
7 7±9 67 RESE ARCH ASPECTS OF RAID PROTOTYPIN O(U) NAVAL
/

MPS52-67-0E

u RS IFE
D/9/2 M

mhmhhhhm

411111W IA'12.0~

IIIJI25 M1

IMC FILE COPY

PS52-87-006

NAVAL POSTGRADUATE SCHOOL
__ Monterey, California

A, APR 1 3 1987

UA

RESEARCH ASPECTS "

OF RAPID PROTOTYPING

LUQI

MARCH 1987 ok M

0

Approved for public release; distribution unlmited

Prepared for: %

Chief of Naval Research "-

Arlington, VA 22217 -:

4
'

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin D. A. Schrady
Superintendent Provost

This report was prepared for the Naval Postgraduate School.

Reproduction of all or part of this report is authorized. .

This report was prepared by:

LUQI'
4 Associate Professor

of Computer Science

Reviewed,- Released by:

VINENYY.LU-l .
VINCENT KNEALE T.\
Chairman Dean of Information and
Department of Computer Science Policy Science

Note:

This project was supported by the NPS Foundation Research Program, which
was funded by the Chief of Naval Research, Arlington, VA 22217.

0

" "' ' '. . .. ,% . % - "- . " . . . ' ". . . - - - . .. '.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (lWhen Data Enteee0 _"-

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT HUMBER 12. GOVT ACCESSION NO. L RECIPIENT'S CATALOG NUMBER

NPS52-87-006
4. TITLE (mnd Subtitle) S. TYPE OF REPORT I PERIOD COVERED

RESEARCH ASPECTS OF RAPID PROTOTYPING

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) I. CONTRACT OR GRANT NUMUER(e)

LUQI

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA A WORK UNIT NUMBERS
Naval Postgraduate School 61153N : RRO14-01
Monterey, CA 93941 W0001487WR4E011

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Chief of Naval Research March 1987
Arlington, VA 22217 I3. NUMBER OF PAGES

18
14. MONITORING AGENCY NAME & ADORESS(If different from Controlllng Office) 1S. SECURITY CLASS. (0t this report)

ISa. OECLASSIIlCATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRISUTION STATEMENT (of the abstract entered In Block 20. It different from Report) %

IS. SUPPLEMENTARY NOTES'-*

19. KEY WORDS (Conltihue or reverse slde It necessary and Identify by block number)

20. ABSTRACT (Continue on reeree @Ode It necessary and Identify by block number)

Finding effective and efficient methods for determining and validating the re-
quirements for a software system is an important unsolved problem in software
engineering. Prototyping is a promising approach for requirements validation.
Current prototyping methods require an impractical amount of time and effort.
The objective of the proposed research is to make automated rapid prototyping
possible.

DD I N 1473 EDI TION OF I NOV 65 IS OBSOLETE

S'N 0102. LF 014-.6601 UNCLASSIFIED (N
SECURITY CLASSIFICATION OF THIS PAGE (When Does Int red)

-1. '".o * % *.. .*i* %.*.**. - i*.• .1.-i- .. .-- ,. . -.

Research Aspects of Rapid Prototyping

1. Research Summary

The objectives of the proposed research are to develop specification methods
for identifying and retrieving reusable software components, to develop imple-
mentation techniques for the prototyping language PSDL, and to extend the
language and techniques to a multiprocessor model for the prototype.

Our approach to component specifications will be based on term rewriting
systems and the concept of generalization per category. We will seek component
specifications that admit effective reductions to a canonical or normal form to
aid component retrieval. The attributes of reusable software components will be
abstracted to support the design of a software base schema, which will be struc-
tured using generalization per category to aid component retrieval. The relation
between the specification language and the software base operators will be esta-
blished. Experimental conditions for testing the results will be established
through ye experimental generation of a series of translators for the prototyping
language PSDL with the aid of an attribute grammar based translation tool.
We will also seek efficient interpretive techniques for implementing PSDL,
extend the language to include scheduling constraints due to distributed external
systems, and develop suitable multiprocessor scheduling algorithms.

. The proposed research will solve some key problems in automated prototyp-
ing based on reusable software. Validating software requirements by rapid pro-
totyping depends on three major components: a prototyping language. a
software base, and a prototyping method. The objectives of the proposed
research contribute to the software base and the prototyping language.

2. Research Description

Finding effective and efficient methods for determining and validating the
requirements for a software system is an important unsolved problem in software
engineering. Prototyping is a promising approach for requirements validation.
Current prototyping methods require an impractical amount of time and effort.
The objective of the proposed research is to make automated rapid prototyping
possible.

2.1. Objectives and Significance

The rapidly growing demand for software has shifted towards larger systems
and higher quality software, to the point where current software development
methods are inadequate. A jump in software technology is needed to improve
programming productivity and the reliability of the software product. Rapid
prototyping is one of the most promising methods proposed to reach this goal.

A prototype is an executable model or a pilot version of the intended sys-
tem. A prototype is usually a partial representation of the intended system,

2

used as an aid in analysis and design rather than as production software. The
construction activity leading to such a prototype is called rapid prototyping.
Rapid prototyping has been found to be an effective technique for clarifying
requirements and eliminating the large amount of wasted effort currently spent
on developing software to meet incorrect or inappropriate requirements in tradi-
tional software life cycles[1]. A key issue in the design of large software systems
is how to agree on the requirements. Lack of agreement on the requirements as
specified by the customer and as analyzed by the designer causes inconsistencies
between the delivered system and customer expectations, leading to expensive
rebuilding[1]. This problem is especially acute for large systems and systems
with real-time constraints because the requirements for such systems are compli-
cated to describe and difficult to understand. Because the user can usually
recognize whether or not a working software system does what is needed, but
usually can't describe the requirements accurately, prototypes are an effective
means for achieving stable and accurate requirements early in the development
process.

A prototype can also be used to specify a well modularized skeleton design
for the intended system and to validate the important attributes of the intended
system, e.g. timing constraints, input and output formats, or interfaces between
modules. Rapid prototyping is a useful tool in feasibility studies. Prototypes of
critical subsystems or difficult parts of a complicated system can significantly
increase the confidence that the system can be built before large amounts of
effort and expense are committed to the project. Rapid prototyping helps in
estimating costs, since the cost of the intended system is usually proportional to
the cost of the prototype. The experiences gained in applying rapid prototyping
to special applications, e.g. database design, metaprogramming methods and
:ranslator design, have substantiated this cost relationship between the proto-
type and the completed system[2-4].

Software tools are needed to make rapid prototyping practical. An initial
description of a framework for a rapid prototyping environment based on reusa-
bility can be found in[5]. Since automatic program generation from very high
level specifications is not yet practical, reusing existing system components
appears to be the most economical approach for constructing prototypes. An
important problem in reusable software is finding the relevant software com-
ponents, because the retrieval must take less effort than constructing the com-
ponents for this approach to be practical. We propose to develop methods for
organizing a software base to aid interactive retrieval of reusable components,
and to seek better automated methods for component retrieval. Another impor-
tant problem is tailQring and connecting the reusable components into a higher
level assembly. We believe the best way to do this is by using a language
expressly designed for the purpose, and we have designed such a language
(PSDL). We propose to investigate efficient ways to implement this prototyping
language.

2.2. Relation to Long Term Work
0

Our long term goal is to enable the construction of a highly automated
software engineering environment supporting a development method for large
real-time systems based on rapid prototyping. The proposed research addresses

3

- . ..- -.° " -. -. . - . . • •. - , .p .- ,•.- • ,- ". - -.

0 '' -- " ::: ':-'' ' : :' . :;' '"., . * '' ":"' ."," " • . , . -.'- h . -, , . . '

some key steps in our approach towards this goal.
We use an integrated approach to prototyping that combines a computa-

tional model tailored for describing real-time systems with a high level prototyp-
ing language PSDL [6], a systematic design method for rapid construction of
prototypes(7,81, and an automated prototyping environment with a software
base[9] containing a large set of reusable software components. The computa-
tional model has been designed to prevent hidden interactions between system
components, to encourage designs with good module independence. The
language supports the model and combines it with a powerful set of data andcontrol abstractions to make it easy to describe system at a high level. Theautomated environment relies on a software base management system for

retrieving and adapting reusable software components, a syntax directed editor
for speeding up design entry and preventing syntax errors, and an execution sup-
port system for demonstrating and measuring prototype behavior and for per-
forming static analyses of the prototype design.

Rapid construction of a prototype in PSDL is made possible by the associ-
ated prototyping method and support environment. The prototyping method
relies on an improved modularization technique and reusable software com-
ponents. The support environment reduces the efforts of the analyst and
designer by automating some of the tasks involved in prototype construction.
The most important aspects of the support environment are the software base,
the prototype execution facilities, and the design entry facilities.

.. 2.1. The Prototyping Language PSDL

A good language for expressing design thoughts in terms of a precise model
is important for rapid prototyping. It is impossible to do a good design without
a language especially designed for this purpose. A powerful, easy to use, and
portable prototype description language is also a critical part of an automated
rapid prototyping environment. Such a language is needed before the tools in
the environment can be built. PSDL (Prototype System Description Language)
was designed to serve as an executable prototyping language working at a
specification or a design level[61, together with a prototyping method and an
automated support environment. The language has special features particularly
appropriate for real-time system design. PSDL prototypes are especially well
suited for requirements analysis and validation because they are executable and
are specified at a high level with requirements tracing.

PSDL[10 and its prototyping method are concerned primarily with hard
real-timer systems. A hard real-time constraint is a bound on the response time
of a process or the period between invocations that must be satisfied under all
operating conditions. A hard real-time systemill] has hard real-time constraints
as part of its requirements. Such systems are modeled in PSDL as networks of
operators communicating via data streams, which uses enhanced data flow
diagrams for that purpose. The data streams can carry data values of an
abstract data type[12 as well as tokens representing exception conditions. Each
type or operator is either composite or atomic. Composite operators are imple-
mented by decomposing them into networks of more primitive operators using
PSDL. The decomposition of a composite operator is described in PSDL by an
enhanced data flow diagram that includes non-procedural control constraints
and timing constraints. Atomic operators are realized by retrieving an

4

implementation from a software base[9,13] containing reusable software com-
ponents.

PSDL provides sufficient structures and descriptive ability to describe the
internal and external situation for the modules comprising the system. Good
modularity is one of the key factors for increasing productivity, since it
significantly reduces the debugging effort for producing a correct executable sys-
tem, and also influences the understandability, reliability, and maintainability of
the developed system, which are especially important in rapid prototyping. A
clear and powerful modularization model is introduced in PSDL for building and
describing the prototype. The model is based on data flow under real-time con-
straints. This model and the associated prototyping method[7,8], lead to PSDL
prototypes with a highly cohesive structure and few coupling problems. This
structure is suitable for multiple modifications at a specification level during the
prototyping iterations of the new life cycle.

A PSDL prototype is useful for checking real-time requirements because the
critical timing constraints and the most important concerns, e.g. maximum exe-
cution time, minimum response time, and synchronization, are very hard to vali-
date without actually constructing a valid schedule and observing the execution
of the prototype. Most real-time systems are used to monitor and control physi-
cal processes external to the computer in an embedded system. The precision
and accuracy requirements in the design of a real-time control system complicate
the demands on the execution of the designed software system. For these rea-
sons, the design of real-time systems imposes particularly stringent demands on
a prototyping language. The formal structure in PSDL specifying the real-time
constraints provides a basis for automating the production of code from the for-
mal requirements specifications to the underlying programming language. The
execution of PSDL prototypes helps to verify that the design of an embedded
system with given timing constraints for the components in the prototype will
interact with its environment in a way that meets the timing constraints of the
system as a whole. This is important because making a production quality
implementation is very expensive, so that it is desirable to check that a design is
feasible by using an inexpensive prototype before committing significant
resources to an implementation.

2.2.2. The PSDL Prototyping Method

In the rapid prototyping paradigm, the traditional software life cycle used
in software design is replaced by a recently proposed alternative life cycle which
consists of two phases: rapid prototyping and automatic program generation [5].
Completely automatic generation of programs from very high level specifications
is not currently practical. In our approach, program construction is sped up by
taking advantage of reusable software components drawn from a software base.
The aspects of program construction that benefit from mechanical assistance are
retrievals from the software base, generation of code for interconnecting avail-
able modules, and static task scheduling.

In rapid prototyping the prototype is used in an iterative process of negotia-
tion. The user describes the requirements, and the analyst interprets them and
builds a prototype. The analyst then demonstrates the execution of the proto-
type to the customer. The requirements are adjusted based on feedback from
the customer, and the prototype is modified accordingly until both the customer

5

* a -~~~ 2.. . . -.

-- ~ ~~ -. __ .. - c' I '_Jwtd -v

and the analyst agree on the requirements. This process is illustrated below.

+----------------+ +-------------+
i determine requirements construct

requirements I>--------------- prototype
---------------- + +--

requirements adjustment prototype

+---------------- v ----------------- +
demonstrate < --------------------- >I system

Iprototype------------> imp lement at ion
+--------------- + requirements OK +- ---------------- +

Rapid prototyping is particularly effective for ensuring that the require-
ments accurately reflect the real needs of the user, increasing reliability and
reducing costly requirements changes. PSDL was developed together with a
method for rapidly constructing prototypes for large systems with real-time con-
straints. The purpose of the PSDL prototyping method and its support environ-
ment is the rapid construction of executable prototypes for large real-time sys-
tems with the following properties.

(1) The prototype must satisfy and be traceable to its requirements.
Iterated prototype construction is used to analyze and firm up the
requirements for the intended system.

(2) The prototype must be easy to modify. The prototype will be subject to
many revisions before the user is satisfied with the requirements as
reflected by the behavior of the prototype.

(3) The prototype must be easy to read and analyze. The prototype serves
to document an initial design, and to support analysis of the intended
system. Clarity and simple high level structures allow designers to easily
answer questions about the properties and the feasibility of the intended
system based on the prototype.

The goal in constructing a rapid prototype is different than in constructing a
production quality software system. Efficient use of designer time and rapid
feedback for the user are more important than robust operation, efficient use of
machine resources, or completeness.

A problem oriented top-down strategy is used to focus the prototyping
effort on critical problems or selected attributes of the entire system. The major
system attributes that must be demonstrated to the user usually appear in a
critical subsystem. It is necessary to create a quick sketch of the skeleton of the
intended system. because the environment of the critical subsystem must be at
least partially simulated to demonstrate the behavior of the prototype. This
quick sketch can be built rapidly and understood easily by means of a highly
interactive graphics editor for PSDL. The essential advantage of rapidly build-
ing the sketch of the prototype is that it provides an initial description of the
intended system, which can serve as the basis for analysis and negotiation. The
prototype system gradually fulfills the requirements during the iterations of the
prototyping effort[6]. Our prototyping method enables each update to the proto-
type to be made quickly and easily.

6

V; ' w'£ '. ' o.' ' 'L,' ,'o . ,,,* -.-.. ,' -'..-. -.',," -' -' " .- - : -- .'. '.., -. ; -'.".." . •" ." ,, -. -. -. -. .. -...-

,-, ,#' ',?,'e .., ',' ' - z,,,", ".?. '?- . ':e'.'.' '."e '.":". " " . '.' ?.' , , ". ,4 -.

The PSDL prototyping method results in a hierarchically structured proto-
type. The method provides a hierarchical decomposition strategy for filling in
more details at any level of the prototype design. It also helps the designer to
concentrate on the critical subsystems that must be refined to resolve the prob-
lems that motivated the rapid prototyping effort. The prototyping method uses
stepwise refinement to selectively refine and decompose critical components.
Each higher level component is described in terms of lower level ones and the
relations between them. The decomposition of each composite component is a
realization of the system at a lower level of detail.

The prototype is designed based on abstract functions, abstract data, and
abstract control. This high level view emphasizes the overall configuration at
each level without getting bogged down in programming level details. The
design is refined by decomposing abstract functions and data types into lower
level ones. Functional, data, and control abstractions are used to hide lower
level details, effectively carrying out the recommendations in[14]. Control con-
straints are combined with the data flow model to achieve the best modularity
with sufficient control information. Data flow is used to simplify the interactions
between modules, eliminating direct external references and communication by
means of side effects.

2.2.3. The Rapid Prototyping Environment

An automated support environment is essential for the rapid construction of
prototypes. PSDL and its prototyping method have been designed for use in an
environment containing a software base management system, an execution sup-
port system, a syntax directed editor with graphics capabilities, and a design
database.

2.2.3.1. Software Base

The software base management system[13] is responsible for organizing,
retrieving, and instantiating reusable software components from the software
base, while the design database is responsible for managing the versions and
alternatives of the prototype design, as illustrated in the following diagram.

Prototyping System
With Reusable Components

Software Base Design Database

Management System Management System

Software Base Database

Reusable Software Versions of the
Components Prototype Design

Prototyping Approach

A software base management system should support the retrieval of the set of
software components whose specifications match a given template. The reusable

?I
.",% ,,, pT,, ,,. p, ,. -:,p ..- '-,' ,:.' ,. ';, ;.' -k:, .:- .'. ,,..,',, ",~, ' ' .:. :.; : ,,, ,. .-.-.7.

components in the software base are used to realize subsystems of the prototype,
and the available reusable components are used to guide the decomposition pro-
cess by which the behavior of the prototype is refined. PSDL is used to describe
the connections between the components of a prototype, and to specify the
behavior of the reusable components in the prototype as well as those in the
software base. In addition to implementation information, each component in
the software base must have a PSDL specification. The PSDL specification is
organized as a set of orthogonal attributes. Component retrieval based on par-
tial matches of specified subsets of these attributes must be provided by the
software base management system. A browsing capability[15] and a set of
operators for tailoring and instantiating generic components[] should also be
provided. The browsing capability is important because it can give the designer
guidance on how to decompose a prototype to best take advantage of the avail-
able reusable components. The operators are important because it is impossible
to explicitly store all possibly relevant variations on each reusable component.
We believe it is possible to find a manageable set of generic components and
adapting operators sufficient to cover most of the variations needed in rapid pro-
totyping. Establishing this is one of our research goals.

A sufficiently large practical software base containing high quality reusable
components is needed. It is important to have a relatively complete set of gen-
eral purpose components for performing the functions that are common to many
systems, such as managing displays, sorting and searching, parsing input strings,
and managing lookup tables. Many of these functions can be effectively encap-
sulated in a relatively small set of abstract data types, such as those described
in(15]. It is very important to provide generic versions of the reusable com-
ponents, since it would otherwise be impossible to design with abstract data
types while relying on standard reusable components for performing common
utility functions.

The advantages of a set of general purpose utility modules that can easily
be used together in various combinations has been well established by the early
work on the Unix Programmer's Workbench[16]. This work relied on a single
interface format, namely an ascii text file, to ensure compatibility between the
various tool interfaces. Such an approach works for applications dominated by
text processing, but restricting interfaces to any single data type is unacceptably
restrictive for prototyping large software systems. We solve the compatibility
problem by requiring the utilities to be polymorphic operators, i.e. parameterized
families of closely related operators[17]. An example of a generic reusable com-
ponent used in this way is shown below.

A-- --------------- > sort[flight] --------------- > B
x: seq[flight] y: seq~flightl

In this example, A and B are special purpose modules realized by the designer
using PSDL, and sort[flight] is an instance of a generic reusable component from
the software base. The sort operator can be applied to sequences containing ele-
ments of any fixed type that provides a less operation for comparing two
instances of the type. The type of the elements in the sequence is specified by a
generic parameter, and is bound to the abstract type flight on retrieval from the

8

- ~:~~j~1'o .: /2.Y --. * /&.

software base.
Polymorphic operators can be realized using the generic packages of Ada,

where the types of the inputs and outputs are supplied as generic parameters.
These operators can be connected to any other components, because the input
and output types of the utility operator can be adjusted to fit the interfaces of
the modules it will be connected to. Note that generic parameters are required
because no fixed set of interface types is sufficient to accommodate all of the
abstract data types that might be defined by a designer in future applications,
and even a large software base must be finite. This makes Ada a good choice for
the underlying programming language.

2.2.3.2. Execution Support System

In order to construct and update a prototype rapidly, the execution support
system for PSDL must be efficient. Since prototype modifications are at least as
frequent as prototype runs in the expected usage pattern for the execution sup-
port system, both preprocessing time and execution time must be given roughly
equal weight, making an interpretive implementation strategy preferable to com-
pilation.

The execution support system should be able to save the state of a compu-
tation, and to run several alternative versions of a prototype from a given state
without repeating the initial part of the computation. This is important because
the designer will be engaged in an interactive dialogue with the user, where a
given aspect of a prototype's behavior is demonstrated, criticized, and alterna-
tives are explored interactively. Since it may have taken a long user interaction
to arrive at the particular state to be examined, it is not acceptable to require
the designer and the user to go through many repetitions of that dialogue, or
even to incur the delay due to re-running the initial part of the dialogue from a
saved script. The need for modifying the prototype in the middle of a run
implies the need for a dynamic loader that can be used in the middle of a given
execution of the prototype, and for some means for rapidly responding to
changed specifications for a component of the prototype. This motivates the
need for a high quality software base of sufficient size to accommodate most
common varations on system behavior and a powerful software base manage-
ment system capable of retrieving reusable components efficiently.

The execution support system consists of a static scheduler, a dynamic
scheduler, and a debugger. An initial design for these components is described
in[181. The purpose of the static scheduler is to schedule time for the computa-
tions with hard real-time constraints in such a way that all of the timing con-

straints will be guaranteed to be met. We use the standard approach of stati-
cally allocating time slots sufficient for the worst case execution times of the
operators. The abstract treatment of timing information is an important pro-
perty of the data flow model since only the essential time orderings among the
events in the computation are given. These time orderings act as constraints on
the static scheduler, and allow the flexible exploration of schedulers for multi-
processor configurations. The purpose of the dynamic scheduler is to utilize time
slots not needed the time critical computations to schedule the computations
that do not have hard real-time constraints. The purpose of the debugger is to
exercise the prototype, to collect statistics, and to enable the designer to readily
modify the prototype to conform to new or modified requirements.

9o

.:jl

2.2.3.3. Designer Interface

The proposed designer interface consists of a syntax directed editor for
PSDL and a graphics tool for constructing and displaying data flow diagrams.
The syntax directed editor helps to speed up the process by eliminating syntax
errors, automatically supplying keywords, and prompting the designer with a
choice of legal syntactic alternatives at each point. The graphics tool is a part of
the syntax directed editor, whose purpose is to provide a graphical view of the
dataflow diagram part of the PSDL implementation of a composite module.
The graphics tool helps the designer visualize the relationships between the com-
ponents of a decomposition by means of a two dimensional data flow diagram,
and provides a convenient way to enter and update the decomposition informa-
tion in the enhanced data flow diagram, which is part of a PSDL implementa-
tion of a component. This capability is important because the text form of a
data flow diagram is harder to understand than the graphics form.

2.2.3.4. Design Database

The design database[19 in the prototyping environment contains a PSDL
design and a set of requirements. The most important function of the design
database is to manage and record the refinements and alternatives that were
considered in the prototyping effort. This is especially important in prototyping
because it is an exploratory activity, in which insights gained in later
refinements often shed new light on the problem and make previously rejected
design alternatives look attractive again. The design database should provide
facilities for backtracking to previous stages, and for combining different deci-
sions that were made along different alternatives in the development[20].

Using a database rather than a text file also simplifies job of writing pro-
grams that analyze PSDL prototypes, and helps to provide a continuous cross
referencing capability, by maintaining binary relations between pairs of syntactic
objects. Examples of syntactic objects include individual requirements and indi-
vidual software components. The cross referencing capability is most important
for requirements tracing, and is used mostly in updating the requirements and
adjusting the prototype to match. The binary relationship relevant to cross
referencing is satisfies-requirement. The design database must support retrievals
of the forms

(1) given a requirement, find all the PSDL components that realize it, and
(2) given a PSDL component, find all of the requirements it realizes

to effectively support prototype modification.

2.3. Relation to Previous Work

The proposed work is related to earlier work in five main areas: rapid proto-
typing, design methods, specification and design languages, modeling of real-
time systems, and reusable software.

10

! .*

2.3.1. Rapid Prototyping

Prototyping has become increasingly popular in system development[21].
There is a popular branch of rapid prototyping work aimed at database applica-
tions[21. Several approaches are based on programming languages[16,22]. These
systems do not link very well to user requirements, and do not address real-time
constraints. SREM[23] is a pioneering piece of work on the use of prototypes for
validating requirements. This work addresses real-time constraints, machine
assisted generation of simulations, and tracing aspects of a simulation to user
requirements. However, SREM does not support abstractions and hierarchical
decompositions very well. PAISLey[24] addresses the operational specification of
real-time systems. Other work on executable specifications has concentrated on
transforming specifications into run-time checks for detecting specification viola-
tions[25]. This work is still far from the automatic transformation of
specifications into running systems.

There has been a fair amount of work on machine aided rapid prototyping
for systems without hard real-time constraints.[261 describes a system for proto-
typing user interfaces for interactive systems.[27] uses Petri nets to prototype the
synchronization and interprocess communication aspects of process control sys-
tems. While the notation is not very easy to read. it does support automated
deadlock detection and performance evaluation in terms of steady state probabil-
ities for graph markings.[28 describes a system for prototyping data processing
applications. While they have a tool for determining delay times of modules.
they do not describe a method for designing systems with real-time constraints.
nor do they support data abstractions, making their approach cumbersome for
complex systems.

2.3.2. Design Methods

The important problems facing the computer software industry are achiev-
ing cost effective production of software systems and increasing the quality of
software products with respect to meeting user requirements. Many software
development methodologies have been proposed to approach this goal. Most of
the well-known ones, such as Object Oriented Design (OOD)[29,30] and the
Jackson System Development Method (JSD)[31,32] more or less depend on the
skill of individual designers at the level of manual work.[32J describes a tech-
nique for modeling real world systems which is appropriate for typical data pro-
cessing applications. This method does not address real-time constraints and is
weak on data abstractions. These methods are labor intensive, and are too
informal to guarantee any quality standards for the resulting design. They are
unlikely to lead to any significant improvements in the reliability of software
products.

Newly proposed software tools for software design, such as GENESIS[33],
SREM[23], the PAISLey operational approach[241, and DIANA[34] go one step
further. Most of them are really software development environments consisting
of many software tools for computer-aided software development. Some of them
are designed to fit specific needs, e.g. DIANA is a tool for the design of Ada sys-
tems. Even if we consider only the prototyping aspects of these tools, it is clear
that complete automation of software development is still a distant goal. Most
of these types of tools cannot be extended to the point of complete automation

11

:' ' a, % % % , % .' o °. % ,b % ° '% ". . % '%.%, , " % ,'% ". %. . " ",,% " ".% % "*," .,, , , , ,. , •-

I

because of the lack of mathematical formalization in the related theoretical fields
of software engineering.

Two kinds of software system decompositions have been identified[35,361,
one based on data flow and the other based on control flow.[35] suggests cir-
cumstances in which each of the two kinds of decomposition is preferable and
give some restrictions sufficient to guarantee that the computed results are
independent of scheduling decisions, but does not address real-time constraints.
The method amounts to choosing either a data flow decomposition or a control
flow decomposition at each level, depending on the circumstances. It is difficult
to follow all the confusing restrictions given in these papers and to understand
the overall idea since they do not provide a good computational model and their
system is intended for lower level applications.

2.3.3. Specification and Design Languages

A prototyping language must have the characteristics of a good design
language, because the structure of a prototype must be understandable and easy
to modify. Early design languagesf37,38 [were not executable, although more
recent work has promise in this direction[39]. These languages do not support
real-time constraints or requirements tracing. Some design languages address
the design and specification levels, but are not executable[401. Languages for
specifying real-time systems have also been investigated[41-43].

A number of non-procedural programming languages have been pro-
posed[43,44j. These languages have the advantage of being easy to analyze, and
of exposing the natural parallelism in an algorithm. The design of the non-
procedural control constraints of PSDL owes much to these ideas. One
difference between our work and previous approaches to rapid prototyping using
applicative languages[24,45] is that we provide a black box specification for each
component in addition to a non-procedural implementation. Black box
specifications are important because they separate required properties of the pro-
totype from the incidental ones, and because they can be used for retrieving
reusable components from a software base.

Many informal versions of data flow diagrams[46,47] have been used exten-
sively to model the data transformation aspects of software systems. Data flow
diagrams are easy to read, revealing the internal structure of a process and the
potential parallelism inherent in a design. The automatic drawing of data flow
diagrams is a practical step towards design automation using data flow
diagrams(48]. The use of a convenient graphical form makes data flow attractive
to many designers because it reveals the structure of the design in an easily
understandable form. We believe an automated prototyping environment
should provide graphical capabilities for displaying and updating the system
structure of the prototype.

However, these informal notations do not provide a unified mechanism to
represent all of the relevant attributes of software systems (e.g. timing and con-
trol49) and are not sufficiently formal to be executable. A more precise model
of a data flow computation has been developed in the context of hardware
design[50. We have extended the model and the notation to include control
aspects and critical timing constraints in a two dimensional data flow diagram
without losing its natural benefits. These extensions are needed for the design of
systems with hard real-time constraints.

12

2.3.4. Real-Time System Modeling

Attempts to use data flow diagrams for modeling real-time systems [49] have
resulted in complicated low level models that reflect only qualitative rather than
quantitative information. Some of the work on modeling real-time systems has
focused on the scheduling problems associated with real-time constraints[11,51].
These results are important for execution of PSDL prototypes. The application
of these ideas to PSDL is described in[18]. In[52], an analysis of hard real-time
systems as well as scheduling policies for a single processor are provided.

2.3.5. Reusable Software and the Software Base

Methods for enhancing the reusability of software[5,53] are important for
managing the software baseg, 13], which is one of the building blocks used in our
work.

2.4. General Work Plan

The proposed directions for research include better techniques for retrieving
reusable software components from a software base and more efficient
approaches for implementing the execution support system.

2.4.1. Software Base Retrievals

Better methods for organizing and retrieving reusable components from the
software base are important because the software base can effectively speed up
the prototyping effort only if the fraction of successful retrievals is relatively
high. We propose to investigate software base organizations based on adaptive
generalization hierarchies, reusable component retrieval based on specifications
with a semantic canonical or normal form, and techniques for combining pro-
gram synthesis with software base retrievals based on partial matches.

Generalization hierarchies have been found to be effective for supporting
browsing tools [151, and have also been effective as knowledge representation
tools in artificial intelligence applications. We believe that generalization hierar-
chies are useful for two different purposes in the context of software base
retrievals. First, a properly designed generalization structure should be a
significant aid for interactive retrieval of components, especially for the process
of looking for relevant components before deciding how to decompose a compo-
site PSDL operator. Second. the hierarchy can be used to provide a basis for
approximate retrievals when there is no exact match in the database.

Generalization per category is a database organization principle that was
recently developed for organizing parts libraries in VLSI design[54]. Generaliza-
tion per category differs from conventional generalization because the specializa-
tions of a general concept are disjoint and indexed by values of a categorical pro-
perty. We believe that a disjoint categorization for reusable software com-
ponents would be a very valuable aid to understanding and organizing a
software base, and that such an organization is an important first step towards
computer aided retrievals of the set of components relevant to decomposing a

13

rw w w wrr~~~~~rn~~r V~n,, C..-. - . -- na .- x..-- ---- - - * ~ t L N V ~

composite operator. Working out such a categorization is therefore one of the
goals of our proposed research. It has been conjectured[19] that a categorization
with overlapping categories is a sign of a missing categorical property, and that
it is always possible to find a natural categorical property that will rearrange an
overlapping categorization into a disjoint one. No counter-examples to this con-
jecture have been found, leading us to believe that it should be possible to find a
disjoint categorization for software components. We also believe that working
out such a categorization should provide some insights for constructing an algo-
rithm for automatically retrieving a useful approximation to the set of relevant
components, which is another goal of the proposed research. Generalization per
category induces a lattice structure which can be exploited for efficient database
organization. We propose to investigate the application of this structure to the
design of an architecture for the software base.

A special purpose prototyping language such as PSDL must be simultane-
ously suitable for component specification and for use as a query language in the
software base. These are conflicting requirements, because a specification
language that is easy for people to use will have a rich set of primitives, which
allow many syntactically different ways to describe the same function, while
software base (or database) retrievals work best in situations where each indivi-
dual has a unique identifier or key. We propose to investigate specification for-
malisms with effectively computable canonical forms for specifications.
Advances in this area would simplify the organization and accessing methods of
a software base as follows. The specifications of each component would be
transformed to canonical form before being entered into the software base. This
can be visualized as a process of mechanically reducing the specification to a
unique simplest form. The template for a query would also be transformed into
canonical form before the physical retrieval is performed. This scheme would
guarantee that a perfect match retrieval would always succeed if an appropriate
reusable component was available, because it would eliminate the possibility
that a retrieval would fail to find a module because it was specified in a way
that is syntactically different from the retrieval template but semantically
equivalent to it. Normal forms will also be investigated. Since a normal form is
not necessarily unique, retrieval failures would not be completely eliminated by
reducing specification and queries to normal form. but the hit ratio should be
significantly improved. We py'opose to determine if canonical form specifications
are practical, and if not, to seek normal forms with good hit ratios.

Another area for investigation is the automated synthesis of a component in
cases where the component is not available in the software base. but a small set
of primitives that can be combined to form the required module is available.
Limited logical inference techniques combined with heuristics for limiting the
size of the space of building blocks will be investigated in the later stages of the
proposed research, with attention to the use of the generalization hierarchy for
limiting the size of the search space.

2.4.2. Implementation Techniques for PSDL

We also propose to investigate efficient methods for implementing flexible
interpreters with restarting checkpoints. The efficiency criteria for a prototyping
language are different than those for a programming language because
modifications are frequent, and it is desirable to be able to run several different

14

modifications from the same point midway through a demonstration session.
These considerations favor an interpretation strategy over a compilation stra-
tegy. A strategy utilizing partially compiled and partially interpreted com-
ponents, together with guidelines for triggering the automated compilation of
components that are heavily used is promising. We propose to develop an
experimental translator for PSDL, and to develop and evaluate several different
implementation methods. This process will be aided by an attribute grammar
based translator generator[4].

One of the techniques currently used for meeting tight real-time constraints
is multiprocessing. We propose to extend PSDL and the initially developed
implementation techniques to multiprocessor implementations. The most impor-
tant extension needed in the language is related to faithfully modeling schedul-
ing constraints imposed by the implementation structure for the external sys-
tems interacting with the real-time software. For example, it may be that two
of the external systems are allocated to the same hardware and must have non-
overlapping executions, or that the scheduling of some of the external events is
already fixed, so that it must be treated as a constraint on the design of the
real-time software rather than as a quantity to be derived in the prototyping
process. Facilities for expressing this kind of information must be developed and
integrated into the execution support system. This will be done by investigating
real-time scheduling algorithms for multiple processor systems that respect the
above mentioned constraints.

References
1. R. T. Yeh, Software Engineering, IEEE Spectrum (NOV 1983).

2. J. Connell and L. Brice, "Rapid Prototyping," pp. 93-100 in Datamation, (AUG 1984).

3. L. Levy, "A Metaprogramming Method and Its Economic Justification," IEEE TSE SE-
12(2) pp. 272-277 (FEB 1986).

4. R. Herndon and V. Berzins, The Realizable Benefits of a Language Prototyping Language,
to appear in IEEE TSE (1987).

5. R. T. Yeh, R. Mittermeir, N. Roussopoulos, and J. Reed, "A Programming Environment
Framework Based on Reusability," Proc. Int. Conf. on Data Engineering, (APR 1984).

6. Luqi, "Rapid Prototyping for Large Software System Design," Ph.D. Thesis, University of
Minnesota (1986).

7. Luqi and V. Berzins, "Rapid Construction of PSDL Prototypes," TR-86-17, Computer
Science, University of Minnesota (1986).

8. Luqi and Valdis Bersins, "Rapid Prototyping of Real-Time Systems," Revised for IEEE
SOFT WARE, (1987).

9. N. Roussopoulos, "Architectural Design of the SBMS," Quarterly Report for the STARS
SB/SBMS Project, DCS, UNIV of Maryland (APR 1985).

10. Luqi, V. Berzins, and R. Yeh, "A Prototyping Language for Real-Time Software," to
appear in IEEE TSE, (1987).

11. A. K. Mok, The Design of Real-Time Programming Systems Based on Process Models,
IEEE (1984).

12. J. V. Guttag, E. Horowitz, and D. R. Musser, "Abstract Data Types and Software Valida-
tion," CACM21(12)(1978).

15

13. R. T. Yeh, N. Roussopoulos, and B. Chu, "Management of Reusable Software," Proc.
COMPCON, pp. 311-320 (SEP 1984).

14. David Parnas, "On the Criteria to be Used in Decomposing a System into Modules,"
CACM 15(12) pp. 1053-1058 (DEC 1972).

15. A. Goldberg and D. Robinson, Smalltalk-80: The Language and it. Implementation,
ADDISON (1983).

16. E. L. Ivie, "The Programmer's Workbench - A Machine for Software Development,"
CA CM20(10) pp. 746-757 (OCT 1977).

17. J. A. Goguen, "Parameterized Programming," IEEETSE SE-10(5) pp. 528-543 (SEP
1984).

18. Luqi and V. Berzins, "Execution Aspects of Prototypes in PSDL," TR 86-2, University of
Minnesota (1986).

19. Mohammad Ketabchi, "On The Management of Computer Aided Design Databases,"
Ph.D. Thesis, University of Minnesota (1985).

20. Valdis Berzins, "On Merging Software Extensions," Acta Informatica 23 pp. 607-619
(1986).

21. , "Special Issue on Rapid Prototyping," Software Engineering Notes 7(5) pp. 3-184 ACM
SIGSOFT, (December, 1982).

22. P. Kruchten, E. Schonberg, and J. Schwartz, "Software Prototyping Using the SETL Pro-
gramming Language," IEEE Software 1(4) pp. 66-75 (OCT 1984).

23. M. W. Alford, "A Requirements Engineering Methodology for Real-Time Processing
Requirements," IEEETSESE-3(1) pp. 60-68 (JAN 1977).

24. P. Zave, "An Operational Approach to Requirements Specifications for Embedded Sys-
Lems." IEEETSESE-8(3) pp. 250-269 (1982).

25. D. Luckham and F. W. von Henke, "An Overview of Anna, a Specification Language for
Ada," IEEE Software 2(2) pp. 9-22 (MAR 1985).

26. A. Wasserman, P. Pircher, D. Shewmake. and M. Kersten, "Developing Interactive Infor-
mation Systems with the User Software Engineering Methodology," IEEETSE SE-
12(2) pp. 326-345 (FEB 1986).

27. G. Bruno and G. Marchetto, "Process-Translatable Petri Nets for the Rapid Prototyping of
Process Control Systems," IEEETSE SE-12(2) pp. 346-357 (FEB 1986).

28. J. Tseng, B Szymanski, Y. Shi, and N. Prywes, "Real-Time Software Life Cycle with the
Model System," IEEETSE SF-,12(2) pp. 358-373 (FEB 1986).

29. Grady Booch, Software Engineering with Ada, Benjamin/ Cummings, Menlo Park (1983).

30. Grady Booch, "Object-Oriented Development," IEEETSE S.12(2) pp. 211-221 (FEB
1986).

31. M. A. Jackson, Principles of Program Design, ACADEMIC, New York (1975).

32. J. R. Cameron, "An Overview of JSD," IEEETSESF-12(2) pp. 222-240 (FEB 1986).

33. C. V. Ramamoorthy, Y. Usuda, W. Tsai, and A. Prakash, "GENESIS: An Integrated
Environment for Supporting Development and Evolution of Software," Proc COMPSAC
85, pp. 472-479 (1985).

34. A. Evans, K. J. Butler, G. Goos, and W. A. Wulf, DIANA Reference Manual. Tartan
Laboratories Inc., Pittsburgh, PA (1983).

16

35. 0. Shigo, K. Iwamoto, and S. Fujibayashi, "A Software Design System Based on a Unified

Design Methodology," Journal of Information Processing 3(3) pp. 186-196 (SEP 1980).

36. K. Iwamoto and 0. Shigo, "Unifying Data Flow and Control Flow Based Modularisation
Techniques," pp. 271-277 in Proceedings of the Fall COMPCON Conference, IEEE (1981).

37. W. Stevens, G. Meyers, and L. Constantine, "Structured Design," IBM Systems Journal
13(2) pp. 115-139 (MAY 1974).

38. R. C. Linger. H. D. Mills, and B. I. Witt, Structured Programming: Theory and Practice,
ADDISON (1979).

39. T. Cheatham, J. Townley, and G. Holloway, "A System for Program Refinement," pp.
198-214 in Interactive Programming Environments, McGraw-Hill (1984).

40. F. W. Beichter, 0. Herzog, and H. Petzsch, "SLAN-4 A Software Specification and Design
Language." IEEETSE SE-10(2) pp. 155-162 (MAR 1984).

41. V. H. Haase, "'Real-Time Behavior of Programs," IEEETSE SE-7(5)(SEP 1981).

42. G. Luckenbaugh, "The Activity List: A Design Construct for Real-Time Systems,"
Master's Thesis. DCS, UNIV of Maryland (1984).

43. A. A. Faustini and C. B. Lewis, "Toward a Real-Time Dataflow Language," IEEE
Software 3(1) pp. 29-35 (JAN 1986).

44. W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow Programming Language.
ACADEMIC (1985).

45. P. Henderson, "Functional Programming, Formal Specification, and Rapid Prototyping,"
IEEETSESE-12(2) pp. '241-250 (FEB 1986).

46. T. DeMrco, Structured Analysis and System Specification, Yourdon Press (1978).

47. E. Yourdon and L. L. Constantine. Structured Desiqn: Fundamentals of a Disrioline of
Computer Program and Systems Design, Prentice-Hall (1979).

48. C. Batini. E. Nardelli, and R. Tamassia. "A Layout Algorithm for Data Flow diagrams,'
IEEETSESE-12(4) pp. 538-546 (APR 1986).

49. P. Ward, "The Transformation Schema: An Extension of the Data Flow Diagram to
Represent Control and Timing," IEEETSESE-12(2) pp. 198-210 (FEB 1986).

50. J. B. Dennis, G. A. Boughton, and C. K. C. Leung, "Building Blocks for Dataflow Proto-
types," in Proc. Seventh Symposium on Computer Architecture, La Baule, France (MAY
1980).

51. A. K. Mok, "The Decomposition of Real-Time System Requiremennts into Process
Models." IEEE Proc. of the 1984 Real Time Systems Symposium, pp. 125-133 IEEE.
(DEC 1984).

52. Abha Moitra, Analysis of Hard Real- Time Systems. Computer Science Department, Cornell
University (1985).

53. B. Leavenworth, "ADAPT: A Tool for the Design of Reusable Software." RC 9728. IBM
Watson Research Center. Yorktown Heights. NY (1982).

54. Mohammad Ketabchi and Valdis Berzins, "Generalization Per Category: Theory and
Application," Proc. Int. Con/f on Information Syatema, (1986). also TR 85-29, Computer
Science Dept., University of Minnesota

17

Initial Distribution List

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142 2
Naval Postgraduate School
Monterey. CA 93943

Center for Naval Analyses 1
2000 N. Beauregard Street
Alexandria. VA 22311

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey. CA 93943

Chairman. Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-jiOO

LuQi 50
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Chief of Naval Research 2
Arlington, VA 22217

.4

W W1

Sr' Lt rt.. MZIl 11~a i n..4-

