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HIGH-RESOLUTION BEAMFORMING TECHNIQUES
PERFORMANCE ANALYSIS

by
Walter M.X. Zimmer

ABSTRACT
/

Seven different beamforming techniques (including both conventional and high-resolution
types) have been analyzed and compared in order to develop a quantitative relationship
between resolution performance on the one hand and detection and the accuracy of bearing
estimation on the other. The techniques discussed are the Blackman-Tukey Conventional,
the Wiener Conventional, the Capon Adaptive and the Maximum Entropy Beamformers,
and the Optimal, the Johnson, and the Schmidt Eigenvector Methods. Det-ction perfor-
mance, accuracy, and resolution of the different techniques are discussed and tabulated.
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INTRODUCTION

The resolution performance of conventional beamforning techniques is limited by the
length of the array (i.e. the array aperture). Therefore high-resolution beamforming
techniques may be achieved only by extrapolating the measurements (or some function
of them) beyond this array aperture. From mathematics we know that extrapolations
work reliably only in the absence of measurement errors or noise. In real life, however,
noise-free measurements are not possible. The detection problem is characterized by a
low signal-to-noise ratio, i.e. noise dominates the measurements and the signal is barely
detectable. Also, the accuracy of source bearing estimation is influenced by noise. There-
fore any extrapolation of the measurements beyond the array aperture will likely degrade
the detection performance of the beamformer and also the accuracy of the source bearing

10 %j estimation. The main purpose of this report is to analyze and compare several different -.
beamforming techniques in order to develop a more quantitative relation between reso-

lution performance on the one hand and detection performance and accuracy of bearing
estimation on the other.

1. DESCRIPTION OF THE PROBLEM

1.1 General problem formulation

Figure 1 sketches the following scenario: an array of hydrophones receives sound from two
point sources that are assumed to be at an extreme distance to avoid complications due to
changing geometry. This is equivalent to assuming constant bearing of the two sources from
the array. The measured data are processed with some particular beamforming method
and the output is then displayed.

Figure 1 shows the theoretical result of both a conventional and a high-resolution method.
The conventional technique is characterized by broad main lobes in source direction and
more or less marked sidelobes. The significant features of the high-resolution method are
the sharp peak in source direction and the increased difference between the peak maximum ,
and the mean noise level. Three questions arise concerning the performance of this high-
resolution method:

-- Do narrow peaks indicate better resolution performance?

Is the bearing estimate more accurate?

Do increased peak-to-noise ratios indicate better detection performance?

2
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SOURCE 1 SOURCE 2

ARRAY OF HYDROPHONES

F SIGNAL PROCESSING

CONVENTIONAL BEAMFORMINi

0HIGH-RESOLUTION BEAMPORMING

I -~ BEARING DEVIATION

"'p PEAK LEVEL

PEAK DEVIATION

Ftg. 1: Problem formulation; statistical analysis of passive sonar signal processing.

In an attempt to answer these questions, numerous computer simulations were made. The

analysis of these simulations has focused on

- the distribution of the estimated peak level which yields the detection performance.

the distribution of the estimated source bearing which results in the resolution per-

formance and the accuracy of source bearing estimation.

3
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In detail, we will see how the peak-level statistic varies as a function of input signal-to-noise
ratio. Further, we will see the degree of uncertainty in bearing estimation, measured as a
function of input signal-to-noise ratio and as a function of the separation from a second,
closely-spaced source.

1.2 Comments on the beamformer output.

When using a beamformer. we will assume that we wish to measure the spatial power
distribution For such a case we apply the Wiener-Khinchin theorem and represent the
power spectrum as the Fourier transform of the spatial correlation function, thus:

P-- < f < Eq.(1)
k= -o

If we know the entire correlation function, that is, knowing rk for all values of k , then
we can obtain the power spectrum by means of Eq.1. However, in many applications, we
know (or can reliably measure) the correlation function only for a certain finite number of
k values, say for -p < k < p, and thus we do not know the value of r for Ikl > p.

To estimate the power spectrum from this partial knowledge we either

- ignore the long range correlation which yields the class of conventional beamformer,

- or extrapolate the correlation function beyond the array aperture to define the class
of high-resolution beamformer [1].

"
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2. PRESENTATION OF THE BEAMFORMING TECHNIQUES

In the following chapter seven different techniques for beamforming will be presented. The
techniques can be conveniently classified into four different groups:

a. Conventional Beamforming:
- Blackman-Tukey method

Wiener method

b. Adaptive Beamforming:
- Capon method

c. Maximum Entropy Beamforming:
- Forward-Backward Linear Predictor

d. Orthogonal Beamforming
- Optimal Eigenvector method
- Johnson Eigenvector method
- Schmidt Eigenvector method

2.1 Estimation of the correlation function.

To begin we must first say some words about the spatial correlation function and its
estimation. According to the Wiener-Khinchin theorem the correlation function plays
an important part in spectral analysis. The same observation is also valid in spatial
beamforming.

For a wide sense stationary process the (spatial) correlation function is defined by

ri= lim 1 Tr(n (yy*))'M--oo 2M - Iki

where

f) is the next neighbour difference matrix with dimension (M, M), K-.-

n-4 1 *T 
-

y is the measurement vector of dimension M,
(...) is the statistical average, and

P~i -j1, if -j = 1;
P(i - :1) {O, otherwise. I

Unfortunately there is no possibility of getting the true correlation function from real

"15
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measurements as this would need infinite spatial and statistical averages. However, we can
provide a more or less reliable estimate of the correlation function. Because this estimate
is always erroneous the power estimate cannot be the true one. It, is important to realize
that the power estimate can be only as accurate as the estimate of the correlation function.

The major restriction is that, we cannot perform an infinite spatial average (i.e. M -, o).
This restriction leads to two consequences:

-- for a spatially wide-sense stationary random process the estimate of the correlation
function will be noisy.

because the maximal correlation lag is limited by the array aperture we cannot
estimate long range correlation.

If we drop the notation M - oo, the unbiased estimate of the correlation function is given
by

rk 1 Tr(k (yy*)). Eq.(2)

2M -k

The next problem is to compute the statistical average. In the case of beamforming it is
convenient to replace the statistical average by a time average. This is justified when the

* sound field is weakly stationary, not only in space, but also in time. Then we can write

1 -.%

Further statistical averaging can be performed by replacing the data vector in Eq.(2) by a S.

forward-backward data matrix

Y1 Yi, Y;4CM YM, Y.1I 
%*

The effect of this is to replace (yy") by the average between the usual forward correlation S
matrix and the backward correlation matrix that would result by using the "backward"
data vector.

The reason for this procedure is explained by the following observation:

If y,, represents a wide sense stationary process, then its direction-transposed conjugated
image will also be wide sense stationary with identical correlation function. Therefore the
forward-backward average increases the estimation accuracy of the correlation function [2].

r
6
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2.2 Conventional Beamforming

Conventional beamforming is characterized by the fact that the long range correlation is
ignored completely or, equivalently, it is assuired to be zero, thus

,k = 0. k! > p.

Therefore the power spectrum estimate results in

k= -p

There are two main approaches to estimate the correlation function:

- the Blackman-Tukey approach uses the unbiased finite estimate of the correlation
function given in Eq.(2).

k= rk, Ikl p.

The finite aperture of the array acts like a rectangular window on the correlation
function. Therefore the true power spectrum can be achieved for short range cor-
related processes (i.e. wide angle noise), but the spectrum is heavily oscillating in
situations where the long range tail of the correlation function is of importance (point V
sources).

-The Wiener approach reduces these oscillations and always ensures positive power

estimates by using a biased estimate of the correlation function. This estimate is
given by multiplying the unbiased estimate with a triangular (Bartlett) window:

a. rk(1----rk). Jl<p
p

Besides these power estimators that are based on the correlation function, we have the

Periodogram Method of Schuster. This method was the first important application of the
Fourier Spectral Thr-orem. In this method the power spectrum is defined as the squared
value of the Fourier Transform of all the data:

P(f) .nt 2,r-nf12
n- I

7U
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It is easy to see that thi- .tthod trarisflor i to tlie Wiener approach by taking the expec-
tation value ol both ,ideM

It siould ho, rioto d that th. ,\pre-10..-rt f or\enti tral b)eaiitfornlirig, is used in a wider sense
" than iual I'h, i(rrial wsage, reg ar, w(il Ili periodogram and the Wiener approach

as (onev,,nti onail ,,ainforier, For -xteia i, reasons. however, the Blackman-Tukey ap-

proach also will he ( alled o n% ertioria ble( aus, it is the uinbiased implementation of the
.Vic er- K| h inchin hI heor cti i.

2.3 Adaptive' Fleattfornriiig

One of the early i igh-reesolutimi et I,,ls i- t lie adapt ire learnforining technique of Capon

131. This approach, sonietinies called maxiinurn likelihood method, extends the correlation
function in such a way that interferences from all other than the steering directions become
minimum. This is equivalent to miniiizing the beamforrner output under the constraint
that the response in a given direction is kept constant.

Using the Lagrange multiplier niethod we can write the unconstrained optimization pro-
cedure as follows:

d , p(d u' c) nrin,

where
-.- yy" is the cross correlation matrix,

d is the optimal steering vector,

p is some Lagrange parameter,

S- w(f) is the look direction,

c is some constant.

The resulting power spectrum estimate is given by

,..+:. ~ ~~ P /"f) \ + -+ .
k N I

where N - p is the desired aperture of the beamnformer.

There is no known closed-form expression to show how the correlation function ik is esti-

mated within and outside the physical array aperture. However, some indication for this
behaviour may be found in 11. In this report it is only of importance that the Capon
method modifies the measured part of the correlation function and tries to produce a
smooth extrapolation.

,717
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~' ~ 2.4 Maximum Entropy lBeamnforming

In this paragraph the maximum entropy principle will be discussed as a method yielding
high resolution. This principle is well kniown in physics; for example it is the basis of
statistical mechanics.

Before we formulate the maximum entropy principle we have to define entropy:

Entropy is a measure of the number of distinct possible ways of achieving a
probability distribution.

A high value of entropy therefore means that the probability distribution has an extensive
statistical support. The maximum entropy principle, a plausible consequence, says:

Inferences based on incomplete information should be drawn from whichever
probability distribution has the maximum entropy permitted by the available
information.

As an example, if we only have knowledge about second-order statistics the maximum
entropy principle results, in the gaussian probability distribution as a basis for inferences.

The maximum entropy principle produces the following consequence:

Unless there are further constraints which are not revealed in the statement
* of the problem, the great majority of the true power spectra will be close to

the maximum entropy estimate, because the great majority of all possible
spectra have that property. Conversely if the maximum entropy estimate p
turns out to be significantly in error, then we have statistically significant
evidence for the existence of a systematic effect separating us from the desired

solution.

The maximum entropy method is reliable in the sense that it cannot show any details for
which there is no evidence in the data [41.

Assuming that we know the expectation value of the correlation function r (our variable
of interest), then the maximum entropy is given by 14, 51

I11mVI - log Z iA r,

where
Z is the partition function,

r is the expectation value of the correlation function,

A is a vector of Lagrange parameters.

49-~
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The Lagrange parameter in this equation can be interpreted simply as the potential of
the corresponding data. Redundant data, which by definition do not contribute to the
entropy, are at zero potential. On the other hand, highly relevant data are those without
which our estimate would be very different; they have a large potential and their absence[, : would greatly lower the entropy.

This rat her abstract treatment of the maxinium entropy principle was introduced to show

that, theoretically, this principle is very appealing. However we will see later on that the
optimal behaviour cannot be achieved in reality.

The maximum entropy spectral estimate is given by

N 2

Pmf -- > ike 1  _
a'w

k.=-N

where N -> p is the desired aperture of the beamformer and the vector, a, may be estimated
via the relation

aRa u(a'c- 1) - min

with

1 ;(l.. .. o* r
k-r

lr''A

.i is some new Lagrange parameter.

The power spectrum estimate is then given by

T 2.':. Pllf) Te Ric

iCTR IW<

The maximum entropy spectrum is consistent with the Wiener-Khinchin theorem because
it is only the closed form solution in which the unknown part of the correlation function
is replaced by the estimate based on the maximum entropy signal distribution. The ex-
trapolation of the correlation function is consistent with the data and introduces no new
information into the spectrum.

However, the power spectrum estimate is optimal in the maximum entropy sense only
if the correlation matrix is of loeplitz form. In reality this may only be achieved with
infinite temporal or statistical average, Therefore, any implementation of a maximum

I%)
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entropy spectrum estimator will be sub-optimal and sometimes have unpredictable results.
To achieve acceptable results Nuttall !2 proposed to use a forward-backward averaged
estimate of the correlation matrix. A further ad hoc assumption is given by the limitation
of the maximum measured correlation length to a value less than the array aperture. This
results in additional statistical stability. This implementation of the maximum entropy
principle is also called the forward-backward linear predictor and will be used in this
report.

2.5 Orthogonal Beamforming

The orthogonal beamforming principle is based on the following observations:

- he correlation matrix is Hermitian and therefore all its eigenvectors are mutually
orthogonal;

- if the correlation matrix is of rank Al and the signal alone correlation matrix is of
rank K < M, then Al - K noise (signal free) eigenvalues exist;

-- if the noise is white and the correlation matrix exactly known, then the noise eigen-
vectors are orthogonal to the signal bearing vectors.

-- if the correlation matrix is known but the noise is not white, then there is orthogo-
nality between the noise eigenvectors and the signal bearing vectors obtained after
the appropriate tiansformation (given by the spatial pre-whitening of the noise) is
applied.

The fundamental eigenvector method is due to Pisarenko (e.g.j60) and may be described hi
as a minimum interference method, where the solution vector d is found via the constant
norm optimization procedure,

d"Rd d'd - min,

with the solution

d-s the minirumn eige,value of R. and

a.s the eigenvec tor a.ssoliated with A,,,,, (also called minimum eigenvector).

ro have a bearmformner ott put a pseudo-power estimate may be defined using a formula

similar to the t.aximumn entropy spectrum estimate:

1 I ._
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Amin

Pmf = - --

where u' u,(f) is the steering vector. U
From this formula we see that any steering vector parallel to a source eigenvector will
result in a sharp peak of P(f).

lHowever, the minimum eigenvector beamforiner is not recommended for the following
reasons: ..-.

- In real applications the cross-correlation matrix will be estimated via a finite av-
* erage. Consequently all eigenvalues and in particular the minimum eigenvalue are

estimated only within finite error bounds. This uncertainty may be negligible for
large eigenvalues but plays an important role for the minimum eigenvalue. As the
minimum eigenvalue is relatively uncertain, the corresponding eigenvector is nearly
unpredictable.

In all cases where the number of sources K is significantly less than the number
of hydrophones M , or more precisely, if K < M - 1, then not only the signal
eigenvectors but also M - 1 - K noise eigenvectors will be orthogonal to the minimum
eigenvector. This means that not only possible source directions may peak but also
the residual "noise directions".

To overcome these problems one must first estimate the number of noise eigenvalues;
secondly, one may try to combine the different noise eigenvalues and eigenvectors in some=-'
way to produce satisfactory results. The first part, namely the estimation of the number
of noise eigenvalues, is a difficult decision problem. Here, for this report, we evade the
problem by assuming that the number of noise eigenvectors is known a priori. Concerning
the combination of the different noise eigenvalues and eigenvectors, there are two major
approaches which are outlined next.

Recently Kumaresan and Tufts [7] proposed a simple concept for an optimal orthogonal
beamformer. They replaced the minimum eigenvector by an optimal linear combination
of all noise eigenvectors according to the following optimization:

Model
M-Kj

d bi v,

v, is the i-the noise eigenvector

bi is a constant to be estimated

12
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Optimality criterion
Jd12 

- min

Constraint 
,

d'c =1, c is a constant

Solution

Z M -K iV.C12

A second approach combines the different power estimates of all possible noise eigenvector
solutions

1 M-Kb 4 -
E b 1

Pfi) Pi

where bi is a constant to be estimated, and

Iv*w12'

where

Ai is the i - th noise eigenvalue,

vi is the corresponding eigenvector, and

w = w(f) is the steering vector.

Parameter bi has two known implementations:

1, Johnson and DeGraaf [81;
= i, MUSIC of Schmidt [9].

13
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3 THEORETICAL RESULTS

3.1 Summary of the beamforming techniques

Before the analysis of the different beamformers is presented a summary of the "pseudo"
power estimates is given. The expressions correspond also to the formulas programmed
into the computer.

a) Notation

Correlation Matrix

1Ti ~ 1 D ytYt + tlt), l (YM,... 'Y,)* "_1

S is the spatial averaged correlation matrix.

'V Correlation Function

k =(M -tk)-Tr(Sfk)

Eigenvector Equation
Sv1  A'v'

>5-2, where
A, is the i-th eigenvalue of S

vi is the eigenvector to A,

Steering vector
d

W k Y) -e -2 rkf, f j- cos(W)

where

d is the array spacing,

A is the signal wave length,

w is the steering angle.

b) Conventional Beamforming

"(f) 2Re(vw(f))/M, ,, ro/2

Blackman-Tukey
rj - rkP(IkI < Al)
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Wiener

rk rk(1 -k p~k < M)
MA

c) Adaptive Beamforming

(f) -w'S-w

d) Maximum Entropy Beamforming

e) Orthogonal Beamforming

Optimal Eigenvector Method

-C
T (JZ iYK Vv*v)c2

CT(,-K ViV* ) w

Harmonic Averaging Technique

1 , 1M, Johnson
w" =W Y -' vv, w b Al, MUSIC of Schmidt

3.2 Assumptions

The results presented in this chapter are based on the exact knowledge of the cross corre-
lation function:

K

rk UPk 0) + C"S

where

arn2 is the noise spectral power;

a, is the signal spectral power;

S, is the signal bearing vector;

K is the number of signals.

I.t%
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The bearnformer outputs, derived by using the different techniques, are presented in Fig-
ures 2 to 8. The results are based on the following parameter values:

Number of hydrophones: Al - 32
Order of linear predictor: p 24
Number of signals: K 2
Noise power: 2 0 dB

Signal to noise ratios: aj/a - 0 dB ,.
U2/ n -10 dB

Signal bearings: S1 = 75/128 = 65.560

S2 80/128 = 77.36'

3.3 Conventional Beamforming

Outputs for the conventional beamformer are presented in Figures 2 and 3.
The Blackman-Tukey method as shown in Fig. 2 is characterized by an oscillating power
spectrum and relatively high sidelobe levels that tend to disguise the second source (which
has a signal-to-noise ratio of - 10 dB). The Wiener approach shows positive power estimates
as well as lower sidelobe levels. Therefuje the second, weaker source is clearly visible.
However, the mainlobes are enlarged compared to those of the Blackman-Tukey method.

3.4 Adaptive Beamforming

Figure 4 presents a typical output of the Capon beamformer. The two sources can be
seen very clearly. No significant sidelobes are present in the figure. The signal-to-noise
ratio in source direction corresponds to the value measured with the conventional Wiener
beamformer. As a consequence the Capon beamformer may be used as a power estimator. .

3.5 Maximum Entropy Beamforming

Figure 5 gives the output of the Maximum Entropy Method. Two interesting features
may be observed; first, the output signal-to-noise ratio is apparently twice those of the
previously presented methods. Second, there are sidelobes in the form of oscillations. This 3
is a strong indication that the extrapolation of the correlation function has not been made
in an analytic way, thus verifying Lunde and Zimmer [11.

3.6 Orthogonal Beamforming

The beamformer outputs of the eigenvector techniques are given in Figures 6, 7 and 8. In
these figures we see two peaks of equal level independent of the input signal-to-noise ratio.

16
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0
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Lii
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-30

-40i,,,m' ' '0

50 70 90 110 130

STEERING ANGLE (DEG)

Fig. 2: Blackman-Tukey Conventional Beamforming;known correlation function.
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-30
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50 70 90 I10 130
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Fig. 8: Wiener Conventional Beamforming;known correlation function.

17 CA
,q44-

Jul#',



SACLANTCEN SR-104

-01

-J

LUJ

-30-

-401 I I I I I I I I I II I I ,

50 70 90 110 130
STEERING ANGLE (DEG)

Fig. 4: Capon Adaptive Beamforming ;known correlation function.

0

~-1
LUJ

LU

-30

50 70 90 110 130
STEERING ANGLE (BEG)

Fig. 5: Maximum Entropy Beamforming;known correlation function.
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0
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w I
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-40 -II -rl---

50 70 90 I10 130
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Fig. 6: Optimal Eigenvector Method; known correlation function.
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-30
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Fig. 7: Johnson Eigenvector Method; known correlation function.
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0

-J -10-

w -.

LLJ

-40- , ,

50 70 90 110 130

STEERING ANGLE (OEG

Fig. 8: Schmidt Eigenvector Method; known correlation function.

These features indicate clearly that orthogonal beamformers are direction finders and not
power estimators. Further, the two techniques, which are based on harmonic averaging,
show a dynamic range of about 37 dB; this range is probably due to computer limitations.

'., .,
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4 DETECTION PERFORMANCE

This section presents the analysis of the detect ion performance of the different beamforming

methods described previoiisl,.

.4.1 Preliminaries

A (lear indication of detection perfoirmance was derived from a series of simulations. The
scenario consisted of a single source of while noise. A hydrophone cross-correlation matrix
was estimated by means of' N.4'. .10 averages, After beamforming, the peak level of

the local nmaximurn nearest to the direction of interest was measured (Figure 9). For each
given signal-to-noise ratio this experiment was repeated 1000 times to provide sufficient

data for statistical analsis. To reduce the tine requirements of the simulations all seven
methods were applied to the same correlation imalrix.

PEAK LEVEL

RELEVANT
PEAK LEVEL

_ NEAREST LOCAL MAXIMUM

BEARING OF INTEREST

Fig.9: Definition of a local maximum.

-at-.

"' he pea k level is easilv found when the signal is present. There are tIiree possibilities for
uiefiniing the distribution of noise-alon level:

,Fixed beamn noise distribition: distribultion of tHie noise level in the direction of
interest.

lcal noise distrihltio:, ' distriluotion of tlie peak level of the local maximwum nearest
to the direction of interest.

'.' -,I .
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- Global noise distribution: distribution of the peak level of the global maximum.

Of these possibilities oinly ithe local noise distribution i, consistent with the assumption -
that the source direction is detr ,iifned 1)x estimating the local inaximium nearest to the

-~i..•. direction of interest. Therefore thIiis definition has been uscI throughout this report.

1.2 Detection probability

Appendix 11 provides a su iimary of the sitiulations that gave the detection performance.
The cumulative probability of the peak-level est imation is plotted against its estimated
level. With gaussian scaling of the probability axis (ordinate) and the peak level (abscissa)
in dB. a straight line represents a log-normal distribution of the peak-level estimates.

From the cumulative distribution of the peak-level estimation we can easily deduce the
detection probability (Figure 10). First we plot the noise distribution (no signal) so that

* the false alarm probability can be found directly from the ordinate. For every false alarm
*probability the abscissa gives the threshold to use to get the detection probability from

2%the signal curves. No assumptions are made about the statistics, e.g. the peak levels of
the local maxima may or may not have a normal or log-normal distribution. The selection "
of log-normal scaling was only made for plotting convenience. -

Figure 10 provides detection probability curves for each of the seven beamforming tech-
niques discussed in this report. The assumed false alarm probability Pfa was 1.35 x 10- 3. 4,

The Wiener Conventional Beanformer and Johnson Eigenvector methods provided the
highest detection probabilities; the Maxinum Entropy and Optimal Eigenvector methods
provided the lowest.

From theoretical analysis one could assume that all eigenvector techniques are poor as
detectors because they are direction finders, not power estimators. Therefore the meth-
ods of Johnson and Schmidt performed surprisingly well, probably because the theory
of orthogonal beamformers assumes that the signal-bearing vectors are parallel to the
signal eigenvectors and orthogonal to the noise eigenvectors. This theory requires the
cross-correlation matrix to be estimated by an infinite averag,,; this is not done in reality.
As a consequence the orthogonality between signal-bearing vectors and noise-eigenvectors
breaks down. Apparently the harmonic averaging of the Johnson and Schmidt techniques
uses this effect to generate and stabilize an angle between the signal-bearing vector and the
noise subspace that depends on the input signal-to-noise ratio of the sound source. The
Optimal Eigenvector technique cannot show such a feature because of its linear averaging. ,

4.3 Accuracy of bearing estimation

Figure 11 is a plot, of the Standard )eviation of the bearing estimation as a function
% of input signal-to-noise ratio for all seven techniques. The Standard l)eviation has been

estimated by the relation:

22"U.-
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99.9%_

99% B

0 90%_

U
a

CC

0 10%-

0.1%-1
-30 -20 -10 0 6

SIGNAL-TO-NOISE RATIO (dB)

Ft'g. 10: Probability of detection as a function of input signal-to-noise ratio.

W: Wiener Conventional Beamnforrner; B3: Illm-krran-TFukey Conventional Beamformer; C.
Capon Adaptive Beamformier; M: Maximum E'ntropy Met hod (Forward- Backward Linear
Predictor); 0: Optimal Eigenvector Method: J1: .Johnson Eigenvector Method; S: Schmidt
Eigenvector Method
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SIGNAL-TO-NOISE RATIO (dB)

Fig. 11: Standard deviation of bearing estimiation as a function of input signal-to-noise

ratio.

W Wiener C onven~tional lleamnfornyier: HI: Illacktrian-liikey ( onveli ional Beamformer; C:
Cao Adaptive Heamforrner: %1: \axirnium 1Ent ropy . Met hod (Forward- Backward Linear
Predictor): 9: Optimal Figenvector Method, J: Johnson Eigenvector Method; S: Schmidt
Eigenvec tor Met hod ..
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'-"here l f4 ) is I lhec citti ticil 1 ' li-t ri ,1it [oi of I he bearing est Iinat ion.

This tornunifa assuies it gatissiari list ribut ion for the bearing estimates. This is a good

approxiimation for signal-to- noise ratio(, tiiat ate not too low. The actual values of the
411 an da rd devi ition have bee,n oria h zed wit th respect to the reciprocal aperture and are

plot ted III log scale

The results indicate I ia lhe k% iencr techiiique with the lowest standard deviation of all
'vell techni(ties, prlons best . lie ()h pt iial lEigenvec tor aid the Maximum Entropy
echiliqllfs have lhe worst peirtI IAti c (& thv lid for the detection probability).

At irst glance it seems .surprising that the high-resolution methods perform so badly. But a
closer look at these minet hods provides a sihIfI1 ) axlplanatio n related to the fact that the high-

resolution methods extrapolate the correlation function beyond the array aperture. The
""" sharper the peak of a power spectrum the longer the correlation function must be. If the

correlation function is not known exactly within the array aperture, then the extrapolation.- - ' , , 

tiay be unstable and in most cases will amplify the influence of the noise on the estimation
- performance.

."47
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5 RESOLUTION PERFORMANCE

5.1 Scenario

To study the resolution capabilities of the different beamformers the following simulations
were repeated 1000 times: two closely spaced point sources in white noise are assumed to
have equal signal-to-noise ratio of 0 dB and given varying separations. The directions of
interest are given by the simulated source directions. The datum is ignored if a single local
maxi- mum is nearest to both directions of interest and therefore no resolution is observed.
The sources are considered as being resolved when there are two local maxima.

Three quantities are of interest:

- the bias of the bearing estimation,

- th deviation of the bearing estimation,

the probability of resolution.

5.2 Resolution probability

Appendix B presents the statistics of the two source-bearing estimation experiments. The
probability axis (ordinate) is again scaled such that a normal distribution results in a
straight line. The abscissa measures the separation in units of 1/aperture. The nominal
source separation at which the simulation has been carried out is the curve parameter.

Figure 12 presents the main results of the resolution experiments. Here the probability
that two sources are resolved is plotted against the separation of these two sources. The
probability is given in gaussian scaling and the source separation is measured in beam
number units (of 1/aperture).

As expected, the Wiener conventional beamformer performed poorest. On the other hand~~~the high-resolution techniques were able to resolve the two sources even when they had a -._

small separation.

Except for the Optimal Eigenvector technique, all the high-resolution methods have a
rather similar performance. We can therefore deduce that at least for simulated data the
effective beamformer aperture of these high-resolution techniques is of the same order of k

magnitude for all of them.
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99.9%
0 M BIW

99% S
J-

0
90% C

0
'U

u-50%-

0 10%

J C

0.1%,
0 1/4 1/2 3/4 1 1114

TWO SOURCE SEPARATION (reciprocal aperture)

Fig. 12: Probability of resolution as a function of two source separation (measured in units
of 1/aperture)

W: Wiener Conventional Beamformer; B: Blackinan-Tukey Conventional Beamformer; C:
*Capon Adaptive Beamformer; M: Maximum Entropy Method (Forward- Backward Linear

Predictor); 0: Optimal Eigenvector Method; J: Johnson Eigenvector Method; S: Schmidt
Eigenvector Method
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6 SUMMARY

This report presents a statistical analysis of seven high-resolution beamforming tech-
niques. A comparison has been made between the conventional techniques on the one
hand (Wiener,B-T) and conceptionally different high-resolution methods on the other
hand. These high-resolution techniques have been selected from three groups: Adap-
tive (Capon), Maximum Entropy (Max-Ent) and Orthogonal (Opt-Eig.,Johnson,Schmidt) %
Beamformers.

Table 1 compares the statistical performance of the seven techniques with respect to de-
tection, accuracy and reqnlution.

TABLE 1
Performance Statistics

Method Detection Accuracy Resolution

Wiener 1.0 1.0 1.0
B-T 0.9 0.8 1.3

Capon 0.9 0.7 1.8
Max-Ent 0.7 0.6 2.0
Opt-Eig 0.4 0.4 3.0
Johnson 1.0 0.8 2.1
Schmidt 0.9 1.0 2.1

This table is based on the following assumptions:

- the detection and resolution performance measures can be taken as corresponding to
the 50% point in the probability curves. The detection performance is measured in
dB and the resolution performance is measured in multiple apertures.

- the accuracy measure can be represented by the standard deviation at an input signal
-to-noise ratio of - 10 dB (equivalent to a conventional output signal-to-noise ratio
of 5 dB).

- the actual values can be related to the conventional Wiener beamformer to yield a
quantitative comparison of the different techniques.

From Table 1 we can conclude that improved resolution performance of the high-resolution
methods is gained at the the cost of a more or less significant decrease in accuracy and
detection performance. In particular the high-resolution Maximum Entropy and Optimal
Eigenvector techniques show this behaviour clearly. These techniques may be understood
as vector techniques in which the power estimate is based on the computation of a single
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vector. The other high-resolution teclit(jIit' i apon. lohnson, Schmridt) may be called
matrix techniques hec aiise t ht, ise the h v rop)hone cross-correlation ritat rix (or a part of
it) to get the power estitnialf Ths 'lIe' hi-rue i a- rix lechyn ques- show, at detec t ion performance
on ly slightlyv der reaseti wit i h ru's pv t to( hc tc!uvr en ce tevhtIuI qtv (% Witter). '[his is su rprising,
at lea-st for the orthogonal bean h irmer of lohniison anid S htii dt these two methods
are designed to he direct ion fiinders, niot up' u'r estimat ors. For perfect Ix known cross-

correlation matrices t hey woilh' inlicatu' iu' wirce direct ion withI infinitely large spikes.
However, we have onlx a iion-perfeut estimate' ofl tlie orrclat ion inatrix. yieldin g statistical
f uc tuat ions of the peaks of the es tinao ~Thn[ierehot t apatradox arises. ri aiely that the
poor statistics based ont finit ar)I * H ie c-ross-cor re at ion mati ix enable us to use

* the orthogonal beanilorniers ats uiet e tor,,

A nother iminport ant coni sion From T1a Ye I relittes to t he acciiiacyv values. None of the
- ~techniques is more ace orte than tli con01ventionial W\iener technique. The consequence
* is clear: sharp peaks in the( heamiforiner output (10 niot indicate more accurate bearing

estimations; they, are only necessary to achieve higher resolutions. Again the two vectorIl

methods (Max-Ent; Opt-Eig) show the worst per-formiance while the difference between the
matrix-based orthogonal beamniforinerb (Johison . 'clhnildt ) is less significant.

Concerning the resolution performance the threc miatrix techniques (Capon, Johnson,
Schmidt), these (io niot perform as wvell its the vector techniques. However, all high-
resolution techniques show an increase(] effective aperture that is at least 1.8 times greater
than the conventional I real) a pertiore.

On this basis one can sax' that the h igh-resolnitiott meth~ods showed increased resolution
performance; however, in cases where there is no resolution problem they, did not provide
more acc urate b~ea ring est imat es thia tlic con ventitonal mthods. Biecause any increased
resolution is based on the extrapolattion of th liN' drophorie cross-correlation function, the
influence of the noise on st(11 an ext apolilttion rniist be controlled very carefully.
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APPENDIX A

Further comments on the beamfornier output

The definition of beamformer output as used throughout this report is not free of problems.
In particular the construction of high-resolution beamformers would appear to emphasize
the direction-finding behaviour rather than the power estimation performance. Suppose we
drop the requirement that the high-resolution beamformer should be a power estimator.
What can we do to get not only the source hearing but also the power estimates? We could
take the estimated source directions and insert them into an optimal power estimation
scheme such as the maximum likelihood parameter estimation technique. However, this
approach only solves the problem of the decreased detection performance of the high-
resolution methods. To improve the accuracy of the bearing estimation we have to select

a nonlinear maximum likelihood approach which now has the bearing of the different
sources as additional unknown parameters. As a consequence the computational workload
will increase enormously. In this case the high-resolution direction finder would act as a
preprocessor for a multivariant parameter estimation technique [10]. It is not yet clear
under which conditions the trade-off between optimal performance and computational %
burden may favour this parameter estimation approach to high-resolution beamforming.
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APPENDIX B

Summary of the Single-Source simulations

In this appendix the results of the single-source simulations for the seven different beam-
forming techniques are summarized by plots of cumulative distributions. In all of the plotsthe measured peak level is plotted along the abscissa in dB and the cumulative probability

is plotted along the ordinate according to a gaussian scaling. The gaussian error function
has been approximated by

()(1 + \A - exp(-2x 2 /7r)/2 .

where the plus sign is selected for x > 0 and the minus sign for x < 0. The error made by %

this approximation is given in the following figure.

," ~0.006-.'-

0.002--

0.2 1.2 2.0

Error due to approximation of the error function

For each plot (Figs. BI to B7) the signal curves rise with increasing peak-level and give
the probability of the peak level being less than the value at the abscissa. The noise curve
on the other hand is decreasing with increasing abscissa and indicates the probability of
the peak level being greater than the value of the abscissa. This value also corresponds to
the false alarm probability.

Figures B4 (Maximum Entropy) and B5 (Optimum Eigenvector) are incomplete because
there was insufficient data. These techniques, even on a logarithmic scale, have such a wide
distribution that 1000 repetitions are riot sufficient to produce adequate statistical data.

33 . _,
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The Johnson Eigenvector method (Fig. B6) yet again shows well-behaved, nearly log-

normal distributions.

The Schmidt Eigenvector method (Fig. B7) provides an unexpected feature. The statis-tics strongly indicate that the distributions have a lower cut-off at 0 d13. Of 1000 peaks,none was masured below this value. The construction of this algorithm may explain this

phenomenon; the true noise eigenvalues are replaced by unity (i.e., 0 dB)..

The Schmidt Eigenvector, the Maximum Entropy and the Optimal Eigenvector methods
show that basing the performance analysis only on first and second order statistics rather
than on the complete probability distribution can be misleading.

.'.,..p

..-.

o%

-pR

. ..

.

.

34l



"N 01

SACLANTCEN SR-104.-

SIGNAL

NOISE "

99.9%,

99% a-

90%_

-50%

50% '

% ,.

10%

1% a';-'.

oa .1 % ,, '-

-20 -10 010 20

SIGNAL TO NOISE RATIO (dB) ".

Fig. BI: Blackman-Tukey Conventional Beamformer

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.O
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Fig. B2: Wiener Conventional Beamformer

*,,. Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio. - .*
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Fig. B3: Capon Adaptive Beamformer

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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Fig. B4: Maximum Entropy Method

~~Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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Fig. B5: Optimal Eigenvector Method
Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio. 3
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2Fig. B6: Johnson Eigenvector Method

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio. SAkAJ
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Fig. B7: Schmidt Eigenvector Method

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio. -4
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APPENDIX C

Summary of tie two-source simulations

This appendix contains the results of the two-source simulations. The approach that was
used to plot the bearing estimation is illustrated in the following figure:

"& PowER BEAING PLOT

b) DIMEINUTIOI OF
39"1" E O TIIO

%

0 j 0 CULATIVI DISTUIZUTIO
/TION

a. Every experiment in which the two sources were resolved has been used to
estimate the bearings of the sources.

b. The ensemble of all the successful experiments yielded the distribution of
bearing estimations. r

c. The distributions have beev plotted cumulatively so that one can read directly
the probability of the individual bearing estimate being closer to the common
bearing centre. Ignoring the failed experiments results in a plateau between
the two cumulative distributions. The ordinate value at which the plateau is
found is nothing more than the probability that the resolution experiment will ii
fail.

Concept of data presentation

Figures CI to C7 present the cumulative distributions for all seven beamformers. The
probability axis (ordinate) is again scaled such that normal distributions result in a straight
line. The abscissa measures the separation in beam numbers (cosine scale). Again 1 unit
corresponds to the reciprocal aperture and the source separation is given as parameter.
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As expected, the bearing estimates are normally distributed only for wide separations.
As the two sources close, the gaussian behaviour of the distributicin is lost, resulting in
long tails towards the common centre bearing, and the two sources start to interact. This
interaction results in resolution failure when the sources are very close.

-' The non-gaussian behaviour at close separations shows also that simple second order statis-
tics cannot properly describe the resolution performance. However the figures may be used
to check the bias by comparing the simulated separation with the distance of the medians;
the sensitivity of the bearing estimation may he found by taking the derivative of the "-
cumulative distribution; and the resolution probability can be read directly.
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