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Approximate Exit Probabilities for a Brownian

Bridge on a Short Time Interval, and Applications

by

H. R. Lerche D. Siegmund
University of Freiburg Stanford University

To Henry Daniels on his 75th Birthday

Summary.
i“

_ Let T be the first exit time of Brownian motion W (t) from a\;eglon Ri in dl-dxmensmnal
Euclidean space having a smooth boundary. Given pomts & axid £ in 'R *)rdxnary and
large deviation approximations are given for Pr{T < cIW(O) & W(e) =6} ase - 0.
Applications are given to hearing the shape of a drum, approximatitfg the second virial

coefficient, and Monte Carlo estimation of first passage distributions fcfr Brownian motion.
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Key Words and Phrases: Brownian bridge, first passage, hearing the shape of a drum,
Monte Carlo methods.
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1. Introduction.

Let W(t),0 <t < 0o, denote Brownian motion in IR? with W(0) = &. For t > 0 and
events A in the o-algebra generated by W(s),0 < s <t, let

P, (4) = Pr(A|W(0) = &, W(2) = &).

Assume that £ and £; belong to some region R with a smooth boundary R, and let T
denote the time W first leaves R, i.e., T = inf{t : W(¢)edR}. The principal subject of this
paper is the asymptotic behavior of

(1.1) PP (T <t}

as t — 0 and the £; are at a distance O(t'/?) from each other and from 9R. A secondary
consideration is the case where the distances of the £; to the boundary and each other are
fixed as ¢t — 0.

This problem for d = 2 and & = £; arises naturally in the beautiful paper of Kac
(1966), who was concerned with the behavior for small ¢ of

(1.2) ECXP(—/\kt),

where the )\; are eigenvalues of the Laplacian acting on functions having domain R and
vanishing on IR. Kac shows that as ¢ — 0 (1.2) has an expansion of the form ¢;¢~! +
cat~1/2 4 o(t~1/2), where c; and c; are numerical multiples of |R|, the area of R, and [dR)|,
the length of R, respectively. He argues heuristically that the next term is (1—h)/6, where
h is the number of holes in R. For more detailed results along these lines, see Louchard
(1968), McKean and Singer (1967), Stewartson and Waechter (1971), and Smith (1981).
Of these, only Louchard attempts a probabilistic analysis, and his argument appears to
contain a mistake.

Starting from the physical problem of evaluating the second virial coefficient of a
hard sphere gas, Handelsman and Keller (1966) arrive at essentially Kac's mathematical
problem, for the case d = 3, = {1, and R the region exterior to a sphere. They derive

what in Kac’s problem corresponds to c3 and the next term, c4t!/2. Although their method
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does not seem capable of being turned into a rigorous proof, minor modifications appear
to produce correct answers under much more general conditions.

A problem having a rather different flavor is to estimate (1.1) by a Monte Carlo exper-
iment, when ¢ is not necessarily small and the £; are not necessarily close to the boundary
of R. A natural approach is to partition the time interval [0,t] at m + 1 equally spaced
points t; = it/m, ¢t = 0,...,m and count the relative frequency with which a simulated
path W(t;),i = 0,1,...,m, leaves R. The bias introduced by discretization is typically
O(m~1/2) (cf. Siegmund, 1985, Chapter X, or Hogan, 1984); and increasing m sufficiently
to reduce this bias to an acceptable level is computationally time consuming. However.
having observed W(t;_;) = §;_1¢R and W(t;) = £;eR, one can use an approximation to
(1.1) and a single uniform random variable to simulate the event that W (s) leaves R for
some s in the time interval (¢;_,¢;). Although the original interval [0, t] need not be short.
the various subintervals [t;_;, t;] are, provided m is large.

Note that this technique does not require that W be exactly Brownian, but only that
it be approximately so over short time intervals. The basic idea is in principle applicable
to diffusion processes and to certain Gaussian processes which are locally Brownian.

As noted by Kac, in the case & = £;, the probability (1.1) is to a first order approx-
imation equal to the probability that W(s) for some 0 < s < t touches the plane tangent
to R at the point of IR closest to £. Section 2 contains the first term of an Edgeworth
tyme expansion for this probability when £ and £, are not necessarily the same. A large
deviation approximation is also given. Section 3 gives the substantially more complicated
second Edgeworth term. For computational simplicity only the case £, = £; is considered
there, but this case illustrates the method and contributes to the Kac and Handelsman-
Keller problems. The method used in Sections 2 and 3 is a modification of that introduced
by Siegmund and Yuh (1982) in a simple linear case and explored more thoroughly by
Siegmund (1985).

Section 4 describes some illustrative Monte Carlo experiments. It can be read in-
dependently of Sections 2 and 3, except for an occasional reference to some of the basic

notation and to the statements of Theorems 1 and 2.
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2. Approximations to PE(‘:?€l {T <t}.

For ease of exposition we consider in detail only the case d = 2 and indicate in some
remarks how the results are modified for general d.

Given £, §1€R, close to R and to each other, assume there exists a unique point on
OR the sum of whose distances to the given points is a minimum. Consider the Cartesian
coordinate system which has this point as its origin, the z- axis as tangent and the y-axis
as outward normal to R. There exists a function y = f(z) such that locally near (0,0) OR
is given by the graph (z, f(z)). Let £ have coordinates (z;,y;) in this coordinate system.
and assume that y; < 0(i = 0, 1). It is easily seen that £, and ¢, satisfy —z¢/|yo| = z:1/|1].
(A ray of light emanating from £, and reflecting off the z—-axis at the origin passes through
£,.) Let W(t) denote Brownian motion starting from W(0) = &, and define

(2.1) T = inf{t : W2(t) 2 f(W1(¢))}.

In general, T is not the exit time of W from R, but for & close to (0, 0) it is with probability
close to one. (A more precise estimate is given below.)

In order to study PE(:.)& {T < €} it is convenient to use Brownian scaling to replace the
given problem on the time interval [0,¢] by an equivalent one on [0, 1]. Since W(et)/e!/?

is Brownian motion starting from & = £o/€!/2, it is easy to see that

(2.2) P AT < e} = P (T <1},
where §; = £;/¢1/? (i = 0,1) and
(2.3) T = T, = inf{t : Wy(t) > e~ 2 f('/2 W, (1))}

To give a precise statement of our first result it is convenient to change our viewpoint

slightly and regard f as given and the points £; as variable.

Theorem 1. Assume f is twice continuously differentiable, f(0) = f'(0) = 0. and
f"(0) # 0. Suppose §; = (z,y;) (i =0,1) satisfy y; <0 (: = 0,1) and —zo/|yo| = 21 /Iy 1.
and converge to (0,0) as ¢ — 0 in such a way that ¢, = £;/¢!/? are fixed (i = 0.1). Then

for T defined by (2.1)




(2.4) Pe(:.)a{T <e}= exp(—2yoy1/e){1 - £"(0) [E—l/zlyoyll

/2
" z&;’: ::: 35:/2}“ = e}z = z0)?) + e (aBlua| + 2} lwol) + of /2 >] }

where ¢ and ¢ are the standard normal distribution and de.sity function respectively.

Proof. By virtue of (2.2) it suffices to consider the standardized problem on the time
interval [0, 1], with fixed initial and terminal points & = (Zo,§0) and & = (Z;,%1), and
T defined by (2.3). To simplify the notation we consider only this standardized problem
and omit the tildes for the rest of the proof. In this new notation, where all variables have

tildes, but the tildes are omitted, (2.4) becomes

(25) Pyl {T. <1} = exp(—2yoyx){1 — €'/ £"(0) [Iyoyll

9 B(yo + 1)

e L 20)?) + (z3lu1| + 2ilvol) + o(l)} }

with T, defined by (2.3).

We begin with an informal calculation and provide a justification later. The argument
proceeds from a suitable likelihood ratio identity. Let €] = (z1,|y1]). The likelihood ratio
of W(s),s < t, under Pe(;_)€l relative to Pg_’e; is easily calculated to be

exp(—2|yoy1|) exp[—2|y1 |[W2(t)/(1 - t)].

Thus since Wy(T) = ¢~1/2 f(¢}/2W,(T)), we have

(2.6) Pg e AT < 1} exp(2lyoys|)
_ gv 2|yl f(e! Wi (T))] .
=Eg ¢ {exp[ /21— T) T <1
(cf. Siegmund, 1985, Proposition 3.12).
Since
(2.7) e~ 2 () ~ 2 f(0)22/2 2 0 (e = 0).
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for all sufficiently small E’PE(:,)EQ {T < 1} = 1, and the right hand side of (2.6) can be
expanded to become

(28) 1= lwle!/?f"(0)Eg g WHT)/ (1 =T + ... .
Define

(2.9) T = inf{t : Wy(t) > 0}.

From (2.7) follows PE(:.)E'I {T. — 7} =1, and hence (one expects that)

(210) B WH(T)/(1 = T)] = Eg s [Wi(r)/(1 = 7).

It is easy to see that conditional on W5(t),t < 7, Wy(r) is distributed as [r(1 — 7)]'/2Z +

zo + (1 — zo)7, where Z has a standard normal distribution. Hence

(2.11) Eg)e WH(r)/(1 = )] = 2} + (1 + 22071 — 23)Eg) e (7)

+ szg?ﬁ [*?/(1 - 7).

Equation (2.5) follows from (2.6), (2.8), (2.10), (2.11), and the evaluations given below in

Lemma 1.

To make the proceeding manipulations into a proof, one must consider the remainders
in (2.7) and (2.8), and justify the convergence indicated in (2.10).

Let A = {maxi<r|Wi(t)] < £~'/4}. From the distribution of the maximum of a
pinned Brownian motion (e.g., Siegmund, 1985, (3.13)), it is easy to see that

(2.12) P, (4°) + PE(:.)ti (A°) = o(¢*) for all k > 0.

Hence (2.6) can be replaced by

(213) P {T < 1} exp(—2lyou1|)

=2y |f(e!PW(T))] .
=E§;?€; {ex [ ;1/2(1—T‘) ], {T<l}ﬂA}+o(5k)




for all £ > 0. Let § > 0. By (2.12) and two applications of Taylor’s theorem with remainder
along the lines suggested in (2.7) and (2.8) one can obtain upper and lower bounds for the
right hand side of (2.13) in the form

1- yile!2(£(0) £ S1EQ) WH(T)/(1 = T); Al + o(<¥).
Since § > 0 is arbitrary, by (2.11) and Lemma 1 below it suffices to show (cf. (2.10))
Eg)e WHT)/(1 - T); 4] = EQ [WH(r)/(1 - 7)),

where 7 is defined by (2.9). Since PE(:,)G;{T, — 7} =1 and by (2.12) P, e (4) — 1. it

suffices to show
(2.14) {1aWH(T)/1-T); >0}

is uniformly integrable.

Let 7' = inf{t : W3(t) > |y:1|/2}. For all sufficiently small ¢ A C {T < 7. It is easy
to see that [Wi(t) — 2o — (21 — 20)t]?/(1 —t)2 —t/(1 — t),0 < t < 1, is a martingale and
hence [W;(t) — zo — (z1 — z0)t}2/(1 — t)?,0 < t < 1, is a submartingale. From the joint

distribution of 7' and W;(7') we obtain
Eg)e {[wl(f') — 20 — (21 — 20)'/(1 - )} = B lr'/(1 =),
which is finite by Lemma 1 below. Also

Eg?ﬂ {[Wl(t) —zo —(z1 —zo)t]? /(1 - t)%; 7' > t} =t(1- t)"Pe(:’)t.l{r' >t} =0

as t — 1, again by Lemma 1. It follows from Doob’s optional sampling theorem that on
{T <t}
[Wi(T) — 2o — (z1 — 20)T]>/(1 - T)?

< Eéj,’;; {[Wx(T') — 20— (21 — 20)7')? /(1 = )2 |W(¢),t < T}_

Hence {1{r<r}[Wi(T) — zo — (z1 — 20)T)? /(1 — T)?,¢ > 0} is uniformly integrable. The

uniform integrability of (2.14) follows from the relation A C {T < 7'}, the inequality
(a + b)? < 2(a® + b?), and Lemma 1.
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Lemma 1 provides justification for several steps in the preceding argument and eval-
uates the expectations appearing on the right hand side of (2.11). It will be convenient
to use the following notation. Let W(t¢),0 < t < oo, denote one dimensional Brownian
motion with drift 4 and initial value W(0) = 0. We write P, and E, to denote dependence
of probabilities and expectations on u. For b > 0 let 7, = inf{t : W(¢) > b}, where it is
understood that inf ¢ = +oco. Let P{(-) = Po(-{W(1) = £).

Lemma 1. For 0 <t < 1 the Pf(l) density function of 73 is given by

b 1-t\"/? t \'? :
(2.15) fit)= [T:’(]._—t)]IT‘P {b (T) —-(€£-0) (T:—t) } ::
For £ > b :‘.

|

E®(ms) = b®(—£)/(€)

R

~f¢'f’f o

and

‘e fy & 5

Eél)['r,,z/(l — 7)) = b/(€§ = b) — b®(=£)/p(§).

Proof. From the well known (and easily proved) fact that the PE(‘) distribution of
W(-) is the same as the P, distribution of (1 — ())W(Té_-%-y), one easily sees that

"
A
~
N
-~
9
N

L8
—
Cd

Pél){n, <t} =Pe{(1-3)W[s/(1~3) >b forsome s <t}

= Pes{m < t/(1 - t)}.

Crrr
P\ %

g

Equation (2.15) follows by differentiation of the well known expression for the last proba-
bility (e.g., Siegmund, 1985, (3.15)).
From (2.15) one obtains

LY

EP/(1-m)] =b / ~ s72(1 4 5) N [(€ = b)/sV/? — bs'/?]ds.

Writing (1 + s)~! = [[° e~®(1+*)da, interchanging the order of integration, and using the

well known equality

oo
/ e~ %as~¥2p(as™? = ps'/?)ds = exp{—a[(2a + p)/? — 1]}
0

-J
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(e.g., Siegmund, 1985, (3.16) and Problem 3.1), one obtains the given expression for
Eél)[rk2 /(1 = n)]. A similar calculation applies to Eél)(rb).

P

Remarks. (i) As observed above, the boundary of R can be defined locally near (0,0)
by a function y = f(z), but in general it cannot be so defined globally. However, for ¢ X
sufficiently small, on { maxo<t<. [W1(t)| < €'/} T defined by (2.1) and the exit time from :
R coincide, so there is no loss of generality restricting attention to stopping times of this S

form. (ii) In higher dimensions, f” in (2.4) becomes the Laplacian Af, and z?(i = 0,1)

YN T

and (z; — z9)? become Euclidean distances || z; || (: =0,1) and || z; — o ||2. The proof

is essentially unchanged.

.(». LN

a, .

In Theorem 1 & and ¢, are at a distance O(¢'/2) from the boundary of R and from
each other, and consequently Pf(:,)& {T < €} converges to a limit between 0 and 1. Theorem
2 is concerned with the case that £, and &; are fixed as e — 0, so Pé:,)& {T<e}—0.

As above, for given £y,£; € R suppose there exists a unique point on R, the sum of
whose distances from & and £, is a minimum, and consider the tangent-normal coordinate
system through this point. Let £; have coordinates (z;,y;) (: = 0,1), and let R be given
by the graph of (z, f(z)) in some neighborhood of (0,0), so f(0) = f'(0) = 0.

"¢ e Pt LTEEL o S o S S

Theorem 2. Assume f is twice continuously differentiable, yoy; > 0, and

" 7S

(2.16) 2yov1 £ (0)(1 + (z1/y1)*]/Iyo + 11| > —1.

Let T = inf{t: W(t) e 9R}. Thenase — 0 f

—2¢ " yoyn)
2.17 P (T < e} ~ exp( .
(217) ot } {1+ 291 f"(0)[1 + (z1/91)%]/lyo + 1 [}/?

One can prove Theorem 2 along the lines of the proof of Theorem 1, but the details
are rather different. To keep this paper to a reasonable length the proof has been omitted.
An example comparing the numerical accuracy of (2.17) and (2.4) is given in Section 4.

An interesting case which fails to satisfy the conditions of Theorem 2 is R a disk with

€0 = £ at the center. In this case, the nearest point on dR is not unique and (2.16) is not

satisfied. For an approximation in this case, which leans heavily on rotational symmetry.




see Siegmund (1985, Problem 11.1). An exact expression has been obtained by Kiefer
(1959), but it is quite complicated.

A related but somewhat more complicated problem than that discussed in Theorem
1 is to approximate the joint distribution of (T, W;(T)), which can be attacked via the

characteristic function

(e)
(2.18) E¢ e,

[exp{iMWi(T)/e*/? + i) T/e}; T < €).
Expansion of (2.18) to the precision of Theorem 1 seems to require more complicated
calculations, which turn out to be very similar to those given in the following section in
order to obtain the term of order ¢ in the expansion of PE(:.)& {T < ¢}.

It seems possible to obtain the results of this section by the methods of Jennen and
Lerche (1981,1982), but the computations appear to be somewhat more complicated. If

one is interested in the joint behavior of T and W;(T'), their method might turn out to be

the simpler one.

3. The term of Order « and Applications.

Calculation of higher order terms in the expansion (2.4) rapidly becomes very com-
plicated in detail. In this section we see what is involved by examining the term of order
e. (See equation (3.10).) To simplify the algebra we suppose that £, = £,. This special
case sufficies for applications to the problems of Kac (1966) and Handelsman and Keller
(1967), which are discussed below (cf. (3.15)). We proceed informally as in the first part
of the proof of Theorem 1. The localization and uniform integrability arguments necessary
for a rigorous proof are similar to those in Theorem 1 and have been omitted.

Let £, = £;. In the notation of Section 2 for the standardized problem on the time

interval [0, 1], (2.6) becomes

(3.1) P e AT < 1}exp(24}) = E(. ),

—2lyolf(e!PWy(T))
exp (A 2(1-7T) .

where £, = (0,y0),&, = (0, |yo|), and T = T, is defined by (2.3). Assuming that f is three

times continuously differentiable, we have

e~ 2 f(eM2z) = e/2f"(0)22 )2 + f"(0)23/6 + o(c);

'''''
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and hence the right hand side of (3.1) becomes

(3.2) 1—e"lyolf"(0)E, ), (WE(T)/(1 - T)]
~ Zelyol S OEL WT)/(1 TN + 561" O B, WAT)/(1 - TP)
+ o(€).

Until further notice, we shall write P and FE for PE(:') . and E'g’)%. Recall the definition
of 7 given in (2.9) and note that the conditional distribution of W;(7) given 7 is normal

with mean 0 and variance 7(1 — 7). Since P{T, — 7} =1 (¢ — 0), we have

(3.3) EW(T)/(1-T)| -0
and

(3.4) E[WHT)/(1 - T)? — 3ET2
Also

(35)  EW{T)/(1-T)]=Er+{EW{T)/1~T)] - EW{(r)/(1- )]}

and the final contribution to the term of order ¢ in (3.2) comes from the difference on the

right hand side of (3.5), which is itself of order £!/2.
First suppose that f"(0) < 0 and to simplify some details that f(z) < 0 for all z. The

case f"(0) > 0 involves a similar argument with slightly more complicated calculations.

Let F; denote the o-algebra generated by W(s),s < t. Since T < 7, we have

(3.6) E[WZ(r)/(1 - 1)} = E[(Wi(T) + Wi(r) - Wi(T))*/(1 - 7)]
_ {W?(T) L 2N

l1-171 1-71

E[W\(r) = Wy(T)|Fr, 7] + (1 = 7) T E[(Wi(7) = Wi(T))*| Fr. T]}

Conditional on Fr and 7, W;(7) — W(T) is normally distributed with mean —W,(T')(r -
T)/(1 — T) and variance (7t — T)(1 — 7)/(1 — T'). Hence after some algebra one obtains

(3.7)  EWHT)/(1-T) - EW{(r)/(1 - 1)]
= E((1 - T)*W{(T)E(r - T|¥r)] - E[(1 - T)™' E(r - T|F7)}.

10




Doob’s optional sampling theorem yields
E{(1 - 1)} {Wy(r) = Wa(T) - (v — T)(Iyo| = W2(T))/(1 = T)}|F7} =0

(cf. Siegmund, 1985, Problem 3.12), and hence with probability one as ¢ — 0

Lel/2|5(0)|WE(T)(1 — T)

(3.8) E(r - T|Fr) ~ lvol + L& 2[f1(0)|WE(T)

1 "
~ 3¢ 2wl S OIWE ()1 - 7).

Substitution of (3.8) into (3.7) yields

(39) EWXT)/(1-T)] - E[W}(r)/(1-7)]

~ %el/zlyol_l|f"(0)|{E[W1‘(7’)/(1 — )] - EW{(r)}

- %Elnly"l-lIf"(o)l{3E[7’2(1 -7 - E[r(1-r)]}.

From (3.1)-(3.5) and (3.9) we finally obtain
(310) P {T<1}= exp(—zyz){l — ' |yol f" () Eg) e, (7)
+%s[f"(0)]2Eg?%[312(1 —7)—1(1-7)+3y3rY + o(e)},

where T is defined by (2.3), by (2.9) & = (0,0 ), and & = (0, |yol).
The expansion (3.10) also holds when f”(0) > 0. In this case 7 < T, so (3.6) must be
replaced by

EWXT)/(1 - T)] = EW{(r)/(1 - T)|

+2E{W,(r)E W'(I;):;V‘(T)lfr]} +E{E [(Wl(Tz:?fl(T)V lfr} }

By optional sampling

Wi(T) - Wi(7)

E 1-T

I}'T] = —(1- r)-'Wl(r)E[(T -n)/(1 = T)\F,],

11
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and it may be shown that
E{[W\(T) - Wi(7)]*/(1 - T)|F;} ~ E(T - 7)/(1 - T)|F¢].

Hence in place of the equality (3.7) one obtains
E[W{(r)/(1 = 7)] = E[W{(T)/(1 ~ T)]
~ E[(1 = )W) E(T - 7|F,)] - E[(1 - 1) E(T - r|F,)].
A result similar to (3.8) holds for E(T — 7|F,), and the rest follows as before.

Remarks. (i) By the method of Lemma 1 one can evaluate the moments appearing
on the right hand side of (3.1). However, for the applications given below, which in effect
involve an integration of (3.10) over £, the computations are considerably simpler if one
interchanges the order of the two integrations and integrates over & first. (ii) In higher
dimensions the relation of IR to its tangent planes can be more complicated than in two
dimensions. In general, one must condition on Fra, and consider the two cases {T < 7}
and {T > r}. Whereas the term of order £!/? involves only the Laplacian of f, i.e., the
mean curvature of 3R, the term of order ¢ involves mixed partials as well. For the problem
studied by Handelsman and Keller (1966), where R is the region exterior to a sphere in
IR® one does not encounter these complications.

Now let T denote the first exit time of W from R, and for &;,&; € R define p(t, &, £1)

by

p(t,€0,&1)dér = Pr(T > t,W(t) e d€;,|W(0) = &).
Observe that
(3.11) p(t €0, &) = (27t)42[1 — P{), (T < t}].

In order to study (1.2) in a bounded region R in IR? Kac (1966) uses the representation

3 exp(-Aut) = / ot 6o.0)do

which by (3.11) equals

(3.12) (27t)"(|R| - / / PP (T < t}dgo),
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where |R| denots the area of R. Handelsman and Keller (1966) are interested in IR® and

///nu — (2nt)*/2p(t, &0, £0)]déo,

the integral

which by (3.11) equals

(3.13) / / /1z PO {T < t}dt.

In order to analyze the integral in (3.12) it is convenient to make a change of variables

(cf., Pleijel, 1954) to obtain

[
e19) [[ PO <tidto= [ [ POAT <)t - mle(odluolde + 0(e™2),

where o denotes arc length on R, ¢(:) is the curvature of IR, and & has coordinates
(0,y0) in the tangent-normal coordinate system with its origin at the point o of IR, so
|yo| is the distance from & to IR and c(o) = —f"(0).

Keeping (2.2) and (2.15) in mind, one can substitute (3.10) into (3.14), integrate with
respect to |yo|, then with respect to o, and refer to the Gauss-Bonnet theorem as indicated

by Kac to obtain

(3.15) D exp(—Xit) = (27t) "' |R| — [4(27t)'/?] 7 |OR|

+(1 - h)/6+278(2r)"1/2 ( /& . cz(a)da) t1/2 4 o(t'/?),

where |OR| is the length of R and k is the number of holes in R.

Since (3.15) involves integration of (3.10), some additional justification is required to
claim that (3.15) has been proved rigorously. This seems a straightforward, albeit rather
technical matter. Since it does not appear to add significant insight, the details are omitted.

The expansion (3.15) agrees with those given by Stewartson and Waechter (1971) and
Smith (1981), both of whom used analytical methods and obtained additional terms. The
term of order t!/2 disagrees with that given by Louchard (1968), whose argument appears
to contain an improper use of the Markov property.

A similar computation yields the expansion of Handelsman and Keller (1966).
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4. Monte Carlo Methods.

Again let W(t) denote Brownian motion starting from some point inside a region R in
d-dimensional Euclidean space, and let T = inf{t : W(t) ¢ R}. In this section we consider
the problem of estimating by Monte Carlo methods probabilities like

(4.1) Pr{T < t}.

The same ideas are applicable to substantially more complicated first passage distributions.

An obvious procedure to estimate (4.1) is to partition the time interval [0,t] by the
points t; = i, t = 0,1,...,m, where € = t/m, generate N realizations of the discrete time
random walk W(¢;), ¢ = 0,1,...,m, and estimate (4.1) by the relative frequency among
the N realizations that W(¢;) ¢ R for some 1 <i: <m.

The standard deviation of this estimator is of order N~1/2, Its bias equals the dif-
ference between Pr{W(t;,) ¢ R for some 1 < i < m} and (4.1), which presumably is of
order €!/2 (cf. Nagaev, 1970, Siegmund, 1985, Chapter X, Hogan, 1984). Thus the bias
is of the same order as the sampling error unless ¢ is small compared to N~!. Since N
may be in the thousands, it is often computationally unfeasible to achieve a satisfactory
estimate by the obvious device of making ¢ extremely small.

The procedure we propose to study is the following. Having generated the partial real-
ization W(to), ..., W(¢t;) and decided that T > t;, generate W(ti4+1). If W(tiy1) ¢ R decide
T < tig1 <t. If W(t;41) € R decide T < t;4; <t with probability p[W(¢;), W(ti+1), €],
where p(o,&1,¢) is a suitable approximation for PE(:.)& {T < ¢} obtained from Theorem 1.

As a first example we consider a rather complicated, but linear problem. In this case
there is no question how carefully one should approximate Pe(:.)ex {T < €}, which can be
evaluated exactly; and we see that a striking improvement in the accuracy of the naive
estimator is possible.

The example concerns

(4.2) Pog{, max [W(t) - W(s)] 2 8},

where W is one dimensional Brownian motion and b is substantially larger than max(0. §).

so the probability (4.2) is small. This probability has arisen in the unrelated problems of
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Levin and Kline (1985) and Adler and Brown (1986). Hogan and Siegmund (1986) show
that if b — oo and £ varies with b in such a way that £/b is a fixed real number less than
1, then (4.2) equals

(4.3) [2(25 - £)(b — €) + 1 + o(1)] exp[-25(b - £)).

In order to check the accuracy of the approximation (4.3) by simulation, we first
generate a Pé'? realization of the discrete skeleton W(i/m), : =0,1,...,m and locate the
points 0 < v; < v3 < m which satisfy

W(va/m) = Wi /m) = max [W(j/m)-W(i/m)].

Then for each [(v1 + v2)/2] < i < m we generate the maximum of W(t) for i/m < t <
(i + 1)/m, which conditional on W(i/m) = &, W{(: + 1)/m} = £ has the distribution

P, 1, max_ W(t) 2 7} = expl-2m(z ~ fo)(z - &)]

for z > max(&,&1). Similarly we generate minima over [i/m,(i4+1)/m], i =0,1,... ,[(, +
v2)/2] — 1. Putting t* = m~{(u; + 11)/2], we use

(44) i Y A

as a surrogate for the desired

otggt[w(t) - W(s)),

for which it is in fact a lower bound. Presumably the discrepancy between these two
quantities is unimportant in the cases of primary interest, when (4.2) is small. As a check
one might compare results for two different values of m, or alternatively perform a second
experiment with the maxima and minima taken over overlapping sets of intervals. say
11 <i<mand 0 <i < vy, which in all but very few cases would yield an upper bound.
Table 1 gives the results of an experiment with N = 9999 repetitions. The first Monte
Carlo estimate reported in each row is the relative frequency of the event {maxo<i<;<m (Wt
W(i /m)].z b}; the second is the modified estimate described above. The final entry in

each row gives the approximation (4.3). There is wide disparity between the discrete
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skeleton estimator and the modified estimator, and except for two cases there is exce}lent
agreement between the latter estimator and the theoretical approximation. Those two dis-
crepancies both involve large probabilities, where (4.3) is not expected to provide a good
approximation.

For a second example we consider the first hitting time of a sphere of radius r by a
three dimensional Brownian motion starting outside the sphere. This problem is surrogate
for a much more elaborate problem in physical chemistry (N.J.B. Green, personal commu-
nication). In that problem n independent spheres of radius r’ follow independent Brownian
paths, annihilating each other if they collide. Our problem is the spescial case n = 2 and
r = 2r'. Moreover, if one simulates a sequence of snapshots of the configurations of the n
spheres at times ie (i = 0,1,...,.), it seems plausible that one can bridge the short gap
from ie to (i + 1)e by considering each pair of spheres in isolation from the others, and
hence the case n = 2 may be useful preparation for other cases.

In order to implement the proposed algorithm one must choose an approximation for

(4.5) Peove, iz, | W(t) < 7}

Since the approximation of Theorem 1 requires some numerical computation to determine
the point on the surface of the sphere the sum of whose distances from £, and £, is a
minimum, it seems reasonable to try first the simpler approximation which treats the

surface of the sphere as a plane and approximates (4.5) by the very simple

(4.6) exp(=2(]| éo | =r)(ll &1 | —1)/].

Under the asymptotic scaling of Theorem 1, (4.6) and (2.4) have the same limits, but differ
at the term of order /2.

As indicated above, there is reason to think that the bias of a direct frequency count
from the discrete skeleton is of order £!/2 and hence requires one to take e = N~!, the
number of repetitions of the experiment. Although we have no idea how to prove it, we
believe that use of (4.6) to bridge the gaps in the discrete skeleton results in an estimator
whose bias is of order £, and use of the better approximation of Theorem 1 reduces this

bias to order €3/2 . If these conjectures are true, then even if the simple approximation

16




Lol T WU T

(4.6) is used, a reasonable magnitude for ¢ is about N~!/2, which represents a considerable
improvement.

Table 2 reports the results of a simulation experiment to estimate (4.1) for the hitting
time T of a sphere of radius r by a three dimensional Brownian motion starting from
the point (£,0,0). The interval width of the discrete skeleton is ¢. The Monte Carlo
estimators are based on N = 9999 repetitions of the method described above with the

simple approximation (4.6). The exact probabilities,
Pr(T <t)=2z"'r{1 - ®[(z - r)/tl/z]},

are also included. The approximations are quite accurate, in fact more accurate than one
would expect from the conjectured size of the bias.

Our final example is designed to discover whether we can gain anything by using the
presumably better approximation provded by Theorem 1 to bridge the gap between 117(¢,)
and W(t,4;). To simplify the programming problem of determining the local tangent-
normal coordinate systems associated with the points W(¢;) = & and W(t,4+,) = &,. we
take d = 2 and T the first time W (t) is within a circle of radius r centered at the origin.
In order to investigate at the same time the numerical accuracy of the approximations of
Theorems 1 and 2, we study the conditional probabililty, PE(:')& {T <1}.

For R the region exterior to a circle of radius r, f”(0) = r~!. It seems plausible that
one might improve the numerical accuracy of (2.4) slightly by including the term of order

€!/2 in the exponent to obtain

(47)  Pge{T <c}exp { =27 yoy | — v [E"”Iyoynl

®le/2(yo + y1)]

(U

(1= e Nzo = 1)) + e (2l | + r?lyol)] }

'

vle=!2(yo +u1)] -

S

Table 3 contains the results of an experiment with r = 1 and N = 9999 repetitions. ‘3
There is no evidence that the more complicated approximation yields more accurate Monte \
Carlo estimates. Since the additional numerical computation required to evaluate (4.7) X
>3

after each new observation more than doubles the total computational effort. there does N
RS
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not seem to be any reason to use this approximation, at least for the relatively simple
problem considered here.

As expected, the analytical approximation provided by Theorem 1 is better than that
of Theorem 2 when Pf(:,)& {T < 1} is large or moderate, and the converse is true when this

probability is small. Overall, the better of the two approximations is reasonably good.

Acknowledgment. The second author wishes to thank J. Keller and N.J.B. Green
for helpful discussions on the subject of this paper.
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Table 1 ;\
N\
Evaluation of Po(,le) {maxogs<e<1[W(t) — W(s)] > b} -
by
3
b £ m Monte Carlo Estimates Approximation ,‘\\,
(=€7')  Discrete Interpolated (4.3) <
35
671  -1.79 20 .136 .501 .605 Wi
L1
894  -1.79 20 .029 158 .166 A
X
1.118  -1.79 20 .006 .035 037 2t
671 -1.79 80 .288 544 .605 s,
X
894  -1.79 80 071 .163 .166 '3
‘
1118  -1.79 80 013 .038 037 v
1.095 0.0 30 257 .520 526 ..
Y
1.278 0.0 30 114 287 287 N
A4
1.461 0.0 30 048 127 134 >
Wt
1.278  .548 30 .356 610 .608 —
1.461 .548 30 177 372 371 e
1.643  .548 30 074 195 191 >
l“' )
i
.‘l
NG
2
(
Y
Y
>
’l
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2
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\#
N
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Table 2
First Passage to a Sphere

r z € t Pr(T <t) t Pr(T <t')
Monte Carlo Exact Monte Carlo Exact
2 3 .50 1 .2110 2115 9 .5016 49026
2 3 .25 1 2162 2115 9 .4996 4926
4 6 .50 2 .0986 .1049 25 .4495 4594
4 7 .25 2 .1004 .1049 25 4597 4594
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Table 3
Approximations for Pe(:')eo {mino<e<y || W(2) ||< 1}
Il & |l Monte Carlo Estimates Analytic Approximations
Using (4.6) Using (4.7) (4.7) (2.17)
e=.1 € =.05 e=.1 €=.05
1.2 .866 .891 .856 .889 .889 .843
1.5 .036 .535 .524 .538 515 495
2.0 .097 .106 .095 .102 .089 .006
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