
GRAMMARS AND A LARO. (U) MICHIGAN UNIV AMi ARMO
TECHNICAL COMMUNICATION PROGRAM J MAYER ET AL.

UINCLASSIFIED 15 MAR 67 TR-07/0NR-25 N9SSI4-85-K-0365 F/G 5/7 NL

mw: E1h~hEhmhEmhhhhhhhE
l'.."'mmom

1.0

IU.6

Mir

00 Qfl~i~iLLGOY

A Development System for Augmented
Transition Network Grammars

and
I A Large Grammar for Technical Prose

John Mayer and David Kieras

uitersity of Michigan

DTIC
.LECT
APR1 5 1987

Technical Report No. 25 (TR-87/ONR-25)

March 15,1987

This research was supported by the Personnel and Training Research
Programs under Contract Number N00014-85-K-0385, Contract Authority
Identification Number NR 667-547. Reproduction in whole or part is
permitted for any purpose of the United States Government.

Approved for Public Release; Distribution Unlimited ,.-

...,. 2,. .

unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE 0M8No. 70-01"

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3, DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release:
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-87/ONR-25
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

U e M i(N applicable) Conitive sclence
University of Michigan MOffice f Nava Research (Code 1142CS)

1 800 N. Ouincv Stret
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Technical Communication Program Arlington, VA 22217
Ann Arbor, MI 48109-1109

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable) N00014-85-K-0385

Sc. ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WVORK UNIT

ELEMENT NO NO. NO. CCESSION NO.

61153N RR04206 RR04206-OA NR667-547

11 TITLE (Include SecurityClassification) A Development System for Augmented Transition Network Grammars

and a Large Grammar for Technical Prose

12 PERSONAL AUTHOR(S) John Mayer and David E. Kieras

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Mont1Day) 1S PAGE COUNT

Technical FROM TOI March 15, 1987 48

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necenary and identify by block number)

FIELD GROUP SUB-GROUP Training Materials, Documentation, Authoring Systems,
05 09 Natural Language Processing

19 ABSTRACT (Continue on reverse if necensary and identify by block number)

AThis report is in two major sections. The first presents a High-Level

Grammar Specification Language (HGSL) which greatly simplifies the development of
a complex augmented transition network grammar (ATN). A compiler converts HGSL
expressions into a transition network which a simple interpreter uses for
parsing. The algorithms used by the compiler and interpreter are presented. The
second section presents the HGSL for a large grammar for technical prose. The
grammar was developed to allow parsing of technical training materials in the
draft stage of writing, as part of a computer-based comprehensible writing aid.
Some results on the coverage of the grammar are presented to show that the
grammar is close to being practically useful.-

20 JISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Susan Chipman (202) 696-4318_ L

DD Form 1473. JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

;, *- ' 'w '.%4 % , -%-. " - S- -. :- . ,",V"
__ ,- ._ ; % .K f- ,i % -!J- -,,' ; ' " '' -: ' -% ,

ABSTRACT

This report is in two major sections. The first presents a
High-Level Grammar Specification Language (HGSL) which greatly
simplifies the development of a complex augmented transition
network grammar (ATN). A compiler converts HGSL expressions into
a transition network which a simple interpreter uses for parsing.
The algorithms used by the compiler and interpreter are
presented. The second section presents the HGSL for a large
grammar for technical prose. The grammar was developed to allow
parsing of technical training materials in the draft stage of
writing, as part of a computer-based comprehensible writing aid.
Some results on the coverage of the grammar are presented to show
that the grammar is close to being practically useful.

0 Accesioin For
4 NTIS CRAMI0 O~TIC TAB S0

Unarnnoiriced 0J
JustiC 1011 -

By- -------

Avaikib;UIY C(des

A..(, or*~

SDi't

V,%0

A Development System for Augmented Transition Network Grammars

and a Large Grammar for Technical Prose

John Mayer and David Kieras

The system described in this report is meant to allow for the
rapid development of augmented transition network (ATN) parsers
for natural language parsing. This report assumes knowledge of
the basics of ATN parsers; for background, see Winograd (1983).
The system is based on the standard ATN parser approach, but the
user does not directly specify the nodes and arcs of the network
grammar to be interpreted; rather, the grammar developer uses a
more abstract shorthand called High-level Grammar Specification '.
Language (HGSL). An HGSL compiler converts this shorthand into
equivalent networks suitable for use by the ATN interpreter.

The first part of this report describes the syntax and
semantics of HGSL, and the network implementation of each
construct. The second part describes the algorithms used in the
HGSL compiler and the ATN interpreter and HGSL compiler. The
third part presents a large grammar for technical prose which was
developed with this system.

A High-level Grammar Specification Language (HGSL)

HGSL allows the user to easily specify common syntactic
patterns. These specifications are then compiled into ATN
networks, which are interpreted during parsing. These ATN
networks are constructed from arcs of five types: word test, lex
test, net-call, po, and conditional. Word test arcs allow
control to pass to the next node only if the current word matches
the given word. Lex test arcs are similar but specify a lexical
category to match, rather than a particular word. Net-call arcs
name some network which is to be called, together with a next
state to which control passes if the net call succeeds, while a
pop arc signals a successful return from a net call. Last, the
conditional arc causes evaluation of an arbitrary condition,
which if true, results in control passing to the specified next
state.

The language allows for matching the input sentence against
actual words, lexical categories, networks, and conditions.
These basic components may be combined to form sequences and p

alternations. Optional and repeated items are indicated in a
straightforward way.

1PP

HGSL Syntax

In the following discussion, we will present the syntax of
each HGSL construct, its meaning, an example of its use, and
finally the ATN network into which it is compiled. Table 1 gives
a context-free grammar for HGSL; rules from this grammar will be
cited for each construct.

Table 1

Context-free Grammar for the High-level Specification Language

1 Grammar -> Netdefinition Grammar
2 -> Netdefinition "END-GRAMMAR"
3 Netdefinition -> "NET-DEF" <string> Expression4 Expression -> "!"<string>
5 Expression -> <string>
6 Expression -> "i"<string>
7 Expression -> "{" Expression Sequence
8 Sequence -> Expression Sequence

9 -> H"

10 Expression -> Hf" Expression Alternation
11 Alternation -> "I" Expression Alternation12 -> "}"
13 Expression -> "-" "{" Expression ""
14 Expression -> "+" "{" Expression "1"
15 Expression -> "*" "{" Expression "}"

16 Expression -> "<" <lisp expression> ">"

A grammar written in HGSL is a list of network definitions,
each definition consisting of the key word NET-DEF, followed by
the name of the network and an HGSL expression. The list is
terminated with the key word END-GRAMMAR (Rules 1-3). The
top-level network must be named #START.

Basic expressions. The simplest HGSL expressions are used
to match actual words or lexical categories. A literal word
match is specified by prefixing the relevant word with an

exclamation point (Rule 4). Thus the expression !THE will
recognize only the word the. The network which is built toimplement a literal word match is a single word-test arc that

compares the current word with <string>. Far more useful is the
ability to specify a lexical category match. Since this is theg
most common test in a grammar, lexical categories are written
plainly (Rule 5). For example, the expression NOUN will match
any noun. The lexical category match generates a single lex-test

2

I

-~ * d

arc. A network match is indicated by prefixing a pound sign to
the name of the network (Rule 6). For example, #NP is an
invocation of the noun phrase network. The net-call expression
generates a net-call arc.

Sequences. A sequence can be described by enclosing a list
of HGSL expressions in brackets (Rules 7-9) . Thus
(!THE NOUN #VP} is a sequential pattern satisfied by the word
the, followed by any word of the class noun, followed by any
group of words which satisfies the expression for the #VP
network. This rule can be applied recursively, allowing us to
create a sequential expression from simpler sequential
expressions. For example, {#NP (#VP #NP}} is a legal expression
which happens to be equivalent to (#NP #VP #NP).

Alternations. To match exactly one of several expressions,
the alternatives are separated by slashes and the whole is
enclosed in brackets (Rules 10-12). The pattern
{!THE / !A / !SOME) requires the next word to be one of the
three words, the, a, or some. Once we have both sequences and
alternations, the recursive possibilities of HGSL become more
interesting as in {#VP / (#NP #VP}). This pattern could be a
top-level definition of #SENTENCE since it is satisfied either by
#VP (an imperative sentence), or by the sequence {#NP #VP} (a
declarative pattern).

Optional matches. The appearance of a subexpression in some
larger pattern may be made optional by placing a dash before it
(Rule 13). The pattern { - {!IN !ORDER} !TO #VP) matches both In
order to form a more perfect union and To form a more perfect
union.

Repetition. Shorthand expressions are provided for two very
common types of sequential repetition corresponding to
zero-or-more, shown by a preceding asterisk, and one-or-more
shown by a preceding plus sign (Rules 14, 15). For example,
{* (PREP #NP)) matches any number of consecutive prepositional
phrases, including none at all, and (#NP !VERB + (#NP}} matches a
sentence with one or more objects in the verb phrase.

Conditional matches. It will sometimes be convenient to be
able to insert arbitrary conditions into a larger expression. A
LISP form that evaluates to true or false can be enclosed in
angle brackets to constitute a valid HGSL expression. For
example, the pattern

(#NP #VP <EQUAL (NUMBER-OF NP) (NUMBER-OF VP) > #NP)

first matches an #NP followed by a #VP. We must then evaluate the
condition in angle brackets and then proceed to match a second NPIonly if the condition evaluates to true. The condition is
implemented by a single test arc in the ATN. Note that HGSL does

3

• , " ,- • , . -, -.- - , • -. % ". ,- - - . .. -..-1, % - % ".%. . -

not provide any standardized data structures to be tested by
conditional expressions. Thus in order to write a condition, the
grammar writer must go outside HGSL, at least in its current
form, and devise a LISP expression based on the data structures
of the interpreter.

These conditions may be arbitrarily complicated and
therefore may be a trap for the grammar leveloper. Using them
too often will severely reduce the ease with which the grammar
can be understood and extended. On the other hand, a few
well-motivated conditions may allow considerable rule economy
without introducing any serious obscurity. Our experience with
using conditions shows that they can sometimes be quite simple
and still be useful.

Network Generation

Sequences. Generation of a network for a sequence of
patterns proceeds as follows. Suppose we have obtained a subnet
for the first expression in the sequence. To ensure that the
patterns specified by the consecutive subexpressions are matched
in order, we need only build the second subnet so that its start
node is the end node for the first subnet. We likewise let each
subsequent pair of adjacent component networks share end and
start nodes. The start node for the whole network is that of the
sequentially first component network and the end node of the
whole is that of the last component network. This construction
is shown in Figure 1 for the sequential pattern (El E2 E3). Each
box represents an arbitrarily complicated expression. All that
has to be known about them in order to incorporate these
expressions into a more complex net is that they have a single
start and stop node as shown. Note how the stop node of El is
the same as the start node of E2, as suggested by the overlapping
circles. The correctness of this construction depends on the
fact that the subnets are "one-way" nets, in that control can
never flow backwards from the stop node to the start node. If
this were not the case, the net might recognize the first
subexpression, then the second, then wander back and redo the
first.

Alternation. To build a network for an alternation we use
a single new start node as the subnet start node for each of the
subexpressions. We then add T-test arcs (i.e. test arcs for
which the condition always evaluates to TRUE) from the various
end-nodes to a single new end-node created for the composite net.
This is shown in Figure 1 for the alternation {El / E2 / E3).
The lighter arcs represent the nets previously generated for El,
E2, and E3. The arcs added to implement the alternation are
shown as heavy arcs. Clearly the newly constructed network can
only be traversed if exactly one of the component networks can be
satisfied.

4

t "i-J

{El E2 E31 :

{El/E2/ E3 E2

-E EI~ C

.4.N.4

Figure 1 Network Implementation of HGSL constructs.

Boxed "E" and thin arrows are the previously constructed "
net of the arbitrary expression E.

5

- - - -f = "_ | .-" , , = r,. . J-! w-. J &.. !6 W mjr LW b

Optional expressions. Given an expression and some net
that implements it, we can easily add arcs to make the same
expression optional. We do this by adding a T-test arc,
evaluated after the first arc of the expression, leading from the
start node to the end-node. We then have the option either to
pass through the net, or to match nothing to it, as shown in
Figure 1.

Repetitions. Implementing one-or-more repetition is a bit
complicated. Assuming we have generated a net for the expression
to be repeated, we add an arc leading from its end node back to
its start node, as shown in Figure 1. This will allow the
pattern to be matched more than once. We also create a new end
node for the composite network and connect the component
network's end node to it via a T-test. After the pattern has
been matched one or more times, control can follow this path out
of the network.

The most complicated network construction is that for
zero-or-more repetition. As shown in Figure 1, we take the
network of the expression to be repeated and add a backward
T-test from its end to its start node. As in one-or-more
repetition, this allows the pattern to be matched more than once.
We also create new start and end nodes. The old end node is
connected to the new one by a T-test arc. This is the exit from
the network after the pattern has been matched one or more times.
Finally we add a pair of new arcs out of the new start node. The
first leads into the old start node. Any path through the
network which begins by taking this arc will have to satisfy the
repeated pattern one or more times. The second arc is a T-test
leading directly to the end node of the composite network. This
allows for zero repetitions of the expression.

It can be proven that the network implementations of the
HGSL constructs adopted here are correct. However it is also
true that the current HGSL compiler does not produce the most
compact networks possible. For example, Figure 2 shows a more
efficient network construction for alternation.

IMPLEMENTATION ALGORITHMS

The HGSL Compiler

Here we describe how HGSL constructs are compiled into
networks suitable for the interpreter described below. The
expression to be compiled as a network is parsed by the set of
mutually recursive functions shown in Table 2. Each function is
responsible for parsing the structure for which it is named and
adding the appropriate arcs and nodes.

6

b. ZI

El~
E2 "

N.

E3~

:JL

E2U

E3.

Figue 2.Altrnat newor implmenatios o

El /E2 3).Thehighr oe iscurentl imlemeted

but he oweroneis mre fficent

:4 J

Table 2

The HGSL Compiler

function #HGSLC(INPUT FILE: FILE) returns BOOLEAN is
SELECT OUT PORTION OF FILE TO BE COMPILED;
return #GRAMMAR;
end #HGSLC;

function #GRAMMAR returns BOOLEAN is
loop
if CURRENT-WORD = END-GRAMMAR then

return TRUE;
else if #NETWORK-DEFINITION then do nothing;
else
return FALSE;

end if;
end loop;

end #GRAMMAR;

function #NETWORK-DEFINITION returns BOOLEAN is
if CURRENT-WORD = NET-DEF then ADVANCE-WORD; end if;
RECORD CURRENT-WORD AS NAME OF THIS NETWORK;
ADVANCE-WORD;
START = A START NODE FOR THIS NETWORK;
RECORD START AS FIRST NODE OF THIS NETWORK;
if #EXPRESSION(START,STOP) then
ADD A POP ARC BEGINNING AT STOP;
return TRUE;

else
return FALSE;

end if;
end #NETWORK-DEFINITION;

function #EXPRESSION(START,STOP) returns BOOLEAN is
if CURRENT-WORD STARTS WITH "#" then

return #NET-CALL(START,STOP); end if;
if CURRENT-WORD STARTS WITH "<" then

return #CONDITION(START,STOP); end if;
if CURRENT-WORD STARTS WITH A LETTER then

return #LEX-TEST(START,STOP); end if;
if CURRENT-WORD STARTS WITH "!" then

return #WORD-TEST(START,STOP); end if;
if CURRENT-WORD IS "-" then

return #OPTIONAL(START,STOP); end if;
if CURRENT-WORD IS "+" then

return #ONE-OR-MORE(START,STOP); end if;

(table continues)

8

- - ' -,-'.. <.' -.. - ,.., .'':v..' v~-. .. ' ,: -.'v' <, -' - ' '-"- 2 ."'-''. - '-'- - S,- ..

if CURRENT-WORD IS "*" then
return #ZERO-OR-MORE (START, STOP); end if;

if CURRENT-WORD IS "(" then
return #LIST-NO-PREFIX(START,STOP); end if;
return FALSE;

end #EXPRFSSION;

function #NET-CALL(START,STOP) returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODE;
U-E CURRENT-WORD TO LOOK UP START NODE FOR INVOKED NET;
Ay") NET ARC FROM START TO INVOKED NET WITH NEXT STATE = STOP;
return TRUE;

end #NET-CALL;

function #CONDITION (START, STOP) returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODE;
ADD TEST ARC FROM START TO STOP USING CURRENT-WORD
AS TEST EXPRESSION;
return TRUE;

end #CONDITION;

function #WORD-TEST(START,STOP) returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODE;
ADD WORD-TEST ARC FROM START TO STOP USING CURRENT-WORD
AS WORD TO COMPARE WITH;

return TRUE;
end #WORD-TEST;

function #LEX-TEST(START,STOP) returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODE;
ADD LEX-TEST ARC FROM START TO STOP USING CURRENT-WORD
AS LEXICAL CATEGORY TO COMPARE WITH;

return TRUE;
end #LEX-TEST;

function #OPTIONAL(START,STOP) returns BOOLEAN is
WORD-ADVANCE;
if #LIST-NO-PREFIX(START,STOP) then
ADD "T" TEST ARC FROM START TO STOP;
return TRUE;

else
return FALSE;

end if;
end #OPTIONAL;

(table continues)

9

• .°q ."." 4 ," " • -" " 4 m e . - ." .' " .%.'-" " :%" . " .

function #ONE-OR-MORE(START,STOP) returns BOOLEAN is
WORD-ADVANCE;
if #LIST-NO-PREFIX (START, STOP2) then
STOP = NEWLY ALLOCATED NODE;
ADD "T" TEST ARC FROM STOP2 TO START;
ADD "T" TEST ARC FROM STOP2 TO STOP;
return TRUE;

else
return FALSE;
end if;
end #ONE-OR-MORE;

function #ZERO-OR-MORE(START, STOP) returns BOOLEAN is
ADVANCE-WORD;
START2 = NEWLY ALLOCATED NODE;
if #LIST-NO-PREFIX (START2, STOP2) then
STOP = NEWLY ALLOCATED NODE;
ADD "T" TEST ARC FROM START TO START2;
ADD "T" TEST ARC FROM STOP2 TO STOP;
ADD "T" TEST ARC FROM START TO STOP;
ADD "T" TEST ARC FROM STOP2 TO START;
return TRUE;

else
return FALSE;
end if;

end #ZERO-OR-MORE;

function #LIST-NO-PREFIX(START,STOP) returns BOOLEAN is
ADVANCE-WORD;
STOP = A NEWLY ALLOCATED NODE;
if #EXPRESSION(START,STOP2) then null; else return FALSE; end if;
if CURRENT-WORD = "/ " then
ADD "T" TEST ARC FROM STOP2 TO STOP;
until CURRENT-WORD = ")" loop
if #EXPRESSION(START,STOP2) then
ADD "T" TEST ARC FROM STOP2 TO STOP;
else return FALSE;
end if;

end loop;
return TRUE;

else
until CURRENT-WORD = "}" loop
START = STOP2;
if #EXPRESSION(START,STOP2) then null;
else return FALSE; end if;

end loop;
STOP = STOP2;
return TRUE;
end if;
end #LIST-NO-PREFIX;

10

U

#HGSLC is the top-level function of the compiler. It takes
the name of an input file and asks the user whether the entire
grammar should be compiled or if just one of the network
definitions should be recompiled. It then calls #GRAMMAR. Since
a grammar is just a list of network definitions ended by the key
word END-GRAMMAR, the function #GRAMMAR calls #NETWORK-DEFINITION
repeatedly until that key word is encountered.

#NETWORK-DEFINITION checks for the key word NET-DEF, records
the name of the network being defined, and then calls
#EXPRESSION. #EXPRESSION is simply a large select statement
which examines the current character to determine which type of
expression follows. The appropriate function is then called.
The functions #NET-CALL, #CONDITION, #LEX-TEST, #WORD-TEST are
low-level functions which actually build single arcs for the
routines that call them.

#OPTIONAL, #ONE-OR-MORE, #ZERO-OR-MORE, and #LIST-NO-PREFIX
are intermediate level routines that all call the function
#EXPRESSION one or more times, adding additional arcs to the
results of these function calls, and sometimes piecing them
together to form a larger net. #OPTIONAL adds a single arc to
whatever structure has been built for its component expression.
#ONE-OR-MORE adds two arcs and #ZERO-OR-MORE adds four.
#LIST-NO-PREFIX is the most complicated net, since it builds
either a disjunctive or a sequential net and in either case this
requires piecing together the nets generated during calls to
#EXPRESSION as discussed above and pictured in Figure 1.

The ATN Interpreter

The interpreter used by our system is fairly conventional.
The output of the compiler is a set of networks based on the
constructions given above. These networks are represented as sets
of arcs leading from one node to another. The interpreter has
only one major data structure, a stack of nodes that is used to
maintain the current path through the various nets. The
interpreter repeatedly pops this stack and tries to extend the
path, generally by evaluating the next arc out of the most
recently stacked node.

The output produced by the HGSL system is a syntax tree such
as that shown in Figure 3. This tree is based on the parse path
constructed automatically by the interpreter. Once parsing the
top-level net has been successfully completed, the parse path
will be stored at the top of the parse stack and can be
interpreted as a syntax tree.

Table 3 gives the interpreter algorithm in pseudo-code. The
stack frame, declared in lines 2-8, contains a node id number, S
the id number of the last outgoing arc examined, the position of

11

(#START
(#SENTENCE

(#NP
(DET THE)

(NOUN INSTRUCTOR))
(#VP

(VERB PERFORMED)
(#NP

(DET THE)
(NOUN PROCEDURE)))))

Figure 3. Example of parser output for the sentence
"The instructor performed the procedure."

12

* ze.-: i

Table 3

The ATN Interpreter

1 function ATNINTERPRETER returns SUCCESS-OR-FAILURE is
2 FRAME is record
3 STATE: integer;
4 LAST-ARC-TESTED: integer;
5 POSITION-IN-SENTENCE: integer;
6 ACTIVE-NET-CALL-FLAG: boolean;
7 NET-PATH: list of FRAME;
8 end record;
9 CURRENT-FRAME: FRAME;

10 S: stack of FRAME;
11 POPPED-SENTENCE: boolean;
12 begin
13 POPPED-SENTENCE := FALSE;
14 PUSH(S, [#INVALID-NET-NAME,1,0,TRUE,NIL]);
15 PUSH(S, [#START1,0,1,FALSE,NIL]);
16 while not POPPED-SENTENCE loop
17 CURRENT-FRAME - POP(S);
18 if CURRENT-FRAME MATCHES [-,-,-,TRUE,NET-PATH] then
19 S := PUSH(S,NET-PATH);
20 else if CURRENT-FRAME MATCHES [-,-,-,TRUE,NIL] then
21 S := PUSH(S,[-,-,-,FALSE,NIL]);
22 else if CURRENT-FRAME MATCHES
23 [STATE,ARC-NO,POSITIOIT,FALSE,NIL] then
24 NEXT-ARC-NO :- ARC-NO + 1;
25 NEXT-ARC :- FETCH-ARC(STATE,NEXT-ARC-NO);
26 TEST-RESULT := TEST-ARC (NEXT-ARC,POSITION);
27 if TEST-RESULT - RAN-OUT-OF-ARCS then
28 if STATE - INVALID-NET-NAME then
29 return FAILURE;
30 end if;
31 else if TEST-RESULT - SUCCESS then
32 if ARC-TEST MATCHES (ARC-TYPE,X,NEXT-STATE) and
33 MEMBER-OF (ARC-TYPE, (WORD,LEX)) then
34 S = PUSH(S,[NEXT-STATE,0,POSITION+1,FALSE,NIL]);
35 else if ARC-TEST MATCHES (TEST,X,NEXT-STATE) then
36 S = PUSH([NEXT-STATE,0,POSITION],S);
37 else if ARC-TEST MATCHES (POP,NIL,NIL) then
38 INVOKER-FRAME := MOST RECENTLY STACKED FRAME
39 THAT MATCHES [STATE,ARC,-,TRUE,NIL];
40 NET-PATH := ALL FRAMES ABOVE INVOKER-FRAME;
41 if STATE = #START1 then POPPED-SENTENCE := TRUE; end if;
42 ARC-TEST := FETCH-ARC(STATE,ARC);
43 MATCH ARC-TEST TO (ARC-TYPE,NIL,NEW-STATE];
44 S := PUSH(S, [STATE,ARC,X,FALSE,NET-PATHI));

(table continues)

13

• .U+

45 S :- PUSH(S,[NEW-STATE,0,X,FALSE,NIL]);
46 end if;
47 else
48 S := PUSH(S,CURRENT-FRAME);
49 end if;
50 end if;
51 end loop;
52 return SUCCESS;
53 end ATNINTERPRETER;

the parser in the current sentence when the node was reached, a
flag signalling whether the last arc evaluated triggered a
currently active net call, and the network path of any completed
net call originating at the node. Initially the stack contains
two frames, the node #INVALID-NET-NAME which is shown invoking
the first node of the top-level network #START (lines 14,15).
The standard cycle of the interpreter is a loop (lines 16,50)
which exits either with success when the top-level net call to
#START returns, or with failure when the stack is exhausted.

The loop begins with popping the stack (line 17). The
popped stack frame will fall into one of four categories. The
first case (line 18) is when the stack frame has a completed net
path stored with it. In this case, the path is removed from the
current frame and placed on the stack allowing the interpreter to
back up into a previously completed net-call. The second case
(line 20) is for stack frames which have triggered a currently
active net call. Coming across one of these indicates that the
net call has failed, so after the ACTIVE-NET-CALL-FLAG is set to
FALSE, the stack frame is pushed to allow the next arc for that
node to be considered.

The third case (line 22) is for all other frames and
involves fetching and testing the next outgoing arc (lines
24-25). If there are no more arcs, then the current node will be
given no further consideration. If there are no more arcs and
the current node is the one that marks the stack bottom, (i.e.
#INVALID-NET-NAME), then the interpreter returns FAILURE (lines
28-29) . Assuming there is an arc to evaluate, and that
evaluation succeeds (line 31), the appropriate action is taken
depending on the arc. If evaluation fails (line 47), no action
is taken before beginning the next cycle when the next arc will
be examined.

A successful word or lex test will require stacking a frame
for the next state together with a current word position that has
been incremented by one (lines 32-34). A successful conditional
test also causes the next state to be stacked (line 35-36). A
pop arc is always successful and its processing involves looking

14

% %1

down in the stack for the most recent active net call (line
38-39). All nodes stacked above this represent the path which
has been found through the invoked net and are added to the stack
frame of the node which triggered the net call.

If an invocation of the top-level network was popped (line
41), then POPPED-SENTENCE will be set to TRUE, control will exit
the loop, and the interpreter will return SUCCESS. Note that
because of this, the HGSL supplied by the user must not be
recursive at the top level, i.e. the grammar must not include a
call to #START.

A GRAMMAR FOR TECHNICAL PROSE

A substantial grammar has been developed using HGSL. This
section presents the grammar and discusses its coverage and some
of its strong and weak points.

The grammar was developed to cover a set of sentences taken
from Navy technical training materials. Any sentence which could
not be parsed lead to an extension of the HGSL grammar. HGSL was
designed to make this process as quick as possible by allowing
nets to be described in a compact, easily-read formalism. In
practice the system did make improvements easier. HGSL also
makes it easier to spot rules which are either inconsistent or
not as general as they might be. Far-ranging reorganizations of
the grammar, while very time-consuming for an explicit node and
arc representation, are fairly simple with a powerful grammar
shorthand like HGSL.

GRAMMAR DESCRIPTION

Table 4 presents an overview of the grammar; Table 5 lists
the lexical categories used by the grammar. The complete HGSL
text appears as an appendix; in this section the text will be
presented for description piece-meal. One thing to note about
this grammar is that it was developed to recognize rather than to
generate sentences. Consequently it would not be difficult to
use it to generate some very bad sentences. Also since it is
meant to be suitable for systems which critique poor prose (see
Kieras, 1985), the nets should not fail on sentences which are
only slightly ungrammatical; otherwise the majority of the input
text might never survive the first-stage syntactic analysis.

The grammar developed here suffers from an ad hoc approach
to conjunction which has lead to the inclusion of conjunctive
branches in many of the nets. The option which we did not pursue
is to build a special mechanism outside the grammar that would
have constituted a general theory of where conjunction can occur,

15

J.

Table 4

Network Names and General Characterizations

#START
The top-level network and starting point for all parsing.

#HEADING
Titles, chapter or paragraph headings, etc consisting
of some formatting mark (i.e. indentation, roman
numerals) followed by a noun phrase.

#CSTATEMENT
Conjunctive statement. One or more sentences conjoined
together.

#STATEMENT

Either declarative or imperative.

#DECLARATIVE-STATEMENT

#IMPERATIVE-STATEMENT

#PPCL
Past participle clause. Clauses based on a past
participle and explicitly introduced by some
subordinating conjunction such as when given aircraft
type and weather conditions.

#VINGCL
Present participle clause. Clauses based on a present
participle introduced by a subordinating conjunction.
While collecting and safeguarding drug evidence.

#SUBCL
Subordinate clause. Full sentences introduced by a
subordinating conjunction. Because the procedure was
performed incorrectly,

#VERB-COMPLEX-ARGUMENT
Infinitive clauses following "to" which act like the
object of a verb or simply give the purpose of the
action. He tried to perform the procedure He
performed the procedure to conform with regulations

(table continues)

16

I.

#FOR-TO
Infinitive clauses which begin a sentence To perform
the procedure , ... For the students to perform the
procedure...

#WHETHER-OR
Compound condition formed with "whether". Whether the
user is a novice or if he knows the system well, this
reference manual will be helpful.

#SUBRELCLS
Subject relative clause. The modified noun is the
subject of the relative clause.

#ELIDED-VP
Elided verb phrase. Clauses based on a past or present
participle from which a form of the verb "to be" has
been deleted. May introduce a sentence or modify a
noun. Given adequate instructions, the students ... a
procedure requiring expert supervision

#ADJCL
Adjective clause. Clauses which follow and complete
the meaning of certain adjectives, able to perform the
procedure

#OBJRELCLS
Object relative clause. The modified noun is the
object of the relative clause which follows, the
procedure the instructor performed

#FOR-TO-RELCLAUSE
A relative clause based on an infinitive and possibly
introduced by "for". the equipment for the trainees to
use during class

#COMPOUND-MODIFIER
Conjunction of noun-modifying phrases sometimes
following the modified noun, but sometimes preceding
it. "Whether working with a visual informationspecialist or alone, ... All procedures, official or
unofficial, ...

#CVP
Conjoined verb phrase.

#VP
Verb phrase.

(table continues)

17

#VCOMP
Verb complement. The modifying phrases that follow the
main verb and other verb parts such as participles and
the infinitive.

#GINF
Generalized infinitive. Includes not only the lexical
category INF, but multiple word infinitives followed by
modifying phrases such as The procedure is to be
performed by the instructor.

#CNP
Conjoined noun phrases.

#NP
Noun phrase. Both the usual noun phrase consisting of
adjectives and head noun as well as whole clauses which
can function like a noun, e.g. What the instructor
said was unclear.

#GERUND
A present participle and its modifier acting as a noun.
Following the instructions for this procedure is crucial.

#PREPPHR
Prepositional phrase. Also allows for conjunctions as
in With the instructor's assistance and in keeping
with the rules ...

#RELCLAUSE
Relative clauses. Either subject (SUBRELCLS) or
object (OBJRELCLS) relative clauses.

#INTERRUPTER
Phrases typically set off by commas and serving to
qualify a noun phrase.

I.

18

p ~ p _ ~ pD ~. D P 8 aP

Table 5

Table of Lexical Categories

ADJCL Adjective introducing a clause -

Available for ...
ADJ Adjective
ADV Adverb
AUX-DO Forms of the verb do acting as verb

auxiliaries
AUX-HAVE Forms of the verb have used for the

past tense
AUX-IS Forms of the verb is in

progressives or passives
AUX-MODAL Modals such as may, might, should,

etc.
CONJ Conjunction
DEFDET Definite determiner
HEADING-MARK Characters marking a title or heading
INF Infinitive form of a verb
NAME Proper name
NDEFDET Indefinite determiner
NEG Negative
NOUN Noun
POSS-MARK Apostrophe in possessive forms
PPCL Words introducing a past participle

clause - though inspected by the
instructor

PREDETADJ Adjective preceding a determiner -
all the best

PREP Preposition
PRN Pronoun
PROPPRN Propositional pronoun - That is not

true.
RELPRN Relative pronoun
RESRELPRNR Restrictive relative pronoun - that

as opposed to which
SUBCL Words that introduce a subordinate

clause
VERB Any form of a verb, inflected or

not
VERBING Present participle
VERBPP Past participle
VINGCL Words that introduce a present

participle clause - while
performing the procedure

19

- -... U I .w . dr UW U o" ~P ~, ~ . d .V IN'. . LW'

and thus would have saved us the effort of addressing the problem
on a case-by-case basis. Such an approach has the disadvantage
of making the ATN interpreter non-standard.

The top-level network is #START, shown in Table 6. Since
the grammar is meant to parse technical prose, rather than
isolated sentences, #START recognizes both sentences
(#CSTATEMENT) and any headings which may occur in the passage.
Headings are assumed to be indicated by format markings such as
peculiar indentation or special text editor control characters
and consist of a noun phrase in the broadest sense (#CNP). #CNP
includes any phrase that could be the subject of a sentence.
This allows the system to handle titles such as "How to perform
the procedure". For convenience of discussion, the rest of the
grammar is divided into the following groups: sentences,
subordinate clauses, relative clauses, verb phrases, and noun
phrases.

Sentences

The main sentence patterns (see Table 6) are
#DECLARATIVE-STATEMENT and # IMPERATIVE-STATEMENT. The first is
simply a noun phrase followed by a verb phrase, while the second
consists only of a verb phrase. The various clauses which can
introduce or follow these basic sentence patterns are common to
the two, and are factored off into the higher-level net
#STATEMENT. Since #STATEMENT is the first definition of any
complexity that we have so far encountered, it may be helpful to
interpret it in some detail.

A #STATEMENT begins with zero or more instances of the six
types of introductory clause, optionally followed by a comma,
then proceeding to either a declarative or an imperative
sentence, in either case optionally followed by a subordinate
clause. #STATEMENT is in turn the main constituent of
#CSTATEMENT which allows conjunction of two or more simple
sentences. This net is fairly subtle. It begins with a
#STATEMENT. Since the next expression is preceded with a "-", we
know it may also end with that first #STATEMENT. Alternately we
can add one or more comma-#STATEMENT pairs, before closing with a
CONJ (possibly preceded with a comma) and one last #STATEMENT.
There are two other nets which are entirely devoted to describing
the conjunction of simpler expressions, one for conjoined nouns
(#CNP) and one for conjoined verbs (#CVP).

"?

Table 6

HGSL for #START and Sentences

NET-DEF #START
#HEADING/

#CSTATEMENT !

NET-DEF #HEADING
HEADING-MARK *CNP}

NET-DEF #CSTATEMENT
#STATEMENT

- {* {!,#STATEMENT}

CONJ
STATEMENT

NET-DEF #STATEMENT
*{#FOR-TO/

#WHETHER-OR/
#ELIDED-VP/
#PREPPHR/
#SUBCL/
#ADV

#DECLARATIVE-STATEMENT /#IMPERATIVE-STATEMENT
-{SUBCL

NET-DEF #DECLARATIVE-STATEMENT
#CNP #CVP

NET-DEF #IMPERATIVE-STATEMENT
* CVP

21

Subordinate Clauses

There is considerable variety among the subordinate clauses.

#PPCL and #VINGCL, shown in Table 7, are nets based on past and
present participles, respectively. Each is introduced by a
subordinating conjunction. Note how the incremental approach to
grammar design has lead to an option for conjunction in the
#VINGLCL, but not in #PPCL. This is because the sample sentences
so far processed have not required conjunction in #PPCL. #SUBCL
is the combination of a subordinating conjunction and a full
sentence.

#VERB-COMPLEX-ARGUMENT is an infinitive-based phrase
appearing after the verb. Sometimes it will be identifiable as
an argument of the verb, thus justifying its name, as in He hopes
to get back to work. In other cases it will be modify the
meaning of the entire sentence by giving the reason for which
some action was taken, as in He did it to better his chances.

#FOR-TO is used to introduce a sentence. Like
#VERB-COMPLEX-ARGUMENT, it is based on the infinitive, but allows
the subject of the infinitive to be specified by adding for and a
noun phrase at the front (For the plan to work, .-...) .
#WHETHER-OR is probably best thought of as a complex subordinate
clause, since it combines two #STATEMENTs into a subordinate
relation to the main sentence, as in Whether the result is
ositive or if it cannot be determined, ... On the other hand,

#WHETHER-OR differs from #SUBCL in that it may be based on a
sentence fragment rather than a complete sentence as in Whetherold or new, ... By comparison, Because old or new ... is
unacceptable.

Relative Clauses

The relative clauses shown in Table 8 can be used to modify
nouns, or in some cases, can be used in the place of nouns.
#SUBRELCLS includes relative clauses in which the noun modified
plays the role of subject in the relative clause. The most
obvious variety uses a relative pronoun as in The procedure that
works. One type of #SUBRELCLS that does not use relative
pronouns is the #ELIDED-VP, which is based on a past or present
participle, e.g. the procedures studied in this course or the
trainees having the most difficulty, for the above examples.
They are called elided verb phrases because they are taken to be
shortened forms, such as the procedures which were studied in
this course and the trainees who are having the most difficulty.
Like most clauses which can modify a noun, #ELIDED-VP can be
shifted to the front of the sentence, in which case it is being
used to describe the subject of the sentence, as in Elected for
the first time in 1982, the congressman ...

22

< :'.. ...

Table 7

HGSL for Subordinate Clauses

NET-DEF #PPCL
fPPCL VERBPP #VCOMP}

NET-DEF #VINGCL
VINGCL #GERUND

* { CONJ/ !}#GERUND}

NET-DEF #SUBCL
ISUBCL #STATEMENT

NET-DEF #VERB-COMLEX-ARGUMENT
!TO #GINF

NET-DEF #FOR-TO
- ({ !FOR #CNP }/{!IN !ORDER}
!TO #GINF

NET-DEF #WHETHER-OR
!WHETHER
#COMPOUND-MODIFIER/

{#STATEMENT - { !OR !IF #STATEMENT I

NET-DEF #COMPOUND-MODIFIER
-{!BOTH / !EITHER
ADJ / #ELIDED-VP

*{{CONJ/ ! {ADJ / #ELIDED-VP I

23

Table 8

HGSL for Relative Clauses

NET-DEF #SUBRELCLS
RESRELPRN #CVP } /
#PREPPHR /
#ELIDED-VP /
#ADJCL)

NET-DEF #ELIDED-VP
- { NEG } * I ADV }

#GERUND / { VERBPP #VCOMP } } }

NET-DEF #ADJCL
{ - { !, }
ADJCL { #PREPPHR / { !TO #GINF } } I

NET-DEF #OBJRELCLS
(- { RESRELPRN) #DECLARATIVE-STATEMENT

NET-DEF #FOR-TO-RELCLAUSE
(- { !FOR #CNP) !TO #GINF

Yet another variety of #SUBRELCLS is the #ADJCL. It is
based on an infinitive or prepositional phrase and introduced by
certain adjectives such as eager, impatient, or glad as in
Trainees glad to complete their instruction or Available to all
employees, group insurance

Aside from #SUBRELCLS, the other major varieties of relative
clause are #OBJRELCLS and #FOR-TO-RELCLAUSE. In #OBJRELCLS the
modified noun plays the role of the object and the relative
pronoun is optional, as in The procedure [that] the instructor
demonstrated. #FOR-TO-RELCLAUSE is a restricted version of
#FOR-TO appropriate for use as a relative clause. It allows us
to handle the thing to do or the thing for you to do.

Verb Phrases
There are three major verb phrase nets shown in Table 9, the

principal one being #VP, which generates verb forms. It includes
a fairly careful description of verb formats, covering the use of
modal auxiliaries such as can or may, the use of do, be and have
as auxiliaries, and simple tensed verbs, with consideration given
to negation and adverbs occurring between Y

24

U&

Table 9

HGSL for Verb Phrases

NET-DEF #CVP
VP

*{+ (CONJ /!

NET-DEF #VP
8

* ADV}
{AUX-MODAL- NEG} * ADV} #GINF #VCOMP /
AUX-DO -{NEG)*{ADV }INF #VCOMP /

-{NEG IAUX-IS *{ADV

VERBING / VERBPP I#VCOMP
* {CONJ{(VERBING/VERBPP}) VCOMPI

AUX-HAVE - (NEG)*{ADV) VERBPP #VCOMP /
VERB #VCOMP II

NET-DEF *VCOMP
*{#CNP/

< LAST WORD IS A VERB
TAKING STATEMENT OBJECT > #CSTATEMENT}/
!THAT #CSTATEMENT) /
{ {- {!,) #PREPPHR

*{CONJ #PREPPHR I/
ADV/
ADJ/

#PPCL /
#VINGCL/
#VERB-COMPLEX-ARGUMENT/:4

#, INTERRUPTER !
!f #INTERRUPTER !

NET-DEF *GINF
{ * { ADV I

INF *VCOMP I//
!HAVE VERBPP #VCOMPI
!HAVE !BEEN (VERBPP /VERBING # VCOMP /
!BE f ADV I4VERBPP /VERBING # VCOMP
*{(CONJ ({VERBPP/ VERBING) #VCOMP) I

25

..........

parts of the verb. Since this is a complicated definition, we
will give several examples of the verb phrases that it includes.

There are basically five alternatives based on AUX-MODAL,
AUX-DO, AUX-IS, AUX-HAVE, or VERB. The AUX-MODAL case begins
with a modal verb such as may, might, or should, and then
continues on to some infinitive and whatever object may follow
the infinitive (#VCOMP). As an example, consider must perform
the procedure. Adverbs and negating elements can be interspersed
as indicated to give must not carelessly perform the procedure.
The AUX-DO alternative is quite similar, but is based on a form
of the verb to do, rather than a modal. The sort of infinitive
phrase which follows to do is also slightly more restrictive, INF
as opposed to #GINF. 1GINF can generate have done, whereas the
lexical category INF cannot. As a consequence, should have done
it is allowed, but did have done it is not.

AUX-IS verb phrases have some form of the verb to be
followed by a participle, either present (VERBING) or past
(VERBPP). The participle can then be followed by the usual
objects. Examples of this would be been performing the procedure
or was told by the instructor. As indicated by the latter
example, AUX-IS verb phrases include some passive voice
constructs. The AUX-IS verb phrase has been extended to allow
building conjunctive verb phrases by adding a CONJ and a second
participle to give phrases such as been cleaned and inspected.

AUX-HAVE generates the past. tense with have and so requires
a past participle. An example with the optlon--al arguments is
have performed the procedure. The VERB-based verb phrase is the
simplest pattern and captures the present tense of simple verbs,
e.g. perform the procedure.

Every basic verb phrase described in #VP ends with a #VCOMP,
a net describing the numerous phrases which can follow the main
verb of a sentence. The first alternative in #VCOMP is the
direct object (#CNP). The second alternative uses a condition
(note the angle brackets). The rational for this condition is as
follows. Some verbs take whole clauses as their objects, as in I
hope they all get here on time. It would be very inefficient to
begin parsing a sentence after every verb, so the condition
ensures that we attempt this only if the verb is one of the
relatively few which can take clauses for their objects. In the
third #VCOMP option, a clause once again serves as object of the
sentence, but it is explicitly marked by that, as in I hope that
they all get here on time.

Some of the more straightforward post-verb elements include
one (or more) prepositional phrases and the lexical class ADV
(adverbs). The lexical class ADJ (adjectives) is appropriate
only after such verbs as be, seem, become, etc. Currently no

26

attempt is made to implement this restriction, which could be
done with a condition.

#PPCL and #VINGCL are also possible verb complements, as in
He executed the procedure as ordered by the instructor or He
executed the procedure before realizing it was inapplicable. As
mentioned above, #VERB-COMPLEX-ARGUMENT accounts for infinitive
phrases that follow the verb.

The last options given under #VCOMP are for interrupter
phrases, i.e. those which are likely to be set off from the rest
of the sentence by commas or brackets. Since our understanding
of the relation of these phrases to the rest of the sentence is
incomplete, this constituent has an undeniable catch-all flavor,
generating noun phrases, conjoined adjectives, and at least some
subordinate clauses. Giving a more satisfactory account of these
phrases would be an important next step for this grammar.

Likewise, the #VCOMP net could be improved by taking into
account the few sequential restrictions that govern the ordering
of the structures included. For example, a verb complement may
include both a noun phrase and a clause object, but the order is
not arbitrary, as shown by the contrast between The officer told
the trainee his promotion was approved and *The officer told his
Eromotion was approved the trainee. Currently #VCOMP does not
impose any such restriction. A #VCOMP consists simply of zero or
more items from the list of possible phrase structures. The
surprising thing about this net is that it works as well as it
does.

The last major verb net is #GINF which covers infinitive
forms and likewise makes use of #VCOMP to describe complete
infinitive-based phrases. There are basically four phrases here
which can be illustrated by the following examples: do
something, have done something, have been doing something, and be
doing something.

Noun Phrases

The major noun phrase net is #NP, shown in Table 10. The
first two options of the net are the most complicated. The first
describes the sort of clause which can function both as a
relative clause and as a noun, as in What he saw amazed him.
There is also an interesting conjunctive version, Do you know
where or when this trend started? As is clear from these
examples, RELPRN is a fairly broad class including when, where,
how, which, that, and so forth. It is not essential to give a
full sentence after the RELPRN to get one of these noun-replacing
clauses. An infinitive phrase will do just as well: Does he
know where to turn?

27

-~ . --.

Table 10

HGSL for Noun Phrases

NET-DEF #CNP
-{!BOTH I !ITHER I !EITHER

(NP
*{+ {!/ ;/CONJ) #NP

NET-DEF #NP
RELPRN* + (CONJ/!} RELPRN

#DECLARATIVE-STATEMENT) /
RELPRN * (+ (CONJ / ,IRELPRN

!TO #GINF #VCOMP I
!WHETHER #DECLARATIVE-STATEMENT
!OR f MNOT / #DECLARATIVE-STATEMENT}
f PREDETADJ)
-(DEFDET /NDEFDET
*{NOUN /(ADJ -{CONJ II

NOUN
- #RELCLAUSEI

IPOSS-MARK #CNP II
(!(#CNP !

NAME!/
PROPPRN/
PRN /
#GERUND

NET-DEF iGERUND
{-{NEG IfVERBING / !AVING VERBPP I VCOMP

NET-DEF #PREPPHR
PREP #CNP

* (+ { CONJ I ,IPREP #CNP I

NET-DEF #RELCLAUSE
#FOR-TO-RELCLAUSE /#SUBRELCLS /#OBJRELCLSJ

NET-DEF tINTERRUPTER
{ #COMPOUND-MODIFIERI

#CNP/
#PPCL

28

The #WHETHER-OR clause discussed above in its role as a
sentence-introducing dependent clause can also serve in place of
a noun. For example, Whether the procedure is efficient is not
crucial. The most common pattern described by #NP is the more
obvious grouping of nouns and adjectives ending with a head noun,
and then possibly followed by relative clauses. This pattern
also covers noun phrases that turn out to be possessive forms.
Other possible noun forms include proper names, pronouns (both
PROPPRN and PRN) and gerunds (i.e. those phrases based on a
present participle but serving as a noun).

GRAMMAR COVERAGE

The grammar was originally developed to handle technical
training materials written by Navy writers. The goal was to be
able to process early drafts of such material, and not finished
versions of the material, because the parser was intended to be
used as part of a computerized comprehensible writing aid (see
Kieras, 1985). A sample of target materials was collected and
supplied by the Naval Personnel Research and Development Center
(NPRDC), along with a lexicon containing about 10,000 words,
tagged with their traditional parts of speech. This lexicon
includes most of the words appearing in military technical
training materials. It should be noted that a large quantity of
such material appears in essentially an outline format, with
heavy use of "telegraphic" prose. We did not attempt to ensure
that the grammar could handle such material, both because key
parts of the content are conveyed by the outline structure rather
than sentence content, and because the telegraphic style is
probably inappropriate for such documents anyway. As an
indication of the coverage of the grammar, it parses all of the
examples shown in Table 11.

Convergence of Coverage

The grammar was originally developed to handle the target
materials in the usual non-systematic manner. That is, a few
sentences were chosen and tried on the grammar. If there was a
failure to parse the sentence, a decision was made whether
extending the grammar would be reasonable, and if so, the
extension was made. However, we had the usual experience of
parser developers in that a lot of syntactic coverage comes very
quickly in the development of the grammar, but each extension
accounts for fewer new syntactic forms. Thus, when coverage is
assessed in terms of the variety of syntactic forms, further work
on the grammar tends to produce less and less additional
coverage. But if the goal is to handle real material, with
realistic distributions of syntactic forms, is it possible that
the grammar development process converges to an adequate
coverage? Of course, there are too many possible syntactic forms

29

'f*Z "!. Z

U

Table 11

Example sentences from each NPRDC materials sample

Sample 1

Given the logarithm table, a chain of amplifiers and/or
attenuators with the gain or loss of each expressed in db, and
the input power in watts, compute the gain or loss and output
power.

Sample 2

In order to ensure that all art work requests leaving and
returning to the IPDD are accurate and the requested word is done
to the satisfaction of the customer, the following procedures
will be adhered to in submitting audio-visual production
requests.

Sample 3 .'

Due to the technical nature of these performance tests and the
requirement for the proctor to be fully aware of the examinees'
actions and their consequences at all times, it is required that
the proctor be qualified to teach this course of instruction.

Sample 4

Identify the proper methods of approaching a drug offender while
collecting and safeguarding drug evidence as specified in
applicable publications.

5%

to hope realistically for a complete grammar. But the question
is whether the process would get to a point of diminishing
returns at a reasonably high proportion of sentences in the
target material that are covered.

Thus, as part of the final grammar development process, a
convergence study was conducted. A series of material samples -
were used, with the grammar extended to handle each sample in
turn. A record was kept of each change made in the grammar, so
that we could roughly quantify whether the extensions to the
grammar either increased or decreased as we went from one sample
to the next.

The specific samples were supplied by NPRDC. These were
actual samples of draft materials to be used in technical

30
5[,

Z%'

P' -.

training. The sentences in these samples had been classified
into two groups, based on whether or not they could be simply
parsed by an extension of the relatively simple ATN grammar for
technical prose found in Kieras (1983). We assumed that all of
the sentences that could be parsed by the NPRDC grammar could
also be parsed by the current ATN, which like the NPRDC grammar,
evolved from the same original simple ATN. We then focused on
the sentences that could not be parsed by the NPRDC grammar. The
sentences shown in Table 11 are examples of sentences that could
not be parsed by the NPRDC grammar, but could be parsed by the
current grammar, after it was fully developed to handle these
samples. These examples are chosen to represent the more complex
sentences that could not be handled by the NPRDC parser, rather
than the simpler ones. The samples were used in order of
increasing size of the sample, which was the same as the order of
increasing number of sentences that could not be parsed by the
NPRDC ATN. The grammar was elaborated as required for each of i

the sentences, and a record kept of how many such changes were
made. Notice that the criterion for a successful parse was only
that the parser succeeded in producing a parse tree that was not
grossly wrong. Such parse trees may have difficulties in terms
of semantic interpretation, but we did not make a systematic
effort to either quantify the number of such problems or to
resolve them.

The results are shown in Table 12. As shown in the Table,
the first sample consisted of a total of 23 sentences, 5 of which
could not be parsed by the NPRDC ATN, and all 5 of these
sentences required extensions to our grammar. The next sample
had 30 such non-parsable sentences, and 12 required extensions to
the grammar. The fourth sample, however, had a total of 109
sentences in it, 62 of which could not be parsed by the NPRDC
grammar, but by the time we reached this fourth sample, only four
sentences required extensions to the grammar.

This overall decrease in the number of grammar extensions
suggests that the grammar is converging to a coverage of the
target materials that would be fairly adequate. Notice that each
sample came from a different writer, so that we exposed the
parser to the idiosyncracies of different writer's styles.
Although this convergence study is very limited, we are
encouraged that practically useful parsers for this target
material can be developed, and that the grammar presented here is
close to being a practically useful parser.

31

Ae-% A e

Table 12

Grammar Convergence Results

5;'-

Sample in order

1 2 3 4

Total sentences in sample 23 46 65 109

Sentences not simply parsed 5 30 39 62

Sentences requiring grammar extensions 5 12 6 4

Percentage of total 22% 26% 9% 4%

32:

, .j,_

'.

ph

32 ,-

References

Kieras, D. E. (1983). A simulation model for the comprehension of
technical prose. In G. H. Bower (Ed.), The Psychology of
Learning and Motivation, 17. New York, NY: Academic Press.

Kieras, D. E. (1985). The potential for advanced computerized
aids for comprehensible writing of technical documents.
(Technical Report No. 17, TR-85/ONR-17). University of
Michigan

Winograd, T. (1983). Language as a cognitive process: Vol. 1:
Syntax. Reading, Massachusetts: Addison-Wesley.

¢,

33'

I,

...,, ,, ,-., , ,,, , ..,... ,-., ..,° , , ,.. , .,,.... , . ,,.... -..'.

Appendix

The Grammar for Technical Training Materials

NET-DEF #START
#HEADING/

#CSTATEMENT !

NET-DEF #HEADING
HEADING-MARK #CNP

SENTENCES:4

NET-DEF #CSTATEMENT
#STATEMENT

- {* {!,#STATEMENT

CONJ
STATEMENT

NET-DEF #STATEMENT
*{#FOR-TO/

#WHETHER-OR/
#ELIDED-VP /
#PREPPHR IN/
#SUBCL/
#ADV

#DECLARATIVE-STATEMENT /#IMPERATIVE-STATEMENT
- (SUBCL))I:,..

NET-DEF #DECLARATIVE-STATEMENT I.
NET-DEF #IMPERATIVE-STATEMENT

* Cvp

34 u

SUBORDINATE CLAUSES

NET-DEF #PPCL
{PPCL VERBPP #VCOMP

NET-DEF #VINGCL
{VINGCL #GERUND

* {CONJ/ #,}GERUND

NET-DEF #SUBCL
{SUBCL #STATEMENTI

NET-DEF #VERB-COMPLEX-ARGUMENT
(!TO #GINF)

NET-DEF #FOR-TO
{ - (!FOR #CNP I/{!IN !ORDER
!TO #GINF I

NET-DEF #WHETHER-OR
I!WHETHER

#COMPOUND-MODIFIER/
STATEMENT - (!OR !IF #STATEMENT

NET-DEF #COMPOUND-MODIFIER
I !BOTH / !EITHER

ADJ / #ELIDED-VPI
* fCONJ/ ! IADJ/#ELIDED-VP I

RELATIVE CLAUSES

NET-DEF #SUBRELCLS
fRESRELPRN #CVP /

#PREPPHR /
#ELIDED-VP/
#ADJCL)

NET-DEF *ELIDED-VP
(NEG I* ADV

#GERUND /1VERBPP #VCOMP)

NET-DEF #ADJCL

ADJCL I#PREPPHR /I!TO #GINF I
NET-DEF #OBJRELCLS

-IRESRELPRN # DECLARATIVE-STATEMENT

35
.

NET-DEF #FOR-TO-RELCLAUSE
-{!FOR #CNP }!TO #GINF

VERB PHRASES

NET-DEF #CVP
#VP .*.

*{+ { CONJ /!

NET-DEF #VP
{ ADV}
AUX-MODAL -{NEG }*{ADV }#GINF #VCOMP}
AUX-DO -{NEG }*{ADV IINF #VCOMP /
-{NEG }AUX-IS *{ADV

VERBING /VERBPP }#VCOMP
*{CONJ {VERBING / VERBPP) #VCOMP }/

AUX-HAVE -{NEG I*{ADV IVERBPP #VCOMP
VERB #VCOMP} I

NET-DEF #VCOMP
* #CNP /

(<LAST WORD IS A VERB
TAKING STATEMENT OBJECT > #CSTATEMENTI/

!THAT #CSTATEMENT) /
- { !,) #PREPPHR

*{CONJ #PREPPHR} /
ADV/
ADJ/

#PPCL/
#VINGCL/
#VERB-COMPLEX-ARGUMENT/

{ #, INTERRUPTER!,I/'
{ {#INTERRUPTER !

NET-DEF #GINF
* ADVI

INF #VCOMP /
!HAVE VERBPP #VCOMP /
!HAVE !BEEN {VERBPP /VERBING I#VCOMP I/

!BE *{ADV I{VERBPP /VERBING I#VCOMP
*{CONJ {VERBPP /VERBING I#VCOMP III

36

NOUN PHRASES

NET-DEF #CNP
-{!BOTH /!EITHER / !NEITHER
#NP

*{+ {,/!;/CONJ }#NP

NET-DEF #NP
RELPRN* + {CONJ/!} RELPRN}
#DECLARATIVE-STATEMENT)
RELPRN * (+ { CONJ / ,}RELPRN
!TO #GINF #VCOMP)

{!WHETHER #DECLARATIVE-STATEMENT
!OR { !NOT / #DECLARATIVE-STATEMENT
*{PREDETADJ)

-{DEFDET /NDEFDET
*{NOUN /{ADJ -{CONJ I

NOUN
-{#RELCLAUSE/

POSS-MAR(#CNP}/
!{ #CNP !}I I/

NAME /
PROPPRN/
PRN /
#GERUND

NET-DEF #GERUND
-{NEG I{VERBING /!HAVING VERBPP I#VCOMP

NET-DEF #PREPPHR
PREP #CNP

*{+ (CONJ / ,IPREP #CNP

NET-DEF #RELCLAUSE
#FOR-TO-RELCLAUSE /#SUBRELCLS /#OBJRELCLSI

NET-DEF # INTERRUPTER
#COMPOUND-MODIFIER/

#CNP/
#PPCLI

37 .

0l 0

C3; w. 14 n 0 41
4) . 4 4) 0a

* ~ ~~ ~~ 0 ~ 4)1-
4) * 0 4) 410 U4 AIL

I4 Vnw 0 .0 14 4) - Q 0 m 0

4) >7 ;N W w 0 N >0 0 -. c0- .4A04) Z r- '4. - 0 04 In)
C 0.41 00040%C M N 0 mcN C ON .404) -.)M 144 N 0

C1 414 04 V N C1 4) 140.4 r.4 . , 0 4d4 -

C44M IN 0 4 41 4.) 4 U). L,1. 41 0 N 4)C 4 0 0
.C 14 r 4 ~ 41 0 4 4) 1) 4)C) 14) w. 14 14 C

.0C00 0 a 0. 14 41 O 4 411) 1 0 41 0.M 0 0 '0 4
041 *...c 14 0w1 0 41-4.40 0) go C 1 0 r-1 u CO X
m 0'-~ a 4 4 u 01 04 Ino n1 4L 0u ~ 414 Cl C)4

M 0. 40 144 1 4-4 . w . -0

a, u C0U3 m 0 0) o 40 4C 0 u C a, 04 14 0 4? >. 0 I00- U)aC
1b4VV 41 -. 4 0401 c 4)0 U444C 44w14 U) Z)4C 401 4.04 Cm .a * 0- E o
w -101 C-0 0 01' 1 V 00 E A)41 .C)0 3 .l0 0 Z 0 0' 41 04041m4I

w 4)0 0 04 fa . 41 ~- 44 uC 4104. 440 O 4 0C 14.U4
m0 444. in4 .4). 014ty 041 M..4 0.)41 3 4) % 4.-41. I..4). M~

0.C 4U4 *n 0 w. C40., C1,) 3c . 0.0 1 .00). U1.4

1.14)4 1.410 0) 14004 01 a-4 U)14- 144 uO o4.4 aJ. .11 144

041 A w 0 0 0 to1

0 4)

041 A 0
04 0041

))9 IA r. 44 N wA. 0 0 ~ C W.1
41u) u) m 01 04 0) -
00) 4) uM 0 41 C 4 0U4~ 41 ~ 1 -0 0e

0 0 :,, > 1 aM 0) A)t 4-4 01~ 41 -I 14M 0 f % -M0 . X
90419 4)0 CM N _ 0 i A 0 4) 0 U1 1 4) -1 a -.

u4 DA C0044 >V'.. "-- W 0 a4 w I1 C r- %0-4Mc%

0~~~ A0 w))0 4L 4 1 .. 4 at -4 , at.) 4) 00 C M 0 I
0.0~3 40 01. N C0 41M N0 0A0 04 0 ~ 0
0 ~ ~ . ca en). W.4 14 C-1W 4 ~ 41 0 .3 4 44 0 40 0 C

.4 .4 .04 C 4 (A1 41C U4 N1 0N M4 0 .4 1 44) 0 14un1V 0 4)7 4

410 9. 04 a% IO 10-4 10. 0 - 0...3144 0 0.- 2
1 .4 .0 V 01 0 444. CO C-. DC. 14w wO. L. r- 041-0

14) .0.4 14)A.1 04 .4 C4) 14 1. 4)l--4. 00-4- 4 0- 0 4))..-4.
414 4) E4C41 . 014)1 C .0 414 4044 . c, . C o41 C. 010.. 0-10 411) =4

0- 0 .6) 0414 40.41 W0 CO U 4 0 10 14 -F. 0 41 0 C4m)4)0-. C C41m-.40.z

14 di 4 4)) 4 fa 1.C 0 410 -40 02 V U 0 c0. 0000)4O 0 C U I 0M =1w4-40
44 a41 0140 %4 1) 0 .. %A 01 4 4 lz C c ouC 4) to P- 41 '24) '22 0 .4

... iM.4 0. 0 0 -1.14 V.144 *)0 * IO4.. .41
r.C0 A 04114 w 44.- 4 "4 w (.1w 14041 0 W.- M.0 14. mg1 14 C A04

ODZ400 00-w:. 044U24 C0omm 020 0020 0 2." mu ox en. at-0.-I

0.

41o 41 Ai 4w >
0j C 41 4 0)4-

0j C O 0

0 41 n 4)0 U. 4 4 " 4) C A,
0 N. 44 m) 0 41 0 n U) 0 L:L

4) 4 A C C N w ON O- V 0 0 0 -'4 C CIO LM
IA Q4 0 -. in4 u.If C '4% 4.4 * Nn 1 4 4) C1 4) IQ

ON -44. M UI4 4)00 0 401. 411) w1 N) .. 41N p
C) '4.e 40 N 1 igW N -.. 0 0w 0 -- I) 04 Cc..I).4i O P ') 0 4)

0 W -U640 144 N 10% to 412N wk3 u144 CU) 6.1 z)4 w4 41 z 41 0
4) 0- " i z i4 m)I 411- 4. 1C; w 0 M1.4. I .4 ME 4) 41 j - 0

14 C 41 O4) goN 414141 C~ 01 C4m 4 4) 0 0 41410 -u >
44 04 4)-1 41C 04 40 10 0a1 141 20 44 0 0

Av44) 4~ 44114> L 0 00 41 t 4C 0~ -41 A 4C- *14-' C4h1)a0 0-01C
0 440 w* 14) wC 40 0 a" 0 -441) 041 00 4 2 040 CA - I".C-M)' In id
do04 0 4 4 0 -0 a% 0U4 e -a 041. VI -4)0) C 0- 04)0 ON C NZ0)W 4 r.
.414 MA4 00. 1 0. 40 C CVO14C A)4.)4141 41. 4 144 0 000- 14 -.)

C)14-.441 014.1).1 c4 4) 4 044) 01- 4 400 "o 4).4 nC x 1). .- 1
41411.204104" M.=4) 1414 414) U04 14> 04 0011 414 C 0 .u-4n 4) m-

)0 04 1)C10.-> m11) 41CO 4)1 414 >>, C 0 410 142 V:'Id~~~~~ Q421 '20C A1 ZO 0)41. Z -' -14N. M.41 0441 X~ . C
w U C 4 w1 144.4 *) *0 4 w)4 0-4 ODI.1 a0* 0w C1 cc (-)Iw)w

0 M..04 004W4 a2 01u0 0Z-. MD0 MN- 01.20i. .40 a 1-0.l U 00ZaU0

- 1 C D'.

In 1 w I. 1 . .C)
0) 14 40 0) 04 1

14 041 04 COf 04 14 4 0

41 41~ 44 a 1 '4 41 1 z C V-.
4) u41 411 0 01 > . In CO)M M 0 4 4

0 4M' 14 4) N .01 -0 41a 0 . 4.-. v4m 41- 410 N w)1C.I
m. &0 M v4 wI 01m N m40C N L.) > 4) " iU m 41 00

V) I 40 41 :1, .1. >.a a - 0D >4.DI 0- , o 4N V4C4 M P) 4a-.). a,
CO0).1n 40)uN 14 41- zN 41.4 N -c t 4141J - 4) N- 41144) 0 044 0)) c
004)ai- 411 w 41 .4 40 as a, a >N 10 wC 014 W1- 0 m 400. Mm
41 *.N u000 -4 MN - C 04 a * X C 04 4141 004) 0 a 0

.. 0410 Ch. fuC 41 41. .4 C6 1- I4-0 1 > 4 .. 444 0)--- c

014 41 1 CCI.)6 40 C in 0 Z C 40 a, 1m00
0C 4) .4 MO. C 4411 41 0 .. 4140-. 4 4. OC.*4 C - 014 Uj .0. . 0~- 0)

C-.4 W A 040 1 -1 -440 - c4) 1 I0 C41. 1440 6 C.01C) 41 W 14. 4 14)0 C >. t C 114 414 0 0 C1.
414 04vj f. 1.- 441 .01 C c 5 U4E.4 0 a0 0.m1.5 -) I.,

4)4W 4.C C 02 V '0 0 A-I- 0A 0410 .4-4 040. 6JO 4I WC - -6 - U M w" V14)4)0 C- C 1.2 iw N .Ij 0 '244. .4 4144 C 1 4000 41 C 041M
44). 0.-. 44141 b. 4101 w %0 41 .C4 00141 -4 m 4 > ma

*0.%.-u 0 4 0U >.- *) 0.00- 0 a014 004 *.a 0 - -- 0.1
024~ a4 1404Z11 14414 6 1441W 8 w 1. w W W41 UM 410- w 10 4) 0 0 00

f.Z~ 00 0Wa i 0 0c 0000. I.-4 014 U) 00000 m

MN9

V 0- 0
4,1 m 4

m4 0 11 'a
6 4 0 6 14 C)4 1 1p 0
a (14 %l A1 0 . W 'C fn. 0c 0u 0 4a:

1. .fl N u 0 4- %a N 4, V% N4 0 a4 -01 0 5 W
04 N -2 -C -1 N 603C 1~ 11 v 0 600 W6C 141 'z '-C 4 g
14. >N 0 V CC 2 0 >C4 N) -, *N . 1 4,z 4,61 V C, U0 C14

0 4 N -C 1040 14C w I- 'OC N 000 N.' 1.6 , 1. 4)
C~0 0 >4 00. ~~ N 4U0 A. a , 4, 040 -. q.

4 ,4A 4) W 4 .4.V' U.6.J 04 NIJ% U N 1:4. 04 >. 141 Z

a,)' 4, U c~ N 0 0 LE 0~ 0u 1-A
414L IT - -4- '- 4 C 0. . 1J -. 0 A C- v4 4,. 13

W~J z 4 0% ar. 4, :2 mm co p a fCh 4,14j0 4,4 0 6 C 0 V

r1 0. U0 0 00 c 34 01 u c I014 Cb. 01 Z4 u Ac

40.. In w w &A w0u C 0 4 4a0. w >,- a-C 14Z 00 m 0 04

* w N 4 0021 a O 0ZA.34W ZhQ 04 .~O Q a -0cm> a j%U 0la0 0 C~6t- U

60 Q

.40 z4, i
0, 0, b, goo 0

*' Nc .4 01 ' vn - OC w 6)
Cf C in en 2, In01 14 U 6

4, ~ ~ ~ L NN 6W O~ .'J.4 0. 0 Q V O 1 c 1'~
u'~ a C C 0.- Id4- AN C00041 ~ 0 in 101 V0 N 61 -

2124 0 >-. ' -0% A C 000 S.- u old 4,30.0!W'- c I Cn Z..> Aa
0 64 0 0 40 A.L 600 0 4.4. 0 0r~ Ic 4j

'0e C40. 014, *44J 1; 06 0. a.1- 1 mO'. 0 ~ x ~
*J4 A. 4 4.C C I-- C S I~ A &Cc W E14C .. 14' Id 0 4,1

14'.0 a.-. C 4, 00 14 las-U 'a . 0. .4 MZ- -604 oa' z 0
*V, 644 41 54 c0V60. 40 -401.- a -U O w~ : eaw c~ 1460. .4W C c144 , 4.. u 6. -- 4 0 .9 02 A,'1 0 h~

>o0 41 2-4. 104 0 " C0 1O 4, rU 63 41-a CL U 6 4

'4C'14 *>
4

M-4 0. 4 %. 4 a~A 014 Q- 14 -. V U)". u *uE036 c
06-Q 0 0 0UI 0U 04' OM.A A 144 402 ~. . 04

N

CN 0 2 ,
0 N 0

4, 0a 0 C 10- In
0 A C ,"

-0 0 06 C '. 0 0 .4 I 10 6a 01u4& 0.4
U14 4, f..f w 0 in0 v6 CU '- 0

4 fn &...IJ C. C-F . 16 , 8 4, C04 C- -
'A 0f 4 V' N 120 0 A.. U n L In 14 '

1414 c *VN j N0 0 Q..0%1 0 82 6
ON C.0 Un A0 14 0 '0 CSfl4 - 04 1u0

0% at~- 06 .311 LU 0 e- x "

0 4, A'S a 0 C3 (U 0 0 0 0% 0 0 - C U. W- 4
04 W 4 &.I 0 j % .- 4
04 z 00u X 4

UM 0 C U4 x - 6: 0 g 6-. -. -C A,> b.46 1 . Cc a 63 0 w
onh14. C- C b. ; 0 41 >..0 6. a6 . '

00.." -CO0 00 UF3. 6- C 3.14 0 :.0 !0 0 4 0
o-4 V0% W-144 &14 4- . 0 a *0. -a 1 0 r- -. 0 C

-A N 60 4--64 MC 6.4 40 1 CO 0 24.) W 4,4 a4 aMA.U~h2 000. 0- 6-. 0 0.. IC; U-! 0 0.2 . 0..

1- 46a , a - F. A.

0 C 0 3 '1 0 N 3

-. 4, 01 I-63 -0 1

0 0 0

14~ ~~~ z. V 001 a%6% 1'1

.M 0 C .Q1.1.3.3 CIO Cee 4V 40 6- 14
3.144,0c 4,40 , 02 014 64- * 0M0 0 ". 0C V 66 >.I..11

cC -4 N 06 C6U c'60 c4 3. 0 0 4,4
P3. C3u 4, 9.J 0l0 CU '- A 3C -.

1140C 14 VA u . a 16 - 0 140 a "., 0 0 'a 4". 06u.-
44cU %0 U4 u > 60d20 L 4

U1-1 =a. C. u 0..4 a64 A 00a L4 - 4, v> 0 0
0. UUu VC2 0' >.Z C '4 4.

C0A. 0 V . 44 a0 303 V- 60 -C. 0 V4 I-. - or- C 14

6401 14 Z4U 60 4 r.0~ cC O44,, .14 4 N v .- O

930 6 M C '.3 0J*1-'- u.~ c' 1441 4,61 0 'nL S Z .. 4,r

-4013 2 Q.0 4A C 03 - .62 -'.-6 !- .043ga.

0 41 UV"), W4'. 4 '0 - .' 3.- >) '0 '0 '.
0 4,.' 0 440 w4 C Q, 04 % 004. CaO'- '-U6. Z MU C6 OUU.-.Z 00.N 0 0 39'A. 06- 14 2 Z 00 .4 0

0 2 .0 0 1 0l
01 V l D 1 11 4n 0 w- nC
C)) 0 > ON ! 1% C n r 0 u 4

04 wV 04 0% C 0 wI Cj - jm n a

A~ U .04 0 . 4 3 fn (n 4 .0 s N Cm .
0.0 .~- 0 n C01 £ 4 0 w N 9) . 4) C 0 CY 04 w

0.3 c1)r cc) = -4~ 440 w CD 2) wWC " o .k Z aaJ0 . C4)£ .. 41))..40.)C 4m4e4) *4 = U
W).) j .-.4) 3 c .4)= 3 - 4) "j >. x '1% w 1 >C 0 u N 4

moo 4)o *. 4 4.41 -4 mm ChM) 410 M :C a= C4) a
A- >I- W'4 C Cl U)0 C01 443)1 . 0 0 N 1-4. * 404

m.>- 0)C 0 r.)O4) £ .401 v m sw A,. 0-4n Z r-)4)m10 > 1ID
43C.- 4.40 in A%.1 0 040 44 c0 0) 1 X" 43-41 0 -
O4-4- v)4 Cq d441j)K o- C4 C V3 144. A)0 0 -g 4 c 0C t p 0404414

U4> C C-0 a W a x o 441. . 41 CO 040- 3m 0 4.3 CZ3 01 N r- 4AM o
0 c 0.C. Ed 0t 0 m0 0 4 A 1 ~40 1- uZC) 413- a0 444)

b44C4 0 c L. - old 40C4 1 434 v N 0004 43 0 044 O W4 -44 W= .4
oonou 00 b o m- z aoo-zz z A inUA. 8o u go a a 0t 0 0c z~ a U) a(-0.

.- 43 >1
CC 0 41 M w

U1 4) 0
0)4 414 6. -4

- .04 W. 444 4 >. fu v 4 N
41U41 01, V%4 -4 OW -4 w 4
u >N4 0 OC C 0(ON 0 - 043

W -) L.4 oob 440 w 4 0 0% .0 0 4
i4444CC 0 0.0 0, cCC 0 00 4) 4 10 C NV

Ai Ci 0 0 - 44 a 0% %D 411 N.J 0

11 N ' 00 1 44 4, U w cou cmeA 0 1 J N C 44

*-u 43m 4 4C0% *0443 414 m 141 m) U441, 04u, 1 1.41
-l~irs 0 10 0e 43441 aX 00 0. - -444 4.' CU

(do.,0 moo 0. -A 401 41 -4 >. m' 0 0. w1 0144 U C 4)
43 C 3!4 4 4-W 40.4 4433 04 .01 401 0 L) m 4

0 . -4 46 0 CP 0 'z 0 03£ 1=0.a-~~~ 10 = * J1- - CX 0 - -' 4 >4. 0 41£w
>..)1c a C.m 0 64 0 U; w IV14 =C (A 0C£ 0.-4C 444-43414

A-CC1 JC z 41 J4-- 41 Aj44 £C .- 41 4 * a 43 0. 41 44 00 m1 Im14lo

- 1 C A C - 1 0 a 03 I 4) r 1 4 40 - W M j J
41 41 44 41 0 41.3 h4141 0 641 01 043D~4 -4044C 4) a440 44-C0a
£.43 C 434JCc b. 1 aC 045.4 Ai44~ > £en NJ. > i 41 -4A3C 0C%0-.

0. Om *- 0.N- *0 CO *.4. C 4 0.4 * 0. C 4 .3.-- A0 4 41 .4w .%..

00 03 0CDU 0 W% 41N 0~oa 0~t % 0 0 a 6> N%,m

01 01 ale 4

0 04m 0 .c T
.C 0 4) ''

U) U A£ CU c
>43 0 v Cl)

00.~ 43 6 OC £4 0
0 ..£ .. £ C 4-j 4)

'- in) 04! 40 4 4 0 jJ I
41 43C C44h. - 4 =£A0 010. 99> v 1 N 'A

a3 &0 j0 on 4410 0 Cm 440 w C0 C) 10941fin 43 V0 w4 C

c .4)1 ". 4114 414 a~C I .34 434>,3 .. 4U -C 0% 0
00) 4444 4 . Z 41 Mo 43414 0 3 vf -411 -4 I., m w IA-=IC aw --1 10 I

44- 0 a43 41 - m1414 Ai 1 03 so a 0% >, 4341lo
01443 041 >04s Ci 3 34 44~4 > .44 43 Y0

a-.. w4 0> x~4 41 ON zcc J 4 0- u 4%
4301 N) w63 C0 X0 i 0 w43 024 U,- 41C .44341 "

4j4j4 ~0 0 44644 w0 414- 10 * C440 c %C4409 10,0 V03> &J C V
.0-441 444 C40 C00 43. en Im14 0 > & . *. 4 0 444 43 400

A41D4 00 , &3 1') 0 N 41 0441.4 14J 4 00 WO 4 3C4 0C41C
41410 40C c c W-Iu w444 -414&v Cn 0 -

00 £11 .. i. .0- .1£ 'C 0- *C .444.I .4

0 OD 0. o-ccl" 0 w 00.- 00421 0Cl#f 04410 0

£ >. 14

£0 44 M- 034 a1 0 0

430. 0 4L tr C£ 0 43 0 InW 0
b.>12, 44 b 3 N 0 43a kD .0£44 4 ksJ 44 f" 0- %.4%

41-- i I0 *4 N.)4 l34314 4341>.(flID 0 4. m 44>440 4 3N - C
CWOaW 0- 'i .C 41 0 Ln 0 .V) 0 41.1 w >00 L-4 0(a 4 %

*CG .43C. In444 n Y 0Ujj - 0 44M 41(A 01C 0J r. 4, 0%
l u v M,-4 1 0 a43 b.-4 0 ~ 9mc -0 n NV C 0 i u

-44.c 9 % -4 In. &.4I40 0. I Ad C qw Ol)0d
-4C0 zJ4N C C- 43 41 0£- 41.. 0 43 43 ow (

4) 6 j30 'C 4 C. - 41 n4l) 43

W:~4 'a0 >4£ 4 143 41 11400 01 z-1~C~4 44C. C .- 0 441L) N. Cl)MM .C4 I1C I .dI44 ' 0 M4
0 1 5 40 4 3- 4 ..) b. CA .e A l£ * I 0- A 3 0 .1 0

44-40-4K 4 I I 444 444 4 44344 44 4241) 44 At4 n
u u A0 w 06. Aj rm%. 0-14 000.0. 0 =4.3 0 >

C.~~ *. . 4n2 -n&4W ,. *u x 43 '0 ~ * .

00 4) on

41 01 0)I . -

o1 C r. CuN - wc4)0 40

w10 GD 0 C D C 4n ;k- 0 "-' . w4Q 0
0. 4), N 'n .4 4 a u 0 %c - 01 NC" 41I
c' Ic 0 4 41 CA ItC 6 .f C a>- SN >.0 .4 o 5a 1
o SO m % fn 3.. r-' VI_ fn MOO -C 1 0 .UW
W L)cM1 C - -CU " 0= 2 .3. C% . 0 N

C C '4040 0C C u I C 4) M O c w 4 3-.4 M 0 a, u 4-'
. 0 ON 10 0 : .-)r wC. ON ;C. u 4) 0I4) W. C 0 0 . -

S' 00 , d).4 0 4 '04-I0. 4 0 .C 04) 'o .I 00 C w4
0 1C 1W u.i -~ ~ X C.. 3M 0 0.,41 0C 0CI v - ICmCV

'CC w o~ .4 ICfO C4..c V 5 s oL 0 .4)1 0 C 04 jw) 0-M o- .
CC3. 4 3W UC a, ES- log Z - OS o-CI 0%. 0 - g4) ca.. 04)'r 0.1w aM . ca 4) r. 0c -0 cIM CE M a cc In> ,cC41v u nM .C. N 4) ZICO4)0

> Ac4) >. 90C L0£ 0 * o U "'.1-.04.-a -I-S. - - w w v)£0tIC -. 0I Ad mC .
IC-.C - e' -) 4 0 -) ACC u w. 40 -~,C CW O 0 EE L 04)£6 0 in 34Q

v).0 C 3. .. *-. C > U n -i C r-O a. C -.. j) w Ln 4) a C-
C--- 0*S UO 0 & w a~C .Go~ w I a 0a1.0 O k c a w 0'I w 0wa

4O1, 41 N)4 -clIC 3

0 Ac 0 4 0 =3 0U 30" . 0U) 004j4 0 >1 1. 0U ~0

A. 4 c 0 -C I c

0 ' 0424 0q 4110u) > C 0 " 0'E
'C2% -C oUo > 0'- 'cO 4

0COON 04 I2 C .IMN 1 0C C V 41 I3 a, .
a MC a 1. -M'n 1% 0'.i MEI *Cu zM2c0 w oU 0 % 0% .' Cx 0 0

0.0a4 00 0% an6. 4 c U z114 a£C-I a n wE -U >.a j.u -. % C 0
C'U. 14 ZO N a.. C-c- A4>04-w4.CL c0 4 4C v C * 4 0 a 4' C N

4)41 C0C No CU " M 4
0a 5D. as 41 a C D. 0. aC5. 240.1 McLamc402 . .3

COW C- W c v4)j4

=0 26 10.4 0 0 c 0 CI O.12g.. w C 0 0)1. 4 .
C o U o j - 0 a 0C) c C3. N >- 4

oo410' r.4 f"0 .C 4E.C jjC &C)J 41 C -C 0' 01v4cb 0 N
ECj 0 CE 0 050& 0-41 ICE2 -.40 1 I aW 14 OO.. 4)4 w

M0316 02 6 26-00 E O 1 34 3 3 0.-. L) wEC41 Mc 4. MZU

MOO 4 ;)040 1.0,. o M'ZC C4)C O4) 0 0 14 Oc
0O 0 c~ N-e 0.J-

VIc c v-04 - 04'h1Nc j U9 0 t- 0 .4 & U0 c2 0 u2 0

z 0.0

4 0 5 3 . 0 bAE. c 0 0 - a jl
41 0 4) 20 0 c0 0 3 OC o U 60b C vw 4,-0 W,

C.- -0(N 34,6 1 -) COL Ij -U>i Q . a
a)0 4Oa OS I) 4 a4 N C N a '.0 Ma I Ca

MC N 4 41m C. 0 C 041 4)4
14~ C, C O N U MN M C U "

30 i~% 554 C I N 4) 41. ' 1 E, C O- C

0 OA 04 CU gI 4, zr 'C z2. = wt' vC nIZ - 4
a- u ,0 -I D.4(54544>,IjI 0' 14 a) 0 of"45 1 u 5 2-. N a
'-''C '40' '0 "' COO'4 a - 01 c EU 0'020 4) 00 4) 0

cJO M 30 0 z S. 4 KC C C k% a. S- 00 vJ 5u
v.11 1% 3. 4) of ":..4E 3 N j 61. -a CC7

OCId C %1 44044 1 g 1CI 4114 'CS- C- u !J O 3.Uw4o1 w0
0.:: C 3M 0 002. .1D- K... C . 04 *'~"0 -OU 0-.4 0 EM

,j 0 IC A "0 C C 04 0. zO >. 4j 0- oU a.MC c 0 C 0 a'1 4
C64j MIg CU0 4). a36.41 xc 00 4)0 34) - go - - V--%
ME % go- MO 0 41 MOO MC . 112C EC7 M S M M£I.

>41i: a C I
C 0 C C IC

am ' 40, ;ri a-' ,n 41 CXU Q .)o 041 3. OwI00w D 0

~ C 0 40 0 0 u a wo 4)0~ ..
0 0 54 0n U 0 0c 0 2 0 Z e~~

o) 4,- 4 4, - 4) 4- 4) -4)- > r)Z- - - 64. 0 0

*,Aj6 0.E1% w N 0:-4 Nn 0OOUCOW.*4..M C

00 .0.'o 064-I .40N U) 0 4ON N 0 .((0 U
*"0 q 40 * G4 V, @4 01 0UrO. Z 4) - 0 41

> 4 4>114 0 0 00 4 MAC.> ..0 U , 0 P0 4 4(> Me4U> 0 N~o U6 > 04 (N u > M40 N4 u A w U 0 004. CC0) *.nc z W c Z W C z -W r ' 0 0 1 f 0 C 0 0 -4
M 4, 1. 4 00 Cw 00- - 0 -- zCc 4 r0A - c 00c C
0 2 co 0 at0000 0 o4 0 0 0) a)1o 0 u U) -0a 000 00.) 4 4) I 0 -1 2..1 01 04 c CL l -.*4- c c 0 0-

u a @440 u0 0 c ..-44 0i 0 2ic 0 m-C0 -40.0 Z 0 Z -. C c %-- U 1414X04>0 4 1-00 14 0 1401400 -.40 00 .0 4 " ' u464 00M 0.0.4C uo
cc-4 0 4 O0 04 0 O4 0 01C,4-0 0-40 >1 0 W 4 4 >0 1 40 0 6-.
'Dw 4 W4 0 W4 44. 0 W 4US0 44 0k a.~. 0~0, M a w a) O 4 40 L C

0 as0 C oc 0 44 0 D o 0 0 4 0 OD0Y -c _ 0 03 02 040 GDc n. 0200LO

00
14, 0

a 0 0. 0 0 U C
0 % 0 00 w-P43

40 1 A cUV c 1 c 0 D 0
014~ C4 4 1 0 o 0 CO '

10 44 0 w .4 w t . i1 41 1 4I 0 4
144 0 .4 .4 N u0 N- N440 .3 a ua a

c 4 0 g M a N ;0 0 4 r 0 14 -~ -GW 44"40-z '.c
C 0I4 0m 4 .0 4 C.C 0C N No~ 04j * N u 'i 4N- J U)U
uo 0 40 - a% ch (00 0% ON 0 0 w4 0 44 (0a) -c

c40 08 140 - 0 1@U40a
t-o 14 -c 6.04 2. 00 .> 0 0 'o4~ (-z %. N%

o44- 4 c u " 0 n 46H 0 I 140 4004 .1 0 O 0 N
.C0 1. 0 4u 6-444.4. w4 0

U) 0 r. lu u . U- - 41 . . m 3 0e - %W C VS44>a41 4- l
0% 010 6 0 4 0 0M 01 c r- 0 --E1-.0 Z-. -

4 0 N 0 0 4p0 c .4 0 0 a :" .0 uN 040C 0 w4. M40 u I.- C
2~~~~~ 0 w.40 a4 I4(0 -64 c0 41. ~0D 4 a .a uC in v. 206014 140 a C C 0-601 0 A 1-0 1--0).

k0 04.0c 44.0 14.0 Q4.40 WOIO OW~ 40 26O1- c u rIcM10
*.04 4 4 a fu *4004 * 4 a *. 00 6 C1 0 L.

140Q C4104 14- 410 441~6- 4 O 104 10 100-6U)4ZR 0(Q ~ 0(0 00. 1 4 0 S.- U) u u.J aZ(n 0 D u Q4 U

0

0 00

00 0 .0 0j c0

. 0 0 ~ 0p 4 0 0 '0 0
r0W60 a% 0 '1 C4 0 6, .0 g to4 v6400-

606 . 0 -. 040.- 1In V4)4W 04
N14 44 N~'* 0w a M~" U A N c U 0'40 44 (-~ 60 444

(0 C V 6 6 00
I 140.0 C 4~ a 4 4 4. 10 4 A '=4

0 4 c 0 ~ 0 >1 0 ~ 0..f0 2 c4 "04lO N646 10 4 0.. 400 U 0len 2444 0000 s j uS . tL w J . c W4.00-6qv 4u 6 4 0 0440146 MO 03 0 0'D p14 2 lo140 044 00 6 4fl6
"S we 0 00 c 4 O u w a. 44441 >0 2 4 0 1 00h x 0 1.-0 Mb) .~~~- I~g A0-4 .n0 12 .4 In 0 >. 6- 4 0 .

02 0(0 02 -. x4 0 AW0 0 00W .1" 0i00 6

V - minU MI I c w V. NJ . c 4

0 0 C.0 .

0 19- 0 W 4. C- 0t.o =04 n~ in O 4)-4v a

flC£04 I., k0 -4.4 int' C404-
.1. ~**C~ 14..44 0 C4 O1 t02C U

-040 W04 4 00 Z 41400 0 a 64 L4.4- COV f) 4 4) N00 n. a. C .(N
U 12 0, C .4 fn 0 AJ M 4 Q-N C041 r414 - in-~ c C' 0100''-.

in *C 0 40 m 40 (mCl 2A4CC- *4) l 00 In 4 >~.C Cl.' 0
4r42. C , w4£C U .S;V4 404 4.2- 00 C. w4j. U10.4
40 .04 .4112014#k 0 4 .IC CL.- *Z0 >*-EOIIO - .1 a.. 04 0

040(42 c 0142flI 0 wnf 0 c Uoo 'o ~ u. ~ ..

CN~ 0.C - 2 ,-- MA . 0 = - 4)104 C

ol 1% 0. 0) I 10 1mv0 e w 0 4

C , 44 01 >0. - 4 c0 %0ca4
14 a .0 i

014 . 40 as A to.1 .4 OL C ON U 0 t C M inC 4 . 4i

.A0 A- 0 U

.C4 NO 0 40.2 *.~f 4l 00- A .. (0 00o w1 C2.0 0 4400 ;I ten,4 %. 1*04
idi 0 :1 04 1 1 0AUco 0 C4 >41 in u C

. . C 0 0 .. U w 4214 in-. (42. * 0 0~ N4. as. >~44 NU
" " 4-4n 40,U w112 * 4 c2. -1 4. £ 3404 c 1" 11 0 C4 C .

0.-4.. A40 l 4 C, 4'k 0' ", w 4a 4 4. .2 W U w. 0 U4 C4
4.40 C .41l0W0W 041M 0~. 14u C ,S .3 4 444%.I NS W. 0%l-

6.1 4 0 02 C4C W 0 ~0 to.~C --. ~
400 . C A 04k44 U a 0 A 4.0-1 0444 1 a 3 C WOalso 0 .0 -

4 04 --c U tj -144 in4 U > C
w* -t & j0)%n44 U0c W 4. 4>. 0 Nlz ... I,42"I w4 1140v 4CC r, 4A

1.-1. 6 @2 t , .c 6 4

I* C

41441 0 0 j

04 OC 0 V1 a -- "C 'o
0 140 -4 1 T 4 C 0 . - * 40 0..

. aU 0 P2 41M .4 4 40 in2 0v 4. D. 4 42

4.4 v4 wU N AjJP 9" N -4 :01 64 Nj P. 14 a wC s CN
.4 U010 0 :0.0 4 a A C 4 P. 0-64C 1 2N 0 em.. c a.P 41 0
0 4 C I Aj w c4 r4 N £00 04"1 'a 'r 4.0. JU -4. .0 0

. In.4 4.0. 41 -.1w 1,0 00 ON 4 .4 00 044-IC '
10 0 0 0 4 ~-'44 gp x. 0 7 al VIa. x- 0' 4 4 1 £AU* -4 04N 4U 3 0' V4 0 a w. 04. 1 0 c i UM 04 U A

hi 4.4P AM *.0 0 U0 00 o .cc 400'. &.0 U " - .*2 Ai0
c 0 0 114 " A21 . 004 1442 W. 0. C04I4 0 -

2 j c 1 1 &W1 A0£%4 l4C 0 0.4 N1dc. OD. ij " *w > 1 1.441 4J0 I44 UI* COC 4
0 aM 4144 .4 P 0 C00$13* 4 v2£) 4 p 040 CI0 a4 C1 .0 C41.0 ol 'o - .. 41 W1 001 . i0 1£ U4 - 0 0 C

1..:;4 31 IO AJ >0411A 904 01- tr

a4 .. 4 2i C

C No .2.4 08"4 040. a -A P C w 2 0 22. S0 z a >.u

00

O l i -z ro - Z

f" P 0w .4 i. - P £4- .10 10 0 (N 0C
0.4 . 4' 1 14U 0 2.

144 (ON CO 40U.
0 40 P". Ott 4 4 U * 4 0. .40 1.14 O00M

4 0 a.001. 0 0 6
s -02 4 04 C 41. Q1'A

C 414P - 4 a -1 C1 -44 w4 2 'm x4 -.4 2 4. 'm

0 i U r. 4 N4 4C I~ 41

.NC~~~~~~~~ 44-4 90j 4.0 4*M 4 .. 14.,
',"* 6004 ty, E 1. *.(21.1 g .11

X 4 A j .Z 0 4 * 4 0 1 4 1 w C 4J02 4 ..

8 1 O* 41.O 1 1401 f .4 0. V :
4 .a3.~ w

1 4
C 6 -0

0 0 0 - 3i- -3 f-= WCX

04 U. ' -3ccc c x a I. P d

0 0 b

o 0i N 41. .W
oo .1 Nr 41 .1 .1 c

4. 0 w 4 In 010 c .0 0.C

a 0 P, 1" 11 40 en4 a .14 1. .
C 41 4 E0O 4 C.1 0 I 0 0I CM At.0 03 4

Ac .JO ag .-.4 04 w 4141 SM 0n N v N .1

E S4 -. 'a 0C. 0M .0 0 .1 NC 0 0C C -A 'A10 46 C1 . 0 4V - 4 0 a12 a10- W41N

SCWW V *- C -o jU :0W- a 04 1.4 00 (AE 0 h.C -41 CU ON 30
Ai 0 N U'1 O -05. 5444 I, UW CU C -=cj . C- w OC ON -li 0 - -- 0w

>1 1. 0 0 41.4 4)04. 1 0 w O. 04C O 0 0 w

EU E C 0 OC A U (d C 0 a. 0 0 a C >. 0OSOs

u3 a3 Zo r- 0..V- 4Eh w'1 02 10w3 .30 044 ",1 -z

ImvC C U)>C = 0 0 Sg

c0 U39 I. 4w .0 0- i g So "Z .1 -l 41 3I. 54m 0 cc

410 a1 0* CI 0 .0 .1
0 0. 4 01 0 E1 Ce 14) 0

.1~O N .40 N4 c44 O1 A0 .4 1 .O 4 ..
.1 N 04 0 U Ij .4 0 . V111 -) .C5
0 0 0% A .0. a N N S C I 40 N w
o us .. Ea C N In1 .14Wa4v-.4 60 0 C Ion- 0 Nn N

- C 0041 0.0 C>. a1 .4. N 41 w v1 .. 4 1 ...
041"4 CC0 N Cp : C4 N c1 1. 0 404wI 4 a . N " N 00 0
I., u . 3.0 21c 0 c Y n *0. 0c ES fnI1 41 ZM >1 ~ m 1 A 0

Ca 00 v U 0 04 A .. A.4 Im 104% a30 -CU V41 - u
1.~., -C 40 CO c4. Om U oc501 -4 1. ac1q * C m 0

C01.1 u~ .4 o1N ..0 0 > Oc . u 0.. 4 .
1.4 .44d A .1 .0 C I m04 a ; &J ; U a) 0 0.0.~ W'~ l .0 5 a 0 0 0

.10041.0 04 ". 01. 0111 N. 1.1 w 4 w 4Z.. tOO) .10 .4. 0. 1.0 (L.
1.049U 000.0 04 1. A.4S 1.1.4 -- w. 35104 1.0 U ~N 00(0 m

40 0 C .-0 c 2 vCE 0 ao 6 41 w .1w0141 6. . 0 0 4L) 0.. u 4

*0 o 0- 0CW S CA AS H01. %-d *C -R A0 In * j 4) CQC W. 0-4

0 r40

InI

'A0

0g . N

C-> w o N V.0 N oD.
4 4 0 c40 4

.4 . 1. 5 > 0 >N
41 c M 41 6. 0 -C1 .1C0

4 N C0 C, 10 5 4400
t o 0 43 gM .0 In 17 C1 .A 0 C Oc 0 X,~

C-~~~ in 41 0 C4 N 6.N0 g > -4 1 C 1 N
SC 0 a1 0.4 4 1 A5 . S40 1. A, 00 aI

co -0 0 4 0 0414 0 -i S a-So1"4.1.I 0 6. w-i - 3!)IA1
Ai 2.1 04 m 04 5 c.~ D. C *. 0, 44 hc>

CCEN0 b. lp C. S I 4C * M M. . CEC
4.1 0 Uc Cid- No a 09. 155 1.

".CI" 0 .1c ..44 N 0 N 1 XS I . - - 4 c- .so1.

01 0 S W. 9 I4 0c 0
inU n 02- W1. . 0 Qu 0 -e

.4.4 C.4N 0C C '~.. -0

0 04

0 41 "
0 cm W044V 04 a 1 4.a cu 2 a O

41 A 0 4W 0 l 1A-0 1. C@ VON 0
0 CM 17 0Q 4 400 C N4 0 O

C M.0 4 41 . 3 > 9 0 IN 0- 41 D.-
4 N 12 04 ix~ N a NU1 W0 N,. 40.1 4C- 0 0
.4 4 us, 11 0 91 >m II!, 4 - 11 C0-0, a e .

I-S . 60.4 04 * 4u> 0 0.1. 0 I. 0% 5 .1 W1.
.4 0~. b1 0 41 0. dc 'n*-

064 0 v c 0 b.; C - 04 04.0 .

6. w41 n 4 U) A. 0 416 >.C>OC

.i 0. m1 0. V.ub 0 P W C U 1.00 - V C:M C C
.41u001 c 6 4 c S. 0 CEl - C-1.4CO

- 641 C 1.0 V I 00 .I.4S 0.- I.. 1

. 10 - k14 I - CC ~ O CRa4 -W4 .0 C1 90C-'ou . 0 -a.)t.1 41 0.VOO o 4 0.4 MC *40. *O IO

1%

%4
lz 04

I

