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HIGH-RESOLUTION BEAMFORMING TECHNIQUES
PERFORMANCE ANALYSIS

by
Walter M.X. Zimmer

ABSTRACT
/
Seven different beamforming techniques (including both conventional and high-resolution
types) have been analyzed and compared in order to develop a quantitative relationship
between resolution performance on the one hand and detection and the accuracy of bearing
estimation on the other. The techniques discussed are the Blackman-Tukey Conventional,
the Wiener Conventional, the Capon Adaptive and the Maximum Entropy Beamformers,
and the Optimal, the Johnson, and the Schmidt Eigenvector Methods. Det-ction perfor-
mance, accuracy, and resolution of the different techniques are discussed and tabulated.
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INTRODUCTION

The resolution performance of conventional beamnforming techniques is limited by the
length of the array (i.e. the array aperture). Therefore high-resolution beamforming
techniques may be achieved only by extrapolating the measurements (or some function
of them) beyond this array aperture. From mathematics we know that extrapolations
work reliably only in the absence of measurement errors or noise. In real life, however,
noise-free measurements are not possible. The detection problem is characterized by a
low signal-to-noise ratio, i.e. noise dominates the measurements and the signal is barely
detectable. Also, the accuracy of source bearing estimation is influenced by noise. There-
fore any extrapolation of the measurements beyond the array aperture will likely degrade
the detection performance of the beamformer and also the accuracy of the source bearing
estimation. The main purpose of this report is to analyze and compare several different
beamforming techniques in order to develop a more quantitative relation between reso-
lution performance on the one hand and detection performance and accuracy of bearing
estimation on the other.

1. DESCRIPTION OF THE PROBLEM

1.1 General problem formulation

Figure 1 sketches the following scenario: an array of hydrophones receives sound from two
point sources that are assumed to be at an extreme distance to avoid complications due to
changing geometry. This is equivalent to assuming constant bearing of the two sources from
the array. The measured data are processed with some particular beamforming method
and the output is then displayed.

Figure 1 shows the theoretical result of both a conventional and a high-resolution methed.
The conventional technique is characterized by broad main lobes in source direction and
more or less marked sidelobes. The significant features of the high-resolution method are
the sharp peak in source direction and the increased difference between the peak maximum
and the mean noise level. Three questions arise concerning the performance of this high-
resolution method:

-— Do narrow peaks indicate better resolution performance?
Is the bearing estimate more accurate?

Do increased peak-to-noise ratios indicate better detection performance?

2
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SOURCE 1 SOURCE 2

ARRAY OF HYDROPHONES

SIGNAL PROCESSING

<

; /\/L CONVENTIONAL BEAMFORMING

HIGH-RESOLUTION BEAMFORMING

4———— o——p BEARING DEVIATION

- — ® PEAK LEVEL

PEAK DEVIATION

Fig. 1: Problem formulation; statistical analysis of passive sonar signal processing.

In an attempt to answer these questions, numerous computer simulations were made. The
analysis of these simulations has focused on

-- the distribution of the estimated peak level which yields the detection performance.

!

the distribution of the estimated source bearing which results in the resolution per-
formance and the accuracy of source bearing estimation.
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In detail, we will see how the peak-level statistic varies as a function of input signal-to-noise
ratio. Further, we will see the degree of uncertainty in bearing estimation, measured as a
function of input signal-to-noise ratio and as a function of the separation from a second,
closely-spaced source.

1.2 Comments on the beamformer output.

When using a beamformer. we will assume that we wish to measure the spatial power
distribution For such a case we apply the Wiener-Khinchin theorem and represent the
power spectrum as the Fourier transform of the spatial correlation function, thus:

o'e)

P(f)= D ke M

k=-o00

IN
-
i

Eq.(1)

0O |
0O -

If we know the entire correlation function, that is, knowing ri for all values of k£ , then
we can obtain the power spectrum by means of Eq.1. However, in many applications, we
know (or can reliably measure) the correlation function only for a certain finite number of
k values, say for —p < k < p, and thus we do not know the value of r for |k| > p.

To estimate the power spectrum from this partial knowledge we either
— ignore the long range correlation which yields the class of conventional beamformer,

— or extrapolate the correlation function beyond the array aperture to define the class
of high-resolution beamformer [1].
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2. PRESENTATION OF THE BEAMFORMING TECHNIQUES

In the following chapter seven different techniques for beamforming will be presented. The
techniques can be conveniently classified into four different groups:

a. Conventional Beamforming :
- Blackman-Tukey method
- Wiener method

b. Adaptive Beamforming:
- Capon method

¢. Maximum Entropy Beamforming:
~ Forward-Backward Linear Predictor

d. Orthogonal Beamforming
- Optimal Eigenvector method
- Johnson Eigenvector method
- Schmidt Eigenvector method

2.1 Estimation of the correlation function.

To begin we must first say some words about the spatial correlation function and its
estimation. According to ithe Wiener-Khinchin theorem the correlation function plays
an important part in spectral analysis. The same observation is also valid in spatial

beamforming.

For a wide sense stationary process the (spatial) correlation function is defined by

S T k. s
Tk —A}l—ronoo 2M— 'ler(Q (yy >)1

where

N1 is the next neighbour difference matrix with dimension (M, M),

0, =p(1-5=1),

n~l — nT
y is the measurement vector of dimension M,

(-++) is the statistical average, and

.o iy =1
pli-j=1)= {0, otherwise.

Unfortunately there is no possibility of getting the true correlation function from real

5
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measurements as this would need infinite spatial and statistical averages. However, we can
provide a more or less reliable estimate of the correlation function. Because this estimate
is always erroneous the power estimate cannot be the true one. It is important to realize
that the power estimate can be only as accurate as the estimate of the correlation function.

The major restriction is that we cannot perform an infinite spatial average (i.e. M — oo).
This restriction leads to two consequences:

— for a spatially wide-sense stationary random process the estimate of the correlation
function will be noisy.

— because the maximal correlation lag is limited by the array aperture we cannot
estimate long range correlation.

If we drop the notation M — oo, the unbiased estimate of the correlation function is given
by
1

mTf(nk(yyW)- Eq.(2)

Fr =

The next problem is to compute the statistical average. In the case of beamforming it is
convenient to replace the statistical average by a time average. This is justified when the
sound field is weakly stationary, not only in space, but also in time. Then we can write

Further statistical averaging can be performed by replacing the data vector in Eq.(2) by a
forward-backward data matrix

1

TV

Ym Ym, y;

151 Y1, y;\l

The effect of this is to replace (yy*) by the average between the usual forward correlation
matrix and the backward correlation matrix that would result by using the “backward”
data vector.

The reason for this procedure is explained by the following observation:

If y» represents a wide sense stationary process, then its direction-transposed conjugated
image will also be wide sense stationary with identical correlation function. Therefore the
forward-backward average increases the estimation accuracy of the correlation function [2].
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2.2 Conventional Beamforming

Conventional beamforming is characterized by the fact that the long range correlation is
ignored completely or, equivalently, it is assumed to be zero, thus

Fe =0, k] > p.

Therefore the power spectrum estimate results in

P
P(f) = Z Fre ZmkS
k

:.—p

There are two main approaches to estimate the correlation function:

— the Blackman-Tukey approach uses the unbiased finite estimate of the correlation
function given in Eq.(2).

Fk = Tk, k| < p.

The finite aperture of the array acts like a rectangular window on the correlation
function. Therefore the true power spectrum can be achieved for short range cor-
related processes (i.e. wide angle noise), but the spectrum is heavily oscillating in
situations where the long range tail of the correlation function is of importance (point
sources).

— The Wiener approach reduces these oscillations and always ensures positive power
estimates by using a biased estimate of the correlation function. This estimate is
given by multiplying the unbiased estimate with a triangular (Bartlett) window:

fie = (1 — —r). k| < p.

Besides these power estimators that are based on the correlation function, we have the
Periodogram Method of Schuster. This method was the first important application of the
Fourier Spectral Theorem. In this method the power spectrum is defined as the squared
value of the Fourier Transform of all the data:

. M,
Pf) 1) yne TP
n- -1

7
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It is easy to see that this method transforms to the Wiener approach by taking the expec- )
tation value on both wides

It should be noted that the expression, conventional beamforming, is used in a wider sense
than usual  The normal usage regard< only the pertodogram and the Wiener approach
as conventional beamformers For <vstematic reasons. however, the Blackman-Tukey ap-
proach also will be called conventional because it is the unbiased implementation of the
Wiener-Khinchin theorernn.

2.3 Adaptive Beainforming

One of the early high-resolution methods is the adaptive beamforming technique of Capon
13]. This approach, sometimes called maximum likelihood method, extends the correlation
function in such a way that interferences from all other than the steering directions become
minimum. This is equivalent to minimizing the beamformer output under the constraint
that the response in a given direction is kept constant.

Using the Lagrange multiplier method we can write the unconstrained optimization pro-
cedure as follows:

d°Sd + u(d'w  ¢)- -+ min,

-

where ;:._ :
S~ yy’ is the cross correlation matrix, R

d is the optimal steering vector, oo

s some lLagrange parameter, :_2;

w - w(f) s the look direction, RS

¢ s some constant. '_:f:::

RERe

The resulting power spectrum estimate is given by

A

. s . |

> - 2mik f 7 o

PU) /—‘\ Tke w Sy’
k N

where N > pis the desired aperture of the beamformer.

Pyl

g, |72

There is no known closed-form expression to show how the correlation function fi is esti-
mated within and outside the physical array aperture. However, some indication for this
behaviour may be found in [1'. In this report it is only of importance that the Capon

method modifies the measured part of the correlation function and tries to produce a g
. PR

smooth extrapolation.
o

% Ny
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2.4 Maximum Entropy Beamforming

‘.'; In this paragraph the maximum entropy principle will be discussed as a method yielding
.‘_f'_: high resolution. This principle is well known in physics; for example it is the basis of
bt statistical mechanics.

o

] Before we formulate the maximum entropy principle we have to define entropy:

o)

: .3 Entropy is a measure of the number of distinct possible ways of achieving a

'SQ_, probability distribution.

Do

44

Bl

"Wy . e etk e .

' A high value of entropy therefore means that the probability distribution has an extensive
oy statistical support. The maximum entropy principle, a plausible consequence, says:

L

g . .

ff Inferences based on incomplete information should be drawn from whichever

,,LQ probability distribution has the maximum entropy permitted Ly the available

o information.

s

(NN

: ;’: As an example, if we only have knowledge about second-order statistics the maximum
‘,lv : entropy principle results in the gaussian probability distribution as a basis for inferences.
Wy

AL

The maximum entropy principle produces the following consequence:

3. Unless there are further constraints which are not revealed in the statement
g of the problem, the great majority of the true power spectra will be close to
$ the maximum entropy estimate, because the great majority of all possible

spectra have that property. Conversely if the maximum entropy estimate

o turns out to be significantly in error, then we have statistically significant
e evidence for the existence of a systematic effect separating us from the desired
o solution.
b
K . . . . . .
v The maximum entropy method is reliable in the sense that it cannot show any details for
il which there is no evidence in the data [4].
bt
jz Assuming that we know the expectation value of the correlation function r (our variable
(AN of interest), then the maximum entropy is given by |4, 5]

11”1.’1)( - l()gZ ' AT’\

where
Z is the partition function,

r is the expectation value of the correlation function,

A is a vector of Lagrange parameters.

9




SACLANTCEN SR-104

The Lagrange parameter in this equation can be interpreted simply as the potential of
the corresponding data. Redundant data, which by definition do not contribute to the
entropy, are at zero potential. On the other hand, highly relevant data are those without
which our estimate would be very different; they have a large potential and their absence
would greatly lower the entropy.

This rather abstract treatment of the maximum entropy principle was introduced to show
that. theoretically, this principle is very appealing. However we will see later on that the
optimal behaviour cannot be achieved in reality.

The maximum entropy spectral estimate is given by

N

P(f) }_j er——‘hnkf _

k=-N

1 2

a’w

)

where N s pisthe desired aperture of the beamformer and the vector, a, may be estimated
via the relation

a"Ra - p(a"c - 1) — min

with ,
R X‘ rkﬂk,
ya—
k—-p
¢ (1,0,....007,

i 1s some new Lagrange parameter.

The power spectrum estimate is then given by

PUY ! 5

The maximum entropy spectrum is consistent with the Wiener-Khinchin theorem because
it is only the closed form solution in which the unknown part of the correlation function
is replaced by the estimate based on the maximum entropy signal distribution. The ex-
trapolation of the correlation function is consistent with the data and introduces no new
information into the spectrurm.

However, the power spectrum estimate is optimal in the maximumn entropy sense only
if the correlation matrix is of Toeplitz form. In reality this may only be achieved with
infinite temporal or statistical average. Therefore, any implementation of a maximum

10
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entropy spectrum estimator will be sub-optimal and sometimes have unpredictable results.
To achieve acceptable results Nuttall 2} proposed to use a forward-backward averaged
estimate of the correlation matrix. A further ad hoc assumption is given by the limitation
of the maximum measured correlation length to a value less than the array aperture. This
results in additional statistical stability. This implementation of the maximum entropy
principle is also called the forward-backward linear predictor and will be used in this
report.

2.5 Orthogonal Beamforming
The orthogonal beamforming principle is based on the following observations:

— *he correlation matrix is Hermitian and therefore all its eigenvectors are mutually
orthogonal,

— if the correlation matrix is of rank M and the signal alone correlation matrix is of
rank K < M, then M - K noise (signal free) eigenvalues exist;

— if the noise is white and the correlation matrix exactly known, then the noise eigen-
vectors are orthogonal to the signal bearing vectors.

- if the correlation matrix is known but the noise is not white, then there is orthogo-
nality between the noise eigenvectors and the signal bearing vectors obtained after
the appropriate tiansformation (given by the spatial pre-whitening of the noise) is
applied.

The fundamental eigenvector method is due to Pisarenko (e.g.[6]) and may be described
as a minimum interference method, where the solution vector d is found via the constant
norm optimization procedure,

d"Rd + ud"d -+ min, S
‘\} W
AN
. .
) . v,
with the solution T
Mo LAY
[ min h
- . | I
as the minimum eigenvalue of R, and m
L]
»
N
d vy Y
as the eigenvector associated with Ay, (also called minimum eigenvector).
>
‘To have a beamformer output a pseudo-power estimate may be defined using a formula d
similar to the maximum entropy spectrum estimate:
11
= 3
¢ .’d

s
»
‘a

N




".!1'&‘4

SACLANTCEN SR-104

miuw

where v w(f) is the steering vector.

From this formula we see that any steering vector parallel to a source eigenvector will
result in a sharp peak of P(f).

However, the minimum eigenvector beamformer is not recommended for the following
reasons:

— In real applications the cross-correlation matrix will be estimated via a finite av-
erage. Consequently all eigenvalues and in particular the minimum eigenvalue are
estimated only within finite error bounds. This uncertainty may be negligible for
large eigenvalues but plays an important role for the minimum eigenvalue. As the
minimum eigenvalue is relatively uncertain, the corresponding eigenvector is nearly
unpredictable.

— In all cases where the number of sources K is significantly less than the number
of hydrophones M , or more precisely, if K < M — 1, then not only the signal
eigenvectors but also M — 1 - K noise eigenvectors will be orthogonal to the minimum
eigenvector. This means that not only possible source directions may peak but also
the residual “noise directions”.

To overcome these problems one must first estimate the number of noise eigenvalues;
secondly, one may try to combine the different noise eigenvalues and eigenvectors in some
way to produce satisfactory results. The first part, namely the estimation of the number
of noise eigenvalues, is a difficult decision problem. Here, for this report, we evade the
problem by assuming that the number of noise eigenvectors is known a priori. Concerning
the combination of the different noise eigenvalues and eigenvectors, there are two major
approaches which are outlined next.

Recently Kumaresan and Tufts [7] proposed a simple concept for an optimal orthogonal
beamformer. They replaced the minimum eigenvector by an optimal linear combination

of all noise eigenvectors according to the following optimization:

Model

M-K
d= Z b,-v,
1=1

R/

Y
S

M

v; is the 1-the noise eigenvector

\'

b is a constant to be estimated

- '..1'

12
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Optimality criterion

|d|* — min

Constraint
dc=1, ¢ is a constant

Solution

vic
b, = - }
t 2

M-K, .
Zi':l lv;e

A second approach combines the different power estimates of all possible noise eigenvector

solutions
it
1 Mi:K b ,1?1'0.'2‘
- = P N
5y = B
where b; is a constant to be estimated, and
R hi
Pi=——,
T v w)?

where
A; is the ¢ — th noise eigenvalue,

v; is the corresponding eigenvector, and

w = w(f) is the steering vector.

Parameter b, has two known implementations:

b = 1, Johnson and DeGraaf [8];
*7 1 Ay, MUSIC of Schmidt [9]

-

13
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3 THEORETICAL RESULTS

3.1 Summary of the beamforming techniques

Before the analysis of the different beamformers is presented a summary of the “pseudo”
power estimates is given. The expressions correspond also to the formulas programmed
into the computer.

a) Notation

Correlation Matrix

1~ . ) .
== (yty: + 9ey¢ ), = (ym, ..., u1)
2T
t=1

S

S is the spatial averaged correlation matrix.

Correlation Function

fr = (M — [k|) "' Tr(SQ%)

Eigenvector Equation

Svy = Ay

where
A, is the i-th eigenvalue of S

v; is the eigenvector to A,

Steering vector

welf) = e, [ = cos(w)

where
d is the array spacing,

A is the signal wave length,

w is the steering angle.

b) Conventional Beamforming

P(f) - 2Re(fw(f))/M, Fo = ro/2

Blackman-Tukey

Fe - ren(lk] < M)

14
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Wiener
o= rell — B)p(1k] < M)
c) Adaptive Beamforming
- 1
P(f) wS-lw
d) Maximum Entropy Beamforming
. 2
) = | St
cTS-1w

e) Orthogonal Beamforming

Optimal Eigenvector Method

M-K |2
CT(Z:‘:: viv;)e

cT(\_‘M"Kv,'v‘»‘)w

Lwt=1

P(f) =

Harmonic Averaging Technique

1 { 1/M, Johnson

P(f)zw'zf‘i;" oy’ b =11,  MUSIC of Schmidt

3.2 Assumptions

The results presented in this chapter are based on the exact knowledge of the cross corre-
lation function:

K
re = oiplk = 0) + LO?S,
1- 1

where )
m 18 the noise spectral power;
2
)

o
o! is the signal spectral power;
S, is the signal bearing vector;

K is the number of signals.

15
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The beamformer outputs, derived by using the different techniques, are presented in Fig-
ures 2 to 8 The results are based on the following parameter values:

Number of hydrophones: M 32
Order of linear predictor: p =24
Number of signals: K =2
Noise power: o -0dB
Signal to noise ratios: oi/ol - 0dB
o%/o? = -10dB
Signal bearings: Sy =175/128 = 65.56°

S; =80/128 = 77.36°

3.3 Conventional Beamforming

Outputs for the conventional beamformer are presented in Figures 2 and 3.

The Blackman-Tukey method as shown in Fig. 2 is characterized by an oscillating power
spectrum and relatively high sidelobe levels that tend to disguise the second source (which
has a signal-to-noise ratio of —10 dB). The Wiener approach shows positive power estimates
as well as lower sidelobe levels. Therefure the second, weaker source is clearly visible.
However, the mainlobes are enlarged compared to those of the Blackman-Tukey method.

3.4 Adaptive Beamforming

Figure 4 presents a typical output of the Capon beamformer. The two sources can be
seen very clearly. No significant sidelobes are present in the figure. The signal-to-noise
ratio in source direction corresponds to the value measured with the conventional Wiener
beamformer. As a consequence the Capon beamformer may be used as a power estimator.

3.5 Maximum Entropy Beamforming

Figure 5 gives the output of the Maximum Entropy Method. Two interesting features
may be observed; first, the output signal-to-noise ratio is apparently twice those of the
previously presented methods. Second, there are sidelobes in the form of oscillations. This
is a strong indication that the extrapolation of the correlation function has not been made
in an analytic way, thus verifying Lunde and Zimmer [1].

3.6 Orthogonal Beamforming

The beamformer outputs of the eigenvector techniques are given in Figures 6, 7 and 8. In
these figures we see two peaks of equal level independent of the input signal-to-noise ratio.
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o These features indicate clearly that orthogonal beamformers are direction finders and not
'y power estimators. Further, the two techniques, which are based on harmonic averaging,
O show a dynamic range of about 37 dB; this range is probably due to computer limitations.
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4 DETECTION PERFORMANCE

This section presents the analysis of the detection performance of the different beamforming
methods described previously.

4.1 Preliminaries

A clear indication of detection performance was derived from a series of simulations. The
scenario consisted of a single source of white noise. A hvdrophone cross-correlation matrix
was estimated by means of NAV - 10 averages. After beamforming, the peak level of
the local maximum nearest to the direction of interest was measured (Figure 9). For each
given signal-to-noise ratio this experiment was repeated 1000 times to provide sufficient
data for statistical analysis. To reduce the time requirements of the simulations all seven
methods were applied to the same correlation matrix.
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Fig.9: Definition of a local maximum.
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- Global noise distribution: distribution of the peak level of the global maximum.

Of these possibilities only the local noise distribution is consistent with the assumption
that the source direction is determined by estimating the local maximum nearest to the
direction of interest. Therelore this definition has been used throughout this report.

1.2 Detection probability

Appendix B provides a summary of the simulations that gave the detection performance.
The cumulative probability of the peak-level estimation is plotted against its estimated
level. With gaussian scaling of the probability axis (ordinate) and the peak level (abscissa)
in dB. a straight line represents a log-normal distribution of the peak-level estimates.

From the cumulative distribution of the peak-level estimation we can easily deduce the
detection probability (Figure 10). First we plot the noise distribution (no signal) so that
the false alarm probability can be found directly from the ordinate. For every false alarm
probability the abscissa gives the threshold to use to get the detection probability from
the signal curves. No assumptions are made about the statistics, e.g. the peak levels of
the local maxima may or may not have a normal or log-normal distribution. The selection
of log-normal scaling was only made for plotting convenience.

Figure 10 provides detection probability curves for each of the seven beamforming tech-
niques discussed in this report. The assumed false alarm probability Py, was 1.35 x 1073,
The Wiener Conventional Beamformer and Johnson Eigenvector methods provided the
highest detection probabilities; the Maximum Entropy and Optimal Eigenvector methods
provided the lowest.

From theoretical analysis one could assume that all eigenvector techniques are poor as
detectors because they are direction finders, not power estimators. Therefore the meth-
ods of Johnson and Schmidt performed surprisingly well, probably because the theory
of orthogonal beamformers assumes that the signal-bearing vectors are parallel to the
signal eigenvectors and orthogonal to the noise eigenvectors. This theory requires the
cross-correlation matrix to be estimated by an infinite averag:; this is not done in reality.
As a consequence the orthogonality between signal-bearing vectors and noise-eigenvectors
breaks down. Apparently the harmonic averaging of the Johnson and Schmidt techniques
uses this effect to generate and stabilize an angle between the signal-bearing vector and the
noise subspace that depends on the input signal-to-noise ratio of the sound source. The
Optimal Eigenvector technique cannot show such a feature because of its linear averaging.

4.3 Accuracy of bearing estimation

Figure 11 is a plot of the Standard Deviation of the bearing estimation as a function
of input signal-to-noise ratio for all seven techniques. The Standard eviation has been
estimated by the relation:
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Fig. 10: Probability of detection as a function of input signal-to-noise ratio.

W: Wiener Conventional Beamformer; B: Blackman-Tukey Conventional Beamformer; C:
Capon Adaptive Beamformer; M: Maximum Entropy Method(Forward- Backward Linear
Predictor); O: Optimal Eigenvector Method: J: Johnson Eigenvector Method; S: Schmidt
Eigenvector Method
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Fig. 11: Standard deviation of bearing estimation as a function of input signal-to-noise
ratio.

W: Wiener Conventional Beamformer: B: Blackiman-Tukey Conventional Beamformer; C:
Capon Adaptive Beamformer: M: Maxtmum Entropy Method (Forward- Backward Linear
Predictor): 7). Optimal Eigenvector Method, J: Johnson Eigenvector Method; S: Schmidt
Eigenvector Method
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where @ i(r) is the cutnulative distribution of the bearing estimation.,
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This formula assumes a gaussian distribution for the bearing estimates. This is a good
approximation for signal-to-noise ratios that are not too low. The actual values of the
standard deviation have been normalized with respect to the reciprocal aperture and are
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The results indicate that the Wiener technique with the lowest standard deviation of all

seven techniques, performs best. The Optimal Figenvector and the Maximum Entropy e
techniques have the worst performance (as they did for the detection probability). :"::-:
e
At tirst glance it seems surprising that the high-resolution methods perform so badly. But a ::::';:
closer look at these methods provides a simple explanation related to the fact that the high- O
resolution methods extrapolate the correlation function beyond the array aperture. The ]
sharper the peak of a power spectrum the longer the correlation function must be. If the ‘;:'-f::
correlation function is not known exactly within the array aperture, then the extrapolation .j-'.j
may be unstable and in most cases will amplify the influence of the noise on the estimation -’-\-
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o 5 RESOLUTION PERFORMANCE
: 5.1 Scenario
e
'. To study the resolution capabilities of the different beamformers the following simulations
“rd were repeated 1000 times: two closely spaced point sources in white noise are assumed to
have equal signal-to-noise ratio of 0 dB and given varying separations. The directions of
“::' interest are given by the simulated source directions. The datum is ignored if a single local
; maxi- mum is nearest to both directions of interest and therefore no resolution is observed.
;:::" The sources are considered as being resolved when there are two local maxima.
K
K Three quantities are of interest:
W
é‘:::: — the bias of the bearing estimation,
(A . o
.::::. — th deviation of the bearing estimation,
A -— the probability of resolution.
202
:' : 5.2 Resolution probability
R
b Appendix B presents the statistics of the two source-bearing estimation experiments. The
W probability axis (ordinate) is again scaled such that a normal distribution results in a
, 7 straight line. The abscissa measures the separation in units of 1/aperture. The nominal
,‘;; source separation at which the simulation has been carried out is the curve parameter.
";" Figure 12 presents the main results of the resolution experiments. Here the probability
M that two sources are resolved is plotted against the separation of these two sources. The
sy probability is given in gaussian scaling and the source separation is measured in beam
i number units (of 1/aperture).
o
et As expected, the Wiener conventional beamformer performed poorest. On the other hand
I the high-resolution techniques were able to resolve the two sources even when they had a
:%‘ small separation.

K Xp

Except for the Optimal Eigenvector technique, all the high-resolution methods have a
rather similar performance. We can therefore deduce that at least for simulated data the
effective beamformer aperture of these high-resolution techniques is of the same order of
magnitude for all of them.
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Fig. 12: Probability of resolution as a function of two source separation (measured in units
of 1/aperture)

W: Wiener Conventional Beamformer; B: Blackman-Tukey Conventional Beamformer; C:
Capon Adaptive Beamformer; M: Maximum Entropy Method (Forward- Backward Linear
Predictor); O: Optimal Eigenvector Method; J: Johnson Eigenvector Method; S: Schmidt
Eigenvector Method
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6 SUMMARY

This report presents a statistical analysis of seven high-resolution beamforming tech-
niques. A comparison has been made between the conventional techniques on the one
hand (Wiener,B-T) and conceptionally different high-resolution methods on the other
hand. These high-resolution techniques have been selected from three groups: Adap-
tive (Capon). Maximum Entropy (Max-Ent) and Orthogonal (Opt-Eig.,Johnson,Schmidt)
Beamformers.

Table 1 compares the statistical performance of the seven techniques with respect to de-
tection, accuracy and resolution.

TABLE 1
Performance Statistics

Method Detection Accuracy Resolution

Wiener 1.0 1.0 1.0
B-T 0.9 0.8 1.3
Capon 0.9 0.7 1.8
Max=-Ent 0.7 0.6 2.0
Opt-Eig 0.4 0.4 3.0
Johnson 1.0 0.8 2.1
Schmidt 0.9 1.0 2.1

This table is based on the following assumptions:

— the detection and resolution performance measures can be taken as corresponding to
the 50% point in the probability curves. The detection performance is measured in
dB and the resolution performance is measured in multiple apertures.

— the accuracy measure can be represented by the standard deviation at an input signal

-to-noise ratio of —10 dB (equivalent to a conventional output signal-to-noise ratio
of 5 dB).

— the actual values can be related to the conventional Wiener beamformer to yield a
quantitative comparison of the different techniques.

From Table 1 we can conclude that improved resolution performance of the high-resolution
methods is gained at the the cost of a more or less significant decrease in accuracy and
detection performance. In particular the high-resolution Maximum Entropy and Optimal
Eigenvector techniques show this behaviour clearly. These techniques may be understood
as vector techniques in which the power estimate is based on the computation of a single
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vector. The other high-resolution techniques (Capon. Johnson, Schmidt) may be called
matrix techniques because they nse the hydrophone cross-correlation matrix (or a part of
it) to get the power estimate These three matrix techniques show a detection performance
only slightly decreased with respect to the relerence technique (Wiener). This is surprising,
at least for the orthogonal beamtormers of Johnson and Schmidt; these two methods
are designed to be direction finders, not power estimators. For perfectly known cross-
correlation matrices they would indicate the source direction with infinitely large spikes.
However, we have only a non-perfect estimate ol the correlation matrix. vielding statistical
fluctuations of the peaks of the estimator. Therefore a paradox arises. namely that the
poor statistics based on finite averaging of the cross-correlation matrix enable us to use
the orthogonal beamformers as detectors.

Another important conclusion from Table 1 relates to the accuiacy values. None of the
techniques is more accurate than the conventional Wiener technique. The consequence
is clear: sharp peaks in the beamformer output do not indicate more accurate bearing
estimations: they are only necessary to achieve higher resolutions. Again the two vector
methods (Max-Ent; Opt-Eig) show the worst performance while the difference between the
matrix-based orthogonal beamformers (Johnson, Schmidt) is less significant.

Concerning the resolution performance the three matrix techniques (Capon, Johnson,
Schimidt), these do not perform as well as the vector techniques. However, all high-
resolution techniques show an increased effective aperture that is at least 1.8 times greater
than the conventional (real) aperture.

On this basis one can say that the high-resolution methods showed increased resolution
performance; however, in cases where there is no resolution problem they did not provide
more accurate bearing estimates than the conventional methods. Because any increased
resolution is based on the extrapolation of the hydrophone cross-correlation function, the
influence of the noise on such an extrapolation must be controlled very carefully.
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APPENDIX A

Further comments on the beamformer output

The definition of beamformer output as used throughout this report is not free of problems.
In particular the construction of high-resolution beamformers would appear to emphasize
the direction-finding behaviour rather than the power estimation performance. Suppose we
drop the requirement that the high-resolution beamformer should be a power estimator.
What can we do to get not only the source bearing but also the power estimates? We could
take the estimated source directions and insert them into an optimal power estimation
scheme such as the maximum likelihood parameter estimation technique. However, this
approach only solves the problem of the decreased detection performance of the high-
resolution methods. To improve the accuracy of the bearing estimation we have to select
a nonlinear maximum likelthood approach which now has the bearing of the different
sources as additional unknown parameters. As a consequence the computational workload
will increase enormously. In this case the high-resolution direction finder would act as a
preprocessor for a multivariant parameter estimation technique [10]. It is not yet clear
under which conditions the trade-off between optimal performance and computational
burden may favour this parameter estimation approach to high-resolution beamforming.
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L, Summary of the Single-Source simulations

A

In this appendix the results of the single-source simulations for the seven different beam-
forming techniques are summarized by plots of cumulative distributions. In all of the plots
the measured peak level is plotted along the abscissa in dB and the cumulative probability
is plotted along the ordinate according to a gaussian scaling. The gaussian error function
has been approximated by

o(z) = (1+ \//lﬁjré)—(p(*sz/w)/Z

where the plus sign is selected for r > 0 and the minus sign for £ < 0. The error made by
this approximation is given in the following figure.

0.006 -

0.002 -

T ] T L T 1 v 1

0.2 1.2 2.0

Error due to approximation of the error function

For each plot (Figs. Bl to B7) the signal curves rise with increasing peak-level and give
the probability of the peak level being less than the value at the abscissa. The noise curve
on the other hand is decreasing with increasing abscissa and indicates the probability of
the peak level being greater than the value of the abscissa. This value also corresponds to
the false alarm probability.

Figures B4 (Maximum Entropy) and B5 (Optimum Eigenvector) are incomplete because
there was insufficient data. These techniques. even on a logarithinic scale, have such a wide
distribution that 1000 repetitions are not sufficient to produce adequate statistical data.
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st The Johnson Eigenvector method (Fig. B6) yet again shows well-behaved, nearly log-
normal distributions.

20 The Schmidt Eigenvector method (Fig. B7) provides an unexpected feature. The statis-

\ tics strongly indicate that the distributions have a lower cut-off at 0 d13. Of 1000 peaks,

b, none was measured below this value. The construction of this algorithm may explain this
a phenomenon; the true noise eigenvalues are replaced by unity (i.e., 0 dB).

show that basing the performance analysis only on first and second order statistics rather

N
\(53 The Schmidt Eigenvector, the Maximmum Entropy and the Optimal Eigenvector methods
; than on the complete probability distribution can be misleading.
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Fig. B1: Blackman-Tukey Conventional Beamformer

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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Fig. B2: Wiener Conventional Beamformer

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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Fig. BS: Capon Adaptive Beamformer

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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Fig. B4: Maximum Entropy Method

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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Fig. BS: Optimal Eigenvector Method

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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Fig. B6: Johnson Eigenvector Method

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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Fig. B7: Schmidt Eigenvector Method

Probability of the peak-level of a single source. Parameter is input signal-to-noise ratio.
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APPENDIX C

Summary of the two-source simulations

This appendix contains the results of the two-source simnulations. The approach that was
used to plot the bearing estimation is illustrated in the following figure:

s) POWER BRARING PLOT

) DISTRIBUTION OF

i i BRARING SSTIMATION
0.008 €) CUMULATIVE DISTRIBUTION
OF BEARING EETIMATION
X
0.001 {/
‘
e

a. Every experiment in which the two sources were resolved has been used to
estimate the bearings of the sources.

b. The ensemble of all the successful experiments yielded the distribution of
bearing estimations.

c. The distributions have beev plotted cumulatively so that one can read directly
the probability of the individual bearing estimate being closer to the common
bearing centre. Ignoring the failed experiments results in a plateau between
the two cumulative distributions. The ordinate value at which the plateau s
found is nothing more than the probability that the resolution experiment wisll

Jail.

Concept of data presentation

Figures C1 to C7 present the cumulative distributions for all seven beamformers. The
probability axis (ordinate) is again scaled such that normal distributions result in a straight
line. The abscissa measures the separation in beam numbers (cosine scale). Again 1 unit
corresponds to the reciprocal aperture and the source separation is given as parameter.
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As expected, the bearing estimates are normally distributed only for wide separations.
As the two sources close, the gaussian behaviour of the distributicn is lost, resulting in
long tails towards the common centre bearing, and the two sources start to interact. This
interaction results in resolution failure when the sources are very close.

The non-gaussian behaviour at close separations shows also that simple second order statis-
tics cannot properly describe the resolution performance. However the figures may be used
to check the bias by comparing the simulated separation with the distance of the medians;
the sensitivity of the bearing estimation inay be found by taking the derivative of the
cumnulative distribution; and the resolution probability can be read directly.
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Probability of two source bearing estimation; the parameter is source separation measured
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