. However, over the last ten years it has become clear that 
apparently-plausible extensions of 2D models do not give very good agreement with 3D 
experiments, such as those of van den Berg and collaborators at NLR (Ref'. 1) on a 
slightly-idealized swept wing boundary layer. Predictions of secondary flow in 
non-circular ducts (Fig. 3) or outside long non-circular bodies (such as the ship 
hull in Fig. 4) are also in a less than satisfactory state; in these cases, the flow 
in the cross-sectional plane is actually generated by the Reynolds stresses. In 
particular,  it can be shown that an isotropic "eddy viscosity", such as is used in 
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the simpler calculation methods, is essentially unable to predict stress-induced 
secondary flow. 

The only a] 
time-averaged eqi 
the mean and i 
modelled, the computing _ ...,,,,,... ,   ,   
approach  for basic research work rather than day-to-day industrial use.  However, 
time-dependent turbulent simulation's of 3D flows are about to start,  and should 
materially improve our understanding in the near future. 

2.0 PHYSICS OF 3D FLOWS 
2.1 Classification 

Many years ago, Prandtl (Ref. 2) identified two main kinds of "secondary flow" - 
that is, velocity components in a shear layer at right angles to the main flow 
direction. By far the most important of these, called the "first kind of secondary 
flow", occurs because a given spanwise pressure gradient, applied to a boundary layer 
or other shear layer, will deflect the slow-moving fluid in the shear layer more 
strongly than it deflects the free-stream fluid. Therefore, a "crossflow" velocity 
component arises, as shown in Fig. 5. As we shall see below, the mechanism by which 
this crossflow is generated is essentially inviscid - assuming that viscous or 
turbulent stresses have generated a shear layer in the first place - and in fact this 
kind of crossflow tends to be reduced by viscous or turbulent stresses in the 
crossflow plane (the Y-Z plane in Fig. 5). An obvious example of this reduction is 
that the crossflow velocity falls smoothly to zero at the surface: the so-called 
"no-slip" condition requires-W=0 as well as U=0 at the surface, and a secondary 
internal boundary layer is set up, as shown in Fig. 6,(b), in which the spanwise 
component shear stress acts to smooth out the velocity profile. Note the use of 
streamline coordinates to show up departures of flow direction from that in the 
external flow. Clearly, if the crossflow velocity w is greater than zero, as in most 
of the examples in this section of the course, then 9w/3y < 0 outside the internal 
layer. This description is valid for laminar and for turbulent flow: note that in 
either case the internal boundary layer, in which the shear stress and total pressure 
are perturbed, may be very much thinner than the boundary layer as a whole. It is 
convenient to consider what happens when an initially two-dimensional laminar or 
turbulent boundary layer suddenly runs into a region of spanwise pressure gradient - 
a simple example is the flow in a square duct, with a thin boundary layer on the 
floor, as it encounters a smoothly-radius'ed bend as shown in plan view in Fig. 5. If 
the flow is laminar, the streamwise flow and the crossflow (outside the internal 
layer) can in certain circumstances be regarded as independent, but in turbulent flow 
the generation of mean crossflow leads to changes in all the Reynolds stresses, even 
in the outer part of the boundary layer. The main theme of this series of lectures 
is the prediction of turbulent (Reynolds) stresses in such three-dimensional flows. 

Prandtl's "secondary flow of the second kind" occurs only in the turbulent case, 
where Reynolds stresses can create a crossflow. The simplest example is a straight 
rectangular duct (Fig. 3), with, say, fairly thin boundary layers on the walls, in 
which the Reynolds-stress gradients that appear near the corner actually drive the 
secondary flow. Since one normally expects viscous or turbulent stresses to smooth 
out, rather than to cause, changes in velocity, secondary flow of the second kind is 
an unexpected and fascinating phenomenon. The large amount of attention that has 
been paid to it is more nearly proportional to its fascination than to its practical 
importance, which is really rather small. In most practical cases, square ducts or 
other "corner" flows contain bends or other changes in direction which generate 
secondary flows of the first kind, generally overwhelming secondary flows of the 
second kind. Of course, secondary flows of the second kind provide a very severe 
test case for a turbulence model for three-dimensional flow. However, in the present 
state of turbulence studies a turbulence model (i.e. a calculation method) is 
unlikely to be applicable to all kinds of flows: therefore models ought to be 
adjusted for optimum performance in the more common secondary flows of the first 
kind, and if necessary optimised separately for secondary flows of the second kind. 

The secondary flow which is set up by centrifugal instability or buoyant 
instability - such as longitudinal Taylor-GOrtler vortices in a boundary layer over a 
concave surface (Ref. 3), the vortex rolls that lead to cloud streets in an 
unstably-buoyant atmosphere (Ref. 4), or the wind-rows that form on the ocean surface 
(Ref. 5) - might be called "secondary flow of the third kind" but we will not discuss 
it further in the present lecture series. 

As well as distinguishing two main mechanisms for the generation of "secondary 
flow", we have to consider two main configurations. We recall that the "boundary 
layer approximation" (which is also applicable to jets and wakes) rests upon rates of 
change in the streamwise direction being small - compared to rates of change in the 
direction normal to the surface in a boundary layer or normal to the plane of the 
shear layer in a nominally two-dimensional jet or wake. in 3D flow, we need to 
distinguish cases in which the rates of change in the spanwise direction are small 
and cases in which they are not. If we consider the boundary layer on a swept-back 
wing,  far  from root or tip (Fig. 1), we see that if the sweep angle is of the order 
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where we use the transport operator D/Dt for compactness. We see that only Y 
derivatives of stresses remain, these being large compared to the X and Z derivatives 
of any stress.  In the general case we have 

3U 
Txy =U3Y -Pu'v' (5) 

3W Tzy ""JH? -pw'V' (6) 

Note that although our main concern is with turbulent flow, the viscous-stress terms 
may be easier to follow. Thin, slowly-growing three-dimensional shear flows that obey 
th'e boundary layer approximation are sometimes called "boundary sheets": here we 
prefer "3D thin shear layers", because Eqs.(3 and 4) apply to wakes (though not to 
trailing vortices) as well as boundary layers. 

The boundary-layer assumption implies that the v-component velocity (normal to 
the surface) is small compared to U and W. Near the root or tip of a swept wing, for 
example, spanwise rates of change are large and, more or less as a direct 
consequence, V becomes of the same order as W, perhaps with both small compared with 
U. At this point, we need to generalize the concept of "crossflow" into the concept 
of "longitudinal vorticity". Formally the vorticity vector is the curl of the 
velocity vector, so that in conventional X, Y, Z axes we have 
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In what we have called "3D thin shear layers", 3V/9Z has been small compared to 
3W/3Y, but these two constituents of the longitudinal vorticity are of the same order 
in flows near the root and tip of a swept wing, in the trailing vortices behind the 
aircraft, or near the corners of a rectangular duct: we call these "slender shear 
flows". By taking the Y derivative of the Z-component Navier-Stokes equation we can 
derive an equation for 9W/3Y, and a similar equation can be derived for 9V/3Z. A term 
9 p/5Y3z appears in each equation. Combining the two, we derive an equation for the 
X-component vorticity itself, j* 
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Dt 
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3Y 
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The 3 p/3Y3Z terms cancel exactly: note that pressure gradients in the (Y-Z) plane 
are not negligible in the momentum equations in "slender" flows. The vorticity 
transport equation (8) implies that, in the absence of viscous or turbulent stresses, 
vortex lines remain locked to the same elements of fluid, but their vorticity will be 
modified by the "skewing" terms (second and third on the right) and the first, 
"stretching", term. A stimulating review of vorticity dynamics has been given 
recently by Morton (Ref. 6). 

The final, general, form of the vorticity equation necessarily contains the 
mechanisms of generation of secondary flow of the first (skew-induced) kind and the 
second (stress-induced) kind: in our chosen axes, the main generation term for 
secondary flow of the first kind is the third term on the right of equation (X), 
since we suppose that the initial vorticity is mainly in the z direction so that to 
and 0DY are small. Stress-induced secondary flow is generated by the second 
derivatives of Reynolds stresses, which are generally all of the same order. The 
only simplification that we can usually make in "slender" flows like those near the 
root or tip of a swept wing is that X derivatives are small compared to Y or z 
derivatives, but the latter two are of the same order. 

Some skew-induced secondary flows are so strongly deflected that a discrete 
vortex is formed within the shear layer, with 3W/3Y and 3V/3Z of the same-order. The 
best known examples are flows round obstacles in boundary layers, such as wing-body 
junction flows (Fig. 2) which are becoming increasingly important as aircraft shapes 
become more slender. Fig. 2 shows the distortion of elementary vortex lines and 
their accumulation into a "horseshoe" vortex wrapped round the leading edge. Mehta 
(Ref. 7) has shown that the ratio of leading-edge radius of curvature to body 
boundary-layer thickness has a large effect on the flow pattern: in the case of a 
sharp leading edge the horseshoe vortex is relatively weak. We expect that viscous 
or turbulent stresses will generally act to reduce the crossflow velocities. As has 
been shown in the recent experiments of Kornilov and Kharitonov (Ref. 8), and of 
Nakayama and Rahai (Ref. 9), stress-induced secondary flow will eventually take over, 
far enough downstream of the leading edge, leading to a pair of longitudinal vortices 
in each corner as shown (for a duct flow) in Fig. 3. However, the distance required 
for stress-induced secondary flow to take over is many times the chord of a typical 
wing, and the usual situation at a wing trailing edge is that a pair of vortices (one 
per corner) is dumped into the body boundary layer and continues to transport wing 
boundary-layer fluid towards the body. 

probably the most spectacular occasion on which thin shear layers roll up into 
quasi-longitudinal vortices is on the lee side of a body - for example a delta wing - 
at incidence. The topology of the surface streamlines in a separating flow is itself 
an interesting study: an extensive review is given by Tobak & peake (Ref. 10), and 
discussions of topology by Hunt et al. (Ref. 11) and Hornung & Perry (Ref. 12). The 
general introduction to vorticity and 3D separation by Lighthill in Ref. 13 is also 
still useful. Qualitatively at least, the flow in the crossflow plane over a slender 
body of revolution corresponds to impulsively-started two-dimensional flow over a 
spanwise circular cylinder, with separation occurring just downstream of the 
"equator": at fairly small body incidences, a symmetrical vortex pair is formed, 
although,at sufficiently large incidence,vortices are shed alternately from each side 
of the body so that the flow in the crossflow plane looks rather like the traditional 
Karman vortex street. In any case, crossflow vorticity generated in a thin shear 
layer rolls up into a nearly-concentrated vortex, imbedded in the boundary layer if 
the incidence is small and effectively distinct from it if the incidence is large. 

Three main imbedded-vortex configurations need to be considered (Fig. 8). The 
first is an isolated vortex imbedded in a turbulent boundary layer; the second is a 
vortex pair with the "common" flow between the vortices directed downwards towards 
the surface, as in the flow on the lee side of a body of revolution (Fig. 7) or 
downstream of a wing/body junction; and the third is the case where the common flow 
between the vortices is upwards, so that their common induced velocity convects them 
slowly away from the surface, entraining boundary-layer fluid as they go. This last 
case appears in the flow out of an S-bend engine intake or a wind-tunnel contraction 
(Ref. 14), and in both cases causes a large and unwelcome eruption of shear-layer 
fluid into the main flow. Flow over surface-mounted bluff bodies results in 
imbedding of nearly-longitudinal vortices in free shear layers and boundary layers 
(e.g. Ref. 15). A comparatively simple flow is that over a surface-mounted body with 
a streamlined nose and a blunt base, such as the "half-bullet" shape tested in Ref. 
16. This is a 3D equivalent of the popular 2D backward-facing step (see Ref. 17 for a 
review of the latter). 

A characteristic feature of strong longitudinal vortices is that the turbulence 
near the axis is damped out by the effect of "centrifugal forces", according to the 
Rayleigh criterion for flows with angular momentum increasing outwards. Centrifugal 
stabilization has spectacular effects in the trailing vortices far behind aircraft, 
and the lack of radial mixing can result in quite large longitudinal velocities being 
induced by pressure gradient. The phenomenon is well understood qualitatively, but 
presents a considerable quantitative challenge to turbulence modelling. 



2-5 

2.2 Transition mechanisms in three dimensional flow 

This is an introduction to a subject to be discussed in later lectures. In two 
dimensional laminar boundary layers, the usual mechanism of transition in flows with 
small external turbulence level is the growth of Tollmien-Schlichting waves, which 
are, essentially, alternating regions of high and low spanwise vorticity. As is well 
known, Tollmien-Schlichting waves grow 2more2rapidly if the velocity profile has a 
point of inflexion (i.e. a point where 3 u/3y =0). In 3D flows, there is, 
necessarily, a point of inflexion- in the crossflow velocity profile (Fig. 6) and the 
"inflexion-point instability" leads to the generation of longitudinal vortices with 
their axes near the point of inflexion. Fig. 9 shows the Z-component velocity 
profiles obtained for several different orientations of the axes, showing that 
inflexions occur over a range of axes. Correspondingly, vortices with a range of 
directions in plan view can be generated, but in practice the most noticeable are 
those which have zero net crossflow velocity at the inflexion point (the large cross 
in Fig. 9) so that the vortex pattern appears fixed in space. In practice the pattern 
will be locked in position by spanwise irregularities in the oncoming flow . 
Longitudinal vortex "streaks" are evident in many flow-visualization pictures of flow 
over swept wings (as sketched in Fig. 10, after Fig. 9.20 of Ref. 13) or over 
rotating discs. Recent computational work by Hall (Ref. 18) has shown that the 
longitudinal-vortex mode of "crossflow instability" easily overwhelms Taylor-Gortler 
instability on concave surfaces, just as either easily overwhelms the very slowly 
growing viscous-generated Tollmien-Schlichting mode. As usual with transition 
prediction, there is a large gap between nominally-accurate calculations for the rate 
of growth of small disturbances, and empirical results for the onset of turbulent 
flow. cebeci and collaborators have compared experiments and detailed stability 
calculations for three dimensional flows, and shown /that the onset of transition 
occurs after an amplification of as much as e compared to the traditional e 
amplification factor of 2D Tollmien-Schlichting waves. 

On strongly swept-back wings, the mechanism of transition is commonly 
"transverse contamination", in which flow along the leading edge of the swept wing 
transports and propagates turbulence from the body boundary layer out along the wing, 
rendering any discussion of transition mechanisms downstream of the leading edge 
irrelevant. Fortunately, there is a fairly simple empirical criterion for "spanwise 
contamination": it does not occur if the momentum-thickness Reynolds number of the 
leading edge boundary layer is less than about 100. 

2.3 Generation of crossflow by pressure gradient 
The Squire-Winter-Hawthorne (SWH) inviscid secondary flow formula is a special 

case of the vorticity equation (8') in which all viscous and Reynolds stresses are 
negligible and the initial vorticity vector is in the spanwise direction so w = io = 
0., Eq.(8) therefore reduces to   a 

x    y 
ü "  x  ,,  8U     SW ,„ , 

-JT- = az JZ  =  uz 3X (8a) 

which indicates that the initial, spanwise, vorticity vector skews (to the left, say) 
at the same rate at which the velocity vector skews to the right. That is, the 
angle of the vorticity vector to the velocity vector changes by twice as much as the 
flow direction, if the flow deflection is small. Now in x, y, z axes aligned with the 
external streamline, the cross-stream component of vorticity is approximately -3u/9y 
and the streamwise component 3w/3y. Therefore the slope of the outer portion of the 
velocity profile in the polar plot of Fig. 12, dw/du = (9w/3y) / (3u/3y) is, to a 
first approximation, simply (minus) twice the angle through which the velocity vector 
has turned. 

A semi-graphical, proof of the SWH relation is,to note from Fig. 11(a) that the 
decrease of pressure towards the centre of curvature (shown in Fig. 5) implies an 
increase in velocity according to Bernoulli's equation: in fact Ur = constant. Thus 
a fluid element at E, initially lying along AB, will be convected, in a time St say, 
to the point E', and will then lie along CD. The difference in lengths of the arcs AC 
and BD is 6t times the difference in velocity across the width of the duct, which is 
to a first approximation proportional to (minus) the difference in radius, it follows 
that the angle between AB and CD is equal to the "turning angle" AOE'. In Fig. 1Kb) 
the fluid element is replaced by the vorticity vector, which, we recall, is 
permanently locked to a fluid element in the absence of viscous^ or turbulent 
diffusion. The vorticity vector is skewed, without radial stretching, to lie along 
CD: the'vector CP then has a component PQ in the original direction of flow, but a 
component PR, twice as large, in the local flow direction which is normal to the 
radial line CR. 

There are two reasons for departures of real velocity profiles from this  simple 
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linear formula - (i) that the formula applies only to small turning angles, and (ii) 
that the effects of Reynolds-stress gradients opposing the secondary flow have been 
neglected. Nevertheless, the SWH formula provides a surprisingly good description of 
the outer layer of 3D turbulent boundary layers, especially those generated when a 
well-developed 2D boundary layer encounters a spanwise pressure gradient. From 
the viewpoint of predicting 3D flows this is a good thing, but it implies that, at 
least in some cases, a comparison of predictions with mean-flow measurements alone 
may not be a significant test of the Reynolds-stress model in the outer layer. That 
is, turbulence measurements are needed. This kind of flow, with an 
essentially-inviscid outer layer, is typical of flows around obstacles such as 
wing-body junctions: of course, the SWH formula in its simple form is not valid when 
the axial vorticity becomes large, even if the process of generation is essentially 
inviscid, but the equations of motion of inviscid rotational flow can still be 
integrated numerically in some form (e.g. Ref. 19). 

We can now compare the response of a two-dimensional boundary layer to pressure 
gradient with that of a three-dimensional boundary layer - for simplicity, one in 
which the SWH formula for longitudinal vorticity is qualitatively accurate. In 2D 
flow, we can write the boundary layer equation as 

(3P/3s). = -OÜ^T'/3y)s _        (9) 

9 
where P is the total pressure, equal to p + (l/2)pu  in constant density flow, and s 
is measured along a streamline, if = constant. This shows that the total pressure on a 
given streamline remains constant unless affected by stress gradients.  If we 
suddenly apply a pressure gradient which is large compared to the pre-existing stress 
gradients, the flow near the solid surface is constrained by  (i)  the no-slip 
condition at the surface, u=0, (ii) the momentum equation written at the surface, 

0 = v32u/3y2 - (l/p)3p/3x (10) 

which requires that, at the surface, any pressure gradient shall be opposed by an 
equal stress gradient. At the surface, of course, the total pressure equals the 
static pressure. The development of total pressure and shear stress along a given 
streamline (i.e. a given value of stream function if) in a 2D flow in adverse pressure 
gradient is shown in Fig. 13. Clearly, the effect of the no-slip condition at the 
surface gradually propagates outwards, producing a region in which the total pressure 
increases according to Eq. 9, the total pressure in the outer layer being constant, 
which is the "inviscid flow" approximation. In 3D flow, the response of total 
pressure to streamwise pressure gradient is qualitatively the same (Fig. 14): note 
that if for example we consider a high-aspect-ratio swept wing, the isobars coincide 
with the generators, so streamwise and spanwise pressure gradients are connected. The 
quasi-inviscid result for the outer layer is of course the skew-induced crossflow 
described, for small turning angles, by the SWH secondary flow formula. As already 
seen in Fig. 6, the no-slip condition on w in a 3D boundary layer leads to the 
generation of an internal layer in which w reduces to zero at the surface. in a 
calculation method, the exact relation between "streamwise" and "spanwise" internal 
layers depends on the turbulence model, but they are expected to be of about the same 
thickness, in the flow over the rotating rear part of an axisymmetric body (Fig. 18: 
see Ref. 20 for a recent experiment on a partly-rotating body) a w-component internal 
layer forms, but there is no direct effect on the axial motion. The 3D equation 
corresponding to the total-pressure equation, Eq.(9), is 

o tap/as) = -uau'v'/9y - wav'w'/ay (ii) 

where U is the resultant velocity, and is not so useful. 

The effects of pressure gradient on the turbulent stresses in 3D flow is 
essentially different from the 2D case. In laminar flow, the imposition of a 
crossflow component of mean shear 3w/3y immediately produces a shear stress u3w/3y, 
but in turbulent flow there is no such close connection between the crossflow 
velocity field and the crossflow Reynolds stresses. In 3D thin shear layers we can 
define a streamwise component of eddy viscosity as the ratio of the shear stress in 
the (x-y) plane, -u v , to the corresponding mean velocity gradient 3u/3y - just as 
in 2D flow — and also define a crossflow eddy viscosity as -v w /(3w/3y). 
unfortunately, these two eddy viscosities are not guaranteed to be the same - that 
is, the eddy viscosity is not necessarily "isotropic". Experimental results like 
those sketched in Fig. 14 (a) show that although 3u/ay does not alter to a first 
approximation, the value of -u v' on a given streamline decreases significantly in 
the presence of crossflow, while -v w increases more slowly than 3w/3y. The result 
is ,that the streamwise eddy viscosity decreases, but the crossflow eddy viscosity, 
-v w /(3w/3y), is even smaller. The slow response of Reynolds stresses to changes 
in mean flow is qualitatively obvious from the Reynolds-stress transport equations, 
to be discussed below, which state that the rate of change of stress, rather than the 
stress itself, depends on the mean velocity gradients. However, the reduction of 
u 'v' in response to crossflow - that is, a distortion in a plane normal to that of 
-u v  - is less easy to explain, even qualitatively. 
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2.4 Generation of cross flow by stress gradients 
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probably the simplest stress-induced secondary flow to understand is that in a 
duct with a partly-rough wall (Fig. 16): the direction of secondary flow is away from 
the regions of high turbulence intensity. The complicated second derivatives of 
Reynolds stresses in Eq. (8) suggest that we cannot expect a simple interpretation in 
general, and Morton (Ref. 4) has pointed out that arguments based on a'ngular momentum 
are insecure because the axis of reference cannot be chosen rigorously. Another 
fairly simple example is the jet from a non-circular nozzle, say a rectangular nozzle 
of large aspect ratio. As might be expected, the stress-induced secondary flows 
which arise tend to make the cross section circular, but the secondary flows do not 
fall to zero as rapidly as the eccentricity of the cross section. The result is that 
the cross section "overshoots" the circular shape, so that the jet from a nozzle 
which is wider than it is high goes through an approximately circular shape and then 
forms a jet which is higher than it is wide before finally relaxing back to a 
circular asymptotic shape. This is a nice example of the lack of close connection 
between turbulence stresses and mean-velocity behaviour. An example of an 
exceptionally large effect of stress-induced flows is the wall jet from a circular 
nozzle (Fig. 17) which spreads very rapidly in the spanwise direction - several times 
faster than it spreads normal to the surface. This flow is discussed by Launder & 
Rodi (Ref. 21) but the mechanism is still controversial. 

The secondary-flow velocities in stress-induced secondary flow are of the order 
of the root-mean-square velocities of the turbulence, whereas the SWH formula implies 
that the cross-plane velocities in skew-induced secondary flows are of the order of 
the streamwise velocity times the flow deflection angle (radians). In strongly 
deflected flows, for example that in the wing-body junction of Fig. 2, the deflection 
angle is of the order of one radian. This is the essential reason why skew-induced 
secondary flows so easily overwhelm stress-induced secondary flows in practice, 
however fascinating the latter may be in principle. 

3.0 MODELLING AND THE USE OF EXPERIMENTAL DATA 

3.1 The Reynolds-stress transport equations 

Without prejudice to the approximations that may be made for. engineering 
purposes, we begin with the exact transport equations for Reynolds stress. These 
equations can be derived, without approximation, from the Navier-Stokes equations. 
They contain further unknowns (time averages of complicated turbulence quantities) on 
the right-hand side. We use tensor notation for compactness, u'.u .being a stress 
acting in the x. direction on a plane normal to the x . direction. Each1 subscript can 
take any desired value: if a subscript is repeated in-'a given term, that term is 
summed over all three values of the subscript. Our main interest here is in the 
general layout of the terms and the reader can ignore the subscripts. 

Du', u'. 

Dt 
-1 = _ 

oU. 
U'.U'  •~77J- + U'.U'  V-— 
i %   ax.    j   I   3X0 + P" 

3Xi 
p'u. 

fau'. 
 i 
3X. 

3x7 (P'
U
1) 

ax. 

u'. azu'. 
3V 

(12) 

The left-hand side is the rate of change of any component of Reynplds stress 
along a mean streamline: the right-hand side comprises (i) generation of Reynolds 
stress by interaction of the existing turbulence with the mean velocity gradients, 
(ii) spatial diffusion or "turbulent transport" of Reynolds stresses by_ the 
turbulence,  (iii)  the  redistribution  of Reynolds  stresses   between   different 
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components by the action of pressure fluctuations, and (iv) destruction or diffusion 
by viscous-stress fluctuations. Viscous diffusion of Reynolds stress is small, 
except in the viscous sublayer very close to a solid surface, and viscous destruction 
is important only for the normal stresses, where it dissipates turbulent kinetic 
energy into heat. In most turbulent flows, the terms representing generation by 
interaction between the turbulence and the mean shear are approximately balanced by 
the "redistribution" or "destruction" terms, and our chief problem is the modelling 
of the latter. Details will be discussed below: briefly, pressure fluctuations 
within the flow act to "scramble" the turbulence and make it more nearly isotropic 
that is, to reduce all the shear stresses and to equalize the normal stresses - while 
viscous dissipation reduces the normal stresses but has little effect on the shear 
stresses. (It must be remembered that the resolution of the stress tensor into shear 
stresses and normal stresses depends on the axes chosen, and there is always one set 
of axes, the so-called "principal" axes, in which all shear stress component are 
zero, leaving only the "principal" normal stresses: however principal axes are not 
much used in turbulence studies.) 

3.2 Boundary-layer approximation and "Region of Influence" 

The boundary-layer approximation can be applied, where it is physically 
justifiable, to the Reynolds-stress transport equations as well as to the 
momentum-transport ("mean motion") equations. Since the "diffusion" or "turbulent 
transport" terms in the Reynolds-stress transport equations are spatial gradients of 
turbulence quantities, application of the boundary-layer approximation implies 
neglect of the spanwise and streamwise components of this diffusion, leaving only 
diffusion in the y direction. In plan view, this means that turbulent stress, like 
momentum, is merely convected along the mean streamlines at an angle tan" w/u to the 
axes, and diffusion away from the streamline in plan view is negligible. 

This convection of information (that is, momentum and Reynolds stress) along 
mean streamlines in plan view implies a considerable simplification in the equations 
of motion and their solution. The Navier-Stokes equations are elliptic, and in 
principle the influence of disturbances at a given point can be propagated either by 
convection by the mean velocity, or by viscous or turbulent diffusion, or by pressure 
perturbations. In the 3D boundary layer equations, however, we have eliminated 
propagation by pressure disturbances, by requiring the pressure to be equal to that 
at the edge of the shear layer (determined by an inviscid flow solution, say). We 
have also agreed to neglect viscous or turbulent diffusion, and the result is that 
information is propagated in the crossflow plane only via pure convection. Thus the 
limits of spanwise propagation of a perturbation originating at a point p (Fig. 15) 
are the most-leftward and most-rightward streamlines originating at the x,Z value of 
P - diffusive propagation of . information in the Y direction being assumed 
"immediate". AS will be seen in later lectures, the confinement of the "region of 
influence" of p to a wedge with its apex at P has important and useful implications 
in numerical methods, because the finite—difference "molecule" used to compute 
conditions at a given point must adequately represent the arrival of information at 
that point. (Experts may note that, in particular, "integral" methods for 3D boundary 
layers yield purely hyperbolic equations in the (Y-Z) plane.) 

In stress-induced secondary flows, turbulent diffusion of momentum or Reynolds 
stress in the (Y-Z) crossflow plane is a vital part of the process, and the equations 
which include this diffusion can loosely be called "elliptic" in the (Y-Z) plane. A 
perturbation at a point P can in principle reach any part of the flow downstream of 
P, not just the inside of a wedge. (Again for experts, the slender-flow equations in 
X, Y and z, with only X-wise diffusion neglected, are actually parabolic, like the 
closely-analogous equation for unsteady two-dimensional heat transfer in - say - t, Y 
and z, but each step of a marching solution leads to an elliptic problem in the (Y-Z) 
plane. ) 

3.3 Turbulence modelling - details 

As indicated above, the Reynolds-stress transport equations are exact 
consequences of the Navier-Stokes equations, and therefore any empirical turbulence 
model must, at least, be compatible with these equations. The most advanced 
turbulence models involve term-by-term approximation of the equations, representing 
each term as a dimensionally—correct combination of Reynolds stresses and their 
gradients, and, where appropriate, mean-velocity gradients also. For example, the 
pressure-strain "redistribution" term, which, like ail the other terms, has,the 
dimensions (velocity) / (length), could be represented as (Reynolds stress) ' / 
(length scale). Alternatively, of course, the same term could be represented as the 
product of a Reynolds stress and a mean-velocity gradient, which again has the 
required dimensions: and we shall see in Sec. 3.5 that the equation governing the 
generation of pressure fluctuations within the flow warns us that the best model of 
the "redistribution" terms will involve both representations. 

There is an ambiguity in the modelling of the turbulent transport terms also: 
these terms, once more, have the dimensions (velocity) /(length), but the length 
dimension is supplied by the spatial gradient, and the most obvious model is 
therefore one which represents the triple product inside the gradient as some 
suitable combination of Reynolds stresses to the power 3/2. However, most 
calculation methods model the turbulent transport terms by using the  "gradient 
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diffusion" concept, which rests on the same insecure foundations as eddy viscosity 
(Sec. 3.4) but seems adequate for correlating data. It assumes that the triple 
products are proportional to the Reynolds-stress gradients, with a diffusivity whose 
dimensions are the^ame as viscosity and which is therefore taken proportional to 
(Reynolds stress 

le ,same as viscosity a 
I   x (length scale). 

The combinations of existing variables must be chosen for the best physical 
plausibility, but, whichever dimensionally-correct representation is chosen, it 
merely defines a dimensionless constant, "(term in equation) / (dimensionally correct 
combination of variables)". if the combination of variables exactly represented the 
physical process, the constants so defined would be genuine universal constants, like 
the coefficients of the Navier-Stokes equations which are p, v or unity, 
unfortunately, such simplified equations for turbulence are inevitably less accurate 
than the Navier-Stokes equations, and the "constants" not only depend on the type of 
flow considered but may also depend on the position in that flow. Since even the 
exact Reynolds-stress transport equations are not complete descriptions of 
turbulence, because information has been lost by time averaging, the model constants 
would have to be found by experiment even if they were truly universal. 
Unfortunately, very few 3D experiments contain sufficient information to evaluate all 
the terms in the Reynolds-stress transport equations (pressure fluctuations within 
the flow cannot be measured with any assurance of accuracy, so that pressure-strain 
"redistribution" terms must always be determined as the net sum of the other, 
measured, terms). 

3.4 Simpler modelling concepts - eddy viscosity 

The simplest way to model the Reynolds shear stress in a 2D thin shear layer is 
to assume that the eddy viscosity, defined as the ratio of the u'v' shear stress to 
the mean shear 3u/dy, can be related to mean flow parameters: for example, in the 
popular Cebeci-Smith model^the eddy viscosity in the outer layer of a boundary layer 
is represented by 0.0168U 6 . The difficulty with this kind of correlation is that 
the eddy viscosity is defined as the ratio of a turbulence quantity (the Reynolds 
stress) to a mean-flow quantity (the mean velocity gradient), whereas the correlation 
implies that the eddy viscosity depends only on the mean-flow scales and not on the 
turbulence scales. The same anomaly appears, in reverse, if the eddy viscosity is 
itself obtained from transport equations, as in the popular k, epsilon model: this 
wrongly implies that the eddy viscosity is a property of the turbulence alone. 

The  "mixing  length" concept is close to that of eddy viscosity, both in 
principle and in practical results, it relates the shear stress to the square of a 
velocity gradient:  this leads to a fully non-linear differential equation for the 
mean velocity,  which  is a nuisance numerically.  Therefore eddy viscosity is 
currently the more popular for discussion or use, but we shall use mixing length in a 
discussion of the  inner layer of a turbulent wall flow, y/6 < 0.2 say, in section 
3.7. 

In the inner layer, the turbulence is near "equilibrium", with the generation 
te,rm (i) in Eq. (12) nearly balanced by the redistribution or viscous-destruction 
terms. In this case, the length and velocity scales of the mean flow are nearly 
proportional to the length and velocity scales of the turbulent motion, and the 
anomaly in the eddy viscosity concept is unimportant. Even in the outer layer, the 
turbulence may not be too far from equilibrium if the flow is changing slowly. 
However, skew-induced 3D flows are often quite strongly out of equilibrium, because 
the mean shear in the crossflow plane is generated by an essentially inviscid 
mechanism rather than by the cumulative effect of stress gradients: therefore, 
local-equilibrium concepts like eddy viscosity are likely to be unreliable. 
"Reliability" in this context means universality or simple behaviour of empirical 
constants: we can always define an eddy viscosity as the ratio of a Reynolds stress 
to the corresponding rate of strain so that 

Vij = "u iu j /   <öui/3xj + 3uj/9xi> <13) 

- but note that for complete generality we ought to allow U
%
U
'T 

t0 depend on 
rate-of-strain components in planes other than (x. -x.), implying that eddy viscosity 
is really a fourth-order tensor 1 J 

In 3D boundary layers our main interest is in u'v' and v'w', so a basic question 
is whether the eddy viscosity deduced from experimental data is the same for both 
these shear stresses. As discussed in Dr van den Berg's lectures, several 
experiments in 3D boundary layers show that the eddy viscosity is anisotropic. 
Specifically, the eddy viscosity for the v'w shear stress is significantly different 
from the eddy viscosity for u'v' ._That__is, the direction of the "shear stress 
vector", whose components are (-u'v',-v'w'), is different from that of the "velocity 
gradient vector whose components are (3u/9y,3w/3y). if an initially 2D boundary layer 
is skewed in the (x-z) plane, a crossflow velocity gradient 3w/Sy develops 
immediately, roughly as predicted bv the Squire-Winter-Hawthorne formula described 
above, but the crossflow shear stress -v'w' responds more slowly - ae' turbulence 
usually does - so the shear-stress vector skews more slowly. However we shall see 
below that the behaviour of eddy viscosity in 3D flow cannot be explained entirely by 
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this semi-obvious lag effect. 

In quantitative discussions about "streamwise flow" and "crossflow", we 
immediately encounter the basic difficulty that the definitions of the x and z 
directions are arbitrary: about the only meaningful definition of X is as the 
direction of an initial quasi-two-dimensional motion before the imposition of a 
spanwise (z-wise) pressure gradient. The usual "invariance" principle, that a 
physical phenomenon is independent of the axes used to describe it, also makes it 
difficult to defend the concept of special "streamwise" and "cross-stream" (x and z) 
axes. A special case of the principle is that the description of a phenomenon ought 
not to be altered by uniform translation of the axes (Galilean invariance), and it 
follows that the direction of the mean-velocity vector, whether in the free stream or 
elsewhere, cannot be rigorously used as a preferred direction in the flow - that is, 
we should not make our turbulence model depend on it. Thus, even if one accepts that 
eddy viscosity is an adequate concept in 2D flow, the choice of axes to define the 
components of eddy viscosity in 3D flow is difficult. The same applies to other 
modelling parameters, as we shall see below. 

The Navier-Stokes equations and the Reynolds-stress transport equations, as 
quoted above, are of course exact, and are therefore valid for any choice of X, Z 
axes. The same applies to any thin-shear-layer form of the equations if gradients in 
the X and Z directions are small: clearly the y direction (in which gradients are 
large) cannot be chosen arbitrarily. The "slender shear flow" equations, for flow in 
wing/body junctions and ducts, require x to be chosen as the direction of small 
gradient, but are invariant with respect to rotation in the Y-Z plane. Therefore the 
difficulties of definition encountered with eddy viscosity will not necessarily 
appear in the case of other models. 

This writer's opinion is that, in 3D even more than in 2D, calculation methods 
for the more demanding flows ought to be based directly on the Reynolds-stress 
transport equations - simplified as far as possible, of course. As we have just seen, 
the "lag effect" on shear-stress direction, which is the result of mean-flow 
transport of Reynolds stress (i.e. the rate of change of Reynolds stress along a mean 
streamline) is often too big to neglect in 3D flows, if transport of Reynolds 
stresses by the mean flow and transport by the turbulence itself are both negligible, 
each shear-stress transport equation reduces to "generation" equals "destruction": 
that is, interaction between the existing turbulence and the mean shear is balanced 
by pressure-strain redistribution, otherwise called the "return-to-isotropy" or 
scrambling" term. This "local equilibrium" is a fair first approximation for flows 
which are changing slowly in the streamwise direction (small mean-flow transport), 
because turbulent transport is generally fairly small except near .the outer edge of a 
shear layer. Even this simplified case brings us back to the modelling of the 
pressure-strain redistribution term, term (iii) in Eq. (12), as being the most 
critical part of the development of a calculation method. 

3.5 The pressure-strain "redistribution" term 

If we take the divergence of the Navier Stokes equations, i.e. differentiate the 
x.-component equation with respect to x. and sum over all values of i, we obtain a 
poisson equation for the pressure fluctuation. This equates the Laplacian of the 
pressure fluctuation p' to a "source" term, which depends not only on the turbulence 
intensity at the point considered but also on the mean—velocity gradients. This 
curious situation, that a fluctuating quantity depends on mean-flow gradients, is 
just a consequence of the way in which we take averages, but the result is that the 
formal solution of the Poisson equation for p' implies that the pressure-strain 
redistribution term also consists of two parts. 

Both parts of the redistribution term with the Poisson solution substituted for 
p' are, strictly, integrals over the whole of the flow field. One part is determined 
entirely by the fluctuating quantities, while the other depends on the mean velocity 
gradients: the latter is called the "rapid" part - in this context, because it 
responds immediately to any change in mean velocity gradient. This fact was pointed 
out by p.y. chou (Zhou) in 1945, by Rotta in 1951 and by Lilley and other workers on 
aerodynamic noise in the early 1960s, but was slow to gain acceptance in turbulence 
modelling. Even with all possible approximations, this implies that the 
pressure-strain redistribution term at a given point in a 3D thin shear layer depends 
not only upon the turbulence quantities but also on the two components of the mean 
velocity gradient (mean shear), 3u/äy and 3w/3y. 

If we regard the two shear-stress components -u v. and -v'w' as the components 
of a two dimensional vector, the pressure-strain terms in the corresponding 
Reynolds-stress transport equations are also the components of a two-dimensional 
vector, and in general the direction of the pressure-strain "vector" will not be the 
same as that of the shear stress - that is, the pressure-strain "redistribution" term 
does not merely reduce the magnitude of the shear stress vector but may also alter 
its direction. The simplest two-term model has one term whose vector direction is 
that of the mean-shear velocity gradient Läü/äY<_M^9v' and another whose direction 
is that of the shear stress vector (-u v', -v'w'). However this model will never 
lead to the creation of a difference between the direction of the mean-velocity 
gradient vector and that of the shear stress vector if the two initially coincide, 
and experimental results imply that the difference between the directions cannot be 
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completely explained as the "lag effect" due to the mean-flow transport terms, 
described above. To meet this objection, Rotta (Ref. 22) has suggested a more general 
model of the pressure-strain term, including a "anisotropy" factor. Rotta's model as 
originally proposed uses the mean-velocity direction as an axis, contrary to the 
invariance concept presented above; and in practice - e.g. Abid, Ref. 23 - the Rotta 
model seems to yield only a small difference between the directions of velocity 
gradient and shear stress in the initial stages of the calculation, followed by an 
excessively rapid divergence between the two directions as the crossflow increases. 

In slender shear layers, the predominant mean-velocity gradients are 3U/9Y and 3U/3Z, 
and both will appear in the modelled pressure-strain ter.ms. However the problem is 

obscured by the apparent need for modelling parameters in slender wall flows to 
depend on the distance from each surface ("wall effect"): empirical adjustments for 
wall effect may hide deficiencies in the basic pressure-strain model. 

3 . 6 Length scales 

The part of the pressure-strain term that depends solely on turbulence quantities 
must be expressed as the cube of a velocity scale - say (turbulent energy) ' , - 
divided by a length scale. In 2D transport models, the length scale is almost always 
derived from a model of the dissipation transport equation (the "epsilon_ equation"), 
and at present the same equation is normally used in 3D without -extra terms or 
chenges in the coefficients. The approximation to the dissipation that is normally 
modelled is a scalar (isotropic) quantity distributed equally among the three 
Reynolds normal stresses. However the epsilon equation is used to give a length 
scale of the large, energy-containing eddies, and is, at best, a plausible modelled 
equation for the rate of transfer of energy from the large eddies to the small ones. 
This rate is nominally equal to the dissipation rate but is not isotropically 
distributed. We may therefore expect trouble in 3D. Even if one ignores the vector 
character of "epsilon", the coefficients in the epsilon equation are likely to depend 
on the three—dimensionality of the flow. The main use of the length scale is in 
modelling the pressure-strain term, where general uncertainties at present mask 3D 
effects on the epsilon equation. 

3.7 The inner layer 

In the inner layer of a turbulent boundary layer, the resultant of the 
mean-shear velocity gradient "vector" (9u/3y, 9w/9y) is large compared to any other 
velocity gradient such as 9w/3x, and the turbulent eddies are small enough for their 
lifetimes to be short compared to a typical mean-flow development time. We therefore 
expect to recover local-equilibrium results, like the two-dimensional "mixing length" 
formula which equates the resultant shear stress to the square of the resultant 
velocity gradient multiplied by the square of the mixing length, the latter being 
directly proportional to the distance from the surface, i.e. 

yi-iTF)2 + (-v^w,)2]= l2((9u/9y)2 + (9w/9y)2) (14) 

where 1 = Ky = 0.41y. However, this "local equilibrium" result that the shear stress 
and the mean velocity gradient are in the same direction does not necessarily apply 
to the viscous sublayer, for which a simple but illuminating analysis is given by van 
den Berg (Ref. 24). pierce et al. (Ref. 25) provide a general review of models for 
the 3D inner layer, but those which have a simple physical interpretation are either 
special cases or equivalents of van den Berg's. Fortunately the main effect of 
non-equilibrium in the sublayer is that the velocity difference between the solid 
surface and the edge of the sublayer acquires an extra component transverse to the 
direction of the surface shear stress. Van den Berg's semi-empirical estimate of 
this extra slip velocity could be, but has not been, improved by experiment. 

Many 3D turbulent  flows in real life - or in laboratory experiment - can be 
predicted quite well by the Squire-Winter-Hawthorne inviscid secondary flow formula, 
providing that the Reynolds stresses in the internal layer near the surface (Fig. 6) 
are modelled adequately. That is, the inner—layer model is if anything more crucial 
than the outer-layer model, at least for skew-induced secondary flows. 

3.8 Use of data 

We now consider how experimental data can help the modelling process. As in 2D 
flows, we immediately hit the difficulty that the all-important pressure-strain term 
cannnot be measured directly. Although evaluating the pressure-strain term as the 
difference of other measured terms may give adequately accurate values for the term 
as a whole, it cannot show the relative sizes of the two parts, the "rapid" part, 
depending on the mean strain rate, and the purely-turbulent part. In fact, even full 
time-dependent turbulent simulations, yielding u', v', w' and p' as functions of 
time, will not usually do this directly, but the two parts can be recovered 
separately by evaluating one afterwards from the calculated fluctuations. 
Time-dependent simulations of 3D flows, whether full turbulent simulations (FTS) or 
large-eddy simulations (LES) with a model for the fine structure, are only just 
starting to be feasible for 3D flows such as those on "infinite" swepfe^ wings, but 
will be a useful supplement, and perhaps eventually a replacement, for experimental 
data. 
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The situation in practice is that turbulence models for 2D flows are being 
adjusted empirically for 3D flows. Abid and others have used Rotta's model of the 
pressure-strain term to define and optimise a constant T, related to the eddy 
viscosity ratio but implying a directional preference of the pressure-strain term. 
Rotta's model does not represent the even more spectacular effect of crossflow in 
decreasing the shear-stress magnitude, which implies an increase in magnitude of the 
pressure-strain term (leading to a faster return to isotropy). However no 
significant improvement of Rotta's model seems to have been offered. 
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4.0  CONCLUSIONS 
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'boundary region" 
or 

'slender shear flow'! 
boundary 

sheet" 

Fig. 1 Types of 3D flow 

Fig. 2 Generation of streamwise vorticity by distortion of 
cross-stream vortex lines (secondary flow of the first kind). 

^D) CK 
^ \ 

yu 

96 ^, 

o- 
Fig. 3 Generation of streamwise vorticity by  Fig. 4 ship "bilge vortices" - initially 
Reynolds stresses (secondary flow of the      skew-induced secondary flow followed by 
second kind). sharp-corner effects. 
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Fig. 5 Development of crossflow by stronger deflection of slow-moving 
boundary layer fluid in cross-stream pressure gradient. 

(a) arbitrary axes X, Y, z 

X.B.L. 

-NNNN NNNN\-V S. S 's.v \ ^ -v v' 

(b). streamline axes x, y=Y, z showing 
internal layer of reversed 3w/3y. 

Fig. 6 crossflow velocity profile 

Fig. 7 Vortices on lee side of cone at incidence. Secondary flow in 
Section A-A approximates to impulsively-started 2D flow over circular 
cylinder.  Note convergence of surface streamlines at separation line 
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(a) isolated vortex (b) vortex pair with "common" flow downwards (c) "common flow" upwards 

Fig. 8 Cross section (yz plane) of vortices imbedded in boundary layers 

Fig. 9 »»-component velocity profiles in a  Fig.10 Transition on swept wing, showing 
given laminar boundary layer for different  successive laminar flow, vortex streaks and 
directions of X,2 axes. turbulent flow. 

(a) anticlockwise deflection of fluid 
elements due to clockwise deflection of 
velocity vector 

(b) enlargement; equal and opposite 
deflections of-vorticity vector and velocity 
vector. 

Fig.11 Illustration of squire Winter 
Hawthorne secondary flow formula. 
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U3 

Fig.12 Gruschwitz/Johnston "polar plot" of w 
against u in streamline coordinates (w = o). 
dw/du = Ow/3y)/Ou/ay) =. -2«.where<^ is 
turning angle 

(D   ®    <D 
(a) 

Fig.13 Response of 2D boundary layer to 
adverse pressure gradient 
total pressure and shear stress remain 
constant on a given streamline (vf = constant) 
except in internal layer near surface. 
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(a) shear stress in streamwise direction (b) crossflow velocity gradient 

1   1 

y 

(c) crossflow shear stress 
H> 

(d) Stress/energy ratio 

Fig.. 14 Response of 3D boundary layer to adverse pressure gradient (leading to crossflow) 

(b) plan view 

(a) velocity-vector profile 

Fig.15 Region of influence of a point P in a 3D boundary layer 



2-19 

Fig.16 Stress-induced secondary flow in duct 
with partly-rough wall - secondary flow tends 
to be down gradient of turbulent intensity. 

_Q_ 

(a) side view (b) end view 

(c) plan view 

Fig. 17  3D wall jet from circular nozzle 

Fig.18 Axisymmetric body with rotating 
rear part (showing internal layer) 
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THREE-DIMENSIONAL SHEAR LAYER EXPERIMENTS AND THEIR USE AS TEST CASES FOR CALCULATION METHODS 
by 

B. van den Berg 
National Aerospace Laboratory NLR 

Anthony Fokkerweg 2, 1059 CM Amsterdam 
The Netherlands 

SUMMARY 

Three-dimensional shear layer experiments are discussed with a view to those developing calculation 
methods. The emphasis is on the selection of useful experiments for comparisons with calculations and the 
proper way to perform the comparisons. A review of more recent three-dimensional shear layer experiments 
is included. 

LIST OF SYMBOLS 

C pressure coefficient, C = (p-p )/q                               — p r                                                                      p                      co'      *a» 

M Mach number 

p static pressure 

q dynamic pressure 

R Reynolds number based on momentum thickness 
8 

U,V,W mean velocity components 

u',v',w' fluctuating velocity components 

x,y,z coordinates 

a external flow angle, relative to x-axis 

ß flow angle in shear layer, relative to external flow direction 

S, displacement thickness 

T shear stress 

subscripts 

at shear layer edge 

at wall 

in free-stream 

^ © 
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USE OF EXPERIMENTAL DATA 

PRESENT STATUS AND PROSPECTS 

INTRODUCTION 

The intended reading public of this paper on experiments 
in three-dimensional shear layers are those active in devel- 
oping calculation methods for this type of flow rather than 
experimentalists. Therefore experimental techniques will be 
discussed here only very globally, mainly mentioning some of 
the most important problems associated with measurements in 
turbulent flows and the measurement accuracy. More attention 
will be paid to the way to select experiments, which are best 
suited for checking calculation methods. The choice may de- 
pend on the intended application area of the calculation 
method considered. Then a review will be given of the avail- 
able three-dimensional thin shear layer experiments, with the 
emphasis on the more recent experiments and the experiments 
used earlier for extensive theory experiment comparisons in 
Workshops. Subsequently the use of experimental data for com- 
parisons with calculations will be discussed comprehensively. 
To draw valid conclusions from a comparison, a more extensive 
study must be made of the consequences of experimental errors 
for the calculation results and the role -of the assumptions 
made in the calculation methods. Finally the present status 
in three-dimensional shear layer research will be summarized 
and the need for further research will be mentioned. 
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EXPERIMENTAL TECHNIQUES                                    ^) 

PRINCIPAL VELOCITY MEASUREMENT TECHNIQUES 

Y.V,»1 

. 

~~~~————J 
Cc?::::x^r PRESSURE PRQSES 

PRESSURES -*- U,V,W 

^*"*\' X                         HOT-WIREPROBES 

^^         ; HEATFLUX -*• U, V,W,u',v\ «' 

\.                    T         x, U. u 

i. w.w 

\ \ \ 
^^-'C''"   LASER-OOPPLER 
""•«M»^_--^.^   ANEMOMETRY 

N.B.: 

TYPICAL B.L. THICKNESS IN 
EXPERIMENTS = ORDER OF CM'* 

TYPICAL DIMENSION OF MEASUREMENT 
VOLUME = ORDEfl OF MM'* 

—- 

SPATIAL RESOLUTION IS GENERALLY A PROBLEM, 
ESPECIALLY FOR TURBULENCE QUANTITIES 

EXPERIMENTAL TECHNIQUES 

Before discussing velocity measurement techniques, it is 
useful to explain the nomenclature: Mean velocity components 
are U, V, W with fluctuating parts u', v', w', while V << U, 
W in the thin shear layer along the x-z plane. 

The three principle techniques to measure flow velocities 
are: i) Pressure probes. Measured pressure differences are 
used to deduce the local flow velocity. Merely mean veloci- 
ties are obtained and that only approximately in strongly 
fluctuating flows. The technique is, however, fast and easy. 
ii) Hot wire probes. The velocity is related to the heat 
transfer from the thin hot wires. Mean and fluctuating velo- 
cities are obtained. Accuracy is limited by calibration 
drift. Hot wires are the most usual technique for measuring 
fluctuating turbulence quantities, iii) Laser Doppler Ane- 
mometry. The velocity of small particles, which are seeded 
in the fluid, is measured using laser light beams. This is 
a rather new technique with great potentials. A special ad- 
vantage is the absence of aerodynamic probe interference. 

All these experimental techniques have in common a fairly 
large measuring volume, generally with "dimensions of the 
order of 1 mm. This is important as most laboratory boundary 
layers are fairly thin, of the order of em's, so that spatial 
resolution is often a problem, especially for turbulence 
measurements because of the small eddies in the flow. 

THE DIFFICULTY OF ACCURATE 
TURBULENCE MEASUREMENTS 

© 

MAIN PROBLEM: MEASUREMENT OF MOMENTARY 
VELOCITY VECTOR DIRECTION 

SAY:      ERROR= ±0.2° I   CDnrtn,.,   , ,„ 

HIGHLY TURBULENT FLOWS: 

J>',w'>0.2lUj   -•-    LARGE MOMENTARY FLOW ANGLES 

u>:w'> 0.4 IUI   -•*    OCCASIONAL REVERSE FLOW 

The usefulness of an experiment as a basis for improving 
calculation methods generally increases with the amount of 
detail experimental information available. Particularly the 
presence of turbulence data is desirable. Unfortunately accu- 
rate turbulence measurements are not easy to perform. To 
clarify the problem the measurement accuracy of the moment- 
ary local flow velocity in a turbulent flow will be consider- 
ed. Tentatively the measurement error in the flow angle will 
be assumed to be ± 0.2°, which actually is a fairly high 
standard of accuracy. For a turbulent velocity fluctuation 
level of 5 % of the mean velocity, the corresponding relative 
error in v' and w' (the fluctuating velocity components nor- 
mal 'to the mean velocity vector) then becomes ±7 7.. It will 
be clear that in the circumstances accurate measurements are 
difficult to perform. 

In adverse pressure gradient flows close to separation 
much higher turbulence levels occur. Consequently smaller re- 
lative errors in the fluctuating velocities are likely for 
the same absolute error in the flow angle. However, for velo- 
city fluctuation levels higher than 20 %, the momentary flow 
angle may exceed at times the acceptable range of a probe 
with e.g. crossed hot wires. When the fluctuation level ex- 
ceeds 40 % occasional reverse flow may occur, requiring 
velocity measurement techniques, which distinguish reverse 
flow, such as Laser Doppler Anemometry. 

SKIN FRICTION MEASUREMENT TECHNIQUES © 

SURFACE PRESSURE PROBES, 

y//////////////Mmm§,     »ASED ON ,201 WALL LAW 

MAIN PROBLEM: VALIDITY OF WALL LAW 

SURFACE HOT-FILM PROBE, 
BASED ON ANALOGY OF 
FRICTION AND HEAT TRANSFER 

MAIN PROBLEM: HEATTRANSFER TO SUBSTRATE 

„     DIRECT FOHCE MEASUREMENT 
W/.     ON FLOATING ELEMENT 

MAIN PROBLEM: EFFECT OF PRESSURE FORCES 
ON FLOATING ELEMENT 

Since in turbulent boundary layers large velocity varia- 
tions occur in a thin layer near the wall, it is useful to 
know the magnitude and direction of the skin friction, i.e. 
the limiting conditions at the surface. Again there are three 
principle measuring techniques: i) Surface pressure probes. 
The skin friction measurement is based here on the assumption 
that in the near-wall region a universal velocity distribu- 
tion exists, dependent only on the local skin friction and 
the fluid properties. This so-called law of the wall, howe- 
ver, has a restricted range of validity and assumes no velo- 
city vector rotation in the near-wall region, so that the 
skin friction direction found, e.g. by rotating the pressure 
probe, is no more than at best a mean flow direction over the 
probe height, ii) Surface hot film probes, using hot films 
glued on the surface. Analogy of skin friction and heat 
transfer is assumed and the skin friction direction may be 
obtained by using two surface hot films at right angles. A 
problem to be considered is the heat transfer to the sub- 
strate and its effect on the calibration, iii) Force measure- 
ments on a floating surface element. This is the only direct 
and in principle indisputable measurement technique. In prac- 
tice, however, accurate force measurements may be difficult 
to perform as the skin friction force to be measured is small 
and unwanted pressure forces on the floating element easily 
impair the measurements. 



EXPERIMENTAL ERROR ESTIMATES 

(NUMBERS CIVEN ABE NO MORE THAN GLOBAL INDICATIONS) 

© 

TYPICAL ERROR 

SURFACE PRESSURE * 0.2% of q„ 

MEAN VELOCITY * 0.5 % Of U„ 

FLOW ANGLE ±0.5° 

SKIN FRICTION ±  5 % of Tw 

REYNOLDS STRESS ±10% of uV, ETC. 

ERROR VERSUS MISTAKE; 

INDEPENDENT CHECKS RECOMMENDABLE, PREFERABLY USING 
ESSENTIALLY DIFFERENT MEASURINGTECHNIQUES 
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No generally valid error estimates for the various measur- 
ing quantities can be given, of course. Yet it seems useful 
to state here the global error level, which should be normal- 
ly achieved in the author's opinion. As indicated in the 
adjacent table, surface pressure measurement errors may be 
expected to be small, which is fortunate as the pressure gra- 
dient is the quantity of interest. Reasonably accuracy is 
generally achieved for the mean velocity magnitude and di- 
rection. The attainable measurement accuracy for the skin 
friction is much more a problem. This is worse still for the 
turbulence measurements, as discussed earlier, leading to a 
large typical measurement error estimate for the Reynolds 
stress components. 

Besides normal measurement errors the possibility can 
never be excluded that the data are just wrong, due to mal- 
functioning of the measurement instrument or mistakes in the 
data processing software. A parallel with numerical calcula- 
tion methods can be drawn. Though the numerical truncation 
error (cf. measurement error) should be considered, the main 
problem is generally to get the computer program free of 
faults (cf. measurement mistakes). In view_of the above, in- 
dependent check measurements should be regarded as an essen- 
tial part of an experiment to prove its reliability. 

REQUIREMENTS FOR USEFUL DATA 

i) EXPERIMENTAL DATA RELIABLE? 

ii) FLOW WELL DEFINED FOR CALCULATIONS? 

liil FLOW INTERESTING AS TEST CASE? 

II EXPERIMENTAL DATA RELIABLE? 

• DATA INTERNALLY CONSISTENT? 
(E.G. CORRESPONDENCE OF SKIN FRICTION 
AND REYNOLDS SHEAR STRESS NEAR WALL! 

• GLOBAL LAWS SATISFIED? 
(E.G. MASS AND MOMENTUM INTEGRAL BALANCEI 

0 REQUIREMENTS FOR USEFUL DATA 

After the short discussion on experimental techniques, 
attention will be focussed now on the selection of experi- 
ments, which can be used profitably for comparisons with 
calculations. To decide whether an experiment is suitable as 
a test case for calculation methods, three questions have to 
be adressed. These concern the reliability, the completeness 
and the interest of the experimental data. First the data 
reliability will be considered. 

As noted earlier, an important means to check the relia- 
bility of the data is by making comparative measurements, 
preferably using different experimental techniques. The 
ultimate check is to perform duplicate measurements in two 
different test set-ups, which are geometrically and otherwise 
similar. Besides direct check measurements of the same flow 
quantities, the internal consistency of the data set may 
provide an indication of data reliability. A simple example 
is the measured Reynolds stresses, u'v' and w'v1, in the near 
wall region (but outside the viscous sublayer), which should 
extrapolate to the independently measured skin friction com- 
ponents. A third check is to investigate the accuracy with 
which global flow laws are satisfied by the data. The best 
known example is the momentum integral balance. Application 
of the momentum integral balance means checking the corres- 
pondence between the skin friction and mean flow data. 

§> ii)  FLOW WELL DEFINED FOR CALCULATIONS? 

•  INITIAL CONDITIONS PROVIDED IN SUFFICIENT DETAIL? 

© 

INITIAL CONDITIONS 

COMPUTABLE REGION 

BORDERS OF REGION 
OF DETERMINACY 
OF INITIAL OATA 

The second question to be addressed is whether the experi- 
ment provides sufficient data to make calculations possible. 
In the first place the flow similarity parameters, such as 
the Reynolds number, must be provided (and be constant for a 
data set). Assuming boundary layer calculations with a mar- 
ching procedure, boundary layer data should be provided along 
an initial line. The initial conditions should preferably 
include measured turbulence quantities, as these may affect 
the downstream boundary layer development over a substantial 
distance. Downstream of the initial line with given data, a 
region of influence and a region of determinacy can be dis- 
tinguished. The latter region is the computable region for 
the given initial conditions. This region is indicated in the 
sketch. In simple three-dimensional boundary layer flows the 
borders of the computable region coincide with an external 
streamline and a wall streamline. In this region the surface 
pressure distribution must be provided sufficiently accurate 
and sufficiently closely spaced. The pressure data must be 
differentiable, also at the boundaries"of the computational 
region. If other boundary conditions are required, the other 
conditions should be provided sufficiently-accurate and clo- 
sely spaced by the measurements.        ^ 
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iii)  FLOW INTERESTING AS TEST CASE? 

OBJECTIVE OF THEORY EXPERIMENT COMPARISON: 
TO CHECK EMPIRICAL ASSUMPTIONS 
IE.G. TURBULENCE MODEL! 

FIRST REQUIREMENT: 

•  SUFFICIENT COMPARISON DATA 
(PREFERABLY TURBULENCE DATA) 
AVAILABLE IN COMPUTABLE REGION 

EMPIRICAL ASSUMPTIONS ARE SELDOM UNiVERSALLYTRUE • 

SECOND REQUIREMENT: 

•  FLOW PARAMETERS INTME EXPERIMENT IN THE RANGE 
OF THOSE OF THE PRACTICAL FLOWS TO BE 
CALCULATED WITH THE METHOD AT HAND 

© The final question, but not the least important one, is 
whether the experimental flow is interesting as a test case 
for calculations. The objective of the theory experiment 
comparison must then be clearly posed first. The most common 
objective is to check the empirical assumptions in the calcu- 
lation method, e.g. contained in the turbulence model ap- 
plied. To perform comparisons, in the first place sufficient 
comparison data must be available in the computable region. 
As detail comparisons are usually more instructive, the 
availability of measured turbulence data is an advantage, 
especially if the calculation method uses a turbulence model. 

A fact, which is generally underexposed, is the limited 
validity range of most empirical assumptions. This holds also 
for the empirical assumptions made in current calculation 
methods for turbulent shear layers, even if sophisticated 
turbulence models are used. Because of their limited validi- 
ty, checking the accuracy of empirical assumptions is only 
sensible in the type of shear flows for which the calculation 
method is intended. Various flow parameters may be expected 
to affect the turbulence properties and so the empiricism. 
All these parameters should be considered when selecting ex- 
periments for checking empirical assumptions. Some of the 
important flow parameters will be reviewed hereafter. 

SOME IMPORTANT FLOW PARAMETERS 

- INITIALTURBULENCE PROPERTIES 
[MAV BE AFFECTED BY TRANSITION 
TRIPPING DEVICE IN EXPERIMENT) 

- REYNOLDS NUMBER, Re 

(USUALLY LOW IN EXPERIMENTS; 
ACCEPTABLE FOR Re> 5000?) 

- MACH NUMBER, M 
IUSUALLY LOW IN EXPERIMENTS; 
ACCEPTABLE FOR M^f»1?) 

-PRESSUREGRADIENT, 
PARAMETER E.G. X = 15, /qe) Op/ 3x) 

(USUALLY LARGE IN EXPERIMENTS 
—- PRESSURE FORCES DOMINATE) 

- FLOW DEVELOPMENT RATE, 
PARAMETER E.G. 5, OX/3x) 

(USUALLY LARGE IN EXPERIMENTS 
—* TURBULENCE HISTORY DOMINATES) 

/jO] - To be useful as a test case, the initial turbulence pro- 
perties of the shear layer in the experiment should be 
similar to those in practical flows. In experiments turbu- 
lence properties may be affected e.g. by crude transition 
tripping. 
- The test Reynolds number should be in the range of the 
practical application area of the calculation method. Usually 
the Reynolds number is low in experiments, but this is pro- 
bably acceptable if R > 5000. 
- The test Mach number should be in the correct range. 
Usually the Mach number is low in experiments, as turbulence 
measurements are difficult to perform in high-speed flows. 
Fortunately compressibility effects on turbulence are proba- 
bly fairly small, unless M >> 1. 
- The pressure gradients in the experiment should be of the 
order of magnitude encountered in practical flows. However, 
because of the spatial resolution problem, thick boundary 
layers are preferred for the measurements, while test section 
dimensions are limited. Consequently the pressure gradient 
parameter X = (4./q )(3p/3x) is often large in experiments, 
so that pressure forces dominate. 
- The flow development rate should be comparable with that 
in practical flows. Because of the limited test section 
length and the thick boundary layer, the flow development 
rate, 6.(3X/3x), is usually large in experiments, so that 
turbulence history effects dominate. 

REVIEW DF EXPERIMENTS 

EARLIER REVIEWS; 

JOHNSTON 1976; EXTENSIVE REVIEW 

HUMPHREYS ET AL 1380: STANFORD C0NF. 

PATEL19B2: SHIP-LIKE GEOMETRIES 

®| 

WORKSHOPS; 

TRONOHEIM 1975: E TEST CASES 

STOCKHOLM 1978: 1 TEST CASE 

AMSTERDAM 1979: 1 TEST CASE 

GÖTEBORG 1980: 2TESTCASES 

BERLIN 1982;  5 TEST CASES 

PRESENT REVIEW: 

MORE RECENT EXPERIMENTS 
EXPERIMENTS USED IN WORKSHOPS 

3D THIN SHEAR LAYERS 
(NO SHIP STERN FLOWS) 

REVIEW OF EXPERIMENTS 

An extensive and thorough review was given ten years ago 
by Johnston (1976). For the 1980-81 Stanford conference, ex- 
periments were evaluated on their possible use as test cases 
by Humphreys and Van den Berg (1980). Viscous shear layers a- 
round ship-like bodies were reviewed recently by Patel (1982). 

Some experiments have been employed already extensively 
for theory experiment comparisons in Workshops. Several such 
Workshops have taken place in the last ten years, starting in 
1976 with the so-called "Trondheim Trials" (East 1976). The 
Workshops in Stockholm (1978) and in Amsterdam (1979) consi- 
dered simple swept wing flows (Humphreys 1979; Lindhout, 
Van den Berg, Elsenaar 1980), while ship boundary layers were 
the subject of the 1980 Göteborg Workshop (Larsson 1981). In 
1982 a Workshop with several test cases took place in Berlin 
(Van den Berg, Humphreys, Krause, Lindhout 1986). 

The experiments used as test cases for Workshops are im- 
portant as the usefulness of the data "should be expected to 
have been established and also because other calculation re- 
sults are available. The present review will include these 
experiments, so far they provide detail boundary layer data, 
but further will be restricted to the more recent thin shear 
layer experiments. Note that inclusion of an experiment in 
this review does not necessarily mean that it satisfies the 
requirements discussed in the preceding section. 



EXPERIMENTS: 3D B.L FLOWS INDUCED BY 
TRANSVERSE SURFACE VELOCITY 

LOHMANN, 1B76 
UNCL.TURB. DATA, M<« 
BERLIN WS TEST CASE 

© 

HIGUCHI. 1860 
INOTURB. DATA,M«1) 

HEB8AR, DRIVER, 1935 
IAS ABOVE, BUT   3p/ 3x # 0 

EXPERIMENTS: 3D B.L. FLOWS IN DUCTS © 

i)  CURVED DUCT 

ii)  DUCT WITH CENTER BODY 

KUSSOY, VIEGAS, 
HORSTMAN, 1980 
(INCL.TURB. DATA, M> 1) S3— SHOCK r O* 
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A fundamental type of experiment is the three-dimensional 
flow obtained when a zero-pressure-gradient boundary layer 
encounters a local transverse motion of the bounding surface. 
The interesting feature of the flow is that the three-dimen- 
sionality is related here solely with the transverse shear 
forces. In practical test set-ups such a boundary layer flow 
may be generated on a cylinder with a stationary and rotating 
section. When the front section is stationary, the initially 
two-dimensional boundary layer becomes three-dimensional 
after the transition to the rotating part. This flow was 
measured amongst others by Lohmann (1976) and more recently 
by Fulachier, Arzoumanlan and Dumas (1982). The data of 
Lohmann were used as a test case for the Berlin Workshop. 
When the front section is rotating, the three-dimensional 
boundary layer generated relaxes to a two-dimensional flow on 
the downstream stationary section. This flow was measured by 
Higuchi (1980) and later by Hebbar and Driver (1985), using 
the same test set-up, but with a streamwise pressure gradient 
imposed. The boundary layer thickness in these experiments 
was in all cases not small relative to the cylinder radius, 
so that transverse curvature and rotation will have affected 
the turbulence properties. 

The flow along a duct wall provides a conveniently measu- 
red boundary layer, which will be three-dimensional when the 
duct is curved. A simple case is the boundary layer along one 
of the two flat walls of a duct with the other walls curved, 
as applied for instance by De Grande and Hirsch (1978). The 
turbulence properties in the duct corners deviate from those 
in normal thin shear layers. Because of possible turbulence 
history effects, the region of influence of the corner flows 
should preferably not be part of the measurement region. 
This may restrict the usable boundary layer development 
length in the duct. 

Also straight ducts with a center body have been applied. 
The investigation of Fernholz and Vagt (1981) concerns the 
three-dimensional boundary layer along a circular cylinder in 
a duct with a skew-mounted back plate. Kussoy, Viegas and 
Horstman (1980) and Chou and Childs (1985) have investigated 
the boundary layer along a circular duct with an asymmetric 
center body. In these two experiments the flow was supersonic 
and the center body induced a three-dimensional shock wave 
boundary layer interaction on the duct wall. The experiment 
of Kussoy et al was selected as a test case for the 1980-81 
Stanford Conference. In these flows the ratio of the boundary 
layer thickness to the wall radius was not small and conse- 
quently curvature effects are not negligible. 

EXPERIMENTS: 3D B.L. FLOWS ON FLAT PLATES 

i) PRESSURE INDUCED BY BODY NORMAL TO PLATE 

DECHOW. FELSCH, 1977 , 
IINCL.TURB. DATA, M«1) / 
BERLIN WS TEST CASE 

© 

OSKAM. VAS. BOGDONOFF, 1976 
INOTURB DATA, M > 1] 

PEAKE, 1976 
INOTURB. DATA, M >1) 

DOLLING, McCLURE, 1996 
INOTURB. DATA, M > 1) 

A frequently used test configuration consists of a flat 
plate with a two-dimensional body mounted normal to it, wh'ich 
induces a three-dimensional boundary layer on the plate. 
Close to the body a three-dimensional separation region oc- 
curs. The measurement data obtained in such a test set-up by 
Dechow and Felsch (1977) were used in the Berlin Workshop. 
Further the measurements by Krogstad (1979) and Pierce, Harsh 
and Menna (1985) will be mentioned here. The latter data set 
is unique in that it includes skin friction results in a 
three-dimensional boundary layer from force measurements on a 
floating element (McAllister, Pierce, Tennant 1982). 

In supersonic flows a sharp-edged plate at angle of attack 
normal to the flat test surface may be employed to induce a 
three-dimensional shock wave boundary layer interaction on 
the flat plate. Several variances of this set-up have been 
tested. Here mention will be made of the measurements by 
Oskam, Vas, Bogdonoff (1976), by Peake (1976), both 1980-81 
Stanford Conference test cases, and those by Dolling and 
McClure (1985). 

A common problem with test set-ups of this type is the re- 
lative short distance in which boundary layer three-dimen- 
sionality develops. Consequently turbulence^üistory effects 
tend to dominate. Actually a data analysis shows that the 
turbulent shear stresses in some cases may be regarded as 
very nearly frozen (Van den Berg 1982). 
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# EXPERIMENTS: 3D B.L FLOWS ON FLATPLATES 

il)  OTHER PRESSURE-INDUCING BODIES 

®1 

BHADSHAW, TERRELL. 1969 
MNCL.TURB. DATA, M<<1) 
THONDHEIM WS TEST CASE 

VAN DEN BERG, ELSENAAR, 1872 
[INCL.TURB. DATA, M«1) 
TRONDHEIM + BERLIN WS TEST CASE 

MULLER, KRAUSE, 1979 
IINCL.TURB.DATA.M«' 
BERLIN WS TEST CASE 

DEMETRIADES, McCULLOUGH, 1965 
INOTURB-DATA, M >1| 

EXPERIMENTS: 3D B.L. FLOWS ON SWEPT 
AtRFOILS BETWEEN WALLS 

© 

'/////////////////////////////////////////m 

POLL. 1979 
[INCL. TURB.DATA,M«1I 

TRANSITIONAL FLOW W//mW//MM///MMW#W>,. 

MICHEL, ARNAL, COUSTOLS, JUILLEN, 1984 
[INCl.TURB. DATA,M<<1I 
TRANSITIONAL FLOW 

A three-dimensional boundary layer flow on a flat plate 
can be induced by any combination of nearby bodies. The early 
experiment of Bradshaw and Terrell (1969), used as a Trond- 
heitn Workshop test case, concerns the quasi-two-dimensional 
turbulent boundary layer on a flat plate behind a swept body 
fixed on the plate. The experiment of Van den Berg and 
Elsenaar (1972), used in the Trondheim and Berlin Workshops, 
also concerns a quasi-two-dimensional flow as it occurs on 
infinite swept wings. The pressure distribution on the sur- 
face is induced by a swept, wing-like body suspended above 
the test plate. The initially two-dimensional boundary layer 
on the test plate gradually develops into a three-dimension- 
al separation. In the test set-up of Bradshaw and Pontikos 
(1985) the same boundary layer flow has been reproduced with 
good approximation except that the flow does not quite sepa- 
rate. The results confirm on the whole the earlier data and 
add significantly to the detail information about this flow. 
The experiment by Müller and Krause (1979) provides data in 
a fully three-dimensional boundary layer on a flat plate 
with deflecting walls and a suspended body. This experiment 
was used as test case for the Berlin Workshop. Finally the 
supersonic three-dimensional turbulent boundary layer ex- 
periment by Demetriades and McCullough (1985) should be 
mentioned. 

A number of measurements have been carried out in the 
shear layers of a swept cylindrical airfoil spanning a tunnel 
test section. Note that a quasi-two-dimensional infinite 
swept wing flow is generally not well simulated with such a 
test set-up due to the flow constraint caused by the end 
walls. Cook, McDonald and Firmin (1979) obtained boundary 
layer and near-wake data for an airfoil between tunnel walls 
at two sweep angles and at high subsonic speeds. Low speed 
data in the shear layers at and behind the trailing edge of 
a swept airfoil between walls have been reported by Cousteix 
and Pailhas (1980, 1983). 

Two experiments on transitional boundary layer flow will 
be mentioned here. The three-dimensionality of the flow in- 
troduces" two additional mechanisms for transition from lami- 
nar to turbulent flow. The first one is transition by "at- 
tachment line contamination". A transitional boundary layer 
of this type has been investigated for instance extensively 
by Poll (1979). The second transition mechanism typical for 
three-dimensional boundary layers is transition by "cross 
flow instability". Such a transitional flow on a swept air- 
foil between walls was measured amongst others by Michel, 
Arnal, Coustol and Juillen (198A). 

©> EXPERIMENTS: 3D B.L. FLOWS ON SWEPT WINGS 

EAST, 1973 
INOTURB DATA.M«!) 
TRONDHEIM WS TEST CASE 

® 

SEETHARAM. PFEIFER, 
OHMURA, MCLEAN, 1982 
[NO TURB, DATA, M«l) 

SPAID, ROOS, 1983 
(NO TURB. DATA, Moll 

Three-dimensional turbulent boundary layer measurements on 
swept wings of finite span should be expected to provide 
particular useful information. Measurements on a half-model 
of a slender delta wing with a leading edge vortex above the 
surface were performed by East (1973). The flow studied ap- 
proximates closely to conic conditions. The data have been 
employed for the Trondheim Workshop. Boundary layer measure- 
ments on a model of the horizontal and vertical swept tail- 
planes of a typical transport aircraft were carried out by 
Seetharam, Pfeiffer, Ohmuro and McLean (1982.) The tests were 
performed in a large wind tunnel allowing the use of a large 
scale model with fairly thick boundary layers. 

Measurements on a swept-wing half-model at transonic and 
high subsonic speed were carried out by Spaid and Roos (1983) 
(see also Spaid 1984). The data at the higher Mach numbers 
suffer from some flow unsteadiness due to shock movements. 
Flight measurements on the wing boundary layers of a Saab 
Lansen aircraft have been performed by Bertelrud (1984) at 
various high subsonic and transonic speeds. A large amount of 
data has been gathered in many flights. 



p EXPERIMENTS: 3D B.L. FLOW ON BODIES 
OF REVOLUTION 

RAHAPRIAN, PATELLCHOI, 1981 
INOTURB.DATA,M«1| 

MEIER, KREPLtN, 
VOLLMERS, 1963 
(INCLTURB. DATA, M< 
TRANSITIONALAND 
TURBULENT FLOW 

© 

AUSHERMAN, YANTA. 1983 
INOTURB.DATA,M> II 
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The three-dimensional boundary layer flow around slender 
bodies of revolution at angle of attack leads further down- 
stream generally to two open separation regions at the lee- 
side of the body. This flow has been studied also by several 
investigators, Ramaprian, Patel and Choi (1981) investigated 
the turbulent boundary layer on a hemisphere-spheroid combina- 
tion at a moderate angle of attack, A prolate spheroid at 
various angles of attack and various Reynolds numbers was 
measured by Meier, Kreplin and Vollmers (1983). Measurements 
were carried out without a transition trip, so that a large 
transitional region was present especially at the lower 
Reynolds numbers, and for some conditions also with a transi- 
tion trip leading to a turbulent boundary layer in the mea- 
surement region. The three-dimensional laminar and turbulent 
boundary layer on an ellipsoid-cylinder model at high angle 
of attack was investigated by Schmitt and Chanetz (1985). The 
measurements were focussed here particularly on the develop- 
ment of the open separation into a vortex. The supersonic 
turbulent boundary layer on a conical body at angle of attack 
was measured by Ausherman and Yanta (1983). 

USE OF EXPERIMENTAL DATA 

] SOLVE THE EQUATIONS CORRECTLY 

l) SOLUTION STABLE AND CONVERGENT? 
b) NUMERICAL ERROR ACCEPTABLE? 

ill SOLVETHE CORRECT EQUATIONS 

CHECK OF EMPIRICAL ASSUMPTIONS IS 
USUALLY THE MAIN OBJECTIVE OF 
THEORY EXPERIMENT COMPARISONS 

© USE OF EXPERIMENTAL DATA 

In an early phase of research experiments, have chiefly an 
exploratory character, the main aim being to make evident the 
prevailing physical mechanisms. In later phases experiments 
often serve more directly as test cases for calculation me- 
thods to assess their accuracy and to improve the calculation 
methods where necessary by tracing the origin of apparent 
discrepancies by detail comparisons with the experimental 
data. In boundary layer research the emphasis is presently on 
the use of experiments as such test cases. 

Calculation methods should, of course, in the first place 
solve the mathematical equations correctly. The numerical 
solution should be stable and convergent and the truncation 
error small, but also the computer program should be free of 
faults, which is difficult to ascertain in practice. It is 
therefore sensible to take advantage of Workshops in which 
other (possibly very similar) calculation methods have been 
applied, which results can be used in a way as a check. 

Besides solving the equations correctly, the correct equa- 
tions should be solved. No non-negligible terms should have 
been ommltted in the equations and the terms containing empi- 
rical approximations should be sufficiently accurate. The 
investigation of the accuracy of the empirical assumptions is 
actually the principal objective of most theory experiment 
comparisons. 

EMPIRICAL ASSUMPTIONS 

INTEGRAL METHODS: VELOCITY PROFILE 
FAfrflLY.SKIN FRICTION LAW, ETC. 

FIELD METHODS: TURBULENCE MODEL 

•  NO REALPROSPECT FOR UNIVERSAL PROFILE 
FAMILY, SKIN FRICTION LAW, ETC 

t NO SOON PROSPECT FOR UNIVERSAL TURBULENCE fMDEL 

CONSEQUENCE: 

CHECK OF EMPIRICALASSUMPTIONS IS 
DNLY USEFUL IN EXPECTED VALIDITY RANGE 

® 
The empirical assumptions in calculation methods depend on 

the type of method. Integral methods generally assume a pro- 
file family for the stream-and cross-wise velocity, a skin- 
friction law and at least one further empirical relation, for 
instance about the turbulence entrainment rate. In field 
methods the empiricism is contained in the turbulence model. 
Mathematically simple turbulence models may be used, relating 
algebraically Reynolds stress and mean velocity gradient, as 
well as more sophisticated models, in which the Reynolds 
stresses are related to the mean flow by partially empirical 
differential equations based on the Reynolds stress transport 
equations. 

There is no real prospect for a truly universal boundary 
layer velocity profile family with a limited number of para- 
meters, for a universal simple skin-friction law, etc. One of 
the conclusions of the 1980-81 Stanford Conference has been 
that there is a yet also no universal turbulence model avail- 
able and it seems that there is no soon.prospect for such a 
universal model. This conclusion has important consequences 
for theory experiment comparisons. As emphasized already ear- 
lier in this paper, the restricted validity of the empiricism 
implies that checks of the empirical assumptions are only 
useful in flows approximately similar to the flows in which 
the empiricism is expected to hold. This normally means 
checks in the class of flows, to which the calculation method 
is expected to be applied. 
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THEORY EXPERIMENT COMPARISON 

A PROPER COMPARISON BETWEEN 

CALCULATIONS AND MEASUREMENTS 

REQUIRES: 

• CONSIDERATION OF THE NUMERICAL 
AND EXPERIMENTAL ERRORS IN THE 
COMPARISON DATA 

t INVESTIGATION OFTHE EFFECT OF 
VARIATIONS IN THE BOUNDARY CONDITIONS 
WITHIN THE EXPERIMENTAL ERROR BAND 

• INVESTIGATION OF THE EFFECT OF 
VARIATIONS IN THE EMPIRICAL 
ASSUMPTIONS TO ASSESS THEIR 
ROLE IN THE FLOW DEVELOPMENT 

® When comparing calculation results with experimental data, 
both measurement errors and numerical errors should be consi- 
dered. Generally attention is focussed particularly on the 
error in the experimental comparison data and the error in 
the calculation results for the given boundary conditions. 
However, the boundary conditions are based normally on measu- 
rements and, therefore, are also subject to a possible error. 
To investigate the effect of such measurement errors, addi- 
tional calculations must be carried out for different bounda- 
ry conditions. Calculations may be performed, for instance, 
for different initial flow conditions within the experimental 
error band, and for different surface pressure distributions, 
with an increased or decreased pressure gradient, so far the 
error band of the measured pressures allows. 

To draw a balance conclusion from a theory experiment 
comparison, generally it is recommendable to add an inves- 
tigation of the role of the empirical assumptions on the 
calculated flow development. If the role would be small, 
obtained agreement between calculations and measurements 
may not mean much. As an example strongly pressure-driven 
flows may be considered, in which the Reynolds stresses have 
little effect on the mean flow development ^Agreement between 
calculated and measured mean flow quantities then tells 
little about the accuracy of the assumed Reynolds stresses in 
the calculations. This can only be judged when direct compa- 
risons with measured Reynolds stresses can be made. 

EXAMPLE OF A THEORY EXPERIMENT COMPARISON © 

VAN DEN BERG 
ELSENAAfi INFINITE 
SWEPT WING TEST CASE 

30 SEPARATION LINE 

REDUCED EDDY 
VISCOSITY 
MAGNITUDE 

STANDARD ALGEBRAIC 
ISOTROPIC EDDY 
VISCOSITY 

As an example the results of an extensive comparison be- 
tween three-dimensional turbulent boundary layer calculations 
and experiment will be discussed. The case considered is an 
infinite swept wing flow, where the boundary layer is very 
nearly two-dimensional at the initial station and where 
three-dimensional separation takes place near the end of the 
measurement region. Many calculation methods have been ap- 
plied to this case, so that suitable calculation results to 
illustrate the theory experiment comparison could be drawn 
from various sources. The comparisons will be focussed here 
on measured and calculated wall flow angles. The experimental 
accuracy estimate for the wall flow angle is ± 1°, while the 
numerical error in the calculation results depends on the 
method used, but is expected to be certainly not larger. 

The first graph shows the results of a study by Hoekstra 
of the effect of a variation in the empirical assumptions. 
Calculations with a conventional algebraic isotropic eddy 
viscosity turbulence model are seen to underestimate substan- 
tially the wall flow angle increment in the downstream part 
and clearly fail to predict separation. With the eddy visco- 
sity somewhat reduced (following Nituch, Sjolander, Head 
L978) , but still isotropic, agreement with experiment appears 
to exist to much further downstream. The results demonstrate 
that the empirical assumptions about the Reynolds shear 
stresses have an important influence on the flow development. 

@ 

IKITIALWALIFIOW 
ANGLE (!„.= 7Ü0 

MEASURED 
PRESSURE 

..EDGE 
L. 

CALCULATIONS BY SCHNEIDER WITH NON-ISOTROP1C EDDY VISCOSITY 
MODEL FOR DIFFERENT BOUNDARY CONDITIONS (BERLIN WS) 

The next two graphs show the effect of variations in the 
boundary conditions. These graphs and the preceding one have 
been taken from the Berlin Workshop (Van den Berg et al 
1986). The upper graph contains calculations by Cross with 
his integral method for different initial conditions. The 
measured initial wall flow angle is 1.5° and calculations 
have been carried out for this angle and a slightly larger 
initial wall flow angle. The effect on the calculation re- 
sults is seen to be small up to a streamwise distance x « 1.1 
m, but further downstream the two sets of calculation results 
start to deviate disproportionally. 

The lower graph shows the results of calculations by 
Schneider with a non-isotropic eddy viscocity model for dif- 
ferent pressure distributions. The eddy viscosity non-isotro- 
py applied is as proposed by Rotta (1977). With the normal 
boundary condition, i.e. the measured surface pressure dis- 
tribution, the calculated wall flow angle increment is seen 
to fall below measurements already at x » 1.1 m. When the 
measured pressure at the boundary layer edge is used, agree- 
ment with experiment is maintained essentially further down- 
stream, although the difference in pressure is small (ACp < 
0.01 upstream of separation). The results demonstrate the 
sensitivity of the calculation results for the boundary con- 
ditions in the downstream part of the measurement region, 
near separation. 



SYSTEMATIC INVESTIGATION OF THE EFFECT OF SMALL 
SURFACE PRESSURE GRADIENT INCREMENTS 
IDE BRUIN, 19831 

CONCLUSION: 

SENSITIVITY DF CALCULATION RESULTS FOP, BOUNDARY 
CONDITIONS DEPENDS ON TURBULENCE MODEL USED, 
OR STRICTLY WHETHER SEPARATION IS APPROACHED 
IN THE CALCULATION 
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It is well known that boundary layer calculations carried 
out as done here, constitute an ill-posed mathematical pro- 
blem at separation. If the singularity at separation is no 
part of the computational region, i.e. if the calculations 
are stopped before separation is reached, no problem exists 
in principle, but in practice the calculations may become 
very sensitive for the boundary conditions already upstream 
of separation. To assess the sensitivity of the calculations 
for the boundary conditions, a systematic investigation was 
performed by De Bruin (1983). The pressure gradient was in- 
creased over the whole measurement range by a small amount. 
Calculations were carried out with a standard type Isotropie 
eddy viscosity model and with the same model with a reduced 
eddy viscosity in the boundary layer outer region. The re- 
sults are depicted in a plot showing the angle (o + ß ) in- 
stead of 8 as in the preceding graphs. It is evident that 
with the reduced eddy viscosity the calculations come close 
to separation, and that the results near separation are very 
sensitive to small pressure gradient changes. It appears 
also, however, that the calculations with the standard eddy 
viscosity model are not unduly sensitive to pressure gradient 
changes. The sensitivity of the calculations to the boundary 
conditions seems to depend on the turbulence model used. 
The important point is, of course, whether separation is ap- 
proached in the calculation or not. 

&                                      ®' 
CALCULATION ~\          ^~~-         '      ~~0 

cp y^° Q \ 
So                 EXPERIMENT A 

0.1 

yS 
^^ 

0 5                                                                   1.0 x              1.5 m 

i)  STANDARD ALGEBRAIC ISOTROPIC 

60 

EDDY VISCOSITY MODEL 

SEPARATION 

CALCULATION^          yS          \ 

« \X °              V—EXPERIMENT 

/ 
20 / 

^t*^ 

^-~~~~*°^ 
°          ° 

-.   D 5                                                           1.0                                          x             1.5 m 

INVERSE BOUNDARY LAYER CALCULATIONS. USING MEASURED 
STREAM- AND CROSSWISE DISPLACEMENT THICKNESS AS INPUT 
(ABID, SMITT, 19341 

^ 

The calculation problems near separation can be resolved 
by carrying out the calculations in a different way, for in- 
stance by inverse calculations prescribing the distribution 
of measured boundary layer properties over the surface in- 
stead of the pressure distribution. Such inverse calculations 
have been performed by various workers, but here the results 
of Abid and Smitt (1984) will be considered. They used the 
measured stream- and crosswise boundary layer displacement 
thickness as an input for the calculations. In the graphs 
shown here the angle (o + $ ) computed with a standard alge- 
braic eddy viscosity model nas been plotted as well as the 
calculated surface pressure distribution, which is part of 
the output in inverse calculations. The calculated wall flow 
angles are somewhat high, but on the whole agreement with 
experiment is reasonable. Actually this should not be sur- 
prising, however, as the stream- and crosswise displacement 
thickness agree from the outset, which means that the general 
level of the cross flow in the boundary layer is necessarily 
the same in calculations and experiment, so that large dif- 
ferences in the skewing angle in the boundary layer are not 
likely. Comparison of the calculated and measured pressures 
shows larger differences. The computed surface pressure 
gradient is essentially too large. On this ground one should 
conclude that agreement between calculations and measurements 
is not good here. 

CALCULATION 

ii) ALGEBRAIC STRESS MODEL 
(RODI, LAUNDER! 

INVERSE BOUNDARY LAYER CALCULATIONS, USING MEASURED 
STREAM- AND CROSS-WISE DISPLACEMENT THICKNESS AS INPUT 
IABID, SMITT, 1984) 

Abid and Smitt subsequently carried out inverse boundary 
layer calculations in the same way as described before, using 
different turbulence models. One of the models applied is an 
algebraic stress model, which is a simplification of the full 
solution of the six transport equations for the Reynolds 
stress components (Launder 1971, Rodi, 1972). The results 
obtained with this turbulence model are depicted in the graph 
shown here. The agreement between calculations and measure- 
ments for the wall flow angle is reasonable, but not very 
good and certainly not better than obtained earlier with a 
simple standard algebraic eddy viscosity model. The real im- 
provement becomes evident when considering the surface pres- 
sures. Agreement between calculated and measured pressures is 
seen to be very good indeed with the algebraic stress model. 
Detail comparisons between calculated and measured Reynolds 
stresses (not shown here) also exhibit fairly good agreement. 
The agreement can never be perfect, however, as the algebraic 
stress model leads to an isotropic eddy viscosity, while the 
measurement results indicate a distinct eddy viscosity non- 
isotropy. Though a completely satisfactory agreement also 
does not exist here, the improvement achieved with this 
turbulence model is evident, especially in £he comparison of 
calculated and measured pressures. 



3-10 

r                                                                           EXPERIMENT -^ 
SEPARATION                                                         \ 

40 

20 

TURBULENCEMODEl .         ^'y^                  \ 
ADAPTED TO                         \*'S                                 \ 
TURBULENCE                        ,y"          BfiAOSKAm —i 
MEASUREMENTS             ,jgT                  TURSULENCE 

{f                          MODEL 

0-B                      0.!                      1.0                       1.2              K 1,4 m 

CALCULATIONS BASED ON A SIMPLE APPROXIMATE VISCOUS 
INVISCID INTERACTION MODEL (ELSENAAR AT AL, 1975) 

An other possibility to circumvent the calculation pro- 
blems near separation is by viscous inviscid interaction 
calculations. Such calculations were carried out for this 
case some time ago by Elsenaar et al (1975), using a simple 
approximate interaction model. As discussed earlier in the 
review of experiments, the test set-up considered here con- 
sists of a flat plate with a swept wing-like body suspended 
above the plate. This means that the flow can be regarded as 
a duct flow with an inviscid core and a boundary layer on the 
flat plate and the body. Assuming that both boundary layers 
are approximately of the same thickness and that the core 
flow is quasi-one-dimensional, a simple interactive flow cal- 
culation is possible with the pressure a function of the duct 
height minus the displacement thickness of the boundary 
layers. The results of these calculations are presented here. 
Calculations have been performed with two turbulence models: 
the original model of Bradshaw (1967) and an adapted version 
reproducing the measured Reynolds stresses. The interesting 
feature of calculation results obtained in this way is that 
they give a better evaluation of the consequences of wrong 
turbulence modelling in practical viscous-inviscid calcula- 
tions. As shown here, in such calculations separation is 
still predicted even with a less accurate turbulence model, 
but it is predicted too far downstream. 

POSSIBLE COMPARISON PROCEDURES 

» DIRECT CALCULATIONS 

NO SENSIBLE COMPARISONS POSSIBLE IF 
CALCULATIONS APPROACH SEPARATION 

• INVERSE CALCULATIONS 

INPUT   MEASURED B.L. PROPERTIES 

AS B.L. DATA ARE PARTLY GIVEN, 
COMPARISONS SHOULD FOCUS ON 
SURFACE PRESSURE IGRADIENTI 

* INTERACTIVE CALCULATIONS 

INPUT: MEASURED BDUNDARY CONDITIONS 
IN INVISCID FLOW WELL OUTSIDE B.L. 

PREFERABLE PROCEDURE FOR THEORY 
EXPERIMENT COMPARISONS, WHICH 
INCLUDE A SEPARATION REGIDN 

© The various possibilities to compare boundary layer calcu- 
lations with experiment will be recapitulated here. In the 
first place direct calculations may be carried out with the 
measured surface pressure distribution as an input. For cal- 
culations carried out in this way, no sensible comparisons 
with experiment are possible if the calculations approach 
separation. 

The second possibility is to perform inverse calculations 
using measured boundary layer properties as an input. For 
three-dimensional boundary layer calculations two properties 
are generally provided. As this means that the boundary layer 
development is for a significant part given in the calcula- 
tions, the comparison with experiment should focus on calcu- 
lated and measured surface pressures, or actually pressure 
gradients, since these are the driving forces for the"flow. 

Finally theory experiment comparisons can be made by 
viscous inviscid interaction calculations. Then part of the 
inviscid flow should belong to the region to be computed, so 
that measured boundary conditions should be available well 
outside the viscous flow in the inviscid flow region. Though 
few experiments exist, which provide such boundary condi- 
tions, interactive calculations seem in principle the prefer- 
able procedure for comparisons with experiments, which 
include a separation region. 

PRESENT STATUS AND PHOSPECTS 

THEORY EXPERIMENT COMPARISONS PERFORMED 
SHOW: 

- DIRECTION OF SHEAR STRESS IÜV. UV?) 

AND VELOCrrV GRADIENT I 3Uray,3V\73y1 

DO NOT COINCIDE IN 3D B.L', 

-MAGNITUDE OF SHEAR STRESS (ÜV, vW) 

iS SMALLER IN 3D B.L'. THAN IN 

EQUIVALENT 2D B.L'i 

- IN GENERAL TURBULENCE ACTIVITY SEEMS 

TO DECREASE AS THE MEAN FLOW 

BECOMES THREE-DIMENSIONAL 

® PRESENT STATUS AND PROSPECTS 

As turbulence is essentially three-dimensional, it was 
generally expected originally that turbulence models for two- 
dimensional flows could be applied without change to three- 
dimensional boundary layers. More and more experimental evi- 
dence has become available, however, which shows that this is 
not true. While a straightforward extension of most turbulen- 
ce models to three dimensions leads to an isotropic eddy vis- 
cosity, i.e. a shear stress in the direction of the velocity 
gradient, measurements consistently show that these direc- 
tions do not coincide. Moreover measurements indicate that 
the Reynolds shear stresses are substantially smaller than in 
two-dimensional boundary layers in equivalent conditions. 
Turbulence activity in general appears to have decreased in 
three-dimensional boundary layers. A recent survey of these 
experimental findings is contained in Bradshaw (1986). 

The fact that the three-dimensionality of the flow affects 
so strongly the turbulence properties-can only be explained 
when realizing the important role of the large eddies in tur- 
bulent flows. The structure of the large eddies will be dis- 
torted when the mean velocity profile in the boundary layer 
is skewed and so their development may be obstructed, leading 
to a decreased turbulence level in three-dimensional boundary- 
layers. 
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© 

- ONLY FEW MEASUREMENTSPERFORMEO IN 

3D B.L'iWITH FLOW PARAMETERS CLOSE 

TO THE VALUES IN PRACTICAL 3D B.L'l 

-NEED FOR 3D B.L EXPERIMENTS PROVIDING 

RELIABLE TURBULENCE DATA IN CONDITIONS 

SIMILAR TO THOSE IN PRACTICAL FLOWS 

- NEED FOR FUNDAMENTAL RESEARCH TO 

IMPROVE INSIGHT IN TURBULENT PROCESSES 

IN 3D B.L'i 

As a consequence of the important role of the large ed- 
dies, whose properties are not easily generalized, universal- 
ity of empirical assumptions about turbulence is difficult to 
achieve and in any case has not yet been achieved. This means 
that checking empirical assumptions is at present only useful 
in the flow conditions, where the empiricism is expected to 
hold. Unfortunately many of the experiments performed do not 
simulate practical flow conditions. Generally the boundary 
layer is thick in the experiments relative to the length of 
the measurement region, which often leads to pressure forces, 
which are comparatively large, and a tendency of turbulence 
history effects to dominate the turbulence development. 

In view of the above, it is clear that there is a need for 
three-dimensional turbulent boundary layer experiments 
providing reliable data in flow conditions, which better 
resemble those in practical flows. In addition fundamental 
experiments should be carried out to shed more light on the 
turbulent processes in three-dimensional boundary layers. 
Initiative has been taken to perform more extensive collabor- 
ative experiments in this field (Humphreys, 1983). Since some 
time numerical simulations of turbulence by solving the 
Navier-Stokes equations have come within reach and these may 
provide a new means to augment knowledge about turbulence, 
also in three-dimensional boundary layers, as detail informa- 
tion can be made available not easily obtained from measure- 
ments . 
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SUMMARY 

The first part of this paper is devoted to a brief survey of transition problems in two-dimensional flows. 
The main elements of laminar instability theory are presented and used for elaborating some practical tran- 
sition criteria.  In three-dimensional situations, the problem is much more complex, because transition 
may occur through streamwise instability, cross-flow instability or leading edge contamination. It is 
assumed that the streamwise instability can be studied by using two-dimensional results. On the contrary, 
the cross.flow instability and the leading edge contamination constitute typical features of three- 
dimensional flows, as it is illustrated by experimental results. The extension of linear stability theory 
to these last problems is discussed, and transition criteria are developed. Moreover an "intermittency 
method" allows the transition region to be calculated. These techniques are applied to swept wings and 
bodies at incidence. 

MAIN NOTATIONS 

X, Z, y general coordinate system 

x, z, y streamline coordinate system 

u, w, v velocity components in (x, z, y) 

velocity components in (X, Z, y) 

complex velocity and pressure fluctuations 

physical disturbances (real parts of ü', w1, v', p') 

Reynolds shear stresses 

chord normal to the leading edge 

frequency 

dimensionless frequency 

metric coefficients in the X and Z directions 

wave number vector 

free-stream turbulence level 

normal angle of attack 

Hartree's parameter 

intermittency factor 

boundary layer thickness 

B-1- + 

9o angle between the X axis and the external streamline 

X wavelength 

92 due 
^ = \>    (T-      Pohlhausen parameter 

V kinematic viscosity 

5 circumferential angle 

^P angle of sweep 

i|< angle between the external streamline and k 

U,  W, v 

u',  w', v\ .  P 

u',  w',  v', .  P 

u'v',  v'w' 

c 

f* 

„   _    2TTf*V 

hi,   h2 

it 
Tu 

an 

Sh 
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Cf skin friction coefficient 

61 
0 

ioUe 

H = 61/e 
uex 

Rx= — 

ue8 

(1 - ; ) dy 

(1 - S ) dy ue 

shape factor 

R6 

R61 = 

V 
"eSi 

>•  Reynolds numbers 

Three-dimensionnal boundary layer parameters 

,S 
«I =    (1 " I  ) dy 

» (1 - ä ) dy 
0 ue 

Jo  ue 
dy 

H = 61/811 

R8n - Ue911 

R62 
UeSz = i f-w, 

V  v •'0 

Subscripts 

cr 

strearawise shape factor 

Reynolds numbers 

dy 

critical 

free-stream 

end of transition 

imaginary part 

laminar 

real part 

turbulent 

transition onset 

upstream 

1 INTRODUCTION 

Since the classical experiments performed by Osborne Reynolds (1883), the instability of laminar flows 
and the transition to turbulence have maintained a constant interest in fluid mechanics problems. This 
interest results in the fact that transition controls important hydrodynamic quantities such as drag or 
heat transfer. The present paper is devoted to a general survey of transition calculation methods, in 
three-dimensional, incompressible flows. Most of these methods do not claim to represent the intricate 
physics of the transition process : they only constitute short term answers to practical problems. 

Before to examine the difficulties associated with three-dimensional configurations, it is necessary 
to do a short review of the most important results obtained in two-dimensional flows j this necessity 
arises from the fact that the properties of two-dimensional boundary layer profiles are similar to those 
of streamwise profiles in ftiree-dimensional flows. As it can be expected, new problems will appear in the 
latter case due to the presence of cross-flow profiles. 
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2 - TRANSITION IN TWO-DIMENSIONAL FLOWS 

2.1 General considerations 

An overall picture of the boundary layer development on a given body is shown on figure 1. From the 
leading edge to a certain distance x„, the flow remains laminar ; in the zero pressure gradient case, for 
instance, the shape factor is constant and equal to the Blasius value 2.591. At xj, turbulence structures 
appear and transition occurs. From x.j to xg, there is a noticeable change in the boundary layer properties : 
the process of transition involves a large increase in the momentum thickness 8 and a large decrease in 
the shape factor H. As a result, the displacement thickness <5i = H8 exhibits a more complex evolution. 
The skin friction coefficient Cf increases from a laminar value to a turbulent one, the latter being in 
some cases an order of magnitude greater than the former. 

It is obvious that the location and- the extent of the transition depend on a large range of para- 
meters, such as free-stream turbulence, pressure gradient, noise level, vibrations, roughness, suction 
or blowing, wall curvature... In this paper, only the first two parameters will be considered ; an over- 
all description of the effects of the other factors can be found in IM. 

2.1.1 Influence of free-stream turbulence 

The effect of free-stream turbulence on transition location is shown on figure 2, where the transition 
Reynolds number Rx<j is plotted as a function of the external turbulence level Tu. These experimental results 
were obtained for a constant external velocity ; the high values of Tu, such as those used by Hall and 
Hislop, are achieved by installing grids just upstream of the test section. 

At first sight, the experimental data seem to collapse onto a single curve : transition moves rapidly 
upstream when Tu increases. This effect appears to be very strong : the value fo Rx• corresponding to 
Tu = 0,3 10-2 is about three times greater than that corresponding to Tu = 1.5 10~2. On the other side, 
it is obvious that Rxj depends not only on the root-mean-square value of the free-stream turbulence, but 
also on its spectrum. This is illustrated on figure 3, which presents an enlargement of the previous graph, 
for the lower values of Tu, say Tu <0.3 10-2. As Tu becomes very small, the data of Schubauer-Skramstad 
HI  and those of Wells /3/ exhibit the same trend, in the sense that Rxm reaches a constant value. But 
this value is about 2.8 106 in HI  and about 5 106 in /3/. In fact, sound component controls transition 
when Tu is very low, and the effect of "true" free-stream turbulence can be only observed at values of 
Tu greater than 0.2 10-2. 

2.1.2 Effect of streamwise pressure gradients 

a) - Positive pressure gradients 

The influence of a positive pressure gradient is illustrated in figures 4 et 5, where are presented 
typical experimental results obtained at 0NERA/CERT/4/5/. Figure 4 shows the evolution of the shape factor 
as a function of Rx, for six external velocity distributions ; the case A corresponds to a nearly constant 
velocity distribution ; from case B to case F, the pressure gradient becomes stronger and stronger, but 
transition always occurs before laminar separation as indicated by laminar calculations. In the following 
lines, we will define the transition onset as the location where the shape factor exhibits a sudden nega- 
tive slope. The free-stream turbulence level Tu is nearly constant from one configuration to another and 
is equal to about 0.2 10-2. Another presentation of the results is given in figure 5, where the momentum 
thickness Reynolds number taken at the transition onset is plotted as a function of the shape factor at 
the same location. It can be seen that the transition Reynolds number decreases rapidly when the pressure 
gradient intensity increases. 

When the pressure gradient is very strong, the laminar boundary layer often separates and transition 
may occur in the separated layer : it is the problem of separation bubbles occuring, for example, near the 
leading edge of an airfoil at incidence, downstream of the suction peak. In this case, there is an inter- 
action between viscous and inviscid flows, so that the external velocity distribution depends strongly 
on the chord Reynolds number. 

b) - Negative_£ressure_gradients 

Detailed transition experiments in negative pressure gradients are not numerous. As the flow accelera- 
tion acts to.stabilize the laminar boundary layer (see paragraph 2.2.3), the lengths required for such 
studies would be too important in laboratory conditions, except if the free-stream turbulence level is 
high. In such cases, the external turbulence tends to counteract the favourable effect of the negative 
pressure gradient. This  interplay can be encoutered in many practical situations such as turbomachi- 
nery and was investigated, for instance, by Turner /6/ and by Blair and Werle HI'. 

2.2 Laminar instability 

This theory constitutes the first attempt to describe the initial stages leading to transition in a 
laminar boundary layer ; it postulates the existence of small, regular oscillations travelling in the 
laminar boundary layer,eventually growing and inducing turbulence. This idea was expressed many decades ago 
by Rayleigh (1887) and Prandtl (1921). Some years later, Tollmien and Schlichting worked out a complete 
theory of boundary layer instability, so that the waves are often named : "Tollmien-Schlichting waves". 
Theoelebrated experiments of Schubauer and Skramstad 12/   (1948) confirmed most of the numerical results, 
so that the stability theory is of first importance for studying transition problems. 
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2.2.1  Orr-Sommerfeld equation 

A complete account of the stability theory can be found in /8/. Some important results will be recal- 
led in this chapter. 

Let us consider two dimensional disturbances, the components of which are assumed to be of the form : 

f(y) 
exp i (ax - wt) (1) 

Pressure fluctuations are also introduced : 

p.„  „(y,  .K« " «O (2) 

f, <f> and IT are complex amplitude functions, a and (o can be either real or complex, so that, in the 
general case, ü', v' and p' are complex quantities. The physical disturbances u', v' and p' are the real 
parts of ü', v1 and p'. 

It is often assumed that the mean flow is parallel : v = 0 and u depends only on y. This means that the 
boundary layer   does not grow in the streamwise direction. The introduction of relations (1) and (2) into 
the continuity and momentum equations leads to the Orr-Sommerfeld equation, after linearization and elimina- 
tion of pressure : 

<|>IV - 2a2<f>" + a"* - iR    [ (ou - u)   (*" - a2<|>)  - a~ <M  = 0 (3) 

with boundary conditions : 

(f)(0) - <f)' (0) = 0  at all the wall 

(f)(y) and (()' (y) +0 when y + <» (4) 

All quantities were made dimensionless with a reference velocity V and a reference length L, usually 
linked with the boundary layer thickness (displacement thickness, momentum thickness, laminar length scale 
x//Rx, for instance). The Reynolds number R is equal to VL/v. The primes denote differentiations with 
respect to the y direction. 

The mathematical nature of the two principal parameters a and CO leads to two theories : the spatial 
theory and the temporal theory. 

. In the spatial theory, u is a real quantity, which represents the circular frequency of the wave, 
and a is complex : a = a + ia . Any fluctuation q' (q' represents u', v' or p') takes the form : 

~i   / s -a.x i(a x- cot) ,.. q' = q(y)e  i e  r    ' (5) 

The amplification factor at determines the degree of amplification (ai<0) or damping (ai>0), and 
a denotes the wave number of the perturbation. 

. In the temporal theory, a is real and to is complex : 

~,   , .  lüjt i(ax - (0 t) /,, q' = q(y) e x    e       r ' (6) 

It is possible to convert a temporal to a spatial amplification rate by using the relation derived by 
Gaster /9/ : 

1  3ü> /3a (7) r' 

where Vg = 3(1),-/3a is called the "group velocity". 

2.2.2 Stability diagram - Local and total amplification rates 

Due to the homogeneous boundary      conditions, the problem is an eigenvalue one : when the mean velo- 
city u(y) is specified, a non zero solution of (3) is obtained for particular combinations of R, a and U). 

The Orr-Sommerfeld equation was solved by many authors. Some results of such computations for the Blasius 
flow are represented on figure 6, where L = &i  and V = ue, so that to = 2rrf 6i/ue (f  is the physical fre- 
quency). The figure shows some curves of constant amplification rate a in the (U), RSi) plane ; curves of 
constant wave number a are not represented for clarity. In this diagram, curves of constant frequency 
F = 2irf v/ue

2 = io/R appear as straight lines through the origin. The locus a. = 0, called the neutral curve, 
separates the region of stable disturbances from that of unstable disturbances. In particular, there is a 
value of the Reynolds number below which all disturbances decay : it is the critical Reynolds number, 
R(5i  , which is slightly greater than 500. 

Figure 6 indicates that a single frequency wave travelling in the laminar boundary layer is at first 
damped, then amplified, and again damped as it leaves the unstable region. An important parameter is the 
total amplification rate defined as : 

f^-exp  ([-a. dx) (8) 
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A is the wave amplitude and the index 0 refers to the streamwise position where the wave enters the 
unstable region. Figure 7 shows total amplification curves corresponding to various frequencies, obtained 
for the Blasius profile. The dashed line represents the envelope of these curve, which will be called n : 

n = Max In -^H   at a given x or R($i        (9) 

It is obvious that n = 0 for R6i = R61 
cr 

2.2.3 Effect of pressure gradient 

The same type of calculation can be performed for the self similar velocity profiles of the Falkner- 
Skan family. Let us recall that theses profiles correspond to external velocity distributions of the form : 

t m ue = kx 

For each value of m, the mean velocity profile — p- /5x  and the following boundary layer parameters 
remain inchanged in the streamwise  direction :    e ^     ' 

2m 
ßh = —r     (Hartree parameter) 

m+1 

fi2 due A, = —  .   (Pohlhausen parameter) 
V dx 

H = 61/6      (shape factor) 

Cf R6   ,  R6i//Ix ... 
2 

The main result .of the stability calculations is that basic velocity profiles with an inflexion point 
(decelerating flows, kz<Q,  H>2.591) are more unstable than those developing in negative pressure gradients 
(accelerating flows, A2>0, H<2.591). This is illustrated on figure 8, where four similarity profiles are 
plotted. The dashed curve is the Blasius profile (ßjj = A2 = 0). The profile with ß, = 1 represents the 
two-dimensional stagnation point profile, and the other two curves correspond to positive pressure gra- 
dients ; for these profiles, the inflexion point is indicated by a cross ; the value ß. = - 0.1988 charac- 
terizes the separation profile. 

The destabilizing .effect of positive gradients can be seen on figure 8b, which shows the neutral curves 
associated with the preceding profiles. When the shape factor increases, the critical Reynolds number 
decreases, the amplification factors become larger and larger, and the range of unstable wave numbers in- 
creases rapidly. In addition, important theoretical results were obtained by Lord Rayleigh (1880) and 
Tollmien (1935) by considering equation (3) in the limit of infinite Reynolds number : 

d2u 
(au- to) (<(>" - a2i)>) - a-r-2- <j> = 0 

A study of this inviscid equation leads to the following conclusions : 

. mean velocity profiles without inflexion point (flat plate and accelerating flows) have a neutral 
curve which tends to be closed at large Reynolds number. This is the case for profiles corresponding to 
ß, = 0 and I in figure 8b, their behaviour is dominated by a viscous instability. 

. on the contrary, for mean velocity profiles having an inflexion point (decelerating flows), there is 
always a range of unstable frequencies as the Reynolds number goes to infinity. This is clearly visible 
on figure 8b for ßh = - 0.10 : for large values of R6i, the upper branch of the neutral curve tends towards 
an asymptote (for the separation profile, this asymptote is out of the range of wave numbers represented on 
the figure). It is so-called inflexional instability, which plays a dominant role in three-dimensional 
flows. 

For several values of H, the envelope curves defined by (9) are plotted on figure 9. The pressure gra- 
dient effects can be clearly pointed out : as the shape factor increases, the critical Reynolds number de- 
creases and the slope dn/dRSi increases. This leads to the intuitive conclusion that transition will 
occur at lower Reynolds numbers in positive pressure gradients than in negative ones : this result is con- 
sistent with the experimental trends (paragraph 2.1.2). 

Up to now, we considered only two-dimensional waves (i.e.waves, the crest of which travel normally to 
the main f low) . A more general expression can describe the oblique three-dimensional waves : 

(u\ v\ w', p1) = (f(y), <Ky), h(y), ir(y)) exp [i (ax + ßz - rat)| (10) 

In fact, it can be demonstrated that, using the temporal theory, instability appears first for a 
two-dimensional disturbance : it is the celebrated Squire's theorem. For this reason, oblique waves are 
usually neglected in two-dimensional problems. However, when the mean flow is three-dimensional, the 
oblique waves must be taken Into account. 
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2.2.4 Stability and transition 

Since the experiments of Schubauer-Skramstad,much work has been done in order to check the stability 
theory results, either in natural or in artificial'conditions .The experiments have revealed that the Tollmien- 
Schlichting waves constitute effectively the first stage in the transition process, for low free-stream 
turbulence levels. In a general manner, the measured frequencies, amplification rates, amplitude profiles 
were found in good agreement with numerical results. When transition is approached, non linear mechanisms 
take place, and the linearized equations are no longer valid ; however, the non linear phase occurs over 
a relatively short distance, so that the linear stability controls most of the transition process. 

The problem is that the theory is unable to predict the transition onset, and the link between stabi- 
lity and transition can only be done through experimental results. In this respect, Smith and Gamberoni 
/10/ and Van Ingen /ll/ developed independently the well known "e^method". In the general case where 
the flow is not of a constant gjj-type;these authors calculated at first the laminar boundary layer develop- 
ment ; the second step was to use the stability charts established by Pretsch for self-similar velocity 
profiles ; the envelope curve was obtained by computing the growth of waves of different frequencies. 
Smith and Gamberoni compared stability calculations with measured transition points, and transition was 
found to occur when n =; 9. This means that transition occurs when the most unstable frequency is ampli- 
fied by a factor e . The same result was obtained by Van Ingen, but »ith the exponential factor equal to 
7 or 8. 

9 
The succes of the e method is certainly due to the fact that the experimental data were obtained in 

wind tunnels where the free-stream turbulence level was similar and rather low, let say Tu a 0,1 10 
For higher values of Tu, the transition Reynolds number decreases rapidly, and the e' method no longer 
applies. Mack /12/suggests an empirical relation between Tu and the value of n at the transition location : 

Oj = - 8.43 - 2.4 In Tu (11) 

This relation has been established to fit the experimental results collected by Dryden for the flat 
plate case /13/. Its application to adverse pressure gradients has given fairly good results /14/. However, 
two remarks are to be made : 

. For Tu < I0~3, sound disturbances may become the factor controlling transition rather than turbu- 
lence, and application of (11) may. give poor results. 

. For high values of Tu (Tu > 2 or 3 10-2), transition often occurs without appearance of Tollmien- 
Schlichting waves, at Reynolds numbers lower than the critical Reynolds number. The linear processes are 
completely "bypassed" and the en method has no significance. 

2.3 Transition criteria 

The word criterion can be interpreted as a more or less empirical correlation between boundary layer 
parameters at the transition onset. Transition criteria are often used for practical applications, because 
they are easily introduced in engineering prediction methods such as integral methods. Although the fun- 
damental mechanisms of the transition process do not appear as clearly as in the stability calculations, 
they provide a fairly acceptable compromise between accuracy and simplicity. 

For two-dimensional flows over airfoils, Michel /15/, 1951, correlated the values of two Reynolds 
numbers at transition, R6 and Rx. 

Granville /16/, 1953, developed a correlation which takes into account two important parameters, 
namely the stability properties and the flow history : 

. the stability of the boundary layer is characterized by the difference in momentum thickness 
Reynolds number from the neutral stability point to the transition location. 

. as the amplification of disturbances depends on the cumulative effect of pressure gradient, an 
averaged Pohlhausen parameter is introduced : 

,  V 
*I  xer    xcr 'X 

These criteria were established by using experimental data obtained in low turbulence wind tunnels or 
in flight tests ; they take into account the pressure gradient effects, for low values of Tu. More recently, 
the influence of free-stream turbulence was introduced in practical criteria, see review in /l/. 

For example, Arnal, Habiballah and Delcourt /17/, 1979, extended Granville's correlation on theoretical 
basis. For this, the envelope curves computed for the Falkner-Skan profiles (figure 9) were used, as well 
as Mack's relation (11). At first, the criterion was established for similarity flows (A2 = constant) ; 
for applications in more general conditions, A2 is replaced by the averaged Pohlhausen parameters A2. 
Curves corresponding to various values of Tu are plotted on figure 10. It can be observed that the proposed 
criterion coincides practically with the Granville's one for Tu = 0.05 10-2 to 0.1 10~2. An analytical 
expression is : 

R6T - R6cr = - 206 exp (25.7 AzT) In (16.8 Tu) - 2.77 A2J   (13) 

In order to apply relation (13), it is necessary to calculate R8  . 
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For self-similar velocity profiles, the critical Reynolds number depends on a single similarity para- 
meter, for example : 

R6 R6  (H) 
cr 

(14) 

An analytical representation of (14) can be found in Cousteix /18/. 

For any non similar flow, R9  is computed as follows. The streamwise evolution of the thickness- 
momentum Reynolds number R8 is plotted for the considered 
case and is compared, at each abscissa, with the fictitious 
critical Reynolds number R8 . associated with the local boundary layer 
profile ; a simple solution is to use relation (14) in which the sub- 
script cr is replaced by erf. If R6 < R6 ,', the flow is locally stable. 
If R8 > R6 f, the flow is locally unstaSIe. The true critical abscissa is 
located atcfhe point where R6 = R9  . 

2.4 Intermittency methods 

Let us assume that the transition onset is known. A second objective is to compute the transition 
region itself, the extent of which may be as important as the laminar region which precedes it. An important 
parameter characterizing the transitional boundary layer is the intermittency factor. Y, which represents 
the fraction of the total time that the flow is turbulent. Most of the numerical models are based on the 
so-called "intermittency method", in which laminar and turbulent quantities are weighted by Y. 

The streamwise evolution of the intermittency factor was studied by various authors /19/ /20/ /21/. 
The experiments performed at ONERA/CERT with zero and positive pressure gradients have shown that the 
momentum thickness 8„ at the end of the transition region was about twice the momentum thickness 8^ at 
the transition onset. Therefore, relations of the form : 

t) 
can be adopted. 

a) ~ l2££gral_method 

In the code developed at ONERA/CERT, the boundary layer development is computed by using the integra- 
ted momentum equation and an auxiliary equation, such as the entrainment equation. At a given point in the 
transition region, the laminar relationships give fictitious  laminar parameters, such as the shape fac- 
tor Hi and the skin friction coefficient Cfx- In the the same way, Ht and Cft are deduced from turbulent 
relationships. The corresponding parameters in the transition region are expressed as : 

H = YHt + (1 - Y) HX (15) 

Cf = YCft + (1 " Y) Cf-L 

with Y = 1 " exp (4.5 (f - 1))   (16) 
DT 

b) - Local equations 

Intermittency methods have been applied to local equations by many authors. In the most simple models, 
the turbulent shear stress is expressed as : 

-r-r      3u 
-^ = Yvt¥ (17) 

where Vt is computed by using a classical turbulence model. Cebeci /22/ employed a mixing length scheme, the 
intermittency factor being expressed by a relation proposed by Chen and Thyson /21/. A mixing length scheme 
was also used by Arnal et al /23/ , who kept the assumption that y  depends on 8/8_ ; however, it was 
found necessary to introduce an analytical expression somewhat different from (16) in order to obtain a good 
agreement with experiments, see Coustols 1591. 

2.5 Example of application 

Figure 11 presents an example of application of the techniques described in paragraph 2.3 and 2.4. In 
the considered case, transition occurs in a positive pressure gradient (case D of the experimental results 
reported in figure 4), with a relatively low free-stream turbulence level. The transition onset is deter- 
mined by relation (13), and the evolution from the laminar to the turbulent state is computed by the inter- 
mittency method. Both calculations are in good agreement with experiments. Other applications can be found 
in III    and /14/. 

3 - EXPERIMENTAL EVIDENCE OF THREE- DIMENSIONAL TRANSITION PROBLEMS 

During flight tests on swept wing aircraft conducted at the RAE between 1951 and 1952, Gray (see Poll 
/24/) found that under certain conditions, transition moved towar.ds the leading edge in a way which could 
not be explained through a two-dimensional analysis. This sudden movement occured beyond a certain speed, 
which appeared to be a function of the leading edge radius and the leading edge sweep. In addition, subli- 
mation patterns indicated the existence of streaks almost aligned with the external streamlines and 
regularly spaced in fhespanwise direction. 

Once recognized, the destabilizing effect of sweep back received rapid attention. By May 1952, two 
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wind tunnel experiments (Anscombe and Illingworth, Gregory and Walker, see Gregory et al 1251)  were perfor- 
med ; they confirmed Gray's findings. Allen and Burrows (1956, /26/) and Burrows (1956, /27/) conducted 
measurements in flight on the boundary layer formed on untapered swept wings. Some years later, Boltz, 
Kenyon and Allen (1960, /28/)carried out extensive investigations into thedependance of transition position 
upon Reynolds number, sweep angle and angle of attack in the Ames 12' Pressure Tunnel. Measurements have 
been done in France by Schmitt and Manie  /29/ and Arnal, Coustols and Juillen /23/, /30/ on an ONERA D 
profile. Poll /24/, /31/ performed careful experiments on a swept cylinder and gave detailed information 
about the flow developing close to the attachment line. Recently, a somewhat different approach was adopted 
by Saric and Yeates /32/ and by Bippes and Nitschke (DFVLR Göttingen, work en progress) : a swept-wing 
flow is created on a flat plate, the leading edge of which is swept ; an appropriate wall bump is used to 
obtain a specified pressure distribution. This method allows to avoid body curvature problems. 

In all cases, transition was found to take place in regions of strong negative pressure gradients, 
for sufficiently large values of the Reynolds number. Such a situation is inconceivable in two-dimensional 
flow, where the accelerated regions stabilize the laminar boundary layer (paragraph 2.2.3) ; the three- 
dimensional nature of the flow must be put forward in order to explain this motion. In addition, wall 
visualizations techniques (sublimation, china-clay evaporation, oil-flow...) clearly indicate the presence 
of streaks upstream transition onset. Figure 12 shows an example of sublimation result, obtained on an 
ONERA D airfoil /23/ for f = 40°, a = - 8°, Q» = 81m/s Of, a and Q» are the angle of sweep, the angle of 
attack and the wind tunnel speed, respectively). Blackregions, characterized by high values of the skin 
friction coefficient, are visible near the leading edge (laminar boundary layer at low Reynolds number) 
and beyond 25 or 30 % of chord (transitional and turbulent boundary layer). Between these regions, stream- 
wise striations can be observed ; due to their presence, the transition front exhibits a "sawtooth" 
pattern in the spanwise direction. 

The flow on a flat disk rotating in still fluid with a fixed angular velocity represents another example 
of three-dimensional flow. It is particularly convenient for stability analysis, because the steady laminar 
flow is described by an exact solution of the Navier-Stokes equations. Experimental observations were repor- 
ted by Gregory et al /25/, Kobayashi et al /33/ and others. As in the wing experiments, stationary distur- 
bances were found to exist in the laminar flow : they appear in the form of spirals,the axes of which are 
fixed relative to the surface of the disk. A china-clay photograph obtained by Gregory et al /25/ is pre- 
sented in figure 13 : it shows laminar flow near the centre, and about 30 spiral vortices which cause tran- 
sition to turbulent flow near the rim. 

The mechanism of boundary layer transition on other spinning axisymmetric bodies was studied by many 
authors. Spiral vortices were observed by Kobayaski and Kohama /34/ on a rotating cone, and by Kohama 
and Kobayashi /35/ on a spinning sphere. Smoke visualizations were performed by Kegelman et al /36/ on 
an axisymmetric model consisting of an ogive nose, a cylindrical midsection and a conical boattail. 

In addition to the swept wings and rotating bodies problems, there have been several investigations 
into more complex geometries. Eichelbrenner and Michel /37/ made transition measurements on an ellipsoid 
with a slenderness ratio of 6 : 1 at various incidences. 

At zero incidence, the transition location was consistent with two-dimensional  results ; however, 
as the incidence was increased, the orientation of the transition front was modified by three-dimensional 
effects. More recently, experiments on a prolate spheroid at incidence were performed by Meier et al /38/ ; 
typical results will be presented later on. 

In parallel with the experimental work, theoretical studies were devoted to the understanding of the 
physical phenomena. The investigations conducted by Stuart /25/ and others showed that the linear stabi- 
lity theory was able to explain some of the experimental features. For this reason, is seems useful to 
give the main elements of the stability theory in three-dimensional flows. 

4 - LINEAR STABILITY THEORY IN THREE-DIMENSIONAL FLOWS 

4.1 Stability equations 

Let us define a set of orthogonal curvilinear coordinates X, Z, y. The X and Z coordinates lie in the 
plane of the surface, y being normal to it. Elements of length in this system are hi dX, hi  dZ, dy. The 
mean velocity components in the X and Z directions are U and W ; by using the parallel flow assumption, 
the mean velocity v normal to the surface is set equal to zero, and U and W depend on y only. The velocity 
and pressure fluctuations are denoted by u', w', v', p'. 

The continuity and linearized disturbance equations are : 

1  3u'  1  3w'  3v'   ,      ,   _,_ , ,       .  „        ,.„, 
hT 3*  h2 3Z   3y   U 21     IZ    (mi3  m23) = (m 

£'  +    I TX   + IM  + V§ - 2 Ww'm21 + mI2(Wu'  + Uw')  + m13 Uv'  = - I&  • Dx (.9) 

£' +lw+ IM + v'§ + -i(uw'+ wu'> -2»»uu"+ »» v'w - k $'+ D (20) 

3v'     U 3v'      W 3v'       , ,..      , ,„ 3p'  ^ _ ,,,. 
3t+ hi"5x + h2iz -2mi3 u u -2m23 W

 
W
 = - -jy- + °y (21> 
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All the variables have been non-dimensionalized with a reference velocity V and a reference length L, 
so that the diffusion terms Dx, Dz and Dy are proportional to 1, where the Reynolds number R is equal to 

R 
VL The pressure is made dimensionless by pV 

The "in plane" curvature coefficients are given by 

L   3hi _ L  3h2 mi2 " hVhT IT      ' m21 "hThT W 

The surface curvature coefficients are given by 

m13 
L_ 
hi 

8h] 
3y 

_L_ dhz 
h2 3y 

(22) 

(23) 

The velocity and pressure fluctuations are assumed to be of the form 

(u', w\ v', p') = Re (f, h, <J>, ir) exp |i(aX + ßz - cut) )] (24) 

f, h, 9 and TT are complex amplitude functions. As in two-dimensional flow, a, ß and (0 can be either 
real or complex : 

. In the spatial theory, 0) is real, O and ß are complex. It is possible to define a wavenumber vector 
k = (a , ß ) and a amplification vector A = (-cd, -ßi). 

. In the temporal theory, a and ß are real, w is complex. ü>f_ represents the temporal amplification 
rate, whilst a and ß are the components of the wavenumber vector k. 

Introducing (24) in (18) - (21) leads to the following set of equations : 

i do ft ßo h + 9'  + m2i f + mi2 h + 9(m13 + m23) = 0 (25) 

i aoU + ßoW - (0 

i aoU + ßoW - 

i aoU + ßoW - 

with ao = 7-- and 
hi 

f + iH 9 - 2m2i Wh + mi2 (Wf + Uh) + n13  Ud> = -iaoir + | f" - (a2o +ß2o)f 

+ m23 W9 

[9" - (a2o 

h + ji 9 - 2mi2 Uf + m2l (Uh + Wf) + m23 W9 = -ißoTT + £ |h" - (o
2o +ß2o)h 

- 2mi3 Uf - 2m2 + ß2o)9| 

(26) 

(27) 

(28) 

h2 (29) 

It can be observed that the curvature effects have been neglected in the diffusion terms. This set of 
equations was used by Malik and Poll /39/. The equations governing the stability of waves whose wavenumber 
is tangent to X (ß = 0) have been derived by Stuart /25/. 

4.2 Reduction to a two-dimensional problem 

In most of the stability analysis in three-dimensional flows, the curvature terms are neglected. This means 
that mi2, 0121, mis, and m23 are set equal to zero, hi and h2 being equal to 1. In these conditions, it 
is possible to eliminate f, h and it  in (25) - (28) and to obtain an equation for the amplitude function 9 : 

42TT      ,12!.' ..IV 2 (a2 + ß2)9 " + (a2 + ß2)! iR (aU + ßW - 10) (((> " - (er + ßz)9) - 
dy 

jcTW 
dy' •)* 

(30) 

This equation can be considered as an extension of the Orr-Sommerfeld equation. 

Studying (30) in the framework of the temporal theory, Stuart /25/ has shown that the problem of three- 
dimensional stability reduces to a two-dimensional problem. To establish this important result, it is'suf- 
ficient to introduce the following quantities : 

ct2i|) = a2 + ß2    and tgifi = ß/a (31) 

where •I' represents the angle formed by the direction of the wavenumber vector k and the X-direction. 

Equation (30) then becomes : 

- 2a2tjj9"    + cT# = iR   | (ai|)B( - u) (9" - a>9)   - af^-r^ | (32) 

Ut|i = Ucosijj + Wsinif) represents the projection of the velocity in the ^-direction. We have, therefore, 
a two-dimensional equation (Orr-Sommerfeld equation) inthe direction of the wave number vector. 

In spatial theory, the complex nature of a and ß makes such a manipulation impossible, except if the 
amplification and the wave number vectors have the same direction. 

5 - CROSS-FLOW INSTABILITY 

Stuart's result has a very important implication : relation (32) shows that, for studying the stability 
of a temporal wave in a three-dimensional flow, we have to solve a two-dimensional stability problem in 
each wave direction ljj. At each \p,  one can obtain a stability diagram relative to the mean velocity profile 
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projected in this direction. The implications of this property will be discussed below for the infinite 
swept wing and rotating disk flows. 

5.1 Infinite swept wing 

Let us consider at first the flow near the leading edge of a swept body with constant cross-section 
and "infinite" span, see figure 14. f is the sweep angle. The freestream velocity Q„ gives a component 
normal to the leading edge U„ and component parallel to the leading edge K». Two coordinate systems are 
defined : one, (X, Z, y) is linked to the wing, and the other (x, z, y) is linked to the external stream- 
line. U and W designate the projections of the mean velocity along X and Z. 

The infinite span assumption is expressed by an invariance of pressure and velocities according to the 
Z direction, so that the boundary layer equations take the simple form : 

j3u av 
3X  3y (33) 

., 3U . ,, 3V  .. dUe ^ ^U ,,,. 
3X    3y     dX 

3X    3y    3p 
u3W + V3H= v|!w (35) 

It can be observed that the first two equations are decoupled from the third and are the same as in 
two-dimensional flows. At the boundary layer edge, U and W attain values Ue and We : Ue depends on the 
chordwise position, but We is constant and equal to Wra (equation (35)). 

The projections of the mean velocity along x and z are denoted by u and w,which are called respecti- 
vely the streamwise profile and the cross-flow profile. If 6o is the angle between the external stream- 
line (x axis) and the direction normal to the leading edge (X axis), u and w can be expressed as : 

u = Ucoseo + Wsin6o (36) 

w = -UsinOo + Wcos 9o 

with 6o = tan"1 ^=. (37) 
Ue 

5.1.1 Leading edge region 

Close to the leading edge, Ue and We are given by : 

Ue = kX  , We = W„ (38) 

2 For X=0 , Ue = 0 , 8o = ^ (the x axis coincides with the Z axis), U(y) = 0, so that, according 
to equations (36) : 

u = W and w = 0 (39) 

The line X = 0 is a particular streamline, along which there is no cross-flow, figure 34. It is called 
the attachment line and will be considered further, paragraph 8. 

For X> 0, typical u and w profiles are sketched on figure 15. In the external flow, u is equal to the 
total velocity u = (u| + We )^z   , whereas w tends to zero. The laminar similarity solutions indicate 
that the maximum value |w  I of the cross-flow profile is proportional to X. 1 max1 " r    v 

The stability problem will be studied in the (x, z, y) axis system. In this case, the angle i>  defined 
in (31) represents the angle between the external streamline and any given wave number vector direction. 
As it is usual, we define e as : _^ 

z 
E = I - Y (40) 

We have now to characterize the stability 
(or instability) of the velocity profiles 
projected in all directions from e = 0 
(cross-flow profile) to e = 180°. These profiles will be denoted by U and are of course combinations of 
the cross-flow and streamwise profiles : 

+ wcos e (41) 

Figure 16 shows typical projected profiles for values of e ranging from e = 0 (cross-flow profile) 
to e = 90° (streamwise profile). Crosses indicate the location of the inflexion points ; the streamwise 
profile looks like a classical two-dimensional boundary layer profile in negative pressure gradient and 
for this reason its first derivative is monotonic ; on the other hand, the cross-flow profile exhibits 
necessarily an inflexion point,and there is a range of low values of e for which an inflexion point is 
also present. In particular, one can find a value of e, denoted as ex, for which the inflexion point is 
located at the height where the mean velocity is equal to zero : this profile is called the critical pro- 
file. 

Figure 17 presents schematic stability diagrams for e » 0, Ej and 90°. The Reynolds number R is 
defined with the same reference variables for the three diagrams, for example _  |Uex)

I/2. R "r51 
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The streamwise profile is very stable : the critical Reynolds number is high and,  as R tends to infinity, 
there is no unstable frequencies (viscous instability). On the contrary, due to the presence of inflexion 
points, the other two profiles are highly unstable : the critical Reynolds number is low, the amplification 
factors are large and there-is always a wide range of unstable waves at infinite Reynolds number (inflexio- 
nal instability, see paragraph 2.2.3). The critical profile is even more unstable than the cross-flow one 
and can amplify zero frequency waves, which correspond to stationary waves ; this last property is also 
true for a narrow range of e around Bj, say £•}; 2 to 6 degrees. For the other values of e, the stationary 
waves are damped• 

The theoretical results can explain some of the experimental features described in paragraph 3. If the 
chord Reynolds number of a swept wing is large enough, cross-flow, or, more exactly, quasi-cross-flow 
instability is able to induce transition near the leading edge, in a region of strong negative pressure 
gradient. On the other hand, we expect that the streaks revealed by wall visualizations are the signature 
of zero-frequency waves amplified by the profiles in the neighbourhood of the critical profile. These 
points will be developed further in some length. 

5.1.2 Downstream development 

Consider now the downstream development of a laminar boundary layer on a typical airfoil where the 
external velocity reaches a maximum. As the equation of the external streamline is given by : 

C = €    • ^ 
this external streamline will change its curvature at the abscissa xM where Ue is maximum (figure 18). From 
the attachment line to xy the cross flow is directed towards the concave part of the external streamline ; 
however, as x^j is approached, the pressure gradient intensity decreases, leading to a decrease in the cross- 
flow amplitude. The longitudinal pressure gradient then changes sign, and , somewhat downstream, the velocity 
w close to the wall reverses (S-shaped profiles). If the positive pressure gradient is sufficiently intense, 
the cross-flow profile can be completely reversed. In the same region, an inflexion point appears on the 
streamwise profile and, in most of the cases, this inflexional, streamwise instability leads to transition 
before the cross-flow instability begins to be significant again. 

5.1.3 Falkner-Skan-Cooke profiles 

This qualitive description explains the passage from the streamwise to the cross-flow instability. In 
order to study in a systematic manner the effects of three dimensionality on boundary layer stability, it 
is possible to use the so-called "Falkner-Skan-Cooke" similarity profiles. The inviscid velocities normal 
and parallel to the leading edge are given by : 

Ue = kX
m   , We = Woo  , where k, m and W» are constants. (43) 

By using the similarity variables : 

fm+1  Ue|1/2y 0   - , s       W   - , , (44) 

the boundary layer equations reduce to the ordinary differential equations : 

F" ' + F F"+ Bh (1 - F' 2) = 0 (45) 

G" + F G1 =0 (46) 

where f?n = ——r- . The leading edge flow corresponds to gj, - 1, m = 1. 

-1 fWe 
The angle between the external streamline and the normal to the leading edge is 9o = tan  TJ— 

that the streamwise and cross-flow profiles, made dimensionless with ue, are expressed by :    *• 

— = F' cos26o + G sin20o 
ue 

— = (G - F') cos 0o sin 
U<3 

(47) 

It is now possible to construct streamwise and cross-flow profiles depending on two parameters : 
a pressure gradient parameter g^i which is the same as in two-dimensional similarity solutions, and a 
"cross-flow" parameter 9o. Let us observe that the cross-flow velocity is maximum for 00 = 45°. 

Figure 19 shows examples of cross-flow velocity profiles for 0o =_ 45"_and some values of gjj 
(Mack, /8/). It is clear from equations (45) - (46), that for g^ = 0, F' = G, so that u_ is the Blasius 

ue 

profile and w -  0. For gh <0, the whole cross-flow profile changes sign. This means that the Falkner-Skan- 
Cooke solutions cannot represent S-shaped profiles. 

The stability of the Falkner-Skan-Cooke profiles was studied by Mack /8/ and Bieler /40/. An interes- 
ting result is given in figure 20 : it presents the critical Reynolds number of the zero-frequency distur- 
bances as a function of g^, for 0o = 45° ; the critical Reynolds number of the two-dimensional Fälkner-Skan 
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profiles is also shown (80 = 0°). The Reynolds number is defined as : 

For sufficiently strong negative pressure gradients (g^> 0.07), the steady quasi cross-flow disturbances 
become unstable at Reynolds numbers well below the critical Reynolds number of the two-dimensional profiles. 
In adverse pressure gradients, the contrary is true. 

Figure 21 shows the portion of the i|/- F plane for which there is instability, for two cases (from 
Mack, /8/) : 

Figure ßh eo R H (w/ue)max 

20 a 

20 b 

1 

- 0.10 

45° 

45° 

400 

555 

2.301 

2.698 

- 0.1191 

0.0349 

Let us recall thatifiis the angle between the external streamline and the wavenumber vector, and F 
is a dimensionless frequency (F = 2irf v/u 2\,The dotted lines represent the loci of the maximum amplifi- 
cation rates, the maximum maximorum being denoted by the letter M. 

In the strong negative pressure gradient (figure 21a, (?h = 1), the instability is cross-flow dominated. 
The stationary waves are unstable in directions close to the cross-flow direction, but they are not the 
most unstable ones. 

In a positive pressure gradient (figure 21b, ßh = -0.1), unstable stationary waves are still observed, 
and a wide range of unstable travelling waves extend around the streamwise direction. This is a typical 
example of boundary layer with both cross-flow and streamwise instabilities. 

5.2 Rotating disk 

The exact solution of the Navier-Stokes equations for a rotating disk was first given by von Karman 
(1921) and later improved by Cochran (1934). Let us consider a flat disk which rotates about an axis per- 
pendicular to its plane, with a constant angular velocity (u, in a fluid at rest. The situation is depicted 
in figure 22 taken from Schlichting /41/. It is natural to use a coordinate system (r, 9, y), where r is 
the radius, 9 the azimuth angle and y is normal to the disk. If the corresponding velocity components are 
denoted as ur, ufl, uy, von Karman's solution is obtained by setting : 

"r = r0)F(5) ufl - ru)G(0 u =A») H(C) (49) 

where C= y/3Lis a dimensionless distance from the wall. The functions F, G, H are tabulated in Ml/. The 
velocity field is sketched in figure 22. It is clear that the centrifugal forces give rise to a radial 
velocity which is directed outwards. Equations (49) show that, at a given height above the wall, the axial 
velocity u is constant, whereas the radial and circumferential velocities are proportional to r. 

In the coordinate system rotating with the disk, the azimuthal and radial velocity profiles, made 
dimensionless with rlo, are given by : 

1 and (50) 

These profiles are plotted in figure 23. They look like the streamwise and cross-flow profiles encountered 
near the leading edge of a swept wing. The streamwise (azimuthal) profile has no inflexion point, so that it 
cannot explain the breakdown into turbulence which occurs some distance from the disk axis ; this break- 
down is caused by the highly unstable nature of the profiles close to the cross-flow (radial) direction. 

Stuart /25/ analyzed the linear, inviscid stability of rotating disk flow. He noted that the critical 
profile (u" = 0 at C where u = 0) was located at an angle £ = 13.2° from the radial direction, £ being 
measured in the positive 9 direction. This corresponds approximately to the direction perpendicular to 
the stationary vortices observed in the experiments of Gregory and Walker 1251,   see figure 13. Brown /42/ 
extended Stuart's work to the viscous case. He demonstrated that, for £ = 11.5°, stationary disturbances 
are unstable, and that these disturbances consist of a system of vortices all rotating in the same sense. 
The theoretical number of vortices was in fairly good agreement with experiments. However, Brown found a 
critical Reynolds number much less than the observed value. In fact, as he used the Orr-Sommerfeld equation, 
Coriolis force and streamline curvature were neglected. As it will be shown later, these parameters are of 
first importance in the rotating disk problem. 

6 - STATIONARY AND TRAVELLING WAVES ON A SWEPT BODY 

6.1 Stationary waves 

Both experiments and calculations have shown that zero frequency, stationary waves can be highly amplified 
in three-dimensional flows. We describe below some additional experimental results obtained on swept bodies 
and compare them with stability computations. 

Stationary waves have been studied at ONERA/CERT on an ONERA D profile /23/ /30/. The angle of sweep 
f and the normal angle of attack are equal to 40° and -8° respectively. The distribution of the external 
velocity normal to the leading edge is plotted in figure 24 ; it can be seen that the flow is accelerated over 
the entire profile. 

For Qa,  = 81 m/s, figure 25 shows the variation of the mean streamwise velocity measured in the Z direc- 
tion parallel to the leading edge, at a fixed altitude y • 0.09 mm, for various abscissas. The test 
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conditions are the same as in figure 12. In laminar flow, the mean velocity exhibits a quite regular wavy 
evolution in the spanwise direction j the spanwise wavelength corresponds to the spacing of the streaks 
revealed by the wall visualization shown in figure 12. In the transition region, the evolution becomes 
completely chaotic. However, when the turbulent regime is entered, the velocity variations are damped. It 
appears essentially that the laminar boundary layer is not uniform in the direction parallel to the lea- 
ding edge. This leads to a wavy evolution of the skin friction coefficient, which produces alternate light 
and dark bands (streaks) when sublimation techniques are applied. 

In order to make more accurate measurements, the wind tunnel speed Q«, was reduced to 48 m/s ; the 
wavelength of the streaks then increases, as well as the laminar boundary layer thickness, and transition 
moves back to XT/c = 0.85 (instead of XT/C » 0.30 with Q,» = 81 m/s) Detailed results can be found in 
/23/, /30/. Figure 26 shows the streamwise evolution of the wavelength A measured in the direction 
parallel to the leading edge. A increases with x, but the ratio A /S  remains practically constant and close 
to 4. In fact, the increase in A results from a decrease in the number of streaks : sublimations indicate 
that certain streaks broaden and coalesce, while other vanish. Stability computations can explain this 
behaviour : the temporal amplification factor W;     of the stationary waves is plotted in figure 27 as a 
function of e, at the station X/c = 0.69. The curve is parametrized by the wavelength A . It is clear 
that the stationary waves are unstable through a narrow range of e (1.4°<e< 3°, approximately) but that 
the range of their wavelengths is quite large. Similar computations were carried out at other streamwise 

locations, and the total amplification rate was computed for some selected wavelengths :the values of the 
locally most amplified wavelengths agrees well with experimental data (figure 26). 

Poll /24/, /31/ measured the characteristics of the streaks appearing on a swept cylinder. He found 
that their direction was close, but not perfectly aligned, with the critical profile direction. Stability 
calculations performed by Malik and Poll /39/ are in reasonable agreement, with experiments : for the wave- 
length of the stationary disturbances, the discrepancy is less than 10 %,  and for the wavenumber orientation, 
the difference is of order 2°. A similar agreement was obtained by Bieler /40/ who compared his numerical 
results with the experimental data of Bippes and Nitschke /43/. 

Saric and Yeates/32/ made measurements on a flat plate havinga swept leading edge ; the streamwise 
pressure gradient was induced by an appropriate wall bump . With *P » 25° and Q«, = 10 to 14 m/s, wall visua- 
lizations show that the spacing of the streaks is approximately 1 cm ; linear stability theory indicates 
that the most unstable stationary wave has a wavelength of about 1 cm. However, hot-wire measurements 
indicate a dominating 0.5 cm structure away from the wall ; linear theory cannot explain this observation 
and it is necessary to use secondary instablility theory for explaining this superharmonic pattern /44/. 

6.2 Travelling waves 

Stationary waves constitute the most clearly visible manifestation 0f quasi cross-flow instability, out lineal 
theory predicts that travelling waves can also be highly amplified. This is illustrated on figure 28, which 
presents numerical results obtained for the experimental conditions of figure 26. The temporal amplifi- 
cation rate is plotted as function of E for various frequencies : there is a large range of unstable fre- 
quencies, the most unstable of which corresponds to f = 400 Hz (and not to f =0 Hz). Are all these fre- 
quencies present in the experiments ? 

Profiles of the r m s velocity fluctuations measured at X/c = 0.40 and 0.60 are represented on figure 
29 in the (y, Z) plane. As it can be expected, their spanwise evolution is not uniform. During a wavelength 
two maxima are observed near the wall ; they are located in the regions where |3u/9Z[ is large. At X/c = 0.60, 
the fluctuation amplitude reaches 20 % of the potential velocity, a value which is about twice that 
which is measured is a classical turbulent boundary layer ! So large values have already been reported by 
Poll /31/ in his experiments on a swept cylinder. Typical hot wire signals are also shown in figure 30. 
At X/c = 0.40, the signal is quite regular, with a dominant frequency of about 70 Hz while the other theore- 
tically unstable waves are not detected. It is not easy to explain the origin of this preferred frequency 
(secondary, resonant instability ?). At X/c = 0.60, the fluctuations are less regular, and small amplitude, 
high frequency oscillations are superimposed on the large amplitude, low frequency oscillations. Poll /31/ 
found the same kind of hot wire signals, butatvery different dimensionless frequency   (influence of the 
local pressure gradients ?). 

If it is assumed that large amplitude travelling waves appear only as a secondary instability of the 
primary, stationary waves, then one would like to know why the other linearly unstable mode are not excited. 
As pointed out by Malik (private communication), a possible reason may be that disturbance sources (such as 
wall roughness) favor the stationary mode. 

7 - APPLICATION OF THE en METHOD IN THREE-DIMENSIONAL FLOWS 

In two-dimensional flows, the use of linear stability theory associated with an sn  breakdown criterion, 
gives fairly good results ; the n factor can be related to the free-stream disturbances environment and 
takes a value of about 9-10 when the external turbulence level is low. Whatever theory one considers for 
solving the eigenvalue problem, four parameters are involved ; either (R,ior, wj_, a) in the temporal theory 
or (R, u), Br, ai) in the spatial theory. 

7.1 Calculation of the n factor 

The extension of the ea  method to three-dimensional flows is not straightforward : we now have either 
five real parameters in temporal theory(R, o)r, ioi, a. ß) 

or six in spatial theory (R, u, ar, aj., Sr> 8i)- 
Only two of them must be determined as eigenvalues, while the others are given. 

The increase in the number of parameters explains "hy three-dimensional problems are generally treated 
with respect to the temporal theory. The total amplification rate In A for a given frequency ur is computed 

Ao 
by using a generalized Gaster's transformation : 
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Ao 
•>so |Re(Vg)| 

1»T. -   I • •  "1 .  ds (51) 

where Vg = (3(i)/3a, 3CD/3S, 0) is the group velocity vector and s is the arclength along the group velocity 
direction, which is most of the time close to the external streamline direction. The n factor is then 
defined as in two-dimensional flow^relation (9). 

In fact, when R and tor are fixed, the value of ooi is not unique, because (0i - ü>i 0JO, where \jj is the 
wave number direction. The so called envelope method seeks the direction <p  for which (0^ is maximum ; this 
maximum value is then integrated according to relation (51). This technique is the most widely used in 
three-dimensional stability computations. In order to reduce computer time requirements, Srokowski and 
Orszag /45/ simplify the problem by studying only the stationary waves. 

Another solution is to use the fixed wavelength and frequency method : for given frequency and wave- 
length X , the value of u^ is integrated along the abscissa. The envelope curve is then obtained once 
considered several wavelengths and frequencies. Srokowski-Qrszag /45/ and Dagenhart /46/ employed this 
technique for the zero-frequency waves, as well as Hefner-Bushnell /47/ for non zero-frequency waves. 

In spatial theory, the problem is even more complicated, because of the; appearance of an additional 
parameter : the amplification rate is not a scalar anymore, but a vector A • (- cei, -8i, 0). A simple 
solution is to assume 6^ = 0, Mack /48/. Alternatively, it is possible to use wave packet theory to remove 
the arbitrariness in the definition of the total amplification rate ; Nayfeh /49/ has derived the propa- 
pagation condition that da must be real. This approach was used by Cebeci and Stewartson /50/ for computing 

the stability properties Bf the laminar flow on a rotating disk. 

Malik and Orszag /51/ compared the results given by the envelope method and a (modified) wave packet 
method. They demonstrated that "for a given case, the ultimate values of n are only very weakly dependent 
upon the approach adopted". Although the wave packet theory is physically more relevant, it is more expen- 
sive to use than the envelope method. On the other side, the fixed wavelength/ frequency approach leads 
to n factors somewhat lower than those deduced from the envelope method /47/. 

7.2 Calibration of the en rule 

Another problem is to see if experimental transitions occur at nearly constant n, for several flow 
conditions. Figure 31 shows numerical results obtained by Hefner and Bushneil /47/ who used the SALLY 
code of Srokowski and Orszag /45/. The integrated cross-flow instability amplification ratios deduced 
from the envelope method are presented for the experimental conditions of Burrows and Allen /26/, 1211, 
and the symbols denote the (estimated) transition points. Although the nx factors vary from 7.6 to 11, 
their values are not far from those currently computed in two-dimensional flows. An interesting result 
is that the most amplified cross-flow instabilities occur at relatively high frequencies ; the statio- 
nary waves are unstable, but are not the most unstable ones. A similar result was obtained by Coustols 
(unpublished) for the experimental conditions of figures 25 to 28 : at the transition location, n is 
equal to 7.4 for 500 Hz and to 4.4 for the stationary disturbances. 

The COSAL code developed by Malik was tested by Malik and Poll /39/ for predicting transition on the 
windward face of a long yawed cylinder, for which experimental data were available (Poll /24/i The enve- 
lope method is also used, and the curvature terms are introduced in the stability equations' (this is not 
the case in the SALLY code, which solves the Orr-Sommerfeld equation according to Stuart's theorem which 
neglects curvature terms). The integrated amplification rates of the most unstable frequencies are plotted 
in figure 32 for two experimental cases. It can be seen that for the computations including curvature 
effects, the n factors attransition are 11 or 12. However, when the curvature terms are omitted, the values 
of nx are found to be 17 or 18. This shows that the body curvature and streamline curvature terms produce 
strong damping effects. On the other side, we observe that the cross-flow instability is dominated by non- 
zero frequency waves. 

The stabilizing influence of streamline curvature was also demonstrated for the rotating disk flow by 
Malik, Wilkinson and Orszag /52/. In this case, the most unstable waves are stationary. Figure 33 shows 
the integrated growth factors deduced from the Orr-Sommerfeld equation by Cebeci-Stewartson (wave packet 
method, /50/) and by Malik et al (envelope method). Both calculations give nx factors greater than 20. 
But, when the effects of Coriolis force and streamline curvature are taken into account, the value of n 
at transition is reduced to 11, and the amplification curve agrees well with experimental data. In parti- 
cular, the critical Reynolds number is about 50 %    greater than that found by Brown and Cebeci-Stewartson. 

These examples indicate that the Orr-Sommerfeld equation cannot provide accurate estimates of the 
disturbances growth if the curvature effects and/or the Coriolis force are of importance. However, in 
the scope of airfoil applications, these terms can be neglected provided transition occurs not too close 
to the leading edge. It is encouraging to observe that the total amplification rates do not depend strongly 
on the integration procedure, and that the use of appropriate equations leads to nx factors lying in the 
range 7-11, as in two-dimensional flows. 

8 - ATTACHMENT LINE PROBLEMS 

8.1 Laminar boundary layer characteristics 

It has been said (paragraph 5.1.1) that the attachment line is a particular streamline, which divides 
the flow into one branch following the upper surface of the body and another branch following the lower 
surface, see figure 34. Let us consider the simplest case of a swept cylinder of constant radius r. 
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In the streamline coordinate system (x, z, y) , x coincides with the attachment line, and the potential 
velocity reduces to ue = QmsinY. The boundary layer profile is obtained by setting m = 8h = 1 and 
90 = -x-  in the Falkner-Skan-Cooke solutions, relations (43) to (47) : 

- G (n)' £- = o , Z-„ - (kv )V* F(n) ue       Ue 
(52) 

Jx = 0 with 0 - y (^)    ,     k = dX 

In other words, the mean velocity profile is two-dimensional. But, in contrast with true two-dimensional 
situations, its thickness is constant ,in the x direction, although the velocity v normal to the wall is not 
equal to zero. 

By integration of the G(n) profile, one can find : 

Si - 1.026 (v/kj*      en = 0.404 (v/k)1'2       H = SJQn  = 2.54 

R9Sl = 0.404 O^sinf/(Vk)^ (53) 

As it can be seen on figure 35, the attachment line velocity profile (H » 2.54) looks like the Blasius 
profile (H = 2.59). 

For a circular cylinder of radius r, k and HBJJ can be expressed as : 

k = 2 *°T
COSV

      , and K8„ = 0.404 (&£  M_iM) (54) 

The characteristic Reynolds number R = R9/0.404 was also used by many authors. 

The preceding results are valid for an attachment line of infinite extent. In practical situation, 
however, the attachment line has an origin (say, x = 0), but, for the sake of simplicity, we will assume 
that the similarity solution described above applies as soon as x>0. 

8.2 "Free" transition 

The neutral curves of the attachment line profile and of the Blasius profile are compared on figure 36 ; 
the former is somewhat more stable than the latter : its critical R9u is 260, instead of 201. 

If there is no source of large disturbances at x - 0, we can guess that transition will be the result 
of the amplification of internalized small fluctuations which are present, for instance, in the free-stream. 
Pfenninger and Bacon /53/ made hot-wire, measurements along the attachment line of a 45° swept wing. They 
observed the occurrence of regular, quasi sinusoidal oscillations in the form of modulated wave packets ; as 
these wave packets are convected along the leading edge, their amplitude increase and turbulent spots (break- 
down) eventually appear. Similar observations were reported by Poll/24/. In most of the cases, the waves are 
detected for configurations such that R8n is greater than 230, a value which is close to the critical R8n 
of the attachment line profile. 

The theoretical calculation of the total amplification rate A/Ao of a given frequency is very simple : for 
fixed values of Qm ,V and r, M\i  is constant in the spanwise direction, so that A/Ao is expressed as : 

A/Ao = exp -ajxl (55) 

A 
This means that, if we plot In 7 as a function of x, we obtain straight lines parametrized with 10, 

and the n curve is reduced to the line corresponding to the most unstable frequency (the frequency for which 
-a±  is maximum). By applying the en rule, the transition location xj is : 

xT = n/(-ai)MAX (56) 

Figure 37 (Poll /24/) presents the results of such computations for nj = 6, 10, 14, together with 
experimental data. For R8n<230, transition never takes place on the attachment line. For higher values, 
transition is observed and moves towards the attachment line origin as R9n is increased : in this case, 
a part of the leading edge is laminar, another part is transitional, and a third part is turbulent ! 
Theoretical results with nj ~ 6 reflects fairly well this evolution. 

8.3 Leading edge contamination 

If the wing is in contact with a solid wall (fuselage, wind tunnel wall...), it has been observed that 
turbulence appears on the attachment line for R6j1>100. Clearly, this observation cannot be explained in 
terms of linear stability theory. In fact, the leading edge is contamined by the large turbulent structures 
coming from the wall at which the model is fixed, without resorting to linear processes (bypass). 

In order to examine this behaviour, Poll /24/ investigated the response of the attachment line boun- 
dary layer to the presence of wires the axes of which were normal to .__ 
the leading edge direction. If the wire diameter, d, is made dimensionless 
with the length scale r\  = (v/k)1'2, four d/rj ranges are to be distinguished, 
as it is illustrated in figure 38 : 

. For 0<d/ü<0.7, the wire does not play any role, and transition is triggered by 'free' mechanisms 
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as describe above. 

. For 0.7<d/rj<l .5, the wire begins to control transition ; the location of the first turbulent spots 
moves closer to the wire when Röii is increased. 

. For 1.5<d/rT<l .9, the flow is either fully laminar or fully intermittent behind the wire, depending on 
the value of R8n. 

. For d/rj>l. 9, turbulent bursts always appear immediately behind the wire. But, if R8u is lower than 
100, they decay more on less rapidly and vanish as they are convected along the attachment line. If R8n 
is greater than 100, the turbulent bursts are self-sustaining : they grow, overlap and turbulent contami- 
nation process takes place. It is clear that there is a strong similarity with the leading edge contamina- 
tion induced at the wing-fuselage junction. 

9 - TRANSITION CRITERIA 

The use of linear stability theory for predicting the transition onset leads to satisfactory results, 
but involves time consuming and expensive calculations. For this reason,the development of simple cri- 
teria presents an unquestionable practical interest. 

Generally speaking, the use of such criteria is based on the following rule : it is assumed that the 
turbulence will appear either by streamwise instability or by cross-flow instability, or else by leading 
edge contamination. Criteria are applied for each one of these mechanisms, and it is assumed that the 
boundary layer will cease to be laminar as soon as one of them is satisfied. 

9.1 Leading edge contamination 

Let us recall that the dominant parameter is the Reynolds number R8U: 

Mll- 0.404 <^?    )Withk=(iM)x = 0 (57) 

From experimental results, it appears that a complete leading edge contamination occurs when R9n 
is greater than 100 (paragraph 8.3). 

9.2 Streamwise criterion 

As the properties of the streamwise profiles are close to those of two-dimensional profiles, it is often 
assumed that two-dimensional criteria remain valid in three dimensional flows, provided they are applied 
along an external streamline. For example, the criterion described in paragraph 2.3 will take the following 
form : 

R6ii " R8ncr = f (A2T, Tu) (58) 

—     1     fST92., dUe 
with At- - -   ,   L-T^1— ds ScrV  ds 

where s designates the curvilinear abscissa measured along the external streamline. 

9.3 Cross-flow criteria 

The first attempt to explain the destabilizing effect of sweepback on laminar boundary layer is due 
to Owen and Randall (1952, 1953, /54/, /55/), with an independant contribution by Squire (1952, /56/). 
Owen and Randall related the cross-flow instability mechanism to a Reynolds number X defined as : 

JC . Jl^li (59) 

and propose a critical value X =  175 at the transition location. Later studies showed that this value was 
too low, because the experiments from which the criterion was derived were biased by leading edge contami- 
nation problems. 

In 1973, Beasley /57/ developed a criterion which involved the cross-flow Reynolds number R62. Calcula- 
ting the value of this parameter at the transition onset for a certain number of experiments, Beasley 
proposed : (R62)j = 150. However, it is cleat that the use of a single value of any cross-flow parameter 
cannot give good results in all situations. For this reason, two more elaborate criteria, labelled Cl and 
C2, have been developed at ONERA/CERT /58/ /59/. 

9.3.1 Cl Criterion 

By computing the laminar boundary layer development for a rather great number of experimental cases, 
it was found that the cross-flow transitions did not take place for a unique value de RS2. Various attempts 
to correlate R62• with characteristics of the cross-flow profile have not allowed to put together the expe- 
rimental data. Better results have been obtained by associating the transition Reynolds number with a para- 
meter linked with the streamwise velocity profile. Figure 39 shows ä correlation between 
wise shape factor, H, at the transition location. A mean curve can be represented by : 

RS  .Mtan- ( 9^06 _ I (60) 
T   IT       1(HT _ 2.3JZ.05 J 



4-17 

The application of this formula is limited to shape factors less than 2.7, For greater values, the 
transition phenomena are dominated by the streamwise instability. It can be observed that  relation (60) 
does not take into account the free-stream turbulence level Tu. 

Let us notice that Poll /31/ gave a similar correlation, by using X instead of R<52. 

9.3.2 C2 Criterion 

The cross-flow correlation presented above is fully empirical. As it was done for the streamwise 
criterion, we have tried to use the results of laminar instability theory to develop a more rigorous method 
for predicting cross-flow transitions. 

This method is based on Stuart's theorem, already discussed in paragraph 4.2 : to study the stability 
of pertubations in a given direction which makes an angle e with the cross-flow direction, it is sufficient 
to consider  the mean velocity profile Ue projected in that direction. For purposes of more convenient 
analysis, Ue is normalized with Uee = u sin e (e 4  0 and 180") : 

Ue 
(61) 

By varying e from 0° to 90", one moves continuous^ from the cross-flow profile to the streamwise pro- 
file. 

We then define for these profiles a displacement thickness 6ie and the corresponding Reynolds number 
R<5ae : 

6ie = J  (1 " W^  dy (62) 

R5lE = 
gge Sie  = sin e R<Si + cos e R62 

The next step is to describe the stability, or instability,of the Ue profiles. In this regard, the cri- 
tical Reynolds number R6iecr is an essential parameter. Stability calculations have therefore been carried 
out for a great number of typical Ue profiles computed in the conditions of Boltz, Kenyon and Allen expe- 
riments /28/. The reader will find a tabulation of the results in /59/. 

For a given experimental case, with given chord Reynolds number and abscissa, a function g(e) is defined 
as : 

g(e) = R61ecr/R61e (63) 

If g(e) is greater than 1, the profile Ue/Uee under'consideration will be stable. If g (e) is less than 1, 
it will be unstable. Let us observe that RiSie varies as the square root of Re, whereas R5iEcr remains in- 
variant. In other words, if gi(e) and g2(e) correspond to Eel and Rfc2, we will have : 

U _ [Rc2)V* 

When the chord Reynolds number increases, g decreases 
and the range of unstable directions widens. 

Figure 40 shows the change in g in three abscissas relative 
to the configuration f = 20°, a = 0° of the Botz, Kenyon and 
Allen experiments, for Rc = 4.33 10

6. The chord Reynolds number 
Re is defined as : 

Rc ~ ,q°° Cm (65) c  V cos <p ' 

where c is the chord normal to the leading edge. 

At the first abscissa, close to the attachment line, the curve g(e) is minimal for e close to 2 degrees, 
but the streamwise flow remains very stable. At the last abscissa, X/C = 0.48, the curve g(e) has two 
minimums, close to the cross-flow and streamwise directions, the second being an absolute minimum : stream- 
wise instability is preponderant here. Let us note that at the intermediate position, X/C=0.35, the two types 
of instability already coexist, with comparable level's. These curves show the passage from quasi-cross-flow 
instability to streamwise instability. 

The computation of the critical Reynolds number R5iecr takes long, and therefore costly, calculations. 
As a consequence, R<5iecr has been represented as a function of the height of the inflexion point and of 
the first derivative of Ue taken at the inflexion point (figure 41). If Ue does not exhibit some inflexion 
point, the critical Reynolds number.is simply a function of some integral parameter, such as the shape 
factor. 

At a given abscissa, a laminar boundary layer calculation supplies the streamwise and cross-flow pro- 
files, as well as the Reynolds numbers R6i and Rä2. For each e, 'R6*ie is obtained from relation (62) and 
R6iecr is deduced from the previously described representations. This provides the plotting of the curve 
g(e) and the determination of the direction emin for which g(e) is minimum in the neighbourhood of the cross- 
flow direction. Such a calculation was carried out for available experiments on "infinite" swept wings. 
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Figure 42 brings together the values of RSjE for e = emin, at the experimental transition points. As in 
the case of the Cl criterion, it was decided to plot this quantity as a function of the streamwise shape 
factor H. It is observed that the points collapse on different curves, a fact which seems to show the 
influence of the free-stream turbulence level Tu. Although such a representation is both "daring" and dif- 
ficult, this set of curves RäiE'rCe = emin) = f(H, Tu) will be considered as a cross-flow criterion. 

9.4 Examples of applications 

9.4.1 Application to swept wings 

At first the aforementioned criteria were applied to different experiments which were used to develop 
them. For each case, the movement of transition is represented as a function of the chord Reynolds number 
Re, defined in relation (65). 

Figure 43 gives a comparison of the calculations with two experiments carried out by Boltz, Kenyon and 
Allen /28/. The two cross-flow criteria give results that are very closed. The case f = 20°, a = 0° clearly 
shows the passage from streamwise instability (in positive pressure gradient) to cross-flow instability 
(in negative pressure gradient). The value of Re for which leading edge contamination occurs lies beyond 
the range of experimental Reynolds numbers. For V = 50°, a = 0°, there is practically no streamwise tran- 
sition. 

Detailed comparisons with other available data on "infinite" swept wings are given in Coustols /59/. 

In figure 44, experimental and theoretical transition locations are compared in the case of a tapered 
wing. The measurements were performed by Schmitt /60/ on the M6 wing ; the angle of sweep is 30° at the 
leading edge and 15,8° at the trailing edge. Two calculations are presented for Qoo = 90 m/s, a = -5° and -15° ; 
the first one uses the integral method developed by Cousteix and Aupoix /62/, in which the Cl criterion is 
introduced. For a =--5°, streamwise and cross-flow instabilities are of equal importance, and the theore- 
tical transitions lines are very sensitive to the numerical methods used. For a » -15°, cross-flow insta- 
bility dominates, and both methods give similar results. 

9.4.2 Attachment line in "free" conditions 

It is a typical case where transition is entirely governed by the streamwise instability,_see paragraph 
8.2, but the streamwise criterion is unable to predict it ; in fact, with Tu ~ 0.1 10~2 and A2= 0, relation 
(58) leads to R8T ~ 1100. In addition, the criterion indicates that all the attachment line becomes at once 
turbulent from x = 0. All these results are in variance with available experiments, figure 36. 

The shortcoming of the criterion (and of all criteria which involve boundary layer parameters) can be 
explained as follows : the perturbations leading to transition propagate and are amplified along the flow 
direction, that is to say along a physical distance. Presently, the criterion involves R9, a Reynolds num- 
ber based on a characteristic boundary layer thickness ; in two dimensional flow, it gives good results, 
because an implicit relation exists between R6 and the streamwise distance. This relation remains more or 
less verified along the external streamlines of a swept wing, but fails dramatically in more complex three- 
dimensional configurations;where the streamlines are far from being parallel. In fact, it is necessary to 
come back to the initial concept of waves propagation in the physical space. 

9.4.3 Prolate spheroid 

Experiments were carried out by Meier, Kreplin and Vollmers /38/ on a prolate spheroid at zero and non 
zero angles of incidence. Figure 45 shows the external streamlines pattern for o = 10°, as computed by 
Gleyzes and Cousteix /63/ from the measured wall pressure distributions. 

Measured and computed transition lines are compared in figure 46. 5 is the circumferential angle ; 
5 = 0 and 180° correspond to the lower and upper symmetry   lines, respectively (Gleyzes, Cousteix, Aupoix 
/65/, Jelliti /61/). A reasonable agreement is observed for 45°<£<180° : both local and integral methods 
indicate that transition is cross-flow dominated around £ = 90°, while streamwise instability is preponde- 
rant towards the upper symmetry line. However, there is a strong discrepancy for 0<£<45° : the experiments 
detected transition in this region, but the criteria were unableto predict it. In fact, the problem is 
similar to that previously discussed : if we except the region close to the stagnation point, the lower 
symmetry line looks like the attachment line of a cylinder with an angle of sweep m_  ^ _a 

~ 2 
The laminar boundary layer calculations confirmed this point of view by showing that the characteristic thick- 
nesses were nearly constant along the line £=0°, with a shape factor close to 2,5. The only way to improve the 
agreement with experiments is to solve the    stability equations and to compute the n factor by integrating 
the local amplification rates along the external streamlines. When this is done, transition is found to occur 
in the region where criteria cannot detect it.  (Jelliti, /61/). Cebeci /64/ used also the linear stabi- 
lity theory and predicted some points of the transition line with a very good accuracy. 

Meier et al gave estimates of the transition region extent by measuring the evolution of the wall 
shear stress vector. These results were used for checking the intermittency method initially developed in 
two-dimensional flow (paragraph 2.4). The extension of this method to three-dimensional flows is described 
in /23/ : when the local boundary layer equations are solved, the Reynolds shear stresses -u'v1 and -v'w1 

are multiplied by the same intermittency function ; when the global boundary layer equations are solved, 
three-dimensional integral parameters are weighted by y, in addition to the parameters already used in 
two-dimensional flows. A comparison between numerical results and experimental data indicate that the both 
methods give a correct estimate of the transition length, as it is illustrated in figure 47. In these cal- 
culations, the transition onset is located at the experimental transition point. It is also clear that the 
skin friction coefficient is well predicted in the turbulent zone. 
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10 - DISCUSSION AND CONCLUSIONS 

An important problem, which has not been discussed so far, is that of the interaction of cross-flow 
vortices and Tollmien-Schlichting waves, when streamwise and crossflow instabilities are simultaneously 
present. Let us recall that the fundamental assumption introduced into the practical calculation methods 
(en method or criteria) is that both kinds of instability are taken separately. However, Mueller et al 
/66/ presented a nice smoke visualization on a spinning body, where Tollmien-Schlichting waves were super- 
imposed on cross-flow vortices ; they concluded : "the nonlinear superposition of the two instability 
modes raises interesting questions for the experts on nonlinear theory and for the computer predictors of 
transition". 

On the theoretical point of view, the approach commonly used is to consider Tollmien-Schlichting wave 
growth as a secondary instability in the presence of finite amplitude cross-flow vortices. The basic flow 
is the three-dimensional boundary layer profile with a superimposed primary disturbance of known amplitude. 
Two oblique, traveling waves are superimposed onto this basic flow. The problem is to find resonance con- 
ditions, that is to say relations between waves numbers and frequencies which give rise to strong interactions 
between primary and secondary disturbances. Reed /67/ used this technique for studying the effects of statio- 
nary disturbances induced by the crossflow instability : in this case, the primary instability is made of vor- 
tices rotating in the same sense. Reed showed that the interaction leads to magnified growth of the Tollmien- 
Schlichting waves beyond that predicted by linear theory. 

In a further study, Reed /44/ was able to explain the seeming inconsistency detected in the experiments 
of Saric and Yeates /32/ j the streaks made visible at the wall by sublimation techniques were spaced by 
1 cm, whereas  hot-wire measurements indicated a wavelength of 0.5 cm. A theoretical analysis revealed a 
strong interaction of the cross-flow/cross-flow type ; this interaction occurs with stationary distur- 
bances of half the primary wavelength. The secondary vortices are easily detected by hot-wire measure- 
ments,but as they are less intense near the wall as the primary ones, sublimation techniques cannot detect 
them. 

It is obvious that such complex phenomena are difficult to include in practical calculation methods. 
When the en method is Used, it is implicitely assumed that transition is driven by linear mechanisms. This 
seems inconsistent with experimental data (paragraph 6 ) : fluctuations reaching 20 per cent of the external 
velocity cannot be considered as small perturbations. On the other side, smoke visualizations performed by 
Kegelman et al /36/ on anaxisymmetric body with spin suggest the presence of helicoidal disturbances travel- 
ling along the cross-flow vortices just prior to the onset of turbulence (figure 48). It is tempting to 
relate this helical instability with secondary instability mechanisms as described above. In addition, as 
it is the case in two-dimensional flows, we can expect that   different kinds of breakdown to turbulence 
still exist in three-dimensional situations. 

In spite of the great number of experimental features which are not taken into account in the en  method, 
it is surprising to see that this technique gives fairly good results (provided the curvature effects are 
properly introduced into the stability model). If one wants to use simpler methods, transition criteria 
such as those described in paragraph 9 provide us with useful informations. Another feature must be pointed 
out : when transition is dominated by cross-flow instability, the transition line is not rectilinear, but 
presents a sawtooth shape, which makes the definition of the transition point an intricate matter : in our 
experiments»uncertainties of 10 or 20 per cent of chord were currently observed, and the inaccuracies of 
the theoretical methods are not much more important than those of the experimental data. 

Another source of discrepancies between calculations and experiments lies in the influence of free- 
stream turbulence level. In two-dimensional flows, a large amount of measurements made it possible to 
introduce the effect of Tu into the theoretical models. In three-dimensional flows, the problem is not so 
well documented, and one would like to have a larger number of systematic experiments (scanning in Tu) to 
confirm, for example, our C2 cross-flow criterion. 

As far as the transition region is concerned, we believe that simple methods, such as the intermit- 
tency method, are able to give right predictions in very different situations. The inaccuracies of these 
techniques are certainly small as compared with large errors which can arise in the prediction of the tran- 
sition onset. 
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Fig. 4 - Effect of positive pressure 
gradients. 
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  laminar calculation, with 
theoretical separation point. 
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Fig. 6 - Stability diagram for the Blasius flow. 
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Fig. 12 - Example of wall visualization (sublimation) 
on a swept wing /23/. 
S>= 40% (% = - 8% (^ = 81 m/s. 
Chord C = 0.35 m. 

Fig. 13 - Example of wall visualization (china- 
clay) on a rotating disk /25/. 
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Fig. 15 - Swept wing flow : streamwtse (u) and 
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Fig. 16 - Profiles projected in various directions 
from e = 0° (cross-flow profile) to e = 90° 
(streamwise profile). X : inflexion points. 
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Fig. 18 - Laminar boundary layer development on a 
swept wing. 
X : inflexion point of the external stream- 
line. 
ßo is the angle between wall and external 
streamlines. 
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Fig. 19 - Falkner- Skan-Cooke cross-flow 
profiles, for 80 = 45°. From 
Mack /8/. 
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Fig. 21 - Stability and instability in the OJi, F) 
plane, for two Falkner-Skan-Cooke profiles, 
in negative (a) and positive (b) pressure 
gradient, at a given Reynolds number. 
From Mack /8/. 
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Fig. 25 - Mean streamwise velocity in the direction 
parallel to the leading edge. 
Same conditions as in figure 12. 
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Fig. 29 - Fluctuations intensity distributions 
in the laminar boundary layer. 
Same conditions as in figure 26. 
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Flg.   34  - Attachment line flow. 0.2  0.4   0.6  0.8   1.0 

Fig. 35 - Attachment line and flat plate mean 
velocity profiles. 
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Fig. 44 - Comparison between experimental /60/ and theoretical tran- 
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Fig. 45 - Theoretical external streamlines /63/ on a prolate spheroid. Experimental conditions 
of Meier et al /38/, a = 10°, model length = 2.4 m, slenderness ratio 6:1. 
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SUMMARY 

The tools for the preprocessing of geometrical and inviscid flow data for boundary- 
layer computations, and for the postprocessing of the computed data are discussed. After 
a presentation of some important basic properties of three-dimensional boundary layers, 
the definition of coordinates, the computation of the metric properties, and transforma- 
tion laws are given. Then the relations for the boundary-layer parameters, which are 
used in engineering work, like the wall-shear stress, friction forces, skin-friction 
lines, displacement properties etc., are presented. They are complemented with applica- 
tions from design aerodynamics. The question what can be seen from boundary-layer results 
with regard to separation is then addressed. Basic topographical considerations are 
made, and basic topological rules are demonstrated. Finally practical separation indica- 
tors which can be applied to boundary-layer results are listed. Applications from design 
aerodynamics close the paper. 
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1. INTRODUCTION 

Boundary-layer computation methods are widely used today in industrial design aero- 
dynamics. Of course, the concept of boundary-layer theory has its limitations. It is 
applicable only where the boundary layer is attached. Separation including flow-off se- 
paration at the rear end of a body cannot be described, and the total drag of a body can- 
not be found in the frame of pure boundary-layer theory. 

In the present paper an attempt is made to show the possible applications three-di- 
mensional boundary-layer theory can find in design aerodynamics. The range of applica- 
tions presented includes flow past wings, fuselages, car bodies etc. at all Mach-Numbers, 
except for hypersonic cases. In hypersonic cases frequently viscous-shock layer methods 
are used, which, however, are kind of higher-order boundary-layer methods. 

Very important points in the application of boundary-layer theory are the preproces- 
sing of the geometrical data and the outer boundary values (inviscid flowfield), and the 
postprocessing of the results of the boundary-layer computation. In this paper the tools 
for the pre- and postprocessing are developed and demonstrated with applications. 

For the formulation of these tools contravariant vector components are used. Al- 
though applied rather seldom in fluid mechanics they offer a very easy and elegant way of 
handling all kind of mathematical operation and data in curvilinear and non-orthogonal 
coordinates. However, in the frame of this paper only the application is shown, no deri- 
vations and proofs are given. The reader is referred for instance to [1,2,3]. 

Contravariant velocity components allow also a more compact formulation of the boun- 
dary-layer equations [3]. Because these components arise in the transformation from the 
Cartesian reference coordinate system in a natural way (Chapter 3.1), the equations can 
be used without changes. On the other hand, the conversion from physical to contravariant 
components and back is very simple and cheap. Therefore the advantages of using contrava- 
riant vector components in pre- and postprocessing can and should be exploited, even if 
the boundary-layer equations are used and solved in the classical formulation. 

Separation of three-dimensional boundary layers is treated in this paper in the 
sense that the solutions of these equations are investigated with regard to indications 
of separation. No methods for the computation of separated flow are discussed in this pa- 
per. For a view on viscous-inviscid interaction methods, inverse methods, and the solu- 
tion of the Navier-Stokes equations in the frame of engineering applications see for in- 
stance [4] . 

The present author develops in this respect the concept of zonal solutions for vis- 
cous flow problems [5], where the Euler and the boundary-layer equations are coupled with 
local solutions of the Navier-Stokes equations. This leads directly to an extension of 
first-order boundary-layer theory to second-order theory because in many applications the 
boundary layers become very thick compared to the smallest local radius of curvature of 
the configuration under investigation. This concerns many experiments used for verifica- 
tion, but also real scale applications, for instance fuselage base flow and the like. In 
[6] to this end a higher-order boundary-layer code has been developed on the basis of the 
concepts given in [3]. 

The present paper starts with a review of basic properties of three-dimensional 
boundary layers (Chapter 2). Some of the pecularities in the development of these flows 
are explained. The characteristic properties which govern the formulation of the computa- 
tion method, the orientation of the coordinate system, and the position of the initial 
data are discussed. 

In Chapter 3 coordinates and their metric properties are developed. The transforma- 
tion laws allowing the handling of vector quantities are given. Then the boundary-layer 
parameters which are of interest for the engineer are discussed. Relations for the calcu- 
lation of friction forces, streamlines, skin-friction lines, displacement properties etc. 
are derived, applications are given. 

Chapter 4 finally is devoted to the problem of separation, its detection and to a 
certain degree, its control. Basic topological rules and observations from applications 
are presented. Separation indicators are formulated. Again applications are given in or- 
der to show where and how the results can be used in engineering work. 

In general no details are given about the computation methods used. Neither is the 
turbulence modelling discussed, nor the, in many cases much more important problem of 
stability and transition laminar-turbulent adressed. The reader is referred instead to 
the literature. 

2. SOME BASIC PROPERTIES OF THREE-DIMENSIONAL BOUNDARY LAYERS 

In two-dimensional boundary layers any stream surface remains in its original form 
as it moves along. In three-dimensional boundary layers any stream surface gets skewed. 
This can be explained as a local centrifugal effect. In order to study this, the flow is 
considered in an orthogonal coordinate system, where the t-direction lies along the in- 
viscid external streamline, and the n-direction normal to it. Fig. 2.1a. 

The inviscid external streamline is curved parallel to the t, n-plane. A centrifugal 
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force balance can be formulated as first approximation, Fig. 2.1b: 

10  ii    Pel-Yei2 _ 3Pe 

Because the pressure is constant in direction normal to the wall 

(2.2)     |f=0, 

the pressure gradient 3p/3n acts throughout the boundary layer. 

For every boundary-layer streamline a relation like (2.1) holds: 

(2 3)    PM1= IE IIP« ^•J'     r   an  an • 

Because in the boundary layer |v|<|ve|, p=0(pe)/ the curvature radius of every 
streamline is smaller than that of the external streamline: 

PM
2 

<2-4)    r = re^eW<re- 
Of course, this relation does not hold in the very vicinity of the wall, because 

there viscous forces cannot be neglected. The radius of curvature of the skin-friction 
line usually is finite. 

From this result the following conclusions can be drawn: 

any boundary-layer streamline including the skin-friction line is curved in the same 
sense but stronger than the inviscid external streamline, 

the skin-friction lines for instance from an oilflow picture don't have the same di- 
rection as the external streamline if the boundary layer is three-dimensional, 

any deceleration in main-flow direction, Fig. 2.1a, (point of inflexion appears in 
the main-flow profile) leads to a strong deflection in cross-flow direction (three- 
dimensional separation, wing trailing-edge flow). 

The picture changes somewhat, if the external streamline exhibits a point of inflex- 
ion, Fig. 2.2. Such a feature is always present on the suction side of swept wings. Imme- 
diately behind the point of inflexion the cross-flow profile begins to swing to the other 
side and complicated s-shape profiles can appear. After a short transition zone all 
streamlines are curved again in the same manner, but opposite to the original one. 

This behaviour of a three-dimensional boundary layer is important because all 
streamlines including the skin-friction line are characteristics. In order to show this, 
the boundary-layer equations for incompressible flow in Cartesian coordinates, Fig. 2.3a, 
are considered: 

(2-5a)   lx + ly + "SI " ° ' 

Following [8] characteristic manifolds ip(x,y, z) are introduced, for instance like 

_L=i_* d     d 
3X  3X dip   x (lip 

This leads after some manipulation to the characteristic form 

(2.7) 

tp-x   ipy   ipz 

A-vqr   0    0 = ipz(A-vip
2)2 = 0 , 

0     A-vip|        0 

with the  abbreviation 

(2.8) A = uipx + vipy + wipz   . 

Note that the pressure gradients do not enter the problem because the pressure field 
is imposed on the boundary layer. Note further that the consideration of only the highest 
derivatives in eqs.(2.5) is not sufficient, because it is a system of partial different- 
ial equations. 

In order to prove that (2.8) represents the streamlines as characteristic manifolds 
the total differential of ip 

(2.9) dip = ipx dx +ipy dy + ipz dz = 0 

is combined with the definition of three-dimensional streamlines: 
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(2.10) dx _ dy     dz 
u       v   ~  w 

to yield 

(2.11) dip = uipx + vipy + wipz = A = 0   . 

Thus it is shown that streamlines are characteristics, and that moreover a fivefold 
characteristic in z-direction exists, which is in accordance with the five boundary con- 
ditions in z-direction necessary to solve eqs.(2.5), Fig. 2.3a. 

The following conclusions can be drawn: 

the system of equations (2.5) is parabolic, this holds also for compressible flow 
in non-orthogonal curvilinear coordinates, 

where the boundary-layer flow enters the computation domain,initial data must be 
prescribed, no data are necessary where the flow leaves the computation domain (no 
elliptic properties!), 

a solution procedure for the boundary-layer equations must follow the flow in the 
sense, that the analytical domain of dependence (the streamline fan) of the flow 
(for instance at P(x,y) in Fig. 2.3b) is enclosed by the numerical domain of depen- 
dence (for instance the quadratic difference molecule in Fig. 2.3b). This is the 
Courant-Friedrichs-Lewy condition (see for instance [9]), 

the boundary-layer coordinate system must be oriented accordingly, 

negative cross-flow, a concept found in older literature is too limited, what 
counts, is that the CFL-condition is fulfilled. 

3.   BOUNDARY-LAYER PARAMETERS 

3.1  Coordinates, Metric Properties, Transformations 

In order to develop the tools necessary for the pre- and postprocessing a descrip- 
tion of the most important geometrical properties of boundary-layer coordinates is gi- 
ven. For details see [3]. 

In Fig. 3.1a and b a change of notation is indicated. Boundary-layer coordinates 
are a special case of locally monoclinic surface-oriented coordinates. Consider the sur- 
face element in Fig. 3.1c, which is embedded in a Cartesian reference coordinate system, 
the xi'-system (i' = 1,2,3) . The boundary-layer coordinates (xj-system (j = 1,2,3)) are 
defined on the surface. The lines x2=const. (x1-coordinates) and x1 =const. (x2-coordi- 
nates) lie on the surface. The x3-coordinate is rectilinear and normal to both, and 
therefore locally normal to the surface. Both x1 and x2, or xa, a= 1, 2 - called Gaussian 
parameters - have no length properties in general. Both parameters are not necessarily 
counted along the coordinate lines. 

The coordinate base indicated in Fig. 3.1c is called covariant base. The covariant 
base vectors belonging to the x<*-coordinates are defined by (the Einstein summation con- 
vention is used): 

<3-1»    let = J^'ei' = el'ey   + (ä£'e2. + Ba'e3, , 

where 
•i    i' 

(3-2)     ea =lä    (i' =1.z.3;  a=1,2) 

are the derivatives of the contour functions 

(3.3)    x1"' = x1' (xa) , 

which define the xa-coordinates on the configuration under consideration. 

The third base vector a3 is a unit vector which points in x
3-direction: 

ai x a? -i' (3-4) aa-ji^ilps^.. 

(3.5) 

with 

(3.6) 

The  components  are 

„1"        A1" 

1'         V 3' 31 2 
A1 = l\ fj£ -  8, &2 

?<          V 3' 31 1 
AZ =02 01 _  H 81 

,i          y 2' V 2 
AJ =8 So -  ß2 

S1 
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Once the components of the covariant base vectors are known, every geometrical as- 
pect of the problem can be described. The difficulty lies in the definition of the con- 
tour functions. 

To demonstrate the necessary steps for the definition of the contour functions, a 
percent-line coordinate system on a wing, Fig. 3.2 is considered. 

Choosing the halfspan as normalizing length, Lx2= s, Fig. 3.2a, rather than the 
length of the individual x^ = const.-lines yields 

(3.7) x2' = x2Lx2 = x
2 s , 

so that the root lies at x2 = 0, and the tip of the wing at x2 = 1, Fig. 3.2b. 

If the wing is defined as usual by airfoil sections x2 = const., the normalizing 
length Lx

1(x2) on the upper and the lower side simply are the respective arc lengths from 
the leading edge to the trailing edge, as indicated for the upper side of the wing in 
Fig. 3.2a. If the airfoil sections are given pointwise, the normalizing length, for in- 
stance for the upper side of the wing, can be computed with 

o  imax   1'     1'     ? v v 7  V2 
(3.8) Lx1„(x

2) = Z    [(x1 (i)-x1 (i-1))2 + (x3 (i)-x3(1-1)n 
i=2 

Lx V 

where i= 1 denotes the point in the leading edge, and imax 
tne point in the trailing edge 

on the upper side of the wing. 

By normalizing then the lengths from the leading edge to the individual points i 
with Lx1u one finds the x

1-parameter for each point i, with x1 = 0 in the leading edge, 
and x"l = 1 in the trailing edge, Fig. 3.2. 

The coordinates x^  and x^  for each point can then be presented as function of x' 
by means for instance of a spline function (a smoothing spline like [10] is recommended): 

(3.9) x2 = const.: x1'=x1'(x1), x3'=x3'(x1) . 

Once the functions (3.9) are given as spline functions, the necessary discretization 
either with Ax1 =const., or with varying Ax^ can be made, however, for each cross section 
x2=const, in the same manner. 

Then spline functions are produced for the x^ = const, lines: 

(3.10) x1 = const.: x1' = x1'(x2), x3' =x3'(x2) , 

9 2 in order to find the necessary discretization in x -direction, again either with Ax = 
const, or with varying Ax2. This is necessary, if the number of cross sections which de- 
fine the wing is different from the number of stations x2 to be used in the boundary-lay- 
er calculation. 

The whole procedure can be simplified by using a surface spline (bi-cubic spline), 
but experience shows that a smoother representation of the geometry results with the pre- 
sent parametric approach. 

From relation (3.7) one gets two components of the covariant base vectors _aa: 
V 2' 

(3.11) ß, = 0, eg = s • 

1' 1' 3' 31 The other components ß1,B,,$1, ß, result directly from the spline representations (3.9) 
and (3.10) . '     *     n * 

The components of the - symmetric - covariant metric tensor of the surface coordi- 
nates 

/a11  312 
(3.12) {aaB} = 

\a21  a22 

are defined as follows: 

(3.13a)   ai1 = (ßj')2 + (ß2')2 + (ß3')2 , 

(3.13b)  a12 = a21 = ß]' e^' + ^ ^ +  ßf $   ' 
V 9 9l   9 V   9 

(3.13c)  a22 = (e2r + (e2) + (e2) . 

Note that the metric terms used in many boundary-layer computation methods are related to 
the above by 

n1  9 \     / ^ a 11* ai2 
(3.14)     ; \ 

^2 /      \ ^12 ^ ^22* 



5-6 

The length element ds, the surface element dA and the volume element dV are defined 
by (note that x3 has a length dimension [3]!): 

(3.15) (ds)2 = an(dx1)2+ 2a12dx
1 dx2 + a22(dx

2)2 + (dx3)2 ; 

(3.16) dA = /Tdx1 dx2 , 

with a the determinant of the metric tensor: 
p 

(3.17) a = an a22 - (aj2) ; 

(3.18) dV = /Jdx1 dx2dx3  . 

The  angle •& between the coordinate  lines  x1 = const,   and x   = const.,   Figs.   3.1,   3.2 
is  found  from the  scalar product a^ -a,   =   ]a^| |a2|cos-& : 

ai9 
(3.19) cosd   =   • ,xc

r -   . 

Orthogonal coordinates with a-|2= 0 yield d = ^ as expected. 

In Fig- 3. 3 the metric properties of a forward swept wing are given [11]. Because in this 
example the wing has no thickness, Lx1 is always the chord length and the metric is the 
same on the upper and the lower side. 

The coordinates for a fuselage can be constructed in an analogous way. If the stag- 
nation point lies close to the nose point (slender fuselage, small angle of attack) 
cross-section coordinates can be employed, Fig. 3.4. 

In this case the x1-parameter is counted along the axis: 

(3.20) x1' = x1 Lx1 = x1 L . 

Because a fuselage usually is defined by cross sections, the normalizing lengths 
Lx
2(x1) are the circumferential lengths, and the spline representations first of 

(3.21) x'= const.: x2' = x2'(x2), x3'= x3'(x2) 

and then 

(3.22) x2 = const.: x2'=x2'(xl), x3'=x3'(x1) 

are constructed. 

Fig. 3.5 shows the metric properties of the right half of a helicopter fuselage. The 
coordinate system covers only the bulk fuselage up to x1 = 0.61 [11]. 

Because the inviscid flow usually is given with Cartesian components a transforma- 
tion into the surface boundary-layer coordinates is necessary. As will be shown in Chap- 
ter 3.2 on the other hand the skin-friction components have to be transformed back into 
the Cartesian system in order to get the friction-drag coefficient. 

In the following the transformation laws are given starting with the fundamental 
transformation from the boundary-layer coordinates into the Cartesian coordinates. A vec- 
tor F is defined in the covariant base a-^ by 

(3.23)   £ = Fia.j = F1 a^ +F2_a2 + F
3a3 . 

Note that in the frame of first order boundary-layer theory only tangential compo- 
nents of the external flow and the wall-shear stress are considered, hence only two com- 
ponents are shown in Fig. 3.6a. 

The components F1 are contravariant components which belong to the covariant base. 
They are related to the physical components F*^ by 

(3.24) F1 = , F*l , , (1 = 1,2,3) , 
Va(ii) 

because the base vectors are no unit vectors (the brackets around ii mean that no summa- 
tion has to be made). 

The fundamental transformation is from the x1-system into the Cartesian ref. system: 

(3.25) P'   = eV F-3 = ßj'F1 + gj'F
2 + ej'F

3, (i'= 1,2,3).- 

The inverse transformation from the x3'-system into the x1-system reads 

(3.26) Fk = sJ,F1' ,   (k.H1 =1,2,3) . 
u 

The inverse transformation matrix {fr^},   also called the Jacobian, is given in terms 
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of the components   g.   of  the base vectors: 

(3.27) {»;,}= 

V e2' ß3 

2 2 2 
r B2' 33 

3 S3 B3 

V B2' B3 

3o   ^2 2  33 

3fß
3')(ß]   B, 

3'   2' 
)(BT 6 

3' 
3" 

3'   V 

l's3')(a1'«2'- 
2 ß3 MB2 ß3 

a3) (Bl'«'S' 

3]' s|) (&,  P2 

J1' s3 

,1'„2' 

2' r 
32 B3 

11   2' 
31  63 

31   32' 

where   /a  again  is  the  square  root of  the determinant  of  the covariant metric  tensor,   eq. 
(3.17). 

The  two-dimensional  form,   for  instance  for  x' , x    -coordinates,   is 

(3.28)       {sj,} 
vT 

/ 

As example the transformation of the external inviscid flow from the Cartesian into 
the surface coordinates is considered: 

(3.29)   v^ = 

Of course Vg should be zero, but it should be computed in order to check the accura- 
cy of both the inviscid flow data, and the whole geometrical representation. The physi- 
cal components v|°, when needed, are 

(3.30) v*« = v« /a (aa) 

The amount of the velocity is 

(3.31) ,1\2 1  .2 .2,2  1/2 [(/Fff v'r + 2a12v'v' +(/5üVn 

or with physical components 

(3.32)        |_yJ   =  [(v*')2+2v*1  V*2 cos^ +(v*2)2]1/2  . 

The  angle ife   (for  the  definition of  TJJ   see Fig.   3.6b)   reads 
.2 /Fv 

(3.33) tan 1)1. 

(3.34)       tan ipe  = —7 
sin-9 v" *2 

v*' +cosd v* e e 

On  the other hand the  components v°  or v*a  are  found with 

(3.35) 
"Ml   I /absind 

V>l \3sl  \ 
sini|)e 

/ä22Sin-a 

In closing this sub-chapter the problem of placing the initial data for the bounda- 
ry-layer computation is addressed. It is closely related to the problem of coordinate 
definition. 

In general the rule holds that initial data placed into a region of strongly accele- 
rated external flow very fast loose their influence on the solution in favour  of the 
local external conditions. The contrary is true if these data are placed into or close 
to a portion of decelerated flow. In such cases the results of computations with approx- 
imate initial data must be considered with care [12]. 

Consider now the flow past a wing, Fig. 3.7a to c. At the attachment line, which in 
general does not lie on the leading edge at x1 = 0, the flow is directed towards the wing 
tip and not in chord direction. In many applications it is sufficient to start shortly 
above or below the leading edge where the flow has changed sufficiently into chord di- 
rection. Approximate initial conditions , locally from an infinite swept-wing solution (to 
be found for instance in [13]), serve well in such cases. 

However, if one is interested in the exact flow at the leading edge, for instance in 



order to study hydrodynamic stability (necessary for laminar wing design), a special 
solution must be employed. In [14] as well as in [15], although with different approach- 
es, the solution is marched from the root towards the tip in a small stripe, Fig. 3.7b. 
The width AX^LE must at least encompass the attachment line to such an extend, that all 
the important features are captured. Note that the relative pressure maximum in chord 
direction lies at a distance Ax1p to the attachment line [3]. Only for an infinite swept 
wing this distance is zero. 

The computation in chord direction on the upper and the lower side of the wing pro- 
ceeds as indicated in Fig. 3.7b. In Fig. 3.7c the starting lines (inflow boundaries) 
near the leading edge as used with the technique [14] are shown [16]. At the wing tip an 
inflow boundary on the upper side of the wing can only be defined with a locally infini- 
te swept wing approximation [3]. 

In Fig. 3.7d finally the hybrid coordinates for a car body at yaw are given [17]. 
The x2=const.-lines are inviscid external streamlines, while the x1 =const.-lines are 
constructed by partitioning each external streamline in the same manner. In the forward 
stagnation point a quasi one-dimensional solution [3] can be used to find the starting 
data for the boundary-layer computation. In this way the whole nose region can be cover- 
ed with the boundary-layer solution, which is of interest in many other cases, too. 

3.2  Wall-Shear Stress and Friction Forces 

The wall-shear stresses in general boundary-layer coordinates read 

<3-36>    C3 = »iSr'      (" = 1-2>- 
and with contravariant components 

<3-37» ^ = »s> 
where 

(3.38) 
T*cc3 

>3 = \*_ 

•'a(aa)' 

Magnitude |.IW| and angle i|iw between the x-const.-coordinate line and xw 
can ke compu- 

ted like the velocity data, eqs.(3.31 to 3.35). 

The computed wall shear-stress distribution often is presented in iso-line plots. 
Another possibility is to show it in carpet diagrammes (see for instance Fig. 4.10a). 

In the following only the computation of the friction forces acting on a general 
configuration is considered [18]. The friction forces on a surface element are with eq. 
(3.16): 

(3.39)  ' dR" = T^3dA = rf  /adx1dx2,   (a=1,Z). 

The Cartesian components follow with eq. (3.25) 

(3.40)  dR1 = ^  dRa = BJ dR + &\  dR2    (i'= 1,2,3). 

In Fig. 3.8 a surface element is given. By applying the above relations in finite 
form to the surface element by choosing for instance 

(3.41a)     6*\ti   =0.5(Ax].1>j+Ax]+1).)   , 

(3.41b)     AX2^.  = 0.5  (AX^.,   +AX2
>j+1)   , 

and summarizing over the whole parameter plane the friction forces are found. 

As an example results for a fighter nose at M„ = 2, Rex,= im= 2.7 • 107 are given [19]. 
The inviscid flow was computed with the Euler code [20] . The turbulent boundary-layer 
computation up to the position of the inlet, Fig. 3.9a, was made with the integral me- 
thod [21]. The boundary-layer computation domain in axis direction extends over approxi- 
mately 6m (0 < x1 < 1) . 

In Fig. 3.9b the cumulated friction forces R1' and R3' are given for the whole con- 
figuration. R2' Is given for one half, only, because it is compensated by the force on 
the other half. Note that the friction force R3' first is directed upward and then down- 
ward. This reflects the direction of the skin-friction lines, Fig. 3.9a, which will be 
discussed in the next sub-chapter, and in Chapter 3.5. 

3.3  Streamlines and Skin-Friction Lines 

One of the advantages of the use of contravariant vector components is that stream- 
lines in non-orthögonal curvilinear coordinates are defined like in Cartesian coordi- 
nates [3] : 
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(3.41)   ^--^--.^-. 
vl    v^    V

J 

The construction of the streamlines for boundary-layer problems is made in the pa- 
rameter plane, for instance with an iterative shooting technique [22], Starting from Pm 

a point P„+i is found on  the next crossing point with either ax- const, or a x1 = 
const.-coord.-line, Fig. 3.10. The angle i|im is then corrected-.ii^+1=  1/2 (i|im + i(<m+i), until it 
does not change any more. The last point P^jJ} is then the new streamline point. All in- 
terpolations are made linearly.   Once the xa-coordinates of the streamline are known, 
a back transformation into the physical space can be made with the contour-function rela- 
tion (3.7), (3.9), and (3.10) for a wing, or (3.20) to (3.22) for a body. 

(3.42) 

In Fig. 3.11 inviscid external streamlines with 

dx1  dx2 

ve1  ve
2 

and the  skin-friction  lines with 

(3.43) dxl = *£ 1          '       T13      T23 

are shown for a helicopter fuselage [19]. Instead of the contravariant components T^ 
also contravariant components Cf of the skin-friction coefficient can be used, provided 
they are computed with the same reference data. 

The inviscid flowfield past the helicopter fuselage was computed with a panel me- 
thod, and the boundary layer with the integral method [21]. Because a laminar separation 
bubble occurs at the nose (see the oil flow picture 123], Fig.3.11c), the boundary layer 
was computed completely turbulent. The agreement between computed and visualized skin- 
friction lines (oil flow picture, Fig. 3.11c) is very good, except for the vicinity of 
the primary separation line. Although neither local nor global interaction (see Chapter 
4.1) was taken into account,they lie quite close to each other, the computed separation 
line a little bit downstream of the other. 

The computed external streamlines and skin-friction lines on the fighter nose, Fig. 
3.9a, appear to be plausible. Here only the direction of the external flowfield was 
measured in three stations. The agreement with the computed directions is good. 

In general it is strongly recommended to compute and plot at least the skin-fric- 
tion lines. They give compared to a vector plot much more information. This will become 
more evident in Chapter 4. 

3.4 Heat Flux 

The heat flux qw per unit surface at the wall is defined as in Cartesian coordi- 
nates: 

(3.44) qw = -k-^j . 
•        3XJ 

Like for the other parameters iso-plots can be drawn, which is not demonstrated 
here. 

The heat flux through a surface element is simply 

(3.45) dQw = qw dA = qw/a dx
1 dx2 . 

3.5 Displacement Thickness and Equivalent Source Strength 

The true three-dimensional displacement thickness 5-j of a computed or measured 
boundary layer can only be found by solving a linear partial differential equation of 
first order. This holds even for some quasi two-dimensional cases like for instance the 
plane-of-symmetry flow [3]. 

In [3] the original formulation of [24] for orthogonal coordinates was extended to 
non-orthogonal curvilinear boundary-layer coordinates and contravariant velocity compo- 
nents: 

(3.46) [/a peVg («1 -S1X1)].1  +  [/a pevf («i-«1x2)].2 = (^Po^'w   • 

Here [ ],a stands for 3[  ]/3x°. On the right-hand side a source term for possible 
wall suction or blowing is included. The quantities <Slxa denote the familiar two-dimen- 
sional definitions: 

6 
(3.47a)  S1y1 = f (1 --£*)  dx3 

x   '0 PeVe1 

6       2 

(3.47b)  6, o = f (1 --P-V-)dx3 
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If from an integral-method solution the quantities (in external streamline coordi- 
nates, see Chapter 2) 

<3-48a»  «1t-[ (1"^)dx3 ' 
o 

o 

are  given,   eq.    (3.46)   changes  to 

(3.49) [/i'PeV^«1],1 + [/i,peV^1],z- [-^rpeVeA1xl],r  [-^peVeA1x2],2  =   (V^PQV^ 

with 

(3.50a) A    ,      &c pe ve1 - PV*1 ,,„3      sinto-*e)t cos(d-*e) 
A1 v 1   =       — — ax    =   51. ;— o 1 „ > 

lx       J       Peve sin-0 't sin-9        n" 
o 

S w*2 W*2 

, Pe ve   - pv ,     sin lip cos tip 
(3.50b)  A1x2 -   

6 A
6 v  dx3 = —^S,. + —^61  . x  J  Peve       sind  *  sin-3 'n 

o 

Other formulations are possible, too. 

The external inviscid streamlines are the characteristics of eq. (3.46) and (3.49). 
These equations therefore can be solved in the boundary-layer coordinate system. 

In Fig. 3.12 as example the computed boundary-layer thickness S   and the displace- 
ment thickness S-\   are given at three stations of the supersonic fighter nose, Fig. 3.9. 
The distributions reflect the flow pattern seen in Fig. 3.9a. In Fig. 3.12b the thinning 
of the boundary layer over the canopy is evident, as well as the accumulation of bounda- 
ry-layer material at the lower part of the fuselage, Fig. 3.12c, due to the downward 
flow direction at x1 > 0.5, Fig. 3.9a. Separation is not imminent. It is interesting to 
note that the ratio boundary-layer thickness to displacement thickness is more or less 
of the order of that of the 1/7-power turbulent boundary layer. The computed boundary- 
layer thickness in cut D, Fig. 3 . 12c , compares well with experimental data. 

Finally the relation for the equivalent inviscid source distribution (/ap0v0)inv 
is given for general boundary-layer coordinates [3]: 

(3.51) (/i'p0v^inv = [/apev^61xi)>1 + [VTPev^«1xZ],2 + (/ap0v^)w , 

and for integral-method results and external streamline coordinates: 

(3.52) (/ap0Vo)inv = [-^PeVeA1xl],. + [-ß=,i6 ve A1x2],„ + (/a p0 vjh . 

These ralations are solved locally. They are used regularly (transpiration concept), 
where weak interactions are to be described (see for instance [5]). 

4.   BOUNDARY-LAYER SEPARATION 

4.1  Basic Considerations 

As was already mentioned it is not possible to describe the phenomenon of separa- 
tion in terms of pure boundary-layer theory. However, many conclusions can be drawn from 
a solution of the boundary-layer equations with regard to the location and to the confi- 
guration of the separation region. 

Compared to two-dimensional separation the situation is very complicated in three- 
dimensional flows. Two-dimensional separation should be considered as a very special 
case of separation, even if only steady flow is considered, as is done here. In Fig. 4.1 
some prototypes of separating flow are given. In the two-dimensional case, Fig. 4.1a, 
the wall-shear stress vanishes, which usually is taken as criterion for separation. The 
angle X, under which the separation streamline leaves the surface was found in [25] to 
be 

(4 1i    tan X - 3 dT,w/dX (4-1)    tanX " dp/dx  • 

In three-dimensional flows only a few points exist on a surface where the wall- 
shear stress actually is zero. In these singular points the skin-friction lines can form 
nodal points, saddle points etc., Fig. 4.1b. The reader is referred with regard to these 
topological properties, and to separation and vortex-flow topology in general to for in- 
stance [25-33]. Apart from the singular points vortex-sheet separation lines appear, Fig. 
4.1c, whose structure, however, is closely connected to the structure of the flow at the 
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Singular points. 

The classical - two-dimensional -. definition of separation must be extended, be- 
cause in any case the formation of vortex sheets, which may roll up to vortices, Fig. 
4.2, and of vortex filaments, which begin at focal points Fig. 4.1b, is coupled with the 
whole flowfield structure. In [7] the following definition is tried: 

"Separation is present, if locally the boundary-layer assumptions break down, if 
vorticity is transported away from the body surface by convection, and subsequent- 
ly vortex sheets and vortices are formed". 

This definition encompasses two basic forms of separation [7]. The first one can be 
called flow-off separation. It appears at acute corners, where the boundary layers simp- 
ly flow off the surface, like at Wing-trailing edges, Fig. 4.2a, 4.2b, or at highly 
swept sharp wing leading edges, Fig. 4.2b. The second one can be called squeeze-off se- 
paration, which is the separation form usually considered, and which appears at round 
flanks, like round wing tips, Fig. 4.2a, or highly swept round wing leading edges, Fig. 
4.2b, or at fuselages, Fig. 4.2c. 

Squeeze-off separation in its simplest form appears on an ellipsoid at angle of at- 
tack, where a vortex-sheet separation line forms in a situation which is termed open se- 
paration in [26]. It can be explained by the curvature behaviour of the boundary layer 
discussed in Chapter 2, Fig. 2.1. In Fig. 4.3a it is sketched how the two boundary-layer 
streams from above and from below move against each other, starting at x1 = 0.4. Note the 
curvature properties of the skin-friction lines. Note further that this picture appears 
already on the base of an inviscid flowfield calculation without taking into account the 
lee-side vortices which are fed by the open separation lines. Despite this the results 
of the laminar boundary-layer solution are in rather good agreement with the experimen- 
tal results [34] for this flow situation. 

In Fig. 4.3b the development of the energy-loss thickness Sj^  and the displacement 
thickness 6-j reflects the convergence of the two boundary-layer streams against each 
other. Boundary-layer material is accumulated at the body flank and the final squeeze- 
off separation is clearly indicated. 

This consideration can be applied, however, somewhat idealizing, to the flow situa- 
tion on a rounded wing tip, Fig. 4.4. The boundary-layer flow moves from the lower side 
of the wing around the tip to the upper side. Because of the curvature properties a con- 
vergence of two boundary-layer streams like in Fig. 4.3a occurs. A tip vortex results 
therefore, which lies on the upper side (suction side) of the wing. If the wing tip is 
sharp, a flow-off separation will occur, Fig. 4.2a. 

By means of boundary-layer considerations [7], flow-off separation at the trailing 
edge of a lifting wing can be analyzed, Fig. 4.5. The boundary layers on the upper and 
the lower side of the wing are sheared against each other, Fig. 4.5a. Downstream of the 
trailing edge they form a vortex layer (wake), which is represented by the discontinuity 
surface in potential theory models of lifting wings. 

Departing from the bi-sector of the upper and the lower inviscid flow direction of 
the wake, a kinematically inactive wake part (v*1(x^)-profile in Fig. 4.5c) can be iden- 
tified, together with an active part (v*2(x^)-profile). The inactive part carries the 
friction drag and the friction induced pressure drag like for a two-dimensional airfoil. 
The active part carries the induced drag. At the trailing edge locally the shear of the 
upper and the lower inviscid flows against each other, Fig. 4.5b, must be compatible 
with the spanwise derivative of the circulation dr/dy [7,16]: 

(4.2)   -2|vet|s1n*e£ -^ . 

Note that many first-order panel methods yield wrong velocity fields on the upper and 
the lower side of the wing in this respect [7,16]. Even if the overall forces and mo- 
ments are predicted correctly, the velocity fields can only be used for boundary-layer 
studies if the condition (4.2) is fulfilled. In Fig. 3.7c the shear of the upper and 
lower inviscid flows against each other, which increases in spanwise direction, accor- 
ding to the increasing dr/dy, is clearly discernable. 

In connection with the observation made with the boundary-layer development on the 
ellipsoid, Fig. 4.3, finally the locality principle [7,16] is mentioned. Many experimen- 
tal and numerical results of flowfield investigations suggest that a change in body 
shape or in the flow configuration, for instance by separation, is felt only locally and 
downstream of that location. This is the reason why in general a boundary-layer computa- 
tion yields good results compared to experimental results, although usually only invis- 
cid solutions without modelling of the separation phenomena are applied. 

The fact that also the location of primary separation lines usually can be predic- 
ted to a good degree of accuracy is connected with this principle. The global interac- 
tion due to the separating boundary layer obviously is weak in most cases. The local in- 
teraction, however, because of the elliptic properties of the flow near a separation 
line or point, finally makes it impossible to predict exactly the location of separa- 
ration. 

The locality principle must be used with care. Of course, the flow is changed up- 
stream too, because of the elliptic property of subsonic flowfields. These changes are 
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small as was seen. They can be significant if for instance the wake of the body carries 
kinematically active vorticity. Then a global interaction can occur which may not be 
significant for the boundary-layer development, but for the global forces on the body. 
An example for this is the induced drag of wings. 

4.2 Basic Global Topology Rules 

The number of singular points obeys topological rules. Here only two of these rules 
will be demonstrated in order to show how such rules can be used. The reader is referred 
to [27] for a thourough discussion of this topic. 

Two classes of singular points exist, Fig.4.1b: a) nodal points N, which include 
focal points F, b) saddle points S.  Half-nodes and half-saddles are denoted N1, and S1, 
respectively. 

The first of the two rules concerns the connection of streamlines and skin-friction 
lines in a two-dimensional plane cutting a three-dimensional body [27]: 

(4.3) UN+-j SR<)  -  Us+| ZS') = -1 • 

Two applications are shown in Fig. 4.6. 

The body with the longitudinal cut, Fig.4.5a, exhibits the familiar attachment 
point in the nose, which is a half-saddle. The separation region contains two recircula- 
tion areas in the cutting plane, which are counted as focal points, Fig. 4.1b. Three 
more half-saddles lie on the body surface and a free saddle point closes the recircula- 
tion areas. Note that this is a real stagnation point, which lies away from the body 
surface. It is seen that the near wake has an orderly structure, which, however, may not 
exist as steady structure at every Reynolds number. The fluid in the recirculation area 
is locked if the flow is steady. 

Fig. 4.6b shows a different situation with real focal points, which represent the 
longitudinal vortices on the lee-side of the wing. These vortices in turn induce secon- 
dary suction peaks on the upper surface of the wing, and finally - secondary - vortex- 
sheet separation which leads to secondary vortices. Even higher order vortices may ap- 
pear. It is seen that three attachment lines with half saddles are necessary on the up- 
per wing surface in order to complete the picture. In the lower part it is indicated 
that a laminar boundary layer separates at a higher velocity level (note that the local 
interaction due to the separation process is not indicated in the pressure distribution) 
than a turbulent one. This leads to stronger vortices in the laminar case compared to 
the turbulent case, because of the higher vorticity content [7]. 

The second rule concerns the connection of skin-friction lines on a three-dimensio- 
nal body [27]: 

(4.4) ZN - Ks = 2 . 

This rule will be demonstrated in Chapter 4.4, Fig. 4.12. 

The topological structure, i.e. the topography of skin-friction lines and stream- 
lines, can be very complicated. In Fig. 4.7 [30] the vicinity of the nose of a blunt bo- 
dy is shown with possible topographies, indicating that vortex filaments and vortex 
sheets leave the surface (vortex filaments may attach, too, case 15), and arrange them- 
selves above the body surface. It is very important to note that the same skin-friction 
line topography on the surface does not necessarily mean the same vortex topography 
above the surface, cases 2 and 3, cases 10 and 11. Therefore the interpretation of com- 
puted skin-friction patterns or of oil-flow patterns on a body surface must be made with 
great care. 

Many of the patterns shown in Fig. 4.7 have been verified in experiment [35]. They 
are partly very sensitive to changes in angle of attack, Reynolds number and Mach num- 
ber. It appears, however, that with increasing Reynolds number a decrease of complexity 
occurs [36]. 

4.3 Local Topography of Separation Lines, |T|-Minimum Line 

In [37,3] the flow in the vicinity of vortex-sheet separation lines was studied by 
means of local series expansions (see also [25,28]). One of the results was that very 
close to a separation line a- |TJ -minimum line exists, Fig. 4.8. Consider a point P0 on 
the separation line, Fig. 4.8a. Locally a coordinate system is oriented such that x1 is 
normal to the separation line, and x2 tangential to it. Schematically the wall-shear 
stresses have a distribution like shown in Fig. 4.8b, with T^3=0 at Po(x1=0), and T

23 

finite. A minimum of |TJ occurs at 

(4.5)   AX' = 
1  -Z3*?? 
m      rT13\2. /23,2 

.     For details see [37,3]. In two-dimensional flows and in plane-of-symmetry flows 
4xm=0, because there T

23
 = 0, T

1
3^0. In general three-dimensional cases, including the 
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infinite swept wing case Axm is finite. This means that the |xj-minimum line, which can 
be observed in any experiment too, lies close, but not on the separation line. In three- 
dimensional boundary-layer calculations the occurance of the |xl-winiroum line can be 
used as an indicator of a separation line. If locally eq.(4.5) is evaluated, especially 
if other indicators of separation are present (see next sub-chapter), and 

«1 « 1 
holds, a separation line is imminent. In Fig. 4.8c the situation on a swept wing is 
sketched, where iteratively the location of the separation line was approximated [37]. 

usually the |TJ-minimum line appears already much upstream of an open separation 
line. If the separation line is curved, also a points-of-inflection line occurs (37,3]. 

With the series expansion technique also the local topography of an attachment line 
can be studied [3]. As was already mentioned in Chapter 3.1, the pressure-maximum line 
lies close but not on the attachment line, Fig. 3.7b. Other details of the attachment 
line - inviscid streamline and skin-friction line patterns - can be deduced, too [3]. 

4.4  Separation Indicators and their Application 

The fact that on a three-dimensional separation line the wall-shear stress does not 
vanish, Fig. 4.8, makes it difficult in principle to decide, if the computation process 
breaks down, whether separation is found by the computation or not. The computation pro- 
cess can break down if the CFL-condition, Chapter 2, is violated. This indeed occurs usu- 
ally in the vicinity of separation. It can, however,also occur, if the coordinate system, 
at least locally, is wrongly oriented. 

Although the matter of three-dimensional separation in boundary-layer computations 
was studied by several authors (see for instance [38-41]), no simple single criterion 
exists. For practical purposes the following indicators serve well to detect separation 
in computed boundary-layer data: 

1. local convergence of skin-friction lines (Fig. 4.3a), 

2. bulging of the boundary-layer thickness (a), and the displacement-thickness i&-\) 
contours (Fig. 4.3b), 

3. occurrence of a |T.I-minimum line (Fig. 4.3a, Fig. 4.8c). 

Other indicators of more limited value are 

4. wall-shear stress approaches zero, |T.W| •*• Q (Fig. 4.10a), 

5. sudden rise of streamwise form parameter Htt = i^^/  *2tt 'Fi9- 4.10b) , 

6. sudden rise of equivalent inviscid source strength. 

In the following these indicators are applied to the results of boundary-layer com- 
putations for a car body, and for an airplane fuselage. 

In [42] (see also [12]) the flow past a research car body [43] was studied, Fig.4.9. 
The length of the body is L= 4.328m. The Reynolds number was Reref = 9 . 74 • 10

6 , and the 
free-stream Mach number Mref= 0.1. The inviscid flowfield was computed with a panel me- 
thod at zero yaw, but in the presence of the ground. The turbulent boundary layer was 
computed with the integral method [21]. 

Because this car body has a good aerodynamic shape (cD= 0.16), the separation zone 
is small, Fig. 4.9b. Wall shear-stress distribution, Fig. 4.10a, and streamwise form pa- 
rameter, Fig. 4.10b, show apart from two peculiar regions (K3) nothing which points to 
separation. 

In Fig. 4.11a strong variations especially of the displacement thickness 6-\   are 
seen. From the considerations in Chapter 4.1 it is known that a positive bulging (loca- 
tion c in Fig. 4.11a) points to squeeze-off separation, if it is accompanied by a con- 
vergence of skin-friction lines (indicators 1 and 2). This is the case here: the conver- 
gence of skin-friction lines at this location can be seen clearly in Fig. 4.12a. Conse- 
quently a negative bulging, and especially a negative <S-| (locations a, b, and d in Fig. 
4.11a) points to a divergence of skin-friction lines, Fig. 4.12a. This feature is indi- 
cated in Fig. 4.3b for the flow past the ellipsoid, too. In Fig. 4.11b it is shown that 
the bulging is a property of the real displacement thickness &-\   only, and not of its 
components Sixa, eq. (3.47). Therefore in order to work with the separation indicator 2 
eq. (3.46) has to be solved. 

The point cf •+ 0 in Fig. 4.10a is accompanied by a convergence of skin-friction 
lines, too, Fig. 4.12a, point K3. This feature is reflected in Fig. 4.10b, but not in 
the thickness distributions, Fig. 4.11. It can be concluded that this is a singular 
point, a nodal point, especially because it lies in the - upper - line of symmetry. 

Finally on the base of the computed results and with the help of the second topolo- 
gical rule eq. (4.4) the possible surface separation topography shown in Fig. 4.12 emer- 
ges. At the left and right flanks a short vortex-sheet separation line each is present. 
In the back a pair of vortex filaments leaves the surface. Five nodal points, two focal 
points, and five saddle points are distributed over the body surface. The nodal points K-] 
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and K2 and also the saddle point Si are evident from the computation, as well as the two 
vortex-sheet separation lines. The other points are constructed. Experimental results 
seem to confirm this pattern [12], which is also discussed in [31]. 

The boundary-layer computations for the airplane fuselage [44] were made in order 
to study means of passive boundary-layer control by geometry shaping. The computations 
were made for a freestream Mach number Mref= 0.8, and a Reynolds number with respect to 
the fuselage length of Re= 7 • 10s . The angle of attack was a = 0°. The inviscid flowfields 
were found with panel computations, the turbulent boundary layers were computed with the 
integral method [21]. 

In Fig. 4.13 the panel model is shown. The original configuration (MO) has circular 
cross-sections all over. The modifications M1 and M2 were found by a smooth blending of 
the cross-sections, starting at'x^B=0.6 from the circular section, to a rounded triang- 
le (M1), and a rounded circle/rectangle (M2) at x^ = 1 , respectively [44]. The center of 
gravity of the modified cross-sections M1 and M2 lies always deeper than that of the 
original cross-sections MO. The side-view contour and the largest width of the fuselage 
are the same for all three configurations. 

In Fig. 4.14 the development of the inviscid flow and the boundary layer is shown. 
A strong downwash and indications for a massive separation at x'"0 . 9 are evident for the 
original fuselage, Fig. 4.14a. The down-shift of the center of gravity of the cross-sec- 
tions reduces the downwash: the inviscid flow does not converge towards the lower symme- 
try line at x' = 0.9, and the skin-friction lines don't get swept away from it , Figs. 
4.14b and c, as for MO, Fig. 4.14a. 

The distributions of the boundary-layer thickness S   and the displacement thickness 
6-) at x1 =0.76, Fig. 4.15 are only a little bit different for the three configurations. 
At x1 =0.89, however, it is seen that for M0 massive separation is present, whereas for 
M1 and M2 a vortex-sheet separation is indicated, Fig. 4.16, see also Figs. 4.14b and c. 

Taking together all clues, the computational results indicate a strong thickening of 
the boundary layer below the upswept fuselage end and a massive separation for the ori- 
ginal configuration M0, Fig. 4.17a. The modifications bring about a somewhat lesser 
thickening, and especially a change of the structure of the separation region, as indi- 
cated in Fig. 4.17b. This structure certainly is favourable and possibly will lead to a 
smaller total drag of the configuration. 

The results are subject to the following criticisms: a) The boundary-layer thick- 
ness is of the order of the fuselage radius around the lower symmetry line at x^ = 0.9. 
First-order boundary-layer theory certainly is inadequate here. The displacement of the 
external inviscid flow must be taken into account, b) Neither the global nor the local 
interaction was taken into account. The locality principle says that the global interac- 
tion might play no large role, however, in order to make a statement about the drag 
changes, the complete interaction must be taken into account. 

The fact that neither the influence of the wing nor that of the tail unit was taken 
into account, makes it clear that the basic reason for the adverse boundary-layer beha- 
viour beneath an upswept fuselage end is the upsweep itself. Wing and tail unit, how- 
ever, may modify to a certain extend the picture. 

5.   CONCLUSIONS 

It was shown how results from boundary-layer computations can be post-processed,and 
how they can be used in design aerodynamics. With the techniques available practically 
every geometric configuration can be handled as long as only the boundary-layer concept 
is valid. 

In design aerodynamics boundary-layer studies are used for many purposes. Typical 
applications are: airfoil and wing design, fuselage design, boundary-layer control by 
cooling, heating, suction, blowing, boundary-layer stability  and transition, separation 
detection and control. New technologies like the laminar wing or hypersonic transport 
systems demand the applipation of boundary-layer theory. 

The problem of turbulence modeling seems not to be very critical, at least as long 
as the boundary layers are pressure-field driven. Eddy viscosity models and the assumpt- 
ion of turbulent isotropy usually are sufficient. The situation is different with regard 
to hydrodynamic stability and transition laminar-turbulent. Empirical criteria exist on- 
ly for two-dimensional and for swept-wing cases at low Mach numbers. The reason for this 
unsatisfactory situation is that transition in three-dimensional boundary layers can oc- 
cur by several highly complex mechanisms, which are not yet well explored. 

Integral methods and finite-difference methods seem to give results of comparable 
quality. Boundary-layer control as cooling, heating, suction, and blowing usually is 
handled with finite-difference methods because of their higher flexibility. For most of 
the problems of design aerodynamics first-order boundary-layer theory suffices. If the 
Reynolds numbers are low and for instance at the end of fuselages, where a reverse Mang- 
ier-effect occurs, second or higher-order boundary-layer theory should be employed. 

Separation locations, at least the primary separation line, can be found in many 
cases with sufficient accuracy, even if no global interaction is taken into account. In 
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some cases even the separation topography can be deduced to a certain extend. There is, 
of course, always the desire to treat separation in more detail, and also to compute 
drag and lift of a configuration without the classical modeling approaches. In such ca- 
ses the local and the global interactions must be taken into account. 

The ultimate approach to this end is the uniform solution of the Navier-Stokes 
equations, which, however, completely leads away from boundary-layer theory. For several 
reasons, one of them the high costs of such solutions, other approaches are in use or in 
development, like inverse methods, interaction schemes etc.. An approach, where bounda- 
ry-layer theory will play a large role in future, too, is the concept of zonal solutions, 
where the Navier-Stokes equations will be solved only where the boundary-layer concept 
breaks down. Finally,boundary-layer theory will increasingly be used for unsteady prob- 
lems of all kind. 
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SYMBOLS 

7. 1  Latin Letters 

Set 

«3 

aaß 

CFL 

CD 

Cf 

= an a22" (al 2'2' determinant of 
covariant surface metric tensor 

covariant base vector of surface- 
tangential coordinate 

covariant base vector of surface- 
normal coordinate 

component of covariant surface 
metric tensor 

Courant-Friedrichs-Lewy condition 

drag coefficient 

= Ixwl / <0-5 Pe (ve)
2) / wall-shear- 

stress coefficient 

ds, dA, dV length, surface, and volume ele- 
ment 

S.V 

F 

F 

FirF*i 

Htt 

k 

L 

Lxo 

M 

N,N' 

n 

P 

P 

Qw 

<5w 
Re 

Ri' 

Ra 

r 

S,S' 

T 

t 

U, V, w 

V 

V 

VJ' 

.ra r*a 

vt,vn 

unit vector of Cartesian refe- 
rence coordinate system 

focus point 

vector 

contravariant, and physical com- 
ponent of vector 

= äit/6itt> formparameter of 
streamwise (t) boundary-layer 
profile 

heat-conductivity coefficient 

length 

normalizing length of x°-coordi- 
nate 

Mach number 

nodal point, and half-nodal point 

surface-tangential coordinate 
normal to external inviscid 
streamline (cross-flow direction) 

point 

(static) pressure 

heat flux 

heat flux per unit surface area 

Reynoldsnumber 

HR*
1
 , Cartesian shear-force comp. 

contravariant shear-force compo- 
nent in surface-tangential coor- 
dinate 

radius 

saddle point, and half-saddle 
point 

(static) temperature 

surface-tangential coordinate in 
direction of external inviscid 
streamline (streamwise direction) 

Cartesian velocity components 

velocity vector 

= |v|, amount of velocity, speed 

= v*J, Cartesian components of 
velocity 

contravariant, and physical com- 
ponent of velocity in surface- 
tangential coordinate 

= v*3, velocity component in sur- 
face-normal coordinate 

streamwise, and crossflow veloci- 
ty component 

x,y,z   Cartesian coordinates 

x3      Cartesian reference coordinate 

xa      surface-tangential coordinate, 
Gaussian surface parameter 

x3      surface normal locally monoclinic 
coordinate 

y       spanwise coordinate on wings 

z       surface-normal coordinate 

7.2  Greek Letters 

angle of attack 

= ax1' /3xa, coordinate of surface- 
tangential base vector 

= 3xi'/3x , coordinate of surface- 
normal base vector 

si' ß3 

Bk 

r 
A1xa 

S 

«1 

&2 

«3 

X, X-i 

w 

V 

p 

inverse of ß i
1 

circulation 

integral thickness 

boundary-layer thickness 

displacement thickness 

momentum-loss thickness 

energy-loss thickness 

integral thickness 

angle between x2=const., and x' = A 
const.-coordinate line 

separation angle 

viscosity coefficient 

= u/p, cinematic viscosity coeffi- 
cent 

wing coordinates 

density 

r_ (wall) shear-stress vector 

T       = | xj, amount of (wall) shear stress 

Ta3;T*a3 contravariant, and physical compo- 
nent of (wall) shear-stress vector 

ip       characteristic manifold 
lPx»vPytPz derivatives of f  in x, y, z-direction 

i|i       angle between x2=const. -coordinate 
line (x1-coordinate) and velocity 
or shear-stress vector 

7.3  Indices 

7.3.1 Upper and Lower Indices 

i, j, k, . . =1,2,3; denotes general tensor 
quantities, parameters, etc. 

a,&,y,..   =1,2; denotes surface-tangential 
tensor quantities, parameters, etc. 

3       denotes surface-normal tensor quan- 
tities, parameters, etc. 

7.3.2 Upper Indices 

'       quantity in Cartesian reference co- 
ordinate system 

*       physical quantity 

7.3.3 Lower Indices 

e       external inviscid flow 

inv     inviscid flow 
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J, lower side of wing 

m refers to | T_| -minimum line 

n cross-flow direction 

ref reference quantity 

t streamwise direction 

u upper side of wing 

w,wall wall or surface 

(act), (ii) no summation 

(i), (a) no summation 

7.3.4 Other Symbols 

« freestream condition 

_ underbar, vector quantity 

|p quantity at point P 

,j_ partial derivative: vL = avVaxJ 

qfx1) i= 1,2, 3:  q = q(x\ x2, x3) 

The Einstein summation convention is used 
throughout, e.g.: 

6hvv = SJ, v1' + B^, v2'+ S^t v3' . 

8. FIGURES 

view from above 

Fig. 2.1 

/ 
/boundary-layer 

/    streamline 

skin-friction 
line 

Inviscid external 
streamline 

•   rw    \| 
Iw 

Schematic of three-dimensional boundary layer [7], 
a) flow in external streamline coordinates, 
b) local centrifugal consideration (for convenience in Cartesian 

coordinates). 

inviscid external 
stream!ine 

Fig.2.2   Streamline curvature of a three-dimensional boundary layer (schemati- 
cally) [7], 
a) negative for all streamlines, 
b) positive in upper part, negative in lower part, 
c) positive for all streamlines. 
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view from above 

a) 
• skin-friction line ) 
•b.l. streamlines  (characteristics 
external streamline ) 

b) 

(—analytical domain of dependence ) 
numerical domain of dependence ) of P 
analytical domain of influence- 

^^       ^y~ 

tion line—' skin-friction  nne- 
external streamline- 

^finite-diff. molecule 
o data known 
• data to be computed 

Fig.2.3 Three-dimensional boundary  layer, 
a) characteristics   (skewed  stream  surface), 
b) analytical  and numerical  domain of  dependence  of  flow at p(x,y) 

X'H 

Fig.3.1    Boundary-layer coordinates, 
a) classical nomenclatures, 
b) present nomenclature, 
c) surface element. 

*2A  b) 
i 

0.5 

*-       0 

tip 

lower side 

'--trail ing edge 

-0.5 root 

upper side 

•leading edge 

trailing edge• 

0.5 1   x1 

Fig.3.2   Wing percent-line coordinate system, 
a) surface coordinates, 
b) parameter plane x01. 
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o°-12   wt      ^ 1.0 x 

Fig.3.3   Metric properties of wing coordinates [11], 
a) planform, 
b) to d) components of metric tensor. 

*2* 

0.5- 

-^-n r- 
upper symmetry line 

lower symmetry line 

upper symmetry line 

^—I r— 
0.5 

Fig.3.4   Fuselage cross-section coordinate system, 
a) surface coordinates, 
b) parameter plane xa. 

base~ 

1 x1 
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0 0 

lower symmetry line 

0.5 
upper symmetry line 

0.8 x1 

0.8 xl 

Pig.3.5   Metric properties of fuselage coordinates (right half) [11], 
a) configuration, 
b)to d) components of metric tensor. 

view in -x -direction 

b) 

surface 
element 

Fig.3.6   a) Vector components to be transformed, 
b) general components and angle ip 
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leading 
edge 
x^O 

r^ri^^ 

suction side 

inviscid exter- 
nal streamline 

skin-friction 
line 

0.32 0.64  0.96 1.28  1.60 1.92 2.24 

x1' [m] 

direction of upper-side computation d) 
upper side of wing 

 T\—.' 
pleading edge (x^=0) 

X2=      -r 
const.     \ 

xWonst 

Fig. 3.7 

y?- = const.-lines H 
inviscid external 
streamlines 

•direction of 
leading edge 
computation 

-attachment 
ine 

«pressure 
. maximum 
direction of lower-side 
computation 

Placement of  initial  data, 
a) attachment  line  on a  swept wing  at angle  of  attack   (schematically), 
b) computational  approach  at the  leading edge   [14], 
c) inflow and outflow boundaries  on  a wing   [16], 

(Kolbe wing,   Ma, = 0.25,   Re = 18-106,   a = 8.2°) 
d) hybrid coordinates  for car body  with  freestream at yaw angle   ß   [17]. 

const. 
 inviscid external streamline 
 skin-friction line 
-»- experiment: direction 

of inviscid flow 

R1 [N] 

Fig. 3.8   Surface element for 
the computation of 
friction forces. 

Fig. 3.9 
Boundary-layer computation for a super- 

H. sonic fighter nose [19](M»=2, ReL=1m=2.7-10
7) 

' a) side view with inviscid streamlines, 
and skin-friction lines, 

b) cumulated friction forces. 
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(i j+1) (i+I.J+1 

1 
AX 

< 

2    • 

i 
v2 

m 

Pm+1 
"Wl 

tan*m 

m 

(l 
•a  AX1    — -*» 

r(i+l.j) 

Fig.3.10 Schematic  of  iterative  shooting technique   [22] 

inviscid external  streamline 
skin friction line 

"V 0-5 
upper symmetry line 

x3' [m] 

0,07   - 

0 
-0.D7 

x2 = 0 x'=const. 
b) 

x^const. 

x^O.5  inviscid external streamlir 

-x'=0 -skin-friction line «i-i 
Zl 

3' r , laminar 
L",J separation bubble 

x1' [m] 

c) 

CO   0.14   0.28  0.42   0.56  0.70   0.84   0.' 1.12   1.26   1.40   1.54 

x1'[m] 

Fig.3.11    Boundary-layer computation for a helicopter fuselage [19] 
(M» = 0.184, Re = 6.6 • 106 (Lref = 1.63m) , a = -5°), 
a) external streamlines and skin-friction lines in the xa~plane, 
b) side view of true configuration, 
c) oil-flow picture [23]. 
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Fig.3.12   Boundary-layer computation for a supersonic fighter nose [19] 
(M„ = 2, ReL=im= 2.7 • 1 07 ) , 
a) to c) cross-sections A, B and D as indicated in Fig. 3.9a, 

left side: boundary-layer thickness 6, 
right side: displacement thickness S-j. 

A: Discriminant , 

.separating 
stream,, 

surface 

Trace 

separation line 

Fig.4.1 Separation patterns, 
a) two-dimensional flow, 
b) singular points of three-dimensional separation [28], 
c) vortex-sheet separation line [3]. 
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tip vortex 

vortex 
feeding layer 

flow-off separation: type a 
squeeze-off separation: type b 

Fig. 4.2 
Schematic of vortex layers and vortices [7 
a) wing with small leading-edge sweep, 
b) wing with large leading-edge sweep, 
c) fuselage 

] at 

-inviscid external streamline 

0.25 

0.5 

upper symmetry 

Fig.4.3   Schematic of squeeze-off separation [7], 
a) inviscid streamlines, skin-friction lines, primary separation line, 

|x|-minimum line in the xaplane of a 1:6 ellipsoid at o=5° angle of at- 
tack, laminar flow [7,18] (right half of ellipsoid), 
energy-loss thickness <53t, and displacement thickness 6-| at stations 

of solution a) [18]. ,1 = const. 

leading edge 

Fig. 4.4 Schematic  of  squeeze-off 
separation  on  a round wing 
tip   (idealized),   which 
leads to a tip vortex   [7]. 

ideal  inviscid 
streamline (model 4) 

skin-friction line 

separation line 

trailing edge 
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a) 
inviscid streamlines: 

-lower side 
-upper side 

trailing edge 

view from above 

vortex layer 

*2        *2 
l-yeu = -ve. 

^u  = -^ 

upper inviscid 
external flow 

v^x 

lower inviscid 
external flow 

Fig.4.5 Schematic  of  the  three-dimensional wake  of  a  lifting wing  in  steady 
sub-critical  flow   [7], 
a) trailing edge  detail, 
b) inviscid flow just downstream of the trailing edge (view from above), 
c) idealized wake structure downstream of a trailing edge. 

cut A - A 

Fig.4.6    Singular points in two-dimensional 
planes cutting three-dimensional bodies 
(schematically), 
a) fuselage-like body with longitudinal 

cut, 
b) delta wing with transversal cut [7]. laminar   V^ /turbulent 

\     ^ / 
squeeze-off separation 

Fig. 4.7 
The most important topographical 
structures of skin-friction lines 
and streamlines (symmetry plane) 
on a blunt body [30], easel: a=0°. 

'"ffl 
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A separation line 
a)  *2"M, ^\r\-minimum line 

forward I      back flow region 
flow region/ ^^*r ye 

P0 

' \ 

X1 

b) 
^* 1 x2=0 

IEI- 

/ 
minimum 
^ .|r| 

.— r 

po 

Ax1m 

x' 

~-r2J 

c) 

0.002 

l\ 

0 

x2 

-0.002 

I       I     1 

* i 

i   i    i    i - 
Lpo/n/ of inflexion line 

Y^fina 
1 

separation nn * 

provisional separation llne\ 
1                     U-ylxW [£'* 

i.i 
V»,. _ 

p% A •-/' 

1 ~~~i> ;;.. j 
L u 

—w; i p r-v 

1 

Fig. 4.8 

-0.002 0 0.002 

Local topography of vortex-sheet separation lines [3], 
a) separation line and |TJ-minimum line, 
b) distributions of wall-shear stress, 
c) application on a swept wing [37]. 

external inviscid streamline 
kin-friction lir 

x2=0.5 

ground  separation zone 

xi=r 
I.to       i.ia J.IO  j.sa 

x1' [m] 
Fig. 4.9 
Boundary-layer computation for a car body 
[42] (SCHLOER car), 
a) panel model of body with schematic of 

boundary-layer coordinates, 
b) side view with external inviscid 

streamlines, and skin-friction lines. 

Cf 10 

1.0 X1 

Fig.4.10   Results of boundary-layer computation [42], 
a) amount of wall-shear stress coefficient Cf(x1,x2) (right half of car), 
b) streamwise form parameter Ht^-(x1,x

2) (right half of car). 
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0.5 

Fig. 4.11 Results of boundary-layer computation [42], 
a) distribution of boundary-layer thickness 6, and displacement thickness 

«1 at x1 = 0.86, 
b) 6   and S-\   and the components «1x

1'ä1x
2 at x =0-86 (right half of car) . 

a )     \     upper symmetry 

; ,K.K3,     "n°     °-5 
•inviscid external  streamline 
skin-friction line     o 

0 

D)   vortex 
filaments    ^3 

H 

upper symmetry line 

Fig. 4.12 
Results of boundary-layer 
computation [4 2], 
a) inviscid streamlines, 

skin-friction lines, and 
possible separation topo- 
graphy in the xa-plane 
(right half of car), 

b) possible separation topo- 
graphy on real configu- 
ration. 

lower symmetry 1 ine 

vortex-sheet separation 

Fig. 4.13 Schematic of a fuselage 
and its modifications 
[44] . 

u  . Original (MOI  Modification (Ml)  Modification (M2) 
Cross section A 
seen from the 
front 
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lower symmetry line 

  inviscid external 
stream line 

-.—   skin-Eriction line 

upper symmetry line 
1    x1 

Fig.4.14   External inviscid streamlines, and skin-friction lines [44] in the xa-plane 
(right half of fuselages), and in the side view of the fuselages, 
a) original fuselage MO,  b) modification M1 ,  c) modification M2. 

a) ^-— 
i 

cross -section A 
x3'J i 

b) 

/            y~~% 

x1 = 0.76 

y5£ T^ ^N\ 
•^w A^\ Jl v\ Jägi ]] jfo - ~^^':S\\ 

z7 I 

\       /       0.005- 

w 
'0.005 

x"l^ V -Sä 

/    0.005- 

WSmL 
OÄ^p^ori 
/^~^    con 
-0.005 

^v^O.Ol- -0.01 \^0.01 - - 0.01 

6 01 6 6, 

Fig. 4. 15   Distribution of boundary-layer thickness fi, and displacement thickness &-\ at 
x1 = 0.76 [44] , 
a) original fuselage M0,  b) modification M1,  c) modification M2. 

Fig. 4.16 
Distribution of boundary-layer thickness 6, and 
displacement thickness &-\  atx1 = 0.89 [44], 
a) original fuselage M0,  b) modification M1, 
c) modification M2. 
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AN APPROACH TO PRACTICAL AERODYNAMIC CALCULATIONS* 
by 

Tuncer Cebeci 
Douglas Aircraft Company 
3855 Lakewood Boulevard 

Long Beach, California 90846 

SUMMARY 

The emphasis of these lectures is on the numerical solution of three-dimensional 
boundary-layer equations using forms of Keller's Box scheme and interaction with solu- 
tions of inviscid-flow equations. Calculations are described for the flow over a circu- 
lar cylinder started impulsively from rest and a prolate spheroid at angle of attack and 
were obtained with prescribed free-stream velocity distribution; the results emphasize 
the need for the Characteristic Box finite-difference scheme, which automatically satis- 
fies the numerical stability criterion, in regions of flow where the w-velocity component 
is negative. Corresponding calculations, this time with a novel interactive method, are 
reported for the flow over the leading edge of a thin ellipse, over an oscillating air- 
foil and around wings; the results confirm that the interactive procedure provides accu- 
rate solutions, without numerical problems, in regions of flow separation. 

1.0  INTRODUCTION 

The design and development of aircraft configurations relies heavily on expensive 
and time-consuming experimental programs involving the evaluation of a large number of 
possible components, with a range of flow velocities and orientations and of power 
installation effects. The present goal is to develop reliable, accurate and efficient 
methods for computing aerodynamic flows over a wide variety of complex aircraft configu- 
rations and thereby help to improve aircraft performance with designs of greater simplic- 
ity and increased reliability. 

It is generally accepted that all significant aspects of a fluid flow can be ade- 
quately described by an appropriate solution of the Navier-Stokes equations. Since their 
solution for flows over complex configurations is rather difficult and expensive, empha- 
sis has been placed on particular forms such as those appropriate to regions of inviscid 
flow and boundary layers. In recent years, with the availability of supercomputers and 
advances in numerical methods, attention has also been paid to the Reynolds-averaged 
Navier-Stokes equations and various further-reduced forms including their so-called 
parabolized forms and the thin-layer Navier-Stokes equations. Significant advances have 
been made in this area by, for example, Shang and Scherr [1], who made the first attempt 
to numerically simulate the flowfield around a complete aircraft by solving the Navier- 
Stokes equations. To demonstrate the feasibility of their approach they chose the hyper- 
sonic research aircraft X24C-10D, for which a detailed experimental database exists. 
Using a mesh system around 1/2 x 106 nodes, they performed impressive calculations at 
an angle of attack of six degrees with a nominal Mach number of 5.95, and indicated the 
areas where future research should concentrate to make this approach more efficient and 
practical. 

Even though the intermediate forms of the Navier-Stokes equations in the form of 
inviscid-flow and boundary-layer equations have been popular for many years, completely 
satisfactory solutions have not been obtained for general flows due to the lack of a 
proper coupling procedure between inviscid and viscous flows. The main obstacle to this 
approach has been associated with flow separation. When the boundary-layer equations are 
solved for a prescribed pressure distribution, the solution breaks down at the point of 
vanishing wall shear. However, the solution does not break down if the external flow 
velocity is computed as part of the solution by, for example, prescribing a displacement 
thickness: this is known as the inverse approach and allows the solution of the boundary- 
layer equations with separation. 

Very recently, my colleagues and I have made progress towards the general goal by 
the development of novel techniques for the solution of inviscid- and viscous-flow equa- 
tions and for the coupling of the solutions. The interactive boundary-layer approach is 
very general and allows any inviscid flow method to be coupled with the boundary-layer 
equations. For example, in its application to two-dimensional subsonic flows over air- 
foils, it employs Halsey's inviscid procedure [2] based on the conformal mapping and 
Fourier analysis techniques and computes the flow over the airfoil and its wake. Succes- 
sive viscous sweeps are performed, after each of which the external inviscid solution is 
recomputed, until a converged solution is obtained. The boundary-layer method involves 
an inverse finite-difference scheme developed by Cebeci [3], uses an algebraic eddy- 
viscosity formulation due to Cebeci and Smith [4] and is able to compute flows with large 
regions of separation without numerical difficulties. In regions of reverse flow, it 
uses the FLARE approximation [5] in which the streamwise convective term is set equal to 
zero in the recirculating region. 

The boundary-layer calculation is initiated on each surface of the airfoil by a 
direct solution in which the boundary condition at the outer edge follows from matching 
the viscous velocity with the latest computed inviscid surface-velocity distribution. 
As the calculation proceeds downstream, the boundary-layer algorithm is switched into an 
inverse mode in which the viscous-edge velocity is computed as part of the solution and 

*This work was performed under Contract F49620-84-C-0007 for the Air Force Office of 
Scientific Research. 
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is accomplished by applying an interaction procedure suggested by Veldman [6] and further 
developed by Cebeci et al . [7-10]. An overrelaxation scheme is employed and has been 
shown to improve considerably the rate of convergence when combined with the interactive 
viscous calculation. When calculations are required for a range of angles of attack, the 
solution, for each successive angle employs the previous solution as an initial approxi- 
mation and the converged solution for each angle requires less than 10 iterations. 

The method for calculating the wake region has some novel features which allow 
results to be obtained at high angles of attack with which a sudden jump can occur at the 
trailing edge by the removal of the no-slip boundary condition on the airfoil surface. 
A small step, with the size related to chord Reynolds number, is employed in the immedi- 
ate vicinity of the trailing edge to avoid this jump. For wake calculations involving 
reverse-flow regions, an additional iterative scheme, based on the homotopy continuation 
method, is employed with the FLARE approximation. Studies by Cebeci et al. have shown 
that the boundary-layer calculations would break down without this added feature, when a 
significant trail1ng-edge separation region is present. To avoid this, the trai 1 ing-edge 
velocity profile is modified to correspond to an attached flow profile which allows 
boundary-layer calculations to be performed at the next downstream station; the upstream 
profiles are gradually modified and the downstream profile is recomputed until'a solution 
is obtained for the original separated velocity profile. This computational scheme is 
employed at each wake station for which there is flow reversal. 

In the past year, this interactive boundary-layer method has been further developed 
to represent two-dimensional steady and two-dimensional time-dependent flows. It has 
also been extended to three-dimensional flows by using a strip-theory as well as a quasi- 
three-dimensional approximation to the boundary-layer equations. Currently, the inter- 
active boundary-layer method is being extended to full three-dimensional flows. 

The substance of these lectures is provided in the following four sections which 
deal, in turn, with equations, coordinate systems and initial conditions, numerical solu- 
tion procedures and results obtained by the application of the calculation method. The 
emphasis of the following section is on three-dimensional boundary-layer equations and 
their solutions, and reference is made to the inviscid-flow equations where appropriate. 
The correct choice of a coordinate system is essential to the subject and, together with 
the provision of initial conditions, is addressed in connection with wings. The turbu- 
lence model, appropriate transformations and further comments on interaction are 
included. Section 3 deals with numerical methods for the solution of boundary-layer 
equations and considers separately flows without and with reversal, and with separation. 
The applications of Sections 4 and 5 have been selected to demonstrate problems and solu- 
tions associated with a hierarchy of problems which include some of direct relevance to 
airplane configurations. 

Some of the material of these sections is taken from referenced publications to 
which the reader is directed for further information. 

2.0 CONSERVATION EQUATIONS 

2.1 Boundary-Layer Equations 

Consider a fJ_ow over a three-dimensional body which is defined in the Cartesian 
coordinate  system x,y,z by 

F(x,y,z) 0 (2.1) 

A convenient coordinate system for three-dimensional boundary-layer equations for laminar 
and turbulent flows is nonorthogonal and curvilinear as shown in Fig. 2.1. Here x and z 
denote the coordinate system on the surface of the body, 9 represents the angle between 

BODY SURFACE 

CONSTANT  x  LINE,» = 0. 

CONSTANT z  LINE, (y = 0) 

Figure 2.1. Notation for nonorthogonal curvilinear coordinate system on the body 
surface. Note that x and z are not orthogonal to each other but y is to x 
and z. 
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the coordinate lines x and z, and y is the actual distance measured normal to the sur- 
face. First-order boundary-layer theory assumes that the pressure is constant across the 
shear layer and stress gradients in directions parallel to the surface are negligible 
compared with those normal to the surface. The resulting equations have been given, for 
example, by Bradshaw et al . [11] and can be written in the following form for an 
incompressible flow. 

Continuity Equation 

x-Momentum Equation 

|^ (uh2 sine) + JJ  (wh1 sine) + fy (vh^ sine) = 0 (2.2) 

J^Üf*    ^fl + v0-coM  K/.csce V2  +K12uw 

2 
CSC   6 3p       .    COte    CSC6    3D    .    3 /,,   3u ,,-TTrr\ o    r>\ 

" ' pTTj— 3x    +—^rz—at + ay (v 3y • u v  ' !Z-3) 

z-Homentum  Equation 

^i7   +^H + V  ly + csc9 Ki"2 -cote K2w2 + K21UW 

. «tS^ |£ . e^ |! t |_ (v |fi . v^., (2.4) 

y = 0:    u, v, w = 0 (2.5a) 
y = 6:    u = u(x,z),   w = w (x,z) (2.5b) 

Here h^  and h2 denote the surface metric coefficients and 9 denotes the angle 
between the coordinate lines x and z and, as a result of first-order boundary-layer 
theory, the metric coefficients are functions o£ jth£ surface coordinates x and z only. 
They can be obtained from the relations between x,y,z and x,y,z and are given by 

A - #2+ <H)2 + #2 (2-6a> 
h' - 'ff>2 + <S)2 + (!f>2 (2-6b) 

cose   -   Ox/3x)(3x/3z)   +   Oy/3x)(3y/3z)   +   Ql/Sx) (3z/3z ) (2  7) 
h1h2 

The parameters K] and K2  are known as the geodesic curvatures of the curves z = constant 
and x = constant, respectively, and are given by 

Kl - h^sine Cfx (h2 c°s6> -TT-1 (2-8a) 

h - h.hjsine [fz <hi cos9> -rri (2-8b) 
'1"2 

The  parameters  K-|2  and K2i   are  defined  by 

K12   •  sTW ["  Kl   " ^ If + cose   (K2  + F-2Ü>   ^ (2-9a> 

K21   =sTW[-K2  -^H+cos9   <K1   *^l7»   ] (2"9b) 

and  the magnitude  of the  velocity  vector u^  in  the  boundary layer  is  given  by 

ut  =   (u2  + w2  + 2uw cose)1/2 (2.10) 

2.2 Coordinate System 

The determination of a coordinate system depends on the choice of the (x,z) net on 
the body surface. This choice is not completely arbitrary and should take advantage of 
flow symmetry conditions which are needed to generate the initial conditions for the 
boundary-layer calculations. Two distinct coordinate systems form the basis for most 
three-dimensional boundary-layer calculations on general shapes. The streamline coord- 
inate system is formed by the inviscid streamlines and their orthogonal trajectories on 
the surface.  As shown in Fig. 2.2, the projection of the freestream velocity vector on 
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Figure 2.2.  Streamline coordinate system. 

-CONSTANT PERCENT SEMISPAN LINE 

•CONSTANT PERCENT CHORD LINE 

Figure 2.3.  Nonorthogonal coordinate system on a wing. 

the surface is aligned with the surface coordinate x and the velocity component along the 
z-axis, is zero at the edge of the boundary layer, and is referred to as the crossflow 
velocity. A second coordinate system is the so-called body-oriented coordinate system, 
which can be either orthogonal or nonorthogonal, although the latter is more natural for 
complex geometries like wings and ship hulls. Figure 2.3 shows a nonorthogonal coord- 
inate system on a typical transport wing. 

Each coordinate system has advantages and disadvantages. The body-oriented system 
has the advantage that it is independent of the angle of attack and easy to calculate 
even if the body is not defined analytically. In addition, second order boundary-layer 
effects such as transverse or longitudinal curvature, can be included easily in the equa- 
tions with an orthogonal system but singularities in the geometric parameters h-| , hgs K-] 
and l<2 may be introduced and can require elaborate transformations [12] to remove them. 

The main advantage of the streamline coordinate system is that it can be constructed 
for most flow conditions once the stagnation point has been calculated, and the geometric 
parameters do not have the singularities of a body-oriented coordinate system. Its main 
disadvantage is that it depends on the angle of incidence although this can be unimport- 
ant when the iriviscid flowfield is determined analytically. More will be said about the 
computation of flows of this type in the lectures of Dr. Govindan. 

AC is not of the boundary-layer type and belongs to a class known as the boundary-region 
type.  Approximations must be made to specify initial conditions on that line. 
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Figure  2.4.     Fuselage-wing configuration. 

2.4    Turbulence Model 

The boundary-layer equations discussed in Section 2.1 contain Reynolds stress terras 
which have to be expressed in terms of known or obtainable quantities in order to reduce 
the number of unknowns to the number of equations. This so-called closure problem can 
be solved in several ways and the most common is to define an eddy viscosity, v-^, in 
the  same  form as  the laminar viscosity. 

The specification of v^- may be made in terms of algebraic equations or as a 
combination of algebraic and differential equations and this has given rise to termin- 
ology involving the number of differential equations as discussed, for example, in 
[4,11,14], The zero-equation approach is preferred here and relates two Reynolds shear 
stress  terms  to  the  gradient  of the mean  velocity  profiles  by 

-u  v    = v. 3u -w'v ' 3w (2.11) 't 3y   ' "  * vt  3y 

with   two   separate   expressions   to   represent   the   eddy   viscosity   across   the   shear   layer. 
In  the  so-called  inner  region  of  the  boundary  layer,  v^  is  defined  by 

<Vi = ^<0>2 • 0V/2 

where 

(2.12) 

L  = 0.4y[l   -  exp(-y/A)], 

2 

A  =  26 -  , 
Ttw 1/2 

(P      '        ! 

tw 

2 1 II 
,     r.äll, ,      ,3Wi     .     ,/3U>     ,3W,        „„„„I 

V  L(-jtr)    +  ITTT>  
+ 2("rn-)   (TT?)    cosej v3y w 

K*K "V". 
In  the outer  region \>t is  defined  by 

(vt) 0.0168      J     (ute -  ut)dy 
0 

(2.13) 

(2.14] 

The extensive boundary-layer calculations of Cebeci and Smith [4], Cebeci and Meier 
[15], Chang et al. [16] and Cebeci et al . [17] suggest that the Cebeci-Smith algebraic 
specification of eddy viscosity is adequate for two-dimensional boundary-layer flows and 
the more recent results of Cebeci and Chang [18] lead to a similar conclusion although 
the experimental data upon which the conclusion is drawn for three-dimensional flows is 
sparse. The conclusion is supported by the calculation costs quoted by Cebeci [19] which 
show that, in a two-dimensional calculations, the zero-equation approach is three times 
cheaper than with two-equation models and ten times cheaper than with Reynolds-stress 
models. 

2.5 Transformed Equations 

The boundary-layer equations can be solved in physical or transformed coordinates 
and each has its advantages'. In three-dimensional flows, computer storage and time are 
particularly important and transformed coordinates are essential as well as convenient 
because they allow large steps to be taken in the streamwise and circumferential direc- 
tions. In addition, they reduce the growth in boundary-layer thickness with increasing 
x and/or z and can be used to generate the initial conditions [20] in some problems. 

There are several transformations that can be used and it is convenient to express 
the independent variables of Eqs. (2.2) to (2.4) by 
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u       1/2 
x, z   =   z, dn   =   (^-J       dy (2.15; 

Here u0 is a reference velocity and si denotes the arc length in the longitudinal 
direction measured from the initial line x = x*. The dependent variables are transformed 
by  using  a  two-component  velocity  potential   such  that 

uh2   "ft   • 
whl   "If   •       vhlh2 

,d±       3$ , 
l3x        3z' (2.16): 

In  addition,   dimensionl ess I|J   and $  are  defined by 

i> 1/2. (vuQs1 )l/';h2f(x>z,n),    4>   =   (vu0s1)
,/,:h1g(x,z,Ti) (2.17) 

With the transformations defined by Eqs. (2.15) to (2.17) and with the definition 
of eddy viscosity, Eq. (2.11), the three-dimensional boundary-layer equations of Section 
2.1 and their boundary conditions in a body-oriented coordinate system, can be written 
in  the  following  general   form: 

(bf")'   +  f"9  + m2(f')
2  + m3f

,g'   + m5(g')2  + mg   = m?f' §£• + m8g' |£ (2.18) 

(bg")'   +  g"9   + m10(g')2  + n^f'g1   + m13(f')
2  + m 14      "V    3x m89    3z 

= mif   + m4g'   + m? |I1 + m8 ff 

(2.19) 

(2.20) 

n=0,      f  = g' = 0; 71    =    71 e* f   = — 
uo e' 

q'   = _i  =   w 
u„ .      e 0 (2.21) 

Here the primes denote differentiation with respect to n and fand g' denote dimen- 
sionless velocities, u/u0 and w/u0, respectively. The parameters m-| to m-] 4 and b are 
given  by: 

nl   =  h^^sine 7x   (/TT h2  s1n9)' m„  =  s,K-,   cote, m3  =  -SlK12 

VI 

h-|h2  s 'TUB-li (/¥T hl  sin9)' m5   =   "S1K2   csc6 

'1   - s 
3ue 

'e 3x 
'1  - 3u, _2 

+   s,K,w„  csce 1   l  e +  slK12uewe s-jK-jUg cote 

*7 TTZ "10 s 1 Ko  cote, "11 51K21 "13 -s,K,   csce 

"14 
'I   - s 

_2 
slK2we  cot9 

2.6    Interaction  Problem 

b = (1 + vT), 

It is well known that the boundary-layer equations for two- or three-dimensional 
flows are singular at separation when solved for a prescribed external velocity distri- 
bution and not singular when the external velocity is computed as part of the solution 
by, for example, prescribing a displacement thickness. The inverse approach to the lat- 
ter case, allows the boundary-layer equations to be solved in the presence of separation. 

For flows with separation, a special procedure is used to overcome the stability 
problem associated with the negative u-velocity and is referred to as FLARE after the 
originators, Reyhner and Flugge-Lotz [5], This procedure neglects the longitudinal 
con-vection terms u(3u/3x), u(3w/3x) in the momentum equations (2.2) and (2.3) and is sat- 
isfactory provided the region of separated flow is small. As the size of the recircula- 
tion region increases, the FLARE approximation becomes less accurate and several proced- 
ures have been suggested to allow the reinstatement of the neglected term. One success- 
ful scheme which was devised and stated for two-dimensional flows is referred to as DUIT 
[11,21]  (JJownstream,  Upstream  Iteration)  and requires  several  sweeps  through  the 
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recircul ati on region. Thus, FLARE can be used to compute an approximate solution within 
the recirculation region and the u(3u/3x) term is progressively introduced in successive 
sweeps until it is fully represented. An alternative approach is to make use of unsteady 
boundary-layer equations in which solutions are obtained by the Mechul function method 
as a function of time and to introduce the longitudinal convective term as time progres- 
ses. This time-dependent approach was investigated by Cebeci [22] and found to be 
satisfactory. 

In an interactive boundary-layer scheme, a link between a displacement thickness and 
external flow is provided, and two types of procedures have been developed for this pur- 
pose for two-dimensional flows. In the first [23-27], the solutions of the boundary- 
layer equations are computed initially for a prescribed external velocity to obtain an 
estimate of the displacement thickness S*(x) distribution, and then in an inverse mode 
for a specified displacement-thickness distribution S*(x). If this initial calculation 
encounters separation, S*(x) is extrapolated to the trailing edge. The subsequent 
boundary-layer calculations are then performed in an inverse mode to compute the blowing 
velocity needed in the inviscid flow method. In general, this procedure leads to two 
external velocity distributions, uev(x) derived from the inverse boundary-layer solu- 
tion and uel-(x) derived from the updated approximation to the inviscid velocity past 
the body with viscous effects. A relaxation formula in the form 

i*V+1 (X) = S*V(X) [1 + 03 ( 
uev<x) 

Ü^TT-xl - 1)],  v = 0, 1, 2, (2.23) 

where u> denotes a relaxation parameter, is then introduced to define an updated dis- 
placement thickness distribution and to obtain new solutions of the boundary-layer equa- 
tions so that the interactive procedure between inviscid and viscous flow solutions can 
be carried out until convergence. 

The second approach [6], which is recommended on the grounds of generality and 
physical basis, treats the external velocity ue(x) and the displacement thickness <S*(x) 
as unknown quantities. The boundary-layer equations are solved simultaneously in an 
inverse mode and with successive sweeps over the body surface. For each sweep, the 
external boundary condition is written as the sum of the inviscid velocity u°>(x) 
over the body, and a perturbation velocity 6ue(x), that is, 

y = 6, ue(x) = u°(x) + 6ue(x) (2.24) 

with <5ue(x) computed from the Hubert integral given by 

«".(x) = 1 J u ^ (u„6*) "b  d da (2.25; 

and the interaction region confined between xa and xij. 

This second approach has been extended recently to three-dimensional incompressible 
flows with small spanwise pressure gradients [28]. In this case the flow variations with 
respect to z are neglected and the equations are reduced to a form which provides a bet- 
ter approximation to Eqs. (2.2) to (2.4) than those based on the strip theory or infinite 
swept-wing approximations. The resulting equations are referred to as quasi-three- 
dimensional boundary-layer equations and are written as 

h  <uh2 s1n9> +F, (vh1 h2 sine) = 0 (2.26) 

u  3u    3u 
FT ¥x  v ly l^u' cote + K2w' csce + K-|2uw = esc '9 3_p_ 

h,p  3x + i- (v Ü 
3y l ay IPv"1") (2.27) 

U  3w    3w   „  2    - 
TTf 3T + v 3y + Kl U  csc9 K2W' cote + K21 uw csc9  cote 

h^p      ' 
IE. + A_ (v A« 
3x       3y   (V 3y (2.28) 

The relationship between displacement thickness and external velocity needed in the 
interactive calculations was obtained by generalizing the formulation used for two- 
dimensional   flows.     The  1rrotationality  condition,  which   for an  orthogonal   system  is 

|7[h2(w°   +6we)   =|Th1(ue°   +  «ue)] (2.29) 

was used to provide a relationship between the two velocity components ue and we and 
shows that the choice of computing the perturbation velocities due to viscous effects is 
not arbitrary.  The assumption that <Sue is a function of x alone requires that 

h  (Swe> = ° 
and that 

(2.30) 



In   this   way   the   edge   boundary   conditions   for   a   quasi-three-dimensional    boundary-layer 
flow with   interaction  are  given  by   Eqs.   (2.24)  and   (2.27). 

2.7    Closure 

The equations and procedures described in Sections 2.1 through 2.5 are general and 
can be applied to the flow over aircraft components, including wings, fuselages and 
empennages. The concept of the interactive procedure of Section 2.6 is also general but 
its application has so far been restricted to two-dimensional and quasi-three-dimensional 
flows such as those associated with airfoils, and with wings at small angles of attack, 
as will be discussed in Section 5.0. It is clearly desirable that the formulation of 
interactive procedures should be extended to include full three-dimensional flows. At 
the same time, improved numerical procedures are required to solve the three-dimensional 
boundary-layer equations, as discussed in the next section. 

3.0  NUMERICAL METHODS 

3.1 Features of the Boundary-Layer Equations 

Before we describe the numerical methods which can be used to solve the three- 
dimensional equations described in the previous section, it is helpful to review briefly 
the general principles which must be satisfied if accurate solutions are to be obtained. 
These follow from the realization that the momentum equations are diffusive in the direc- 
tion normal to the body and wave-like in planes parallel to the body, the direction of 
propagation being along the local stream direction. Since this direction varies across 
the boundary layer, it is possible to identify zones of influence and dependence for any 
point and to obtain solutions to the three-dimensional boundary-layer equations such that 
they obey these zones. To explain this further, it is useful to consider the grid of 
Fig. 3.1, in which the solutions are known at the points indicated by x and are required 
at P. The wall and external streamlines have been drawn on the assumption that both u 
and w velocity components are positive. The domain of dependence of point P is denoted 
by the shaded area and its region of influence corresponds to the hatched area where the 
solution is altered when a change occurs in the solution at the point P. The information 
to point P comes from the domain of dependence. When the u velocity is positive across 
the layer but the w velocity component is negative near the wall, the wall streamlines 
cause the domains of dependence and region of influence to change, as shown in Fig. 3.2. 
The wall streamlines, which were beneath the external streamlines move above the external 
streamlines. The angle between these two streamlines widens further when both velocity 
components of the wall streamlines become negative (Fig. 3.3) and information comes from 

z 
a 

EXTERNAL 
O     STREAMLINE 

X KNOWN 
O UNKNOWN 

Figure 3.1.  Domains of dependence (shaded area) and regions of influence (hatched area) 
of point P when both u and w in the boundary layer are positive. 

LIMITING 
STREAMLINE 

X O 

X   KNOWN 
O   UNKNOWN 

Figure 3.2. Domains of dependence (shaded area) and regions of influence (hatched area) 
of point P when u is positive across the layer and w is negative near the 
wall . 
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• LIMITING 
STREAMLINE 

''.-.r.-fitfi fi^^K 

lltif 

Figure 3.3.  Domains of dependence (shaded area) and region of influence (hatched area! 
of point P when both u and w are negative. 

a region, which is not relevant to P 
restricted. 

so that the extent of possible calculations is 

3.2 Flows Without Reversal 

There are several numerical methods that can be used to solve the three-dimensional 
boundary-layer equations discussed in the previous section including the popular finite- 
difference methods of Crank-Nicolson [29] and Keller [30] which have been used exten- 
sively for the solution of two-dimensional equations. Their solution for three- 
dimensional flows with either method is somewhat routine, as described in several refer- 
ences, see for example, Blottner [31] and Bradshaw et al . [11] when velocity components 
u and w are both positive. When the circumferential velocity component contains regions 
of flow reversal, however, the solution of three-dimensional boundary-layer equations is 
not so straightforward and requires special procedures to avoid the numerical instabil- 
ities which can result from reversal in w. This can be best achieved by the Character- 
istic scheme developed by Cebeci and Stewartson [32] which is based on the solution of 
governing equations along local streamlines, employs Keller's method, and is described 
in Section 3.3 together with the zig-zag scheme. 

One of the basic ideas of Keller's method is that Eqs. (2.18) and (2.19) are 
expressed in the form of a first-order system before the finite-difference 
approximations to them are written. The resulting difference approximations are 
lengthy, and to illustrate the procedure, we shall consider the following reduced forms 
of Eqs. (2.18) and (2.20), 

+ f"9 3f' 
+ 9 1X1 

3z (3.1) 

- 111+ ISl 
3x   3z (3.2) 

and discuss their solution subject to the boundary conditions given by Eq. (2.21). 

To express Eqs. (3.1) and (3.2) in the form of a first-order system, we represent 
the derivatives of f and g with respect to ri by new functions, e and s, and define n by 

and write Eqs. (3.1) and (3.2) as 

n' ,_Q  „ 3e , „ 3e 
+ n9 = e 3X + S 3T 

(3.4a) 

(3.4b) 

8e  Bs 
3X   3z (3.4c) 

Depending on the signs of the velocity components u and w, or e and s in terms of 
new variables, the solution of the above system can be obtained by Keller's method by 
using different variants of this method. When both u and w are positive, we can use the 
Standard Box scheme, and when u is positive but w is not, we can use either the Zig-Zag 
or Characteristic Box schemes as we shall discuss in some detail in Section 3.3. When u 
is negative, then we need to reformulate the problem'so that the above system is solved 
in an inverse mode as we shall discuss in Section 3.4. 

The solution of the system given by Eqs. (3.4) by the Standard Box, Zig-Zag Box or 
Characteristic Box methods depends on the difference equations for Eq. (3.4b); the 
remaining equations are unchanged. In the following paragraphs we first consider Eqs. 
(3.4a and c) and show how the difference equations are written. 
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Consider the net cube shown in Fig. 3.4 and denote the net points by 

x0 = 0, x -,- = x i _ i + k,-  i = 1, 2, ..., I 

= 0.  zk = zk_! 

no 

i"k 

°> ij = rij-i + hj 

k = 1, 2, .... K 

j = 1, 2, ..., 0 

(3.5) 

(i.K,D 

T 
hi 

i 
(i-l,k-l,j-l) 

Figure 3.4.  Notation for the net cube. 

The difference approximations that are to represent Eq. (3.4a) are obtained by averaging 
about the midpoint (x-j, Z|<, nj-.1/2)1 

, -1 . i, k   i, k. 
hj (ej  " ej-l> "j-1/2 

where,   for example, 

nj:i/2 = 1/2(nJ'k + n]:i» 

(3.e: 

(3.7) 

The difference approximations to Eq. (3.4c) are obtained by centering all quantities 
except 9 at the center of the cube (XJ_I/2, Z|<_i/2, nj-1/2) °y taking the values of each 
parameter, say q, at the four corners of the Box, that is, 

J-1/2,k . l ,.1-1/2.k . J-1/2.k, . 1 ,J,k   1-1,k + Qi,k  J-l.k, qj-1/2  " 7 (qj      + qj-l   ' " T (qj  + qj    + qj-l + qj-1  ' 
(3.8a; 

and 8 is centered by writing it as 

9]:]/2'k"1/2 = 7 (9J-1/2'k-1/2 + e];]/2'k-1/2) (3.8b) 

The unknown parameters of Eqs. (3.8) correspond to q1>k and 8J-l/2,k-l/2 so that, 
when a solution of the system given by Eqs. (3.4) is obtained, e and s are computed at 
(i,k,j) and 6 at (1-1/2,k-l/2,j).  This modified centering procedure is necessary to 
avoid oscillations due to the use of the continuity equation in the form given by Eq. 
(2.20) rather than the use of the stream function [33]. 

In terms of this notation, the finite-difference approximations to Eq. (3.4c) can 
be written in the following form: 

h>j 'J-1 
m(e)..1/2 kT1^. i-1 + 'k1 <?k Vi> (3.9) 

where, for example, 

!1-l/2,k-l/2i e. -\  (e;-
1/2'k + e1-l/2.k-1 

(eS,k"1/2 + ei:k"1/2>' 1 ,J-1/2,k 
2 '"j 

J-1/2, k 
5j-l 

(3.10: 

(m) i-l/2,k-l/2 

With the Standard Box scheme, the difference equations corresponding to Eq. (3.4b) 
are formulated in the same way as has been described above. With the Zig-Zag or Charac- 
teristic Box schemes, however, an alternative procedure is followed and is described in 
the next section. 

It should be noted that the computational problems associated with time-dependent 
boundary layers are similar to those for three-dimensional steady boundary layers. To 
illustrate this point further, let us consider a two-dimensional flow for which the con- 
tinuity and momentum equations can be written in the following form, as discussed in 
[33], 
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(bf") 3-c + u 
3U6 

e 3x 
if 
3T 

+ f 3f 3X 
If 
3x 

or as the reduced equation 

+ fe = af 
3T 

+ f 3f' 
3X (3.11) 

which is similar to Eq. (3.1). As a result, its solution for positive u can be obtained 
easily by the Standard Box scheme described here and in detail in [13]. When there is 
backflow in the u-velocity profile, which is a situation roughly analogous to a three- 
dimensional reverse crossflow problem, Eq. (3.11) can also be solved with either the Zig- 
zag or Characteristic Box schemes described below. 

3.3 Flows with Reversal 

When there is flow reversal, it is necessary to modify the Standard Box scheme of 
the previous section in order to avoid the numerical instabilities resulting from inte- 
gration opposed to the flow direction. A convenient procedure is to include the Zig-Zag 
formulation of Krause et al . [34] which, in common with the often used Crank-Nicolson 
method, is easy to employ, particularly since the orientation of the numerical mesh is 
chosen a priori. This advantage has a corresponding and potentially dangerous drawback 
in the presence of Targe reverse flows, either steady or unsteady, since the mesh ratio 
must be related to the velocity field according to the Courant, Friedrichs, Lewy (CFL) 
condition [35] if stability is to be achieved. For a fixed grid chosen a priori, this 
condition may be violated as the flow velocities are determined in ever-increasing comp- 
utational domains. Thus, a natural boundary limiting the domain in which stable compu- 
tations can be made must also be determined a priori. 

One way to avoid the above limitation is to allow the grid to be determined along 
with the flow calculations. This requirement can be accomplished by using the Character- 
istic scheme so that the grid spacings and orientation can be adjusted depending upon the 
magnitude and direction of the velocity field in order to satisfy a condition like the 
CFL condition. The scheme is, in a sense, intelligent in that it maximizes the domain 
in which the computations can be carried out for both steady and unsteady flows. For 
completeness we shall first describe the Zig-Zag Box scheme and then proceed with the 
Characteristic Box scheme. 

To solve Eqs. (3.1) and (3.2) by the Zig-Zag scheme, we follow the procedure of the 
previous section and express them as a first-order system. In this case, however, it is 
more convenient to write Eq. (3.1) as 

af       f„  3f ,   if       .„  3g 
3X T     3x        9     3x T3z 

f"   + mff"  =  f 

without  the  definition  of 9   and consider  it  as 

f"   + mff" T3x 9     3z (3.12; 

which is applicable to steady (3-D) flows, and to unsteady (2-D) flows provided we set 
g1 = 1 and associate the z-coordinate with T. AS a first-order system, Eq. (3.12) can 
be written  as 

f   =  e (3.13a) 

e'   =  n (3.13b) 

+ mfn  • e 3x  + s  3z (3.13c] 

The main difference between the Standard and Zig-Zag Box schemes depends on the 
difference equations for Eq. (3.13c); the remaining two equations, Eqs. (3.13a,b), remain 
unchanged. 

To write the difference equations for Eq. (3.13c) centered at P (see Fig. 3.5), we 
use quantities centered at P, Q and R, where 

P = (Xf. ck-1/2' "j-l/2J Q -   (xi-l/2> zk' hj-l/2)• r (xi+l/2 -k-T "j-1/2' (3.14) 

Equation   (3.13c)  is  then written  as 

n'(P)  + [mfn](P)  = X^fQ)  [f|  (Q)]  + x,,e(R)  [|| (R)]  + s(P)  [ff (P)] (3.15) 

where 

x    -    i+1 
xi-l 

x   -ll 
xi-i 

1+1 M-l 
(3.16) 

The Characteristic Box scheme is based on the solution of the governing equations 
along the local streamlines. In this case, we prefer the form of the equations given by 
Eqs. (3.4) and by denoting the streamline direction with \|; and the angle that it makes 
with    the    x-axis    (3-D    steady)    or   t-axis    (2-D    unsteady)    by    a,    write    Eq.     (3.4b)    as 
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z(k) 

i-1 i i+1 

Fig.   3.5.     Finite-difference molecule  for  the  Zig-Zag  Box. 

n •   +  n9   = X || 

where 

= /^T <* =  tan"1   (|) 

With   the   notation    shown   in   Fig.    3.6,    the   difference   approximations   to    Eq. 
point B are 

(3.17) 

(3.18) 

(3.17)    at 

h7 n:1 

— [n.       - nj_,]  t.-g-Cnj -  n.^     ]  + ? [ n^ /2   + nJ_1 ;2]9j _, /, 

(e i,k -.!-J;t) 
7   Uj-l/2   + Xj-l/2' A*j-1/2 

where  the  relation  between  9^  and e^"  '   '       '     is 
J J 

Bi-l/2,k-l/2       Qi-l/2,k-3/2 
eB   = U -_Zi   (z     .   z ,   + e1-l/2,k-l/2 
j zk-l/2   "  zk-3/2 B k"1/2 J 

z (k) 
I i 

*- ki -* 

k+1 
t 

t    A 

t 
rk 

k 
e 

x w 
k-1 

• 
"  o uc 

k-2 

 ^ 

(3.19) 

(3.20) 

x(i) 
Xj.l X| 

Figure 3.6.  Notation for the Characteristic scheme. 

The boundary conditions for the velocity field follow from Eqs. (2.21) and can be 
written as 

}o = °i (3.21 ) 

The algebraic system given by Eqs. (3.6), (3.9) and two equations that result from 
Eqs. (2.18) and (2.19), similar in principle to Eq. (3.17), together with the boundary 
conditions given by Eq. (3.21) is nonlinear. Linearization i s~ achieved with Newton's 
method and the equations are then solved by the block-elimination method described, for 
example, in [11]. 

3.4 Flows With Separation 

For flows with separation, it is necessary to use an inverse method and compute the 
external velocity as part of the solution. To discuss this point further, let us con- 
sider a two-dimensional incompressible laminar flow. It can be shown that, with the 
transformation 

il = /u0/vx y, * /uQvx f(x,n) 13.22) 
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the continuity and momentum equations and their boundary conditions can be written as 
[10] 

+ ? 
du. 

ff" + xu. = x(f 8f ' 
3x 

Al) 
3x' 

(3.23) 

0, f = 0 

= u. 

(3.24al 

(3.24b! 

There are several procedures which can 
inverse form.  In the Mechul function 
and (3.24) 
(3.13).  Si 
by differen 

be used to solve the above equations in are several procedures wmcn can De used to solve tne aDove equations in 
m. In the Mechul function approach used by Cebeci and associates, Eqs. (3.23) 
are expressed as a first-order system in a form similar to that given by Eqs. 
ince ue is unknown and is independent of n, a fourth equation is obtained 
tiating ue(x) with respect to TI , that is, 

(3.25) 

and adding a fourth boundary condition given by Eqs. (2.24) and (2.25). 

Straightforward application of the Box scheme to the four first-order equations 
leads to the algebraic finite-difference expressions. The solution of Eq. (2.25) is less 
straightforward and is discussed in [10]. It requires that a discrete approximation be 
introduced to Eqs. (2.24), (2.25) so that the resulting expression can be written as 

11 ^ (Ve - V= "1 (3.26) 

where c-f -t is a matrix of interaction coefficients defining 
the displacement thickness and the external velocity. The 
terms whose values are assumed to be known and given by 

where 

g. = u + 3i   e 

1-1 
I 

J-l 
cij'D,i 

BK.) c. . D. 
11 i 

the relationship between 
parameter g-j represents 

(3.27) 

•vx/u. (neue V (3.28) 

The solutions of the three-dimensional boundary-layer equations by an inverse method 
with the Mechul function formulation follows a procedure similar to that discussed for 
two-dimensional flows although there is much less experience of its use. It requires 
that the two external velocities are treated as unknowns and, since they are independent 
of n, 

Up = 0 (3.29a) 

= 0 (3.29b) 

represent the two additional equations needed in the solution of three-dimensional flow 
equations. These equations and two additional boundary conditions obtained from rela- 
tionships between the displacement thicknesses and external velocities constitute a sol- 
uble set. The finite-difference approximations again make use of the Standard Box or 
Characteristic  Box  scheme  depending on  the  complexity  of the  problem. 

3.5    Closure 

The previous sections identified the role of three variations of Keller's Box scheme 
which have been used in the solution of two- and three-dimensional boundary-layer equa- 
tions. The Standard Box is used in regions of flow where the u and w velocity components 
are positive and the Characteristic Box where the u component is positive and the w com- 
ponent negative. The Zig-Zag Box offers few advantages and, since it does not auto- 
matically satisfy the required stability criterion, should not be used. 

4.0 APPLICATIONS: STANDARD PROBLEM 

In this section we shall discuss applications of the numerical procedures described 
in the previous section to problems in which we seek solutions of the boundary-layer 
equations for a prescribed pressure distribution. We shall refer to this as the standard 
problem and postpone the discussion of the application of the numerical procedures used 
Tn the interaction problem to Section 5.0. In Section 4.1 we will consider a two- 
dimensioTTil unsteady flow and discuss the calculation of boundary layers with consider- 
able backflow. We shall examine both Zig-Zag and Characteristic schemes in regions of 
backflow and the importance of step lengths in the x- and t-directions. The calculation 
of three-dimensional steady boundary layers will be covered in Section 4.2 and results 
will be presented for a laminar flow over a model problem corresponding to a prolate 
spheroid. 
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4.1  Unsteady Boundary Layers 

The laminar flow around a circular cylinder started impulsively from rest is an 
excellent model problem with which to study the importance of the accuracy of the numer- 
ical solutions in the presence of large backflow and to clarify the problem of singular- 
ity associated with separation in unsteady flows. For this flow, the external velocity 
is given by ue = sinx. Its steady-state solution has a singularity at x = xs = 1.82 
= 104° and for xs < x < TT it does not exist. A number of numerical studies have been 
conducted for this flow, as discussed in [33], and conflicting results obtained regard- 
ing separation in an evolving boundary layer in essence due to the inaccuracy of numeri- 
cal procedures used by different authors. Except for those of van Dommelen and Shen 
[36,37], calculations either broke down at a specific time at a certain x-station from 
the stagnation point or they could not be extended to times much greater than 2. While 
all previous studies on this problem were conducted by using an Eulerian coordinate sys- 
tem, that of van Dommelen and Shen made use of a Lagrangian coordinate method and showed 
that, for t > 2, a hump developed in the displacement thickness <5*(x,t) in the neighbor- 
hood of x = 2, i.e. a little way into the reversed flow region. This evolved into a very 
sharp singularity at t = 3.004, x = 1.937. My calculations utilized the Zig-Zag Box 
scheme of Section 3.3 and confirmed the results of van Dommelen and Shen up to t = 2.75, 
but they had to be terminated at larger times due to the numerical problems encountered 
in regions of flow reversal. 

The need to satisfy the CFL condition in regions of flow reversal was not considered 
until recently [38]; calculations were made using the Characteristic scheme of Section 
3.3, which allows the orientation of the finite-difference mesh to vary across the shear 
layer and includes the procedure for the automatic selection of time steps so as to main- 
tain the angle (see Fig. 3.6) 

< tan 
*n~ 

(4.1 ) 

The resulting values of kn for the predetermined values of steps in the x-direc- 
tion are shown in Table 1 and become extremely small at t = 3.0. The total number of 
increments used in calculations were 101, 161 and 435 in x, y and x, respectively, and 
the calculations could have been extended beyond x = 3 but at considerable expense, as 
witnessed by the small and decreasing values of kn. The values of kn and r-j are 
shown i n Table 1. 

Table 1. The distribution of step sizes in T and X, • 

T !n I n. 
0 + 1 0.05 0 -+ 0.54 0.02 

1 +  1.5 0.02 0.54 ->- 0.57 0.01 

1.5 •* 2.3 0.01 0.57 -*• 0.58 0.0025 

2.3 ->- 2.73 0.005 0.58 ->• 0.60 0.0020 

2.73 *  3.024 0.002 0.60 -*• 0.612 0.0015 

3.024 + 3.1 0.001 0.612 -+ 0.64 0.0020 

0.64 -> 0.67 0.0025 

0.67 -• 0.72 0.01 

0.72 -*- 1.0 0.02 

The above increments were subsequently used in conjunction with the Zig-Zag scheme, which 
had previously failed to permit calculations for times greater than T > 2.75. The 
results were found to be identical to those presented here. The alternative approach of 
using the Zig-Zag scheme and the relationship given by Eq. (4.1) was not, however, suc- 
cessful. This confirms that the selection of kn must depend upon the direction of the 
local streamlines. 

Figures 4.1, 4.2 and 4.3 display the variations of dimensionless displacement thick- 
ness, A*, local skin-friction coefficient cf and dimensionl ess displacement velocity 
vw[s vw/u0 = d/ds (ueS*)]. It is of particular note that the displacement thickness is 
close to monotonic with the small maximum and minimum for x = 3.1 at which the calcu- 
lations were terminated. The Zig-Zag Box results are also shown in the figure and reveal 
the maxima which stemmed from the use of a numerical scheme which did not meet the 
requirements imposed by the CFL condition. 

The distributions of local skin-friction coefficients of Fig. 4.2 show trends which are 
similar to those of the previous results but with differences in magnitude consistent 
with those of Fig. 4.1. It should be noted that the results of Figs. 4.1 and 4.2 are 
identical with those obtained with the Zig-Zag scheme up to the value of 9 at which the 
displacement thickness gradient reaches its maximum and for values of x less than 



6-15 

16 

12 

10 

  CHARACTERISTIC BOX 
 ZIG-ZAG BOX 

100   120   140    160    180 
9<deg) 

Fig. 4.1 Variation of displacement thickness 
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Fig. 4.2 Variation of local skin friction 
coefficient for the impulsively 
started circular cylinder. 
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Figure 4.3. Variation of displacement velocity for the impulsively started circular 
cylinder. The insert shows the variation of the location of maximum dis- 
placement velocity era with solid circles indicating the computed values, 
the dashed lines indicate the linear extrapolation of em and the solid 
line a conjectured variation of em to steady state, Cebeci [38]. 

around 2.75. The differences for large values of 9 and T are associated with the 
numerical procedure and, in particular, with its ability to satisfy the CFL condition as 
discussed previously. 

The dimensionless displacement velocity, vw, is shown in Fig. 4.3 together with 
the locus of points corresponding to its maxima which increases with time and decreasing 
angle. At T = 3.0, the calculated value of 9 is 111.5 and corresponds very closely 
to that determined by van Dommelen and Shen who terminated their calculations at this 
time. As the peak in the displacement velocity moves upstream with increasing time, the 
location at which the skin-friction coefficient becomes zero also moves upstream but at a 
slower rate and towards its steady-state value of 105° [4]. Figure 4.3 also shows that 
it is desirable to perform calculations at higher values of T SO as to confirm the 
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conjecture that the only singularity is associated with the steady-state solution. To 
make a conclusive judgment, calculations should be performed up to x = 4.1 but, as 
Table 1 suggests, the required time steps are likely to be very small. The time 
required to obtain results in the range x = 3.024 to 3.1, which corresponds to 75 
time-steps, was 7 hours on a CYBER 175. The computer time likely to be required to 
reach  x   = 4.1   is  clearly  excessive. 

It is clear that the characteristic box scheme has successfully permitted the calc- 
ulation of the flow properties for the unsteady flow associated with a cylinder impul- 
sively started from rest. The large reverse flow regions found with this model problem 
occur in the more practical application of oscillating airfoils as we shall see in Sec- 
tion 5.0. In particular, the use of the Characteristic Box scheme together with Eq. 
(4.1) leads to solutions which approach and pass the region of the singularity without 
numerical difficulty whereas the Zig-Zag scheme leads to solutions which oscillate and 
break  down  in  the  same manner experienced with  the  cylinder. 

4.2    Three-Dimensional   Boundary Layers 

The CFL condition must also be satisfied in the calculation of steady three- 
dimensional flows with cross-flow reversal as discussed in Section 3.1. The need to 
satisfy this condition and the consequences of not doing so will now be demonstrated for 
a prolate spheroid which is a convenient shape for which to perform boundary-layer calc- 
ulations since analytical expressions are available for inviscid pressure distribution 
and computer calculations are not required to determine the inviscid flow. Furthermore, 
the flow properties become complex as the angle of incidence is increased beyond fully- 
attached flow and the numerical calculations for this body serve as an excellent test 
case to develop and evaluate numerical methods for three-dimensional flows and Investi- 
gate the properties and the behavior of the solutions in regions of negative cross-flow 
and  in  regions  near  separation. 

The  equation  of a  prolate  spheroid can  be written  as   (see  Fig.   4.4), 

2 

= 1 (|)z + (4) (4.2) 

and the geometric parameters and the inviscid velocity distribution can be obtained from 
analytical expressions as described, for example, in [12,39]. The initial conditions in 
the (x,y) plane consist of the attachment-line equations, which can be easily solved away 
from the nose, but troubles arise in the nose region due to singularities in the geomet- 
rical parameters. They can be removed by suitable transformations and the calculations, 
which originate at S0, can be performed on both windward and leeward lines of symmetry 
as well as in the circumferential direction where now z = 41. Thus, with initial con- 
ditions in the (y,4>) plane, say at x = xp, and with initial conditions in the (x,y) 
plane at $ = 0 and fy = n, the boundary-layer equations can be solved by the 
numerical procedures of Section 3 for the prescribed inviscid velocity distribution and 
with specified thickness ratio t(^b/a) and angle of incidence a. 

Figure 4.4 Notation for prolate spheroid at incidence: 
leeward sides. 

and denote windward and 

Wang [40], Pate! and Baek [41] and Cebeci et al. [39] have reported calculations for 
this flow and in the last case the Box method was used. At a specified x-station, the 
calculations were started on the windward line of symmetry and marched in the circumfer- 
ential direction with equal A<t> increments of 2.5°. When the calculations broke down 
at some ^-location, the procedure was repeated, this time starting on the leeward line 
of symmetry and marching'towards the windward line of symmetry. The grid in both direc- 
tions was assigned a priori and two separate numerical methods corresponding to the Zig- 
Zag and Characteristic Box schemes were used. With the former scheme, there is no 
implicit procedure with which to determine whether or not the CFL criterion is satisfied. 
The Characteristic Box scheme does allow the CFL criterion to be assigned, as was dis- 
cussed in the previous section, but the calculations of [39] did not make use of this 
possibility. 

Figure 4.5 shows the separation lines and the line on which the circumferential 
skin-friction coefficient Cf, is zero for t = 1/4 and a = 6°, as computed by Cebeci et 
al . [39]. In the region upstream of the zero-Cf.-1ine (Region A) all u and w velocities 
are positive, in the region between the zero-c*.-1ine and the two separation lines 
(Region B)u is positive but w is negative near the surface. Downstream of the separation 
lines (Region C) both u and w are negative near the surface and positive away from the 
surface. The boundary-layer calculations in regions A and B can be performed for a pre- 
scribed pressure distribution because the flow is not separated. The calculations can 
be performed with initial conditions started on either line of symmetry. They can also 
be performed by first computing the region 0 <  4> <  <j>0 with initial conditions started on 
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Figure 4.5.  Separation lines and the zero cf.-line for laminar flow on a prolate spher- 
oid at a =6° [39]. f 

the windward line of symmetry and the remaining region $0 < $ <_ v with initial conditions 
started on the leeward line of symmetry. Each procedure "has its own advantages but if 
the numerical method is accurate, the results will not depend on a preferred direction 
of marching. 

Trie numerical solution of the boundary-layer equations for Region A is straightfor- 
ward and can be obtained easily with the Standard Box scheme of Section 3.2 with initial 
conditions computed on the windward line of symmetry. In Region B, a method that 
accounts for negative cross-flow velocity is needed and the Characteristic Box scheme of 
Section 3.3 can be used for this purpose. However, the calculations in this case must 
be performed with care since the accuracy of the solutions depends on the choice of the 
net in the circumferential and streamwise directions. To discuss this further, we shall 
consider a portion of Region B denoted by xy\ £ x < xg and present recent results obtained 
by Cebeci and Su [42] who used uniform step lengths of 2.5" in the circumferential direc- 
tion as in [39] and nonuniform step lengths in the streamwise direction (see Table 2) to 
investigate the role of the CFL criterion on the computed results. 

Table 2.  Step Lengths in the Streamwise Direction 
for the Region x^ £ x _< xg 

GRID 
4x 

II III IV VI 

0 1500 - 0 2500 0 02500 
0 2500 - 0 2700 0 02000 

>0. ?700 0 01000 

0.1500 - 0.2750 
>0.2750 

0.01250 
0.00500 

0.1600 - 0.2700 
>0.2700 

0.00500 
0.00250 

0.1600 - 0.2000 
0.2000 - 0.2700 

>0.2700 

0.00500 
0.00250 
0.00125 

0.1600 - 0.2000 
0.2000 - 0.2700 

>0.2700 

0.00250 
0.00125 
0.00050 

0.1600 - 0.2000 
0.2000 - 0.2700 
0.2700 - 0.2820 

>0.2820 

0.00250 
0.00125 
0.00050 
0.00025 

x > 0.2820 II III IV VI 

Ax 0.01000   0.00500   0.00250   0.00125   0.00050   0.00025 
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With initial conditions given at x = xA, the calculations were started at the next 
specified x-location on the line of symmetry and were continued towards the leeward line 
of symmetry with the Standard Box scheme in regions where w is positive and the Charac- 
teristic Box scheme where w is negative. The results obtained with Grid I are shown in 
Figures 4.6 and 4.7. Figure 4.6a shows the variation of the streamwise wall shear- 
stress parameter fw with $ for several values of x, and for values of x = 0.200 and 
0.2225 the solutions are smooth and free of oscillations. A slight oscillation occurs 
around <j> = 1^25° for x = 0.250 and increases substantially, covering a range of $ from 
120° to 135°, at x = 0.270, after which the solutions are smooth and free of wiggles. 
The situation worsens for subsequent values of x < 0.310, but solutions do not break 
down in spite of the oscillations covering a larger region until they become smooth 
around <j> = 135°. At x = 0.310, the wall shear becomes negative and causes the calcu- 
lations to terminate. With solutions available for x < 0.310, the calculations at x = 
0.310 are started on the leeward line of symmetry and are continued towards the windward 
line of symmetry. Again solutions exhibit oscillations in the same neighborhood as those 
which have originated from the windward line of symmetry (see Fig. 4.6b) but they do not 
break down until x = 0.350. 

The cause of the oscillations was investigated by computing the maximum value of the 
CFL parameter $(= 5<t>i/A<t>, see Fig. 4.7) at each 4>-station at a given x-location. Figure 
4.7 shows the results for several values of x. We note from the results in Fig. 4.7a 
that 8 increases with increasing value of x, and attains a maximum value at x = 0.27 
which is about 40% bigger than its maximum value at x = 0.20. It also exhibits oscilla- 
tions at the same value of x as fw. We also observe from the results in Fig. 4.7b 
that, the value of the CFL parameter B increases further with increasing x and oscil- 
lations worsen so that the accuracy of the solutions for values of x greater than 0.27 
become increasingly suspect. 

To obtain stable solutions free of oscillations, additional studies were conducted 
with grids other than I. Since the solutions obtained with Grid I were acceptable up to 
x = 0.270, the subsequent calculations, with the grids of Table 2, began at this value. 
Figure 4.8 shows the variation of the CFL parameter B for six grids in which the 

(a) 

Figure 4.6.  Variation of streamwise wall shear parameter fw with 4>. 

(a) 

180      90 

(b) 

Figure  4.7.     Variation  of  CFL  parameter B  with <|>. 
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the Ax-spacing diminishes from I to VI. We note from 
decreasing Ax-spacing decreases the maximum value of 

the computed values of fw at x = 0.30 
x-station with Grid I and the solutions of Fig. 4.9a oscillate as 

of Ax-spacing on . 
exceeds unity at this 
a result.  With Grid 

results that, as expected, 
ß. Figure 4.9 shows the effect 
and we note from Fig. 4.8 that ß 

ps 

the solutions 
When the grid 
from 0.27 to 

a result. With Grid III, however, the value of ß decreases to 0.27 an 
improve considerably (Fig. 4.9a) although there are still some wiggles, 
is refined further by using Grid VI, the value of Mt x = 0.30 dro| 
0.028 and the wiggles disappear, as shown in Fig. 4.9b. 

Figures 4.10 and 4.11  show the variation of fü with <t>  for conditions approaching 
flow separation.  Figure 4.10 shows that the solutions computed with Grids V and VI are 
the same at „x = 0.315 and that they contain no oscillations although a rapid decrease 
occurs in fw around $ = 112.5° and is followed by a sharp increase and decrease and 
another continuous increase.  The'results in Figure 4.11 exhibit a similar behavi,pr with 

oscillations in the solutions but „the dip in fw moves 
symmetry with increasing x with fw and finally becomes 

Grid VI; again there are no 
towards the windward line of 
negative at x = 0.32375. 

The use of different grids allows us to determine whether or not the CFL criterion 
is satisfied, and if there is a preferred direction of marching from one line of symmetry 
to another. One would expect that the solutions obtained by marching from either line 
of symmetry must be identical if the solutions were accurate, but this was not the case 
when Grid I was used and the reason for it was the CFL criterion. Additional calcula- 
tions with the grids of Table 2 confirm this conclusion and clearly show that if the grid 
is chosen so that the CFL criterion is satisfied, they break down at the same location 
regardless of which line of symmetry the solutions originate. As shown in Figure 4.8 and 
in Table 3 with Grid II, for example, solutions originating from the windward line of 
symmetry break down at x = 0.315 but those from the leeward line of symmetry at 
x = 0.325. The latter result is not reliable even though the maximum value of ß at 
x = 0.325 is around 0.6 because the solutions at previous x-stations have not satisfied 
the CFL condition and allowed ß to exceed unity. With Grid IV, windward-originated solu- 
tions break down at x = 0.3225 but leeward solutions at x = 0.325.  Closer examination of 

0.35 

0.30 

0.25 

0.20 

C 
0.15 

0.10 

0.05 

0 
90 120 

0.28    0.29    0.30    0.31    0.32    0.33    0.34    0.35 

Figure 4.8.     Effect of grid on  the  varia- 
tion of the CFL  parameter ß 
with  x. 

Figure  4.9.   Effect of grid on  the  variation 
of the  strepwise wall   shear 
parameter  fw with $  at x  = 0.30. 
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0.35 

0.30 

0.25 

0.20 

w 
0.15 

0.10 

0.05 

0 , 120 150 150 

Figure 4.10.   Variation  of  fw with $ 
for  two  grids  V  and VI   at 
x  = 0.315. 

Figure 4.11.     Variation  of  fw with <|> 
for grid VI  at various 
values  of x. 

Table  3.     Effect of Grid  on  the  Marching  Direction.     Calculation  Breakdown 
Point  at o  -  from Windward  Side,   * -  from  Leeward  Side. 

Grid X * 

I 0 
* 

0.30 
0.35 

115" 
107.5° 

II 0 
* 

0.315 
0.325 

112.5" 
110° 

III 0 
* 

0.315 
0.32 

112.5° 
112.5° 

IV 0 
* 

0.32375 
0.325 

110° 
110° 

V 0 
* 

0.3235 
0.3240 

110° 
110° 

VI 0 
* 

0.3235 
0.32375 

110° 
110° 

(3 for this grid (see F1g. 4.8) shows that the solutions obtained for previous values 
of x are more accurate than those which used Grids I and II. The solutions become even 
more accurate and lead to almost the same break-down location if a more refined grid, 
like  VI,   is  used,   for now the  two x-values  are  0.3235  and  0.32375  at <(>  =  110°. 

5.0     APPLICATIONS:     INTERACTION  PROBLEM 

In this section we shall discuss applications of the numerical procedures described 
in Section 3.0, and especially in Section 3.4, to the interaction problem discussed in 
Section 2.6. Since the development and application of calculation methods for three- 
dimensional flows tends to originate from that for two-dimensional flows, but with con- 
siderable delay, we shall begin by considering the application of the interactive 
approach to two-dimensional flows and particularly, in Section 5.1, to the problems of 
laminar, leading-edge separation [7]. The geometry corresjjonds to a thin ellipse with 
its  axis  located  at the center of the  coordinate  system   (y,   z) 

(£)2 + (|)2 
= i (5.1 

at an angle of attack a  and in a uniform stream of speed um.   Attention is directed to 
its nose region and the ellipse is approximated locally by a "nose-fitting" parabola so 
that its external velocity distribution ue can be represented by 

u„      5 + 5„ 
(1 + t) (5.2! 

/i + r 
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Here 
o/t, 

t denotes the thickness ratio c/b, ?0 corresponds to a reduced angle of attack, 
and the parameter X, is the_reduced polar coordinate cb/t and is related to the y and 

z-coordinates of the ellipse by y + b = 1/2 bt252, z = bt2t, and to the surface distance 
x by 

= bt^  J  (1 
0 

Z2)dZ (5.3) 

Section 5.1 also considers the calculation of flow over airfoils for a wide range 
of angles of attack including stall and presents comparisons with experiment, and with 
solutions  obtained by  a  thin  Navier-Stokes method. 

In Section 5.2 we shall extend the two-dimensional steady flow calculations to 
unsteady flows but restrict our attention to the leading edges of thin oscillating 
airfoils with external   velocity  distribution    given  by 

ue 1 
H^TT 

X. + 50d   + A si nut) 
(5.4) 

where  A denotes  a  parameter that needs  to  be  specified. 

The calculation of three-dimensional steady flows is discussed in Section 5.3 and 
results are first presented for wings for which the interactive-viscous calculations are 
performed with a strip-theory approximation to the boundary-layer equations. Next, lam- 
inar flow results are presented for another model problem chosen to facilitate examina- 
tion of leading-edge separation on thin wings and were obtained with the numerical pro- 
cedure described briefly in Section 3.4 by solving quasi-three-dimensional boundary-layer 
equations.     This  time  the model   problem corresponds  to  a  triaxial   ellipsoid  given  by 

2 

<T> 

77   2 

<S> <!> = i 

where x, y, z denote the Cartesian coordinates and a, b, c represent the lengths of the 
principal axis. With the proper choice of the axis ratios a:b:c, and the onset flow 
directions, this problem represents an extension of the two-dimensional model problem 
discussed in Section 5.1. The relationship of the ellipsoid to the wing becomes clearer 
by observing that_the longest dimension of the ellipsoid (JT) is in the swept spanwise 
direction and the y-axis is in the chordwise direction normal to the sweep line (see Fig. 
5.1). The maximum thickness of the sections normal to the sweep line, as before, is 
given by t = c/b and the wing planform area is irab. The aspect ratio of the wing, 
with X denoting the sweep angle, is given by (4/w)(a/b) cos2X. 

Figure 5.1.  Orientation of the ellipsoid. 

As in the case of a thin ellipse at incidence a, we can derive 
external velocity components for the nose region [28] and apply 
parabolas normal to the x-axis. With the assumption that t << 1, 
expressions: 

H[BH - Al(x/a)](? 
71 

50)(1 

H2(l -. .2, + V)  + (x/arn 

52)1/2 

expressions for the 
the "nose-fitting" 
this leads to the 

(5.5a) 

„    - [AH(1   + lZ)  + x/a MB  -  cniCH2  +   (x/a jV]1 /2 
w^     _    — ,  

H2(l   + ?2)  +  (x/a)2«.2 

(5.5b) 

Here H = [1 - (x/a)2]1/2, St,  denotes the principal axis ratio, b/a, the parameters A, B 
and C denote the maximum velocities over the ellipsoid induced by the freestream velocity 
Uoo in the x, y and z directions, respectively, and are given in [28], As before, ?0 cor- 
responds to a reduced angle of attack and is given by 

C[H2 + (x/a)2&23 

H[AH(x/a) - BH] 
(5.6) 
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We note that for an ellipse defined by Eq. (5.1), the external 
by Eq. (5.5a) is identical to that of Eq. (5.2) since, by letting a 
fixed, i. •* 0, V2 = 1 + t. For small angles of attack cosa =1, B = u„ 
thought of as an equivalent freestream velocity. 

velocity ue given 
+ <° and keeping b 
cosX, and B can be 

5.1  Two-Dimensional Flows 

To compute the flow over an airfoil with the interactive method discussed in Sec- 
tions 2.6 and 3.4, it is necessary at first to solve the inviscid flow equations for the 
airfoil shape and angle of attack. With the resulting pressure distribution and speci- 
fied freestream conditions, the laminar boundary-layer equations are solved next from the 
stagnation point along both surfaces for a short distance. The standard boundary-layer 
approach is replaced by the inverse approach and 1s used to calculate laminar as well as 
turbulent flows with separation, with transition location either specified or computed 
by an empirical formula. 

For the simple leading-edge separation problem, the calculations of Cebeci et al. 
[7] were performed with the external velocity distribution given by Eq. (5.2) and suc- 
cessive sweeps on the airfoil. The results showed that the laminar boundary layer near 
the leading edge is well behaved and unseparated if 50 < ?s = 1.16, although there was 
significant adverse pressure gradient. At higher values of X,o> however, separation 
occurred with an associated singularity and required the use of an interactive theory to 
link the viscous and inviscid flows. With this interaction, solutions were obtained for 
separation bubbles but reattachment occurred in a very limited range of the reduced angle 
of attack. For ?0 > 1.218, the calculation broke down shortly after flow reversal 
occurred in the boundary layer and the subsequent studies of Stewartson, Smith and Kaups 
[43] seemed to imply that a dramatic switch to another separated form of motion can 
occur. Their results suggest that separated and reattached-flow solutions are not always 
unique and a similar phenomenon may also be present in two-dimensional calculations at 
least in the sense that a small change in the calculation may cause the reattachment 
location to move in space or in time by a disproportionately large amount. These con- 
jectures may also have a physical counterpart in that separation bubbles can be unstable 
with a tendency to form an open region of separation. 

In Fig. 5.2, we show calculated distributions of the reduced skin friction at dif- 
ferent values of la    for t = 0.1  and R(s 2urab/v) = 106 and in Fig.  5.3 we 

Figure 5.2.  Variation of fw with 5 
for various values of Ko- 

1.5 

1.0 -    ^ 

0.5 

0 

-0.5 

-1.0 

-1.5 

-2.0 

Figure  E .3. Variation of fw with number of 
iterations for Ko  slightly 
greater than 1.218. 

The calculations of Cebeci and Schimke were first made by computing the pressure 
distribution from Halsey's conformal mapping method [2]. Since the location of transi- 
tion was not known prior to the boundary-layer calculations, solutions were first 
obtained for the specified inviscid pressure distribution by the standard method and by 
computing transition from the empirical formula given in [13], 

Ra = 1.174 (1 + 
22J400> „0.46 

R. ) R, (5.7; 

Subsequent iterations were performed by the standard method from the stagnation point up 
to s/c = 0.30, at which point the inverse boundary-layer calculations were started and 
continued to the trailing edge. If a region of separated flow was found to exist, then 
the new location of transition was determined from the formula given by Crlmi and Reeves 
[46] 
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(5.8) 

where yu=o denotes the distance from the wall where u = 0 and subscript s denotes 
separation.  This process was repeated until the solutions converged. 

Figures 5.4 and 5.5 show the calculated and, experimental results for a = 0°. Figure 
5.4 shows the computed wall-shear parameter fw for several sweeps on the airfoil, and 
Figure 5.5 allows comparison of calculated and experimental velocity profiles at differ- 
ent streamwise locations. From Figure 5.4 we see that the inverse calculations do not 
reveal a separated region in sweep 1 with transition corresponding to laminar separation. 
In the second sweep, however, the calculations show a small separated region with the 
transition location still at s/c = 0.66, indicating that Eq. (5.8) did not indicate tran- 
sition during that sweep. The third set of calculations (not shown on the figure) indi- 
cated a larger region of separated flow with the transition location computed by Eq. 
(5.8) to be at s/c = 0.69.  Table 4 presents the location of transition as a function of 

0.9  1.0 

Figure 5.4.  Variation of wall-shear parameter f^J with number of sweeps for a  = 0, 
Rc = 2 x 10b. 

0.005 0.7241 

0   0.5   1.0 

Figure 5.5.  Comparison of calculated (solid line) and experimental (symbols) velocity 
profiles for a = 0, Rc = ?.  x 10^ after 15 sweeps. 
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Table 4.  Variation of Transition Location for Different Sweeps 
for a  = 0° 

The method discussed in this section has also been used to calculate the lift and 
drag characteristics of several airfoils for a wide range of angles of attack including 
stall [10], The calculations include both wall boundary layer and wake flows and are 
presented in the following paragraphs in a sequence which corresponds to the complexity 
of the flow. Thus, the first results are presented for a symmetrical airfoil, NACA 0012, 
at angles of attack up to and including stall. The second airfoil, NACA 4412, has camber 
and the measurements again correspond to angles of attack up to and including stall. 
Finally, results are presented for an aft-loaded airfoil, GA(W)-2, which is 13%-thick. 
These airfoils have been investigated for angles of attack up to 16° and, since the chord 
Reynolds numbers imply that transition can play an important role and it was treated here 
in the manner described previously. 

Figures 5.6 and 5.7 allow a comparison between the computed and experimental [47] 
lift and drag curves for the NACA 0012 airfoil. As can be seen from Fig. 5.6, the calc- 
ulated results are in very good agreement with measurements up to a = 15° and suggest 
that stall occurs for a beyond 19°, whereas the experiments indicate stall for a>16°. As 
shown in the figure, a very small adjustment to the location of transition results 1n 
calculations of stall angle in accord with measurements. To further elaborate on this 
point and to show the role of transition, Table 5 presents calculated results for three 
angles of attack. Those in Table 5a were obtained for a = 6° with the transition 
location computed from the empirical formula given by Eq. (5.8).  As can be seen from 

2.0 
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 INTERACTIVE THEORY                   '          ^ 
(MODIFIED TRANSITION)           /        yf 

0      EXPERIMENT                        ,' y»\ 
/        yO                    0 
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/ 
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0.0 

 1 1 1 1 1 1 1 1 1               ' 

Figure  5.6. 

0       2       4       6       8      10     12      14     16     18 
a(deg) 

Variation  of  c%  with a  -  NACA 0012  airfoil,   Rc  = 6.0  x 106. 
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Figure 5.7.  Variation of cj with c%   -  NACA 0012 airfoil, Rc = 6.0 x 106. 

Table 5.  Effect of Transition on the Flow Properties of 
an NACA 0012 Airfoil for Rc = 6 x 10°. 

(a) a = 6°.  Experimental value of cj, = 0.65.  Transition computed from Eq. (5.8). 

(x/ch 'tr 
0.031 (fixed) 
0.052 (computed) 
0.070 (fixed) 
0.078 (fixed) 

0 625 
0 628 
0 633 

f, * 
'c   't.e. 

0.0091 
0.0089 
0.0084 

!b)    a   =12°.     Experimental   value  of Co   =  1.29.     Transition  location  corresponds  to 
laminar  separation.     (Negative  values  of  x/c  indicate  points  on  the  lower  surface.) 

(x/c) tr 
0030 (fixed) 
0025 (fixed) 
0083   (computed) 

1 .270 
1 283 
1 .286 

0.0170   (fixed) 

(^) 'c   't.e. 
0.0195 
0.0172 
0.0167 

(Ax/c sep 

0.965 -\. TE 
0.986/^ TE 
0.986 %  TE 

(c)    a   =  17°.     Experimental   Value  of cj,   = 1.42. 
responds  to  laminar separation. 

(x/c tr 
-0.0173   (fixed) 
-0.00925(fixed) 
-0.00250(fixed) 
0.000493(computed) 

1 .502 
1.514 
1.573 
1.669 

Computed  transition  location  cor- 

(—) 'c 't.e. 

0.0768 
0.0737 
0.0615 
0.0453 

(Ax/c) sep 
0 56 -v» TE 
0 60 -v TE 
0 66 ^ TE 
0 77 ^ TE 

the values of cj, and displacement thickness at the trailing edge, movement of the 
transition location by 2% of chord has a negligible effect. Location of transition at 
x/c = 0.078, however, leads to a breakdown in the solutions for reasons consistent with 
those found by Cebeci and Schimke and discussed earlier. In an adverse pressure gradi' 
ent, as in this case, it appears that transition must occur upstream of some limiting 
location for solutions to exist. 

The same phenomenon is evident in Table 5b, which corresponds to a = 12° and a 
much higher lift coefficient. In this case, transition was assigned to the location 
corresponding to laminar separation since Eq. (5.7) was inappropriate and a small adjust- 
ment to the location of transition has a small effect on lift, although movement of tran- 
sition to x/c = 0.0170 causes the solutions to break down. The results of Table 5c for 
a = 17° indicate that the lift coefficient is strongly dependent on the location of 
transition and that the extent of the region of trail ing-edge separation is large and 
becomes larger as the transition location is moved upstream. Consistent with this 
result, the displacement thickness at the trailing edge increases and the lift coeffic- 
ient decreases as the transition location moves upstream. 

Figure 5.7 shows calculated and measured variations of total drag coefficient versus 
lift coefficient with discrepancies which increase with angle of attack and are undoubt- 
edly due in part to measurement accuracy. In addition, the accuracy of the calculations 
in the wake region requires further examination of numerical uncertainties and of those 
due to the neglect of normal pressure gradient. 
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In the experiments of Wadcock [48] and Coles and Wadcock [49], a flying hot-wire 
arrangement was used to measure the velocity characteristics of the flow around an NACA 
4412 airfoil at angles of attack up to that corresponding to maximum lift. Figures 5.8 
to 5.10 show the experimental and computed lift and drag curves and the pressure distri- 
bution respectively, with calculated transition locations corresponding to the procedure 
described earlier and to that obtained by the tripping arrangement of the experiment. 
The measured and calculated values of cj, are in close agreement up to a = 12°, with those 
calculated according to experimentally determined transition location in slightly better 
agreement. The drag curves of Fig. 5.9, agree fairly well at low values of cj, and poorly 
at higher values. It should be noted, however, that the two sets of experimental data 
differ by amounts larger than could be expected from their Reynolds numbers. The results 
in Fig. 5.10 confirm the close agreement between the measured and calculated distribu- 
tions of pressure coefficient. It is clear that the inclusion of viscous effects influ- 
ences the pressure distribution considerably in the leading and trailing edge regions. 

Figures 5.11-5.13 compare computed results for the 13% thick GA(W)-2 airfoil with 
the experimental data of [50]. The pressure distribution, shown in Fig. 5.11 for a = 
12° agrees well with the experimental data suggesting that the present interactive theory 
provides a good prediction of the viscous effect. The lift curve slope of Fig. 5.12 
shows that the present method gives good agreement up to an angle of attack of approxi- 
mately 16°, which is better than the 10° obtained by Melnik and Brook [51] with the 
GRUMFOIL program. The variation of drag with lift, presented in Fig. 5.13, shows that 
the present method predicts the drag very well over the whole range considered. 
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Figure 5.10.  Variation of Cp with x/c - NACA 4412 airfoil, a = 12°. 
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Figure 5.11.  Variation of Cp with x/c - GA(W)-2 airfoil, a  =  12°, Rc = 4.3 x 106. 
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Figure 5.12.  Variation of eg with a = GA(W)-2 airfoil, Rc = 4.3 x 106. 
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Figure 5.13.  Variation of Cd with eg - GA(W)-2 airfoil, Rc = 4.3 x 106. 

In calculating the results of Figs. 5.6 to 5.13, the FLARE approximation was found 
to be satisfactory only when the separation region was small. As the extent of the sep- 
aration region increased, an additional iterative scheme based on the homotopy continua- 
tion method was introduced at the start of the wake calculation. Under this scheme an 
initial velocity profile at the trailing edge was defined by 
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,f + n (u - uref), 0, 0.50, 1.0 (5.9) 

and the boundary-layer solution was computed at the first point in the wake with n = 0. 
Here uref corresponds to a nonseparating velocity profile constructed from the sepa- 
rated velocity profile at the trailing edge. This procedure was repeated with n = 0.50 
and 1.0 until the solutions converged and, since it was applied to each wake profile with 
separation; it was necessary for angles of attack greater than around 15°. Attempts to 
avoid the problem by approaching from lower angles of attack with smaller increments of 
angle were unsuccessful. 

In the course of the development of interactive methods, it is common to perform 
calculations for the flow over an airfoil and to omit consideration of the wake. Figure 
5.14 shows that this practice has consequences which also increase with angle of attack 
and, for the NACA 0012 airfoil of the figure, are important for angles greater than 
around 10 degrees. 

The predictions of the above interactive procedure were compared with those of the 
thin Navier-Stokes (TNS) solutions in [52]. The NACA 0012 airfoil was considered for 
this purpose and the calculations were performed at Rc = 2.88 x 10° with Reynolds 
stresses modeled by the algebraic eddy-viscosity formulation of Cebeci and Smith [4]. 
Both calculations used the same transition location. The TNS calculations made use of a 
C-type grid topology with 257 x 57 node points, and with 36 points in the wake region of 
the airfoil along the freestream direction. Except near the leading edge and the trail- 
ing edge of the airfoil, the first grid-point off the airfoil surface was at a distance 
of 0.0000U, where L is the chord length, and corresponded to y+ in the range of 0.15 
to 3.5, depending on chordwise location and angle of attack. The first grid-point 
upstream of the leading edge and downstream of the trailing edges was at a distance of 
0.001L and the outer boundary was located 10 chord lengths from the airfoil. 

The interactive boundary-layer (IBL) calculations were performed with approximately 
80 and 60 x-stations on the upper and lower surfaces, respectively. The number of 
y-stations varied from 37 to 50 for small angles of attack, and was equal to 70 for large 
angles of attack. There were 30 x-stations in the wake, which extended to three chord 
lengths downstream of the trailing edge. 

WITH WAKE / 
WITHOUT WAKE        / 

Figure 5.14.  Effect of wake on the  (a)  separation  region, 
thickness - NACA 0012 airfoil, Rc = 6 x 106. 

and  (b)  displacement 

The calculated and measured values of lift coefficient, Co, shown on Figure 5.15 as 
a function of angle of attack, are in close agreement up to 12 and the expected fall off 
in cA occurs in the IBL solutions but not in the TNS solutions. With very small 
changes in transition location, as was discussed previously, the IBL-computed lift coef- 
ficient changes significantly and the TNS solution is less sensitive. There are several 
possible reasons for the differences but is evident that better modeling of the wake is 
required to compute the expected fall off in cj, with the TNS method. 

Distributions of pressure coefficient are shown on Figs. 5.16-5.18. Figures 5.16 
and 5.17 present the TNS and IBL results, respectively, with the experimental data of 
[53] for angles of attack of 0 to 16" and Fig. 5.18 compares the results of the two pro- 
cedures for angles of attack 10° and 12°. The calculated results of the two procedures 
agree very well with each other as well and with the experimental data except at 14° and 
16° where the TNS results show some irregularities near the suction peak due to an 
improper transition location [54]. 

The drag results of Table 6 and Figure 5.19 require more detailed discussion. The 
IBL approach has used the velocity defect in the wake to compute the drag coefficient, 
c,j, whereas the TNS procedure has integrated forces around the airfoil surface. The 
pressure drag ranges from about 13 to 86% of the total drag, for angles of attack from 0 
to 16°. It is likely that the pressure drag integrated using surface pressure distribu- 
tion is determined with acceptable accuracy, especially in view of the quality of the 
calculations suggested by the comparisons between computed and experimental pressure 
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Figure 5.15.  Comparison of IBL and TNS results for the NACA 0012 airfoil 
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Figure 5.16.  Comparison of pressure distribution for the NACA 0012 airfoil 
results (solid and dashed) and experimental (symbols) data. 
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Figure 5.17.  Comparison of pressure distributions for the NACA 0012 airfoil 
results (solid and dashed) and experimental (symbols) data. 
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Figure 5.18.  Comparison of pressure distributions for the NACA 0012 airfoil - TNS 
(solid) and IBL (symbols) results. 
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Figure  5.19.     Drag characteristic  of the  NACA 0012  airfoil   at  Rc  =  2.88  x  106. 

Table  6.     Lift  and  Drag  Coefficients  for  the  NACA 0012  Airfoil 
at Rc  =  2.889 x 106 

a 
deg H cd 

EXP. IBL TNS EXP. IBL TNS 

0 0.025 0.0 0.0 0.0069 0.00596 0.00568 

2 0.220 0.209 0.213 0.0073 0.00611 0.00572 

4 0.440 0.421 0.430 0.0080 0.00633 0.00750 

6 0.650 0.639 0.641 0.0094 0.00689 0.00921 

8 0.850 0.873 0.857 0.0112 0.00899 0.01207 

10 1.055 1.077 1.065 0.0134 0.01070 0.01547 

12 1 .240 1.256 1.265 0.0180 0.01294 0.01962 

14 1 .400 1 .422 1 .457 0.0244 0.01662 0.02469 

16 1 .490 1 .545 1.640 0.0338 0.02315 0.03121 
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coefficients discussed earlier. At angles of attack from zero to 2°, and transition 
specified at the experimental location, the total drag computed by the IRL method is 
within six counts (ten thousandths) of that computed by the TNS method and both methods 
agree well with the experimental values. At hiqher angles of attack, before the appear- 
ance of the transitional bubble, the computed results of the IBL method are lower than 
those determined by experiments and the TNS method. At still higher angles of attack, 
in the presence of this bubble and, with turbulent flow separation, still lower pressure 
coefficients exist along the aft region of the upper surface and are underpredicted by 
the IBL method. This difference is probably due to the wake-curvature and the cross- 
stream pressure gradient effects which are not represented by this approach. The cross- 
stream pressure gradient increases the momentum thickness of the wake and consequently 
the total drag. This conjecture is consistent with the findings of [16], which examined 
the use of the Cebeci-Smith eddy viscosity formulation for wake flows. 

Further examination of the calculated values of cj showed that they are different 
from those reported by Loftin and Smith [55] for Rc = 3 x 106 and almost the same value 
as those in [53] (Fig. 5.19). Since the NPL data are 25 years newer than those of [55], 
they are probably more accurate. The TNS procedure appears to do a better job of pre- 
dicting drag than the IBL procedure, which underpredicts it at high angles of attack. 
However, it is evident that the uncertainties associated with the calculation procedures 
and with measurement of cj require further examination. 

5.2 Two-Dimensional Unsteady Flows 

We now present results for a model oscillating airfoil whose external velocity dis- 
tribution is given by Eq. (5.4). One part of the calculations was carried out for the 
standard problem by choosing 50 = 1 . A = -1/2 and u = 0.1 [56]. With these choi- 
ces, the maximum value of aeff, defined by 

aeff = 5o(T + A si nut) (5.10) 

is sufficient to provoke separation with a strong singularity if the boundary layer were 
steady. Numerical calculations were made initially with the Zig-Zag box scheme and the 
results of Fig. 5.20 show that the boundary layer eventually separates, the flow remain- 
ing smooth. Immediately downstream of separation, however, it is evident that a singu- 
larity appears to develop in the neighborhood of 5 = 2.12 and ut = 308.75° and that 
it is not possible to continue the calculation beyond this time with the standard formu- 
lation and the Zig-Zag scheme. 

Figure 5.20a shows that the variation of the displacement thickness 

3* „ «1 jUUE, 1_ (5.11) 

is generally smooth except in the neighborhood of \ = 2.12 and for cot = 308.75°. The 
first sign of irregularity is the steepening of the slope of 3* when ut = 300° and the 
local maximum of Z* at Z, =_ 2.12 when ut = 308.75°. When the same results are plotted for 
a displacement velocity (ueS*), (Fig. 5.20b), we observe that the steepening of the dis- 
placement velocity near 5 = 2.12 is dramatic. For example the peak is at 5 = 2.125 for 
ut = 300°; at K  =  2.105 for ut = 305°; at %  =  2.09 for ut = 307.5°;  and finally at 

25 

20 

15 

5 - 

' cot (deg)-308.75 

307.5 fj 

//305, 

II 1 300. 

as«^^   285 
27 

,     \     >    -Ti ^ 

0.05 

(b) 

2.0 2.11 2.3 2.4 

-0.10 

-0.15 - 

-0.20 

-0.25 

(C) 

308.75 

Computed  results  for  the  oscillating  airfoil,     A_=  -1/2,  u = 0.1   using 
the  Zig-Zag  schema.     (a)   Displacement  thickness  S„     (b)  Displacement 
velocity,   d/d5(ua6*).     (c)  Wall   shear  Darameter  f..,. 
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5 = 2.08 for ut = 308.75°. It should be noted that the maximum value of displacement 
velocity moves towards the separation point with increasing ut as we observed previ- 
ously with the circular cylinder. 

As shown in Fig. 5.20c, the wall shear parameter fw shows no signs of irregu- 
larity fgr ut £ 308.75° but a deep minimum in fw occurs near X,   = 2.15,  i.e. near the 
peak of 6*. 

These results suggest that the solutions have a singularity in the neighborhood of 
K = 2.12 and ut = 308.75° and that, as in steady flows, it is necessary to use an 
interactive theory to remove it. The procedure of Section 2.6 was used to investigate 
this possibility further for a specific value of R[_ (slO5). The standard method 
was used to compute the unsteady boundary layers up to 5 = 0.5 for all time and with 
these initial conditions and for each value of ut, the inverse method was used to 
calculate the unsteady flow from I = 0.5 to t, = 5.5. As before, up to three sweeps 
in the 5-direction were made to achieve a converged solution where flow reversal was 
encountered, as happens for values of ut > 270° and %  >   2. 

Figure 5.21a shows,, the variation of displacement thickness S* and Fig.' 5.21b the 
wall shear parameter fw as a function of nondimensional distance % and time, and it is 
evident that the solutions are well behaved for values of % < 2.5. As expected, the dis- 
placement thickness increases with 5 for all values of time and reaches a maximum around 
ut = 300° as a consequence of the change in the angle of attack. In the same range of X,, 
the wall shear decreases for all values of ut and reaches a minimum corresponding to 
the maximum in displacement thickness. 

For values of X, > 2.5, the solutions remain well behaved until around ut = 290°. 
The general trends are in accord with expectations and there is negligible difference 
between the results obtained with the standard and interactive methods for values of 
ut up to the maximum for which the standard method allowed solutions. Although the 
calculations were carried out for one complete cycle, the solutions had wiggles for ut 
> 295° and several attempts to eliminate them by using different step sizes in time 
and space as well as Reynolds number were not successful. Indeed, in some cases the 
solutions broke down before the calculations completed one cycle. 

Calculations were performed for the model oscillating airfoil with the Character- 
istic Box, as had previously been found necessary with the circular cylinder [38], At 
first, calculations were made for the standard problem with the same net spacing used in 
the Zig-Zag scheme and the solutions broke down at 5 = 2.12 and ut = 305° when the 
CFL condition given by Eq. (4.1) was not satisfied. As in the case of the circular cyl- 
inder problem, the original 5-distribution was maintained and the value of kn was 
reduced until the CFL condition was met and the resulting calculations were performed 
smoothly and without numerical problems for one complete cycle. More important, however, 
the solutions did not break down at ut = 308.75° when the same calculations were 
repeated with the Zig-Zag scheme, and we were able to obtain them for one cycle. These 
results were also identical to those obtained with the characteristic box scheme indi- 
cating that with the "proper" net the predictions of both schemes are the same. 

Figures 5.22 „and 5.23 show the variation of displacement thickness <$* and wall 
shear parameter fw, respectively. As expected, the new results are the same up to 
the location of flow reversal as those in Figs. 5.20a and 5.20c, but substantially dif- 
ferent in the region of flow reversal. 

0.05 

-o.io 

-0.15 

(a) (b) 

Figure 5.21. Effect of interaction on the,, variati on of (a) displacement thickness 6*. 
(b) wall shear parameter fw for an oscillating airfoil with e = 4.5 
x 10-3. Solid lines in the insert represent the results obtained by the 
Standard method and dashed lines those by the inverse method. Calculations 
made use of the Zig-Zag Box scheme. 
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Figure 5.22. Computed displacement thick- 
ness 5* for the oscillating 
airfoil , A = -l/2w=0.1 
using the Characteristic Box 
scheme. 

-0.4 

Figure 5.23. Computed wall shear parameter 
fw for the oscillating' 
airfoil , A = -1/2, u> = 0.1 
using the Characteristic Box 
scheme. 

Calculations were also conducted using the unsteady interactive method for the net 
determined in the standard problem by the characteristic scheme. The results obtained 
with the Zig-Zag scheme are shown in Figs. 5.24 and 5.25 for Reynolds numbers, RL, of 
105 and 10*. The results obtained by the interactive method are nearly the same as 
those obtained by the standard method prior to flow reversal and are substantially dif- 
ferent when flow reversal is present by an amount which increases as the Reynolds number 
decreases. We also note that the wiggles observed in the calculations with the "wrong" 
net are absent, and that the rate of convergence is the same as in the standard problem. 

5.3 Three-Dimensional Flows 

Except for the studies of Yoshihara and his associates [57-59] and Cebeci and his 
associates [28,60,61], most interactive studies for three-dimensional flows have been 
conducted by direct boundary-layer methods. For a given pressure distribution, boundary- 
layer solutions are obtained up to the separation line, determined either by a sudden 
increase in shape factor (integral method) or by the vanishing of the wall shear stress 
in the streamwise direction (differential method). These signals for separation do not 
correspond to a true definition of flow separation but are chosen because of the limita- 
tions of the direct boundary-layer method and of the numerical procedure. Ad hoc assump- 
tions are made in the separated region so that the displacement thickness distribution 
computed by the boundary-layer method can be added to the basic wing shape in the surface 
normal direction. This technique was chosen by Yoshihara and Wai [59], Street [62] and 
by Chow et al . [63] for transonic flow in preference to using surface transpiration 
boundary conditions because it was easier to incorporate in their transonic codes. All 
studies show the expected strong influence of viscosity on the location of the shock wave 
and on the pressure distribution; the interaction schemes, however, break down in regions 
of flow separation and the effect of assumed displacement thickness distribution on the 
results is not clear. 

The application of interactive methods to three-dimensional flows with separation 
has not received the considerable attention assigned to two-dimensional flows. Recently 
Cebeci and his associates explored the merits of their interactive scheme applied in a 
strip theory sense to wings at subsonic [60,64] and transonic [61] flow conditions. 
Figures 5.26 and 5.27 show the results for subsonic flows. As can be seen from Figure 
5.26, the computed results agree well with experiment as long as flow on the wing is not 

Interactivensolutions of (a) displacement thickness «*, and (b) wall shear 
parameter fw, for the oscillating airfoil. A = -1/2, u> = 0.1 obtained with 
the Characteristic Box scheme for R|_ = 105. 
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Figure 5.25. Interactive solutions of (a) displacement thickness 5* and (b) wall shear 
parameter fw, for the oscillating airfoil, A = -1/2, u> = 0.1 obtained 
with the characteristic box scheme for R[_ = 104. 
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Figure 5.26.  Calculated and experimental 
lift coefficient for a 
tapered wing. 

Figure 5.27.  Effect of transition location 
on the separation pattern of a 
tapered wing at a = 17.5°. 

"too" three dimensional, which is the case at small and moderate angles of attack when 
the flow separation is small. At higher angles of attack, and starting around a ^ 
12", however, the computed results begin to deviate from the experimental results and the 
discrepancy may be attributed to several causes. 

The first is the use of the strip theory approximation to account for viscous 
effects: at the higher angle of attack, the flow becomes increasingly three-dimensional 
and the viscous effects computed by a two-dimensional procedure are insufficiently repre- 
sentative. The second reason is the use of a two-dimensional method to compute transi- 
tion: the results of Figure 5.27 show that the computed transition location for a = 
17.5°, is close to 1% chord but its location at 5% chord causes significant changes in 
the flow separation pattern, especially near the tip, and decreases the total lift by 5*. 

The third, and perhaps the most important reason, is the wake effect. The calcula- 
tions for Figures 5.26 and 5.28 extended only to the trailing edge and, although this may 
be acceptable at small angles of attack, it is not acceptable at higher angles of attack. 

Recently the interactive approach described in Section 5.1 for two-dimensional flows 
has been extended to three-dimensional flows [28] by a quasi-three-dimensional flow 
approximation which is a significant improvement over the 
discussed above. We shall now present results obtained with 
separation and reattachment on the leading edge of a model 
thin wing discussed earlier. The results are presented here 
range of angles of attack and the corresponding flows include 

strip-theory approximation 
this procedure to study the 
problem corresponding to a 
for two sweep angles with a 
some with separation. 

Results obtained with the sweep angle 
range of reduced angles of attack from 1.3.06 
the streamwise wall  shear parameter fw becomes 

of X = 20° are shown in Fig. 5.28 for a 
to 1.319. As can be seen from Fig. 5.28a, 

negative with a value of 50 
1.312. The calculations proceed smoothly" until 50 = 1.323 is reached at which value 
they change substantially with the number of sweeps as shown in Fig. 5.28b. Up to this 
angle of attack, the region of separated flow is small and did not change much with each 
sweep although the rate of convergence of the solutions at a given 5-location was 
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Figure 5.28.  Results for X = 20 for various reduced angles of attack, £0.  (a) Variation 
of streamwise wall shear parameter fw with x.  (b) Variation of streamwise 
wall shear parameter fw with x for several iterations at 50 = 1.323.  (c) 
Variation of spanwise wall shear parameter gw with x.   (d) Variation of 
displacement thickness 5* with x. 

slow.  Further work is in progress to accelerate the rate of convergence and to 
investigate the reasons for the sudden increase of the separation region of Fig. 5.28b. 

The distributions of spanwise wall shear parameter g^ are shown in Fig. 5.28c 
and, although they exhibit a sign change, they are well behaved in the range of angles 
of attack of Fig. 5.28a. Since the two momentum equations are coupled, the problems 
encountered for l0 = 1.323 and shown in Fig. 5.26b for fw were also present in 
gw. The displacement thickness variations of Fig. 5.28d exhibit the features of 
flows with separation so, for 
angle of attack. 

example, the displacement thickness varies rapidly with 

It is likely that the problem associated with high angle of attack is similar to 
that explored for two-dimensional flows discussed in Section 5.1. The influence of sweep 
angle is, however, important since the present critical angle of attack is much higher 
than that for two-dimensional flows. To explore this influence further, calculations 
were also performed for a sweep angle of X = 30°. The results shown in Figures 5.29 
confirm the dependence of the critical angle of attack on sweep angle. 

The above calculations for the model problem were performed for a given inviscid 
pressure distribution with successive boundary-layer sweeps on the body. As in the two- 
dimensional model problem discussed in Section 5.1, the blowing velocity can be computed 
from 

TTTTr2 
1TTW lh (ueh2   sinBSP  +'h (wehl   sine«*)] (5.12! 

where 

Sx I  (1 -£-)dy, 
0       ue z  0      we 

(5.13) 

but was not fed back into the inviscid flow to obtain a modified inviscid pressure dis- 
tribution.  This possible improvement can readily be incorporated so that several cycles 
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(a) 

(c) 

(b) 
Figure. 5.25 

(<J) 
Results for X = 30 for various reduced angles of attack, 50.  (a) Variation 
of streamwise wall shear parameter  fw with x.  (b) Variation of streamwise 
wall shear parameter fw with x for several iterations at 5o = 1.481.  (c) 
Variation of spanwise wall shear parameter gw with x.   (d) Variation of 
displacement thickness S*  with x. 
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Figure 5.30.  Interactive solution procedure. 

between inviscid and viscous flow calculations can be performed to obtain a converged 
solution, as discussed in [65], 

The use of a quasi- or ful1-three-dimensional interactive boundary-layer scheme 
involves considerable work and/or changes in the manner in which inviscid and viscous 
flow calculations are performed. Unlike two-dimensional flows, we now need to compute 
the geometric properties of the coordinate system, namely the metric coefficients and 
geodesic curvatures appearing in the boundary-layer equations. The use of this 
interactive procedure suggests the following sequence of events in the calculations, as 
shown in Figure 5.30. 

The inviscid method first computes the external velocity distribution around the 
body without viscous effects and transfers it to the interface program which rearranges 
the data from the inviscid computation to the form needed for the viscous flow calcula- 
tions and computes the geometric properties of the coordinate system. After the 
boundary-layer calculations, the blowing velocity can be fed into the inviscid method to 
start a new cycle. 

This strategy of computing three-dimensional flow fields employing the quasi-three- 
dimensional interactive boundary-layer method and a subsonic surface panel method with 
interface program, is being investigated by the author and his associates.  The results 
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Figure 5.31.  Computed results for the F-15 wing [65]. 

indicate that turbulent flows with considerable separation can be calculated for a wide 
range of angles of attack, as discussed in [65]. Figure 5.31 shows a sample of calcula- 
tions performed for the F-15 wing with leading-edge separation and, as can be seen, the 
computed results with this procedure are slightly better than those obtained with the 
strip-theory procedure. Considering that inviscid calculations on the fuselage are not 
corrected for viscous effects, the agreement with experiment is satisfactory. 

6.0 CONCLUDING REMARKS 

It is evident that calculation procedures for two-dimensional flows can be used to 
provide accurate information of aerodynamic properties for angles of attack up to and 
including stall. Interaction between solutions of viscous- and i nvi scid-fl ow equations 
is necessary and the wake should form part of the solution domain for angles of attack 
greater than around 10 degrees. There is, however, an urgent need for a procedure to 
represent accurately the onset of transition, particularly for flows involving flow sep- 
aration at high angles of attack. 

The status of calculation procedures for three-dimensional flows is less satisfac- 
tory. It has been shown that the CFL stability criterion must be satisfied in the solu- 
tion of boundary-layer equations and that interaction and consideration of the wake are 
again likely to be necessary as the angle of attack is increased. The formulation, test- 
ing and use of an appropriate interaction procedure is required and, although the work 
performed in relation to two-dimensional flows provides essential guidelines, much 
remains to be done. The problems associated with the specification of transitin in two- 
dimensional flows are likely to be at least as severe in three-dimensional flows and 
effort is also required to improve the accuracy and efficiency of numerical methods for 
three-dimensional equations. 
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PROGRESS  IN 
V1SCOUS-INVISCID SOLVERS   (VIS) 

J.C. LE BALLEUR 

ONERA - BP 72 - 92322 Chatillon Oedex (France) 

I - SUMMARY : 

The aim of these lectures was an introduction to the further extensions of boundary layer 
theory which rely on the development of full viscous-inviscid interaction solvers, in three- 
dimensional flows. 

At the present time, however, the state of the art still does not allow to handle the full 3D- 
problem. It is more or less restricted, on one hand, to advances in uncoupled 3D-boundary layer 
problems [3,4], direct or inverse, and, on the other hand, to developments in full viscous-inviscid 
solvers for the 2D or quasi-3D infinite swept wings flows [1,2], the latter developments involving 
the coupling and the calculation of quasi-3D "closed" separations. 

The present lectures were mainly devoted to the developments obtained by the author and 
his colleagues in these two areas. These developments were outlined after describing shortly the 
different strategies which can be used to split the Navier-Stokes problem into a viscous-inviscid 
interaction problem, in two or three dimension. 

The detailed content of these lectures can be found in four written publications, available in 
references [l to 4]. 

The progress in uncoupled 3D-boundary layer problems includes the modelling of the 3D 
turbulent mean velocity profiles in attached or separated layers, with possibly reverse flows in 
streamwise direction and very high shape parameters. This modelling provides also a generalised 
entrainment closure for 3D integral equations. 

The progress includes also the space-marching integration-scheme used to solve the 
spatially-hyperbolic boundary layers equations on arbitrary grids at the surface of the bodies. Such 
arbitrary grids are specified in order to satisfy the constraints of the geometry and of the inviscid 
solver, but are not well behaved with respect to the local characteristic cones of dependance of the 
boundary layer problem. A Multi-Zonal and Multi-Marching "MZM" method has then been 
developed to perform the numerical integration, starting at the stagnation point, and giving access to 
both sides of the open-separation lines, for ellipsoids, fuselages or slender-bodies, at incidence and 
yaw conditions. In case of wings, the "MZM" method allows to compute without approximation the 
leading-edge 3D-boundary layer. 

The progress in full Viscous-inviscid Solvers (VIS) includes first the numerical algorithms 
for coupling in two dimensional flows [1,2]. Theoretical work has made it possible to control the 
numerical stability of the "Direct" and "Inverse" coupling methods, and to define the "Semi-Inverse" 
coupling method, for steady separated flows. These methods are explicit, overrelaxation like, free of 
any adjustable or empirical parameter, and have been extented to the infinite swept wings (quasi- 
3D) separated flows [2]. The theory is also shortly summarized [l] for the recent "Semi-Implicit" 
method, which is presently used for time-consistent solutions, and which is different from 
Veldman's "Quasi-Simultaneous" method. 

The progress in full Viscous-inviscid solvers includes on the other hand the capabilities 
which have been developed in the steady case, to compute separated flows over airfoils and spoilers, 
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massive separation up and beyond stall, infinite swept wings, supersonic or transonic shockwave- 
boundary layer interactions with separation, and choked internal separated flows. The capability of 
the VIS solvers is also extended now to unsteady transonic separation over oscillating airfoils, and to 
the calculation of self-induced unsteadiness in buffeting separations. 

II - OUTLINE : 

1--  SPLITTING - THIN LAYERS EQUATIONS - INTEGRATION SCHEMES 

a) Boundary Layer Theory (Weak Coupling) 

Patching (Interactive Boundary Layer Theory, Crocco 1952, 
Zonal Navier-Stokes) 

Matching 

Defect Formulation (Le Balleur,1980) 

b) Approximate Defect Eq. —• Defect Integral Eq. 

—• 3D-Turbulent Velocity Profiles Closure 

c) Uncoupled viscous problem —• Direct, Inverse ,Semi-Coupled 

—• "MZM" multi-marching 3D-Integration (Le Balleur, Lazareff, 1984) 

2 -  COUPLING ALGORITHMS    (2D, Quasi-3D ) 

a) Direct \ 

Inverse > Explicit, Stability Control, 1978 

Semi-Inverse   [Le Balleur, 1978   / 
[Carter, 1979 

b) Quasi-Simultaneous f Veldman (1980) 
\ „ , I   Iterative Marching 
\ Cebeci > 

c) Semi-Implicit {Le Balleur, Girodroux, 1984 

d) 3D-Separation : Objectives - Strategies 

Gauss-Seidel 
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COMPUTATION OF TIP AND CORNER REGION FLOWS 

T.R. Govindam and H. McDonald 

Scientific Research Associates, Inc. 

P.O.B. 498, Glastonbury, Connecticut 06033 

USA 

Summary 

The flow field in corner and tip regions of wings and propellers is 

complex, three-dimensional, and viscous with large secondary/transverse 

velocities. The large secondary velocities, usually associated with streamwise 

vorticity development in the flow, preclude the use of conventional 

boundary-layer solution techniques to compute such flow fields. On the other 

hand, solution techniques for the full Navier-Stokes equations that adequately 

resolve the length scales of tip and corner region flow fields would require 

formidable computer resources for use routinely.  Sets of approximate 

three-dimensional viscous flow equations which are applicable to tip and corner 

region flow fields and which can be solved economically are sought.  Clearly, 

economy of solution must result from approximations to the governing equations 

for such procedures to be attractive. A spatial marching computation procedure 

that solves approximate three-dimensional viscous flow equations economically is 

presented here and application of the procedure to compute tip and corner region 

flow fields discussed. 

Spatial marching computation procedures for three-dimensional equations 

achieve economy of solution by solving the three-dimensional equations on 

transverse surfaces one at a time, from given initial conditions, along a chosen 

coordinate direction (marching direction). The equations being solved must be a 

well-posed initial value problem along the marching direction for the procedure 

to be applicable. The steady Navier-Stokes equations are elliptic-like and not 

amenable to a spatial marching procedure of the type described. Approximations 

need to be introduced in the Navier-Stokes equations to obtain a well-posed 

initial value problem along a chosen coordinate direction. The validity of the 

approximations determines the class of flow problems for which a spatial 

marching computation procedure is suitable. Conventional three-dimensional 

boundary layer approximations provide one such approximation set that are, 

however, not suitable for tip and corner region flow fields. 

Many three-dimensional flows are characterized by a dominant flow direction 

(streamwise direction).  Streamwise viscous diffusion is small for such flows 

compared to diffusion in transverse directions and can be neglected in the 

momentum equations. This approximation is, however, not sufficient to convert 
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the steady Navier-Stokes equations into a well-posed initial value problem in 

the streamwise direction.  Additional physically realistic approximations need 

to be introduced to achieve this goal. Two approximations are presented here, 

each of which convert the steady Navier-Stokes equations (with streamwise 

diffusion neglected) into well-posed initial value problems, and are termed 

(a) the pressure approximation 

(b) the small scalar potential approximation. 

In the pressure approximation the streamwise pressure gradient in the streamwise 

momentum equation is approximated and treated as known.  Typically the 

streamwise pressure gradient is obtained from the inviscid potential flow for 

the geometry under consideration.  No approximations are made for the transverse 

pressure gradients in the equations and this allows a new pressure field 

compatible with the computed viscous flow velocity field to be computed from the 

transverse momentum equations. The streamwise pressure gradient associated with 

the computed pressure field will, in general, be different from that assumed 

known in the streamwise momentum equation.  The difference between the two 

streamwise pressure gradients represents the level of approximation made to the 

Navier-Stokes equations. Details of the pressure approximation, solution 

procedure, and computed results can be found in Reference [1]. 

The small scalar potential approximation can be considered to be a non- 

trivial extension of two-dimensional slender channel theory to three-dimensional 

flow with large secondary velocities.  In this approximation convection effects 

of a defined scalar potential velocity are neglected in the transverse momentum 

equations.  Simple order-of-magnitude estimates can be made to show that the 

neglected convection effects are small for many three-dimensional flow fields. 

No approximations are introduced in the equations for the pressure gradients or 

for the dominant component of the secondary velocity field. Details of the 

small scalar potential approximation, solution procedure, and computed results 

can be found in Reference [2]. 

The pressure approximation and the small scalar potential approximation 

each provide a set of approximate three-dimensional viscous flow equations that 

are amenable to solution by a spatial marching algorithm.  Numerical procedures 

employed in the solution of the equations must exploit the approximations made 

to provide economy of solution (one to two orders of magnitude over an efficient 

Navier-Stokes algorithm).  Further, the numerical procedures must be consistent, 

stable and accurate. The approximate flow equations are solved in terms of a 

set of new dependent variables; namely, the streamwise velocity, defined scalar 

and vector potentials, the streamwise vorticity, and the pressure. The scalar 

and vector potentials together define the transverse velocity field. The flow 

equations in terms of the new dependent variables are weakly coupled sub-systems 

of equations that can be solved sequentially on each transverse plane rather 
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than the strongly coupled system of equations in terms of primitive variables. 

This decoupling of the equations enhances economy of the solution algorithm. 

Efficient, stable and accurate numerical procedures are used to solve each 

sub-system of equations.  Details of the solution algorithm for the pressure 

approximation can be found in Reference [1] and for the small scalar potential 

approximation in Reference [2]. 

Application of the spatial marching algorithm to compute tip vortex 

generation on propeller blades using the pressure approximation can be found in 

Reference [3].  Computation of the flow in the internal corner of a curved 

square duct using the small scalar potential approximation can be found in 

Reference [2].  These typical computations demonstrate the capability of the 

procedure to compute complex three-dimensional viscous flows economically and 

accurately. 
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OUTLINE 

• LECTURE I 

CONCEPTS,  REQUIREMENTS, AND GENERAL FEATURES 

OF A SOLUTION ALGORITHM TO COMPUTE TIP AND 

CORNER REGION FLOWS ECONOMICALLY 

• LECTURE II 

DETAILS OF FORMULATION, APPROXIMATIONS,  AND 

NUMERICAL PROCEDURES OF THE FORWARD MARCHING 

COMPUTATION  PROCEDURE  FOR 3-D VISCOUS FLOWS 

Sc7« nillie 
Rtsatrch 

k    ASSOCIMUS 

Scltnllflc 
Rtftrch 
Atloclift 

LECTURE I   -   OUTLINE 

•   CHARACTERISTICS OF TIP AND CORNER REGION FLOW AND 
THEIR  COMPUTATION 

•   A CLASSIFICATION OF 3-D VISCOUS FLOW COMPUTATION SCHEMES 

•   BASIC CONCEPTS IN FORMULATING  A FORWARD-MARCHING 
COMPUTATION   PROCEDURE 

•   COORDINATE  SYSTEM 

•   COMPUTATION OF TIP VORTEX GENERATION 
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'EXTEND' BOUNDARY LAYER ANALYSIS 

EXTEND BOUNDARY LAYER ANALYSIS ALL THE WAY TO FULL NAVIER-STOKES 
EQUATIONS.    CURRENTLY TOO EXPENSIVE TO ROUTINELY SOLVE IN 3-D 

INTRODUCE SUITABLE PHYSICALLY REALISTIC APPROXIMATIONS 
TO  NAVIER-STOKES  EQUATIONS IN AN ATTEMPT TO FORMULATE 
AN ECONOMICAL SOLUTION   PROCEDURE 

RETAIN DIFFUSION IN BOTH TRANSVERSE   COORDINATES. 
HENCE,  NO PREFERRED TRANSVERSE   DIRECTION 

CAN NEGLECT STREAMWISE DIFFUSION 
(NOTE:    IDENTIFICATION OF A DIRECTION) 

MAKEUP ATTEMPT TO IDENTIFY 'BOUNDARY LAYER' AND 
'FREE STREAM1 

INTRODUCE ANY ADDITIONAL SUITABLE PHYSICALLY REALISTIC 
APPROXIMATIONS TO ACHIEVE GOAL OF AN 

sci.ntitic       ECONOMICAL SOLUTION  PROCEDURE 
Research 

L    Associates J 

THREE-DIMENSIONAL VISCOUS FLOW PREDICTION SCHEMES 

-    A CLASSIFICATION    - 

I.   CONVENTIONAL  THREE-DIMENSIONAL BOUNDARY LAYERS 
SUBJECTED TO IMPOSED PRESSURE GRADIENTS. 

II.    FORWARD MARCHING OF FLOW EQUATIONS  WHICH 
CONTAIN  BOTH  CROSS-SECTION STRESSES.   STRESS 
IN MARCHING DIRECTION NEGLECTED.    ADDITIONAL 
APPROXIMATIONS   INTRODUCED TO ALLOW SOLUTION 
BY EFFICIENT MARCHING IN SPACE. 

III. ITERATED  FORWARD  MARCHING OF CATEGORY II SYSTEM 
OF EQUATIONS.   GOAL IS TO REMOVE BY.ITERATION 
ADDITIONAL  APPROXIMATIONS INTRODUCED TO ALLOW 
SOLUTION BY EFFICIENT MARCHING IN SPACE. 

IV. SOLUTION OF FULL THREE-DIMENSIONAL   NAVIER-STOKES 
EQUATIONS. 

Scltntlllc 
Rtstirch 
Associate» 
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CATEGORY III 

ITERATED FORWARD MARCHING 

-   BOTH CROSS-SECTION STRESSES RETAINED   - 

FORWARD-MARCHING   DIRECTION STRESS NEGLECTED 
GOAL IS TO REMOVE ADDED CATEGORY II APPROXIMATIONS 

• ATTEMPT TO DERIVE BENEFIT  FROM  FORWARD-MARCHING 
AS IN CATEGORY II 

• REVERSED VELOCITIES IN MARCHING  DIRECTION NOT 
RIGOROUSLY   PERMITTED. 

• NUMBER OF GLOBAL ITERATIONS SIGNIFICANTLY LARGE. 

• CENTRAL MEMORY  REQUIREMENTS LESS THAN WITH FULL 
NAVIER-STOKES TECHNIQUES ALTHOUGH  OVERALL COMPUTER 
RESOURCE REQUIREMENTS MAY BE COMPARABLE. 

Scientific 
Research 
Associates 

Scientific 
Research 

CATEGORY IV 

SOLVES THE FULL NAVIER-STOKES EQUATIONS 

NO FLOW APPROXIMATIONS  REQUIRED OTHER THAN 
TURBULENCE  MODEL. 

COMPUTATIONALLY   EXPENSIVE.   TO REDUCE NUMERICAL 
ERRORS TO TOLERABLE LEVEL MAY NOT BE FEASIBLE. 
RUN TIMES ONE ORDER OR GREATER THAN ONE PASS 
SPATIAL MARCHING SCHEMES. 

•     SOME FLUID PROBLEMS INHERENTLY ELLIPTIC. 

V Associates 
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Scientific 
Research 

V    Associates 

ORTHOGONAL  REFERENCE-LINE COORDINATES 

•     SIMPLIFY THE FORM OF THE APPROXIMATED 
GOVERNING   EQUATIONS 

•     NOT BODY FITTED 

"\ 

SchnWtc 
R»s»ireh 

.    Astocltltt 

BODY FITTED COORDINATES ARE USED 

TO SOLVE THE GOVERNING EQUATIONS 

• NONORTHOGONAL 
3 3 y j     3 

3x,       3x,    3y, 
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V^ Associates 

APPROXIMATIONS 

STREAMWISE  DIFFUSION  NEGLECTED 

STREAMWISE  PRESSURE GRADIENT TREATED 

AS KNOWN SOURCE TERM 

(NO APPROXIMATION ON THE TRANSVERSE 

PRESSURE  GRADIENTS) 

r 

Sclantlllc 
Rasaarch 

v    Associates 

PRESENT ANALYSIS 

•    STREAMWISE  MOMENTUM  EQUATION 

•   SCALAR  POTENTIAL EQUATION 

•   COUPLED VECTOR POTENTIAL AND 
VORTICITY   EQUATIONS 

•    ASSOCIATED  PRESSURE  EQUATION 

A 
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i   NTHI CKNESS 

Perspective view of Che straight 
blade. 

"~\ 

r 

Scltntllle 
VRftich 

Attocltltt 

Computation grid  for  the  straight blade 
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r 
CASE II  -  TIP VORTEX FLOW FOR A 

ROTATING STRAIGHT BLADE 

BLADE THICKNESS = 1.0 

BLADE CHORD = 20.0 

REYNOLDS  NUMBER = 1000.0 

INITIAL d = 0.20 

INCIDENCE ANGLE = 6° 

ADVANCE RATIO = 1.0 

GRID = 60 X 47 x 40 

Scientific 
Research 

k    Associates 

x/t  -  2.0 

Scltntlllc 

k    Attocltf 

4.0 

Straamvise Velocity 

7.0 11.0 20.0 

oCa^,- 

Streamvlse Vortlcity Straight blade -   rotation 
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r 

Sehn Wie 
Rtfich 

i    Attocläf 

i FRONT VIEW 

SIDE VIEW 

Perspecclve views  of   the  twisted  blade. 

Flow 

r 

Screamvlse 
Velocity 

Streamwise 
Scltnllllc Vorclclty 

Rt$tttch 
k    Atioclttn 

^2§F <*,*:*«. 

""""«<«,«uh 

""'"""«»Si*, 

Transverse Velocity 

Streamwise station x/t *•  2.0 

Twisted blade - rotation 
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Sclmtlflc 

k   AnoclMitt 

Streamwise 
Vorticity 

A J^HBHII    In V--         —~ 

-\ 

Transverse Velocity 

Screamwise station x/t - 20.0 

Twisted blade - rotation 

Scitntlllc 
Riturch 

V     AlSOClMltt 

x/t - 2.0 x/t - 4.0 

Transverse Pressure Field 

Twlsced blade - rotation 
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LECTURE II   -   OUTLINE 

• CRITERIA FOR WELL-POSED INITIAL VALUE PROBLEMS 

• THE "PARABOLIZED" NAVIER-STOKES EQUATIONS 

• SMALL SCALAR POTENTIAL APPROXIMATION 

• SOLUTION  ALGORITHM 

• NUMERICAL PROCEDURES FOR SOLUTION OF 
GOVERNING   EQUATIONS 

• BOUNDARY  CONDITIONS 

• COMPUTATION OF FLOW IN A CURVED SQUARE DUCT 
(INTERNAL CORNER FLOW) 

SUITABILITY FOR FORWARD MARCHING 
(COURANT AND HILBERT 1966, GARABEDIAN 1964) 

• WRITE SYSTEM OF M GOVERNING PDE'S AS 

A.ft  A2-r^ +  A    -f-   = B 

<t> IS A COLUMN VECTOR OF M DEPENDENT VARIABLES 

M• ORDER  CHARACTERISTIC  EQUATION GIVEN BY 
I A^,,  +  A2Xy +   A3A.J   = 0 

• SYSTEM TERMED "ELLIPTIC" IF FOR ARBITRARY REAL X   , X 
X x HAS IMAGINARY ROOTS 

• SYSTEM TERMED "NONELLIPTIC" IF FOR ARBITRARY REAL X   , X z 

X x HAS ONLY REAL ROOTS 

•    ONLY "NONELLIPTIC" SYSTEMS CANDIDATES FOR FORWARD MARCHING 
Scientific 

Research 
k    Associates 
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~\ 

SMALL SCALAR POTENTIAL APPROXIMATION 

•   CAN BE INTERPRETED AS (NON-TRIVIAL) EXTENSION OF 2-D SLENDER 
CHANNEL THEORY TO 3-D FLOWS WITH LARGE SECONDARY VELOCITIES. 

APPROXIMATIONS BASED ON SCALAR POTENTIAL VELOCITIES ALLOW 
FORMULATION OF A WELL-POSED INITIAL VALUE PROBLEM. 

NO APPROXIMATION MADE FOR THE STREAMWISE PRESSURE GRADIENT 
AS IN THE PRESSURE APPROXIMATION.    PRESSURE TREATED AS A 
DEPENDENT VARIABLE TO BE SOLVED FOR IN THE EQUATION SET. 

Scientific 
Research 

k    Assocltlts 

ORDER-OF-MAGNITUDE ANALYSIS (CARTESIAN CONTEXT) 

• PRIMARY FLOW DIRECTION AND VELOCITY - X,U 

• NEGLECT AXIAL DIFFUSION 

• VECTOR DECOMPOSITION OF SECONDARY  VELOCITY 

v = v4 + v¥= — + — 

w - w + w - — - — 
*        •"   dz        dy 

• EXAMINE 3-D BOUNDARY LAYER SCALING 

• *  = 0 ( 52) AND V = 0 (8) IS ONLY SCALING CONSISTENT 
WITH EITHER Y OR Z AS NORMAL COORDINATE 

• THUS V+, W^ = 0 (5) AND V¥, W¥  = 0 (1) 

scienmic                   *    ASSUMPTION:  I V, I « lv„l 

V 
R*$0»rch 

Associate* 
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APPROXIMATIONS   -   SUMMARY 

•    NEGLECT STREAMWISE  DIFFUSION 

• PRESSURE  APPROXIMATION 
TREAT STREAMWISE PRESSURE GRADIENT AS KNOWN SOURCE TERM 
NO APPROXIMATION ON TRANSVERSE  PRESSURE GRADIENTS 

OR 

• SMALL SCALAR POTENTIAL APPROXIMATION 
NEGLECT CONVECTION OF SCALAR POTENTIAL VELOCITY 
IN TRANSVERSE MOMENTUM EQUATIONS 

NO APPROXIMATIONS ON PRESSURE 

•    BOTH APPROXIMATIONS PROVIDE WELL-POSED INITIAL VALUE PROBLEMS 
SUITABLE FOR SOLUTION BY A SPATIAL MARCHING ALGORITHM 

Scfontltlc 
Rtsttrch 

L    Assoclitis 

r 
IMPLEMENTATION 

• EQUATIONS IN REFERENCE LINE  ORTHOGONAL SYSTEM 

• VELOCITY   DECOMPOSTION 

Ü   =upfn  + VJ   +  Avxfn¥ 

Vs<j>   m  (0, v4, w^) 

A Vx fnv  =  (0, v.f, w.f) 

• CHANGE OF DEPENDENT VARIABLES 

vf,  w+, vv, wy    ->    <)), v', a 

• CHOICE OF DEPENDENT VARIABLES FOR EFFICIENT 
SOLUTION  ALGORITHM 

Scltnllllc 
R*stirch 
Anocltft 
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GOVERNING EQUATIONS AND ORDER OF SOLUTION 

• SECONDARY  VORTICITY 

• VECTOR SURFACE POTENTIAL 

• PRESSURE  EQUATION 

• ENERGY 

• X  MOMENTUM 

INTEGRAL MASS FLUX 

• STATE  EQUATION 

• CONTINUITY 

• TURBULENCE  EQUATION(S) 

un     = 
ITERATIVE BLOCK ADI 

Scientific 
Reseerch 
Associates 

V,2^ = -n 

2 
V   P 

s 
= SCALAR ITERATIVE ADI 

"Ex = SCALAR ADI 

uu x + Px = SCALAR ADI 

JudA S m I   SECANT 
1    ITERATION 

(ALGEBRAIC)    ^ 

v8
2* = -ux SCALAR ITERATIVE ADI 

SCALAR ADI, OR LBI 

V: 

SECANT METHOD FOR GLOBAL MASS FLUX ITERATION 

• MASS FLUX ERROR E IS ZERO WHEN MEAN PRESSURE p^      IS "CORRECT" 

• LET P, DENOTE A "GUESS" FOR p^+ 1 

• GIVEN P,, SOLUTION OF X MOMENTUM GIVES NONZERO E ^J 

• THE GOAL IS TO FIND P, + t WHICH GIVES E, + , =0 

• EXPAND IN TAYLOR SERIES ABOUT P 

E' + i 
= E« + (||)l

(P
l + i-

P-)   +0(P. + 1-P.>2 

• SET E( + 1 = Q AND SOLVE FOR P, + ,        (NEWTON-RAPHSON) 

• SECANT METHOD OBTAINED BY SETTING 

(ID- SEN E,-E,., 
P     -   P r| r|-1 

Scientific 
Reseerch 

L . Associates 

•   SINCE E(P) IS ESSENTIALLY LINEAR AT LOW MACH NUMBER, CONVERGENCE 
OCCURS ON THIRD ITERATION 
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f filMPI IFIHATIOM   AMn   ANA! YPII.c; \ SIMPLIFICATION AND ANALYSIS 

• SUBTRACT 1ST STEP FROM 2ND STEP (REPLACES 2ND STEP) 
($"V)/At = Dy(<t,"-4.n) 

• REWRITE 1ST STEP AS: 

(1  -ßAtDJOT  -n = AtD4>n 1     THIS FORM OF THE 
ALGORITHM IS 
ACTUALLY  SOLVED • REWRITE 2ND STEP AS: 

(1 -ßAtDy)($"-$")s$*  - An 

• COMBINE TO ELIMINATE (<(>*  - <|>n): 

} 
(1 -ßAtDx)(1 -ßAtDy)(4."-*") = AtD(t.n 

• REWRITE ORIGINAL UNSPLIT EQUATION: 
(1 -ßAtD  ) («j>n + 1- $n) = AtDcT 

• EXPAND FACTORS IN ADI SCHEME: 
(1 -ßAtD   ) ($"-<|>n)= AtD$n-(ßAt2)DxDy(<t>"-(|>n) 

• SPLITTING ERROR IS 0(At2) AND DOES NOT INCREASE ORDER OF 
TIME TRUNCATION ERROR.   DISAPPEARS WHEN <|>" = <j>n 

Sclentlllc 
Research •    Q-rcAnV   er»l I ITirvM   UACAl + 1 

Associates •  STEADY SOLUTION HAS <J> n + 1 = <J>** = <$> * = <(>n 

LINEARIZED BLOCK IMPLICIT (LBI) SCHEMES 

• SYSTEMATIC  SOLUTION  PROCEDURE FOR SYSTEMS OF 

• COUPLED NONLINEAR PDE'S 

EFFICIENT STABLE  NONITERATIVE  SOLUTION 
OF "NONELLIPTIC" SYSTEMS 

EFFICIENT   RAPIDLY-CONVERGING  ITERATION 
FOR "ELLIPTIC" SYSTEMS 

• OUTLINE OF LBI SCHEME: 

IMPLICIT TIME-DEPENDENT  FORMULATION 

LOCAL TIME  LINEARIZATION 

BLOCK  FORMULATION 

CONSISTENT   SPLITTING 
BLOCK ADI 

Scientific 
Research 
Associates 
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• SPLITTING OF THE L OPERATOR: 
L =  Lx + Ly+ Lxy 

• NEGLECTING  Lxy DOES NOT AFFECT STABILITY OR CONSISTENCY 

• UNSPLIT LBI SCHEME BECOMES: 
[A-ßAt(Lx + Lv)](«&n + 1 -<&") = At (Dn +S") 

. i 

•   SPLIT LBI SCHEME (DOUGLAS-GUNN  SPLITTING) 
(A-ßAtLj (<&* - <Dn) = At(Dn +Sn) 
(A-ßAtL   ) (<D**- <&")= A(<D*  - On) } 

EACH STEP IS 
(m x m) BLOCK 
TRIDIAGONAL 

| Scientific 
Research 

Associates 

• COMBINED  FORM  (APPROXIMATE FACTORIZATION) OF LBI SCHEME 
(A-ßAtLJ A1(A-ßAtLy) (<&"-0 = At(Dn + Sn) 

• SPLITTING   (FACTORIZATION) ERROR IS 
(ßAt)2LxA'1Ly (***-•") 

• IF A"1  IS SINGULAR, METHOD CANNOT BE APPLIED TO COMPLETE SYSTEM 
ADD TIME DERIVATIVES AND ITERATE 
PARTITION,  DECOUPLE, SOLVE  SEQUENTIALLY 

BOUNDARY CONDITIONS 

NO SLIP CONDITIONS 

a)    SET STREAMWISE VELOCITY TO ZERO } 
STREAMWISE 
MOMENTUM 
EQUATION 

b)    SET NORMAL GRADIENT OF $ TO ZERO I     SCALAR 
=* NORMALS-VELOCITY  ZERO J    POTENTIAL 

TANGENTIAL $-VELOCITY IN GENERAL NON-ZERO     |     EQUATION 

c)    SET V CONSTANT  (ZERO) 

d)    COMPUTE WALL VORTICITY SUCH THAT COMPOSITE 
TRANSVERSE VELOCITY IS ZERO 

} 

} 
VECTOR 
POTENTIAL 
VORTICITY 
EQUATIONS 

Scientific 
Reteerch 

V   Associate» 
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90 DEGREE BEND GEOMETRY 

Seit nillie 
Rttttrch 

Aitocllltl 

90  DEGREE BEND 
STREAMWISE 

VELOCITY 

PREDICTED 

MEASURED 

Scltnllllc 
Rttttrch 

V^ Atiocltf 

<ol so- 

le). 77.5« 

(b). 60« 

(d). 90« 



REPORT DOCUMENTATION PAGE 

1. Recipient's Reference 2. Originator's Reference 

AGARD-R-741 

3. Further Reference 

ISBN 92-835-0407-0 

4. Security Classification 
of Document 

UNCLASSIFIED 

5. Originator       Advisory Group for Aerospace Research and Development 
North Atlantic Treaty Organization 
7 rue Ancelle, 92200 Neuilly sur Seine, France 

6. Title 
COMPUTATION OF THREE-DIMENSIONAL BOUNDARY LAYERS 
INCLUDING SEPARATION 

7. Presented at 

8. Author(s)/Editor(s) 

Various 

9. Date 

February 1987 

10. Author's/Editor's Address 

Various 

11. Pages 

218 

12. Distribution Statement This document is distributed in accordance with AGARD 
policies and regulations, which are outlined on the 
Outside Back Covers of all AGARD publications. 

13. Keywords/Descriptors 

Aerodynamic characteristics 
Boundary layer flow 
Boundary layer separation 

Boundary layer transition 
Turbulent flow 
Mathematical models 

14. Abstract 

The Special Course on Computation of Three-Dimensional Boundary Layers Including Separation 
was sponsored by the AGARD Fluid Dynamics Panel and the von Kärmän Institute and presented 
at the von Kärmän Institute, Rhode-Saint-Genese, Belgium, on 14—18 April 1986. 

The Course presented a comprehensive review of experimental aspects of three-dimensional 
boundary layers with emphasis on the use of fundamental experiments to improve models for 
turbulence and transition. A review of various calculation methods was given, including the 
calculation of transition and calculations which aid in aerodynamic design. Numerical differential 
methods were discussed and viscous-inviscid interactive schemes and procedures were reviewed. 
Calculations of corner and tip region flows was covered in detail. 



AGARD Report No.741 
Advisory    Group    for    Aerospace    Research    and 
Development, NATO 
COMPUTATION      OF      THREE-DIMENSIONAL 
BOUNDARY LAYERS INCLUDING SEPARATION 
Published February 1987 
218 pages 

The   Special   Course   on   Computation   of   Three- 
Dimensional Boundary Layers Including Separation was 
sponsored by the AGARD Fluid Dynamics Panel and the 
von Kärmän Institute and presented at the von Karmin 
Institute, Rhode-Saint-Genese, Belgium, on 14—18 April 
1986. 

The   Course  presented   a  comprehensive   review   of 

P.T.O 

AGARD-R-741 AGARD Report No.741 
Advisory    Group    for    Aerospace    Research    and 
Development, NATO 
COMPUTATION      OF      THREE-DIMENSIONAL 
BOUNDARY LAYERS INCLUDING SEPARATION 
Published February 1987 
218 pages 

The   Special   Course   on   Computation   of   Three- 
Dimensional Boundary Layers Including Separation was 
sponsored by the AGARD Fluid Dynamics Panel and the 
von Kärmän Institute and presented at the von Kärmän 
Institute, Rhode-Saint-Genese, Belgium, on 14—18 April 
1986. 

The   Course   presented   a   comprehensive   review  of 

P.T.O 

AGARD-R-741 

Aerodynamic characteristics 
Boundary layer flow 
Boundary layer separation 
Boundary layer transition 
Turbulent flow 
Mathematical models 

Aerodynamic characteristics 
Boundary layer flow 
Boundary layer separation 
Boundary layer transition 
Turbulent flow 
Mathematical models 

AGARD Report No.741 
Advisory    Group    for    Aerospace    Research    and 
Development, NATO 
COMPUTATION      OF      THREE-DIMENSIONAL 
BOUNDARY LAYERS INCLUDING SEPARATION 
Published February 1987 
218 pages 

The   Special   Course   on   Computation   of   Three- 
Dimensional Boundary Layers Including Separation was 
sponsored by the AGARD Fluid Dynamics Panel and the 
von Kärmän Institute and presented at the von Kärmän 
Institute, Rhode-Saint-Genese, Belgium, on 14—18 April 
1986. 

The   Course  presented   a   comprehensive   review  of 

P.T.O 

AGARD-R-741 AGARD Report No.741 
Advisory    Group    for    Aerospace    Research    and 
Development, NATO 
COMPUTATION      OF      THREE-DIMENSIONAL 
BOUNDARY LAYERS INCLUDING SEPARATION 
Published February 1987 
218 pages 

The   Special   Course   on   Computation   of   Three- 
Dimensional Boundary Layers Including Separation was 
sponsored by the AGARD Fluid Dynamics Panel and the 
von Kärmän Institute and presented at the von Kärmän 
Institute, Rhode-Saint-Genese, Belgium, on 14—18 April 
1986. 

The   Course  presented   a  comprehensive   review   of 

P.T.O 

AGARD-R-741 

Aerodynamic characteristics 
Boundary layer flow 
Boundary layer separation 
Boundary layer transition 
Turbulent flow 
Mathematical models 

Aerodynamic characteristics 
Boundary layer flow 
Boundary layer separation 
Boundary layer transition 
Turbulent flow 
Mathematical models 



experimental aspects of three-dimensional boundary layers with emphasis on the use of 
fundamental experiments to improve models for turbulence and transition. A review of 
various calculation methods was given, including the calculation of transition and 
calculations which aid in aerodynamic design. Numerical differential methods were- 
discussed and viscous-inviscid interactive schemes and procedures were reviewed. 
Calculations of corner and tip region flows was covered in detail. 

ISBN 92-835-0407-0 

experimental aspects of three-dimensional boundary layers with emphasis on the use of 
fundamental experiments to improve models for turbulence and transition. A review of 
various calculation methods was given, including the calculation of transition and 
calculations which aid in aerodynamic design. Numerical differential methods were 
discussed and viscous-inviscid interactive schemes and procedures were reviewed. 
Calculations of corner and tip region flows was covered in detail. 

ISBN 92-835-0407-0 

experimental aspects of three-dimensional boundary layers with emphasis on the use of 
fundamental experiments to improve models for turbulence and transition. A review of 
various calculation methods was given, including the calculation of transition and 
calculations which aid in aerodynamic design. Numerical differential methods were 
discussed and viscous-inviscid interactive schemes and procedures were reviewed. 
Calculations of corner and tip region flows was covered in detail. 

experimental aspects of three-dimensional boundary layers with emphasis on the use of 
fundamental experiments to improve models for turbulence and transition. A review of 
various calculation methods was given, including the calculation of transition and 
calculations which aid in aerodynamic design. Numerical differential methods were 
discussed and viscous-inviscid interactive schemes and procedures were reviewed. 
Calculations of corner and tip region flows was covered in detail. 

ISBN 92-835-0407-0 ISBN 92-835-0407-0 



NATO   ^   OTAN 

7rueAncelle • 92200 NEUILLY-SUR-SEINE 

FRANCE 

Telephone (1)47.38.57.00 • Telex 610 176 

DISTRIBUTION OF UNCLASSIFIED 

AGARD PUBLICATIONS 

AGARD does NOT hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD 
publications is made to AGARD Member Nations through the following National Distribution Centres.Further copies are sometimes 
available from these Centres, but if not may be purchased in Microfiche or Photocopy form from the Purchase Agencies listed below. 

NATIONAL DISTRIBUTION CENTRES 
BELGIUM 

Coordonnateur AGARD — VSL 
Etat-Major de la Force Aerienne 
Quartier Reine Elisabeth 
Rue d'Evere, 1140 Bruxelles 

ITALY 
Aeronautica Militare 
Ufficio del Delegato Nazionale all'AGARD 
3 Piazzale Adenauer 
00144 Roma/EUR 

CANADA 
Defence Scientific I 
Dept of National D< 
Ottawa, Ontario Kl 

DENMARK 
Danish Defence Rei 
Ved Idraetsparken < 
2100 Copenhagen« 

FRANCE 
O.N.E.RA. (Direct! 
29 Avenue de la Di< 
92320 Chatillon 

GERMANY 
Fachinformationsze 
Physik, Mathematik 
Kernforschungszem 
D-7514 Eggenstein 

GREECE 
Hellenic Air Force' 
Research and Devek-r 
Holargos, Athens 

ICELAND 
Director of Aviation 
c/o Flugrad 
Reyjavik 

NASA 
National Aeronautics and 
Space Administration 

Postage and Fees Paid 
National Aeronautics and 
Space Administration 
NASA-451 

Washington, D.C. 
20546 

SPECIAL FOURTH CLASS MAIL 
BOOK 

Official Business 
Penalty for Private Use $300 

o        I 43,4,      3 70325 A05I0.IDU 
DEPT OF THE AIR FORCE 
ARNOLD ENG DEVELOPMENT CTR (AFSO/DOT/ 
AfTN« DR. MARION L LASTER 

Dirt OF TECHNOLOGY 
ARNOLD AF STA TN 37339 

UNITED KINGDOM 
Defence Research Information Centre 
Kentigern House 
65 Brown Street 
Glasgow G2 8EX 

UNITED STATES 
National Aeronautics and Space Administration (NASA) 
Langley Research Center 
M/S 180 
Hampton, Virginia 23665 

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOT HOLD 
STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR COPIES SHOULD BE MADE 

DIRECT TO THE NATIONALTECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW. 

PURCHASE AGENCIES 

National Technical 
Information Service (NTIS) 
5285 Port Royal Road 
Springfield 
Virginia 22161, USA 

ES A/Information Retrieval Service 
European Space Agency 
10, rue Mario Nikis 
75015 Paris, France 

The British Library 
Document Supply Division 
Boston Spa, Wetherby 
West Yorkshire LS23 7BQ 
England 

Requests for microfiche or photocopies of AGARD documents should include the AGARD serial number, title, author or editor, and 
publication date. Requests to NTIS should include the NASA accession report number. Full bibliographical references and abstracts of 

AGARD publications are given in the following journals: 

Scientific and Technical Aerospace Reports (STAR) 
published by NASA Scientific and Technical 
Information Branch 
NASA Headquarters (NIT-40) 
Washington D.C. 20546, USA 

Government Reports Announcements (GRA) 
published by the National Technical 
Information Services, Springfield 
Virginia 22161, USA 

Printed by Specialised Printing Services Limited 
40 Chigwell Lane, Loughton, Essex IG10 3TZ 


