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Approximate Exit Probabilities for a Brownian

Bridge on a Short Time Interval, and Applications

by

H. R. Lerche D. Siegmund
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t

Summary.

Let T be the first exit time of Brownian motion W(t) from a~egion 1Z in ddimensional

Euclidean space having a smooth boundary. Given points & ad C1 in ., rdinary and

large deviation approximations are given for Pr{T < eIW(O) - , W(t) = } as i -- 0.

Applications are given to hearing the shape of a drum, approximating the second virial

coefficient, and Monte Carlo estimation of first passage distributions fcr Brownian motion.

Key Words and Phrases: Brownian bridge, first passage, hearing the shape of a drum,

Monte Carlo methods.
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1. Introduction.

Let W(t), 0 < t < oo, denote Brownian motion in Ed with W(O) = o. For t > 0 and

events A in the a-algebra generated by W(s), 0 < s < t, let

P04, (A) = Pr(AIW(0) = to, W(t) = Ci).

Assume that Co and , belong to some region R with a smooth boundary &7R, and let T

denote the time W first leaves R, i.e., T = inf{t : W(t)e8R.}. The principal subject of this

paper is the asymptotic behavior of

(I,4) 1(T) t}

as t --+ 0 and the ti are at a distance 0(t 1 /2 ) from each other and from 6RL. A secondary

consideration is the case where the distances of the Ci to the boundary and each other are

fixed as t --+ 0.

This problem for d = 2 and Co = 1 arises naturally in the beautiful paper of Kac

(1966), who was concerned with the behavior for small t of

(1.2) E exp(-At),

where the Ak are eigenvalues of the Laplacian acting on functions having domain 1Z and

vanishing on 8R. Kac shows that as t --. 0 (1.2) has an expansion of the form c1t - 1 +

c 2 t - 1 /2 + o(t-1/2), where cl and c 2 are numerical multiples of R1, the area of RZ, and 181R1,

the length of 8"R, respectively. He argues heuristically that the next term is (1-h )/6, where

h is the number of holes in RZ. For more detailed results along these lines, see Louchard

(1968), McKean and Singer (1967), Stewartson and Waechter (1971), and Smith (1981).

Of these, only Louchard attempts a probabilistic analysis, and his argument appears to

contain a mistake.

Starting from the physical problem of evaluating the second virial coefficient of a

hard sphere gas, Handelsman and Keller (1966) arrive at essentially Kac's mathematical

problem, for the case d = 3, o = 6i, and 1Z the region exterior to a sphere. They derive

what in Kac's problem corresponds to c3 and the next term, c4t0 / 2 . Although their method
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does not seem capable of being turned into a rigorous proof, minor modifications appear

to produce correct answers under much more general conditions.

A problem having a rather different flavor is to estimate (1. 1) by a Monte Carlo exper-

iment, when t is not necessarily small and the fi are not necessarily close to the boundary

of 7X. A natural approach is to partition the time interval (0, t] at m + 1 equally spaced

points t, = it/m, i = 0,..., m and count the relative frequency with which a simulated

path W(ti), i = 0, ,...,m, leaves . The bias introduced by discretization is typically

O(m - '/ 2 ) (cf. Siegmund, 1985, Chapter X, or Hogan, 1984); and increasing m sufficiently

to reduce this bias to an acceptable level is computationally time consuming. However.

having observed W(t.- 1 ) = fi-elZ and W(t,) = feR, one can use an approximation to

(1.1) and a single uniform random variable to simulate the event that W(s) leaves 1Z for

some s in the time interval (ti- 1, ti). Although the original interval [0, t] need not be short.

the various subintervals [t- 1, ti] are, provided m is large.

Note that this technique does not require that W be exactly Brownian, but only that

it be approximately so over short time intervals. The basic idea is in principle applicable

to diffusion processes and to certain Gaussian processes which are locally Brownian.

As noted by Kac, in the case o = f 1, the probability (1.1) is to a first order approx-

imation equal to the probability that W(a) for some 0 < 9 < t touches the plane tangent

to IR at the point of &X closest to fo. Section 2 contains the first term of an Edgeworth

ty z txpansion for this probability when fo and f are not necessarily the same. A large

deviation approximation is also given. Section 3 gives the substantially more complicated

second Edgeworth term. For computational simplicity only the case f0 = f is considered

there, but this case illustrates the method and contributes to the Kac and Handelsman-

Keller problems. The method used in Sections 2 and 3 is a modification of that introduced

by Siegmund and Yuh (1982) in a simple linear case and explored more thoroughly by
Siegmund (1985).

Section 4 describes some illustrative Monte Carlo experiments. It can be read in-

dependently of Sections 2 and 3, except for an occasional reference to some of the basic

notation and to the statements of Theorems 1 and 2.
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2. Approximations to P(t), {T < t}.

For ease of exposition we consider in detail only the case d = 2 and indicate in some

remarks how the results are modified for general d.

Given to, tj eR, close to &R7 and to each other, assume there exists a unique point on

8R the sum of whose distances to the given points is a minimum. Consider the Cartesian

coordinate system which has this point as its origin, the z- axis as tangent and the y-axis

as outward normal to R. There exists a function y = f(z) such that locally near (0, 0) aTiZ

is given by the graph (z, f(x)). Let tj have coordinates (x,, y,) in this coordinate system.

and assume that y, < 0(i = 0, 1). It is easily seen that to and tj satisfy -xo/IyoI = x i/Iyj 1.

(A ray of light emanating from to and reflecting off the z-axis at the origin passes through

ti.) Let W(t) denote Brownian motion starting from W(0) = to, and define

(2.1) T = inf{t : W2(t) _ f(W(t))}.

In general, T is not the exit time of W from R, but for to close to (0, 0) it is with probability

close to one. (A more precise estimate is given below.)

In order to study P(') {T < e} it is convenient to use Brownian scaling to replace the

given problem on the time interval [0, e] by an equivalent one on [0, 1]. Since W(ct)/6 ' / 2

is Brownian motion starting from / = e/cl /2, it is easy to see that

(2.2) () T < e} '

where tj = ti/e1 / 2 (i = 0, 1) and

(2.3) T = = inf{t : W 2(t) _ C- 1/ 2 f(C 1l2 W(t))}.

To give a precise statement of our first result it is convenient to change our viewpoint

slightly and regard f as given and the points j as variable.

Theorem 1. Assume f is twice continuously differentiable, f(0) = f'(0) = 0. and

f"(0) # 0. Suppose j = (xi, y,) (i = 0, 1) satisfy y, < 0 (i = 0, 1) and -o/0yoI x V/ 1.

and converge to (0,0) as e -. 0 in such a way that = 1/2 are fixed (0 = 0. 1). Then

for T defined by (2.1)
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(2.4) P(,:,I, IT < e} = exp(-2yo9//e){1 [ 1Y I1-f' (0) le-z/jol

0~[(yo + yl)/Cl/2]( - -z)) 
1 xIyI+xIyI (I/)

X YO + Y1 )/C1/2] 0 1

where 4 and w are the standard normal distribution and deasity function respectively.

Proof. By virtue of (2.2) it suffices to consider the standardized problem on the time

interval [0,1], with fixed initial and terminal points o = (io, go) and i = (ii,9)i and

t defined by (2.3). To simplify the notation we consider only this standardized problem

and omit the tildes for the rest of the proof. In this new notation, where all variables have

tildes, but the tildes are omitted, (2.4) becomes

(2.5) P(" {T, < 1} = exp(-2yoy )j 1 -(/2ff"(0) 9IYoY1,

D(Y9°+ Y1 (1 _(.Ti _ o)2) + (X2 lyI + X2pl o1]}
x Wo( Yo + YO01I 

O ) + 0 )

with T, defined by (2.3).

We begin with an informal calculation and provide a justification later. The argument b

proceeds from a suitable likelihood ratio identity. Let ' = (z, Ily I). The likelihood ratio

of W(s), s < t, under P(l) relative to ") is easily calculated to be

exp(-21yoy I)exp[-21yi1IW2(t)/(l - t)].

Thus since W 2 (T) = e-l 2f('l 2 W(T)), we have

(2.6) P(') {T < 1} exp(21yoyI 1)

= () exp -21yhIf(e 1 /2 W(T))] • T < 1,(o, exp2( "/' - T) J

(cf. Siegmund, 1985, Proposition 3.12).

Since

(2.7) C-1l 2f(C1 /2X) , f 1/2 f"(O)z 2 /2 - 0 (c - 0),
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for all sufficiently small e,P {T < 1} = 1, and the right hand side of (2.6) can be

expanded to become

(2.8) 1 -le iI/2 f "(0)E(l), [W(T)/(1 - T)] +...

Define

(2.9) = inf{t: W 2 (t) > 0}.

From (2.7) follows P('), {T -r} = 1, and hence (one expects that)

(2.10) [W(T)/(1 - T)] -+. E( ), [Tv2(,,)/(1 - r)].

It is easy to see that conditional on W 2(t),t < r, Wi(r) is distributed as [r(l - r)]I/ 2 Z +

xO + (zl - xo)r, where Z has a standard normal distribution. Hence

(2.11) E(1), [WJ(7)/(1 - T)l = X2 + (1 + 2xox - )E()

z21E(l) , [r2/(1 7)].

Equation (2.5) follows from (2.6), (2.8), (2.10), (2.11), and the evaluations given below in

Lemma 1.

To make the proceeding manipulations into a proof, one must consider the remainders

in (2.7) and (2.8), and justify the convergence indicated in (2.10). Ip
Let A = {maxe<T IWi(t) < C-1/4}. From the distribution of the maximum of a

pinned Brownian motion (e.g., Siegmund, 1985, (3.13)), it is easy to see that

(2.12) P(1) (Ac) + Pl)o, (Ac) = o(k) for all k > 0.

Hence (2.6) can be replaced by ,,.

(2.13) P.(') {Y<Xep-2lyoyll)

E(1). {exp [-21yi-f(("/Wi(T ; {T < 1} fl + o(()k)

(0 61/2(1 - T) T
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for all k > 0. Let 6 > 0. By (2.12) and two applications of Taylor's theorem with remainder

along the lines suggested in (2.7) and (2.8) one can obtain upper and lower bounds for the

right hand side of (2.13) in the form

1 I 41E [W?(T)/(1 - T); A] + o(ek).

Since b > 0 is arbitrary, by (2.11) and Lemma 1 below it suffices to show (cf. (2.10))

E(), [W?(T)/(1 - T); A] -E, [W (r)/(1 -r)],

where r is defined by (2.9). Since P(1, T } = 1 and by (2.12) Pf,(A) -+ 1. It

suffices to show

(2.14) {1A W1(T)/(1 - T); e > 0}

is uniformly integrable.

Let r' = inf{t W2(t) > I yI/2}. For all sufficiently small e A C {T < 7-. It is easy

to see that [Wl(t) - - (XI - Xo)t]2 /(1 - t)2 - t/(1 - t),0 < t < 1, is a martingale and

hence [Wi(t) - x0 - (x1 - Xo)t]2/(1 - t)2 ,0 < t < 1, is a submartingale. From the joint

distribution of r' and W, (r') we obtain

E), W 1 (T') _ X- (XI _ Xo)r#]2 /(1- - E(l),[(

which is finite by Lemma 1 below. Also

o t[W1 (t) - - (zI- Xo)t12 /(1 - t) 2 ; TM > -t(l-)> t} 0

as t --+ 1, again by Lemma 1. It follows from Doob's optional sampling theorem that on

{T < T'}

[WI(T) - xo - (xi - xo)T]2 /(1 - T)2

E~l), I [W 1(,r) - XO- (XI _ Xo)T 2 (1 - -r' )2 I1W(t), t < TE( 91) I o -,',, J .

Hence {1{T<,})[WI(T) - xo - (xi - zo)T]2 /(1 - T) 2 ,C > 0} is uniformly integrable. The

uniform integrability of (2.14) follows from the relation A C {T < r'), the inequaity

(a + b) 2 < 2(a 2 + b2 ), and Lemma 1.

6
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Lemma 1 provides justification for several steps in the preceding argument and eval-

uates the expectations appearing on the right hand side of (2.11). It will be convenient

to use the following notation. Let W(t), 0 < t < oo, denote one dimensional Brownian

motion with drift u and initial value W(O) = 0. We write P. and E,. to denote dependence

of probabilities and expectations on p. For b > 0 let rb = inf{t : W(t) _ b}, where it is

understood that inf 0 = +co. Let P~')(.) = P0(-W(1) = ).

Lemma 1. For 0 < t < 1 the p() density function of rb is given by .1*?

b t 1 21
(2.15) (t) I [tb(1 ( -b)

For > b

and

E(l)[7rb2/(1 - Tb)] -b/( - b) -

Proof. From the well known (and easily proved) fact that the p(l) distribution of

W(-) is the same as the P4 distribution of (1 - (.))W(--j-y), one easily sees that

P){ <t}= P4 {(1- s)W[s/(1- .- s)] > b for some s < t}

=f P4..b{fb :5 t/( -t)M

Equation (2.15) follows by differentiation of the well known expression for the last proba-

bility (e.g., Siegmund, 1985, (3.15)).

From (2.15) one obtains

E [r /(1 -Tb)] - b s-3/2(1 +s)-[ -b)/s 1/ 2 -bs/2]Ids.

Writing (1 + s) - 1 = fow e-'(l+*)da, interchanging the order of integration, and using the

well known equalityJ00
e- as- 3 (as'/_- us l1 )ds = exp{-a[(2a + p2)1/ - s]}

.I



(e.g., Siegmund, 1985, (3.16) and Problem 3.1), one obtains the given expression for

E)[r/(- )]. A similar calculation applies to E 1 )(1b).

Remarks. (i) As observed above, the boundary of 7Z can be defined locally near (0, 0)

by a function y = f(x), but in general it cannot be so defined globally. However, for e

sufficiently small, on { maxo<t<e IW1(t)l < C/4 T defined by (2.1) and the exit time from

1Z coincide, so there is no loss of generality restricting attention to stopping times of this

form. (ii) In higher dimensions, f" in (2.4) becomes the Laplacian Af, and x 2(i = 0, 1)

and (xi - xo) 2 become Euclidean distances II , 112 (i = 0, 1) and 11 x, - xo 112. The proof

is essentially unchanged.

In Theorem 1 o and C, are at a distance 0(e 1 / 2 ) from the boundary of 1Z and from

each other, and consequently P(') {T < c} converges to a limit between 0 and 1. Theorem

2 is concerned with the case that Co and i are fixed as e --, 0, so P(0, IT< -

As above, for given 0, 'j e 1Z suppose there exists a unique point on 1Z, the sum of

whose distances from 0 and j is a minimum, and consider the tangent-normal coordinate

system through this point. Let &, have coordinates (xi,yi) (i = 0, 1), and let 81? be given

by the graph of (x, f(z)) in some neighborhood of (0, 0), so f(O) = f'(0) = 0.

Theorem 2. Assume f is twice continuously differentiable, yoyx > 0, and

(2.16) 2yoyif"(O)[1 + (xi/y) 21/[yo + i,> -1.

Let T inf{t: W(t) e &R7}. Then as e --+ 0 .

(2.17) P(e) {T < el ,-,exp(-2c-& 1 yyi)60,4 {1 + 2yoyif"(O)[1 + (X1/yt)2]/lyo + y111}1 / 2 "

One can prove Theorem 2 along the lines of the proof of Theorem 1, but the details

are rather different. To keep this paper to a reasonable length the proof has been omitted.

An example comparing the numerical accuracy of (2.17) and (2.4) is given in Section 4.

An interesting case which fails to satisfy the conditions of Theorem 2 is 7z a disk with "r

o = C at the center. In this case, the nearest point on oR is not unique and (2.16) is not

satisfied. For an approximation in this case, which leans heavily on rotational symmetry,

8
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see Siegmund (1985, Problem 11.1). An exact expression has been obtained by Kiefer

(1959), but it is quite complicated.

A related but somewhat more complicated problem than that discussed in Theorem

1 is to approximate the joint distribution of (T, WI(T)), which can be attacked via the

characteristic function

(2.18) E (:)o [exp~iAI W1(T)/c1 /2 + iA2T/c}; T < c].

Expansion of (2.18) to the precision of Theorem 1 seems to require more complicated

calculations, which turn out to be very similar to those given in the following section in

order to obtain the term of order e in the expansion ofP(") T < e}.

It seems possible to obtain the results of this section by the methods of Jennen and

Lerche (1981, 1982), but the computations appear to be somewhat more complicated. If

one is interested in the joint behavior of T and WI(T), their method might turn out to be

the simpler one.

3. The term of Order c and Applications.

Calculation of higher order terms in the expansion (2.4) rapidly becomes very com-

plicated in detail. In this section we see what is involved by examining the term of order

c. (See equation (3.10).) To simplify the algebra we suppose that o = . This special

case sufficies for applications to the problems of Kac (1966) and Handelsman and Keller

(1967), which are discussed below (cf. (3.15)). We proceed informally as in the first part

of the proof of Theorem 1. The localization and uniform integrability arguments necessary

for a rigorous proof are similar to those in Theorem 1 and have been omitted.

Let 0 = 1. In the notation of Section 2 for the standardized problem on the time

interval [0, 1], (2.6) becomes
(3.1) T < I I}exp(2y, ,exp

404 0 0 el/2(1 T) jj

where o = (0, yo), = (0, lyo1), and T = T, is defined by (2.3). Assuming that f is three

times continuously differentiable, we have

-"l f(el x) = e/ 2 f"(O)x2 /2 + ef'(O)x3 /6 + o(E);

9
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and hence the right hand side of (3.1) becomes

(3.2) 1 - e1/2yolfi(O)E(1), [W2(T)/(l - T)]

1 clof ...(O)E( 1)4 W(T)/(l - T)] + 1CyO2[fII(O)2 E(') 4, [,j(T)/(l - T)2]3 240(0 40

Until further notice, we shall write P and E for P-),, and E, , Recall the definition

of T given in (2.9) and note that the conditional distribution of W1(r) given r is normal

with mean 0 and variance r(1 - r). Since P{T, --+ T} = 1 (c --+ 0), we have

(3.3) E[W3(T)/(1 - T)] -- 0

and

(3.4) E[W1
4(T)/(1 - T)21 -- 3Er2.

Also

(3.5) E[W2(T)/(1 - T)] = Er + {E[W2(T)/(1 - T)j - E[W?(r)/(1- r)] ;

and the final contribution to the term of order e in (3.2) comes from the difference on the

right hand side of (3.5), which is itself of order e' 2 .

First suppose that f"(0) < 0 and to simplify some details that f(z) !_ 0 for all x. The

case f"(0) > 0 involves a similar argument with slightly more complicated calculations.

Let .Ft denote the a-algebra generated by W(s), s < t. Since T < r, we have

(3.6) E[W2(T)/(1 -,r)] = E[(Wi(T) + W1 (r) - W1(T))2 /(1 -r)]

-E { + 2 WI(T) E[WI(r) - WI(T)I'T, r] + (1- r)-'E[(W(r) - W1 (T))2 IY Tr]l}

Conditional on FT and r, W(r) - W1(T) is normally distributed with mean -W, (T)( -

T)1(1 - T) and variance (r - T)(1 - r)/(1 - T). Hence after some algebra one obtains

(3.7) E[W2(T)/(1 - T)] - E[W(r)/(1 - r)]

= E[(1 - T)-2 W(T)E(,r - TI.FT)] - E[(1 - T)- E(r - TI.FT)].

10
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Doob's optional sampling theorem yields

E{(1 - r)-S[W2(r) - W 2 (T) - (r - T)(lyoI - W 2(T))/(1 - T)] IIY'T} = 0

(cf. Siegmund, 1985, Problem 3.12), and hence with probability one as c- 0

C1/2 Jf"(O)[Wj2(T)(1 - T)

(3.8) E(r - TIYT) 2 o f"(O) W (T)
11/01 +.je 1/2 tf"1(0)IW?(T)

C1/2[yoI-1f11(O)IWj(r)(1- r).
2

Substitution of (3.8) into (3.7) yields

(3.9) E[W?(T)/(1 - T)] - E[W(r)/(1 - r)]

, I/21Y1-o-If"(o)I{ E[W'(r)/(1 - r)] - EW2(r)}
2
1 __/21yo'-1f"(0){3E[r 2 (1 - r)]- E[r(1 - r)]).
2

From (3.1)-(3.5) and (3.9) we finally obtain

(3.10) P2){T< 1 ex1p(-2y { 1- s/2 yojfI(O)E(l ,(T)

1-erf"(0)12 r2ly2]+OC
+ e[f E') (1 - r)- r(1 - r)+ (04 +0)

where T is defined by (2.3), r by (2.9) o = (0, yo), and = (0, 1yo).

The expansion (3.10) also holds when f"(0) > 0. In this case r < T, so (3.6) must be

replaced by

E[W?(T)/(1 - T)] = E[W?(r)/(1 - T)J

+2EIW (,r)E [WI(T) - W()II+ E E[(W 1 (T) T 1 T
{Wi(TT 1 T

By optional sampling

E [W (T) - T( IMr] - -(1 -r)-'W(r)E[(T - r)/(1 - T)I.F,],

111



and it may be shown that

E{[W1(T) - WI(r)]2 /(l - T)1Y7 } - E[(T - r)/(l - T)I-,].

Hence in place of the equality (3.7) one obtains

E[W,(,r)/(1- r)] - E[W2(T)/(1 - T)]

E[(1 - 2W,(r)E(T- TJ7,.)] - E[(1- r)-E(T- rl. ,)].

A result similar to (3.8) holds for E(T - rl.F,), and the rest follows as before.

Remarks. (i) By the method of Lemma 1 one can evaluate the moments appearing

on the right hand side of (3.1). However, for the applications given below, which in effect

involve an integration of (3.10) over o, the computations are considerably simpler if one

interchanges the order of the two integrations and integrates over Co first. (ii) In higher

dimensions the relation of IR to its tangent planes can be more complicated than in two

dimensions. In general, one must condition on .TA, and consider the two cases {T < r}

and {T > r}. Whereas the term of order C1/2 involves only the Laplacian of f, i.e., the

mean curvature of 67, the term of order e involves mixed partials as well. For the problem

studied by Handelsman and Keller (1966), where 7 is the region exterior to a sphere in

1R3 one does not encounter these complications.

Now let T denote the first exit time of W from R, and for C0, C e 1Z define p(t, co, 6)

by

p(t, Co, 1)dt = Pr(T > t,W(t) e dC IW(O) = Co).

Observe that

(3.11) p(t,Co,Co) = (27rt)-d/2[1 - p(l) IT < t}].

In order to study (1.2) in a bounded region 7 in 1R 2 Kac (1966) uses the representation

exp(-t) = f t, So, o)d~o,

which by (3.11) equals

(3.12) (27rt-'[17?I - P() I{T < td]

12
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where R1g denots the area of R. Handelsman and Keller (1966) are interested in 17?3 and

the integral

JJJ1 - (27~rt )312p(t, o, o)]d~o,

which by (3.11) equals

(3.13) jjj to,o{T <t}d.

In order to analyze the integral in (3.12) it is convenient to make a change of variables

(cf., Pleijel, 1954) to obtain

(3.14) P(t < t}dto I(] {T < t}[1 - Iyolc(a)l1yoIdo + O(e-262 /t),

where a denotes arc length on &R, c(.) is the curvature of &., and O has coordinates

(0, Yo) in the tangent-normal coordinate system with its origin at the point a of 09R, so

yoI is the distance from o to 81R and c(ar) = -f"(0).

Keeping (2.2) and (2.15) in mind, one can substitute (3.10) into (3.14), integrate with

respect to Iyo1, then with respect to a, and refer to the Gauss-Bonnet theorem as indicated

by Kac to obtain

(3.15) Zexp(-Akt) = (2rt)-'I [1- [4(2rt)i/2]-10-RI

+(1 - h)/6 + 2 -8( 2 r)-i/2 (Li c 2(r)da) t/2 + o(t1/ 2 ),

where IOZRI is the length of aR and h is the number of holes in R.

Since (3.15) involves integration of (3.10), some additional justification is required to

claim that (3.15) has been proved rigorously. This seems a straightforward, albeit rather

technical matter. Since it does not appear to add significant insight, the details are omitted.

The expansion (3.15) agrees with those given by Stewartson and Waechter (1971) and

Smith (1981), both of whom used analytical methods and obtained additional terms. The

term of order t 1/2 disagrees with that given by Louchard (1968), whose argument appears

to contain an improper use of the Markov property.

A similar computation yields the expansion of Handelsman and Keller (1966).

13



4. Monte Carlo Methods.

Again let W(t) denote Brownian motion starting from some point inside a region 1R in

d-dimensional Euclidean space, and let T = inf{t : W(t) / IZ}. In this section we consider

the problem of estimating by Monte Carlo methods probabilities like

(4.1) Pr{T < t}.

The same ideas are applicable to substantially more complicated first passage distributions.

An obvious procedure to estimate (4.1) is to partition the time interval [0, t] by the

points t, = ic, i = 0, 1,..., m, where c = t/m, generate N realizations of the discrete time

random walk W(ti), i = 0, 1,... , m, and estimate (4.1) by the relative frequency among

the N realizations that W(ti) / R for some 1 < i < m.

The standard deviation of this estimator is of order N - 1/ 2 . Its bias equals the dif-

ference between Pr{W(ti) / R for some 1 < i < m} and (4.1), which presumably is of

order eli 2 (cf. Nagaev, 1970, Siegmund, 1985, Chapter X, Hogan, 1984). Thus the bias

is of the same order as the sampling error unless c is small compared to N- 1 . Since N

may be in the thousands, it is often computationally unfeasible to achieve a satisfactory

estimate by the obvious device of making e extremely small.

The procedure we propose to study is the following. Having generated the partial real-

ization W(to),..., W(ti) and decided that T > ti, generate W(ti+1 ). If W(ti+1 ) / IZ decide
T < ti+ 1 _ t. If W(t,+1 ) e R decide T < tj+ _< t with probability p[W(t,),W(ti+),E],

where p(CO, C1, e) is a suitable approximation for < } obtained from Theorem 1.

As a first example we consider a rather complicated, but linear problem. In this case

there is no question how carefully one should approximate P(e) {T < c}, which can be

evaluated exactly; and we see that a striking improvement in the accuracy of the naive

estimator is possible.

The example concerns

(4.2) P0(7{ max [W(t)- W(s)] > b),
O<a<t<l

where W is one dimensional Brownian motion and b is substantially larger than max(O, ).

so the probability (4.2) is small. This probability has arisen in the unrelated problems of
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Levin and Kline (1985) and Adler and Brown (1986). Hogan and Siegmund (1986) show

that if b --+ 0 and varies with b in such a way that C/b is a fixed real number less than

1, then (4.2) equals

(4.3) [2(2b - C)(b- C) + 1 + o(1)] exp[-2b(b - )1.

In order to check the accuracy of the approximation (4.3) by simulation, we first

generate a R(l) realization of the discrete skeleton W(i/m), i = 0, 1 m.. , m and locate the

points 0 < v, < ,2 < m which satisfy

W(V2 /m) - W(VI/m) = max [W(j/m) - W(i/m)].
O<i<j~sm

Then for each [(vi + v2 )/2] _< i < m we generate the maximum of W(t) for i/m < t <

(i + 1)/m, which conditional on W(i/m) = Co, W{(i + 1)/m} = C, has the distribution

,(m-1)
4041 f max W(t) > } = exp[- 2 m(x - Co)(x - CI)]ot O<t<m-l

forz > max(CO,Ci). Similarly we generate minimaover [i/m, (i+1)/m], i = 0,1,... [("V +

v2 )/2] - 1. Putting t = m-1 [(u + v2)/21, we use
"S

(4.4) max W(t)- min W(t)to<9<l O~t~t*

as a surrogate for the desired

max [W(t) - W(s)],%
0<8<t

for which it is in fact a lower bound. Presumably the discrepancy between these two

quantities is unimportant in the cases of primary interest, when (4.2) is small. As a check

one might compare results for two different values of m, or alternatively perform a second

experiment with the maxima and minima taken over overlapping sets of intervals, say

v,1 <_ i < m and 0 < i < v,2 , which in all but very few cases would yield an upper bound.

Table 1 gives the results of an experiment with N = 9999 repetitions. The first Monte

Carlo estimate reported in each row is the relative frequency of the event { maxo <,<j< m [II , -

W(i/m)] 2 b); the second is the modified estimate described above. The final entry in

each row gives the approximation (4.3). There is wide disparity between the discrete

15
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skeleton estimator and the modified estimator, and except for two cases there is excellenf

agreement between the latter estimator and the theoretical approximation. Those two dis-

crepancies both involve large probabilities, where (4.3) is not expected to provide a good

approximation.

For a second example we consider the first hitting time of a sphere of radius r by a

three dimensional Brownian motion starting outside the sphere. This problem is surrogate

for a much more elaborate problem in physical chemistry (N.J.B. Green, personal commu-

nication). In that problem n independent spheres of radius r' follow independent Brownian

paths, annihilating each other if they collide. Our problem is the spescial case n = 2 and

r = 2r'. Moreover, if one simulates a sequence of snapshots of the configurations of the n

spheres at times ie (i = 0, 1,..., ), it seems plausible that one can bridge the short gap

from it to (i + 1)e by considering each pair of spheres in isolation from the others, and

hence the case n = 2 may be useful preparation for other cases.

In order to implement the proposed algorithm one must choose an approximation for

(4.5) P) { min 1i W(t) 11< r}.4o,4 0<t<,

Since the approximation of Theorem 1 requires some numerical computation to determine .-

the point on the surface of the sphere the sum of whose distances from 0 and , is a

minimum, it seems reasonable to try first the simpler approximation which treats the

surface of the sphere as a plane and approximates (4.5) by the very simple

(4.6) exp[- 2(I 'o Ii -r)(1 1z II

Under the asymptotic scaling of Theorem 1, (4.6) and (2.4) have the same limits, but differ

at the term of order C1/2.

As indicated above, there is reason to think that the bias of a direct frequency count

from the discrete skeleton is of order e1 /2 and hence requires one to take c 1- N - '. the

number of repetitions of the experiment. Although we have no idea how to prove it, we

believe that use of (4.6) to bridge the gaps in the discrete skeleton results in an estimator

whose bias is of order e, and use of the better approximation of Theorem 1 reduces this

bias to order c/2 . If these conjectures are true, then even if the simple approximation.

16



(4.6) is used, a reasonable magnitude for e is about N - 1 2, which represents a considerable

improvement.

Table 2 reports the results of a simulation experiment to estimate (4.1) for the hitting

time T of a sphere of radius r by a three dimensional Brownian motion starting from

the point (x, 0,0). The interval width of the discrete skeleton is e. The Monte Carlo

estimators are based on N = 9999 repetitions of the method described above with the

simple approximation (4.6). The exact probabilities,

Pr(T < t) = 2x-Ir{1 - @[(x - r)/tl/2]},

are also included. The approximations are quite accurate, in fact more accurate than one

would expect from the conjectured size of the bias.

Our final example is designed to discover whether we can gain anything by using the

presumably better approximation provded by Theorem 1 to bridge the gap between I( t,) ."

and W(ti+1 ). To simplify the programming problem of determining the local tangent-

normal coordinate systems associated with the points W(ti) = o and W(t,+1 ) = we

take d = 2 and T the first time W(t) is within a circle of radius r centered at the origin.

In order to investigate at the same time the numerical accuracy of the approximations of '

Theorems 1 and 2, we study the conditional probabililty, P 0 {T < 1 }.

For R the region exterior to a circle of radius r, f"(0) - r - . It seems plausible that

one might improve the numerical accuracy of (2.4) slightly by including the term of order

61/2 in the exponent to obtain

(4.7) P(e) f{T < e) '25 exp -2,--1Jyoy1J- r- ' C- /2 1Y01 I

X [-/(o+ yj)] [1_C(X_ I2 -I1 , 2 '1Y
X p_'/ 2(yo + yl)] 0 1

Table 3 contains the results of an experiment with r = 1 and N = 9999 repetitions.

There is no evidence that the more complicated approximation yields more accurate Monte

Carlo estimates. Since the additional numerical computation required to evaluate (4.7)

after each new observation more than doubles the total computational effort. there does

V



not seem to be any reason to use this approximation, at least for the relatively simple

problem considered here.

As expected, the analytical approximation provided by Theorem 1 is better than that

ofTh oT < 1} is large or moderate, and the converse is true when this

probability is small. Overall, the better of the two approximations is reasonably good.

Acknowledgment. The second author wishes to thank J. Keller and N.J.B. Green

for helpful discussions on the subject of this paper.
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Table 1

Evaluation of P } {zmaxo<,<t<j [W(t) - W(s)] > b}

b m Monte Carlo Estimates Approximation

(- e-') Discrete Interpolated (4.3)

.671 -1.79 20 .136 .501 .605

.894 -1.79 20 .029 .158 .166

1.118 -1.79 20 .006 .035 .037

.671 -1.79 80 .288 .544 .605

.894 -1.79 80 .071 .163 .166

1.118 -1.79 80 .013 .038 .037

1.095 0.0 30 .257 .520 .526

1.278 0.0 30 .114 .287 .287

1.461 0.0 30 .048 .127 .134

1.278 .548 30 .356 .610 .608

1.461 .548 30 .177 .372 .371

1.643 .548 30 .074 .195 .191

I19
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Table 2

First Passage to a Sphere

r X C t Pr(T < t) Pr(T < t')

Monte Carlo Exact Monte Carlo Exact

2 3 .50 1 .2110 .2115 9 .5016 .4926

2 3 .25 1 .2162 .2115 9 .4996 .4926

4 6 .50 2 .0986 .1049 25 .4495 .4594

4 7 .25 2 .1004 .1049 25 .4597 .4594

a

p
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Table 3

Approximations for P~l){mino<t<l 1 W(t) 11 1}

II IIMonte Carlo Estimates Analytic A pproximatiom

Using (4.6) Using (4.7) (4.7) (2.17)

=.1 C = .05 = .1 C= .05

1.2 .866 .891 .856 .889 .889 .843

1.5 .536 .535 .524 .538 .515 .495

2.0 .097 .106 .095 .102 .089 .00

a2
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