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INTRODUCTORY REMARKS
by

A.D.Young
Dept. of Aero. Engineering
Queen Mary College
Mile End Rd
London E1 4NS
UK

In recent years there have been growing interest and activity in 2 number of countries in the application of methods
involving vortex dynamics to appropriate problems in fluid mechanics. In such methods the flow is modelled by vortex
elements ranging from simple singularities with fields determined by the Biot-Savart law 1o more complex, if more realistic,
vortical forms involving finite cores, feeding vortex sheets and sometimes with viscosity effects modelled by diffusion
simulated by a random walk method.

These methods are particularly suited to time-varying problems involving salient edges with separated flows and welt
defined vortical structures. They generally use a Lagrangian approach and their applications include the flow past bluff
bodies, manoeuvring wings, wing-body arrangements, missiles, strakes, helicopter rotors, acro-acoustics, shear layers, jets
and wakes. Non-aeronautical applications of interest are the rolling of boats, marine propellers, the dynamics of off-shose
rigs and pollution concentrations in vortical flows.

The Fluid Dynamics Panel of AGARD decided that it was timely to hold a2 Round Table Discussion (RTD) to survey
these developments. The main object was to provide the Panel with the information needed to decide whether the subject
might be suitable for a Symposium or a Specialists’ Meeting in the near future. It was thought opportune to hold the Round
Table Discussion on 10 April 1986 at Aix-en-Provence, France, immediately following a FDP Symposium there on
‘Applications of Computational Fluid Dynamics in Aeronautics’. Attendees at the Symposium were encouraged to
participate in the Round Table Discussion and many of them did so.

This Report presents extended versions of the invited talks given at the RTD. Each speaker was asked to review the
relevant activities in the field of vortex dynamics in his country. Presentations were made by:

Y Morchoisne (France)
H.Oertel (Germany)
A.G.Panaras (Greece)
M.Germano (ltaly)
H.W.Hoeymakers (Netherlands)
D.J.Mault (UK)

A Leonard (USA)

It was felt that these presentations were of sufficient general interest to justify their collation and publication in this
Report. The reader will find in them useful if condensed discussions of the basic theoretical concepts, illuminating
assessments of the pros and cons of the models used, some interesting current applications, problem areas requiring further
work and promising future developments.

Like Euler methods, these methods are based on inviscid flow but they can be used in viscous-inviscid coupling
schemes in combination with boundary layer calculations, or as noted above the effects of viscosity can be simulated by a
random marching process. The validity of the Iatter process, particularly for turbulent flows is a matter for future work. The
methods have the additional limitation of being confined to incompressibie flow, but hope is offered that ways for allowing
for compressibility will be developed.

The models used of the vortex core and of vortex sheets as well as of the merging of vortex filaments are not yet fully
satisfactory and further work is needed.

However, it will be evident from these presentations that for many important problems involving large scale vortical
flows the use of vortex dynamics offers special advantages, not least in the conceptual simplicity and graphic help that it gives
in our understanding of the structure and physics of such flows.

.
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CALCUL D’ECOULEMENTS INSTATIONNAIRES
PAR LA METHODE DES TOURBILLONS PONCTUELS

par

Y Morchoisne
ONERA
BP.72
92322 Chitillon
France

1 - INTRODUCTION

Le calcul d'un Ecoulement instationnaire de fluide non-visqueux et incompressible autour de

configurations de type aile, rotor ou fuselage peut 8tre effectué grice & diverses méthodes de
singularités.

Trois critdres de choix peuvent 8tre avancés, ils concernent :

= la qualité et la eimplicité dens la prise en compte des conditions de glissement sur les corps
considérés par 1'emplof de singularités surfaciques (sources, tourbillons, doublets....),

= 1la facilité de traitement de la condition d'émission (généralisation d'une condition de
Rutta-Joukowski) au voisinage des bords de fuite,

la possibilité de calculer des évolutions complexes des zones rotationnelles ou nappes issues des

bords de fuite & 1'aide d'une &quation de transport du vecteur tourbillon et d'une régularisation des
champs de vitesse et de déformation discrécisés.

En proposant das 1977 (réf. [ 7] ) une discrétisation des nappes 3 1'aide de tourbillons ponctuels
C.REHBACH s permis 1le développement et la wuice en oeuvre 3 1'ONERA de afthodes répondant aux 3
critdres ci-dessus. Les caractéristiques de ces mEéthodes sont les suivantes (fig.l) :

~- les singularités surfaciques principales sont de type "doublet",

~ 1'émission tourbillonnaire est obtenue 3 1'side d'une discrétisation de 1'équation de convection des
intensités des doublets,

- la représentation psr tourbilloms ponctuels des nappes permet 1la prise en compte des divers
déchirements et interactions fortes (non-visqueuses) et 1'spproche Lagrangienne évite en grande partie
1s diffusion purement numérique qui résulterait de 1'emploi d'un schéma Eulérien.

L'objet du présent article est de décrire bridvement ces méthodes doublet-tourbillon pouctuel et de
présenter quelques unes des applications déjd effectubes..

2 ~ EQUATIONS DU PROBLEME

Le calcul de 1'&coulement est ramené, & chaque instant, 3 la détermination de f solution de {voir
fig.2) :

A{(‘)SO ¥£€&°-I.-F’=-ﬂ.=n‘ Un’
svec .=

fn,, N, A, ouveres de R

Ls fonction f ast le potentiel 4'un chemp de vitesse totale ou de perturbation )L défind

quelque soit
jen:

‘ ¥xes . 1(:1 ( 2A¥Y=0)

‘ est C"  en tout point de &
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mafs f et v f peuvent 8tre discontinus le long de l".

L'ouvert Stg est la zone rotationnelle. La frontidre (o de l'ouvert SLg représente la frontidre
externe du domaine de calcul. Ty surface de discontinuité correspond aux corps et aux nappes
présents dans 1'écoulement et est la frontidre de 1'ouvert £y .

Le potentiel f est donc prolongé dans les zones "internes" comprises dans n,.

En utilisant les identités de Green, il est facile de démontrer que (les intégrales étant prises su
sens de Lebesgue) :

¥ xe s, v,
W g (%)= H[‘{A*v L =041 2 (L)) 24
n

) ()
-.Sr'ur'{-é-v-;‘{ ""\v(4 \} A4
[ R

: ?-:&_i .Y-er\b ow Pc Ur‘k
-“L:‘ﬁ-‘
[6]{!)': {?!)- {71/) yel,
'C.—(-v-)'--'-g VGP 'é(i)
e e,
+ .
Z exng

La dérivée normale sur la frontidre I' d'un ouvert SL est notée :
) I =n.Y y
{/‘4\ ye r - {(— er )

pour une fonction C'sur , 00 P est la normale unitaire extérieure 3 5ne.

Pour une fonction C* ( Y € r‘ ) le saut de la dérivée normale est fourni par (g C' r'-r .!¢ I'");

[¢4n,]= 2 ((2) - (24))

Lorsque K€ Py 1a formule (1) devient :
wn (g )= { ] 4 j{ @)
Fo foula
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Lorsque 1la frontidre 'y tend vers 1'infini, 1'intégrale .[ tend vers - % U {-[d) ou. 8.
est une fonction harmnique représentant le comportement 3 l'infinl de ‘

Pour 5# Pe (xe S, v S ) (1) devient :

wr({(;)-g.,(m)=L{ ] 4, —Lt{ } &, (3)

L'intégrale f[‘ représente 1l'influence des discontinuités de f et de sa dérivée normale le long
de ", « L'intégrale j"' représente 1'influence de la zone rotationnelle.

Deux discrétisations sont a priori pcssibles.
Si la zone rotationnelle est considérée comme une sfmple surface de discontinuité pour f l'ouvert St @

est alors un ensemble vide et 1la surface de discontinuité est formée de i'union des surfaces des
obstacles et des nappes :

r = r‘p‘ (9] l";,_

e Corps Nappes

Sur les obstacles [el et t“/\-n] peuvent 8&tre non nuls, sur les nappes seul ["1 est
différent de zéro (discontinuité de la composante tangentielle de la vitesse uniquement).

La relation (3) devient donc :

‘yrr(((x) {(x)) J{[ ‘1{—[{]%({—)) da,
(%)
f[{] - (&) oy

Fo.

Dans le cas d'une zone rotationnelle considérée comme porteuse d'un tourbillon volumique, le potentlel‘
est défini dans le complémentaire de .Q.‘u f“ (fig.3).
)

L'intégrale surfacique

8) : fsnﬁ fa

peut-8tre transformée en une intégrale volumique {voir réf.

uiae [ {[312-[An ()4 [ A wdy
Te Tta
avec Z .g y_ vitesse totale ou de perturbstion
=Vay

w
A =(ere)/{t(rra-)}

£ vecteur unitaire quelconque

La relation (3) devient alors :

VX e stqguly

#1 (- 6w ) cxy =f,’{“‘fj} *L-ﬁ'“—’ wy &)

L}

- v a

I

..
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Divers potentiels (et donc champs de vitesse associés) peuvent 8tre considérés.
Le potentiel total ¢ est en effet la somme :
= d'un potentiel ¢- (comportement 3 1'infini),
" " " "
- d'un potentiel ¢7 (11é 3 1a zone rotationnelle "&paisse .ﬂ.‘ ou 2 la nappe "mince PD; ),

- d'un potentiel dit de perturbation L ¢ (dl aux discontinuités sur les surfaces des corps rD. ).

¥ Xxe K, ?(!)‘ ¢ao(5-)“'¢7(5)+"€(5)
Une preamidre formulation consiste 3 choisir :

f(x) = () Yxeste
()= o V¥ Xes,

"

Dans le cas d'un obstacle immobile (cas seul considéré dans le paragraphe 2) f vérifie sur l"o :
e \

[ 3¢/‘bm] = 0
Lplzo

et

Remarque :

Dans le cas d'un obstacle en mouvement la condition de glissement fournirait :

[~°¢/bm] - (3¢/bw \——(3¢/DV\.)* = "!p‘ "

od ¥p représente la vitesse de 1’'obstacle au point considéré.

Pour une nappe aince (4) fournit :

yxely - ~N(¢—¢~)(!):— [é];‘_.w_;({_) d4y (‘)

ro,v i,
Pour une zone A tourbillon volumique (5) nous donne { ‘Vd #- F°| v -n-a_) S
4Nfe- - 1A Vds+f A-wy dv (#)
e e

R

corps zone rotationnelle

Une seconde formulation consiste & choisir :

()= ¢(x) Vrem
{(x)= o ¥x € a,y



Dans le cas d'un obstacle immobile 1la condition de glissement s'écrit sur les corps :
[~ ‘(/bm]: ("f/am ) - (3"(/3»\\*.:-%_‘%*: ne(Ye+lr)

\..)-o= Y¢oo
avec 2T:1¢T

Comme lzi_n'z.’. nf(z)g [ nous avons donc ‘f.. (Xx)=0.

Dans le cas d'une zone rotationnelle (volumique) ou d'une nappe (mince)
¥ est donné par ( WX € St):

()= [{[2444] & -14] 2/} do (8)

p,
< [“f/%m]('; my Qo+ Yny) (¥re m,)
)

représente une intensité donnée de sources surfaciques sur r‘p‘ (surface des corps).

¥xegrn, - 27(5\=-f-ﬁ2§f[¢]§7;("/«)dd, (3)

o [ est sur [ 1'intens{té des doublets surfaciques.
Dy

* Pour une zone rotatfonnelle :

Yeda, o Or(x)= Lo [(£5F) 4w (10)

ot W= YA \_J est le rotationnel de la vitesse totale \_)_ .

La formulation retenue est celle od 1la zone rotationnelle est congidérée comme é&paisse et,
principalement pour des questions de précision, le prolongement utilisé sera celui consistant a
prolonger le potentiel de perturbation par zéro 3 1'intérieur des obstacles.

poz, W X f M,

¢ ((.4)=f {[%{-,]-;7 -l 2 ({-)} dg, (11)

Py,

fvee [2‘{/34\,]

l&vo(g‘w*gT) V—Yef‘m
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Vo= ¥ o

e[
wyy= Yal(y) ¥resn,
w(y)= © VY £ st

Pour X € PD. , un passage a4 la limite fournit :

el = [fl2e] 4 -fA 2 (0} 4o o)
Fp,

["OYA‘] représente l'intensité des sources & et [Y] 1'intensité des dcublets A axe normal rq.
répartis sur T, surface des corps.

b
Remarque : Cas particulier des corps minces (réf. 2 , 3 )

La formulation-potentiel est alors remplacée par une formulation-vitesse obtenue en calculant le
gradient en de la relation (7) :

V’5_¢Slﬂu\"°‘

Soit, apréds multiplication scalaire par 'Y_\‘ et passage A la limite lorsque X tend vers r‘n
]

-"W'!.\x")_w(s)rt\x'YxJ[ﬂ;-‘-(?r)“r* £L=dv, f3)
Py

=
l",\ (Y

L'intégrale ‘/".' correspond aux doublets surfaciques répartis sur PD et 1'1ntégrale/_n aux
tourbillions volumiques répartis dans R ' R

2.1 -~ Condition de Kutta-Joukowski

Pour un fluide incompressible non=vi.queux et dans le cas d'6coulements irrotationnels sauf sur des
nappes ouvertes, le deuxi2me théor2me d- Rernoulli s'écrit :

A+ Vi + P/l’ =C (14)

avec « pression
= masse volumique

= module de 1a vitesse ¢ |g|

~ C ™~ v

= constante indépendante de X

La relation (14) appliquée au voisinage d'un bord de fuite fournit :

3[“]/\[’ +[U‘]A +[P]/f =0




oit (fa ) ta]:ara‘ représente le saut de 3 4 travers la nappe
[4 a;valeur intrados, 3‘ valeur extrados, figure &).

L'&quilibre des pressions au bord de fuite ( Pg = P, ) est traduit par la relation :
T L 8
2Ll + (VWU )a=0
ot
solt, en posant C’]: r. (densité surfacique de doublets) :

2o +(u§‘-u:)/z;o (s)

soit, sous une forme &quivalente :

AIpSot + Uw VY=o (r16)

avec Um:(u'\""\')"’.)/"

In

Le wmembre de gauche de la relation (16) est, en fait, la dérivée particulaire de '4_ H l,._)“ e.t en
effet la vitesse moyenne le long de la nappe-

n
~—
IC
i
IC
1
IC
P

Une troisidme forme approch&e peut &tre déduite du non contournement du bord de fuite par le champ
des vitesses : cette condition impose 3 la nappe d'8tre issue du bord de fuite et d'avoir une
normale de direction donnée (M) .

La condition de Kutta-Joukowski peut donc 8tre traduites par les trois relations suivantes :

S+ (VI-Ve) fo=0 U?)
Pm/pe =0 (18)

- O =0 (19)

Dans les méthodes de tourbillons ponctuels instationnaires développées 3 1'ONERA la relation (18) dont
la discrétisation semble la plus aisée est généralement utilisée, la relation (19) ne servant gue pour
des calculs d'écoulements en stationnaire ou pseudo-instationnaire.

2.2 = Trangport du tourbillon

Les équations d'Euler fournissent, pour cet écoulement de fluide incompressible et non-visqueux, une
équation de transport du vecteur tourbillon :

[Py) = 20. a)

?__/at+.Y.'\(.°2'~_V_)—o (

Cette équation adwet deux formes équivalentes obtenues en utilisant les relatioms :
In{waV)=(L- I ~-(w.2)

w=-VaY

et
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D'od la relation (20.b) :

w =(w-ZL)v 0.4
Pus=(w- L)L (20.4)
od Dw/bc représente la dérivée particulaire de W

Posons :

Siy = (“Ui/bxé*'aué'/zx; ) /o

Le report dans (20.b) nous donne :

w./ = e dVis = w: S
b ‘/Dt o /3706 0" 'd
Le dernier terme du membre de droite est nul :
w, (2Y% -2 )= (waw);=0©
O\ g T Bkl
La relation (20.c) s'écrit alors :

w/ - . e 20.¢
I> v Dt -— ‘42‘5 E; ta (. * )
Cette dernidre forme sera utilisée lors des discrétisations de préférence 3 (20.a) et (20.b).

3 - DISCRETISATION ET APPLICATIONS

3.1 = Singularités de surface

Dans le cas d'un corps épais 1'utilisation de 1la relation (12) conduit 2 traiter un probléme de
Dirfchlet interne c'est-i-dire A imposer :

¥ (2)=o0 pour X € Iy
Dans le cas d'un corps mince la relation (14) est la traduction d'un problame de Neumann sur la
surface des obstacles.

Les conditions aux limites sur les surfaces des corps sont prises en cowote i 1'aide d'une
discrétisation par facettes quadrangulaires porteuses de densités constantes (doublets et/ou sources).

Dans le cas d'une facette de doublets 1'influence sur le potentiel
(en ZS Jest fournie par l'angle solide sous lequel est vue la facette (fig.5.a), 1'influence sur la
vitesse est fournie en remplagant la facette par 1'anneau tourbillonnaire &quivalent (fig.5.b).

Pour une facette de sources (utilisation de la formule (12)) 1'influence sur le potentiel est fournie
par les formules de "Hess et Smith" (réf. 4.

3.2 - Condition de Kutta-Joukowski : Emission

La relation (18) (D [\t/bt ) = Q

est A chaque pas de temps vérifiée en assurant la continuité de la densité rL a3 travers la ligne de
bord de fuite :

Ms+ M -Mme=o0 (21)
avec (fig.6) :

M dadl o dowlll aun Le

(Y 2’ dlradea

Py o= L' enladoa

La relation (18) peut 8tre prise en compte par l'étirement des anneaux tourbillonnaires (équivalents
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aux panneaux de doublets 3 densité constante) au voisinage des divers bords de fuite.
Pour un corps mince la figure 7 indique les cinq &tapes de 1l'émission discrécisée.

3.3 - Transport du §A2

L'équation de transport de la densité tourbillonnaire volumique & (20) est transformée en une
équation relative & (@2 &ar) tourbillon ponctuel ol Fv est 1'élément de volume support du vecteur
densité volumique & .

Par suite de 1'incompressibilité du fluide (%= ™D 1'&quation est :
Dw v )f, = (Tr)-Z) L (z2)

La relation (2%) est discrétisée 2 1'aide d'un schéma en temps du second ordre de type Adams Bashforth
et fournit 1'évolution du tourbillom.

Le principal probl2me est celui de 1la régularité des champs de vitesse et de déformation : aprés
discrétisation par tourbillons ponctuels le champ continu est remplacé par un champ singulier qu'il
s'agit de régulariser pour approcher la solution exacte.

Pour un tourbillon ponctuel ‘S‘V gl,_).\ le champ de vitesse associé est :

PIZ A PROL ALY B
R
et = | ot |
Ce champ doit 8tre vemplacé au voisinage du point ¥ par un champ régulier aussi bien pour la

vitesse que pour le tenseur gradient associé ( fig.8).

Diverses &tudes théoriques et numériques permettent de déterminer 3 la fois 1'&tendue et la nature de
la régularisation nécessaire (réf. [1]).

4 = APPLICATIONS

4.1 - Afle plane double-delta (fig.9)

Le calcul de 1'&coulement autour de cette aile mince mise en incidence a &té effectué avec une
émission tourbillonnaire le long du bord de fuite et du bord d'attaque.

L'évolution en temps du coefficient de portance aprés une mise en mouvement subite ainsi que les
nappes de 1'&écoulement &tabli (visualisées grfice sux lignes d'émission issues du contour) sont
présentées.

Le fort taux d'enroulement est un signe de faible viscosité numérique du schéma.

On voit apparaftre un déchirement de la nappe dont la partie fssue du bord d'attaque a fléche &levée
est fortement enroulée alors que la partie {gsue du bord d'attaque 2 fliche modérée est sans
enroulement,

4.2 _ Rotor en vol d'avancement (fig.10, réf. [2 )

Ce rotor bipale est également traité en tant que surface mince. Chaque vecteur correspond 4 un
tourbillon ponctuel ( ¢&2 ¥4 ) émis du bord de 1'une des deux pales.

On voit apparattre pour le sillage lointain une 1&gdre déE&sorganisation 1liée sans doute 2
1'utilisation d'une régularisation trop faible.

4.3 - Hélice avec moyeux (fige 11, véf. [21, L3

Sur cette figure sont représentées les lignes d'émission issues des bords de fuites des pales.
L'influence du moyeux semble correctement prise en compte au niveau de la condition de glissement.

4.4 ~ Culot droit (ref.[$))

Le calecul de 1'&coulement autour de cet obstacle avec culot droit a été effectué soit sans émission
tourbillonnaire soit avec &mission le long de 1'ar@te.

Pour ces deux calculs le maillage est d'environ 600 facettes. Les résultats vigualisés sont les
vitesses paviétales et les coefficients de presaion :

= les vecteurs représentent les vitesses,
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= la couleur correspond 3 la pression.

Pour 1'écoulement sans €Emission, un fort contournement apparait au niveau de l'arfte. Des
gradients de pression importants sont observables sur le culot.

Pour 1'écoulement avec Emission, le coefficient de pression de culot est compris entre - 0,2 et = 0,3
en bon accord avec les résultats expérimentaux. Ce niveau est essentiellement fourni par le terme -C
(équation 14) la vitesse &tant pratiquement nulle pour toute cette zone. »

4.5 - Fuselage d'hélicoptare (réf.(5))

Un calcul de couche limite préliminaire s fourni la position des points d'émission utilisés dans le
calcul de fluide parfait.

Sur la figure (13.a) sont montrées les lignes d'émission issues du raccord entre la "niche & chien” et
le fuselage proprement dit.

Sur la figure (13.b) 1'écoulement pariétal a &té représenté en utilisant les m8mes principes de
visualigsation que pour le culot droft.

Avec 800 facettes et 200 tourbillons ponctuels les temps de calcul obtenus sont de l'ordre de 20 mo
sur CRAY 1S.

4.6 - Hélicoptdre en vol d'avancement (fig.1%)

Pour démontrer la grande généralité de la m&thode utilisée, l'&coulement autour d'une configuration
fuselage + rotor a été numériquement simulé. Les premiers résultats obtenus semblent tras
encourageants pour de futurs calculs.

5 - CONCLUSION

Divers travaux sont en cours pour l'amélioration des méthodes de singularités développées a3 1'ONERA,
i1ls portent sur :

-~ la prise en compte des conditions aux limites par des méthodes de type collocation (réf. 6 ) ou
variationnelles,

- 1'amélioration de la condition d'émission par une résolution locale des équations de Navier-Stokes,

- la mise en oeuvre de techniques de régularisation plus efficaces pour le transport des vecteurs
tourbillons,

= 1l'utiligation de méthodes de résolution mieux adaptées aux ordinateurs vectoriels et aux techniques
de eingularités.

D28 A présent ces méthodes sont caractérisées par les points forts suivants :

~ un traitement des conditions aux limites 3 l'aide 4'une singularité de base simple (panneau de
doublet & densité constante) associée 3 une condition de Dirichlet sur le potentiel interne
de perturbation pour un corps épais et 2 une condition de Neumann pour un corps mince.

-~ une condition d'&mission déduite de la condition de Kutta-Joukowski et pouvant 8tre appliquée sur
toute ligne donnée sur les obstacles,

- un traitement des nappes sous forme de zones rotationnelles 3 1'side d'une discrétisation en
tourbillons ponctuels et d'un schéma Lagrangien qui rendent possible le calcul d'interactions
fortes (canard-voilure, hélice-fuselage, voilure-ewpennage....) avec nappes enroulfes et déchirécs.
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VORTEX DYNAMICS

A Report on Work in CGermany

H, Oertel

DFVLR - AVA G&ttingen
Institute for Theoretical Fluid Mechanics

SUMMARY

This article reviews the numerical work relevant to the vortex dynamics method carried
out in Germany supplemented by results from the Franco~German Research Institute Saint
Louis, ISL. The introduction includes the development of two- and three-dimensional si-
multation methods and is followed by a discussion of the results in shear layers, trail-
ing far wakes, aerodynamical profile flow simulation with spoiler and the simulation

of three-dimensional structures in wakes.

1, Basis of Vortex Dynamics

The Vortex dynamics method allows the numerical simulation of nonlinear dynamics of @nf
compresgible flgws. Starting point is the vorticity transport equation with the vorticity

vector w = Vx v

>
dw g > _ 1 Vid
TV Yw w' Vv = e VW

We treat flows for the limit case Re >>1 in which the vorticity only fills one part of
the flow field. The connection between vorticity and velocity field is described by the
Biot-Savart Law, which in turn is derjved from the non-divergence of the velocity field

and the definition of vorticity.

&t = - L7

<

X H{X, t) av G+ o
T (3

The integration is carried out over all parts of the flow field having vorticity. The
whole velocity field is thus composed of a vorticity part and a potential flow component
Vé¢ where V¢ is computed as solution of the Poisson equation

9% = - v x
The dynamics of the vorticity field of threedimensional vortex filaments is determined by
Kelvin'g circulation theorem, which states that for inviscid, incompressible fluids, vor-
tex tubes with uniform core structure move with constant circulation T, with the flow
field. Ty is defined by a surface integral over the vortex filament i.

ry=f o oa

By applying the vortex dynamics method, the vorticity of the flow field is divided into
Lagrangian vortex filaments. The velocities result from the inteqration of the Biot-Savart
Law. The two-dimensional velocity field calculated in such a manner satisfies approxima-
tely the inviscid vortex transport equation. The review articles of LEONARD (1,2 ) pro-
vide both a review and the state of the art of the application of the vortex dynamics
method.

2, Numerical Methods
2.1 Point Vortex and Vortex Blob Method

The first simulation of a flow by the vortex method was performed by ROSENHEAD { 3 )
who approximated a two-dimensional vortex sheet by a system of point vortices. The vorti-
city is given at N discrete locations Xj with their respective circulations Ty

1_1r1 Six-x,(t))
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The vortices move with the velocity which the flow has at their respective point.

d)'zi .
ac "V (xj,t)

The disadvantage of the point vortex method lies in the singularity of the vorticity
distribution shown in figure 1 which, in general terms, does not lead to a stable so-
lution. Assistance is provided by the selection of vortex blobs with finite core dia-
meter R and an algebraic or exponential vorticity distribution over the core. The vor-
ticity field of these vortex blobs introduced by CHORIN [ 4 ]| is represented by

GX,t) = L7y vy k=%, (£))
where ¥y is the vorticity distribution within the vortex.

The limits of the application of the vortex blob method to wave instabilities in shear
layers and wakes were shown in particular at the DFVLR in G&ttingen. MEIBURG [ 5 ] com-
pares the linear amplification rates of two-dimensional wave perturbations in parallel
wake profiles with the solution of the Orr-Sommerfeld stability analysis. Fig. 2 shows
that, with the given resolution, the vortex blob method can only reproduce the temporally
amplified wave perturbations in the long wave length regime. The reason lies in the neglect
of the modification of the vortex filaments core form, which occurs under the influence

of the local distortion. An improvement could be reached by a dense collection of several
filaments sheets. Considering ti 2 three-dimensional simulation of shear layers and wakes,

there seems to be little change of doing this, since the numerical effort involved ex-
ceeds the present possibilities.

21,2 N SES

1=1,2..N

i

Shear layer Wake
Fig. 3a, 3b: Spatial discretisation with vortex filaments




2.2 Vortex Fllaments

The three-dimensional extension of the vortex blob method leads to the discretisation of
the vorticity tubes by vortex filaments. In analogy with the two-dimensional method the
vorticity field is now approximated by

Fry GeRgeengEioag

for the space curve X, {£,t) and the parameter £, which describes the surface contour of
the filaments i. Each vortex filament is divided into M segments, whereby each segment
continues to move at the corresponding local velocity permitting the simulation of the
filaments' three-dimensional deformation. The segments are redistributed ac each time
step and approximated by cubic splines. The inteqration of the velocity field is now
carried out over all the segments of the filaments.

Based on the work of ASHURST (6,7), MEIBURG [5] of the DFVLR in G&ttingen has simulated

three-dimensional structure development of shear layers and wakes. The discretisation in
vortex filaments is sketched in fig. 3. The method is tested by a self-induced velocity

distribution U, of a vortex ring with vorticity [ , radius R and core radius T . In the

limit case T/R <<1 there corresponds a Gauss distribution over the core. This analytical
result was achieved with only a few calculation points on the contour of the vortex ring
using the filament method as shown in fig. 4.

40 points are sufficient to calculate the ring velocity to within 5%

For T/R = 10°2
= the analytical velocity was approximated already by 4 points

For T/R = 10

2.3 Random-Vortex Method

The diffusion of vorticity due to viscous effects can be approximated in two ways. Sim-
ilarly to the decay of a potential vortex, it is possible to simulate the vorticity dif-
fusion by the growth of the core radius R (t). An alternative way was shown by CHORIN [4]
in analogy to the Brownian movement. He simulated the viscosity through the random motion
of the vortex elements. This random-vortex method was further developed by PETERS and
THIES {8,9) at the RWTH Aachen, showing that the probability density of the vortices
fulfills a Fokker-Planck equation, which corresponds to the vorticity transport equation.

The two-dimensional motion of the i-th vortex is given by

Bx, = u At + (Axi)

1 i random

Ayi = viAt * (Ayi)random

- UR — .
? - 1 e =
R v
! "
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Principle sketch Comparison of analytical and numerical results
Fig. 4a, 4b: Self-induced velocity of a vortex ring
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where At is the time step of the numerical simulation. The velocities u, and v are in
turn calculated by means of the Biot~Savart Law. The random part is caléulated by

1/2

{Ax (-4vAt 1n si, cos (Zﬂqi)

1)random =

= (-4 1/2
(Ayi)random = (-4vAt 1ln sl) sin (Zﬂqi)

where s, and q, are random numbers between O and 1. v denotes the diffusion coefficient
and must be inéerpreted as turbulent viscosity. Through the formulation for &4x, and

Ayj » a turbulent length-scale distribution is introduced a priori, being largely depend-
ent on the choice of the time step At. PETERS and THIES [8] have shown that the analogy

between diffusion and random motion remains valid even in the presence of convective
flow.

3. Results
3.1 Point Vortex Simulation of Two-Dimensicnal Wakes

In connection with the classical profile theory for the calculation of inviscid poten-
tial flows, the point-vortex method was implemented at the Franco-ierman Research Insti-
tute Saint Louis to calculate the flow around a profile with spoiler. Fig. 5 shows a
momentary plot of the simulation calculation compared with the measured temporally aver-
aged velocity field and the integrated momentary streamlines. The jinitial circulation
distribution required for the simulation was taken from the measured boundary-layer prof-
iles at the separation points. The time step that influences the solution was numerically
optimized. The calculated lift coefficient shows, as a function of the dimensionsless
time, the starting process with the pericdical vortex separation at the spoiler and the
transition to a lower shedding frequency of the fully developed flow. The mean value

of the calculated lift coefficient lies by - 0.25, while with a 40° spoiler a value of

- 0.2 was measured.

e o "B.
o:e 0 ® 3 -
o L . o
xo 3? °."':’ :;"g i:-.:' 0"
o x g"w L 1 ®
e o «
Y %o = x °®
o
Point vortex simulation
CZICHOWSKY et al, [1?]
\ -
Ca
0-
Mean velocity field and streamlines:
Re = 4 + 103, spoiler 40° -+
Experiment of Meyer et al, (12])
-2
t

Unsteady 1ift coefficient

Fig. 5a, Sb, 5c: Wake of a profile with spoiler
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3.2 Tratling Edge Far Wake

The random-vortex method development at the RWTH Aachen served to simulate a vortex sys-
tem behind a model airfoil with finite wing span. The simulation calculation was start-
ed with 100 single vortices. The coalescence of the single vortices to a trailing-edge
vortex in the far wake was then followed in the course of the calculation. Fig. 6 shows
the principle sketch of the rolling up wakes starting with a parabolic circulation dis-
tribution. The results are presented as path~time lines of the single vortices on one~
half of the airfoil. The coalescence of the single vortices shows that the trailing vor-
ticity becomes concentrated into one vorsex core. The presented interaction time is 1
second and the total circulation [ = 1 m“/s. Varied were the viscosity v and the initial
fluctuation quantities with which a modification of the airfoil can be associated. The
path lines of fig.6 make clear that an increase in the viscosity as well as an increase
in the degree of turbulence lead to a faster ccalescence of the vortices. If the simul-
ation is carried out with an elliptical initial circulation distribution the single vor-
tices coalesce faster, but the trailing edge vortices appear further downstream.

Principle sketch Path lines:

]
")

"1‘7 —17 -8 -6 —1—5 —1—2-
x1 Yy = 10 7, v = 10 x

Fig. 6a, 6b, 6c, 6d: Trailing edge vortices (PETERS and STUTTGEN [1on
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3.3 Shear Layers

The three-dimensional calculations with the vortex filament method carried out at the
DFVLR in Gdttingen consider a shear layer as sketched in fig. 3. We assume a spatially
periodic flow in x and y-direction and neglect the spreading of the shear layer downstream.
The temporal development of the primary Kelvin-Helmholtz instability and the three-dimen-
sional structure development due to secondary instabilities are simulated based on the
work of ASHURST {6). The horizontal boundary layers are represented by two layers of vor-
ticity with opposite circulation and different intensity which make the shear profile.

In the first calculation the shear layer is discretised into 99 overlapping vortex fila-
ments with circular cross-sections and 13 initial spanwise segments. As initial disturb-
ance we assume a wave moving 15 flow direction with length 2 = and amplitude 10 and a
spanwise wave of amplitude 10 “. Following experimental observations, the value 2/3 was
chosen for the spanwise and flow directinn wave length relationship. The selected inte-
gration volume comprises two wavelengths in flow direction and three wavelergths in span-
wise direction. The first picture of fig. 7 shows, at a dimensionless time of 117, the
roll up of the filaments and the concentration in vortices. Additional small scale three-
dimensional motion occurs by formation of streamwise vorticity. After a simulation time
of 245, it becomes clear that a dominant vorticity component ensues in flow direction as
a result of the strong vortex stretching. During the flowfield evolution the filament arc
length increases due to relative velocities along the filament. As the filament stretches,
the core area is reduced and so the vorticity volume is conserved.
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t = 155 t = 169
Fig. 9: Simulation of three-dimensional wake flowa (MEIBURG {5])
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The computational result with two superimposed layers of filaments in the original two-
dimensional shear layer are shown in fig. 8. In the top view the upper layer of filaments
is shown by full lines and the lower by dotted lines. The upper and lower shear layers
are discretised into 75 filaments with 27 spanwise segments each. The control volume and
the initial distribution are the same as in the simulation with one layer of filaments.

After a dimensionless time of 129 we observe that the upper part of the shear layer devel-
opes similarly to fig. 7. The Kelvin-Helmboltz instability provides for the rolling up of
the stronger shear layer into large-scale vortices. The layer of filaments with the smaller
vorticity, does not form large-scale vortices, but experiences a rather steady stretching
ing, whereby part of the vorticity passes to the upper layer. The interaction of the two
layers of filaments makes the longitudinal vortices incline against flow direction.

This is similar to the A-structures, as known from the Poiseuille and boundary-layer flows.

3.4 Three-Dimensioral Wakes

We apply the numerical model of chapter 3.3 to the far field of wake flows. According
to the sketch of fig. 3 the two shear layers of the wake profile are discretised into
two rows of filaments with opposite vorticity. At the beginning of the simulation, vor-
ticity components develop in flow direction in both shear layers, a process made clear
by the y-z side view. The longitudinal vortex component causes the interaction of both
wake shear layers determining the three-dimensional structure development.

In those areas where the lower layer becomes slower, the upper one becomes faster. This
causes superimposed longitudinal vortices to have the same rotating direction and to move
pairwise towards one another. Superposed on this process is the development of the von
Karman vortex street. The x-z side view shows, at a dimensionless time of 169, two face
to face shifted rows of large-scale vortices in span direction. The superposition of the
two processes leads, in turn, to the development of A-structures. Caution is required
when interpreting the results, for our simulation does not correctly reproduce the short-
wave deflections of the filaments. The arc length has doubled by the time the simulation
is finished. The number of segments has increased fourfold to permit a constant resolu-
tion in spite of growing curvature effects.

With a suitably modified initial distribution it is also possible to simulate the sub-
harmonic structure development in the wake. The initial disturbance now consists of a
two-dimensional basic wave with amplitude 0.1 as well as of two diagonally moving waves
of equal amplitude. Pig. 10 shows the integrated streak lines. The top view shows that

at first the ghape of the streak lines develops a few wavelengths fully undisturbed.
Later, periodical domains will develop, in which particles gather together. The subhar-~
monic structure is clearly recognizable, being in agreement with the experiments. The
areas with higher particle concentration are staggered in successive rows. The side views
arranged in equal intervals over a spanwise wavelength likewise show the periodical accu-
mulation of particles downstream. The vortex pairing process in the upper shear layer of
the wake stands out clearly towards the end of the range of integration.

PPN NN U N RPN
PR NN NP
ESRNPAP PN NE P W }

PPN N VY Y )

t = 59
spanwise side views top view

Fig. 10: Streak line of the subharmonic transition in a wake (MEIBURG [5]})
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4, CONCLUSION

The vortex dynamics method permits the numerical simulation of incompressible, inviscid
fluids at high Reynolds numbers. The simulation of the viscous diffusion can be approx-
imately done by the random vortex method. For the physical interpretation of the results
it is important that the Fokker-Planck equation, which describes the statistics of the
diffusive fluctuation quantities, can be transferred to the vortex-transport equation.

The advantage of the vortex dynamics method is the fact that vortex elements are required
only where the vorticity is nonzero. In the case of a three-dimensional simulation with
vortex filaments, the vortex stretching requires an increasing total length of vortex
elements with time. The increasing growth rate of the filaments' arc length is connected
with the transfer of energy to small scales. Here does the filament method find is limits,
for it can only correctly reproduce the temporal development of small wave number dis-
turbances. We have a method which conserves linear and angular momentum but does not con-
serve the energy in the short wavelength limit. Another disadvantage of the currently
applied filament method is the fact that although the vortex filaments modify their dia-
meter with increasing time, the spatial modification of the vortex core is not allowed.
This violates local strain effects.

The limitation to periodical boundaries of the integration domain and the parallel flow
assumption constitute a fundamental restriction to the calculation of three-dimensional
structure development in shear layers and wakes. This numerical model is only applicable
as approximation when the temporal and spatial amplification of the disturbance is small.

With the computers available nowadays, the vortex dynamics method permits the modelling
of time-variant incompressible flows. Its application to unsteady aerodynamics requires,
however, the combination with classical boundary-layer or Navier-Stokes methods. The de-
velopment of combination strategies between viscous solutions and vortex dynamics simu-
lation is in progress.
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SIMULATION OF IMPINGING SHEAR LAYERS USING
VORTEX DYNAMICS

Argyris G. Panaras
Defense Industries Directorate (YPOVI)
Holargos, Athens, Greece

SUMMARY

Organized vortices have been observed within the oscillating shear layers that im-
pinge on a surface. It is believed that the feedback force necessary for the generation
of these vortices is produced by their interaction with the reattachment surface. In the
present work models for studying the interaction of line or of finite-area vortices with
edges that simulate cavity-type of flows or edge-tones are examined. According to the
analysis, the interaction of vortices with an edge induces periodic pressure fluctuations
similar to those measured in oscillating flows. Also, when the geometry of an edge is
such that no oscillation has been observed, the amplitude of the induced pressure pulses
is insignificant. Thus, the hypothesis about the role of the vortex/edge interaction is
supported.

1. INTRODUCTION

The self-~sustained oscillations of an impinging shear layer is a well known pheno-
menon that appears to a variaty of applications, such as about slots betwee the moving
parts of control surfaces of aeroplanes, hydraulic gates and spiked cones of re-entry
vehicles. Experimentally it has been found that in such a flow, the shear layer that
impinges on a surface may oscillate periodically. This oscillation leads to emission of
strong acoustic radiation, to an increase of the drag and heat transfer (in case of high
speeds) and, possibly, to vibrations of the local structure.

Rayleigh (1) has been the first to describe the feedback cycle leading to the esta-
blishment of self-sustained oscillations of impinging shear flows. He mentions that when
an instability wave leaving an upstream plate reaches a downstream plate, it is unable
to pass with freedom and a pressure fluctL tion is thrown back to the upstream plate,
where it gives rise to further instability waves. Under appropriate circumstances, this
cyclic process is self-sustained and resonance occurs. Furthermore, the classical pic~
tures of Brown (2) revealed that in an edge~tone system vortices are shed periodically
near the separation point and travel downstream towards the edge. Periodic vortices were
also detected in a cavity flow by Rossiter (3), who speculated that they are shed at the
upstream corner in sympathy with the pressure oscillation produced by interaction of the
vortices with the downstream corner.

The contemporary views are well summarized by Rockwell (4):"for most of these oscil-
lations to be self-sustained, a chain of events must occur: impingement of organized vor-
ticity fluctuations upon the edge/surface; resultant upstream influence (interpreted as
Biot-Savart induction or upstream pressure waves); conversion of disturbances incident
upon the region of the shear layer in the vicinity of the separation edge to velocity
fluctuations within the shear layer; and amplification of these fluctuations in the
streamwise direction”., Visualization pictures taken from the papers of Ziada & Rockwell
(5) and of Rockwell & Knisely (6) are shown in figure 1 for an edge-tone and for a cavi-
ty flow.

Concerning the theoretical investigation of the conversion of the pressure perturba-
tions at the shear-layer separation to vorticity fluctuations within the shear layer, to
our knowledge, little has been done. Rockwell & Naudascher (7) mention that according to
an experimental analysis of Morkovin, the back and forth motion of the flow detachment
point allows the transformation from irrotational pressure to rotational vorticity pertur-
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bations. In many theoretical studies, this element of the feedback mechan‘sm is modelled
by its resul t: the periodic shedding (or release) of vortices from the origin of
the shear layer. Then various characteristics of the feedback cycle can be studied.

Typical examples of application of the above mentioned technique are those of Curle
(8) and of Rossiter (3), that were able to derive formulas for the frequency of oscilla-
tion and explained the jumps it presents, by simulating the shear layers by successions
of point vortices released from the origin of an edge-tone system or from the upstream
lip of a cavity, correspondingly. In these models the succession of the vortices is8 "fro-
zen". However, for the study of the other basic element of the feedback mechanism, 1i.e.
the generation of the periodic pressure fluctuations at the reattachment edge, the kine-
matics of the vortices and their dynamic effects must be considered.

Por the above task appropriate modelling of the flow is necessary. The replacement
of the finite size vortices by single point (discrete) vortices 1s an approximation that
has been applied successfully in many vortex/surface interactions. Then the technigues
of complex variables allow the calculation of the trajectories of the discrete vortices.
These trajectories are qualitatively similar to those of the centroids of the finite si-
ze vortices (Saffman & Baker, 9), unless the vortices pass very close or impinge on the
surface (Rockwell & Knisely, 6). Some typical examples of application of this method are
reviewed by Saffman & Baker.

The necessity of concidering or not the finite-area of the vortices in a vortex sur-
face interaction has been addressed recently by the present author (ranaras, 10). Simu-
lating the vortex/airfoil interaction by both techniques he found that for relatively lar-
ge distances of the interacting vortex from the surface of the airfoil the single point-
vortex technique provides results similar to those of the finite-area method. However,
when the distance of the vortex from the surface of the airfoil is small its shape is
distorted and the induced piessure pulses have smaller amplitude than the ones induced by
an equivalent point vortex. 1In the limit, where the vortex impinges on the leading edge
of the vortex, it is split into two and the time-dependent pressure pulses even take ne-
gative values at some parts of their period.

For the specific case of the impinging shear layers, Conlisk & Rockwell (11) were
the first to apply the technigque of the point vortices for the successful calculation of
the pressure fluctuations induced on a corner by a single line vortex or by patterns of
vortices, similar to those observed experimentally. Also, the present author applied this
technique for studying the effect of the geometry of the reattachment edge on the amplitu-
de of the pressure pulses induced by a single point vortex (Panaras, 12}. Furthermore, he
has studied the case of the interaction of a succession of discrete vourtices with surfaces,
that simulate an edge~tone or a cavity-type flow, and he has shown that some critical fea-
tures of the instability cycles can be explained by the dynamic effects of the vortices
(Panaras, 13). 1In the latter case the finite-area of the interacting vortices has been
considered. To this purpose, the classical technique involving sheets of poin. vortices
is used, properly modified. In the present paper the work of the author in the simulation
of shear layers impinging on edges will be reviewed.

2. DESCRIPTION OF THE MODEL

The method of complex transformations will be used in the present work. The curve
that defines the geometry of any particular edge in the z-plane will be transformed, by
means of a transformation function z=f(A), into a segment of the horizontal axis in the
transformed A-plane. Then, it is easy to estimate the velocity potential. For the appli-
cation of the method, the simulated vortical structures will be released periodically from
the "origin® of the flow at & predetermined frequency. If each vortical structure is com-
posed of N discrete vortices, each of T strength, the conplex velocity potential at L]
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; point A in the transformed plane, is:
X N N -~
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The velocity field induced on a point z in the physical plane is givan by:
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In equation (2),f'(A) 1is the first derivative of the function, the velocities have been
non-dimensionalized on U,, the lengths on an appropriate length a, and K=I'/aU_.

For the calculation of the velocity of a vortex located at a point 2y Routh's rule
must be used leading to:

N N £
u-tvy - 1‘;“ £ - 1A L 1K g 1 1. ik (x5) , (3)

n=1 - 2n  pn=1 A,=A £ 4n f .
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The trajectory of any vortex in the flow will be estimated by solving numerically,
at successive time steps, At, the equations:

de
— = uy (xi,y5)
dt 3 73N
(3a)
de ( )
— = vy (%4.Y5
at 3 %3473

Since the velocity components uj,vj are given in terms of the variable Aj inversion
of the transformation z=f(A)} is necessary. In some of the transformations that will be
used this inversion 1s strailghtforward, but in some others a numerical solution will be

applied.

For the estimation of the periodic pressure fluctuations induced on an edge by a
succession of vortices, the following pressure coefficient, that contains only the effect
of the vortices and not of the parallel stream, will be applied:

(e, -p,) - (p-P,)
Cp = ——————— = (uley?) - (u"( ‘v)‘(

..
P a st (4)

tquation (2) is used for the calculation of the velocity components u, v, assuming
that there is no vortex in the flow (K=0), while the components uy, vy include the vortex
term (K+#0).

The term 3¢/9t in equation (5) denotes the non-dimensional unsteady potential function:

K N - N
@® = R(A) b t1 arg (A-kn) ~ L arg (A=A;) (5)
n=

n=1

The time-dependent pressure coefficient will be calculated on some specific points
along the various edges that will be studied.
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3. INTERACTION OF A VORTEX WITH AN EDGE OF VARIABLE GEOMETRY
3.1 Suppression of cavity-type oscillations

The term “cavity-type” used in this work applies to bodies similar to those shown
in figure 2. They are characterized by the existence of a planar or an axisymmetric mi-
xing layer, which envelops the separation area formed between the leading and the trail-
ing edge. The possibility of suppressing, or even eliminating, the self-induced oscil-
lations of the shear layer by various techniques in a common characteristic of cavity-
type bodies. All the bodies of figure 2 are included in the classification of Rockwell
& Naudascher (7) except for the axisymmetric concave body: however, one of the two modes
of instability that have been observed when the high-speed flow about a concave body is
unsteady is similar to the classical oscillation of the cavity flows (Panaras 14). The
techniques which have proved successful for the suppression of the cscillation of the
flow about a cavity or about a concave body are similar.

In the case of the cavities, the majority of the experimental work concerns apprc-
priate modifications of the geometry of the rectangular cavity. These modifications ha-
ve been applied to the leading or to the trailing edge of the cavity, or to both. The
rounding of the lip or the use of ramps or offsets (figure 3) are the main changes to
the trailing edge tested. The tests have been performed in incompressible or supersonic
flows. All of these modifications have attenuated, to an extent, the amplitude of oscil-
lations; the use of offsets being the least successful. The most comprehensive studies
are those of Ethembambaoglu (15}, Franke & Carr (16) and Heller & Bliss (17), Rossiter
(3) has found that installation of leading-edge spoilers is very effective in reducing
the magnitude of the pressure fluctuations.

The problem considered in this paper is closely related to the shear-layer oscilla-
tions between the main stream and the plenum chamber of an open jet of a ventilated
{slotted or perforated) wind tunnel. Mabey (18) demonstrated how the shear-layer oscil-
lations could be attenuated, either by covering the slots with flat perforated screens
or by rounding the downstream corner of the plenum chamber at the entry to the diffuser.

To conclude, according to the experimental evidence, the self-induced oscillations
of the flow about a body similar to one of those shown in figure 2, may be attenuated if:

{a) The shoulder of the reattachment edge is rounded or, if sharp, has a small inclina-
tion angle or even lies below the leading edge [(for cavities).

(b} The shear layer is tripped by means of spotlers, sand, etc.

Concerning the role of the tripping, it will be assumed in this paper that, by af-
fecting the state of the otherwise laminar shear layer, the large~scale vortices formed
have less energy. 1Indeed as 0shkc (19) points out, much of the evidence suggests that
any important effects of Reynolds number appear indirectly through conditions affecting
transition rather than through the direct action of viscosity on the developing turbu-
lent structure. Browand & Latigo (20), studying the effect of the initial boundary layer
upon the downstream growth of the turbulent mixing layer between two streams, concluded
that if the mixing layer is tripped by a wire its large-scale structures are relatively
suppressed. Kibens (21) also observed the absence of hfghly energetic discrete vortices
in the shear layer which envelops the potential core of a jet, if the shear layer is tur-
bulent. Finally, Chandrsuda et al. (22) mention that recent exg:riments strongly suggest
that the Brown-Roshko structures will not form if the initial mixing layer is turbulent.

In the next section a simple, incompressible and two-dimensional model will be des-
cribed for the study of the interaction of a discrete vortex with a reattachment edge.
The shape of the edge will be variable. Thus, the effect of the geometrical parameters
which, if they are of proper value, stabilize the otherwise oscillating shear layer,will
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be studied. Considering the existence of a common mechanism that induces the shear-layer
oscillation, it is assumed that the results of the present analysis are applicable, qua-
litatively, to all the cavity-type bodies of figure 2. ;

3.1.1 Interaction of a vortex with a ramp

For the study of the interaction of a vortex with a ramp of angle a (figure 4) the
following Schwarz-Christ>ffel transformation (Spiegel, 23) may be used:

2a/n

A

= g i

z=cf e dg+ib (6)
o

The value of C can be expressed in terms of the gamma function using the fact that z=2a
when A=1. It is found that:

c = (a—bi)(n.)i (7a)

a, 1 .o
rEg s pra :1

Considering various properties of the gamma function and setting 6=a/mn, it can be shown
that:
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1f g=xtf and z is non-dimensionalized by b, the transformation (6} becomes:
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For the calculation of this integral the hyporgeometric Gauss series included in
the tables of Abramowitz & Stegun (24) are used. This series is defined by the equation:
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The hypergeometric series is valid for Re(f)> Re(h) >0 and for all values of h, except
for a cut along the real axis from 1 to ~, Its expression depends on the value of h :

for jh, < 1:
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For the application of the hypergeometric series on the transformation (8) the fol-
lowing equivalence is used:

- = 6+l = g3 =At
d 6, e 6*7, £ 6*2, h =\

The final result, after several manipulations, is:
for (A s 1,
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For the numerical calculation of the above series for any value of the angle para-
meter & it is sufficient to consider only a few terms. The transformations are very ac-
curate everywhere except at the region of {A] = 1. Also, the derivatives are easily esti-
mated. These transformations are developed for the first time in this work:

If a+0, a+l, and (6) is reduced to:

A
z = 1-1 f —399 - paond,
o (1mahr . (14}
This equation has also been used because of its simplicity.

For the inversion of the transformation, the complex and the real part are separa-
ted and then the resulting system of equations is solved numerically by applying the me-
thod of Newton described in the algorithm (2.13) of Conte & de Boor {25). Difficulties
in finding the 2eros of the system of equations have been experienced at some points near
the origin of the axis for a>60¢

A typical example of the application of the present method to the calculation of
the interaction of a discrete vortex with a ramp is shown in figure 5. The dashed line
denotes the trajectory of the vortex, while the numbered solid lines indicate the value
of the pressure coefficient at the correspondingly numbered points of the ramp.

It is observed in figure 5 that, as the vortex approaches the ramp, the induced
pressure on its surface increases, initially very slowly, and then it rises rather abrup-
tly when the vortex reaches the vicinity of the ramp. After reaching the maximum value
the pressure pulse on each point starts to fall. The amplitude of the pressure pulses is
quite small at the base of the ramp, but it becomes very large at its shoulder.

The small discontinuities observed in some curves are due to the shifting of the
calculation from one branch of the transformation function (equation 13} to the other
(equation 12). This shifting takes place at the point |A,|= 1, where the transformation
is not very accurate.

3.1.2 Interaction of a vortex with an ellipse

The ellipse is quite an appropriate geometrical figure for the study of the inte-
raction of a vortex with a curved surface. It is easily transformed into a piece of
straight line on the A-plane by using an intermediate transformation into a circle on the
g~plane (figure 6).

The intermediate transformation of the ellipse into the circle, non-dimensionalized
by b, is:

z=plq*§), (15)
where:

_ A+t - A~1 _,; . a

PR A My A=

The transformation of the circle into the straight line is:

1
(g+=). 1
q*g) (16}

N
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Then the required transformation function z = f(A) and its derivatives are found to be:

z = p[x»/w-n T | ] ; (17}
A+{Ar-11}
T(A) = a-q
R 118)
F
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[
£7(A) = pﬂL_EELLSl . (19)
(g-a)?
The numerical calculation of a point 2., 1s easily done in steps, separating the
real from the imaginary part, if the corresponding point A,, in the A-plane, 1is known.

3.2 Application of the method

The various parameters that have been found experimentally to affect the behaviour
of the flow about a cavity-type body will be examined in this section, by using the ma-
thematical model described previously. These parameters are: the shape of the reattach-
ment edge; the initial y-coordinate; and the strength of the vortex.

According to Conlisk & Rockwell (11) the range of the non-dimensional strength of
vortices generated in cavity flows in laboratory experiments is K=0,1-0.6. These values
will be used in the present work.

3.2.1 Effect of the shape of the edge

The optimization of the shape of the reattachment edge has been found to be the
most effective means of suppressing the self-excited oscillations. A ramp of small an-
gle is a very efficient shape in this sense. 1In figures 5 and 7 the trajectories of a
vortex of strength K=0.5 and the induced pressure fields along ramps of 30°and 90°angles,
respectively, are shown.

When comparing figures 5 and 7 one may see that, if the ramp angle increases, the
trajectory of the vortex approaches the edge and the induced pressure pulses at the shoul-
der increase abruptly. Thus, for a = 90° the amplitude of the pressure pulse at point 5
of the ramp is almost an order of magnitude higher than the amplitude at the equivalent
point of a ramp with a = 30°. It is noted here that, according to the experimental evi-
dence, the flow about cavities equipped with reattachment ramps of a = 30° is steady,
while the flow about regular rectangular cavities oscillates.

In all cases shown in the aforementioned figures, the amplitude of the pressure
pulses is significant only at the edge of the ramp, while it has low values at its base.
This feature suggests that for the suppression of the self-excited oscillations cf the
flows about the bodies shown in figure 2, it is sufficient to optimize only the lip of
the reattachment surface and not its base. This rule has already been empirically ap-
plied in various experimental studies.

The small value of the width of the pressure pulses at the lip of the edge is ano-
ther remarkable feature of the pressure field (figures 5,7). For example it is seen in
figure 7 that, if the vortex lies upstream of the edge at a distance equal to its height
{(x = =1.0), the induced pressure is reduced to half of its maximum value. If the vortex
lies further upstream, at x = -2.0, its contribution to the pressure pulses is only one-
sixth of the maximum value. Thus, the contribution of a vortex to the induced pressure
field at the edge is reduced very abruptly when its distance from the edge is increased.
If a row of vortices is considered, it seems then that a small spacing or wavelength A
is required for the production of discrete pulses. In this case the mean value of the
pulses will be greater, because of the contribution of the other vortices.

For the study of the effect of a curved edge on the amplitude of the induced pres-
sure pulses, two cases of vortex-ellipse interactions are shown in fiqures 8,9 for ratio
of ellipse axis equal to 1.0 and 3.0. In both cases the strength of the vortex is K=0.5.

It is remarkable that, though in these figures a rather broad range of curvature of
the lip of the reattachment surface is represented, nevertheless the amplitude of all the
pressure pulses is very small compared to the ones of the rectangular cavity (figure 7).
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Their maximum value is about equal to the one observed on the ramp of a = 30°.
3.2.2 Effect of geometrical offsets

The lowering of the trailing edge of a rectangular cavity is one technique effec-
tive to some degree in attenuating the shear-layer oscillations, though not so suc-essful
as the use of ramps or the rounding of the edge. Ethembabaoglu's (15) experimental data
lead to an estimation of a 30% reduction of the cavity presgure fluctuations for a 20%
offset of the leading edge.

For studying this effect here, the initial vertical distance of the vortex is used
as a parameter. The results of such a calculation are shown in figure 10. It is obser-
ved that the amplitude of the pressure pulses depends strongly on this parameter. More
specifically, if the vortex initially lies below the lip of the edge {y < 1.0) the pres-
sure amplitude is greater than when it lies above the lip (y°>1). It is noted in figure
10 that the rate of change of the amplitude of the pressure is higher for values of y°<1.

The curves of figure 10 indicate that the forcing mechanism has small intensity
when, according to the experimental evidence, the amplitude of the oscillations is small.
It is also seen that, in the case of the rectangular cavity, the level of the forcing
function does not reach the low values observed in the oscillation-free case of the ramp
of 30°, even if the offset distance of its leading edge takes very high values ly°=1.4L

However, it is evident that, if the trailing edge has the shape of a ramp, the ap-
plication of offset may have a more profound effect on the suppression of the oscillations.

3.2.3 Effect of the strength of the vortices

The strengtk of the interacting vortices is a basic parameter of the present model.
Its effect on the induced-pressure pulses is shown in figure 11 for the case of the ver-
tical plate (a=90°). It is observed that, if the strength of the vortices is small
{K=0.10), the pressure pulses have the same crder of magnitude as those induced on an
oscillation-free configuration (a small-angle ramp or an ellipse) but with vortices of
much higher strength.

As has already been mentioned in §3.1, it may be assumed that small values of the
strength of the discrete vortices may simulate the existence of spoilers in an appropria-
te position of a rectangular cavity or of a concave axisymmetric body. These mechanisms
have proven quite effective in reducinq the oscillations. The results of figure 11 seem
to enforce the hypothesis concerning the role which the spocilers play in the reduction
of the oscillations. Still, comprehensive laboratory measurements are required to vali-
date this evidence.

3.3 Discussion and conclusions

The strong dependence of the pressure pulses, that are generated by the vortex~-
edge interaction, on the specific shape of the edge is the main conclusion of the pre-
sent analysis. More specifically, it has been found that the induced pressure pulses on
ramps of small angle or ellipses have very small amplitude, even for large values of the
strength of the interacting vortices. On the other hand, the pressure amplitude on steep
ramps is very large.

Also, it has been shown experimentally that the flow about the cavity-type bodies
shown in figure 2 is steady when their trailing edge has the shape of a ramp of small
angle or when it is rounded, while the flow is oscillating when the ramp angle is large.

The above comparison indicates that, for the establishment of sustained oscilla-
tions in a cavity, the existence of a periodic feedback force of certain value is neces-
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sary. To explain this, rescurce to the experimental evidence is required. To our know-
ledge no one has studied experimentally the effect of the geometry of the reattachment
edge of a cavity on the development of the structure of the shear layer.

However, detailed studies hLave been performed on the influence of sound excitation
of variable amplitude, at a discrete frequency, on enhancing the organization of a free-
shear layer. Experimental evidence seems to support the view that similarity exists
between these types of flow. This similarity was discovered by Rockwell & Knisely (§)
when they compared the velocity spectra with and without insertion of the reattachment
edge of a cavity, to those measured by Miksad (26} in a non-impinging shear layer with
and without application of sound at a discrete frequency.

Clear evidence of the role of the level of acoustic forcing in the development of
a laminar low-speed shear layer has been provided by Freymuth (27). He has discovered
that, the lower the level of forcing, the longer is the length of the shea- layer required
for the growth of the instabilities to the saturation limit and, consequently, for the
appearance of organized vortices.

A similar conclusion was reached very recently by Gharib (28). One of the objecti-
ves of his investigation was to study the receptivity of a cavity shear layer to exter-
nally ilmposed disturbances, for a cavity length less than the one required for the onset
of self-sustained oscillations. His flow-visualization pictures showed that, while in
the oscillation mode periodic vortices are produced near the reattachment edge, in the
case of the steady flow no vortices are observed. Gharib applied variable forcing at
various frequencies. Spectral analysis of the response-velocity fluctuations indicated
that the level of shear-layer response at all the frequencies increased with the forcing
power. But, when the forcing reached a threshold level, resonance appeared at the for-
cing frequency in which the shear-layer satisfies the phase cricerion (L=An , A: wave
length, n:mode number). When he increased the length of the cavity, Gharib observed that
the resonance peak appeared at a lower forcing level, an indication that the threshold

level decreases as the length of the cavity increases.

Gharib (28) concludes that it is logical to propose that, as the cavity length in-
creases, the threshold level decreases to such an extent that a flow background frequen-
cy, which satisfies the phase criterion and has sufficient amplitude, will initiate the
self-sustained oscillation.

It is concluded then that, in view of the present analysis, .t seems that the oscil-
lations are initiated and sustained by the periodic pressure pulses induced by the vortex-
edge interaction, provided that the geometry of the edge is such that the amplitude of
the pressure pulses is sufficient.

4. INTERACTION OF A SUCCESSION OF VORTICES WITH AN EDGE

In this section a model will be presented for the simulation of interactions similar
to those shown in figure 1, where the interacting shear layer is transformed in well deve-
loped vortices. According to the experimental evidence, when a vortex approaches an edge
or a corner, it may pass above the surface, or it may inpinge on it and be split into two.
Modelling of the latter possibility is not easy by any step or block transformation that
can be used for the simulation of a cavity-type flow. That, because while, in a real ca-
vity flow {(figure 1) the vortices pass above a "dead air" region, in a numerical simula-
tion the vortices will be embedded within a parallel stream that extends down to the ho-
rizontal axis; hence, even if the simulated succession of vortices initially lies very
near this axis, still no splitting of the vortices will happen (figure 12b}). On the con-
trary, if an edge is used as the impingement surface of the model, splitting of the vor-
tices is possible, because any element of a vortex that lies below the horizontal axe
will pass below the edge (figure 12a).
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For the forementioned reasons, an edge will be used primarily in the present model,
as an impingement surface, while a step will be used in a limited number of applications,
for demonstrating the global character of the mechanism that induces the feedback pres-

sure waves,

The appropriate modelling of the Kutta condition, which requires finite values of
the pressure in the vicinity of the tip of an edge, is another numerical difficulty.
This may be accomplished by releasing additional vorticity at the tip; a procedure that
is rather difficult in practice. Recently, Kaykayoglu & Rockwell (29), based on their
experimental results, according to which the pressure amplitude is maximum at the tip,
suggest that inviscid modelling should not incorporate a leading-edge Kutta condition.
Instead, a singularity at the tip would seem to be most representative of the real condi-
tions. 1In the present work the issue of the Kutta condition is overcome by selecting an
edge of finite thickness as an impingement surface.

Concerning the modelling of the impinging vortices, an array of discrete vortices
will be used for the simulation of their finite-area. Initially, each vortex will be re-~
presented by a disturbed vortex sheet of finite thickness composed of four rows of dis-
crete vortices. The origin of this technique goes back to Rosenhead (30) and to Acton
(31), who have studied the stability of a semi-infinite vortex sheet. The present author
(Panaras, 10) applied this technique for the study of a vortex/airfoil interaction. He
has shown that the deformation of the vortices, due to the interaction with the surface,
and their possible split, if they impinge on the leading edge, can be efficiently simula~

ted by this technique.

The modelling of the secondary vortices, which may be formed along the edge, if the
primary vortices are strong enough to separate the boundary layer, is another critical
issue. Tt is very difficult to treat numerically this secondary shedding, as a truly
self~generated phenomenon (Rockwell, 4). This feature of the real flows will not be in-
cluded in the present model. Considering the fact that when a secondary vortex appears,
it is'nested within the primary vortex (Rockwell et al, 32), it is expected that the im-
pact of this approximation will not be significant in the present case, where the induced
pressure fluctuations will be estimated only in one point. For applications involving
the distribution of the pressure fluctuations along the surface of the edge, the impact
of this approximation may be serious.

A symmetrical Joukofski airfoil will be used for studying the vortices/edge intera-
ction. The following successive transformations transform the flow about a symmetrical

airfoll into the flow about a line segment on the A-plane (figure 12a):

(g+b} + 12/(g+b) (20)

N
[}

A = g+a?l/g (21)

where 1 and b are parameters that define a particular airfoil and a is the radius of the

basic circle into which the airfoll is transformed at the g-plane. The radius a will be
used for the non-dimensionalization of the various length parameters. The particular air-
foil used in this work is defined by the parameters: 1=0.9, b = 0.1.

The main parameters for the application of the present model are: the distance, L,
between the point of release of the distributed vorticity str..ctures and the edge, the
spacing, A, of the released vortices, and the vertical offset of the edge relative to the
centroids of the vortices. The distance L simulates the length of the shear layer before
the impingement. 1In all the cases the vortices will be released one by one from the ini-
tial point (~L, offset), with a spacing corresponding to the relation: A=Ln, where n 1is
the mode number.
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In most of the cases a typical non-dimensional length equal to L=5 will be used.
Also, a standard value K=9.45 will be given to the non-dimensional strength ¢f the vorti-
cal structures. This particular value has been seslected because in this case, at the ti-
me the released vorticity distributions reach the edge, their rolling up has been comple-
ted and they have been transformed into rounded vortices.

4.1 Effect of the offget distance

For examining the effect of the offset distance of the edge on the ampljitude of
the pressure pulses that are induced on it, four cases of interaction are shown in figu-
re 13 for the successive values: offset = ~0.4, -0.2, 0, 0.4. The mode number in this
case i8 n=2., In figure 13a, the offset of the vortices is such that they just pass abo~
ve the upper surface of the airfoil without touching it. In figure 13b the vortices im-
pinge on the edge and a part of them passes below the edge. In figure 13c the centroids
of the vortex structures lie on the horizontal axis, so they are split into two egqual
parts when they impinge on the leading edge of the airfoil. 1In figure 13d the vortices
pass below the edge.

Referring to figure 13a, for explaining the data shown in each figure, the wavy
curve depicts the time-dependent pressure fluctuation at a point A of the leading edge
of the airfoil. A part of the pressure fluctuation is shown, that corresponds to the ti-
me required for a released vortical structure to reach the leading edge of the airfoil.
Also, in each figure the level of the zero-value of the pressure coefficient is given,
plus the maximum amplitude of the pressure waves. 1In all the figures a "picture" of the
vortices is shown at the time the calculation of the pressure coefficient terminates.

The mark of the origin of the flow in this and all the other figures is schematic; there
1s no upstream plate in the flow.

A review of the evolution of the vortical structures in the various cases shown in
figure 13, shows that the present model simulates very efficiently the real phenomenon.
The rolling-up of the shear layer, the formation of the rounded vortices, their clockwise
rotation, their deformation when they approach the edge, and their split if they impinge
on the edge, are quite similar to the corresponding features of the laboratory vortices
shown in figure 1. In addition, it is seen in figure 13b, ¢ that the discrete vortices
are moving tangentially at the trailing edge. Thus, it is not necessary to release addi-
tional vorticity at the tip of the trailing edge for fulfilling the unsteady Kutta condi-
tion. This subject is covered with more details in another paper (Panaras, 10).

Concerning the pressure fluctuations, it is observed that when the vortices are
not split (figure 13a), they have the shape of smooth pressure waves that follow the fre-
quency of the vortices. When the vortices split (figure 13b,c), peaks appear in the pres-
sure fluctuations. The greater the part of each vortex, that passes below the surface of
the edge, is, the more profound the change of the shape of the pressure waves becomes. Al~-
8o, it is noted that the split of the vortices affects also the level of the mean pressu-
re, which gradually falls to zero. At the last case where the vortices pass below the
edge, the pressure fluctuations are negative. If these pressure waves are compared to
those of figure 13a, it is seen that they have higher amplitude and a phase difference
equal to m.

4.2 Effect of the spacing of the vortices

For studying the effect of the spacing of the vortices, in figure 14, the case of
figure 13a is repeated but for mode numbers n=3,4. Comparison of these figures shows that
when the spacing is increased, the mutual interaction forces of the vortices become grea-
ter. This is indicated by the change of the shape of the vortices. Besides, the smaller
the spacing of the vortices is, the smaller the amplitude of the pressure waves becomes,
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while the mean pressure is increased. The observed decrease of the pressure amplitude
for increasing values of the mode number is very rapid. Between the 3rd and 4th modes
the maximum pressure amplitude is reduced to a half. When the vortices pass below the
edge, the pressure waves follow the same tendency (figure 15a). The pressure fluctua-
tions remain almost invariant only when the vortices are symmetrically split upon impin-
ging on the edge (figure 15b).

The above results are probably related to the fact that in a self-oscillating
shear layer, there is a specific limit of the maximum mode of oscillation that can be
established, for a constant length. It seems that this limit exists because, as the
number of mode is increased, the amplitude of the feed-back force induced on the down-
stream edge becomes less than the one required for the generation of the large-scale vor-

tices.
4.3 Effect of other parameters

The effect of the length of the shear layer on the amplitude of the pressure wa-
ves induced on an edge, is a basic parameter of the self-oscillating shear layers. For
studying this effect, results of calculation are shown in figure 16 for a length L=2.5
and the 2nd mode. It is seen in this figure that whether the vortices pass above or be-
low the edge, the amplitude of the pressure waves is smaller than the amplitude in the
case of the greater length (L=5). No significant change in the amplitude is observed
only when the vortices are split into two equal parts. If these results are extrapola-
ted to the oscillating shear layers, they indicate, qualitatively, the following tenden-
cy: for the establishment of a specific mode of periodic oscillation, the shear-layer
length should be greater than a minimum limit. The greater the mode number is, the grea-
ter the required shear-layer length becomes. This tendency is in agreement with the ex-
perimental evidence.

It is of practical importance to investigate the effect of jets or mixing layers
to adjacent surfaces. For this, in figure 17 a case of relatively large offset distance
is shown. It is seen that when the spacing of the vortices is relatively large (figure
17a), a significant vertical elongation of their shape is observed. This elongation is
due to the strair imposed on the vortices by the non-uniform flow field. However, no
elongation at all is observed when the vortices are closely spaced (figure 17b). Evi-
dently, in this case the effect of the local velocity field has been offset by the mu-
tual interaction forces of the vortices. Concerning the pressure fluctuations, they are
seen to have the shape of smooth waves. While the mean value of these fluctuations is
large, their amplitude is very small and it becomes almost insignificant when the spacing
of the vortices 18 reduced. In view of these results it seems that a surface adjacent
to a shear-~layer feels a constant pressure, but for the appearance of a fluctuating pres-
sure, the vortices must pass very near the surface.

For the completeness of the analysis, some examples of calculation are shown in
figure 18 with the vortices impinging on the sharp edge of the airfoil. Both, the evo-
lution of the vortices and the variation of the pressure fluctuations, at a point near
the tip of the sharp edge, are observed to be very similar to the case of the finite
thickness edge; the amplitude being higher in the latter case. However, the total for-
ce may be higher on the surface of a sharp edge, due to the large values of the induced
pressure at the tip.

4.4 Interaction with a corner

For the simulation of a cavity-type flow, the following transformation, that trans-
forms a step into a line (figure 12b}, will be used:

z = £()) = [(J\’-1)!t* coa'ﬁJh/u (22)
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In order to keep the velocity at the infinite on the transformed plane equal to the
corresponding one on the physical plane, the value:h=n is given to the step height. Also,
for the non-dimensionalization of the various lengths of the equations of section 2, the
step height will be used,

The transformation (22) has been selected because the separation of the variables,
as well as the calculation of the first and of second derivative are easily done. As it
has been mentioned in section 2, for the estimation of the induced velocity field it is
necessary to invert the equations:

x = F(E,n) y = G(E,n) (23)

This inversion has been done numerically, by applying the Newton method described by
Conte & de Boor (25).

As it has been mentioned in section 2, it is not possible to simulate numerically
the observed tearing of a vortex when it impinges on a corner. Thus, in the present sec-
tion only the case of the convection of a succession of vortices above the corner will
be examined. In figure 19, calculations similar to those of figures 13a and 14a are
shown. A comparison shows that the pressure fluctuations induced on the corner are si-
milar to those induced on an edge. Thus, in the corner flow, also, smooth pressure wa-
ves are induced. Their amplitude decreases, while their mean value increases when the
spacing of the vortices is decreased. Besides, comparison of the development of the vor-
tices with the experimental ones shown in figure 1, indicates that in this case also,the
model simulates efficiently the real phenomenon.

4.5 Discussion and conclusions

The applications of the present model in the previous sections, demonstrate its ef-
ficiency in simulating the basic features of the interaction of a shear layer with an
edge or a corner, The stages of evolution of the vortices, from the initial state of
a plece of distributed vorticity to the formation of rounded vortices that deform when
they pass close to the interacting surface or are split, when they impinge on it, are
guite similar to the corresponding stages of evolution of the laboratory vortices obser-
ved in the real shear-layer/surface interactions.

The time-dependent pressure fluctuations, that are induced on a point of the interac-
ting surface, have the shape of smooth waves, when the vortices do not come in contact
with the surface, or present subharmonics when the vortices impinge on the surface and
are split. Comparison of the calculated pressure disturbances with available experimen-
tal data is necessary.

Appropriate data for such a comparison are that of Rossiter (3} and of Dunham (33),
who have measured the time histories of the pressure fluctuations at a point within a
cavity. In figure 20, the data of Dunham and some of the cases that Rossiter includes
in his work are shown. For making easy the comparison, some of the cases of figures 13,
14 have been run again with different scales. These theoretical predictions are shown
in figure 21. The similarity of the theoretical predictions with the experimental evi-
dence is very clear in these figures. This similarity apart from validating the present
model, enforces the hypothesis that the feedback force which excites a shear layer so
that large vortices appear, 18 generated at the edge by the vortices/edge interaction.

Appropriate parametric application of the present method indicates that the amplitu-
de of the pressure fluctuations depends strongly on the length of the succession of vor-
tices,upstream of the edge, and on the frequency of emission of the vortices. This ampli-~
tude becomes smaller when the spacing of the vortices is decreased while the length re-
mains constant, or when the length is decreased and the mode of emission of the vortices
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(n=L/A) is constant. Besides, as it has been mentioned in the introduction, there is
strong evidence that, for the excitation of a mixing layer to the level reguired for the
onset of self-sustained oscillations, the amplitude of the applied feed-back force has

to be greater than a threshold amplitude. These observations are useful in understanding
the following features of a self-oscillating impinging shear-layer: when the length of
the shear layer is constant there is a specific limit of the maximum mode of oscillation
that can be established; on the other hand, when the shear-layer length is increased, a
critical value is reached, above which the next mode appears.

A close examination of the various cases presented in this paper shows that though
a vortex spacing, A, conforming to the equation:n=L/A has been assumed for the')r esti-
mation, the actual periodic cycles, m, of the pressure induced on the edge, during the
motion of one specific vortex from the origin of the flow to the edge, are less than the
mode number, n. The relation: m=L/A-¢ 4is valid in any particular mode of oscillation.
The constant € approximately is equal to: €=1/4. This relation is similar to the one
found experimentally by Sarohia (34). The difference between the parameters n and m
is due to the variation of the convection velocity of the vortices along their trajecto-
ry. These results indicate that the spacing of the generated vortices, in an self-oscil-
lating impinging shear layer, probably is not constant, but rather, it presents a small
variation.
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1. Experimental examples of vortex/edge interactions {(courtesy of Prof. D.

Rockwell).
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SUMMARY

The activity in modelling time variant flows using vortex dynamics is at present
very limited in Italy. Moreover the contributions are principally in fundamental areas or
in areas outside the aerconautical field.

1. INTRODUCTION

The current work on vortex dynamics in Italy is presented. Such work is mainly
conducted in Universities and can be divided in theoretical, computational and
experimental work. At the Universities of Roma and Trento theoretical work is in progress
on the approximation of 2-D Navier-Stokes equations by vortex methods 1,3-6 | At the
University of Genova unsteady axisymmetric separated flows are studied '~° and at the
Universit‘y of Pisa a computational work is conducted concerning the steady wake of
missiles """'2 | An accurate experimental work on the non steady periodic wake of a marine
propeller is carried out in the Italian Navy recirculation water tunnel by means of a
laser doppler velocimeter' and finally at thke Polytechnic of Torino work is in progress
on the intrinsic eguations of a filament vortex 17 . In the following such activities are
presented in detail.

2. UNIVERSITIES OF ROMA AND TRENTO

In the Departments of Mathematics of these Universities a joint group of researchers
is particularly active in studying the vortex methods from a mathematical point of view.
Their main interest is the connection between the equations governing the motion and the
vortex theory, and their attention is particularly devoted to proving that the
Navier-Stokes equations may be approximated by vortex methods. Their investigations are
mainly limited to two dimensional flows, but recently they are considering vortex models
in three dimensions. In paper 1, following ideas that are at the basis of the well known
numerical method of Chorin 2, they show that the two dimensional Navier-Stokes equations
may be interpreted as a field equation for a system of vortices on which a stochastic
perturbation related to the viscosity is acting. Such an approximation has been widely
investigated for numerical purposes, and the authors provide precise connection between
the Navier-Stokes equations and such methods. In particular they consider a system of N
vortices interacting via a smoothed potential g. different from the logarithmic potential
g in an t-sphere around the origin and subjected to a stochastic perturbation. In the
limit N+oand when the cut off €+0 they show that this system converges to the solution of
the Navier Stokes equation, once the initial data of the vortex system approach the
initial data of the Navier Stokes equation at time zero. Similar results have been
obtained for bounded flows, and the generation of vorticity near the boundary has been
considered in ref.3, where a mathematical justification of the fact that the boundary
behaves as a singular source of vorticity is given. Related itudies are devoted to the
general properties of the vortex dynamics. The evolution of a two dimensional,
incompressible, ideal fluid in which the vorticity is concentrated in small disjoint
regions of the physical space is given in ref.4. There it is proved that at least for
short times the evolution of the centers of vorticity of each blob can be described by a
vortex model. In ref.5 and 6 the motion of a system of vortices in bounded domains is
considered, and the results are extended to systems of particles interacting via a long
range potential, like the Coulomb particle systems.
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3. UNIVERSITY OF GENGOVA

De Bernardinis (Institute of Hydraulics, University of Genova) and Graham and Parker
(Imperial College, London) have studied unsteady axisymmetric separated flows around
disks and through orifices using vortex dynamics'. The research is stimulated by the
physiological importance of these flows, (genesis of atherosclerosis, detection of
arterial stenoses), but the general interest of the model adopted is due to the fact that
the shed vortex sheet 1is represented by sequences of discrete vortex rings.
Characteristics problems of the extension to the axisymmetric flows of the vortex models
are a much more complicated interaction between vortices, the possibility of vortex
stretching and the existence of the self induced velocity on a vortex ring. Theoretical
results are obtained for an oscillating disk starting from rest and for an oscillatory
flow through an orifice in a pipe. Numerical predictions are compared with experimental
results and the conclusion is_that the method predicts the dominant features of the flow
accurately. In another paper® the classic problem of the evolution of a vortex pair
generated by pushing fluid down a semi-infinite channel by means of an impulsively
started piston is examined. The strength and the separation of the two fully developed
vortices and the formation of the secondary pair due to the sudden stop of the piston
motion is studied in detail and compared with experimental results. Another interesting
investigation of three-dimensional vorticity was computed by Dhanak and De Bernardinis
with reference to the evolution of an elliptic vortex ring 9, The authors follow
numerically different elliptic configurations using a cut-off approximation for the
velocity at the vortex and in particular they are able to calculate the time in which the
initial elliptic ring would break into two smaller rings formation. The last stage
evolution o©f an aircraft trailing vortex system'ois discussed following these
computations.

8, UNIVERSITY OF PISA

At the University of Pisa the group of Dini, Psarudakis and Vagnarelli is
particularly active in the determination of the non linear aerodynamic missile loads in
three-dimensional subsonic regime flow. The studies are by now limited to steady
situation and are based on the vortex lattice method. In this method a horse-shoe vortex
is assocjated with each element of the lifting surface and the wake is composed by free
vortex segments that separates from the edges. The wake 1Is relaxed by an iterative
process and particular criteria are used to assure the method convergence, do more stable
results and reduce the computer time in relation to the vortex segment number. In paper
11 a numerical computer program is developed for the preliminary missile design phase and
some results are presented concerning the wake geometry of a rectangular wing and of a
delta wing, Figs.1-2, and the wake geometry of the wing-body-tail configuration, Fig.3.
The influence of the fuselage on wings has been studied in more detail in paper 12, and
the results obtained are satisfactory as compared with theoretical and experimental
results by other authors,

5. CEIMM {Centro Esperienze Idrodinamiche Marina Militare) and UNIVERSITY OF ROMA

The group of Accardo, Cenedese and Milone is applying a phase sampling procedure to
the analysis of the non steady and perjodic field in the near wake of a marine
propeller 13, the experiments arve carried out in the Italian Navy recirculation water
tunnel and the results obtained by means of a laser doppler velocimeter give a detailed
an accurate description of the vortex sheet from the blade trailing edge. The
measurements are extended to the mean values, the standard deviations, the skewness and
the kurtosis of the velocity components. The presence of the tip-vortex can be clearly
observed in Fig.4.

6. POLYTECHNIC OF TORINO

At the Polytechnic of Torino work is in progress on the intrinsic equations of a
vortex filament. These equations describe the filament evolution with reference to the
curvature and the torsion of the vortex axis. ghey were first obtained by Da Rios in
1906, were studied in detail by Levi-Civita' in 1932 and were finally rediscovered
independently by Betchov (LT 1965, as related by Germano !’ . In the same paper Germano
rederives these equations as a particular case of the motion of an unextensible curve. He
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is presently trying to incorporate in these equations the effects due t¢ the viscosity
and to the eventual different section of the vortex tube along the filament.

7. CONCLUDING REMARKS

We have attempted to present the activities related to vortex dynamics in Italy.
These activities are presently scattered in different directions and not well organized
in order to coordinate the mutual interests, Anyway it seems possible that in a case of
a Symposium related to this topic some contributions can be expected from Italy.
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Fig. 3 ~ Wake geometry of the wing - body - tail configuration at a = 20%. (Ref.11)
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MODELLING OF TIME-VARIANT FLOWS USING
VORTEX DYNAMICS-ACTIVITIES IN THE NETHERLANDS
by
H.W.M, Hoeijmakers
National Aerospace Laboratory NLR
Anthony Fokkerweg 2, 1059 CM Amsterdam
The Netherlands

SUMMARY

Activities in the Netherlands in the area of simulating low-speed flows using vortex elements are
summarized. Aspects of some of the methods developed are highlighted and plans for future work are 'ndi-
cated.

i. INTRODUCTION

In the area of computational fluid dynamics vortex methods have been used for the past decade or so
for simulating incompressible, inviscid and also slightly viscous high-Reynolds—number flow in both two
and three space dimensions (Ref. 1,2). In thise Lagrangian type of methods the vortical flow structures
are followed as they evolve in physical space. The use of the physically relevant quantity of vorticity
provides a key to direct interpretation of the numerical results. In addition, vortex elements are only
required in regions where the vorticity is non-zero. Furthermore the vorticity is not spread by numerical
diffusion, i.e, the vortical flow regions are fitted rather than captured as 1is the case in finite-volume
Euler codes.

A disadvantage of the Lagrangian approach is its operational count, which is O(N?) where N is the
number of vortex elements. However, in some cases the operational count can be reduced considerably by the
introduction of an underlying Eulerian grid. On the other hand, the present-day supercomputers tend to
alleviate the computational burden sufficiently to warrant the direct approach as well. A further disad~
vantage is that in case vortex sheets or contours of finite areas of constant vorticity are followed the
topology may become very complicated, requiring a correspondingly complex logic in the computer code.

In this contribution to the Round Table Discussion we summarize the current work in the Netherlands
on vortex methods for simulating time-variant flow. When appropriate we will discuss some of the details
of the work as well as indicate the direction for future work.

2, SUMMARY OF ACTIVITIES IN THE NETHERLANDS

In the Netherlands there are several places where there 1is interest in the simulation of (time-
variant) incompressible flow using vortex elements. This section provides a list of the various places and
a short description of their interest.

Delft University of Technology

At thc Department of Aerospace Engineering some work is done, on fundamental aspects of flows with
vortices. Furthermore, exploratory surveys of flow fields involving vortices have been carried out (e.g.
Ref. 3 and 4) and are subject of future work. The experimental investigations may provide a basis for
comparison with computational results.

At the Laboratory for Aero- and Hydrodynamics a student has been involved in simulating shear layers
using a discrete vortex method, but this line of research has not yet been pursued further.

At the Department of Applied Mathematics Prof. Hermans and his students have looked into some of the
aspects of the vortex method under development at MARIN, see section 3,

Technical University Eindhoven
At the Department of Technical Physics one 18 looking into the feasibility of starting the develop-
ment of a vortex method for the flow through T-shaped ducts.

Shell/KSLA, Amsterdam
Here one is interested in simulating confined flows, e.g. mixing layers. Currently one is evaluating
a 2D vortex method to judge its applicability to industrial type of flows,

Netherlands Organisation for Applied Scientific Research (TNO)

At the IWECO institute one is involved in predicting the characteristics of the flow about submerged
objects shedding vortex wakes.

At the Institute of Applied Geoscience (DGV) a formulation based on Clebsch variables has been
developed for the flow involving rotatfon (Ref. S5).

Maritime Research Institute Netherlands (MARIN)

At MARIN work is carried out to develop a vortex method for the prediction of the dynamic forces on
bluff bodies with vortex shedding in high-Reynolds-number flow. The intended applications include simula-
ting the flow about off-shore atructures, rod bundles, manceuvring ships and ship propulsion. In section 3
of this report the main features of the method, described in Refs. 6 and 7 are briefly described.

National Aerospace Laboratory (NLR

At NLR s are being developed for predicting the evolution of vortex wake structures (Ref. 8 and
9) as well as the vortex flow about oscillating strake-wing configurations. Some details of this work are
described in section 4 of the present report. Also, the work carried out in the area of aero-acoustics
involves the study of vortex shedding due to incident sound waves (e.g. Refs. 10 and 11).
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At still other institutes and research departments there is interest in simulating flows with vortices,
a.o. at Fokker where the prediction of the aerodynamics of missile configurations involves flows with
vortices.

3. ACTIVITY AT MARIN

At the Maritime Research Institute Netherlands (MARIN) v,d. Vegt and Huijsmans (Refs. 6 and 7) are
developing a2 method for simulating the flow about bluff bodies with vortex shedding. Some aspects of the
method are being investigated by Prof., Hermans and his students at the Delft University of Techuology.

The method is based on the fractional step method put forward by Chorim (Ref. 12) and uses vortex
blobs to represent the vorticity field. In Chorin's scheme the governing equations are solved in two
steps, the convection step which represents the inviscid vorticity convection as well as the creation of
vorticity and the diffusion step which represents the viscous part of the flow problem.

3.1 The convection step
In the convection step the Euler equations

LA (3.1a)
b sp 3E

L. =0 (3.1b)

E 6 #E *
with w™= (V x u7) . e, are solved subject to the following boundary conditions:

-

Wn. ;B .nats (3.2a)
WEa il (o) at lx] » = (3.2b)

> Ed
where S 1s the surface of the body, n is the normal to the body surface, uy is the motion of the body and
6. is the velocity far upstream of the body. The solution is obtained by introducing the stream function ¥
> »
(such that uE - ?w x ez) which is split into two parts, {.e.:
voaf oyl (3.3)
Here WP represents the shed vorticity field in the unbounded domain, {i.e. WP satisfies
v2yf o f (3.4)

subject to the far-field boundary condition given in ﬁq. (3.2b). In Eq. (3.3) w“ represents the flow due
to the presence of the body in the flow fleld, i.e. ¥ satisfies

vl L g (3.5a)
subject to the stream surface condition at the solid surface, as given in Eq. (3.2a), which becomes
At ey @y - W k2 ars (3.5b)
z B z
aud the far-field condition
W e, >0 for [xl + = (3.5¢)

The vorticity field consists of a large number of overlapping, individual vortex blobs of fixed circular
shape with vorticity distribution

w¥Ge) = my dxx D) (3.6)
x

where Pk 18 the circulation of the k-th vortex blob, located at ;k' and Yy {8 the vorticity distribution
inside the blob, taken here as a Gaussian distribution.

3.2 The diffusion step
In the diffusion step the vortices are diffused using a random walk with Gaussian probability distri-
bution with zero mean and standard deviation of /2vit,

3.3 The computational procedure

The putational procedure 1s started at t=0 by impulsively setting the fluid in motion. Then the
following sequence of steps 18 executed:
1. Compute ¥ by solving Eqs. (3.5a~¢) using a first order panel method based on the formulation of the
Dirichlet boundary condition for the flow inside the body.
Create 2NP vorticea at the body surfaces. The strength of the new vortices is such that in the mean the
no-slip condition is satisfied, 1.e.:

2

of o Guf x :z) .t (3.7

-
where t {s the tangent vector to the surface. Here NP denotes the number of panels used to discretize
the boundary S,

3. Do the first diffusion step with time step }At., In this step the newly created vortices that wander
into the body, on the average NP vortices, are removed. The vortices created earlier that move inside S
are reflected back into the flow field,
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4. Carry out the convection step with time step At, {.e, solve for &P. For this Buneman's (Ref. 13) varia-
tional formulation for point vortices has been extended to vortex blobs. The variational formula used
is

P P P
M) ,ik) ~ HJ 3 1%y [? daxdyde - 1E¢ rk([” y(];—;(kl)w dxdydt + % J ?zk x dik) (3.8)
Variation of wP and ;k then yields Eq. (3.4) for wP while one finds for ;k:

.
LA ” YRR D Gofx 8) axy (3.9)

where the integration is over the area of the vortex blob. Eq. (3.9) shows that the vortex blobs are
convected with the vorticity weighted velocity.
The variational problem is solved in Fourier space. For the latter a computationally efficien: procedure
has been developed involving an interpolatory cubic~spline approximation for the trigoniometric
functions which facilitates the use of FFT for the summations. The operational count of this step
amounts to N+mlog.m, where N is the number of vortex blobs and m the number of Fourier components.
In this step the §orce on the body is computed using a formulation which just involves the vorticity
and velocity of the flow field and does not require the explicit computation of the pressure,

S. Do the second diffusion step with time step %At, bouncing the vortices that move into the body.
Next the whole procedure is repeated, starting at step l.

3.4 Example of application

Figure ! shows a comparison of the calculated flow field with the results of flow visualisation
experiments for a circular cylinder in steady free stream . The Reynolds number based on the cylinder
diameter 1s 31,700. The computation was carried out using 512*512 Fourier components for the vorticity
field and 64 panels for discretizing the contour of the cylinder. The computation toock about 2 hours CPU
time on the Cray-1S computer and involved up to 15,000 vortex blobs. Recently the efficiency of the code
was improved considerably, reducing CPU-time requirement by nearly an order of magnitude.
As illustrated in figure { the general characteristics of the measured and computed flow pattern compare
quite well, This was also the case for the vortex—shedding frequency while the prediction of drag and lift
time histories were quite reasonable.

3.5 Future work

Future work will be the further validation and evaluation of the above described method for 2D flow.
This will include the application to the “"lock~in" phenomenon.
Extension of the method to three space dimensions is underway. The latter code will be applied to the flow
about a cylinder to investigate the development of 3D disturbances in the initially 2D flow field.

4. ACTIVITY AT NLR

At the National Aerospace Laboratory (NLR) a method has been developed for computing the evolution of
wake structures, This method will be described in section 4.1 and 4.2.

Another activity that will start soon is the development of a method for predicting the aerodynamic
characteristics of oscillating wings with leading-edge vortex sepatation, The interest for the latter work
came from the current experimental investigation in the flow about an oscillating, generic, strake~ wing
configuration, The method to be developed, will be an extension of the methods developed earlier for the
flow about steady configurations with leading~edge vortices, see section 4.3.

Some of the above activities have been carried out in cooperation with the Department of Aerospace
Engineering of the Delftr University of Technology.

4,1 2D~time-dependent vortex wakes

For transport type of aircraft in cruise condition the precise shape of the wake has in general only
a small effect on the lift and pressure distribution on the wing. In most current cowputational methods it
is therefore common practise to asgume g rigid wake of some suitable shape. For aircraft in landing con-
figuration, fighter aircraft and also for missile configurations, where {n addition to the tip vortex
other vortices may develop, often a more accurate description {s required, The method to be deacribed
provides a tool to obtain an insight in the development of the wake topology in the vicinity of the
aircrafe.

For the Reynolds and Mach numbers involved the flow may be considered inviscid and irrotational with
embedded tegions of rotational flow, i.e. vortex sheets and vortex cores, Two types of vortex cores occur,
single-branched cores at wing tips and double~branched ones at initially smooth portions of the vortex
sheets. For the present purpose we are interested in the simulation of the flow outside the vortex cores
itself. This warrants the introduction of an approximate model where for the outer flow field the vortex
core is represented by an isolated vortex/feeding sheet combination (see Fig. 2).

Under the assumption that the variations in streamwise direction are much smaller than the ones in
the cross-flow plane the originally three-dimensional steady problem is re'uced to a two~dimensional time
dependent problem in the cross-flow (Trefftz) plane. This is accomplished by replacing the streamwise
coordinate x by U t vhere U  1s the component of the free stream along the x~axis and 1 is a time-like
coordinate. The resulting problem is an initfal value problem describing the motion of a two-dimenafonal
vortex system (built-up out of vortex-sheet segments, gsee Fig. 3) as 1t {s convected by the velocity field
composed of the cross-flow-plane free-stream velocity 0. and the velocity it induces upon itself, i,e.

+ RN ﬁl
d el - %x £ 4 N _v 1 _v _
% Rz ~ ¥+ 72 % B J TET; Ty p(ndn + 8 Tig]; oy = 8y D oy (4.1)
C v v
v
-



5-4

with & = f(t;r) - f(n;r), i: =- i(:;t) - i:(r) and §i - f(t;r) - fi(r) and the summation is over all seg-
ments. In Eq. (4.1) the sheet vorticity is expressed in terms of the doublet distribution (= circulation)
along the vortex sheet segment C , which position is given by ﬁ(t 31). The patameter 6 =1 1n case the

last point on vortex sheet segment C is connected to a vortex, positioned at i (1), vhlle 6 = 0 other-
wise, Similarly 51 = 1 in case the firsc point of segment C is connected to a vortex at i (x) and 51 ~0
othervise. The initial conditions of the problem are the position of the vortex sheet(s) and the clrcula—
tion along it at 1 = O. The method developed, designated VOR2DT, can handle quite general multiple segmen-
ted vortex sheet systems with single and double-branched vortices. A second-order panel method using qua-
dratic doublet distributions on curved panels 1s used for the discretization of the integral in Eq. (4.1).
The subdivision into panels of the vortex sheet is done through an adaptive curvature-dependent panel
scheme that decreases the panel width in regions of high curvatures, enabling the accurate description of
rolling~up portions of the sheet. For the time-like integration a simple Fuler scheme {s used with the
time step restricted such that any panel does not change its position more than a fraction of its width.

The computational procedure also features options to split segments, to cut a vortex sheet to a spec-
ified length or attitude of the feeding sheet, to monitor quantities like circulation and center of vorti-
city that, possibly, are invariants of the motion, etc,

4.2 Example of application of VOR2DT

The example considered here is the wake of a transport aircraft with a deployed part-span flap. This
is a case where the trailing vorticity changes sign along the wing span, resulting in counter-rotating
vortex cores., In Fig. 4a results of the present method at three points in time are compared with ones of
the so-called cloud-in-cell method of Ref. l4. Although there appear many small-scale structures in the
latter the global structures agree fairly well. First, one observes the appearance of the tip vortex,
followed by the evolution of a double-branched vortex approximately at the position of the outboard edge
of the flap. Finally, a second double-branched vortex is formed at the inboard edge of the flap.

In Fig. 4b the results of the present method at a much later point in time are compared with the ones
from the finite-difference solution of the Navier-Stokes equations in vorticity/stream function formula-
tion (Ref. 15). The results agree surprisingly well, the vortex cores have about the same position in
space and a similar shape. In both results no further vortices have formed and the outboard flap-edge
vortex has gained most in strength, its circulation 18 about twice the circulation of the tip vortex as
well as the inboard flap edge vortex. The latter is of opposite sign compared to the other two vortices.

Pigure 4c shows the results of continuing the computation to still longer times. It illustrates that
the present method continues to produce smooth results, in spite of the circumstance that the strength of
the vortex sheet has diminished quite considerably and by this time most of the vorticity has amalgamated
in the vortex cores.

More examples of applications, including one where there is an indication of the ill-posedness of the
initial~value problem are given in Ref. 9.

4.3 Leading-edge vortex flow
For simulating the flow about steady wings with leading-edge vortices two types of potential flow
method have been developed (Ref, 16).
- a panel method for general configurations with rolled-up vortex sheets attached to prescribed fixed
separation lines, based on the slender-body approximation (VORSBA),
- a panel method for the 3D flow about thin wings with leading-edge vortex sheets (VORSEP).

A typical result of the VORSBA program for a unit-aspect-ratio delta wing is shown in Fig. 5, where
the computed vortex sheet and vortex core position is compared with total-pressure contours obtained in a
wind-tunnel experiment at the Delft University of Technology.

Fig. 6 shows a typical result of the 3D vortex sheet method; the computed vortex sheet shape for a 65 deg
swept wing at 10, 15 and 20 deg incidence. A detailed comparison of results of the VORSEP method with the
ones of the Euler code for incompressible flow developed at FFA, Sweden can be found in Ref, 17.

The flow about double-delta wings and strake-wing configutrations is more complex, e.g. Ref. 3, It in-
volves a primary vortex core, originating at the leading edge of the strake and a secondary double-branched
vortex core, originating at the kink in the leading edge. An example of the simulation of the flow about a
double-delta wing is shown in Fig. 7, which compares the result of the VORSBA method with the result of a
discrete-vortex method (Ref. 18). In the discrete-vortex method two distinct centers of roll-up evolve and
instabilities occur before the last station is reached. In the panel method result the kink in the leading
edge causes a dent (region with cutvature of opposite sign) in the vortex sheet. Seen in downstream direc-
tion the dent, representing the double-branched vortex, travels along the sheet towards the vortex core,
just like observed in experiments. Clearly, for larger discontinuities in the leading~edge sweep, when the
secondary vortex is stronger, a double-branched vortex model iz required to obtain an even more accurate
simulation of the flow.

4.4 Future work
Future work will be the further evaluation of the VOR2DT method. We are also considering the exten-
aion of the method to:

- periodic vortex systems. This will enable the simulation of the temporal development of mixing layers,
waves and other interfaces.

- contour dynamics (e.g. Ref. 19). This is required to study the behaviour of finite areas of vorticity,
for example, occurring during the final stages of inviscid vortex wake roll-up. The advantage of the
contour-dynamics approach {8 that it provides a solution of the Euler equations not afflicted with
numerical diffusion, so that it is ideally suited for the long-time evolution of vortfcal structures.

Future work will also include the extension of the methods for leading-edge vortex flow to oscilla-
ting wings, as well as improving the present methods by including double-branched vortex cores and pos-
8ibly finite-area vortex cores.

—— .. AR




CONCLUDING REMARKS

- Clearly, in the Netherlands there is interest in the modelling of time-variant flows using vortex ele-

ments. Work in this area is being considered or In progress at various research laboratories, technical
universities and industry.

- At present most of the methods are still under development, or their feasibility to specific applica~

6.

1.

tions is investigated.
- An FDP activity on this topic would certainly be welcomed by the workers in this field and probably
ttract active participation from the Netherlands,
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Fig. 1 Comparison of computed and observed flow field around circular cylinder
at Reynolds number °£ 31,700 (Ref. 7)
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FLOW MODELS USING VORTEX DYNAMICS
~ WORK IN THE UNITED KINGDOM

by
D.J. Maull
University Engineering Department
Trumpington Street
Cambridge CB2 1pPZ
UK

SUMMARY

A review is given of work in the United Kingdom on vortex dynamics. This method of
modelling separated flows 1is applied to unsteady flow around aerofoils, bluff bodies,
boundary layers and pollution studies. Many applications are given and some of the
difficulties in using the method described.

INTRODUCTION

The representation of a flow field by identifiable regions of vorticity embedded in
an otherwise irrotational flow is one of the oldest models of fluid flow. Thus we have
the boundary layer approximation of Prandtl, the wing vortex system of Lanchester and the
wake and drag of a body presented by von Karman. A solution of the Navier-Stokes equations
will, of course describe the entire flow field but at the moment solutions at high Reynolds
numbers are limited and it is at these high Reynolds numbers that models involving vortex
dynamics can offer some advantages. The time taken to convect a distance & with velocity
v is &/v and during that time diffusion, due to viscosity v , will take place over a
distance (v¢/v)3, thus the Reynolds number is a direct measure of the importance of
convection compared with diffusion. It is therefore at high Reynolds numbers, where the
convection of vorticity is much more important than its diffusion, that vortex dynamics
calculations have their most useful and meaningful applications.

Vortex dynamics is undoubtedly a popular subject and therefore to bring this review
down to a manageable size, consistent with a short presentation, some rather arbitrary
decisions have had to be made as to what subject areas should be omitted. The main omiss-
ion is a discussion of the three-dimensional flows present for instance in the vortex flow
over slender bodies. They have been omitted mainly because they have been reviewed
extensively in two excellent papers in the last few years by Smith (1) and (2). Papers
published before 1974 have usually been omitted since they have been referred to in a
review paper by Clements and Maull (3). Subsequent review papers have been presented by
Graham (4) and (5) and a discussion of the method within the framework of computational
fluid mechanics has been given by Roberts and Christiansen (6).

Most of the applications of this method have been to two-dimensional flows where, in

the absence of viscosity, the vorticity equation is simply g% = 0. The problems in

applying the equation then arise in (a) the means of injecting vorticity into the flow
(the Kutta condition); (b) the efficiency of the schemes for trackina the vortices (Biot-

Savart law or vortex-in-cell methods); (c) schemes for reducing the number of vortices
(amalgamation of vortices); (d) prevention of unrealistic velocitie.. (use of vortices
with cores); (e) prediction of forces:; (f) the possible inclusion of viscous effects

and (g) the probability that the flows that are being calculated contain, in reality,
three-dimensional effects,

The review will start with a case of unseparated, unsteady flow with a non-linear
vorticity wake and progress to cases where there is a strong interaction between two,
initially distinct vortex sheets, including problems of interest to the offshore industry
where the free stream is periodic. Other topics will include the representation of
axisymmetric jets, the dispersion of pollutants and free surface problems.

APPLICATIONS
(1) Unsteady, attached flow about an aerofoil

In this case, vorticity is only shed from one point, the tratling edge, and the most
important part of the calculation is centred around the modelling of the trailing-~edge flow.
Basu and Hancock (7) represent the wake vorticity immediately adj.cent to the trailing
edge by a sheet of vorticity whose length and inclination are subsequently calculated as
part of the solution. An interesting result of this calculation is that the inclination of
the sheet agrees with that proposed as a Kutta condition by Maskell (8). Vorticity further
down the wake is represented by discrete vortices. The method has been applied to an
aerofoil suddenly changing incidence, entering a gust and oscillating. The oscillating
aerofoil has also been studied by Vezza and Galbraith (9) who used a similar repregentation
at the trailing edge and a comparison of their results with experiment is shown in Figure 1,
where it can be seen that the experimental lift loop has been reasonably well predicted.

For the starting flow round an aerofoll it is questionable whether in the early part
of the motion that a planar vortex sheet is a good representation of what is likely to be
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a spiral vortex sheet. This is modelled by Graham (10) as a concentrated vortex joined
to the aerofoil trailing edge by a cut and it is arqued that this is a better representa-
tion when the flow is dominated by rapid changes round the trailing edge compared with
convection due to the free stream.

(2) Unsteady, separated flow from a single edge

A purely oscillatory flow, with zero time mean, can occur under waves and the predic-
tion of forces on bodies in these conditions is of interest to the offshore industry. The
flow is characterised by the Keulegan-Carpenter number (KC) = 27a/D, a being a free-

stream particle displacement and D a typical dimension of a body in the flow. Thus if
the Keulegan-Carpenter number is small any vortices formed from one edge will not have
time to interact with vortices from another edge before the flow reverses, although subse-
quent vortices from a single edge will interact,

This type of flow has been considered by Graham (11) and is shown in Figure 2. He
shows that for a flat plate the drag coefficient is given by
Cp=A KC- 173 (see Figure 3), but that A is over predicted by about 40% . 1In this
calculation a multi~vortex model was used but with a single plane sheet element next to
the body edge. Thus the representation at the separation point is similar to that used in
(7) and (9).

Another problem where vortex shedding from two edges may not interact significantly
is the case of the shedding from the keel of a rolling barge. In this case vortex
shedding from the keel, particularly if it is sharp, will produce damping in roll which
cannot be calculated other than by using vortex dynamics. This damping has been calculated
by Downie, Bearman and Graham (12) using the method of Graham (ll) for placing the vortices
into the flow near the sharp edges. A similar calculation has been presented by Brown and
Patel (13) where now the most recent vorticity shed in the calculation is not placed as a
sheet, as is done by Graham, but as a discrete vortex at a fixed point near to the shedding
edge with a strength proportional to the square of velocity at that point.

Another example of separation from a sharp edge is given by Evans and Bloor (14) for
the starting flow through a sharp-edged orifice. 1In this case the most recent shed vortex
is placed at a point, h, above the edge of the orifice. The vortex strength is taken as
proportional to u4, where u 1is the velocity at h, and h 1is calculated by ensuring
that the flow leaves the orifice edge smoothly. This method, and others, of satisfying the
Kutta condition will be discussed later. Results from (14) are shown in Figure 4 which
agrees reasonably well with photographs of the starting flow through an orifice.

(3) Steady, separated flow from a single edge

All vortex dynamics calculations are time-marching so it could be hoped that a calcu-
lation such as (14) above, if left long enough, would settle down to a fairly steady
pattern. Lewis (15) considered a similar problem to (14) and found that the large recir-
culating region downstream of the plate continued to grow with time with all vortices being
swept into it. This is obviously incorrect and the resulting calculation of drag showed
increasing large fluctuations as the time developed, Burton (16), however, did what seemed
to be the same calculation and showed very little fluctuation of drag, indeed the drag
coefficient agreed very well with experiment for the mean drag of a body shedding alternate
vortices.

Summers, Hanson and Wilson (17) and (18) have also done a similar calculation for the
flow over a building shape. 1In this case vortices do travel downstream in fairly well
defined clusters. The difference between their calculation and those of (15) and (1l6) is
that allowance is made for vortices to have reduced strength when approaching a surface by
diffusing opposite sign vorticity into the flow from the surface.

(4) Interacting separated flow

Most of the work on vortex dynamics has been in this area since it does present a
method of calculating complicated vortex shedding problems in two dimensions. It is now
accepted that the Strouhal number for vortex shedding from sharp-edged bodies is reasonably
well predicted. A recent calculation of vortex shedding from wedge and squares by Stansby
(19) shows, in ost cases considered, that the Strouhal number was over-predicted by about
25 % which is somewhat less accurate than earlier calculations for longer bodies.

A more difficult body to deal with is one, such as the circular cylinder, where the
separation points are not fixed. Immediately the question arises as to what to do about
the separation points: do you make an inspired guess, do you ui3e experimental data (which
seems somewhat pointless since the object is probably to predict some experimental data)
or do you perform a boundary layer calculation at the same time as the vortex dynamics
calculation? All of these methods have been used including modelling of the boundary
layer using vortex dynamics.

Virtually all of the calculations over-predict the drag and produce flow patterns
which indicate vortices rolling up too near to the base of the body. It is clear that
these effects are due to the fact that the vortices produced by the method are too strong
and so various methods have been introduced to build into the calculation some form of
vortex decay. Thus Smith and Stansby (20) and (21) use T (t*) = roexp(- q/t*) and
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Ali and Narayanan (22) use T (t*) = ro(l - exp{B/t*) where t* is non-dimensional time

and q and B are constants, In (22) the problem considered is that of a circular cylin-
der near a plane boundary and 8 is a function of the gap between the cylinder and the
boundary. The effect of different values for q are seen in Figure 5 (from (20)) where
the variation in g produces little variation in drag coefficient which is about 1.2
for q of 0.05 and 0.10 compared with 1.3 for gq = O. However, as can be seen,
the higher value of q eventually stops all oscillation of the lift coefficient and
presumably no vortex street is formed. It is somewhat peculiar that a non-zero time mean
lift is generated. The use of a decay law is usually justified on two counts; that real
vortices diffuse and that most experiments involving separated regions contain three-
dimensional effects which reduce the induced velocity at a point compared with a two-
dimensional model. The velocity field of a viscous, laminar vortex is given by

iy

v = ff% (1 - exp(-r2/4vt)) .

v being the velocity at radius r due to a vortex which at time ¢t = O had strength T _.
Thus the velocity field of the laminar vortex can be quite different from the velocity
field of the vortices with time delay mentioned above particularly near the vortex centre.
1f two potential vortices become too close they will tend, obviously, to move with very
high unrepresentative velocities and this is usually stopped by either giving the vortices
a core with a linear velocity distribution or by amalgamating vortices if they become too
close.

An example of using discrete vortices not only in the wake but also in the boundary
layer is given by Stansby and Dixon (23) where molecular diffusion is represented by a
random walk where the Reynolds number is introduced via a random walk with Gaussian dis-
tribution. The results are encouraging giving drag and Strouhal number in broad agreement
with experiment.

Stansby (24) uses a much simpler, empirical, criteria for separation on a circular
cylinder and again produces a reasonable prediction for Strouhal number and an underesti-
mate for drag.

Porthouse and Lewis (25) assume for a circular cylinder that separation is fixed and
a random walk is used on the shed vortices. These calculations show ::. increase in
Strouhal number with Reynolds number {via the random walk).

Large-scale separation from an aerofoil is another form of bluff body flow which has
been calculated by Vezza and Galbraith (26). 1In this case the separation point is fixed
and the flow started by suddenly putting the aerofoil up to the stalled incidence. The
vortices are given a constant vorticity core and vortices are coalesced if they become too
close. An example of the excellent agreement with experiment is shown in Figure 6. A
stalling aerofoil has also been studied by Lewis and Porthouse (27) and (28) who also
include stalled flow in a cascade of aerofoils,

The rapid deployment of a spoiler is another example of a large-scale separated
region on an aerofoil. This has been studied by Tou and Hancock (29) and experimental
adverse lift effects have been confirmed over a range of aerofoil angle of incidence and
spoiler angle.

An unusual application of the discrete vortex method is given by Scoliman, Smith and
Cheeseman (30) for the calculation of a circulation control circular cylinder. The
results predicting the lift-coefficlient as a function of jet momentum are reasonably good
but some vortex decay has had to be used to bring the results in line with experiment.

The interaction of the wakes from two bodies in a flow produces a further complica-
tion. Two circular cylinders across the main stream have been studied by Stansby (24) and
the large-scale features of the calculated wakes agree broadly with experiment although
the prediction of the forces is less satisfactory. Kamemoto and Bearman (31} have presen-
ted a calculation for the interaction of two flat plates across the stream and produce
flow patterns which look convincing but there are no experimental results for comparison.

(5) Unsteady free stream

Of particular interest to the offshore petroleum industry is the prediction of the
forces on bodies in an oscillatory free stream, usually, but not exclusively, with a zero
time mean velocity. One paper (ll) has already been mentioned in this area for low
Keulegan-Carpenter number flows where the separated shear layers may not interact. At
higher numbers significant interaction can occur with obviously more complicated flow
patterns. Early calculation by Stansby (32) for a circular cylinder with fixed separation
points under-predicted the drag coefficient at low Keulegan-Carpenter numbers and over-
predictad at high numbers. The inertia coefficient was under-predicted over the range.
The 1ift force will contain harmonics of the free stream frequ ncy depending upon the
Keulegan~Carpenter number and these are shown in another calculation by Stansby (33).
Instead of using the Biot-Savart law as in (32) to calculate the vortex velocities,
Stansby (34) used the vortex-in-cell method for the same problem again with fixed separa-
tion points. Now the root-mean-square of total force agrees well with experiment but the
individual drag and inertia coefficients show large discrepancies between calculation and
experiment. A more advanced method using a random walk simulation for viscous effects ia
presented by Stansby and Dixon (23) showing again a fair prediction of the root-mean-square
force but only a moderate prediction of the drag and inertia coefficients.
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Ali and Narayanan (35) have calculated the unsteady flow past a circular cylinder on
a plane surface and whilst the results agree reasonably well with high Reynolds number
full-scale experiments they do not agree with more detailed low Reynolds number laboratory
experiments.

Another example of an oscillatory free stream is given by Clements (36), in this case
dealing with the question of the effect on vortex shedding of oscillations superimposed
upon a uniform steady stream. He shows that vortex shedding can lock on to longitudinal
free stream oscillations at double and four times the normal shedding frequency and that
the drag is increased in these regions.

Oscillatory flow over sand ripples can also be dealt with using discrete vortices.
Two papers, Longuet-Higgins (37) and Smith and Stansby (38) deal with the problem. 1Ia
(37) conformal transformation is used for the ripples and a viscous dissipaticn is intro-
duced by allowing the core of a vortex to increase with time. The results show the same
trend for drag coefficient with the ratio of free stream particle excursion to ripple wave
length as that of experiment but there is some indication that the calculation might be
going unstable as time progresses. A vortex-in-cell method is used in (38), together with
a random walk, for the oscillatory flow over a sinusoidally rippled bed. Figure 7 shows a
comparison with experiment for the velocity at a point above the bed showing good agree-
ment as long as the vortices decay with time. In this case the circulation must decay by
55 % in its first quarter cycle for good agreement.

(6) Vortex interactions

A model of the Kelvin-Helmholtz instability has been studied by Bromilow and
Clements (39) taking into account surface tension and density changes across the interface.
It is shown that a high order form of rediscretization of the vortex sheet is required to
give good agreement with analytical predictions.

In (40) Bromilow and Clements have presented some calculations for the interaction of
two and three vortices of different strengths showing the possibility, in a single shear
layer, of rapid stretching and tearing of the vortices.

Acton (41) also studied the rolling up of a single sheet and found that to adegquately
represent vortex pairing the sheet had to be given some thickness.

In an attempt to investigate the effect of free stream turbulence on a shear laver,
Kiya, Ohyama and Hunt (42) performed an experiment on the effect of an isolated vortex on
a shear layer and modelled this by means of a discrete vortex calculation. The calculation
showed the basic features of the experimental flow particularly the early stages of the
interaction and assisted in understanding the complicated flow.

Waves on a free surface can be represented by a vortex sheet and this has been studied
by Stansby and Slaouti (43) together with the interaction of the wave with a body under the
surface. The results lock encouraging and show none of the instability found by other
authors.

N point vortices on the vertices of a reqular polygon are stable for N < 7, neu-
trally stable if N = 7 and unstable if N > 7 , Dhanak (44) examined the effect of a
finite core on the stability and found that now the arrangement was still stable for
N < 7 but unstable for N 3 7,

As a vortex is convected past a flat plate at zero incidence to the flow, 1lift is
generated on the plate and vorticity shed off the trailing edge which can interact with
the main vortex. This interaction, with the plate placed above a plane wall, has been
studied by Acton and Dhanak (45) and is a good example of a complicated flow which can be
modelled by a discrete vortex calculation. Whether it is a good model, of course, depends
upon the importance of viscous and three-dimensional effects in the real flow.

(7) Boundary layers

Boundary layers have been modelled using discrete vortices and a random walk to
simulate viscous diffusion in some of the vortex shedding calculations previously mentioned.
A more thorough modelling has been reported by Lewis and Porthouse (27 and Figure 8 shows
the solution of a laminar boundary layer compared with the Blasius solution. The displace-
ment thickness and momentum thicknesses are both predicted to an accuracy of about three
per cent. Decelerating and accelerating flows have also been calculated and compared with
Falkner-Skan solutions, the agreement is good for accelerating flows but less so for
decelerating flows.

(8) Axisymmetric flows and ring vortices

An obvious application of discrete vortex calculations is to axisymmetric jets
although it must be asked whether any jet is truly axisymmetric. The difference between
two~dimensional and ring vortices is, of course, that ring vortices have a self-induced
velocity which 18 a function of the core size and distribution, indeed zero core radius
will produce an infinite self-induced velocity. The representation of an axisymmetric
vortex sheet by ring vortices has been discussed by Bernardinis and Moore (46). Dhanak
and Bernardinis (47) chose a particular core size and vorticity distribution in studying
the evolution of an elliptic vortex ring. They showed the oscillation of the ring size in
Figure 9 which agreed well with experiment.




6-5

The starting flow of an axisymmetric jet has been well predicted using ring vortices
by Davies and Hardin (48). 1In this case the core radius was taken to be

(4vtR°/R)B where R, was the initial value of the ring radius at time t = O and R

the instantaneous radius., The calculation was taken much further in time by Davies,
Hardin, Edwards and Mason (49) in order to calculate the spectrum of noise from the jet.
The calculation shows that the peak Strouhal number is correctly predicted but the peak
is narrower than that of experiments, probably because the model does not allow for any
small scale asymmetric disturbances. The same conclusion is arrived at by Edwards and
Morfey (50) and is shown in Figure 10, In this case a velocity cut-off was used to
simulate the effect of a core on the velocity induced on a nearby vortex and this is
discussed by Morfey and Edwards (51).

Acton (52) modelled the effect of harmonic forcing on an axisymmetric jet and
produced results showing large scale eddies similar to those observed experimentally.
Figure 11 gives the radial velocity development with time for an unforced jet, showing
vortex pairing. Figure 12 shows the effect of forcing the jet and clearly demonsirates
the enhanced pairing of vortices caused by the forcing.

(9) Pollution modelling

Sene (53) has used the method to predict void fraction profiles for the two-phase
flow of air bubbles in a water mixing 'ayer, showing good agreement with experiment.
Figure 13 shows the reasonable agreement between the model and experiment for the ground
level concentration of a pollutant coming from a point source behind a blunt base. In
this calculation Turfus (54) used vortex decay with time, a finite core and also decay as
a function of the distance of a vortex from the wall.

A two-dimensional cloud of gas instantaneously released in a flow has been modelled
by Rottman, Simpson and Stansby (55). A vortex-in-cell calculation has been used togyether
with viscous diffusion using a random walk to study the progressive deformation of the
cloud. The results are in general agreement with both laboratory and large-scale field
experiments,

BASIC PROBLEMS AND TECHNIQUES

In a series of papers (56,57,58,59) Moore nas studied in detail instabilities that
can arise in vortex sheets. In (56) he shows that a vortex sheet will develop a singu-~
larity as an initial disturbance evolves and that unless the vortex layer which is repre-
sented by a sheet is undergoing rapid stretching then the thickness of the layer must be
represented. It is well known from early calculations that discretising a vortex sheet
can eventually introduce chaotic motion into the vortex paths. This is shown by Moore (57)
to be due to numerically introduced disturbances which are amplified and that the instabi-
lity can be reduced by using either a repositioning technique or smoothing. Both methods
were tested on a circular vortex sheet. Discretization of surface waves can introduce
spurious resonances as discussed in (58) and it is not clear why these resonances did not
occur in the calculation of Stansby and Slaouti (43), A further discussion of these
resonances is given in (59).

Two techniques are used to improve the representation of a vortex sheet that is
rolling up and both of these have been discussed by Bromilow and Clements (60). If
vortices become too close together then very high velocities are induced which are totally
unrepresentative of the real flow. One solution is to give to each vortex a core where
the velocity is reducing to zero as the centre of the vortex is approached, another solu-
tion is to simply amalgamate vortices which become too close. It is a modification of
this second method that is discussed in (60) and it certainly gives a smooth rolling up on
a sheet. Rapid stretching of the sheet can mean that vortices become so far apart that
the representation is lost and for this reason alone some form of repositioning of the
vortices should be used. One such method is given in (60}.

It is evident that the discrete vortex method when applied to bluff based bodies is
reasonably successful in predicting Strouhal numbers but the flow patterns produced show
vortex formation that is closer to the body than that seer in experiments. One result of
this is that the forces, and in particular the drag, are usually too large. To counteract
this, as has already been mentioned, some workers give every vortex & decay which is a
function of its age. This is sometimes justified by saying that viscous diffusion is being
modelled but this cannot be the case since viscous diffusion produces a core to the vortex
and leaves the far velocity field of the vortex virtually unchanged. A better representa-
tion {8 a vortex core which is expanding with time as used by Longuvet-Higgins (37).

Most experiments on separated flows undoubtedly contain three-dimensional effects and
again vortex decay is occasionally put into the calculation to allow for these effects. A
preliminary assessment of these effects has been made by Graham (6 ) by considering the
spanwise waviness of the shed vortex lines, the effect being to reduce the drag coefficient.

There appears to be no agreement as to what value of decay should be put into these
calculations, indeed Stansby (19) using the same calculation method and the same decay rate
shows good agreement with experiment for a wedge but not for rectangles and squares.

wWhether the lack of agreement is because the calculations are two-dimensional and the
experiments are largely three~dimensional cannot be easily resolved. One comparison,
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however, is available between the vortex method and a two-dimensional Navier-Stokes solu-
tion. Figure 7 showed good agreement between the vortex method, with imposed vortex decay,
and some experimental results. The original paper giving these experimental results also
showed good agreement between these results and a Navier-Stokes solution, which seems to
indicate, at least in this case, that the vortex decay was not accounting for three-dimen-
sionality but possibly for viscous effects.

It is possible that the vorticity shed at the separation points in the calculations
is greater than in practice because vorticity of the opposite sign generated in the base
region is usually neglected. A scheme for considering this vorticity is presented by
Stansby and Dixon (62) which introduces secondary separation of the flow in the baseregion.

The application of a continuous Kutta-Joukowski condition at a separation point when
a discrete calculation method is being used presents some problems. If U 1is the velocity
at the separation point then the rate of vortex shedding is U2/2 and the vorticity
convects away with a velocity U/2. If the continuous vortex sheet just downstream of
the separation point is replaced by a point vortex then to satisfy the Kutta condition the
separation point will be a stagnation point and U = O. There are then two possibilities,
either to fix the strength and the position of the last vortex which has been shed and
evaluate U somewhere near the edge or to relax the Kutta condition and fix the initial
position. A more satisfactory solution is to represent the initial shed vorticity as a
sheet attached to the separation point as has been done in (7) and discussed, together
with the point vortex representations, in Graham (63).

The size of the time step in the calculation 1s obviously important and most papers
give some indication as to what values have been used. Kamemoto and Bearman (31) made a
thorough study of this together with the effect of the initial vortex position for the
flow round a flat plate. The conclusions are that the first vortex should be placed about
one per cent of the base height away from the body but at the same time the non-dimensional
group of vortex position divided by free stream velocity times the time step should be
about 0.05.

The calculation of the force on the body is done either by using Blasius equation or
by integrating the pressure distribution. Using Blasius equation implies that the total
pressure in the flow is the same in all regions including the wake and therefore the drag
is solely dependent upon the motion of the vortices. Putting vortex decay into the calcu-
lation may model the total pressure loss in the wake. The pressure at a separation point
is the same either side of the vortex sheet and thus given that the velocities are differ-
ent then the total pressure variation in the wake region can be calculated if the time
derivative of velocity potential can be accurately assessed. This appears to be difficult
and pressure distributions in the base region usually show greater variations than those
given by experiment.

CONCLUS IONS

The modelling of high Reynolds number flows using vortex dynamics has been developed
in the last few years to the point where it can give reasonable answers to complex problems.
It is particularly successful in predicting some aspects of unsteady flows where large-scale
vortex interactions are a main feature of the field but does not seem to be too successful
in estimating forces unless some empirical input is put into the calculation. Obviously
more work must be done to improve the estimation of the forces.

Further applications of the method may well be in areas where the flow is very unsteady
such. as where the main stream is oscillating or the body is changing shape. Recent appli-
cations to problems involving the dispersion of pollutants in separated flows are encourag-
ing and calculations involving jets and buoyant plumes at an angle to a stream are promising.
The multi-vortex model of a boundary layer and its disturbance leading to transition both
show reasonable results,

The method should not be seen as a competitor to Navier-Stokes or Euler solutions but
rather as a complementary method which focusses attention on large-scale structures.
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Figure 2

Osclllatory flow about a wedge corner
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Figure 4

Starting fiow past a plate
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Recent Activity in Vortex Methods in the United States
A. Leonard

California Institute of Technology, 301-46
Pasadena, Califaornia, 91125, USA

1. Introduction

Vortex method for flow simulation continue to have a wide-ranging appeal as a means of developing
a better understanding of a complex flow and, In many cases, obtaining useful quantitative data. Part
of the appeal is in the relative simplicity of the coaputer code that is required to do the job and,
usually, in the relatively low compultational cost. For example, experience has shown that some fairly
complex three-dimensional flows may be simulated with a hundred or so vortex elements (sections of a
vortex tube). Another aspect of the appeal is the visualization of the flow in terms of vortex dynam-
ics, an aspect that aids in the physical understanding of the flow.

In this paper. recent activity in the United States concerning flow simulation with vortex
methods js reviewed. We consider three main areas of effort: scparated flows in two-dimensions (Sec-
tlon I1), siaulations ysing the method of contour dynamics (Section [II) and three-dimensional flows
{Section IV). Finally, in Section V., we cite directions for future efforts that look particularly
promising.

2. Separated Flows

In many unsteady aerodynamic flows of interest the wake {8 characterized by the presence of
time-varying, compact vregions of vorticity. For constant density flows with negligible upstream tur-
bulence, this vorticity is generated only at the no-slip boundaries of the solid surfaces. At high
Reynolds number, once the vorticlity separates from the boundary layer. [t moves with the fluid with
very little diffusion. These features suggest the use of a vortex method, in which parcels of vorti-
city move with the local fluld veloclty, to simulate numerically the dynamics of the wake. For two-
dimensional flows away from the influence of bhoundaries, vortex methods are reasonably well-
established and methods for three-dimensjonal flows are developing rapidly (1].

However, to simulale separated flows two other necessary ingredients must be added:

1. Satisfy the (aviscid boundary comndition at the solid surface, i.e. no flow through the walls,
and

2. Determine the locatlens of the separation points in time and the flux of vorticity into the outer
flow

The first ingredjent is rather easy to take carce of. One can simply use a boundary integra)l
method. one fourm of which s the panel method. where vortex tlles are laid along the boundary and the
circulation of each tile is determined from the solut,on of & lincar system representing the mutual
infiuences of the tiles. For a simple geomctry in two dimensions, i.e. any shape that can be
transfurmed tu a clrcle by a confarmal map. the sethod of images {8 vonvenient. The second ingredient
is, in general, much more difficuit to satiafy. Here we have to compute the unsteady mechanics of the
separating boundary Jayer. IT we want to simulate a flow with a turbulent bvundary layer we arc at the
sercy of avallable methods for these flows. However. If the boundary layer is laminar. we should, in
principle, be able to compute what 18 required. This has been done for two dimensional flows with
severa! levels of suphistication with some success (see Spalart, et al {2]) but more work needs to be
done. For example, the following possibilities exist:

1. At the lowest level approximation, we assume the locations of the separation puints or simply let
a single ilayer of vortex elements take the place of the vortex panels representing the boundary
layer  Reasonable results might be expected., for emmmple, for shapes with sharp edges.

I1. At the next level one might use an integral boundary layer method to determine when separation is
allowable. 1f the separation criterion ts not sntisfled vortex elements are not permitted to
leave the surface

{11. Finally the ful) boundary layer equations would be integrated numerically using. e.g.. finite
difference approximations, or by the use of vortex sheets with random walk.

A number of interesting applications have been computed recently Spalart (3] has simulated the
blockage effect of wind tunnel walls for flow past an airfotl at 90° angle of attack with blockage
ratios (C/W = chord/tunnel height) between 0 and 0 2 Figure 1 shows typical snapshots of the fiow
The resulting increase in drag Is well represented by the expresslon,

"
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with a = 0.7, Cd is the measured drag coefficient for free air. Experimental studies have recom-
mended values of J’betueen 0.5 and 0.96 and small disturbance theory gives a = 0.5.

In the same paper, Spalart also studivd the phenomenon of rotating stall in a cascade. A number
of cases were run on a cascade of five independent blades with periodic boundary conditions with two
parameters varied between cases; stagger angle and angle of attack. The simulation produced the
essential features of the various flow regimes and mapped the stall boundary. Typical results are
displayed in Figure 2. In both of the above studies, Spalart used an integral boundary-laver solver
(type 11 above).

Becausc the flow domain is grid-~free, complex shapes and even multiple bodies can be treated with
relative ease. For example, Couet and Spalart {4] studied the pressure traces on a bluff body .ocated
in the wake of another bluff body. The objective here was to design an accurate flow meter based on
the nearly periodic shedding of the vortices behind bluff obstacles. Again, an integral boundary-
layer solver was used. Figure 3 shows the instantaneous streamlines for onc of the geometries that
was studied. In a simulation involving a single body case, but with a complex shape, Lee and Bodapati
(5] studied the flow past an airfoil with a deflected spoiler. They found good agreement between com-
putational predictions and experimental results for large spoiler deflections but less satisfactory
agreement for small deflections. In particular, the base pressure Is underpredicted, apparently
because of viscous and/or three-dimensional effects not accounted for in the computation. Again,
integral boundary-layer mcthods were used for the above mentioned studies.

The use of a type I boundary layer method is exemplified by the study of Cheng., et al of a
leading-edge flap [6) and Sarpkaya and lhrig's [7] simulation of flow past rectangular prisms at angle
of attack. Of particular interest in the latter study were the time-dependent forces on the prisms
during the startup transient. Finally a type I1I approach using the random walk method, was used by
Choniem and Gagnon (8] to study laminar flow over a backward-facing step. After filtering in time to
the remove statistical fluctuations of the randos walks, good comparisons werc obtained with experi-
ments for Reynolds numbers in the range 50 to 250.

3. Contour Dynamics Methods

If the vorticity fieid can be assumed to consist of regions or patches of constant vorticity, we
can recduce the two-dimensional problem to the problem of tracking one-dimensional contours, the boun
daries of the patches. Mapy carlicer studies, using this technique, concentrated on finding rotating or
translating, equilibrium states of vortex patches {9,10] with a few exampies of relatively short-
durat.on dynamic caloeulations {11,12). Morc recently, the emphas!s has hus n on studying the sta
biiity of various equilibrium shapes, studying the dynamics of vortex patches in axisymmetric flow,
and developing mcethods tu extend dynamic caivulatiuns to long times.

To cite specific examples in the first group, we point to the study by Meiron, et al [13) where
the linear stability uf vortex atreets of vortex patches was considercd and to Dritschel's investiga-
tion [14} of the linear stability of corotating vortices. Mote recently Dritschei has studied the
nonlincar eveolution of corotating vorticitices [15), and Shelley [16) has studied the nunlincar rollup
of a finlte thickness vortex sheet and has considered how the process iimits to the case of zero
thickness.

For axisymmetric fluws, one defines tic vortex patches such that the vorticity is proportional to
the radlal coordinate. In this case, the vorticity transport equation

[y
Diry

Dt
is satisfied for all interior points. Norpury [17] had computed the shapes of the cores in 1973 for a
one parameter famlly of vortex rvings, extending from Hill's spherical vortex uvn one end to a nearly
circular shape for a ring with vanishing core area. But 1t was only very recently that a contour
dynamics algorithm was developed. Pozrikidis [18) and Shariff, et al [19) have studied finite aap!i-
tude disturbances tu Hill's vortex. 1In the latter study the dynamics of iwo vortex rings in collision

and {n an overtaking interaction were considered as weli. See Figure 4 fur an lllustration of the
overtaking interac!ion.

0.

Buiiding on the anaiysis of Kida (20]. which gives the cxact evolutlion of an elliptical vortex
patch In a sirain Tield, Melander, et al 21 have developed approximale dynamical equatiuvns for «
collection uf eiliptical vortex patches, under the assumption that the patches reamin clliptical
Thus two more degrces of freedom per vortex element arc reguitred over the circular blub approximation.
aspect ratic and oricntal.on angic, but the increased accuracy may well be worth it.

Finally, we note that Dritachel (22] has suggested and tried certain "contour surgetry” algarithms
that allow the simulation of evolution problems to jong timcs 4t a reasonable cost. The ldea is to
remove thin C({ismentary structures that have very little Influence on the future dynamics but would
require consjdcrable computatjunal resources to saintain their identity. This pattern-recognitiun
problem s also important for three-dimensiona! vortex filament and vortex sheet amethods but has
recetved unly limited attentlon so far [23).




4. Methods for Three-Dimensional Flows

In a three-dimensional vortex method., vector elements of vorticity move at or near the local
fluid velocity with the vectors strained by the local velocity gradient. In many applications, the
vorticity field jis well represented by isolated, thin tubes. Accurate equations for the long-
wavelength dynamics of thin vortex tubes are available and form the basis for a three-dimensional vor-~
tex filament method {1}. Recently Parekh, et al [24) simulated an excited round jet in this approxi-
sation. It had been observed experimentally that dramatic changes in the structure of the jet fluid
are achieved by Introducing axial and orbital excitations. For this flow, the interplay between com-
putation and ongoing laboratory experiments has led to a bLasic understanding of the mechanisms that
govern the structure of the '«* and how they might be controlled. See Figure 5 for typical experimen-
ta) and computational results

In oi.her applications, the vorticity field is a relatively smooth continuum. In this sitpation,
vortex elements must be densely packed to represent properly the dynamics of the continuum. Recent
mathcmatical proofs [25,26] have shown that. when properly constructed, vortex methods will produce
sulutions that converge to the solution of the Euler equations as the number of computational elements
increases. Nakamura, et al {27] studied the three-dimensional breakdown of a vortex tube using 28
computational vortex filaments distributed over four radial zones forming a closely packed array.
Upstream of breakdown the filaments were helical with pitch varying as function of radius to represent
the axial and tangential velocity distributions of an experiment. Rather arbitrary three-dimensional
initial perturbations eventually evolved into a nearly axisymmetric breakdown, followed downstream by
a recovery and then a spiral-type breakdown. See Figure 6 for an illustration of this computational
experiment. Quantitative comparisons with experiments were quite good.

In the above simulation of vortex breakdown, computed via the Biot-Savart law, a relatively large
number of computational elements was required leading to very long computational times. An alterna-
tive technique available for certain types of boundary conditions, the vortex-in-cell method, may be
used to compute the vortex interactions thereby significantly reducing the price of the simulation.
Using the technique developed for infinite shear layers doubly periodic in the plane of the layer
[28], Couet and Leonard (see [29])) studied the dynamics of perturbed Stuart vortices, obtaining new
insights regavding the broadband nature of the linear instability of the pairing mode (see also Pier-
rehumbert and Widnall [30]) and results for the nonlinear evolution of this and other modes as well.

5. Future Directions

In the future. we expect to see vortex methods: {a) applied to increasingly complex flows, (b}
extended to include a wider variety of physical phenomena, and (c) made increasingly efficient in
particuiar we feel that the following specific areas are ready for significant developments:

t. Compresslbiiity effects - How dues on efficiently and accurately include the effects of V.. u 20

in a vortex simulation? Steinhoff apd Suryanarayanen |31j, Koshigoe and Culick {32]. and. Lund
and Zabusky {33} have made some sugpestions under various appruximations.

2. Vortex core models and vortex sheets - How does one represent the effects of a short waveiength
disturbance or a4 deformed core Wwith possible axia: tluw without going to a multiple filament
approximat {on The suggestion uf Melander, et al (21]. discussed above, to consider elliptical
cores §8 an inieresting possibility for two dimendional flows while Lundgren and Ashurst {34]
have derived and tested approximale evolution equations for variex f(iiaments with time- and

sprace-varying axtal [lows in manpy flows of interesl, par! of the vorticity field has a sheet
iike structure. Methods should be developed to rep:esent and track sheet {ike st uctures fven-
tuaily vne would }Jike to ailuw for changes in tupology. reconnection or solutions, and smoothing
3. Three dimensional boundary layers Befure one (an werjousjy consider the simulation of flow past

an arbitrary three Jdimensional bliuff body an efficient scheme for computing the unsteady behavior
of a three dimensional buundary layer must be developed

4. New cumputer architectures The advent of highly vonmiurrent computing, in which hundreds or
thuusands of relatively inexpensive vomputers work simuitaneousl!y on the same problem could very
well have a major impact on fluid flow simulation in genural, and on vortex simulations in par
ticular Preliminaiy numerical experiments on a message passing machine {35], sometimes known as
the Cosmic Cube or hypercube, have realized very high efficiencies for Blot -Savart interactions
We expett that more compiex problems. involving boundary layer calculations and boundary-integral
methods. will also be well suited to such machines
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Figures

FPigure 1. Simulated flow at a = 90° [3].

ta) Blockage ratio C/W « 0
(b) C/W = 0.2.
The body, vortices and streamlines are shown,

Dashed lines are the wall-suction distribution.
The arrow is the force vector on the airfoil.
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Figure 3. Vortex flowmeter [6]. Flow past a rectangle
in the wake of a wedge after an implusive start.
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Pigure 4. Contour dynsmics simulation of two co-moving vortex

rings in an overtaking interaction {19].
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Bifyrcation round jet, excited axially and orbitally.

(Left) Experiment of Lee and Reynolda, Bull. Amer. Phys.
Soc., 28, 1983, 1362.

(Right) Vortex simulation: [1], [24]

(Top) Front views

(Bottom) Side viaws
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(a) (b) (c)

Figure 6. Simulation of vortex breskdown [27].
(a) Vortex filaments in innermost radial zome.
(b) Second radial zome.
(c) Third radial some.

(d) Outer radial zone.
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