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PREFACE

The aim of this special course was to present the current state of knowledge on three-dimensional boundary layer
computations. The emphasis was placed on turbulent boundary layers which develop on wings or fuselages including
separation.

Introductory lectures presented basic information about the fundamental equations, boundary and initial conditions,
coordinate systems, integral and differential methods, turbulence models, and interactive procedures.

The discussion of experimental aspects of three-dimensional boundary layers was directed towards the use of
fundamental experiments to improve models for turbulence and for transition.

A review of various calculation methods was given: it included the presentation of available techniques for calculating
transition and the discussion of turbulence models. In addition, a few lectures were devoted to the evaluation of results of
boundary layer calculations with regard to design aerodynamics, in particular when boundary layer separation is involved.

An important part of the course was reserved for viscous-inviscid interactive schemes. The numerical procedures were
described in detail and applications were presented.

Finally, the calculation of corner and tip region flows was discussed.
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THREE-DIMENSIONAL BOUNDARY LAYERS.
INTRODUCTION TO CALCULATION METHODS

Jean COUSTEIX

Office National d Etudes et de Recherches Aérospatiales
Centre d Etudes et de Recherches de TOULOUSE
Département d'aérothermodynamique
2 avenue Edouard Belin - 31055 TOULOUSE Cedex (FRANCE)

SUMMARY

This paper gives an outline of problems encountered when faced with the calculation
of three~-dimensional boundary layers. The various topics which are discussed are :
geometry of axis-systems, boundary layer equations, global equations, nature of the
system of equations, integral methods, singularities in boundary layer calculations,
numerical techniques, turbulence modelling. —

The classification of flows into mono-, two- and three-dimensional flows is clear
as far as laminar flows are considered. In a turbulent flow, the definitions need to be
completed because turbulence is always three-dimensional. As it is usual to do in most
analyses, any characteristic of a turbulent flow is decomposed into a mean quantity and
a fluctuating quantity. So, the classification into mono-, two- and three-dimensional
flows refers to the nature of the mean flow.

For convenience, three-dimensional flows may be classified into three categories
according to the number of main directions of diffusion :

1) Thin shear layers in which the {mean}) momentum is diffused in a preferred
direction.

2) Slender shear flows in which a main flow <can be defined along which the
diffusion is negligible.

3) Full three-dimensional flow.

Let us notice that the word “diffusion” 1is wused to denote a process due to
viscosity or to turbulence.

For categories 1) and 2), a main flow direction can be defined and the flow 1lvying
in a plane normal to the main direction is called secondary flow.

The archetype of the first category is the boundary layer flow developing on a wing
at low incidence. The diffusion takes place along the normals.to the wall. This kind of

flow . is associated with simplifications of the basic equations. In a first
approximation, let us say that the equations are the extension of the <classical two-
dimensional boundary layer equations : the normal pressure gragdient is 2zero and the

components of the pressure gradient parallel to the surface are known.

The second category of three-dimensional flows is represented by the flow in the
neighborhood of the corners of a square duct or by the flow near the junction of a wing
and of a fuselage. Another example is the development of a longitudinal vortex imbedded
in a boundary layer. These flows are associated with another kind of simplification of
the basic equations. Roughly speaking, the diffusion in the main flow direction is
neglected and the streamwise component of pressure gradient is known.

The third catégory of flows is governed by the full NAVIER-STOKES equations. No
particular’ approximations can be applied.

The first two categories of three-dimensional flows are characterized by the
formation of secondary flows which are associated with the formation of -longitudinal
vorticity. The sources of this vorticity are determined by a few basic mechanisms.

The first source of secondary flows can be explained from purely inviscid
considerations. In a three-dimensional inviscid ({or viscous) flow, a 1longitudinal
vorticity can be induced by the skewing of an existing lateral vorticity component or by
the interaction between the velocity field and the- vorticity field. The corresponding
secondary flows are called secondary flows of the first kind, following the PRANDTL
nomenclature. A second possible mechanism is purely turbulent a mean longitudinal
v9rticity can be induced by correlations between the fluctuating velocity and vorticity
fields because of the non linearity of the basic equations. These secondary flows are
c§lled secondary flows of the second kind. Finally, the third mechanism is associated
with wall boundary conditions and can occur in a laminar or in a turbulent flow in
both cases, the no-slip condition at the wall applies so that a lateral motion of the
wall leads to a cross flow : this is what happens in a flow over a spinning body {see
for example the experiments of FULACHIER et al, 1982).
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In fact, it is often very difficult to separate the various origins of three-
dimensionality in a given flow. For example, on a swept wing, we will see that the three-
dimensionality in the outer part of the boundary layer can be explained by the first
mechanism but, near the wall, it is clear that the no-slip <condition inforces the
secondary flow to be zero. Therefore, near the wall, the third mechanism is involved.

A fourth source of secondary flow, as mentioned by BRAOSHAW, 1986, is the formation
of streamwise vorticity due to an instability process. In fact, several types of
instability can develop. This is for example the formation of TAYLOR-GORTLER vortices in
laminar or turbulent flows on a longitudinally curved wall, Another form of instability
leading to streamwise vorticity occurs in a laminar three-dimensional boundary layer
which develops onh a swept wing for example. This instability comes from the development
of crossflow in the laminar boundary layer and participates in the process of laminar-
turbulent transition. Finally, let us mention the very interesting recent results
obtained in the study of a three-dimensional boundary layer generated by a discontinuity
in the wall velocity (FULACHIER et al, 1982) : a turbulent boundary layer develops on an
axial circular cylinder whose forward part is stationary and rearward part rotates
around the axis. Downstream of the discontinuity, visualizations in a water tunnel have
shown very regular longitudinal structures which become more random as the boundary
layer develops and restructures (COLLINI-FULACHIER, 1986).

1 -2 NARY MARKS

As it is usual in most analyses of turbulent flows, any characteristic of the flow
is decomposed into a mean gquantity and a fluctuating l(or turbulent} aquantity. For the
sake of generality, it is convenient to define a mean value as an ensemble average
this is a statistical average determined from a sampling of instantaneous values taken
over a large number of independent realizations of the same flow., In this way, the case
of unsteady turbulent flows 1s not excluded from the study .: the flow is unsteady if “the
ensemble averages are time-dependent.

If the flow is incompressible (g = cst), the mean velocity and the mean pressure
are defined as

£ u;n)
ul = Ui + u H U.l = h&m
(n)
B . L
p= P +p H P o= dim 3
where u. and p are the instantaneous Ya%ues, Ui and P are the mean values, ui and p'
are the fluctuations. U’-_n and p n are samples determined from independent
realizations of the same flow.

' In the case of a compressible flow,, a mass-weighted average 1is often used as

recommended by FAVRE (see for example FAVRE et al, 1976).

B 1.1. Mean flow

The general effect of turbulence on the mean flow is to smooth out the variation of

mean momentum or of temperature because turbulence acts as a good mixer. In a boundary
layer, it follows that the mean velocity profile is fuller than in the case of a laminar
flow because the velocity is close to the external velocity. Indeed, it is known that

the velocity defect Ug - U between the external velocity and the boundary layer velocity
decreases as the REYNOLDS number increases. Obviously, the no-slip condition at the wall
remains valid and it results that the slope of the mean velocity profile at the wall 1is
larger than in laminar flow. Therefore, the skin friction coefficient 1is larger 1in
turbulent flow. In the same way, the heat exchange coefficient at the wall is larger in
turbulent flow.

Another consequence is that the mean kinetic energy 1is 1larger and a turbulent
boundary layer is able to sustain a much 1larger adverse pressure gradient without
separation than a laminar boundary layer.

The basic equations describing a turbulent flow are the NAVIER-STOKES equations.

Indeed, it is generally accepted that the NAVIER-STOKES equations are valid for
describing the instantaneous flow because the smaller turbulent length scales and time
scales are very different from the molecular scales, This means that the entire
turbulent motion can be considered as the flow of a continuum. Then, in the case of an
incompressible flow, the mean flow equations are derived by taking the average of the
continuity equation and of the NAVIER-STOKES equations. In a cartesian axis system, the
mean flow equations are (for an incompressible flow) :

U,
L

{1.3) Y
axi

= 0
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oYy duy duy 2P )
e Bt 93t ' °Y5ax, T T o, Bk (PMSiy e <uiuy)
J 1 J
Sij is the rate of strain tensor
1 aui auj
(1.8 Sijﬁ[ﬁ*m]
J i
and 2uSij is the viscous stress tensor.
The quantity - p <uiu5> involves the average of the product of velocity
fluctuations ; it is called thé REYNOLDS stress tensor. Because of 1it, the mean flow

equations do not form a closed set of equations as the number of unknowns is larger than
the number of equations. The equations and hypotheses which are developed to close this
system are called the closure assumptions.

The origin of the REYNOLDS stresses lies in the non 1linearity of the convection

term. In incompressible flow, the NAVIER-STOKES equations for the instantaneous flow can
be written in a vectorial form as : —

(1.6) J d l v (* ) d ’ t d
AR . =

. p @ B¢ 97 g ev (vn o s [}

where the components of the vector t are

ti = (-~ p Gil + 2“511) ny
. 1 aui . aul
i1 " 2 Ox O,
1 i
where ny are the components of the outer normal to the surface S bounding the volume D.

Taking the average of (1.6}, we get :

-
oV - b -, -+, -
(1.7) JD e 3% dt + JS gV (vn) do + IS o] <v- (v'n)> do = JS T do
The i-component of the turbulent term can be written :

JS e (uiul> nldo
which shows that the REYNOLDS stresses are due to a flux of momentum. From the momentum
theorem, this term can be put in the right member of (1.7) as this is done in eq. (1.4)
and interpreted as an apparent turbulent stress having the same modulus but the opposite
direction as the flux of momentum.

Another interpretation of this term is given by TENNEKES-LUMLEY, 1972, who write
the equation (1.4) as :

* 2

oV -
(1.8) e 3¢ * 208XV + o grad %— = - gradP - 2p WXV - p grad 2 2 uav
with §=1/2 curl ¥

%' = 1/2 curl V'
Generally, the turbulent kinetic energy :
. - <V.2> ~ <uiui>
- 2 - 2

is small compared with the kinetic energy of the mean motion so that the contribution of
turbulence in eq. (1.8) occurs mainly as an apparent volume force - 29<6' X V' > due

to the interaction between the fluctuation of the velocity field and of the vorticity
field. Indeed this is a very important property of a turbulent flow to have very strong
vorticity fluctuations.

The turbulent shear stresses are also present in the equation for the mean flow
vorticity. For an incompressible flow, this equation is

39, 39, a2 3
i i i <] ijk @

(1.9) + U == = Qs —i— - o | LIX G ey

at 1 axl 1°i1 Y Y Bx ox ox [ 2 A <ukul>

1771 1 3 )

where €3k %s ?he permutation tensor (ei'k = 1 if i, j, k are in cyclic order ;
ik © - 1V if 1, j, k are not in cyclic drder ; e€.., = 0 if two or three indices are
equal) i3k

As In the case of an inviscid flow, the interaction between the velocity field and
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the vorticity field (term le~ ) can be a source of vorticity. Let us remind that this
is possible only in a three-dimensional flow : in a two-dimensional inviscid flow, the
vorticity is constant. Vorticity can be generated (or destroyed) by a vortex stretching
(or squeezing) mechanism : in the Qx-equation. for example, the corresponding term is

Q dU/dx. If dU/Ox » O, there is a production of Qx. tet us remind that, in inviscid
flow, a vortex surface or a vortex tube are also a stream surface Or a stream tube ; a
fluid particle belonging to the vortex surface or the vortex tube is displaced along the

same vortex surface or vortex tube. Then, if dU/dx > 0, a vortex tube aligned with the x-

axis is stretched. If dU/3% < D, there is a destruction of Qx i a wvortex tube aligned
with the x-axis is compressed, Another mechanism of vorticity generation is the vortex
tilting : in the Qx-equation, the corresponding terms are

1 oy vV 1 v oW . . - . . .
Qy > [ 3y + Bx ] + Qz 2 [ 32 + By ]. This term is responsible for longitudinal vorticity

production in the outer part of a three-dimensional boundary layer. Let us consider a
boundary layer which is initially two-dimensional and let us assume that the streamlines
are forced to incurve in a plane parallel to the surface (under the action of a pressure

gradient). The flow cannot remain two-dimensional (fig. 1.1). In the initial ©boundary
layer, the velocity gradient dU/dy leads to a z-vorticity component. If there was no
vorticity production, this vorticity vector would be simply conserved (o@/0t = 0) but

the rotation of streamlines implies the existence of a OW/3x term which interacts with
dU/dy to create a x-vorticity component. For a small turning o of the streamlines with
respect to the x-axis, the vorticity vector turns by an angle - & with respect to the x-
axis. Then the rotation of the vorticity vector with respect to the streamlines is - 2 a
: this result is known as the SQUIRE-WINTER formula. In a boundary layer, the crossflow
is zero at the outer edge and the sign of the induced longitudinal vorticity implies the
creation of a secondary flow directed towards the inner side of the <curvature of the
external streamlines (fig. 1.1}, ’

Obviously, the no-slip condition at the wall inforces the secondary flow to be zero
at the wall and the velocity gradient component dW/3dy changes sign near the wall.

Fig. 1.1 - Generation of crossflow in a boundary layer

Another explanation of the formation of a <crossflow in a boundary layer is as
follows. The curvature of the external streamlines is due to a crosswise pressure force
directed towards the inner side of the curvature. In a boundary layer, the normal
pressure derivative dP/3y is =zero and therefore, the <crosswise pressure force is
constant within the boundary layer. Oue to the smaller velocity in the boundary layer,
the inertia is smaller and the fluid particles tend to move towards the inner side of
the curvature of the external streamlines. When the external streamlines have an
inflexion point, the crossflow reverses but the change of sign does not occur at the
same time in the whole boundary layer. The crossflow changes sign near the wall at
first, because the inertia is smaller in this region. Then, S-shaped crossflow velocity
profiles can be observed,

The vorticity equation (1,8) also shows that the turbulence stresses can be a
source of vorticity. More precisely, the gradient of the REYNOLDS stress tensor «can be
responsible for vorticity flux. If equation (1.9) is integrated over a volume O and if
the gradient of the REYNOLDS stress tensor is zero on the surface bounding D, it appears
that the turbulence term contributes to transport vorticity from one point to another
point inside O without global production or destruction. There can be concentration of
positive vorticity in certain zones and, by compensation, concentration of negative
vorticity in other zones.

In the Qx—equation for example, the turbulence term is

2 2 2 2 2 2
1 3 - 3 - 3 .2 8 2, B co 3 ]
7z [— 3;5; <wu > + B20% <V u > - 3yoz <w' >+ 3yoz <V 3;3 <wiv'> 4+ azz <viw >

This expression shows that there is no effect of turbulence on the mean vorticity
if turbulence is isotropic.



1.2. General background of classical turbulence modelling

Ih eq. (1.4), the apparent turbulent stress is combined with the viscous stress and
contributes to the diffusion of mean momentum. This analogy 1s often advocated to
introduce the concept of eddy viscosity to express the REYNOLDS stresses as a function
of the mean velocity gradient in the same way as the viscous stresses ; the reasoning 1is
based on a hypothetical resemblance between the molecular motion and the turbulent
motion and it leads to the mixing length scheme. In fact, it is better to introduce
these concepts as resulting from a dimensional necessity (TENNEKES-LUMLEY, 1872). Let us
consider a shear flow in which the velocity gradient has a predominant component, let us
say 0U/Oy. On the other hand, it is assumed that the energy-containing eddies can be
characterized by a velocity scale u and a length scale 1. The mixing 1length hypothesis
consists of assuming that the mean flow imposes its time scale to the turbulent flow and
we get

Q

U
Yy

Q|

u
1

The mixing length model is deduced by assuming a good <correlation between the
fluctuations u' and v'.

Let us notice that the analogy between the viscous stresses and the apparent
turbulent stresses is unfortunate because the viscosity is a property —of the fluid
whereas the turbulence is a property of the flow in the sense that the viscosity exists
even 1f the fluid is at rest whereas turbulence disappears if the fluid is at rest.
However, this does not mean that the turbulence is independent of the fluid properties.
In particular, another important characteristic of turbulence is the dissipation process
which is directly connected to the viscosity. From the comparison between the kinetic
energy equation and the enthalpy equation, it is shown that the work performed by the
viscous stresses transforms the kinetic energy into heat. In compressible flows, these
equations written for the instantaneous flow read :

du.
a9 YiYy 8 YiYi i d
t1.10a) @ 3F Ta YR UyEe Tz fPax. T (tigYi) T M9
J 1 J
dh dh  _ _d A 8h 9p <)
(1.10b) ° 3¢t @Yy xj’axi[c;, axl] M TSR I v L
where tij = - pﬁij + 2usij - 2/3 y (auilaxi) ﬁij
and g is the dissipation function :
du,
. S22 iy ]
®p [zsij 3 Bx, Sijd Sij

1

From equations {(1.1Da) and (1.1D0b), it is clear that the work e, of the viscous
stresses represents an exchange between kinetic energy and heat. In addition, ®p is
always positive because :

2
(1.11) ¢D=[g—;+g_:’(]2+ %42_3]2., %*2_2]2“%[[%_2_;]
SRS SRR 2% i

In the case of an incompressible flow, we have :

Wp = 2 S$j485
The average value of the total kinetic enrgy is :
<u.u.> u.u, <ulul>
i°i i"i ii

K + k = 5 ] 2 + 5

The dissipation rate of the kinetic energy K of the mean flow (for a unit mass) is

(1.12) D = 2v Sijsij

and the dissipation rate of the turbulent kinetic energy k (for a unit mass) is

(1.13) € 2v <s:

1jsij>

This dissipation € comes from the work performed by the fluctuations of viscous
stresses. When the REYNOLDS number is large, as required to have a fully developed
turbulence, € is much larger than 0D.

The dissipation € plays a central role in the classical description of turbulence
which can be summarized as follows. Let wus consider a shear flow with a dominant
velocity gradient component dU/dy. The source of turbulence is the shear 0U/dy which
imposes its time scale to the energy-containing eddies.
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By considering the equations for the kinetic energy of the turbulent motion and of
the mean motion, it is shown that an exchange of energy takes place between the
turbulent and the mean flow at a rate -~ <u'v’> 8U/dy ; generally, this term contributes
to a production of turbulent kinetic energy and therefore to a destruction of mean
kinetic energy. If the REYNOLDS number wul/v, characterizing the energy-containing
eddies, is large enough, an inviscid process takes place in which the turbulent eddies
form smaller and smaller eddies in connection with a vortex stretching mechanism. This
process continues until the REYNOLDS number characterizing the smaller eddies is of
order unity : the viscosity becomes effective and the energy is transformed into heat by
the viscous dissipation. The scales of these dissipative eddies are obtained from a
dimensional consideration of (1.13). If T is the characteristic time scale of the
fluctuation sij responsible for the dissipation, we have :

(1.14) . “"v—z
T

Qn _the. other. hand, if n and v are characteristic length and velocity of
the dissipation eddies, the hypothesis that their characteristic REYNOLOS number is of
order unity gives

v1.15) L1 G
v

Finally the relationship between scales
{1.16) v o= LTl
leads to the KOLMOGOROV scales which characterize the dissipative eddies

(1.17) n = [ %i ]1/4 v = (sv)‘/‘ T = [ % ]1/2

These scales are related to those characterizing the energy-containing eddies. To
show this, let us consider the fully developed flow in a pipe (FAVRE et al, 1972). The
equations of the flow show that the dissipation rate of (K + k) averaged over the pipe
section is :

et
(1.18) D A R

where A is the pressure drop coefficient, U the velocity averaged over the pipe section
and R is the pipe radius. As said before, if the REYNOLOS number is 1large enough, the
dissipation rate D is nearly equal to the average of & over the pipe section.

In the case of a smooth wall, A varies as ('UR/V)"”A and in the case of a fully
rough wall, A is independent of the REYNOLDS number. Let us notice that in the case of
the smooth wall, the viscous stresses are larger than the REYNOLDS stresses in a thin
layer near the wall ; therefore, the flow is not fully turbulent over the entire «cross
section of the pipe. On the contrary, in the case of the fully rough wall, the flow can
be considered as fully turbulent everywhere. Then, it appears that in a fully turbulent
flow, the non dimensional dissipation rate is independent of the REYNOLDS number and, in
particular, of the viscosity v, The problem is that, from its definition (1.13), € |is
apparently proportional to v. :

The solution to solve this paradox is to assume that the dissipative rate is

determined from the characteristic scales u and 1 of the energy-containing eddies. From
a dimensional analysis, it results the following crucial relationship :

(1.19}) e =

[
w

In fact, the consideration of the spectral energy equation leads to assume that the
dissipation rate € is nearly equal to the rate of energy transfer from the large to the
small eddies. As this process does not involve the viscosity, the relationship (1.19)
seems natural.

The comparison between (1.14) and {(1.19) shows that the dissipative eddies have to
adjust their time scale v in order that ¢ is independent of v. Precisely, T is
proportional to v . )

Using (1.19), the ratios of scales characterizing the energy-containing eddies (u,
1, 8) and the dissipative eddies (u, n, T) are :

1.20 v g1/ no_ o374 I._ p-1/2 =
{ . u Rl 1 Rl 8 R1
with R, = 4l

1 v
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These expressions show that the gap between the two families of eddies increases as
the REYNOLDS number R, increases ; the structure of the dissipative eddies becomes
independent of the structure of the large eddies at high REYNOLDS number. In addition,
these formulae describe the adaptation of the flow structure to the REYNOLDS number so
that the viscosity can be effective. Indeed this is a very general property of the
viscosity which is such that the flow structure adjusts in such a way that the viscosity
is always effective in a part of the flow (TENNEKES-LUMLEY). Let us consider a flow with
a velocity U around an obstacle with a characteristic length L. When the REYNOLDS number
UL/v is of order unity (STOKES flow), the viscosity is effective in a domain the size of
which is L. When the REYNOLDS number increases, a laminar boundary layer of thickness &
forms along the walls of the obstacle and the viscosity is effective in this boundary
layer which is characterized by the REYNOLDS number U&/v (Ra << RL) i this 1is a first
adaptation of the flow. If the REYNOLDS number Ra increases, it 1is more and more
difficult for the viscosity to be effective in the 1laminar boundary layer since the
REYNOLDS number is the ratio of the orders of magnitude between the inertia effects and
viscosity effects. A turbulent boundary layer forms and the viscosity becomes effective
in the small dissipative eddies characterized by a REYNOLDS number un/v of order unity.
When the REYNOLDS number UL/v increases, we see that there is a continuous adjustment of
the small eddies. ’

2 - GEOMETRY OF BOUNDARY LAYER AXIS S

The boundary layer equations are written in a curvilinear axis system formed from
two families of lines drawn on the surface along which the boundary layer develops.
Before writing the equations, it could be useful to remind a few geometrical definitions
and properties.

2.1. Geometrigcal definitions
Let us consider a curve (F) drawn on the surface (S). E,, Ez, Ea are unit
vectors and define the FRENET reference system. 21 is tangent to (T) ; Ez is along the
normal to (F) Ea is orthogonal to §1 and Ez. If s is the length along (), we have .
[5 [
(2.1a) ek R
- 18 ds R
df 3 [
2 1 3
(2.1b) rT SR
[3 [
(2.1c) bk T 1
e ds T

where 1/R is the curvature of (F) and 1/T is the torsion of (F).

S - planr. ta!\agr\t'
(A Ry & ta (s)

Pig. 2.2 - Definitions
Pig. 2.1 - Reference system

The base vectors (E1, Eé, B,) are associated with the curve (F). We now define a
second system (G,, [} . Ga) assoclated with the curve (F) and the surface (S). 61 is
a unit vector tangent to (F) ; Gz is normal to G, in the plane tangent to (S) H 33 is

normal to (S). We have the following relationships :

- - -+
dG1 62 G3
(2.2a) 5 EE *
dé g [
2 1 3
{2.2b) T == + To
BY: 4 [
({2.2c) _3 __ 2__2
ds Rn Tg
where 1/Rg = sin8/R is the geodesic curvature ; 1/Rn = cos8/R is the normal curvature g

1/T9 = 1/T + d8/ds is the geodesic torsion (fig. 2.2).
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2.2, ur iented call onoclinic coordipate

The boundary layer equations are conveniently written in an axis system formed by
two families of curves drawn on the surface. These curves are not necessarily
orthogonal. The system is completed with a third axis which is normal to the surface.

The theory of such axis systems has been presented by HIRSCHEL-KORDULLA, 1981.

In figure 2.3, a surface oriented locally monoclinic coordinate system is depicted.

6,; A gz P

Fig. 2.3 - Definition of surface-oriented locally monoclinic coordinates

: -
The vectors ;i are covariant base vectors : 31 and a, are tangent to the surface

agd are not necessarily unit vectors ; 33 is a unit vector normal to the surface. x',
®%, % are the associateqd contravariant coordinates. A cartesian system is defined with
€, as unit vectors and El are the associated coordinates.

1

Let us notice that the base vectors 31 and 32 are known at point Pg belonging to
the surface (S) and not elsewhere. We have :

{z2.31 . T o= X3, = el «a=1,2 i=1,2,3
where the subscript S denotes the ‘point Pg (fig. 2.3).

The base vectors 31 and 32 are such as :

1 2 3

- 3T 8%s . o8 Bt

(2:4) A T e Ta 1t T a2t = €3
ox 3% Ox Ox

The position of a point P off the surface S is given by :

N

(2.5} R = Elzi = ;(x1, xz) +.x3;3(x1, x2)
The vector 33 is such as :
-+ i
(2.8) 3, - 933 : 955 Z
Ox Ox

Local base vectors 3j can be associated with the coordinates x:j g

- _ i+ ; g
(2.7} . R = E € X g:i
The base vectors 3j are such as :
- i
(2.8) 3. = 957 = 95? ;i'
I axd ax?
From equations (2,5) and (2.4), we have :
- -
-+ fod da da
(2.8a) a—R&-zer * 3._.3:-3’ + xa—% a =1, 2
3% ax® ax® @ Ox
-
oR -+
(2.9b —_— =
U 3 23

3%



Then, from (2.8) and (2.9), we get :

-
3 = ; + x3 3:3 a = 1 or 2
(2.10a) gu S axu i
-+ -
(2.10b) 93 = 4y
-
. -+ . -+ - -+ aa3 1 o - -+
Noting that a_, is normal to a, and a, and that a, ——— = — ——(a_a,) = 0, the
3 1 2 3 o 2 a 3 3
Ox Bx
relationships (2.10) show that the metric tensor Qij - si§j takes the form :
[ 914 912 0
(2.11) 95~ 9,4 S,, 0
- 0 0 1

On the surface S8, this metric tensor reduces to :

r-a11 312 0
(2.12) Egij]X3=0 = 321 822 0
- 0 0 1
with : - .
(2.13) auﬂ = auaﬂ (o = ¥ or 2} ; B = 1 or 2)

From {2.4), these coefficients are given by :
1 1 2 2 3 3
aas OES . BES BES . OES aas

{2.14) a =
W an® axP  ax® axP  ax® ax®

Let us consider an element of curve given by :
{2.15) af = axIg,

The length ds of this element is given by :
(2.16) (0512 = g, tax12Z + 29, dx'dx? + g,,(axZ12 « (ax?)?
If the curve is drawn on the surface, its length is :

(2.17) {ds)? = a“(dx1)2 + 2a4, dxtdx? + azz(dxz)2

2.3. Application to boundarv laver eguations

Generally, the tensorial notation is not wused in 1literature on boundary
theory.

The axis system is defined by X = cst- and Z = cst-lines drawn on the surface

which the boundary layer develops (fig. 2.4). The y-axis is nofmal to the wall.
=

Fig. 2.4 - Non orthogonal axis system
hadZ - ‘“‘“‘*%
h.dX

The metric elements h,; and h, are related to the coefficients aup
previously {eq. 2.13) :

(2.18) h1 = Ja 1 h2 = Ja 2 -
The metric element h3 along y is unity :
(2.19) hg = 1

The coefficient g is defined as

(2.20) g = hyh, cosA (g = a,;,)

layer

along

defined



According to the boundary layer assumptions, the thickness & of the boundary layer

is small compared with the radii of curvature of the surface. It results that the
variations of the metric tensor 935 within the boundary layer can be neglected ; this
means we can take Sag = 2gp: In otger words, hy and h, are functions of X and Z only
(2.21a) hy = hy(X, zZ) hy = hyiX, Z)

In the same way, we have :
(2.21b) A = AIX, Z)

The metric coefficients are given by (2.14)

S B N e
(2.22a) hy = Lax + DX * X
[ (=] [T
2 _ s s s 7
(2.22b) h, = L3z + z * L3z B
1 1 2 .. 2 3 3
) aas aas N aES aES . aES aas
(2.22c) 9 % 3% 3z ax 9z X 0z

where Eé are the cartesian coordinates of a point PS on (S).

The length of any element of curve is :

(2.23) ds? = hZdx? + 2gdxdz + hZdz? + dy?

In the boundary layer equations, the geodesic curvatures K1 and K2 of the X- and 2Z-
axes are present. The geometrical meaning of the geodesic curvature has been presented

in § 2.1.. From (2.2}, (2.4) and (2.13), the values of K1 and K, can be calculated as a
function of auB or as a function of hys hy and A :

1 [ d 8h,
(2.24a) K1 = E:F;;I;X % (hZCOSA) -
dh
- N N —2 ]
(2.24b) K2 = h1hzsinA 3z (h1cosA) %
3 - BOUNDARY LAYER EQUATIONS
3.1, uations in curvilinear axis syste

* The boundary layer equations are written in a non orthogonal curvilinear axis
system defined in fig. 3.1. The X- and Z-axes form two families of curves drawn on the
surface and the y-axis is normal to the wall. A is the angle between the X- and Z-axes.
The metric elements along X and Z are h, and h2.

The physical velocity components along X-, Z-, y are respectively U, W, V.
The total enthalpy hy is related to the static enthalpy by :

2 2
(3.1) h = p 4+ Ut W + 2UWcosA

i 2

Let us notice that the contribution of the velocity component v is neglected in the
boundary layer approximation.

Ve
Sz |
X,U

J a———

Y.y

Fig. 3.1 - Boundary layer axis system
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In compressible flow, the mass-weighted averages are equivalent to the classical
average if the MACH number is not too large. In addition, we neglect the correlations
between the fluctuations of density and velocity. The boundary layer equations are :

%9 , 18 a_ 12 a_ 8 .
(3.23a) 3t * g ax [ eu h, ] * g 3z [ oW h ] * By oV 0
{3.2b) T L DU L VI AU c CieA RN 2 “2 w? + K, oUW

: ° 3t e h, X g h, 8z ev 3y sinA 1 sinh © 12°
dp oP -} ou Oes0
-a1—x-+azz+ay[uy-p<uv>]
oW U _ Bw W ouW ouW K1 2 COSA 2
(3.2¢) ©3t * ®h B T ®hy 8z ' %yt Tinx Y T M2 simn Ot KoM
14 14 <] 1%}
= b1 3% + b2 3z + By [ V] v - @ <w'v'> ]
oh 3h dh dh,

(3.2d) <] 3y

2
1 dh <) 00
[[ r i 1] V] 5; ] + 5; {eCpsv' T '>)
[- ECU'V'> U - <W'V'> W - p<u'VvV'> W cosA - p<w'Vv'> U cos A ]

K1 and K2 are the geodesic curvatures of the X- and Z-axes (eq. 2.24)., P is the
PRANDTL number.
The other coefficients are :

q = h;h, sinA

1 1 BA 1 3A
Kypg = 5ok L= 1Ky h, ax) * cosh (K, + ) 52! 1
1 1A 1 dA
Ky = 5nx L 1Ky h, Bz! * cosh (Ky ¢ h, 3%’
a1=-—‘—2;a2=—°95—"—2—;b1=ﬂ”‘—2—;b2=- ! -
h1sin A hzsin A hjsin A hzsin A

The wall boundary conditions are the no-slip condition : U =W = V = 0 (in the case
of an impermeable wall) s the wall temperature distribution or the heat flux
distribution is prescribed.

At the boundary layer edge, we have :
U = Ue W = we hi = hie

The external boundary conditions are such as :

du U du w_ au K
e e e e e cosA 2 2 2
EREL e 3t * e h1 ax_ T % h2 8z sink Kloeue * Sinh oewe * K12°euewe
TP 1.
- % 9x 2 3z
oW u_ oW w_ oW K
e e e e e 1 2 COSA 2
3.3b —_— —= = —_— - =2
. L % 3t * e h, ax " % h, 3z * sinn %Y 2 sinn %Me K21°euewe
dp aP
= by 3x * P23z
(3.3c) e ahie + E ahie + 0 E ahie = a—P- -
e ot e h, OX eh, 0z 3t

-
n

Let us remind that the normal pressure gradient 8P/dy is zero within the boundary
layer.

In steady flow, the outer condition simplifies as hje = cst.

The calculation methods are based on the solution of equations (3.2). However, this
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set of equations is not closed : the turbulent stresses - p<u‘v'>, - p<w'v’'> and the
turbulent heat flux - pCp<v‘T'> need to be represented by some turbulence model.

3.2, ]Integral eguations

Very often, practical calculations are performed by using global equations which
are an integrated form of equation (3.2) : the integration is performed between the wall
and the boundary layer edge. Such a set of equations is the basis of integral methods.
In fact, an infinity of global equations can be imagined : the most evident equations
are the integrated equations (3.2) but sometimes other equations are used, for example,
the global kinetic energy equation ; the momentum equations can also be multiplied by vy
before integration and we obtain moment of momentum global equations.

The most often used integral equations are the integrated forms of the continuity

and momentum equations. In the case of an unsteady compressible flow, these equations
are
(3.3a) 831_92,331_92,.1_92_!3___9_[ (5 - 5 )1
. u_ h X u h F3 u_ ot u p u_ dt e
e 1 e 2 e e

cf 19 Ye »
(3.3b) — Z BT (QeueA1) - 7 3t (9969)
p_u e u
e e e e
2 2
. 1 - 0gYed - eled o . A BUB . A, aUe
2 ax h 11 9z h 12 u h, 98X u h_ 8z
e uq 1 2 1 e 2
e e
U K W Y
COSA e 2 e e
T %y Sinn [u Byt 911] sink [u By + 922] LT [u By E’12]
e e e
Cf W
z 1 o) e 9
(3.3c) 5 = 2 3t (p ueAz) - 7 Bt (9369)
e_u e _u
e e e e
. 1 <] 2,ueq . - 2eUeq o A1 ouW A2 awe
ax h 21 8z h 22 u_h, 8x u h, Bz
. e u q 1 2 1 2
e e
W K U W
COSA e 1 e e
© K2 Sinn [‘LCAZ * 922] * Sina [ue By # 911] * K24 [ue By » E’21]

The global kinetic energy equation is used sometimes. Its expression 1is given by
SWAFFORD, 1983, for example.

The global energy equation is used when the wall heat flux is involved but its wuse
is limited to steady flows., In this case, this equation is :

(3.3d) fw 1 [g_ [Qeuehieq o ] L, & [Pe“e“ieq o ] ]
Qeuehie oeuehieq oX h1 it 0z h2 2t

The definition of the various global quantities is :

& : boundary layer thickness
Cfx } Twx ) CfZ . Twz
2 2 2 2
2ol e ue
)
e v, - ey aow-ow 69~9
= e e e e
A1 = o U dy : A2 = " dy 3 5 = dy
0 e e 0 2.Ye £ v} e -
) )
. _[ euth, hig! o . _J‘ gw(hi L oy
1t :
g 9euehie 2t 0 9eue ie
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J”’ U, - U) J"‘ oWlw, - W)
it R TR 7
Qe e Qe
® owiu, - u) % outu, - w
0,," dy i 8, = dy
o e u 0 e u

In the above equations, Twx and Tz are the wall shear stress components along X
and Z. Qw is the wall heat flux. Ug is the external resultant velocity which is related
to the X- and Z-components by :

2 = 2 2
e = Ug *» Wg + 2U W cosA

u e

3.3. Streamline coordinate system

The boundary layer equations are often written in a streamline coordinate system,
The x-axis is formed by the streamlines and the z-axis by the orthogonal- lines. Then,
equations (3.2) are slightly simplified since :
AN =wl2 i Wg = 0 ' Ug = Ug
In the streamline coordinate system, the velocity components are u and w and the
boundary layer characteristics are noted with small letters (&, 6, ...)

cF D _ CF, Tz
2 w2 ! 2 w2
Qe e Qe e
] ]
= _ ey . o P
5, J [1 1 day : 5, J S dv

0 1] e e

) )

[ Lo AL
8 = —— - 1] dy : = - —= - 1| dy
U 4] Qeue hie s 0 Qeue hie

5 u [ u] 5 w2
[:} = J —ou 1 - —] dy : 8 = I oW dy
11 0 %Y ug 22 5 s 02

e e

5 ew u 5 Quw
912=Jgu["Tde ; °z1’f’ 7 4y

o e e e o Qeue

The shape parameter of the streamwise velocity profile is :

The ratio of the wall shear stress components defines the angle Bo (or ﬁw)' between
the limiting wall streamline and the external streamline (fig. 3.2) :

dw
tang, = 1ﬁ3 = 3y = 1 A
L Au N2 Y
dy y=0

4

/ .
Ue Ww 2225 -
e\ :

\ , .
\ Fig. 3.2 - Velocity profiles in the

streamline coordinate system



3.4, Displacement thi ess - uivalent wall spiration velocit

The effect of the boundary layer on the external flow is determined with the help
of a matching condition between the boundary layer and the external flow. The boundary
layer is often represented by its displacement thickness or by the equivalent wall
transpiration velocity.

These concepts are introduced by defining a fictitious flow which is the extension
of the external flow within the boundary layer. Let v be the velocity normal to the
wall of this fictitious flow at any point y within the boundary 1layer. If the wall
curvature radii are large compared with the boundary layer thickness, the density and
the streamwise velocity of the extended flow are constant and equal to the edge boundary
layer values Qe and Ug. 0

The normal velocity vt is defined by a TAYLOR series expansion around y = §

x
(3.4) vViy) = v« ty - 8 [ %5— e

*
The term [ %%— ]y=6

fictitious flow and we get :

is expressed from the continuity equation written for the

*

v (y) v*(é) 1 aQe 1 :] Qeueq 1 -] Qeweq
u = "u -ty - %) o u. 8t ' o u.a dx h Y o.ugq a8z h
e e e e e e 1 e e 2

The matching between the boundary layer flow and the external flow is given by the
condition :

where Ve is the normal velocity at the boundary layer edge cglculated by the ©boundary
layer global continuity equation (3.3a). Then, the velocity v of the fictitious flow is

y e_u q e u q
vu( ) = 1u %; (Qeé . l %; [ ehe A1] v l %E [ ehe Az]
e Qe e e Qe eq 1 Qe eq 2
. [ 1% 1 8 [ %”eq] L1 3 [ e\, ]]
egu, Bt e u.a ax h1 e u.a az h2

The ratio v*ly]fue is the boundary condition which has to be prescribed to the
external inviscid flow at the distance vy from the wall in order to represent the
boundary layer effects. In principle, the distance y from the wall could be any wvalue
between y = 0 and vy = 6. In practice, the boundary condition of the external flow is
applied either along the displacement surface or at the wall.

In unsteady flow, we can define the displacement surface in such a way that at
every time, the inviscid flow 1is tangent to it. Following this definition, the

displacement thickness & and the velocity v (8 ) are given by :
U u_q W do
19 Q.Ye8 x e 13 <@gl * e * 3
q oX [ h e u_ A1 * q 92 h g u_ Az - 3t ot (Qeag) oL
1 e 2 e.
* x
vt (Ve r a8t Mes 2
u T u_ h, 83X u_ h, 8z
e e 1 e 2

In the case of a streamline coordinate system, this condition reads :

vis'y o et

u h_ dx
e 1

. . . * Lo . .
Let us notice that we could define a thickness A giving expressions which are more
symmetrical with respect to time and space

U [T | W ’
13 [ @oUed [ * e ]] 19 [ C.Ye * e ]] 1 -] *
—a— | =—— |oA7 = -2 .- £ 2 AT =2 - + 5= e ta” - 851]) =0
q ax n, u, 1 q 0z n, ug 2 o u, 3t e [
*x % *
voay 1ot Y 1 aat Mo 1 et
ug u, 8t ug h1 X u, h, 0z

The effect of the boundary layer can also be interpreted as a wall

J f ° Y transpiration
velocity : in this case, the velocity v is calculated at the wall (y = 0) and we have :

*
v_(9) 1 3 12 Cete ] 12 2eYef
YR . Il 2 (o A RO (s © O A 18 | hee”

u, e u, [ 3t 'Y Q) * 9 X [ h, ) q a8z [ h, AZ]]



4 - NATURE OF THE SYSTEM OF BOQUNDARY LAYER _EQUATIONS

The system of boundary layer equations will be analyzed in laminar flow only,
because the study of the turbulent case depends on the chosen model,

Before presenting the analysis of the three-dimensional equations, we will consider
a simple problem which depicts most of the properties of the boundary layer equations.

4.1, Analvysis of a simple problem

Let us consider the partial differential equation :

2

af af _ 2 3°f

(4.1) ﬁ'vax_a "_32
y

where a and V are constants.

We assume that this equation represents a certain phenomenon in an infinite medium
and we look for the response to a perturbation which represents a DIRAC distribution at
x =0, t =0,y = 0.

The new system of variables (X, Y, T) is introduced :

X = x - Vt Y = vy T = ¢t
In this new system, eq. (4.1i becomes
af _ 2 8%
aT ay2
and the solution to our above problem is : Y2
T2
§ = 1 3 4a”T

ZBJ T

Returning to the original variable, the solution is

L
1 432t for x = Vt 3 ~ o« <y < + =
(4.2) L e
2aIF€
f =0 for x # Vt § = o < y < + =

The solution {(4.2) shows that a perturbation introduced at a point (x, vy, t)
propagates immediately along the entire y-axis whereas the (x, t) plane is affected
along the line x = Vt ; the perturbation contaminates a semi-infinite plane (P) defined
by the y-axis and the line x = Vt (t » 0) (fig. 4.1).

. The propagation in the (x, t) plane is due to the convective nature of equation

{(4.1) (left hand side of 4.1) ; the propagation velocity is V since the perturbed domain
is characterized by x = Vt, g

. The propagation along the y-axis is due to the diffusive nature of equation (4.1)
{right hand side of 4.1) ; the propagation velocity along v 1is infinite because at a

small time t, the entire y-axis is affected by the perturbation. However, it should be
noticed that the perturbation is damped as t increases.

4 Fig. 4.1 - Domain influenced by a pertur- E Fig. 4.2 - Practical domain of
bation introduced at point x = 0 influence of a point
y=0t=20
t

o8 F>o501-

-

W ad 4dT

TVt ///,/”/

=X

The above analysis has defined the mathematical domain of influence of a point.
However the intensity of the perturbation is not the same everywhere. In certain regions
of the perturbed space, the value of f is very very small and, in practice, we c¢an say
that the regions are not perturbed. Then we can try to define the domain where the
perturbation is significant. Obviously the definition of “significant” will be
arbitrary. For example, we can decide that the perturbation is significant-if f > 0.001.
This leads to a “"practical domain” of influence which is finite as shown in figure 4.2.

The solution (4.2) also shows that the perturbation is amplified when time
decreases (t < 0). This means that the solution of (4.1) should be sought for increasing
values of t only.



h.2. a is bound ations

tet us consider a quasi linear system of partial differential equations

(6.3) AMIRCIESS i =
i Bx. B i=1,m
i
The number of coordinates is m ; F is a n-dimensional column vector i Aj are n x n

matrices and B is a n-dimensional columnh vector containing coefficients which depend

only on X; and F.

Tpe nature of the system (4.3) is studied by means of the characteristic
determinant

IAiAiI = 0
where Ai are the components of the vector normal to the characteristic surfaces.
We consider the laminar incompressible three-dimensional equations written in a
cartesian axis-system (in fact, the results of the analysis are the -same if the
equations are written in a general curvilinear axis-system).

The system is reduced to a quasi linear system by writing :

ay
) il 0
(4.4a) 5
A
.hb = W
(4 ) 3y
dy v AW _
(4.4c) 3% * By M 0
du ou ow 00 _ _ 1 93e
(6.t Usx *Vay *WaEZTVaEyt T g oax
aw oW ou -1 1 9r
(4.he) Uax+vay+waz—vry__g—-az
where p(X, 2) is a given function.
The characteristic determinant is :
2 ,5 _
(4.5) v Ay = 0

, According to the classical classification, the system is parabolic as all the
characteristic roots are real and identical. The characteristic planes are normal to the
surface. This property is associated with the diffusive nature of momentum equations
(second y-derivative in equations (4.%4a) and (4.4e)) and with the term dV/dy in the
continuity equation,

The presence of the viscous terms hides the role of the convective terms in
momentum equations. To appreciate their influence, we study the subcharacteristics of
the system formed with the next lower order derivatives (WANG, 1971, KRAUSE, 1973) . The
system is written as :

au v oW
(4h.6a) 3% + By + 3z ° 0
{4.6b) u 9! + vV oy PR 9! _ 2 9p ‘v aZU
: 33 oy az g 9X ay2
y
2
o ouw AW 19°p 3w
(4.6¢) u ax * \ 57 + W 32 © " o 3z + Vv s 2
Yy
The characteristic determinant is :
2 _
(4.7) i Ay (UAy + VAy + WA;)C = 0
This shows that the surfaces normal to the wall and the stream surfaces are
subcharacteristic surfaces. The root A = 0 is related to the continuity equation

whereas the rootsjUAx + VAy + wAz = 0 are related to the convective terms of momentum
eguations.
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These subcharacteristics associated with the diffusive nature along normals to the
wall determine zones of influence and dependence., A perturbation at a point P is carried
along the y-axis by the diffusion process and along the boundary layer streamlines by
convection in the downstream direction. Let us notice that, because of the diffusion
process, a perturbation which travels along a streamline affects the whole surface
normal to the wall containing this streamline., Therefore the domain of influence of a
point P is a volume delimited by surfaces normal to the wall containing the outermost
streamlines which cross the normal to the wall passing through P, In the same way, a
domain of dependence of P can be defined (fig. 4.3). In fact, as for eq. (4.1), the
practical domaing of influence do not extend to infinity.

. domain of
inﬂuencc
e -

—-
clomuin

of dependence

Fig. 4.3 - Domains of influence and of dependence

£.3. itia d _bounda conpditiops

The definition of the domains of influence and of dependence dictates the initial
and boundary conditions. As a general rule, if we wish to calculate the boundary 1laver
in a,domain D bounded by a surface normal to the wall, initial or boundary conditions
must be prescribed along the sides through which the fluid enters the domain D.

In principle, the velocity normal to the wall cannot be prescribed but must be
calculated from the initial conditions. Only the U- and W-profiles need to be specified
because the continuity wequation provides a compatibility condition for the normal
.velocity component (KRAUSE, 1873), In practice, the initial conditions are provided by
particular solutions, for example self-similar solutions.

The boundary layer calculation on a fuselage-like body can be initiated at, or

near, the stagnation point where self-similar solutions exist (see for example CRABTREE
et al, 1863), In the immediate vicinity of the stagnation point and by using a suitable
axis system (locally cartesian), the outer flow is given by :

(4.8) - Ug = AX Wy = BZ

where the coefficients A and B depend on the local geometry. The self-similar solution
is such as :

U
u ' W . _ l_g
(4.9) Ue = £'(n) we = g'(n) N = ¥y Nyx

and the velocity profiles are solutions of the following system

(4.10a) £ + f¥" - F + 1 + —gf" =0

(4.10b) 9"‘+f9"—%(g - gg” - 1) =0

where the primes denote n-derivatives.

If 8/A is small, the solution for f is the classical solution for a two-dimensional
staghation point.
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Another useful self-similar solution is the solution along the attachment 1line of
an infinite swept wing. Let Z be the coordinate parallel to the leading edge and X the
coordinate normal to it. The outer velocity is given by :

(6. 11) U, = kX Wy = W, = cst

The self-similar solution is such as :

(6,12} %— = f'(n} %— = g’ (n} n=y g%
e e
and the velocity profiles are solutions of the following equations :
t4.13a) P A
(4.13b) g"' + fg" = @0
The numerical integration gives :

A1 = 0,648 Ig 911 = 0,292 I% )
(6.14)

A, = 1.028 I% 8,, = 0.40¢ Ig Tyz = 0.57 W Jkew

In the X-direction, the solution is the solution for a two-dimensional stagnation
point. In fact, this results from a general property of the laminar boundary layer flow
on an infinite swept wing : the flow along the X-direction is independent of the flow
along the Z-direction and is solution of two-dimensional equations. This follows from
the infinite swept wing equations :

3y 3V
(4.15a) 3% + 3y ° 0
{4.15b) g4,y _ 10 8%y
’ LX% 3y = o 98X a2
Yy
{4.15¢c) u o + v ow = v QEE
aX dy ayz
with the boundary conditions :
U=WWw=V =20 y:O
! U = U tx) Wg = W, = cst y * s

Let us notice finally that if the swept wing is not "infinite", the solution (4.,13)
is often used to start the boundary layer calculations by assuming that the flow is
locally identifiable with the flow on the leading edge of an equivalent infinite swept
wing. '

5 - TEGRAL THODS

As demonstrated by the 1968 and 1980-1981 STANFORD Conferences, integral methods
remain a valuable engineering tool to calculate the effects of boundary layers.

In this section, the principle of integral methods will be first presented in two-
dimensional flows. Afterwards, various types of methods will be discussed in three-
dimensional flows and finally the method we have developed will be presented.

5.1. Integral met in_two-dimensional laminar flows

Nearly all integral methods use the global momentum equation known as the Von
KARMAN equation. In incompressible flow, this equation is :

d
a8 _ce _, in e 2) e
(s5.1) dx 2 ~ ue dx

To solve this equation, closure relationships are needed.

In the Von KARMAN-POHLHAUSEN method, these relationships are obtained by describing
the velocity profiles by means of a polynomial representation, for example :

Q

2 du
u 3 b A _omy3 . .Y g e
(5.2) G- =2 -2nt et o+ enlt -nlt s 0=y As Tr an

Q



1-19

The formula (5.2) represents a family of velocity profiles which depends on the
POHLHAUSEN pressure gradient parameter A. In fact, the boundary layer thickness 0§ does
not appear in equation (5.1) and it is more appropriate to replace the parameter A by A2
defined as :

(5.3) A, =

Indeed, it is easy to express A, as a function of A because 8/8 can be calculated
as a function of A by using (5.2) :

2 2
R - LA W S
{5ELl Ay = A L35 " 9ss " 9 072

. The closure relationships needed to solve the Von KARMAN equation are deduced from
(5.2). The skin friction coefficient and the shape parameter are expressed as :

2
ce o3 A A A
Jigtl = [ -s- vzt [2+5]
3 _ A -
10~ 120
(5.6) How gy
315 ~ 945 ~ 9 072

Another way for constructing the closure relationships is to use the properties of
the self-similar FALKNER-SKAN solutions. Indeed, from these solutions, it is
straightforward to get the relationships H(Az) and (chZ)RB(Az).

One drawback of these methods is that the properties of the family of velocity
profiles are parametrized by Az' This implies, for example, that if the velocity
distribution has a maximum, the boundary layer characteristics are given by the flat
plate solution. This is not true because the boundary layer does not respond immediately
to the pressure gradient. To overcome this difficulty, the Von KARMAN equation is
complemented with a second integral equation. Generally, this eguation is chosen as the
global kinetic energy equation. Another possible choice is the global continuity
equation (entrainment equation). It has often been argued that this latter choice is not
convenient as the boundary layer thickness & is not well defined. In fact, it has been
shown (COUSTEIX, 1984) that it is possible to define & in such a way that the solution
of the global momentum and continuity wequations is compatible with the FALKNER-SKAN
solutions and the global kinetic energy equation. Then, the constructed method is based
on the following set of equations :

du
d8 _ Cf _ o (H v 2) TTe
(5.7a) ax - 3 8 0 7
e
' 5 - &, du
d 1 e
(5.7b) ax (5 - 61) = cE - m %
e
In the global continuity eguation, the gquantity cE = (dd/dx) - (Ve/”e’ is called

the entrainment coefficient because it represents the rate at which the external flow
enters the boundary layer through its external edge.

The closure relationships are deduced from the FALKNER-SKAN solution as the
following functions

5 - &
(5.8a) Ho= HIH™) H o —
Cf Cf
(5.8b) Sfry = SRyt
C_R C.R
E 6 E 8
(5.8¢) = (H)

The analytical expression of these functions are given below :

*
*
W, M H
* a == [ H 2 ] S -
H H (4.02923)
a'= 11,2706 b = - 1.5022 c = 3.1924 H < 4.02923 .
a = 0.33044% b = 0.31993 c = 1,03094 H » 4.02923

Ho 12.37
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1 1 1.7 1 1.7
8 = 2.99259 [[ iyl e ] i H < 4.02923
- . 2.095065
D =B - (H- 1) [ - 0.06815 + 4.336355 [ & - 00 : H < 4.02923
3.35661
D = 0.20644 - 90.30936 |[ —tx ]t - L—. : H.» 4.02923
: : 4.02923 R :
B =0+ (H- 1) [ - 0.06815 + 46.34236 [ —__—l___'? - 13 ]2'338238 ] i H » 4.02923
(4.02923) H
CERG 2 B 4 H + 1 o
x - Z
; H - 1 H - 1
ct
z Reg = B -
5.2. Integral methods jn two-dimensiona bu ow

As in laminar flow, the integral methods in turbulent flow are based on the Von
KARMAN equation and most of them use a second global equation which can be the
entrainment equation or the global kinetic energy equation or a moment of momentum
integral equation.

various techniques have been employed to determine the closure relationships. A few
of these techniques are described below.

5.2.1. Yelocity profiles

The velocity profiles are sometimes represented by the classical power law :
I ¥ 2
(5.8) — =Lz

More elaborate models have been proposed on the basis of a physical wunderstanding
of the boundary layer. These models are derived from the decomposition of the boundary
layer into an inner region and an outer region, between which a 1logarithmic overlap
exists ; this property is certainly the key to the success of such representations.

'Let us recall that in the inner region, it is assumed that the velocity scales on
the friction velocity :

(5.10) up = ug (cfr2) /2

and the velocity profile follows a universal law :

y u
+ + u + T
(5.11) u = fly ) U= g y = v

In the outer region, the velocity defect u, - u scales on the friction velocity and
we have :

(5.12) e F'(n) n = %
T

Compatibility of the behaviour of the velocity profile in the two regions leads to

a logarithmic form in the overlap region (y* -+ = and n + 0) which, in terms of inner
variable, is :

(5.13) u =

where y and C, are universal constants (x = 0,41, C1 = 5). In terms of outer variables,
the logarithmic form in the overlap region is :

e 1
(5.14) .———:——-: i inn + C2

where C2 is a constant depending on the pressure gradient.
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The compatibility between (5.13) and (5.14) leads to the skin friction law :

c
[
o

- . qv/z 1
(5.15) = =[] = 3 in

-

In terms of physical distances, the inner region - -is very thin [(if the REYNOLDS
number is high enough). Therefore, a representation of the velocity defect law is
sufficient to calculate the integral thicknesses. One of the well-known representations
has been proposed by COLES, 1856, This is based on eq. (5.12) and (5.14) :

(5.16) F'(n) = - inn + (2 - win))

1

X
The wake function w is approximated by :

(5.17) w = 1 - cosl(wn)

where B is the parameter of the velocity profiles family.

Other analytical forms have been proposed to represent the velocity profiles. A
rather sophisticated formulation has been given by WHITFIELO, 1980, which is valid over
the whole thickness of the boundary layer.

Another method to generate a velocity profiles family consists of establishing self-
similar solutions. Such solutions have been studied by MELLOR-GIBSON, 1863, and, 1later,
MICHEL et al, 1968, used them in a systematic way to develop an integral method. The
principle of these solutions is to assume that, for a certain class of boundary layers,
the velocity defect profiles are a function of n alone and not of n and X. These
boundary layers are called equilibrium boundary layers. This hypothesis transforms the
partial differential equations into ordinary differential equations. For increasing
REYNOLOS number, the skin friction tends to zero and this leads to simplification of the
resulting equation. In the outer region, the momentum equation becomes :

w = geu'v'> _ _ _F 5
W L Firy * PaF

(5.18)

-ol-c

W

with :

u - u n ] u
F'='———;F(n)=I F'(n) dn : F =r(1)=—'—;p=;—+za;a=-—3——e

T 0 ! sycf/z 1 ¢ 9%

Let us notice that the existence of (approximate) equilibrium boundary 1lavers has
been proved experimentally : these flows are such as B is constant (CLAUSER, 1854 G
ROTTA, 1850).

ol a

* The equation (5,18) has been solved by using a mixing length scheme to express the
REYNOLOS stress - @<u’'v’'>. This produces a one-parameter family of velocity profiles
which can be used in an integral method. The parameter which caracterizes a particular
profile of the family is any quantity associated with the profile. MICHEL et al, 1968,
use -the CLAUSER parameter G :

1
(5.18) f F'2 an
0 H - 1
G = =

1 1/2
J‘F. o H{CF/2)

o .

5.2.2. Ski i i w

The ékin friction law is obtained either empirically or from the velocity profiles
representation.

The most famous empirical skin friction law is due to LUOWIEG-TILLMAN, 18439 :

(5.20) Cf = 0.246 Rs-o.zsa 10-0.678H
This law is valid over a wide range of attached boundary layers.

Another method is based on equation (5.15). For example, the wuse of the COLES
velocity profiles gives the logarithmic law :

2 1/2 1 T 2B N
.21 2_ .1 ;
(5 ) Cf] = in + C‘| + 5
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5.2.3. Entrainment function

1f the entrainment equation is used, a closure relationship is needed to express
the entrainment coefficient. This function is very important because it describes the
rate at which the outer fluid is entrained into the boundary layer, This process
controls the growth of the boundary layer to a large extent and is intimately associated
with the structure of turbulence in the boundary layer.

In many methods, the entrainment coefficient Ce is estimated with reference to
equilibrium boundary layers. For such boundary layers, the x-dependence 1is eliminated,
so the integral equations give algebraic relationships between CE and the boundary layer
characteristics. From the self-similar solutions, it has been shown that the entrainment
coefficient is :

-

e 61 dUe
(5.22) C=P.Y=—_2_[1-2.T_°U—d)(]

From this expression, experimental results such as those given by EAST-SAWYER,
1979, can be used to get the entrainment coefficient. Another way to get it is to wuse
the results of the self-similar solutions.

In certain circumstances, history effects can be very important, for example in
flows which have first increasing and then decreasing positive pressure gradient. It has
been argued that the flow near the wall adjusts very rapidly to change in some
parameter, for example the pressure gradient (TANI in KLINE et al, 1868).- On the other
hand, the outer layer dominated by large eddies and the inertia of which is large, does
not respond instantaneously to external variations when the boundary layers are in non
equilibrium. This physical idea led some investigators to the use of a lag-equation for
calculating the entrainment coefficient. GREEN et al, 1972, have used as guidelines the
turbulent kinetic energy equation as modelled by BRADSHAW et .al (in KLINE et al, ed. ,
1968) from which they inferred a lag entrainment equation. Essentially, the effects of
history are included through the difference between the actual pressure gradient and a
fictitious equilibrium pressure gradient, which would give the same boundary layer
characteristics.

Let us notice that if the global kinetic energy equation is wused instead of the
global continuity equation, a dissipation function D has to be modelled :

=4

]
‘v ou 1 @
D = Ju [— <u'v’'> + v 3y ] 3y dy

A similar discussion as above can be done because in the same way as the
entrainment coefficient, the dissipation function is strongly associated with a
turbulence model.

5.3. ntegral method in three-dimensiona t _flows

As in the two-dimensional case, the integral methods are based on the global
momentum equation but, in the three-dimensional case, there are two momentum equations
which have been given in § 3.2.. Most of the methods use a third equation which can be
the global continuity equation (MYRING, 1970, SMITH, 1972, COUSTEIX, 1974, STOCK, 1979,
CROSS, 1979, OKUNO, 1976} or the global kinetic energy equation (SWAFFORD, 1983). OKUNO
uses a fourth equation which is the moment integral equation of the crosswise momentum.

The closure relationships are often obtained from the wuse of streamwise and
crosswise velocity profiles. It 1is generally assumed that the streamwise velocity
profiles behave in the same way as the velocity profiles in a two-dimensional boundary
layer. MYRING, SMITH, OKUNO use the power law prafiles ; COUSTEIX uses the self-similar
solution developed by MICHEL et al, 1968 ; STOCK uses the COLES velocity profiles.

The streamwise skin friction coefficient and the entrainment coefficient are also
generally calculated from two-dimensional relationships.

The modelling of crosswise velocity profiles is often very empirical,
The MAGER representation is often used (MYRING, SMITH, STOCK) : this is written

w 2
(5.23) o tanﬂu (1 - n}

Even when the crossflow profile is simple, such a formulation often gives rather
crude relationships for the dependence between the crossflow characteristics.

A triangular representation of the polar plot wlu) has been proposed by GRUSCHWITZ,
1935, and re~used by JOHNSTON, 1960. The location of the apex of the triangle at a fixed
yv* value (y* = 13) allows a relationship to be set up from which the 1limiting angle Bn
is calculatéd. In many cases, this formulation yields satisfactory relationships for the
thicknesses. However, the law for the limiting angle Bu seems to be less well founded.
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More generally, polynomial representations have been proposed (EICHELBRENNER, 1965,

SHANEBROOK~-HATCH, 1970, OKUNO, 1976) ; for example :
(5.24) Y_ - tanB.P,(n) + C P_(n)
8 ue = an D1 n 2 n

In the method proposed by EICHELBRENNER, an equation is provided to —calculate the
second parameter. This equation can be considered as an extension of the SQUIRE-WINTER
relation discussed in § 1.1.. In the method developed by OKUNO, a moment of momentum
integral equation is used to calculate the second parameter,

In the method developed by COUSTEIX, the crossflow velocity profiles have been
generated from an extension to three-dimensional boundary layer of the self-similar
solutions. The resulting closure relationships are given in appendix.

Finally, let us mention the method proposed by COLES which gives a vectorial
representation of the velocity profile within the boundary layer., This 1is an extension
of the law of the wall-law of the wake used in two-dimensional flow. The boundary layer
velocity vector is given by

-
vla_|
3:=3 1 i X X
(5.25) 6= a, [ X 1in v + C o+ Y [ 5 ]]

o
where Qt is parallel to the skin friction vector ¥p and its modulus is er/g. T is a

tensor such that wﬁT is parallel to the external velocity,.

In this formulation, the velocity vector turns from the direction of the 1limiting
wall streamline to the direction of the external velocity. A similar model has been used
by CROSS, 1979 and LE BALLEUR, 1983,

From the brief presentation of the various hypotheses used to establish the closure
relationships, two main difficulties can be discussed.

The first difficulty is the modelling of the entrainment coefficient. As already
said for the two-dimensional case, this coefficient is intimately associated with the
boundary layer turbulence structure. Now, the experiments of ELSENAAR-BOELSMA, 1974, and
BRADSHAW-PONTIKOS, 1985, have shown that the turbulence structure is modified by the
three-dimensionality of the flow. In particular, the main axes of the stress tensor are
no longer aligned with the main axes of the velocity  gradient tensor H the transport
velocity for the turbulent kinetic energy decreases ; the magnitude of the shear stress
decreases compared with an equivalent two~dimensional boundary layer. These effects
result from the effect of c¢rossflow on large eddies and it is probable that the
entrainment rate decreases when the three~dimensionality develops. This is not taken
into account when it is assumed that the entrainment coefficient follows the same rules
as in two-dimensional flow.

The second difficulty to establish the closure relationships is that there is no
counterpart of the two-dimensional law of the wall which is important for the success of
the representation of velocity profiles. Several attempts have been made to extend this
law:0f the wall. Generally, the behaviour of the velocity profile is obtained by solving
the basic equations with a.similarity hypothesis and by using a turbulence model, for
example a mixing length model (Van den BERG, 1975). In two-dimensional flow, the
reasoning is not at all the same : the 1logarithmic law of the wall comes from the
analysis of the double-layer structure of the boundary layer and turbulence models are
devised to reproduce the properties of the velocity profile. Recently, GOLDBERG-
RESHOTKO, 19B4, have performed an asymptotic analysis of the three-dimensional boundary
layer. They found that the direction of the velocity is constant in the inner layer ; at
very iarge KcrNULUS number, this result 4is certainly true but, in practice, it is
insufficient because the experimental results show that the velocity direction <can vary
rapidly near the wall. In the JOHNSTON's model, the apex of the polar plot is around
y* = 13 ; this means that it cannot be assumed that the velocity direction in the
logarithmic region is equal to the wall limiting angle BD.

5.4. Calculation of the transitiop region

A review of problems arising from the laminar-turbulent region is provided by the
AGARD Special Course on Stability and Transition in Laminar Flow (AGARD Report N° 7089)
and the paper by ARNAL, 1986.

The practical calculation of a laminar-turbulent transition region involves two
problems. The first one is the determination of the onset of transition . and the second
one is the calculation of the transition region itself.



The calculation of the transition region can be performed by weighting the
properties of a fictitious laminar boundary layer and a fictitious turbulent boundary
layer ; this is the so-called “intermittency” method. The welghting function vy 1is
defined from the evolution of the momentum thickness :

where 811 is the value of the momentum thickness at the onset of transition.
T

Although this treatment is crude, the influence on the downstream boundary layer is not
very large. It is more important to predict accurately the location of transition onset.

In two-dimensional flow, transition can be caused by several mechanisms. In the
case of the so-called natural transition, the first stage of the process is described by
the occurrence and the amplification of unstabilities which are called TOLLMIEN-
SCHLICHTING waves. The 1linear stability theory enables us to calculate the
characteristics of these waves as eigensolutions of the 1linearized NAVIER-STOKES
equations. From this theory, there exists a REYNOLDS number below which all the
disturbances are damped. We will call this REYNOLDS number Rlns B

One of the most successful criterion for the onset of transition is based on the
calculation of the amplification of the TOLLMIEN-SCHLICHTING waves when the REYNOLDS
number is larger than R ins- The e"-method (SMITH-GAMBERONI, 1856, Van INGEN, 1956, 1877)
says that the onset of transition occurs when the amplification is equal to e" where n
is a coefficient which depends on the turbulence level of the external flow. ARNAL et
al, 1884, have applied this technique to the FALKNER-SKAN laminar self-similarity
solutions and they deduced a practical criterion for the onset of transition which
extends the GRANVILLE criterion (1853) by taking into account the effects of external
turbulence. This criterion also includes the effects of pressure gradients. It is given
by (fig. 5.1) :

(5.26) R, - R = - 206 exp (25.7 Xz)(ln 16.8 Tu - 2.77 Xz)

where Tu is the turbulence intensity in the external flow

2 2 1/2

(5.27) L R e R R A STZ T

Kz is a mean value of the POHLHAUSEN parameter :

_ 1 X B2 due
(5.28) /\2 = TS T -—v _—dx dx
ins X.
f ins

The location Xr of the transition onset is determined when the value of the
REYNOLDS number RB Calculated in laminar flow is equal to the value of Ra given by the

formula (5.26). This formula also involves the calculation of Xg

and R . The
Uk Bins

values of x;. . and Rg. are determined when the REYNOLDS number Rg calculated in
ins

laminar flow is equal to the value of a critical REYNOLDS number Rg (at the point
cr

X we have Rg = Ra = Ry ). This REYNOLDS number Ra is obtained from the

cr ins
analysis of the stability properties of the self-similar solutions. It 1is assumed that
RB is a function of the shape parameter H :

Xing

1 0.5
.2 [= - 0.3

Fes.27+17 2 [H 0.33]}

s H<2.5
(5.29a) Rg m <
cr ad
r 3.5 , 2:887 , 22 230

H 10

R =] 2 H> 2.5
8 H -

cr -

where H is the value of the shape parameter of the boundary layer calculated in 1laminar
flow,

Other mechanisms than the TOLLMIEN-SCHLICHTING waves can lead to tr?nsition' and a
number of parameters can delay or promote the location of “natural” transition given by
(5.29). In these cases, specific criteria are needed.
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In a three-dimensional flow, the "natural” transition can occur from the same type
of instability as in two-dimensional flow. For practical calculation, it is assumed that
the properties of stability of the streamwise velocity profiles are the same as those of
a two-dimensional velocity profiles. The transition can also occur from an instability
of the crossflow and this <crossflow instability can develop in regions where the
streamwise velocity profile is stable. On a swept wing, it results that this crossflow
instability can cause a transition very close to the leading edge even if the streamwise
velocity profile is stable in this region.

From experimental data, ARNAL et al, 1984, have extended the BEASLEY, 1973,
criterion for predicting the onset of crossflow transition (fig. 5.2) :

(5.30) (R6,), = 222 atan [ 2108 ] 23 cnca
(H 2.3)
where 5, is given by :
: 5 = Jé - ¥ a4y
e 0 ue
For practical calculation, it is assumed that the streamwise and crosswise

transition processes are uncoupled. This means that transition occurs when one of the
two criteria (5.29) or (5.30) is first satisfied. The criterion (5.29) is applied to the
streamwise boundary layer and the criterion (5.30) is applied to the crossflow,

A third kind of transition c¢an occur due to the so-called leading edge
contamination. In this process, the boundary layer developing along the leading edge
{attachment line) can be perturbed by the boundary layer coming from the fuselage. From
various experiments (see, for example, POLL, 1884), it results that the boundary layer
along the leading edge is laminar if the REYNOLOS number weB/v is less than 100 (W, is
the external velocity component along the leading edge and 8 is the momentum thickness
of the corresponding boundary layer). If the REYNOLDS number wee/v is larger than 100
{or 150), it is probable that the 1leading edge is turbulent. However, due to the
negative pressure gradient downstream of the leading .edge, the boundary layer can
relaminarize. A criterion used by LAUNDER-JONES, 1968, in two-dimensional flow and by
BEASLEY, 1973, in three-dimensional flow is :

v aue
(5.31) — = 5§ 10 -
" 9

where s is the distance along an external streamline. -
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5.5, Description of an jntegral met

The integral method we have developed (COUSTEIX-QUEMARD, 1972, COUSTEIX, 1974) for
calculating three-dimensional boundary 1layers is based on the solution of global
equations of continuity and of momentum (eq. 3.3). The equations are written in a non
orthogonal curvilinear axis system.

The method has been developed in 1laminar and turbulent flow. The transition
location can be prescribed a priori or calculated as described in § 5.4..

The closure relationships, in the laminar and turbulent cases, have been obtained
from self-similar solutions. They are valid in compressible flow (Mg <€ &) on an
adiabatic wall. These relationships are given in appendix., For convenience, they are

given in a streamline coordinate system but they can be transformed into relationships
for the boundary layer characteristics expressed in any curvilinear non orthogonal axis

system. These relationships have also been extended to calculate a three-dimensional
wake. ' .

The procedure is first illustrated in the case of an incompressible two-dimensional
dissymmetrical wake, We define an upper half-wake and a lower half-wake separated by' the
line Yo which is the minimum velocity line. Along this 1line Voo it is assumed that the
shear stress is zero. Then the global equations for each part of the wake are :

- r half wake (subscript u

dé V. u - u H. .+ 2 du
(§5.32a) u. 0. WM g 2 =
. dx u u u u dx
e e
R dai{s - 61)u . . 12 _ (& - 61)u due
dx Eu ue ue dx
- lower hal ake script
(5 331 dBl o :2 u, - vy e Hl + 2 due
2 dx u u 1 u dx
e e e
R d{s - 61)1 . e - :2 ) (6 - 61)1 due
: dx - 1 u u dx
e e

where Vo is the vertical velocity along the yu—line and u. is the minimum velocity.

., For each part of the wake, the velocity profile is modelled by :

u - u y -y
e _ 3/2 _ 2 . N 0
(5.34) = = [n 1] ] n=—3
2 e m

e m _ H -1
(Siaail u, T 0.7013 A
] u_ - u
LA e m
{(5.35b) 5 0.45 o

{5.36) C_ = 0.16 —2 U

For a given value of vg. the systems (5.32, 5.35, 5.36) and (5.33, 5.35, 5.36) for
the upper half-wake and the lower half-wake can be solved separately. In general, these
solutions will lead to different values of Un for the upper half-wake and the lower half-
wake, The value of Vo is calculated step by step to have the same value of u s this

: < : m
calculation is performed by a shooting method.

In the case of a three-dimensional wake, the principle is the same except that the
crosswise global momentum equations are used to calculate the crossflow.

It is assumed +that the streamwise velocity profile behaves 1like in a two-
dimensional flow and relationships (5.34), (5.35), (5.36) are used to model the
streamwise velocity profile.
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Fig., 5.3 - Modelling of the crossflow in a three-dimensional wake

The crosswise velocity profile is obtained by assuming a triangular polar plot
(fig. 5.3)., From this modelling, we deduce the following relationships for each part of
the wake !

Gp = - CHByy i Bpq = = CByy i Byp = C(H - 1084y | 5, = - c2(H - 18y,

The values of C, and Cyp result from the solution of crosswise momentum equations
written for each half-wake.

In compressible flow, the total enthalpy hi in the wake can be assumed constant if
the wake develops behind a wing with an adiabatic wall. If it is also assumed that the
velocity profiles can be modelled by the same representation as in incompressible flow,
it is easy to extend the method to this case.

5.6. xamples a ication

A first example of application of the integral method in turbulent flow is given in
fig. 5.4. This is the study of the flow around the M6 wing (SCHMITT-COUSTEIX, 1975).

Calculated wall streamlines are compared with experimental wall flow visualization. The
free stream velocity is 90 ms~ 3 the angle of attack is 15°. The initial condition for
the boundary layer calculations have been prescribed from cross-checking with boundary
layer measurements at a few stations on the wing. '

Fig, §.4 - Boundary layer ealculations on the M6 wing
—— + — calculated wall streamlines
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Another example is the study of the turbulent boundary layer in supersonic flow

in
a curved channel (COUSTEIX-MICHEL, 1975). The MACH number is about M_ = 1,6, The initial
conditions have been prescribed from boundary layer measurements at the initial station.

In addition,’ boundary conditions have been prescribed along the upper wall
nozzle. The crossflow is assumed to be zero along this boundary.
given in fig. 5.5.
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Fig. 5.5a - Boundary layer calculation in a curved supersonic nozzle
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The integral method has also been applied to the
1979).
distribution are shown in fig.
the normal incidence is 8°
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Another application of the integral method has been provided by the experiment
performed by MEIER et al, 1984, on an ellipsoid. In these experiments, the external flow
conditions (magnitude and direction of external velocity) have not been measured. These
data have been calculated from the measured wall pressure distribution as described in
GLEYZES-COUSTEIX, 1984. Several cases have been calculated. The first one is at low
REYNOLDS number, in laminar flow, for an angle of attack of 10°. The calculated wall
streamlines are compared to the experimental wall streamlines obtained from measurements
with directional skin friction gauges (fig. 5.7). The <calculations stop when a
singularity is detected ; this problem will be discussed further in paragraph 6. The
locus of the termination points suggests the formation of a separation 1line whose
location compares rather well with experiments,

Fig. 5.7 - Boundary layer on an ellipsoid - Wall streamlines - Laminar flow - o = 10° - Re = 1.6 10°
a) Experimental results (MEIER et al, 1984) - b) Calculated results (integral method)

The boundary layer on the ellipsoid has also been calculated at a higher REYNOLDS
number for the same angle of attack 10°'. In this case, the boundary layer is laminar,

transipional and turbulent. In the calculations, the onset of transition has been
prescrlbeq from the experimental data. The calculated wall streamlines compare well with
the experimental results (fig. 5.8) ; in particular, they suggest the  occurrence of a

separated zone in the rear region as in the experiment. A more 'detailed comparison is
given in fig. 5.8 where the thicknesses 61 and 6 and the shape parameter H are plotted
as a function of the azimuth for two sections. (These boundary layer characteristics
have been calculated by GLEYZES et al from the velocity profile data supplied by MEIER
et al, 1984). The general behaviour of 61 and 62 is well reproduced but the maximum of
62 is overestimated.

Boundary layer on an ellipsoid - Wall
streanlines - a = 10° - Re = 7,2 10°
a) Experiments (MEIER et al, 1984)
b) Caleulations (integral method)
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The last example is an application of the dintegral method to the experiment
performed by BRADSHAW and PONTIKOS, 1985 (GLEYZES-COUSTEIX, 1986, unpublished). This
experiment is a study of a three-dimensional boundary layer developing on an “"infinite
swept wing”. The conditions are similar to those of the Van den BERG et al experiment,
except that the initial boundary layer is thinner so that separation is not reached. The
main set of data has been taken at four stations on a line parallel to the tunnel axis.

The comparisons between the calculated results and the experimental results (fig.
5.9) show a good overall agreement on the streamwise and on the crosswise
characteristics. However it should be noticed that the calculations are sensitive to
initial data as described below. In principle, the experiment has been devised in such a
way that the boundary layer characteristics are invariant along the spanwise direction.
In fact, there are slight variations of the boundary layer characteristics along the
inital data line parallel to the span (PONTIKOS, 1982). At first sight, these variations
are within the accuracy of measurements but if calculations are performed by using two
different sets of initial data taken at two stations along the initial data line, it is
seen that the results are significantly different (fig. ©5.9). Indeed the initial
differences between the data are not damped but they are amplified. This means that to

avoid misinterpretations, a very high accuracy of measurements is needed especially in
the initial data.
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6 - SINGULARITYTIES UNDARY LAYER LCUL S

The boundary layer equations (either local or global) are completed by «closure
relationships and are associated with appropriate initial and boundary conditions. Then,
it is assumed that the problem is mathematically well posed and numerical means are
employed to solve it. However, it is not known a priori that a solution exists in any
preassigned domain.

From the local equations, the analysis of this problem 1is dgenerally performed in
laminar flow although it has not been shown that the turbulence model has no influence.

6.1. Stea wo-dimensional bou ry lave

The GOLDSTEIN, 1948, analysis of local equations in laminar flows has shown that a
possible stop of computations 1is due to a singularity in the equations which is
characterized by an unbounded vertical velocity and a zero skin friction. This has been

confirmed by a number of numerical results. The wall shear stress vanishes as the square
root of the distance from where it is zero and no solution exists downstream.

Obviously the singularity is not physical, but it is often argued that the
behaviour of the solution near the singularity is an exaggeration of the actual flow.

The properties of integral methods (in laminar or turbulent flow) have strong
similarities with local methods. Let us consider the system of the global continuity and
momentum equations :

d(é - &§,) § - & du

1 1 e _
(6.1) dx + u dx CE
e
(5 2) a8, on»2 e cr
ot ax u_ dx 2
e
The closure relationship for H = (& - 61)/8 has the form :
(6.3) HY = W' (W)

This is exactly the form of the relationship used in 1laminar flow., In turbulent
flow, this form is an approximation of the ‘actual relationship because H depends also
slightly on the REYNOLOS number, but this dependence is weak.

If equation (6.3) is used in equations (6.t) and (6.2), we obtain the following
system

, g8 _ Cf B(H + 2) e
L2 dx 2 u dx
e
ds du
) * *, . db *, 1 _ x 8 e
(6.5) {H - HH ) ax + H ax - CE H u_ ax
% an”
where H " = —
dx
From equations (6.4) and (6.5), the derivatives dB/dx and d&,/dx gan be calculated
if H'' # 0. In fact, the case H ' = 0 can occur because the function H (H) has a minimum
at a point H® = H_, H = He. This minimum is obtained for Hc = 4,03 in laminar flow and
around H_ = 2.8 in turbulent flow. These values are associated with the =zero skin

friction point.

As-with the local equations, it is not possible to continue the calculation beyond

the point H = Hc because equations (6.4) and (6.5) can be combined to give :
* du
dH_ * Cf * 9 e
(6.6) 8 i CE - H 2t H (H + 1) U: i

In a calculation, when a point x = x_ is reached where H = H., the right member of
(6.6) is generally non zero and negative so that H becomes smaller than H_ and
equation (6.3) gives no solution for H.

Another problem related to the occurrence of a singularity is that the results
obtained at locations close to a possible singularity are very sensitive to various
factors, such as (for example) the numerical scheme, the evaluation of the pressure
gradient, the closure relationships. Small modifications in these factors can lead to
large differences in the results. Therefore, it is difficult to separate the influence
of each factor, particularly the influence of the «closure relationships (when working
with the local equations, these relationships are the turbulence model). This can 1lead
to unfortunate misinterpretations.



6.2. Inverse method in two-dimensiona

Instead of solving equations (6.1), (6.2), (6.3) with a prescribed velocity
distribution u_(x), it is possible to consider that u_ is an unknown and that 61(x) is
prescribed. This is the so-called inverse mode (CATHERALL-MANGLER, 1963), In fact, an
infinite variety of inverse modes can be imagined ; instead of prescribing 61(x). it is
possible to prescribe the function H(x) or any other function of boundary layer

characteristics.

If 61(x) is prescribed, equations (6.1) and (6.2) can be rewritten as a system for
B and u_ :
e

dB H + 2 e cf
6. Lol T ANCR.
L ax T % U ax 2
e
du dd
* *, . dB * B e _ x, 1
(6.8) (H - HH ) ax + H —ue ax = CE H _dx

In general, the calculation of dB/dx and d61/dx is possible even when H » Heo
The inverse methods can be used in design techniques where a certain optimisation
condition is prescribed.

The inverse methods have also been widely wused in viscous-inviscid interaction
techniques. In this case, the problem is not to solve the boundary layer equations alone
but the coupled system of boundary.layer equations and inviscid equations. A very clear
presentation of the problem is given for example by VELOMAN, 1980.

6.3. Ihree-dimensional boundary layer

The nature of the system of global equations used in an integral method has been
studied by MYRING, 1970 and COUSTEIX-HOUDEVILLE, 1981. The integral method is based on
three global equations (continuity and momentum equations) which are complemented
with closure relationships.

The equations form a system of three first order partial differential equations. It
has been shown that the system has three characteristic directions which are always real
and distinct. The system is hyperbolic. This property is related to the fact that the
boundary layer streamlines are subcharacteristics of the system of local equations and,
due to the integration with respect to y, the number of characteristics reduces.' This
number is equal to the number of global equations.

The calculation of characteristic roots of the set of global equations has been
performed (COUSTEIX-HOUOEVILLE, 1981) with approximate closure relationships. The angle
of the characteristic directions is defined with respect to the external streamline ;
its'value is tan” 'y. The three characteristic roots are :

(6.9) i s CUH - 1)

. 1 1 - BH
(6.10) ’ Yp = C(H - 1)
(6.11) Yy ® Tgﬁi?—éTﬁl;—T
« = 0.631 B=-a+Ja? + a = 0.382
The coefficient C in eqs. (6.9), (6.10), (6.11) is a parameter defining the
crossflow velocity profiles B for the calculation of v, the crosswise integral

thicknesses are calculated with an approximate crossflow velocity profile : w/ue=c(1-u/ue

From the closure relationships used in the integral method, it has been shown that
the Yl—characteristic line is very close to the limiting wall streamline. The other two
characteristic 1lines 1lie between the 1limiting wall streamline and the external
streamline (fig. 6.1).

external cxter!_\?i
streamlines il
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e [
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Fig. 6.1 - C%aracterist?c lines of the set of Fig. 6.2 - Variation of the direction of the y; charac-
global equations teristie line with the value of the shape

parameter



The hyperbolicity of the set of global equations leads to the concept of dependence
and influence domains which are very similar to the domains defined from the analysis of
the nature of local equations. From the global equations, the domain of dependence of a
point P is bounded by the Yy~ 2and ya—characteristic lines passing through P, Roughly,
this domain c¢an be approximated by the domain bounded by the 1limiting wall streamline
and the external streamline.

The values of the characteristic roots depend on the value of the shape parameter H
and therefore the opening of the domain of dependence depends on H. In the range
1 < H < , the angle between the Yo~ (and ¥3-) characteristic 1line and the external
streamline is between - w/2 and w/2 :

1

- w/2 < tan” ! vy, < w/2 1 < H K=

- w/2 < tan~! Y3 € w/2

but the angle between the 71-characteristic line and the external streamline can be
larger (fig. 6.2) :

- v < tan"? Yy &m

Obviously, this opening of dependence domain must be taken into account in
the numerical methods because the equations cannot be integrated against the direction
of the characteristic lines,

The Yy -characteristic line and the external streamline are at right angle when
H = H_ = 2.6. This value of H corresponds to a zero-streamwise skin <friction. However,
this point is not singular except if the flow has a locally two-dimensional behaviour in
the same way as discussed in § 6.1..

Generally, in the three-dimensional case, the singularities are not local. They
must be sought rather in configurations leading to a <focusing (convergence) of the
characteristic lines belonging to the same family. More precisely, the ’71-characteristic
lines {(which are close to the wall streamline) are likely to <converge and to form a
shock (in the sense of the theory of <characteristics). In fact, it has been shown
analytically that the formation of a shock is possible. This shock is a 1line of
discontinuity for certain boundary layer thicknesses. Obviously such a discontinuity is
physically meaningless but it can be argued that it is an exaggeration of the actual
behaviour of the flow and that it results from the wuse of the direct mode. It is
probable that the formation of such a discontinuity line is a signal that reveals the
need of calculating the flow with a viscous-inviscid coupling technique,

An example of computed results is presented in fig. 6.3. The support of the
calculations 1s an experimental study by LINDHOUT et al. This experiment has been used
as a test case for a workshop on three-dimensional boundary layers held in AMSTERDAM,
September 18979. The objective was to calculate the boundary layer developing on a wing
root. The data consist of the magnitude and direction of the velocity in inviscid flow.
Boundary layer characteristics were given as initial data along a starting line close to
the leading edge. The calculations were performed by wusing full closure relationships
that are more accurate than those used to analyze the properties of equations.

The computed results given in fig. 6.3 show the external streamlines and the wall
limiting streamlines, They also show the contours of the leading and trailing edges. The
calculated wall streamlines form a line of convergence and the overall topology of these

wall streamlines suggest the occurrence of a separated zone. The experimental results,
based on wall flow visualizations, confirm the existence of a three-dimensional
separation in the same region. In the experiment, this separation leads to a strong

vortex flow.

In the domain (X/b > 0.3, 2Z/b < 0.2), we note the fan-shaped pattern of the
computed wall streamlines and we note also the existence of a dividing 1line which 1is
also revealed by the experiment.

It is doubtful that a boundary layer calculation method can reproduce the flow in
separated vortex flow. In addition, it is clear that the flow should be <c¢alculated by
accounting for the strong viscous-inviscid interaction which has not been done in the
present calculation. However it is interesting to note that a rather simple method is
able to give very useful information.

exlernal
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Fig. 6.3 - Caleculation o} the three-dimensional
boundary layer on a wing root section
0,24 (calceulated by COUSTEIX & AUPOIX in
’ LINDHOUT et al, 1981)
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The following example also involves a separation phenomenon. This 1is the boundary
layer flow on an “"infinite” swept wing investigated experimentally by Van den BERG et al
and ELSENAAR-BOELSMA. The boundary layer flow was generated on a 35" swept flat plate H
a pressure-inducing body placed above the plate was designed to produce a pressure
gradient which causes the separation of the boundary layer on the plate. In this «case,
the separation is characterized by the wall streamlines which become parallel to the
plate leading edge.

The calculations presented in fig. 6.4 have been performed with an integral method.
In fact, the results of two calculations are presented. Firstly an inverse method has
been applied.

In these calculations, the input is the experimental distributions of 61 and &,
whereas the distributions of the modulus and of the direction of the external velocity
are results of the calculation. The characteristics of the boundary layer other than 61
and 62 are also results of the calculation.

As shown in figure 6.4, good agreement with experiment is obtained for H, ﬁo, the
modulus u, of the external velocity and its direction o defined with respect to a normal
to the leading edge. In particular, the experimental location of separation is well

reproduced (the separation is characterized by a + ﬁo = 90" : the wall streamlines are
parallel to the leading edge). v
The second calculations have been performed in the direct mode : the external

velocity distribution (the modulus ug, and its direction a) is the input whereas the
distributions of 61 and 62 and of the other characteristics of boundary layer are
results of the calculations. In these calculations, the distributions of wu, and a are
not taken from the experiments but from the outputs of the inverse calculations
presented above. Surprisingly, the «calculated distributions of H and 8, are very
different in the direct and inverse methods. In particular, the direct calculations do
not indicate a separation. This discrepancy dis obviously a result of numerical
difficulties in the direct mode caused by the proximity of a singularity. Let wus notice
that direct calculations performed with the experimental distributions of u, and o lead
to results which are similar to those obtained with the distributions of ug, and a taken
from the inverse calculations.

These results clearly demonstrate the kinds of misinterpretations that can result
in the neighborhood of an expected singularity if the calculations are performed in the
direct mode. They also imply that it is incorrect to calibrate a calculation model from
direct mode calculations of a boundary  layer close to separation because it is
impossible to attribute such and such a cause to such and such an effect. It is believed
that the same problems occur with a method solving the local boundary layer equations.
In this case, it is incorrect to try to calibrate the turbulence model from direct mode
calculations near separation. Moreover, as stressed by CEBECI, 1984, a kind of flow as
the Van den BERG et al experiment, which involves separation, is mainly pressure driven
and the turbulence model is unimportant. Other parameters such as the normal pressure
gradient should be considered very carefully.
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Fig. 6.4 - Caleulation of Van den BERG et al's (1975) emperiments with an integral method (COUSTEIX, 1982) ;

imwerse mode (§, and 8, prescribed from experiment) ; ----- direct mode fexternal velocity
distribution presariged f?om the results of the inverse mode caleulations) ;”+ experimental exter-
nal velocity from wall pressures ; X experimental external velocity from boundary layer edge
measurements ; 6o experimental values
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1 - S TION O OCAL EQUATIONS

In laminar flow, the set of continuity equation and momentum equations form a
closed system of equations for the three components of velocity because, according to
the boundary layer approximation, the pressure distribution is known (here we assume
that the boundary layer problem is posed in the direct mode).

In turbulent flow, the system of equations 4is not closed because the REYNOLDS
stress - p<u‘v’> and - p<w'v'> are additional unknowns. A turbulence model needs to be
used to calculate these terms : this problem will be discussed in § 7.2.. 1¥f we assume
that a turbulence model is available, the system of equations is closed.

Except for a few particular solutions, the boundary layer equations cannpot be
solved analytically. Then, numerical methods are employed. The general principle of
these methods is nearly the same for laminar or turbulent boundary layers. In the
literature, several papers are devoted to the description of the numerical methods (see
for example the review papers by KRAUSE, 1972, SMITH, 1982). Here we will describe only
the general features of two simple and representative schemes.

T.1. umerica etho

Most of the numerical methods are based on finite-difference approximations of the
X-, 2~ and y-derivatives. In this way, the equations are transformed in a set of
algebraic equations.

One of the rules to construct a correct numerical approximation is the COURANT-
FRIEDRICHS-LEWY condition which states that the numerical domain of dependence of a
difference scheme should include the domain of dependence of the differential equations.
Let us remind that the domain of dependence of the differential equations 1is determined
by normals to the wall and boundary layer streamlines (§ 4.2},

The finite difference approximations are developed from a grid consisting of
reference points (Xi. Zj. yk) which form a regular network.

A first example of a finite-difference molecule is given in fig. 7.1a.

In the scheme associated with fig. 7.1a, the equations are written at point M(xi,
2., yk). The y-second derivatives are approximated by using the points (Xi, Zj, Vk~1)'

(}i, Zj, Yichs (xi, zj, Vk—1) whereas the X- and Z-derivatives are given by :
(1.1) [&7 - fivt 3ok " Tai3ik
) X 4M X, - X,

i+ 1

TR P S ISl O W
M Zj*'l- Zj

™M
[l d
N |

(7.2)

In this way, the calculated point represented by a star (x}) in fig. 7.1a, is
obtained explicitly as a function of the other points which are assumed to be known.
Then, the points belonging to a complete y-column can be calculated successively. After
a y-column has been calculated, a next y-column is calculated as shown in fig. 7.1b
which gives the scanning sequence of the calculation domain.

This is a very simple scheme which is easy to code but it suffers from a few
drawbacks associated with the CFL condition. This scheme is correct only if W < 0 and if
the X-step is restricted by the condition AX/AZ < m;n fwisu. (If W > 0, the
symmetrical molecule shown in fig. 7.1a can be used).
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O Z derivatives 1 [
w<o XY der':va\'.'lm w>o 1///!11/@2771521311/1@7//“/@// 77. /©
#* calevlated Pe'ln‘l imtial  condition
a) Finite difference molecule b) Seanning sequence of the caleulation domain
(W <0)

Fig. 7.1 - Example of an "explicit' scheme
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A second example of a finite~difference molecule is given in fig. T.2a. The
equations are written at point M and the convention for writing the various derivatives
is the same as in fig. 7.1. The solution is now sought at point M. The difference with

respect to the scheme of fig. 7.1 is that the solution at point M <cannot be determined
explicitly as function of the known points. In effect, the solution at point M depends
on the solution at all the points belonging to the yy-column : in this sense, the scheme
1s implicit and the solution is sought simultaneously along a complete yi-column. {The
use of three points to express the y-second derivatives leads to solve a three-diagonal
matrix). The CFL condition restricts the application of this scheme to the case W < 0,
but there is no restriction on the X-step (if W < 0). If W > 0, the symmetrical molecule
shown in fig. 7.2a, is used,

This scheme seems very interesting as there is no restriction on the X-step but the
problem is that, in general, the W-component is not positive {or negative) everywhere.
When W changes sign in the calculation domain, it is necessary to switch operators. This
method has been used by LINOHOUT et al, 1981, who have constructed an algorithm defining
the scanning sequence shown in fig. 7.2c¢. According to the sign of W, a left or a right
implicit operator (fig. 7.2a) is used and the switch is performed by using an explicit
operator. In the sequence shown in fig. 7.2c¢, the first operation is to determine the
point 1 by using the explicit operator i afterwards, the points 2, 3, 4, 800 are
calculated by using the implicit operator (W > 0) and finally, the points 9, 10, ... are
calculated by using the implicit operator (W < 0). The advantage of this sequence is
that the restriction on the X-step is minimized because the explicit operator is wused
when W changes sign, that is, when W is small.

*
(xhzﬁn,Y&) M(Xthj%)
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a) Finite difference molecule boundary 1@ t® '@ ne beundary
condilion :' E i condilion
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' ' b) Scanning sequence (W < 0)
f unknown
hneven -
w>0 w<0
M&M e) Sequence used by LINDHOUT et al (W < 0 and w> 0)
Fig. 7.2 - Example of an "implicit" scheme
Other efficient numerical schemes have been developed to calculate three-
dimensional boundary layers. Let us mention the zig-zag scheme by KRAUSE et al, 1969,

and the box scheme, the zig-zag box scheme and characteristic box scheme developed by
CEBECI et al, 1979.

Although several numerical schemes are satisfactory, this problem should not be
considered as solved. As stressed by CEBECI, 1984, improvements on the accuracy and
economy of calculation methods become increasingly important as the methods are
increasingly used for design purposes. Indeed, such applications invelve a very large
number of runs and the calculation time is of prime concern. This is one of the reason
why integral methods are still used. From results obtained at the AMSTERDAM Workshop on
three-dimensional boundary layers (LINDHOUT et al, 1981), it is found that dintegral
methods are an order of magnitude faster than 1local methods, even with a simple
turbulence model. In addition, they are often able to give enough accurate answers to
practical problems. However, it is clear that integral methods can only Ealculate flows
for which they have been tailored. The hope which is placed in the solution of local
differential equations is their potential of applicability to a wider range of flows. In
laminar flow, there is no doubt that the solution of local equations 1is more accurate
but, in turbulent flow, the accuracy is strongly dependent wupon the turbulence model.
This problem is discussed in the next paragraph.
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7.2, Jurbulence modelling

The simplest three-dimensional turbulence models are direct extensions of two-
dimensional models. For example, the mixing length model used by COUSTEIX et al, 1871,
reads : .

(7.3) Tex = M 3y p<u’v'> = glv + vt) y Tyz = M 3y - ekw'v'> = @lv + vt)ay
with
1/2
_ 2.2 ou q2 oW q2 8u ouw
(7.4) vt = F71 [[ 3y ] . [ By ] + 2 5 5; cosA ]

The mixing length is expressed by the same formula as in two-dimensional flow :

1. —X __ Y 2
(7.53) t = 0.085 tanh [ 5355 ¥ ] X = 0.41
and the viscous damping function is given by :
1 2 2 172 <172
(7.5b) F =1 - exp [ T (('\'tx + th + Zrthtz cosA) o) ]

In compressible flow, this scheme is completed by the heat flux modelling with the
hypothesis of a constant "turbulent PRANOTL number"” :

v
v t oh
(7.86) ¢ =-0 [ PP ] oy
t
P = 0.725 P, = 0.88

t

In the same way, the extension of the classical k-& model in fully turbulent flow
gives :

2 2
Doy kK~ du D0 = Kk~ oW
(7.7) - ku'v'> = Cp c By ’ w'v'> = Cpg 7 57
where k and € are calculated from :
{7.8a) Ok oL, 2 [ & K2 ok ]
. ot dy o, € y
Oe € e? 2 [41] k2 ae
(7. 88) ot " %1 Pk T S % “ oy Lo, e ay )
with
1V gy OW Lo, OW v,y OU
(7.8) P = - <u'v' 3y wiv'> = [ <u'v'> v wiv'> By ] cosa
and
(7.10) Cy = 0.08 C€1 = 1.44 CeZ = 1.92 oy = 1 0, = 1.3

Among the various problems encountered in the turbulence modelling of three-
dimensional boundary layer, the near wall treatment is one which is difficult to solve.
In two-dimensional flow, all the models are based, explicitly or implicitly, on the
existence of the law of the wall. This leads to express the turbulent shear stress in
the near wall turbulent region (the logarithmic region) as :

(7.11) - cutv> = a2 [ %! ]2
: y
This formulation is accepted, at least, with moderate pressure gradient.

In three-dimensional, the opposite reasoning is done because the starting point is

the assumption that the +three-dimensional counterpart of (7.11) is valid. This is
Clearly what is done with the mixing length model (7.4). This is also the case of the (k-
€) model ; indeed, in the near wall turbulent region, the classical approximations

reduce this model to :

(7.12a) P=c .
2 2

7. & _ 8,8 r fuk”deq .

(7.12p) Cor PR Cea it By [ . ¢ By ] 0

o



From these equations, we deduce :

3/2
2 e
{7.13a) e=ck ; C2'o(cc-c )
y € €2 el
o cuty'y = SO /23U . cw'y'y =SB 172 W
(7.13b) <u'v'> c k y 3y H <w'v's T k y 3y
LS 1/2
(7.13¢c) oK " [of7]
3/4 72 2 2 aW 3
. cp 2 [[ 2] [2v] LI TR
(7.13d} 'r-e[ C y 3y *Lay * 2 By vy °°°
with L 1/2
T =90 [ <u'v‘>2 + <w'v'>2 + 2 <u'v'> <w'v'> cosA ] /
Then, by wusing the momentum equations, it is possible to deduce a “three-

dimensional law of the wall" which results from the hypothesis of a mixing Zlength
formula.

As already said in § 5.3., an asymptotic analysis of the “three-dimensional
turbulent boundary layer has been performed by GOLDB8ERG-RESHOTKO, 1984. They found that
the direction of the velocity is constant in the inner 1layer, At very large REYNOLDS
numbers, this result is certainly true but the experimental results show that the
velocity direction can vary very rapidly near the wall,.

In spite of these restrictions, most of the available methods use the hypotheses
which have been described above. These methods produce satisfactory results, at least
for the mean flow.

This does not mean, however, that the turbulence modelling problem in three-
dimensional turbulent boundary laver is solved because experimental data show that
several hypotheses presented above are wrong. The experimental data of Van den B8ERG et
al, 1975, and of BRADSHAW-PONTIKOS, 1985, show that the three-dimensionality of the flow
affects the turbulence structure. These experiments deal with a boundary layer
developing on an "infinite” swept wing and the experimental set wup 1is such that the
initial boundary layer is nearly two-dimensional ; downstream, the flow becomes three-
dimensional due to the combination of the effect of an adverse pressure gradient and of
the sweep angle. As the three-dimensionality develops, the experimental results show

that the outer level of the mixing length reduces and the ratio <t/k decreases (fig.
7.3). Therefore, there is a significant decrease 1in the magnitude of shear stress
compared with an equivalent two-dimensional boundary layer. In addition, the direction
of the shear stress vector T (- <u'v'>, - <w'v'>) lags considerably behind the vector
of components (8U/dy, OW/dy) : this means that the eddy viscosity is not isotropic.
1
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Fig. 7.3a - Boundary layer on an infinite swept wing Fig. 7.3b - Evolution of the ratio of shear stress
(from ELSENAAR-BOELSMA) - Evolution of and turbulent energy
the mixing length '

Therefore, the classical turbulence models do not represent the ~ﬁhysics of the
phenomena, This is not at variance with the fact that the associated calculation methods
are able to reproduce the mean flow with a certain success. In fact, if we _consider the
Van den BERG et al experiment, the flow is pressure driven and the turbulence model 1is
not too much important. Nevertheless, many endeavours have been devoted” to elaborate
models that remove the hypothesis of isotropic eddy viscosity but serious numerical
difficulties in the calculations of Van den BERG et al experiment (in the direct mode)
due to the problem of singularity have prevented a correct discussion of the turbulence
modelling : this has been shown by COUSTEIX, 1982 and has been discussed in § 6.3..
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Again, it is important to stress that it is dangerous to calibrate a turbulence model by
trying to calculate a separated boundary layer in the direct mode. We have shown (§ 6€.3)
that the application of a simple integral method (in the inverse mode) to the Van den
BERG et al experiment leads to quite reasonable results. Later, ABID-SCHMITT, 1984,
examined a few turbulence models by solving the 1local differential equations in the
inverse mode. Comparisons with Van den BERG et al results show that the mean flow is
little affected by the turbulence model. The standard k-&¢ model gives a rather good
agreement with experiments ; the mean flow prediction is only slightly improved by wusing
an algebraic stress model developed by RO0I and LAUNDER (see for example the 1980-1981
STANFORD Conference, KLINE et al). It is probable that this is due to the fact that the
flow is pressure driven. To illustrate this point, fig. 7.4 shows the evolution of the
slope of the polar plot in the outer part of the boundary layer. On one hand, this slope
can be obtained from experiment ; if we assume that the polar plot is 1linear in the
whole boundary layer

W u
= C [1 -L—]
e e
we deduce :
&
{7.14a) c = -3 _

On the other hand, we can calculate this slope from inviscid considerations (SQUIRE-
WINTER formula). A simplified form gives :

(7.14b) C = 2x - wg)

where (o - uo) represents the turning angle of the external streamlines and xg the
starting point. By adjusting the value of x5, a good correlation is obtained between
(7.14a) and (7.14b) {(fig. 7.3). The same has been observed by BRADSHAW-PONTIKOS, 1985,
and these authors argued that such a good agreement is partly a coincidence because the
entrainment into the boundary layer is neglected but they think that it is certainly an
indication that the flow is pressure driven. Obviously, this is not true near the wall
and, in this region, the turbulence model is important.

A 2(x-oio}
as+

Fig. 7.4 - Caleulation of the slope of the polar plot in the outer part of the boundary
layer - Experiments : Van den BERG et al

Among the various attempts at improving the classical models, let us mention the
approach proposed by ROTTA, 1979, who tried to reproduce the anisotropy of the eddy
viscosity as evidenced by the Van den BERG et al experiments. In a cartesian axis-

system, this model is :

ey oy oW
(7.15a) - <utvy s vy [aXX 3y * %xz 3y ]
ou ‘ouW
7.15b - ‘v! = = Eve
(7.15b) wivty o= vy [azx v ' %2z By ]
. . u? + W
XX UZ . NZ -
Uw
a = a = {1 -7
XZ ZX UZ . w2
.. 02+ Wl
b4 2 2
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In the above equations, T is a constant which represents the ratio of transverse
and longitudinal eddy viscosities expressed in an axis system based on the 1local
boundary layer velocity. This model is able to reproduce the non isotropy of the eddy
viscosity if T # 1. A first drawback is that T is not a universal constant, A second
drawback is that T depends on the axis system because the model is not invariant by a
galilean transformation.

Fig. 7.5 shows an example of applications of.a few models to the BRADSHAW-TERRELL,
1969, experiments. These authors studied the relaxation of a three-dimensional boundary
layer towards a two-dimensional boundary layer. The mixing length model and the k-¢
model {with T = 1) give the correct decay of the wall 1limiting streamlines angle ﬂo
whereas the integral method underpredicts the rate of decay of B at the beginning of
the relaxation. This illustrates the greater flexibility of the solution of local
equations. In addition, this comparison shows that the «classical models work well in
this situation. Indeed, results not given here, show that if T is given a value
different from T = t, the rate of decay of ﬂo is not well predicted ; if T < t, the rate
of decay of ﬂo is too low.

E, (0]

Fig. 7.5 - Calculation of BRADSHAW-TERRELL experiments (45° infinite swept wing) :
relaxation of an initially three-dimensional boundary layer towards a two-
dimensional boundary layer - x’: distance from leading edge along tunnel
centerline - B ! crossflow angle at surface - mixing length -
weme k-g —— = integral method

Another illustration is provided by the calculation of the wake developing behind a
swept wing (COUSTEIX-AUPOIX-PAILHAS, 1980). The calculations have been performed by
using a four-equation model : the eddy wviscosity model is replaced by transport
equations to calculate the shear stress - <u'w'> and - <w'v'>., In this model, the effect
of the parameter T is included in the production terms. As shown in figure 7.6, the best
results are obtained with T = 1. A lower value of T produces a too low rate of decay of
the crossflow. This ‘confirms the results obtained with the application to BRADSHAW-
TERRELL experiments. However, it should not be concluded -that the isotropic eddy
viscosity model always gives the best results since experimental results show that the
departure from isotropic eddy wviscosity is important as the three-dimensionality
develops along the flow. )
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.
XU 7 X
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Pig, 7.6 - Crossflow velocity profile in a wake behind a swept wing - Exp. : e ; Cale. rLk-e~uv"-w'v7' model
T=1; cmn T=0.5




1-42

Another possible solution to the modelling problem is to wuse a full transport

equation model for the REYNOLDS stresses. In a cartesian axis system, these equations
are :
D= Cuiu'> = P, . + & . - D._. + T,
ot i3 i3 i3 ij ij
where Pij is the so-called production term :
du Bui
ig = - <uluk> 5;1 = <ujuk> I
k k
where ‘ij' Dy, Ti are respectively the velocity pressure correlations, the destruction
term and” the Eransgott term.

According to the modelling proposed by LAUNDER et al (see for example the 1980~-1881
STANFORD Conference, KLINE et al), these terms are given by

3 ey kO 9na
Tig = Cs ax, L Al'as S %,y Wiy’ ]

2
Pi5 =3 ¢ 84
*i3 % i1t tig2 t tigw
and ’
e - 2
L T [ ujul> - 3 bijk]
¢, ==-c [e._-Ls 0 ]
ij.2 2 ij 3 ij kk
¢ = [ec [ <u/u'> n n & -2 wuls non, - 2 cululy non, ]
ij,W 1 K K 'm kK mij 2 ki k'3 2 k™3 K1
. 3 3
* o [t 2" i " 7 tik,z ™5 T 2 *fak.z ™ 1 f
. 372
2.5ex
n

where n;, are the components of a unit vector normal to the surface and X is the normal
distance from the wall,

*If the boundary layer approximation are applied, the transport equations are
simplified because the velocity gradient components other than dU/dy and OdW/dy are
neglected. Calculations with a model of this type (with ‘ijw = 0) have been performed by
COUSTEIX-AUPOIX-PAILHAS, 1980, The results have shown that this model is not sufficient
to explain a departure from the isotropic eddy viscosity.

The modelling of transport equations is often simplified ¢to give the so-called
algebraic stress model which also leads to an isotropic eddy viscosity. This model 1is
obtained with the following approximations :

<u‘iu’.> <uiu’>

D Q0 3 DK i3 2
—_ <uU.u.> - R — - T e—— - £ o L. - = 0,
Dt u1u3> le k Dt Tkk K (e el Plj * ’13 3 6135
where P = P, /2 is the production rate of k.
From these equations, we get :
P L
(1 -co| X1 _-25 B}, 1.4
2 2 € 3 ij e €
<uiuﬂ> e 5. .k + )
J 13 C, + — -1
1 €

If the velocity gradient components other than dU/dy and 3W/dy are neglected, we get :

3 .
. c, Lr-Fe,¢1 -1 5
<u'v > = 3 3 E <v > 5; =
A R AT
3 .
. c, Lr-5¢¢] -0 2. 3w
<w'v'> = ) 3 - <V )—a';
c. + 2 2y
1 € 2 1
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Then., these expressions give an isotropic eddy viscosity. Calculations performed by
ABID-SCHMITT, 1984, have shown that this model works well when applied to the Van den
BERG et al experiments. The good agreement results probably from a reduction in the net
production of REYNOLDS stresses - <u'v'> and - <w'v’'>, but it 1is not <clear if this
result comes from an effect of the three-dimensionality or if a similar effect would be
obtained also in two-dimensional flow.

Possibly, it is not correct to neglect the velocity gradient components other than
dU/dy and 9W/dy. Indeed it is known that small extra rate of strain can strongly affect
the development of REYNOLDS stresses. Now, the three-~dimensionality is characterized by
a curvature of the streamlines and this effect is not taken into account if only 3U/dy
and 3W/dy are retained. This means that practically all the velocity gradient components
should be retained ; it has not yet been shown that this could improve the model.

8 - CONCLU

It is clear that our capacity to predict the three-dimensional turbulent boundary
layers developing on wings or on fuselages is not very large. This is partly a result of
a poor knowledge of the turbulence mechanisms in general. In addition, it should be
recognized that the advanced studies on turbulence deal with rather simple
configurations where the effects of three-dimensionality are avoided. On~the other hand,
the mathematical tools to model the effects of turbulence are rudimentary.

For attached three-dimensional boundary layers, the situation is not too bad
however. Several calculation methods have been developed and widely applied. The
earliest techniques solve the global equations and these integral methods have been
shown to be a very valuable tool for practical purposes. Solutions of local equations
have been developed more recently. Even with simple eddy viscosity models, they add a
degree of flexibility and are able to reproduce the mean velocity profiles with
reasonable accuracy. The REYNOLDS stress transport equations are potentially superior,
but this advantage has not been clearly proven yet. The current tendengy is to prefer
the use of the so-called algebraic¢ stress model instead of the full REYNOLDS stress
equations.

This optimistic aspect should not hide that many problems remain unsolved. One of
them is the near wall treatment and the associated difficulty of the extension of the
law of the wall in three-dimensional boundary layer.

The major problem is the three-dimensional separation. Very often, a three-
dimensional separation is associated with an increasing three-dimensionality of the flow
and we have seen that this affects the structure of turbulence. Fortunately, the mean
flow is generally pressure driven and a very accurate turbulence model is probably not
needed, but this point is not completely clear because other factors such as variations
of pressure normally to the wall are important, A recent positive result is that
singularities occurring in boundary " layer calculations are now slightly better
understood, but the link with separation is hypothetical. At the best, the singularity
is arsign for the need of a strong coupling between the boundary laver and the inviscid
flow.

In the case of attached boundary layers, techniques of interaction between the
viscous and inviscid flows are well appropriate to calculate the whole flow field. In
the case of separated boundary layers, the advantage of these interactive techniques
tends to disappear. If the separated zone is developed, the classical boundary layer
approximations are no longer wvalid. In particular, the component of the pressure
gradient normal to the wall is not negligible. In addition, a separation in a three-
dimensional flow often leads to a formation of vortices in which it is very difficult to
recognize a familiar boundary layer.

In two-dimensional flow, other techniques than viscous-inviscid interactions have
proved fruitful. These methods consist of solving the so-called parabolized NAVIER-
STOKES equations or thin layer equations {RUBIN-REDDY, 1983). These techniques can be
considered as an extension of classical boundary layer solutions that include the direct
and inverse methods ; in addition, the effects of the normal pressure gradient are taken
into account. The extension to three-dimensional flow deserves to be considered.

A last problem which should be mentioned is the laminar-turbulent transition. It is
often argued that this transition is unimportant at high REYNOLDS numbers, but this is
not always true. For example, the design of "laminar wings”™ or the presence of
favourable pressure gradients can require an accurate determination of the transition
region. The three-dimensionality adds a further difficulty due to the «crossflow
instability. Experiments on swept wings have shown that this instability can 1lead to
transition in a favourable pressure gradient. Thus, the advantages of the properties of
a laminar airfoil at zero sweep angle can be lost when the sweep angle increases. Then,
methods for calculating transition in three-dimensional flow are being developed as they
should be a tool of aerodynamic design (ARNAL, 1986).

e
P
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APPENOTX

CLOSUR ELATIONSHIPS USED IN THE INTEGRAL METHO

A.1. Closure relationships jip laminar flow

In compressible flow, intermediate transformed variables have been introduced
petween these variables, we have the same closure relationships as between variables in
incompressible flow. The transformed variables are noted with an overbar (" ). The
closure relationships given below are valid for H € 4.0283 ; they are given in a stream-
line coordinate system :

—_% —_

+ 12106 12221 . _ 4 5022 [Z- —h ]+ 3e2
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12.37 (4.02923)2
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A.2. Closure relationships in turbulent flow

The «closure relationships are expressed in a streamline coordinate system.
“Incompressible” thicknesses are defined as :

5 u 5 u u 61i
b= [1-2Tay T e R KT Ho= g
o e 0 e e 111
5 w 5 w_ u 6w [ u ] 5 w2
5, = j - —dyy8,_,. = j -~ — — dy; 08 _. = j -_— 1 -=— 1 dy;8,__. = J - ~— dy
Vi /’ ?
21 o ug 21i o ug ug 121 0 Ye u, 221 o uz
The relationships for the "incompressible” or transformed variables are :
5. . Cf y1/2
1i - 1 — X 1 1 —_ * —_
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1 i 1-65 2 3 0.41 8 E
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*
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The relationships for the compressible variables are :
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PHYSICS AND MODELLING OF THREE-DIMENSIONAL BOUNDARY LAYERS
by

P.Bradshaw
Department of Aeronautics, Imperial College
Prince Consort Road
London SW7 2BY
United Kingdom

SUMMARY

This section of the course is an introduction to the physics of
three-dimensional (3D) turbulent flows and a discussion of "modelling®” - the use of
experimental data in developing calculation methods. Only conventional
Reynolds-averaged calculation methods will be discussed: for simplicity, only
"differential™ methods, in which variables are predicted at each point in the
boundary layer, will be treated, but similar principles should apply to "integral”
methods. -

1.0 INTRODUCTION

The term "Three-dimensional boundary layers" is taken to include flows such as
wakes or jets - which obey a 3D version of the boundary 1layer approximation even
though they are not layers on boundaries - and "slender" flows, such as those in
wing/body junctions (Figs. 1 and 2), which grow slowly in the streamwise direction
even though they do not obey the 3D boundary layer approximation completely. In 3D
flow with the X axis in the general direction of motion, e.g. along the centre line
of an aircraft or a duct, the W-component motion, and the associated V-component
motion, are called "secondary" flow, as distinct from the "primary" £flow in the X
direction. oOur theme, therefore, is the generation of "secondary" motion in boundary
layers and other 3D turbulent flows. We exclude highly three dimensional flows with
massive separations, such as those behind bluff bodies.

Even within this restricted class, corresponding roughly to the different
sub-regions of flow over an aircraft, a bewilderingly large variety of flow
geometries can appear. Since, as usual, the number of flow phenomena is much smaller
than the number of hardware configurations, we restrict ourselves to a deneral
discussion of physical principles and do not consider particular aerospace
geometries. '

As always in turbulence studies intended for engineering application, the main
question 1s “"what do the Reynolds stresses do, and why?" Strictly, the effect of
turbulent velocity fluctuations in a fluid flow 1is to provide an extra rate of
momentum transfer, in addition to the convection of momentum by the mean flow and the
di'ffusion of momentum by collisions between molecules. However, just as momentum
transfer by molecular collisions is commonly regarded as equivalent to internal
viscous stresses, turbulent momentum transfer 1is equated to extra (Reynolds)
stresses. Since the Navier-Stokes eguations represent Newton’s second law of motion
"rate of change of momentum egquals applied force" for a viscous fluid, the
mathematical process of transferring the velocity-fluctuation terms from the  left
hand side of the equation to the right hand side 1is exactly equivalent to
interpreting the extra rates of momentum transfer as an extra stress (force per unit
area).

The Reynolds stresses are extra unknowns in the time-averaged equations of
motion for the rate of change of velocity, and although we c¢an use the original
t ime~dependent equations of motion to deduce equations for the rates of change of the
Reynolds stresses, the latter equations contain extra unknowns, and an infinite
series of higher-order time-averaged equations would be required to contain all the
information provided by the original time-dependent Navier-Stokes equations.
Therefore, experimental data or other sources of inspiration must be used to truncate
the series, The current approach is to model the terms on the right hand side of the
Reynolds-stress "transport" equations as functions of (i) the Reynolds stresses
themselves, (ii) the mean velocity gradients, and (iii) one or more length scales of
the turbulent eddies, which obey independently-determined equations.

Turbulence is essentially -three-dimensional, in the sense that the fluctuating
parts of all three velocity components are of the same order, and it might be thought
that the essential processes of turbulence development would be unaffected by mild
three-dimensionality of the mean flow. This is, indeed, the principle on which most
turbulence models initially developed for two-dimensional mean Tlows have been
extended to 3D flows. However, over the last ten years it has become clear that
apparently-plausible extensions of 2D models do not give very good agreement with 3D
experiments, such as those of van den Berg and collaborators at NLR (Refn 1) on a
slightly-idealized swept wing boundary layer. Predictions of secondary flow in
non-circular ducts (Fig. 3) or outside long non-circular bodies (such as the ship
hull in Fig. 4) are also in a less than satisfactory state; in these cases, the flow
in the cross-sectional plane is actually generated by the Reynolds stresses. 1In
particular, it can be shown that an isotropic "eddy viscosity", such as is used in
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the simpler calculation methods, is essentially unable to predict stress-induced
secondary flow.

The only alternative to modelling of the Reynolds stresses for substitution into
time-averaged equations is solution of the time-dependent Navier-Stokes equations for
the mean and fluctuating motion. Even if the smallest-scale turbulent eddies are
modelled, the computing times required are so¢ large that this 1s at present an
approach for basic research work rather than day-to-day industrial use. However,
time-dependent turbulent simulations of 3D flows are about to start, and should
materially improve our understanding in the near future.

2.0 PHYSICS OF 3D FLOWS
2.1 Classification

Many years ago, Prandtl (Ref. 2) identified two main kinds of "secondary flow" -
that 1is, velocity components in a shear 1layer at right angles to the main flow
direction. By far the most important of these, called the "first kind of secondary
flow", occurs because a given spanwise pressure gradient, applied to a boundary layer
or other shear layer, will deflect the slow-moving fluid in the shear layer more
strongly than it deflects the free-stream fluid. Therefore, a "crossflow" velocity
component arises, as shown in Fig. 5. As we shall see below, the mechanism by which
this crossflow is generated is essentially inviscid - assuming that viscous or
turbulent stresses have generated a shear layer in the first place - and in fact this
kind of crossflow tends to be reduced by viscous or turbulent stresses in the
crossflow plane (the ¥Y-Z plane in Fig. 5). An obvious example of this reduction is
that the crossflow velocity falls smoothly to zero at the surface: the so-called
"no-slip" condition requires-W=0 as well as U=0 at the surface, and a secondary
internal boundary layer 1is set up, as shown in Fig. 6(b), in which the spanwise
component shear stress acts to smooth out the velocity profile. Note the use of
streamline coordinates to show up departures of flow direction from that in the
external flow. Clearly, if the crossflow velocity w is greater than Zero, as in most
of the examples 1in this section of the course, then 3w/dy < 0 outside the internal
layer. This description is valid for laminar and for turbulent £flow: note that 1in
either case the internal boundary layer, in which the shear stress and total pressure
are perturbed, may be very much thinner than the boundary layer as a whole. It is
convenient to consider what happens when an initially two-dimensional 1laminar or
turbulent boundary layer suddenly runs into a region of spanwise pressure gradient -
a simple example is the flow in a square duct, with a thin boundary layer on the
floor, as it encounters a smoothly-radiused bend as shown in plan view in Fig. 5. 1If
the flow 1is 1laminar, the streamwise flow and the crossflow (outside the internal
layer) can in certain circumstances be regarded as independent, but in turbulent flow
the generation of mean crossflow leads to changes in all the Reynolds stresses, even
in the outer part of the boundary layer. The main theme of this series of lectures
is the prediction of turbulent (Reynolds) stresses in such three-dimensional flows.

' Prandtl’s "secondary flow of the second kind™ occurs only in the turbulent case,
where Reynolds stresses can create a crossflow. The simplest example is a straight
rectangular duct (Fig. 3), with, say, fairly thin boundary layers on the walls, in
which the Reynolds-—stress gradients that appear near the corner actually drive the
secondary . flow. Since one normally expects viscous or turbulent stresses to smooth
out, rather than to cause, changes in velocity, secondary flow of the second kind 1is
an unexpected and fascinating phenomenon. The large amount of attention that has
been paid to it is more nearly proportional to its fascination than to its practical
importance, which 1is really rather small. In most practical cases, square ducts or
other "corner" flows contain bends or other changes in direction which generate
secondary flows of the first kind, generally overwhelming secondary flows of the
second kind. Of course, secondary flows of the second kind provide a very severe
test case for a turbulence model for three-dimensional flow. However, in the present
state of turbulence studies a turbulence model (i.e. a calculation method) is
unlikely to be applicable to all kinds of flows: therefore models ought to be
adjusted for optimum performance in the more common secondary flows of the first
kind, and if necessary optimised separately for secondary flows of the second kind.

The secondary flow which is set up by centrifugal instability or buoyant
instability - such as longitudinal Taylor-G¥rtler vortices in a boundary layer over a
concave surface (Ref. 3), the vortex rolls that 1lead to cloud streets in an
unstably-buoyant atmosphere (Ref. 4), or the wind-rows that form on the ocean surface
(Ref. 5) - might be called "secondary flow of the third kind" but we will not discuss
it further in the present lecture series,

As well as distinguishing two main mechanisms for the generation of "secondary
flow", we have to consider two main configurations. We recall that the "boundary
layer approximation® (which is also applicable to jets and wakes) rests upon rates of
change in the streamwise direction being small - compared to rates of change in the
direction normal to the surface in a boundary layer or normal to the plane of the
shear layer in a nominally two-dimensional jet or wake. In 3D flow, we need to
distinguish cases 1in which the rates of change in the spanwise direction are small
and cases in which they are not. If we consider the boundary layer on a swept-back
wing, far from root or tip (Fig. 1), we see that if the sweep angle is of the order
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of 45? spanwise rates of change are of the same order as streamwise rates of change,
and are therefore small compared to rates of change normal to the surface of the
wing. Therefore, the arguments which are used to derive the boundary layer equations
in two dimensional flow, where we have to consider only the U-component of momentum,
can be extended to three-dimensional flow and applied to the W-component momentum
equation as well. The two key results are that, as in two dimensions, the pressure
within the shear layer differs negligibly from the pressure just outside the shear
layer and can, accordingly, be regarded as "known" from a solution for the external
flow, and that spanwise diffusion of momentum by viscous or turbulence stresses can
be neglected, just as streamwise diffusion is neglected in the 2D - and 3D - cases.

Let us use the notation that 7t,. represents the total (viscous plus turbulent)
stress acting in the X, direction oh’a plane normal to the X. direction - so that T
represents the usuall2p shear stress acting in the x direcgion on a plane normal £3
the y direction. Then the effect of applying the 3D version of the boundary-layer
approximation is to reduce the X-component and Z-component time— averaged
Navier-Stokes equations (sometimes called the Reynolds equations) from

. T 9T 3T
D_UEUB_U+V3_U+W3_U=_A§E+.J: XX 4 Y o X (1)
Dt X Y 7 p 9x p 3xX 3y 8z _
3T 3T T .
DW _UW  V3W WoW _ _13p, 1 |%ex, “ay °Tzz L2l
Dt X Y 32 p dz o] 9X Y 3z |
to
DU 10 . 1 9% (3)
oV - _ L P, 2 XY
Dt p 3X p 3y
9T !
DW _ _13p, 1% ay (4)
Dt p 32 p Y
where we use the transport operator D/Dt for compactness. We see that only Y

derivatives of stresses remain, these being large compared to the X and Z derivatives
of any stress. 1In the general case we have
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Note that although our main concern is with turbulent flow, the viscous-stress terms
may be easier to follow. Thin, slowly-growing three-dimensional shear flows that obey
the boundary layer approximation are sometimes called "boundary sheets": here we
prefer "3D thin shear layers", because Egs.{(3 and 4) apply to wakes (though not to
trailing vortices) as well as boundary layers.

The boundary-layer assumption implies that the V-component velocity (normal to
the surface) is small compared to U and W. Near the root or tip of a swept wing, for
example, spanwise rates of change are Jlarge and, more or less as a direct
consequence, V becomes of the same order as W, perhaps with both small compared with
U. At this point, we need to generalize the concept of "crossflow" into the concept
of "longitudinal vorticity". Formally the vorticity vector is the <curl of the
velocity vector, so that in conventional X, Y, Z axes we have
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In what we have called "3D thin shear layers", 93V/32z has been small compared to
3W/dY, but these two constituents of the longitudinal vorticity are of the same order
in flows near the root and tip of a swept wing, in the trailing vortices behind the
aircraft, or near the <corners of a rectangular duct: we call these "slender shear
flows"., By taking the Y derivative of the Z-component Navier-Stokes eguation we can
dirive an equation for 3W/dY, and a similar equation can be derived for 3dV/3z. A term
d°p/dYd2 appears in each equation. Combining the two, we derive an equation for the

X-component vorticity itself, '
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The azp/ayaz terms cancel exactly: note that pressure gradients in the (Y-2) plane
are not negligible in the momentum equations in “"slender" flows. The vorticity
transport equation {(8) implies that, in the absence of viscous or turbulent stresses,
vortex lines remain locked to the same elements of fluid, but their vorticity will be
modified by the "skewing" terms (second and third on the right) and the first,
"stretching", term, A stimulating review of vorticity dynamics has been given
recently by Morton (Ref. 6).

The final, general, form of the vorticity equation necessarily contains the
mechanisms of generation of secondary flow of the first (skew-induced) kind and the
second (stress-induced) kind: in our chosen axes, the main generation term for
secondary flow of the first kind is the third term on the right of equation (X),
since weé suppose that the initial vorticity is mainly in the 2 direction so that w
and w are small. Stress-induced secondary flow 1is generated by the secon
derivatives of Reynolds stresses, which are generally all of the same order. The
only simplification that we can usually make in "slender" flows like those near the
root or tip of a swept wing is that X derivatives are small compared to Y or 2
derivatives, but the latter two are of the same order.

Some skew-induced secondary flows are so strongly deflected that a discrete
vortex is formed within the shear layer, with 3W/dY and av/3Z of the same-order. The
best known examples are flows round obstacles in boundary layers, such as wing-body
junction flows (Fig. 2) which are becoming increasingly important as aircraft shapes
become more slender. Fig. 2 shows the distortion of elementary vortex lines and
their accumulation into a "horseshoe" vortex wrapped round the leading edge. Mehta
(Ref. 7) has shown that the ratio of 1leading-edge radius of curvature to body
boundary-layer thickness has a large effect on the flow pattern: in the case of a
sharp leading edge the horseshoe vortex is relatively weak. We expect that viscous
or turbulent stresses will generally act to reduce the crossflow velocities. As has
been shown 1in the recent experiments of Kornilov and Kharitonov (Ref. 8), and of
Nakayama and Rahai (Ref. 9), stress-induced secondary flow will eventually take over,
far enough downstream of the leading edge, leading to a pair of longitudinal vortices
in each corner as shown (for a duct flow) in Fig. 3. However, the distance required
for stress-induced secondary flow to take over is many times the chord of a typical
wing, and the usual situation at a wing trailing edge is that a pair of vortices (one
per corner) is dumped into the body boundary layer and continues to transport wing
boundary-layer fluid towards the body.

Probably the most spectacular occasion on which thin shear layers roll up into
quasi-longitudinal vortices is on the lee side of a body - for example a delta wing -
at incidence. The topology of the surface streamlines in a separating flow is itself
an interesting study: an extensive review is given by Tobak & Peake (Ref. 10), and
discussions of topology by Hunt et al. (Ref. 11) and Hornung & Perry (Ref. 12). The
general introduction to vorticity and 3D separation by Lighthill in Ref. 13 is also
still useful. Qualitatively at least, the flow in the crossflow plane over a slender
body of revolution corresponds to impulsively-started two-dimensional flow over a
spanwise circular cylinder, with separation occurring just downstream of the
"equator™: at fairly small body incidences, a symmetrical vortex pair is formed,
although, at sufficiently large incidence,vortices are shed alternately from each side
of the body so that the flow in the crossflow plane looks rather like the traditional
Karman vortex street. In any case, crossflow vorticity generated in a thin shear
layer rolls up into a nearly-concentrated vortex, imbedded in the boundary layer if
the incidence is small and effectively distinct from it if the incidence is large.

Three main imbedded-vortex configurations need to be considered (Fig. 8). The
first is an isolated vortex imbedded in a turbulent boundary layer; the second is a
vortex pair with the "common" flow between the vortices directed downwards towards
the surface, as in the flow on the lee side of a body of revolution (Fig. 7) or
downstream of a wing/body Jjunction; and the third is the case where the common flow
between the vortices is upwards, so that their common induced velocity convects them
slowly away from the surface, entraining boundary-layer fluid as they go. This last
case appears in the flow out of an S-bend engine intake or a wind-tunnel contraction
(Ref. 14), and in both cases causes a large and unwelcome eruption of shear-layer
fluid into the main flow. Flow over surface-mounted bluff bodies results in
imbedding of nearly.~longitudinal vortices in free shear layers and boundary layers
(e.g. Ref. 15). A comparatively simple flow is that over a surface-mounted body with
a streamlined nose and a blunt base, such as the "half-bullet" shape tested in Ref.
16. This is a 3D equivalent of the popular 2D backward- fac1ng step (see Ref. 17 for a
review of the latter).

A characteristic feature of strong longitudinal vortices is that the turbulence
near the axis is damped out by the effect of "centrifugal forces", according to the
Rayleigh criterion for flows with angular momentum increasing outwards. Centrifugal
stabilization has spectacular effects in the trailing vortices far behind aircraft,
and the lack of radial mixing can result in quite large longitudinal velocities being
induced by pressure gradient. The phenomenon is well understood gqualitatively, but
presents a considerable quantitative challenge to turbulence modelling.



2.2 Transition mechanisms in three dimensional flow

"This 1is an introduction to a subject to be discussed in later lectures. In two
dimensional laminar boundary layers, the usual mechanism of transition in flows with
small external turbulence level is the growth of Tollmien-Schlichting waves, which
are, essentially, alternating regions of high and low spanwise vorticity. As is well
known, Tollmien-Schlichting waves grow morezrapidly if the velocity profile has a
point of inflexion (i.e. a point where 3%u/dy = 0). In 3p flows, there 1is,
necessarily, a point of inflexion' in the crossflow velocity profile (Fig. 6) and the
"inflexion-point instability" leads to the generation of longitudinal vortices with
their axes near the point of inflexion. Fig. 9 shows the Z-component velocity
profiles obtained for several different orientations of the axes, showing that
inflexions occur over a range of axes. C(Correspondingly, vortices with a range of
directions in plan view can be generated, but in practice the most noticeable are
those which hdve zero net crossflow velocity at the inflexion point (the large cross
in Fig. 9) so that the vortex pattern appears fixed in space. In practice the pattern
will be locked in position by spanwise irregularities in the oncoming flow
Longitudinal vortex "streaks" are evident in many flow-visualization pictures of flow
over swept wings (as sketched in Fig. 10, after Fig. 9.20 of Ref. 13) or over
rotating discs. Recent computational work by Hall (Ref. 18) has shown that the
longitudinal-vortex mode of "crossflow instability" easily overwhelms Taylor-Gortler
instability on concave surfaces, just as either easily overwhelms the very slowly
growing viscous~generated Tollmien-Schlichting mode. As usual with transition
prediction, there is a large gap between nominally-accurate calculations for the rate
of growth of small disturbances, and empirical results for the onset of turbulent
flow. Cebeci and collaborators have compared experiments and detailed stability
calculations for three dimensional flows, and shown 4Bhat the onset of transitiog
occurs after an amplification of as much as e compared to the traditional e
amplification factor of 2D Tollmien-Schlichting waves.

On strongly swept-back wings, the mechanism of transition is commonly
"transverse contamination", in which flow along the leading edge of the swept wing
transports and propagates turbulence from the body boundary layer out along the wing,
rendering any discussion of transition mechanisms downstream of the leading edge
irrelevant. Fortunately, there is a fairly simple empirical criterion for "spanwise
contamination": it does not occur if the momentum-thickness Reynolds number of the
leading edge boundary layer is less than about 100.

Since instability occurs sooner when either the axial or crossflow velocity
component has a point of inflexion, there is, or ought to be, considerable interest
in lateral contamination of a laminar boundary layer from turbulence generated in
streamwise corners, longitudinal vortices, or other flows which contain points of
inflexion over only a limited spanwise distance. The state of the art appears to be
the empirical observation that spanwise contamination occurs at about the same rate
aio transverse contamination from turbulent spots - that is, at a half-angle of about
15 B

2.3 Generation of crossflow by pressure gradient
The Squire-Winter-Hawthorne (SWH) inviscid secondary flow formula is a special
case of the vorticity egquation (8) in which all viscous and Reynolds stresses are
negligible and the initial vorticity vector is in the spanwise direction sow_ = W =
0.. Eq.(8) therefore reduces to X b4
3%~ Yz 3z T Yz 3% (8a)
which indicates that the initial, spanwise, vorticity vector skews (to the left, say)
at the same rate at which the velocity vector skews to the right. That 1is, the
angle of the vorticity vector to the velocity vector changes by twice as much as the
flow direction, if the flow deflection is small. Now in x, y, 2 axes aligned with the
external streamline, the cross-stream component of vorticity is approximately -3u/dy
and the streamwise component 3w/dy. Therefore the slope of the outer portion of the
velocity profile in the polar plot of Fig. 12, dw/du = (dw/dy) / (du/dy) 1is, to a
first approximation, simply (minus) twice the angle through which the velocity vector

has turned.

awx U oW

A semi-graphical proof of the SWH relation is to note from Fig. 11(a) that the
decrease of pressure towards the centre of curvature (shown in Fig. 5) implies an
increase in velocity according to Bernoulli’s equation: in fact Ur = constant. Thus
a fluid element at E, initially lying along AB, will be convected, in a time 8t say,
to the point E°, and will then lie along CD. The difference in lengths of the arcs AC
and BD is §t times the difference in velocity across the width of the duct, which is
to a first approximation proportional to (minus) the difference in radius. It follows
that the angle between AB and CD is equal to the "turning angle® AOE’. In Fig. 11(b)
the fluid element is replaced by the vorticity vector, which, we recall, is
permanently locked to a fluid element in the absence of viscous_-or turbulent
diffusion. The vorticity vector is skewed, without radial stretching,to lie along
CD: the>vector CP then has a component PQ in the original direction of flow, but a
component PR, twice as large, in the local flow direction which is normal to the
radial line CRr. =

There are two reasons for departures of real velocity profiles from this simple
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linear formula - (i) that the formula applies only to small turning angles, and (ii)
that the effects of Reynolds~stress gradients opposing the secondary flow have been
neglected. Nevertheless, the SWH formula provides a surprisingly good description of
the outer layer of 3D turbulent boundary layers, especially those dgenerated when a
well-developed 2D boundary layer encounters a spanwWise pressure gradient. From
the viewpoint of predicting 3D flows this is a good thing, but it implies that, at
least in some cases, a comparison of predictions with mean-flow measurements alone
may not be a significant test of the Reynolds-stress model in the outer layer. That
is, turbulence measurements are needed. This kind of flow, with an
essentially-inviscid outer layer, is typical of flows around obstacles such as
wing-body junctions: of course, the SWH formula in its simple form is not valid when
the axial vorticity becomes large, even if the process of generation is essentially
inviscid, but the equations of motion of inviscid rotational flow can still be
integrated numerically in some form (e.g. Ref, 19).

We can now compare the response of a two-dimensional boundary layer to pressure
gradient with that of a three-dimensional boundary layer - for simplicity, one in
which the SWH formula for longitudinal vorticity is qualitatively accurate. 1In 2D
flow, we can write the boundary layer equation as

(aP/as)Q = —(du"v’/3y) (9)

where P is the total pressure, equal to p + (l/2)pu2 in constant density flow, and s
is measured along a streamline, § = constant. This shows that the total pressure on a
given streamline remains constant unless affected by stress gradients. If we
suddenly apply a pressure gradient which is large compared to the pre-existing stress
gradients, the flow near the solid surface 1is constrained by (i) the no-slip
condition at the surface, u=0, (ii) the momentum equation written at the surface,

0 = va2u/ay? - (1/p)3p/3x (10)

which requires that, at the surface, any pressure gradient shall be opposed by an
equal stress gradient. At the surface, of course, the total pressure equals the
static pressure. The development of total pressure and shear stress along a given
streamline (i.e. a given value of stream function ¢) in a 2D flow in adverse pressure
gradient is shown in Fig. 13. Clearly, the effect of the no-slip condition at the
surface gradually propagates outwards, producing a region in which the total pressure
increases according to Eg. 9, the total pressure in the outer layer being constant,
which is the "inviscid flow" approximation. In 3D flow, the response of total
pressure to streamwise pressure gradient is qualitatively the same (Fig. 14): note
that if for example we consider a high-aspect-ratio swept wing, the isobars coincide
with the generators, so streamwise and spanwise pressure gradients are connected. The
quasi-inviscid result for the outer layer 1is of course the skew-induced crossflow

described, for small turning angles, by the SWH secondary flow formula. As already
seen in Fig. 6, the no-slip condition on w in a 3D boundary layer leads to the
generation of an internal layer in which w reduces to zero at the surface. In a

calculation method, the exact relation between "streamwise" and "spanwise" internal
layers depends on the turbulence model,but they are expected to be of about the same
thickness. 1In the flow over the rotating rear part of an axisymmetric body (Fig. 18:
see Ref. 20 for a recent experiment on a partly-rotating body) a w-component internal
layer forms, but there is no direct effect on the axial motion. The 3D equation
corresponding to the total-pressure equation, Eq.(9), is

U (dP/8s) = -udu’v’'/dy - wdv'w'/dy (11)
where U 1is the resultant velocity, and is not so useful.

The effects of pressure gradient on the turbulent stresses in 3D flow is
essentially different from the 2D case. In laminar flow, the imposition of a
crossflow component of mean shear dw/dy immediately produces a shear stress wow/dy.,
but in turbulent flow there is no such close connection between the crossflow
velocity field and the crossflow Reynolds stresses. In 3D thin shear layers we can
define a streamwise component of eddy viscosity as the ratio of the shear stress in
the (x-y) plane, -u'v’, to the corresponding mean velocity gradient 3u/dy_- Jjust as

in 2D flow — and also define a crossflow eddy viscosity as -V w /(3w/dy).
Unfortunately, these two eddy viscosities are not guaranteed to be the same - that
is, the eddy viscosity is not necessarily "isotropic". Experimental results like

those sketched in Fig. 14_ (a) show that although 3u/3dy does not alter to a first
approximation, the value of -u' v’ on a given streamline decreases significantly in
the presence of crossflow, while -v'w’ increases more slowly than 3w/dy. The result
is_that the streamwise eddy viscosity decreases, but the crossflow eddy viscosity,
-v'w /(ow/3dy), 1is even smaller. The slow response of Reynolds stresses to changes
in mean flow is qualitatively obvious from the Reynolds-stress transport equations,
to be discussed below, which state that the rate of change of stress, rather than the
stress itself, depends on the mean velocity gradients. However, the reduction of
u_v_ in response to crossflow - that is, a distortion in a plane normal to that of
-u'v’ - is less easy to explain, even qualitatively.
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2.4 Generation of cross flow by stress gradients

Pioneering experiments performed in the 1930°s, principally by Nikuradse at
G8ttingen, showed that, in long straight non-circular ducts or open channels, V and
W-component velocities could be generated, obviously by Reynolds-stress gradients.
The rather unsatisfactory "explanation™ 1is that three-dimensionality can set up
Reynolds stresses tending to produce 1longitudinal mean vorticity according to
equation (8). The Reynolds-stress terms in the 1longitudinal-vorticity transport
equation are all spatial gradients, so that their integral over a complete
cross-sectional plane of the turbulent flow is 2zero; and it follows that their
contribution to «circulation, defined as the integral of vorticity over a complete
cross-sectional plane, is also zero. That is, these are "diffusion" rather than
"generation" terms. Indeed, we usually find that stress-induced vortices occur as
equal and opposite vortices in, say, the corners of a duct (Fig. 3). Obviously, the
integral of the Reynolds stresses over an area which comprises one of the vortices in
the pair will be non-zero.

Probably the simplest stress-induced secondary flow to understand is that in a
duct with a partly-rough wall (Fig. 16): the direction of secondary flow is away from
the regions of high turbulence intensity. The complicated second derivatives of
Reynolds stresses in Eg. (8) suggest that we cannot expect a simple interpretation in
general, and Morton (Ref. 4) has pointed out that arguments based on angular momentum
are insecure because the axis of reference cannot be chosen rigoro6usly. Another
fairly simple example is the jet from a non-circular nozzle, say a rectangular nozzle
of large aspect ratio. As might be expected, the stress-induced secondary flows
which arise tend to make the cross section circular, but the secondary flows do not
fall to zero as rapidly as the eccentricity of the cross section. The result is that
the cross section "overshoots" the circular shape, so that the jet from a nozzle
which 1s wider than it is high goes through an approximately circular shape and then
forms a jet which is higher than it is wide before finally relaxing back to a
circular asymptotic shape. This is a nice example of the lack of close connection
between turbulence stresses and mean-velocity behaviour. An example of an
exceptionally large effect of stress-induced flows is the wall jet from a circular
nozzle (Fig. 17) which spreads very rapidly in the spanwise direction - several times
faster than it spreads normal to the surface. This flow is discussed by Launder &
Rodi (Ref. 21) but the mechanism is still controversial.

The secondary-flow velocities in stress-induced secondary flow are of the order
of the root-mean-square velocities of the turbulence, whereas the SWH formula implies
that the cross-plane velocities in skew-induced secondary flows are of the order of
the streamwise velocity times the flow deflection angle (radians). 1In strongly
deflected flows, for example that in the wing-body junction of Fig. 2, the deflection
angle is of the order of one radian. This is the essential reason why skew-induced
secondary flows so easily overwhelm stress-induced secondary flows in practice,
however fascinating the latter may be in principle.

The Reynolds-stress transport equations

3.0 MODELLING AND THE USE OF EXPERIMENTAL DATA
1

wWithout prejudice to the approximations that may be made for. engineering
purposes, we begin with the exact transport eguations for Reynolds stress. These
equations can be derived, without approximation, from the Navier-Stokes equations.
They contain further unknowns (time averages of complicated turbulence quantities) on
the rlght -hand side. wWe use tensor notation for compactness, u .being a stress
acting in the x. direction on a plane normal to the x_. direction. Eacﬂ subscript can
take any desired value: if a subscript is repeated inja given term, that term is
summed over all three values of the subscript. Our main interest here is in the
general layout of the terms and the reader can ignore the subscripts.
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The left-hand side is the rate of change of any component of Reynolds stress
along a mean streamline: the right-hand side comprises (i) generatiorn of Reynolds
stress by interaction of the existing turbulence with the mean velocity gradients,
(ii) spatial diffusion or “turbulent transport"™ of Reynolds stresses by the
turbulence, (iii) the redistribution of Reynolds stresses between different
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components by the action of pressure fluctuations, and (iv) destruction or diffusion
by viscous-stress fluctuations. Viscous diffusion of Reynolds stress 1is small,
except in the viscous sublayer very close to a solid surface, and viscous destruction
is important only for the normal stresses, where it dissipates turbulent kinetic
energy into heat. In most turbulent flows, the terms representing generation by
interaction between the turbulence and the mean shear are approximately balanced by
the "redistribution" or "destruction" terms, and our chief problem is the modelling
of the latter. Details will be discussed below: briefly, pressure fluctuations
within the flow act to "scramble" the turbulence and make it more nearly isotropic -
that is, to reduce all the shear stresses and to equalize the normal stresses ~ while
viscous dissipation reduces the normal stresses but has little effect on the shear
stresses. (It must be remembered that the resolution of the stress tensor into shear
stresses and normal stresses depends on the axes chosen, and there is always one set
of axes, the so-called ‘"principal" axes, in which all shear stress component are
zero, leaving only the "principal" normal stresses: however principal axes are not
much used in turbulence studies.)

3.2 Boundary-layer approgximation and "Region of Influence"

The boundary-layer approximation can be applied, where it 1s physically
justifiable, to the Reynolds-stress transport equations as well as to the
momentum-transport ("mean motion") equations. Since the "diffusion" or "turbulent
transport™ terms in the Reynolds-stress transport equations are spatial gradients of
turbulence quantities, application of the boundary-layer approximation implies
neglect of the spanwise and streamwise components of this diffusion, leaving only
diffusion in the y direction. In plan view, this means that turbulent_itress, like
momentum, is merely convected along the mean streamlines at an angle tan "w/u to the
axes, and diffusion away from the streamline in plan view is negligible.

This convection of information (that is, momentum and Reynolds stress) along
mean streamlines in plan view implies a considerable simplification in the equations
of motion and their solution. The Navier-Stokes equations are elliptic, and in
principle the influence of disturbances at a given point can be propagated either by
convection by the mean velocity, or by viscous or turbulent diffusion, or by pressure
perturbations. In the 3D boundary 1layer equations, however, we have eliminated
propagation by pressure disturbances, by requiring the pressure to be equal to that
at the edge of the shear layer (determined by an inviscid flow solution, say). We
have also agreed to neglect viscous or turbulent diffusion, and the result 1is that
information 1is propagated in the crossflow plane only via pure convection. Thus the
limits of spanwise propagation of a perturbation originating at a point P (Fig. 15)
are the most-leftward and most-rightward streamlines originating at the X,Z value of
p - diffusive propagation of _ information in the Y direction being assumed
"immediate". As Wwill be seen in later lectures, the confinement of the "region of
influence™ of P to a wedge with its apex at P has important and useful implications
in numerical methods, because the finite—difference "molecule" used to compute
conditions at a given point must adequately represent the arrival of information at
that point. (Experts may note that, in particular, "integral™ methods for 3D boundary
layers yield purely hyperbolic equations in the (Y-Z)} plane.}

In stress-induced secondary flows, turbulent diffusion of momentum or Reynolds
stress in the (y-2) crossflow plane is a vital part of the process, and the equations
which include this diffusion can loosely be called "elliptic" in the (Y-Z) plane. A
perturbation at a point P can in principle reach any part of the flow downstream of
P, not just the inside of a wedge. (Again for experts, the slender-flow equations in
X, Y and Z, with only X-wigse diffusion neglected, are actually parabolic, like the
closely-analogous equation for unsteady two-dimensional heat transfer in - say - t, Y
and Z, but each step of a marching solution leads to an elliptic problem in the (Y-2)
plane.)

3.3 Turbulence modelling - details

As indicated above, the Reynolds-stress transport equations are exact
consequences of the Navier-Stokes equations, and therefore any empirical turbulence
model must, at least, be compatible with these equations. The most advanced
turbulence models involve term-by-term approximation of the equations, representing
each term as a dimensionally—correct combination of Reynolds stresses and their
gradients, and, where appropriate, mean-velocity gradients also. For example, the
pressure-strain "red&stribution“ term, which, 1like all the other terms, haﬁ/Ehe
dimensions (velocity)” / (length), could be represented as (Reynolds stress) /
(length scale). Alternatively, of course, the same term could be represented as the
product of a Reynolds stress and a mean-velocity gradient, which again has the
required dimensions: and we shall see in Sec. 3.5 that the equation governing the
generation of pressure fluctuations within the flow warns us that the best model of
the "redistribution"” terms will involve both representations.

There is an ambiguity in the modelling of the tugbulent transport terms also:
these terms, once more, have the dimensions (velocity)~/(length), but the 1length
dimension is supplied by the spatial gradient, and the most obvious model is
therefore one which represents the triple product inside the gradient as some
suitable combination of Reynolds stresses to the power 3/2. However, most
calculation methods model the turbulent transport terms by using the "gradient



diffusion"™ concept, which rests on the same insecure foundations as eddy viscosity
(Sec. 3.4) but seems adequate for correlating data. It assumes that the triple
products are proportional to the Reynolds-stress gradients, with a diffusivity whose
dimensions are thi/iame as viscosity and which is therefore taken proportional to
(Reynolds stress) x (length scale).

The combinations of existing variables must be chosen for the best physical
plausibility, but, whichever dimensionally-correct representation 1is chosen, it
merely defines a dimensionless constant, "(term in equation) / (dimensionally correct
combination of variables)". If the combination of variables exactly represented the
physical process, the constants so defined would be genuine universal constants, like
the coefficients of the Navier-sStokes equations which are p, Vv or unity.
unfortunately, such simplified equations for turbulence are inevitably less accurate
than the Navier-stokes equations, and the "constants" not only depend on the type of
flow considered but may also depend on the position in that flow. Since even the
exact Reynolds-stress transport equations are not complete descriptions of
turbulence, because information has been lost by time averaging, the model constants
would have to be found by experiment even if they were truly universal.
Unfortunately, very few 3D experiments contain sufficient information to evaluate all
the terms in the Reynolds-stress transport equations (pressure fluctuations within
the flow cannot be measured with any assurance of accuracy, so that pressure-strain
"redistribution” terms must always be determined as the net sum of the other,
measured, terms). -

3.4 Simpler modelling concepts -~ eddy viscosity

The simplest way to model the Reynolds shear stress in a 2D thin shear layer is
to assume that the eddy viscosity, defined as the ratio of the u’v’ shear stress to
the mean shear 3u/dy, can be related to mean flow parameters: for example, in the
popular Cebeci-Smith model,the eddy viscosity in the outer layer of a boundary layer
is represented by 0.0168u_& . The difficulty with this kind of correlation is that
the eddy viscosity 1is “defined as the ratio of a turbulence guantity (the Reynolds
stress) to a mean-flow quantity (the mean velocity gradient), whereas the correlation
implies that the eddy viscosity depends only on the mean-flow scales and not on the
turbulence scales. The same anomaly appears, in reverse, if the eddy viscosity is
itself obtained from transport equations, as in the popular k, epsilon model: this
wrongly implies that the eddy viscosity is a property of the turbulence alone.

The "mixing length" concept is close to that of eddy viscosity, both in
principle and in practical results. It relates the shear stress to the square of a
velocity gradient: this leads to a fully non-linear differential equation for the
mean velocity, which 1s a nuisance numerically. Therefore eddy viscosity is
currently the more popular for discussion or use, but we shall use mixing length in a
discussion of the 1inner layer of a turbulent wall flow, y/8 < 0.2 say, in Section
3.7.

In the inner layer, the turbulence is near "equilibrium", with the generation
term (i) in Eg. (12) nearly balanced by the redistribution or viscous-destruction
terms. In this case, the length and velocity scales of the mean flow are nearly
proportional to the 1length and velocity scales of the turbulent motion, and the
anomaly in the eddy viscosity concept is unimportant. Even in the outer layer, the
turbulence may not be too far from equilibrium if the flow is changing slowly.
However, skew-induced 3D flows are often quite strongly out of equilibrium, because
the mean shear in the crossflow plane is generated by an essentially inviscid
mechanism rather than by the cumulative effect of stress gradients: therefore,
local-equilibrium concepts like eddy viscosity are 1likely to be unreliable.
"Reliability" in this context means universality or simple behaviour of empirical
constants: we can always define an eddy viscosity as the ratio of a Reynolds stress
to the corresponding rate of strain so that

vij =-u’;u 3 / (aui/axj + auj/axi) (13)
- but note that for complete generality we ought to allow u' ‘. to depend on
rate-of-strain components in planes other than (x —x ), implying that eddy viscosity
is really a fourth-order tensor!

In 3D boundary layers our main interest is in u’v’ and v'w’, so a basic question
is whether the eddy viscosity deduced from experimental data is the same for both
these shear stresses. As discussed in Dr van den Berg’s lectures, several
experiments in 3D boundary layers show __that the eddy viscosity is anisotropic.
specifically, the eddy viscogity for the v'w  shear stress is significantly different
from the eddy viscosity for u’v’,__That__is, the direction of the T"shear stress
vector", whose components are (-u’'v’,-v'w’), is different from that of the "velocity
gradient vector whose components are (3du/dy,dw/dy). If an initially 2D boundary layer
is skewed in the (x-z) plane, a crossflow velocity gradient dw/dy develops
immediately, roughly as predicted by_the Squire-Winter-~Hawthorne formula described
above, but the crossflow shear stress -v’w’ responds more slowly - a& turbulence
usually does - so the shear-stress vector skews more slowly. However we shall see
below that the behaviour of eddy viscosity in 3D flow cannot be explained entirely by
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this semi-obvious lag effect.

In quantitative discussions about “"streamwise flow"™ and ‘"crossflow", we
immediately encounter the basic difficulty that the definitions of the X and 2
directions are arbitrary: about the only meaningful definition of X 1s as the
direction of an initial quasi-two-dimensional motion before the imposition of a
spanwise (z-wise) pressure gradient. The usual "invariance"™ principle, that a
physical phenomenon 1is independent of the axes used to describe it, also makes it
difficult to defend the concept of special "streamwise" and "cross-stream" (x and 2)
axes. A special case of the principle is that the description of a phenomenon ought
not to be altered by uniform translation of the axes (Galilean invariance), and it
follows that the direction of the mean-velocity vector, whether in the free stream or
elsewhere, cannot be rigorously used as a preferred direction in the flow - that 1is,
we should not make our turbulence model depend on it. Thus, even if one accepts that
eddy viscosity 1s an adequate concept in 2D flow, the choice of axes to define the
components of eddy viscosity in 3D flow is difficult. The same applies to other
modelling parameters, as we shall see below.

The Navier-Stokes equations and the Reynolds-stress transport equations, as
quoted above, are of course exact, and are therefore valid for any choice of X, 2
axes. The same applies to any thin-shear-layer form of the equations if gradients in
the X and % directions are small: clearly the y direction (in which gradients are
large) cannot be chosen arbitrarily. The "slender shear flow" equations, for flow in
wing/body Jjunctions and ducts, require X to be chosen as the direction of small
gradient, but are invariant with respect to rotation in the Y-Z plane. Therefore the
difficulties of definition encountered with eddy viscosity will not necessarily
appear in the case of other models.

This writer’s opinion is that, in 3D even more than in 2D, calculation methods
for the more demanding flows ought to be based directly on the Reynolds-stress
transport equations - simplified as far as possible, of course. As we have just seen,
the "lag effect" on shear-stress direction, which 1is the result of mean-flow
transport of Reynolds stress (i.e., the rate of change of Reynolds stress along a mean
streamline) 1is often too big to neglect in 3D flows. If transport of Reynolds
stresses by the mean flow and transport by the turbulence itself are both negligible,
each shear-stress transport equation reduces to "generation" equals "destruction":
that 1is, interaction between the existing turbulence and the mean shear is balanced
by pressure-strain redistribution, otherwise called the T"return-to-isotropy" or
scrambling™ term. This "local equilibrium" is a fair first approximation for flows
which are changing slowly in the streamwise direction (small mean-flow transport),
because turbulent transport is generally fairly small except near .the outer edge of a
shear layer. Even this simplified case brings us back to the modelling of the
pressure-strain redistribution term, term (iii) in Eg. (12), as being the most
critical part of the development of a calculation method.

3.5 The pressure-strain "redistribution" term

+  If we take the divergence of the Navier Stokes equations, i.e. differentiate the
X,-component equation with respect to x, and sum over all values of i, we obtain a
POisson equation for the pressure fluctuation. This equates the Laplacian of the
pressure fluctuation p’ to a "source" term, which depends not only on the turbulence
intensity at the point considered but also on the mean—velocity - gradients. This
curious situation, that a fluctuating quantity depends on mean-flow gradients, is
just a consequence of the way in which we take averages, but the result is that the
formal solution of the Poisson equation for p’” implies that the pressure-strain
redistribution term also consists of two parts.

Both parts of the redistribution term with the Poisson solution substituted for
p’ are, strictly, integrals over the whole of the flow field. One part is determined
entirely by the fluctuating quantities, while the other depends on the mean velocity
gradients: the latter is called the "rapid"™ part - in this context, because it
responds immediately to any change in mean velocity gradient. This fact was pointed
out by P.Y. Chou (Zhou) in 1945, by Rotta in 1951 and by Lilley and other workers on
aerodynamic noise in the early 1960s, but was slow to gain acceptance in turbulence
modelling. Even with all possible approximations, this implies that the
pressure-strain redistribution term at a given point in a 3D thin shear layer depends
not only wupon the turbulence quantities but also on the two components of the mean
velocity gradient (mean shear), du/dy and dw/dy.

I1f we regard the two shear-stress components -u’'v. and -v'w’ as the components
of a two dimensional vector, the pressure-strain terms in the corresponding
Reynolds-stress transport equations are also the components of a two-dimensional
vector, and in general the direction of the pressure-strain "vector" will not be the
same as that of the shear stress - that is, the pressure-strain "redistribution" term
does not merely reduce the magnitude of the shear stress vector but may also alter

its direction. The simplest two-term model has one term whose vector direction is
that of the mean-shear velocity gradient (du/dy,_3w/dy) and another whose direction
is that of the shear stress vector (-u'v’, -v'w'). However this model will never

1ead.to the creation of a difference between the direction of the mean-velocity
gradient vector and that of the shear stress vector if the two initially coincide,
and experimental results imply that the difference between the directions cannot be
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completely explained as the "lag effect"™ due to the mean-flow transport terms,
described above. To meet this objection, Rotta (Ref. 22) has suggested a more general
model of the pressure-strain term, including a "anisotropy" factor. Rotta’s model as
originally proposed uses the mean-velocity direction as an axis, contrary to the
invariance concept presented above; and in practice -.e.g. Abid, Ref. 23 - the Rotta
model seems to yield only a small difference betweéen the directions of velocity
gradient and shear stress in the initial stages of the calculation, followed by an
excessively rapid divergence between the two directions as the crossflow increases.

In slender shear layers, the predominant mean-velocity gradients are 3U/3Y and 3U/d%,
and both will appear in the modelled pressure-strain terms. However the problem is
obscured by the apparent need for modelling parameters in slender wall flows to
depend on the distance from each surface ("wall effect"): empirical adjusthents for
wall effect may hide deficiencies in the basic pressure-strain model.

3.6 Length scales

The part of the pressure-strain term that depends solely on turbulence quang}Eies
must be expressed as the cube of a velocity scale - say (turbulent energy)
divided by a length scale. In 2D transport models, the length scale is almost always
derived from a model of the dissipation transport equation (the "epsilon_ equation™),
and at present the same equation is normally used in 3D without extra terms or
chenges in the coefficients. The approximation to the dissipation that is normally
modelled is a scalar (isotropic) gquantity distributed equally among the three
Reynolds normal stresses, However the epsilon equation is used to give a length
scale of the large, energy-containing eddies, and is, at best, a plausible modelled
equation for the rate of transfer of energy from the large eddies to the small ones.
This rate 1is nominally equal to the dissipation rate but is not isotropically
distributed. We may therefore expect trouble in 3p. Even if one ignores the vector
character of "epsilon", the coefficients in the epsilon equation are likely to depend
on the three—dimensionality of the flow. The main use of the length scale is in
modelling the pressure-strain term, where general uncertainties at present mask 3D
effects on the epsilon equation.

3.7 The inner layer

In the inner 1layer of a turbulent boundary 1layer, the resultant of the
mean-shear velocity gradient "vector" (du/dy, dw/dy) is large compared to any other
velocity gradient such as 3w/3x, and the turbulent eddies are small enough for their
lifetimes to be short compared to a typical mean-flow development time. We therefore
expect to recover local-equilibrium results, like the two-dimensional "mixing length"
formula which equates the resultant shear stress to the square of  the resultant
velocity gradient multiplied by the square of the mixing length, the latter being
directly proportional to the distance from the surface, i.e.

/[(-u'v’)z + <-v'w')2]= 12((su/ay) 2 + (aw/ay)?) (14)

where 1 = Ky = 0.41ly. However, this "local equilibrium™ result that the shear stress
and the mean velocity gradient are in the same direction does not necessarily apply
to the viscous sublayer, for which a simple but illuminating analysis is given by van
den Berg (Ref. 24). Pierce et al. (Ref. 25) provide a general review of models for
the 3D inner layer, but those which have a simple phys1cal interpretation are either
special cases or equivalents of van den Berg’'s. Fortunately the main effect of
non-equilibrium in the sublayer is that the velocity difference between the solid
surface and the edge of the sublayer acquires an extra component transverse to the
direction of the surface shear stress. Van den Berg’'s semi-empirical estimate of
this extra slip velocity could be, but has not been, improved by experiment.

Many 3D turbulent flows in real life - or in laboratory experiment - can be
predicted quite well by the Squire-Winter-Hawthorne inviscid secondary flow formula,
providing that the Reynolds stresses in the internal layer near the surface (Fig. 6)
are modelled adequately. That is, the inner--layer model is if anything more crucial
than the outer-layer model, at least for skew-induced secondary flows.

3.8 Use of data

We now consider how experimental data can help the modelling process. As in 2D
flows, we immediately hit the difficulty that the all-important pressure-strain term
cannnot be measured directly. Although evaluating the pressure-strain term as the
difference of other measured terms may give adequately accurate values for the term
as a whole, it cannot show the relative sizes of the two parts, the "rapid" part,
depending on the mean strain rate, and the purely- turbulent part. In fact, even full
time-dependent turbulent simulations, yielding u’ . v', w and p” as functions of
time, will not usually do this directly, but the two parts can be recovered
separately by evaluating one afterwards from the calculated fluctuations.
Time-dependent simulations of 3D flows, whether full turbulent simulations (FTS) or
large-eddy simulations (LES) with a model for the fine structure, are only Jjust
starting to be feasible for 3D flows such as those on "infinite" swept® wings, but
will be a useful supplement, and perhaps eventually a replacement, for experimental
data.
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The situation in practice is that turbulence models for 2p flows are being
adjusted empirically for 3p flows., Abid and others have used Rotta’s model of the
pressure-strain term to define and optimise a constant T, related to the eddy
viscosity ratio but implying a directional preference of the pressure-strain term.
Rotta’s model does not represent the even more spectacular effect of crossflow in
decreasing the shear-stress magnitude, which implies an increase in magnitude of the
pressure-strain term (leading to a faster return to isotropy). However no
significant improvement of Rotta’s model seems to have been offered.

There are now several experiments which contain_reliable measurements of all the
Reynolds stresses (including the hard-to-measure v'w' ) but there are few data on the
triple products, even in 3D boundary layers. In strongly-skewed boundary layers they
appear to decrease in magnitude as the crossflow increases, just as the resultant
shear stress and turbulence intensity do. Thiszwould be qualitgtively represented by
an extension of any existing 2D model for u’v’® to give v “w’ also. TUnless it
contained an extra constant analogous to Rotta’s T, such a model would imply that
these two triple products behaved similarly although the quantities they transport,
u'v and v w , do not. However, elucidation of any odd vector behaviour of triple
products is a much lower priority than improved modelling of the pressure-strain
term.

4.0 CONCLUSIONS -

Even after 20 years of computer modelling of turbulence, the position is that
even models based as faithfully - and expensively -~ as possible on the Reynolds
stress transport equations cannot satisfactorily predict the Reynolds stresses in
flow over swept wings. As pointed out above, a good model for the inner layer
suffices to give adequate predictions of surface shear stress in boundary layers on
wings not too close to the stall, but outer-layer models are still questionable. The
user of calculation methods must therefore keep close watch on the predicted results,
and, in particular, should check the method in a flow as similar as possible to the
one for which predictions are required.
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“boundary region”
or

“slender shear flow' sheet”

Fig. 1 Types of 3D flow
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Fig. 2 Generation of streamwise vorticity by distortion of
cross-stream vortex lines (secondary flow of the first kind).

.
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Fig. 3 Generation of stredmwise vorticity by Fig. 4 Ship "bilge vortices™ - initially
Reynolds stresses (secondary flow of the skew—-induced secondary flow followed by
second kind). sharp-corner effects.
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Fig. 5 Development of crossflow by stronger deflection of slow-moving
boundary layer fluid in cross-stream pressure gradient.
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(b). streamline axes x, y=Y, Z showing

bitr :
DEURCLL A4 13 ACEILRR TR T internal layer of reversed dw/dy.

Fig. 6 Crossflow velocity profile

g
Fig. 7 Vortices on lee side of cone at incidence. Secondary flow in
Section A-A approximates to impulsively-started 2D flow over circular
cylinder. Note convergence of surface streamlines at separation line
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(a) isolated vortex (b) vortex pair with "common" flow downwards (c) "common flow" upwards

Fig. 8 Cross section (yz plane) of vortices imbedded in boundary 1layers
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Fig. 9 W-component velocity profiles in a Fig.1l0 Transition on swept wing, showing
given laminar boundary layer for different successive laminar flcw, vortex streaks and
directions of X,z axes. turbulent flow.

(b) enlgrgement; equal and opposite
deflections of vorticity vector and velocity
vector, -

(a) anticlockwise deflection of fluid
elements due to clockwise deflection of
velocity vector

Fig.1ll 1Illustration of Squire Winter
Hawthorne secondary flow formula.
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Fig:12 Gruschwitz/Johnston "polar plot® of w
against u in streamline coordinates (w_= p),

dw/du = (3w/dy)/(du/dy) = -2 mwhere o IS
turning angle

(b)

T
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(c)

Fig.13 Response of 2D boundary layer to
adverse pressure gradient

total pressure and shear stress remain
constant on a given streamline (W = constant)
except in internal layer near surface,
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(b) crossflow velocity gradient
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{c) crossflow shear stress (d) Stress/energy ratio

Fig.14 Response of 3D boundary layer to adverse pressure gradient(leading to crossflow)

(b) plan view

(a) velocity-vector profile

Fig.15 Region of influence of a point P in a 3D boundary layer
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Fig.16 Stress-induced secondary flow in duct
with partly-rough wall - secondary flow tends
to be down gradient of turbulent intensity.

(a) side view (b) end view

(¢) plan view

Fig.17 3D wall jet from circular nozzle

N

g
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Fig.18 Axisymmetric body with rotating -
rear part (showing internal layer)
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THREE-DIMENSTONAL SHEAR LAYER EXPERIMENTS AND THEIR USE AS TEST CASES FOR CALCULATION METHODS

SUMMARY

by
B. van den Berg
National Aerospace Laboratory NLR
Anthony Fokkerweg 2, 1059 CM Amsterdam
The Netherlands

Three-dimensional shear layer experiments are discussed with a view to those developing calculation
methods. The emphasis 1s on the selection of useful experiments for comparisons with calculations and the
proper way to perform the comparisons. A review of more recent three~dimensional shear layer experiments

is included.

LIST OF SYMBOLS

4
P

M

U,V,W
u',v',w'

X,¥s2

subscripts

e

w

pressure coefficient, Cp = (p-p,)/q, -
Mach number

static pressure

dynamic pressure

Reynolds number based on momentum thickness

mean velocity components

fluctuating velocity components

coordinates

external flow angle, relative to x-axis

flow angle in shear layer, relative to external flow direction
displacement thickness

shear stress

at shear layer edge
at wall

in free-stream

8 INTRODUCTION
®

The intended reading public of this paper on experiments
in three-dimensional shear layers are those active in devel-
oping calculation methods for this type of flow rather than
experimentalists. Therefore experimental techniques will be
discussed here only very globally, mainly mentioning some of
CONTENTS the most ilmportant problems assoclated with measurements in
turbulent flows and the measurement accuracy. More attention

EXPERIMENTAL TECHNIDUES
REQUIREMENTS FOR USEFUL DATA
REVIEW OF EXPERIMENTS

USE OF EXPERIMENTAL DATA

PRESENT STATUS AND PROSPECTS

will be paid to the way to select experiments, which are best
suited for checking calculation methods. The choice may de-
pend on the intended application area of the calculation
method considered. Then a review will be given of the avail-
able three~dimensional thin shear layer experiments, with the
emphasis on the more recent experiments and the experiments
used earlier for extensive theory experiment comparisons in
Workshops. Subsequently the use of experimental data for com-
parisons with calculations will be discussed comprehensively.
To draw valid conclusions from a comparison, a more extensive
study must be made of the consequences of egperimental errors
for the calculation results and the role-of the assumptions
made in the calculation methods. Finally the present status
in three-dimensional shear layer research will be summarized
and the need for further research will be mentioned.
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EXPERIMENTAL TECHNIQUES

PRINCIPAL VELOCITY MEASUREMENT TECHNIQUES

PRESSURES —= U, V,W

NB.:

TYPICAL 8.L. THICKNESS IN

EXPERIMENTS = ORDER OF CM’s

TYPICAL DIMENSION OF MEASUREMENT

VOLUME = ORDER OF MM's.

SPATIAL RESOLUTION IS GENERALLY A PROBLEM,
ESPECIALLY FOR TURBULENCE QUANTITIES

TR enessunerRoses

Z HOT-WIRE PROBES

HEAT FLUX —= U, VW, u% v, w*

LASER-DOPFLER
ANEMOMETRY

PARTICLES —» UV, W, v/, ¥, w"

&

THE QIFFICULTY OF ACCURATE
TURBULENCE MEASUREMENTS

MAIN PROBLEM: MEASUREMENT OF MOMENTARY
VELOCITY VECTQR OIRECTION

SAY: ERROR= $02°

v.w=gos |uf | ERRORINY = 7%

ERRORBINW v = £ %
HIGHLY TURBULENT FLOWS:

U v,w™> 02 [Uf —= LARGE MOMENTARY FLOW ANGLES
u,v,w'> 04 [Ul —» OCCASIONAL REVERSE FLOW

&

SKIN FRICTION MEASUREMENT TECHNIQUES

=
SURFACE PRESSURE PROBES,

TR, ASED O GRRALLLAW

MAIN PROBLEM; VALIDITY OF WALL LAW

e

SURFACE HOT—FILM PROBE,

TP, DSl ON ANALOGY oF
7

FRICTION AND HEAT TRANSFER
MAINPROBLEM: HEAT TRANSFER TO SUBSTRATE

=

DIRECT FORCE MEASUREMENT

% %/A ON FLOATING ELEMENT

MAIN PROBLEM: EFFECT OF PRESSURE FORCES
ON FLOATING ELEMENT

o)

EXPERIMENTAL TECHNIQUES

Before discussing velocity measurement techniques, it is
useful to explain the nomenclature: Mean velocity components
are U, V, W with fluctuating parts u', v', w', while V << U,
W in the thin shear layer along the x-z plane,

The three principle techniques to measure flow velocities
are: 1) Preasure probes., Measured pressure differences are
used to deduce the local flow velocity., Merely mean veloci-
ties are obtained and that only approximately in strongly
fluctuating flows. The technique is, however, fast and easy.
ii) Hot wire probes, The velocity is related to the heat
transfer from the thin hot wires. Mean and fluctuating velo-
cities are obtained, Accuracy is limited by calibration
drift. Hot wires are the most usual technique for measuring
fluctuating turbulence quantities. 1ii) Laser Doppler Ane-
mometry. The velocity of small particles, which are seeded
in the fluid, is measured using laser light beams, This is
a rather new technique with great potentials, A special ad-
vantage is the abaence of aerodynamic probe interference.

All these experimental techniques have in common a fairly
large measuring volume, generally with dimensions of the
order of 1 mm. This is important as most laboratory boundary
layers are fairly thin, of the order of cm's, so that spatial
resolution is often a problem, especially for turbulence
measurements because of the small eddies in the flow.

The usefulness of an experiment as a basis for improving
calculation methods generally increases with the amount of
detail experimental information available, Particularly the
presence of turbulence data is desirable, Unfortunately accu-
rate turbulence measurements are not easy to perform. To
clarify the problem the measurement accuracy of the moment-
ary local flow velocity in a turbulent flow will be consider-
ed. Tentatively the measurement error in the flow angle will
be assumed to be * 0.2°, which actually is a fairly high
standard of accuracy., For a turbulent velocity fluctuation
level of 5 % of the mean velocity, the corresponding relative
error in v' and w' (the fluctuating velocity components nor-
mal ‘to the mean velocity vector) then becomes * 7 7, It will
be clear that in the circumstances accurate measurements are
difficult to perform.

In adverse pressure gradient flows close to separation
much higher turbulence levels occur. Consequently smaller re-
lative errors in the fluctuating velocities are likely for
the same absolute error in the flow angle. However, for velo-
city fluctuation levels higher than 20 7, the momentary flow
angle may exceed at times the acceptable range of a probe
with e.g. crossed hot wires. When the fluctuation level ex-
ceeds 40 % occasional reverse flow may occur, requiring
velocity measurement techniques, which distinguish reverse
flow, such as Laser Doppler Anemometry.

Since in turbulent boundary layers large velocity varia-
tions occur in a thin layer near the wall, it is useful to
know the magnitude and direction of the skin friction, i.e.
the limiting conditions at the surface. Again there are three
principle measuring techniques: 1) Surface pressure probes.
The skin friction measurement is based here on the assumption
that in the near-wall region a universal velocity distribu-
tion exists, dependent only on the local skin friction and
the fluid properties. This so-called law of the wall, howe-
ver, has a restricted range of validity and assumes no velo-
city vector rotation in the near-wall region, so that the
skin friction direction found, e.g. by rotating the pressure
probe, is no more than at best a mean flow direction over the
probe height. 1i) Surface hot film probes, using hot films
glued on the surface. Analogy of skin friction and heat
transfer is assumed and the skin friction direction may be
obtained by using two surface hot films at right angles. A
problem to be considered is the heat transfer to the sub-
strate and its effect on the calibration. iii) Force measure-
ments on a floating surface element., This is the only direct
and in principle indisputable measurement technique. In prac-
tice, however, accurate force measurements may be difficult
to perform as the skin friction force to be measured is small
and unwanted pressure forces on the floating element easily
impair the measurements.



@ EXPERIMENTAL ERROR ESTIMATES @

INUMBERS GIVEN ARE NO MORE THAN GLOBAL INDICATIONS)

TYPICAL ERRDR

SURFACEPRESSURE 4 0.2% of q,,
MEAN VELOCITY +05% ofU,
FLOW ANGLE £05°

SKIN FRICTION + 5%of Ty
REYNDLDS STRESS £10% of ¥V, ETC.

ERROR VEASUS MISTAKE:

N CHECKS E.PREF LY USING
ESSENTIALLY DIFFERENT MEASURING TECHNIOQUES

®)
REOUIREMENTS FOR USEFUL DATA

i) EXPERIMENTAL OATA RELIABLE?
i} FLOWWELL DEFINED FOR CALCULATIONS?
iii} FLOW INTERESTING AS TEST CASE?

i) EXPERIMENTAL DATA RELIABLE?

® COMPARATIVE MEASUREMENTS MADE?
IE.G. DATA WITH DIFFERENT MEASUREMENT TECHNIQUES}

® OATA INTERNALLY CONSISTENT?
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