

AFIT/GCS/ENG/86D

88

C

200

5

Š.

ß

Ľ

A COLLECTION AND STATISTICAL ANALYSIS OF BIOPHYSICAL DATA TO PREDICT MOTION SICKNESS INCIDENCE

THESIS

Michael R. McPherson Captain, USAF

AFIT/GCS/ENG/86D-21

Approved for public release; distribution unlimited.

AFIT/GCS/ENG/86D

ě]

١

Ś

X

is) J

ß

Ę

X

Ň

Ś

ģ

K

The state of the s

A COLLECTION AND STATISTICAL ANALYSIS OF **BIOPHYSICAL DATA TO PREDICT MOTION SICKNESS INCIDENCE**

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirement for the Degree of Master of Science of Computer Systems

Accesion For

NTIS CRA&I

Unannounced

Justification

Ву

Availability Codes

Avail a d/or

Upucial

DTIC TAB

Dist ibution/

Dist

 \Box

 \Box

Michael R. McPherson Captain, USAF

December 1986

Approved for public release; distribution unlimited.

Preface

The goal of this thesis project was to continue to collect biophysical data on volunteers as they experienced symptoms of motion sickness and then statistically analyze the data in order to identify predictive parameters of motion sickness. Although this thesis report is an individual product, I would like to express my gratitude by acknowledging those people who assisted me and gave their support.

ß

Ŋ

R

Л

Ŋ

Ň

I would like to especially thank Dr. Matthew Kabrisky, my thesis advisor, for his experience and guidance. I am also grateful to Dr. William Czelen for sharing his expertise in human physiology and biomedical engineering. I would like to thank Mr. Robert Durham and Mr. Daniel Zambon who provided constant hardware and system support throughout this project. I thank my thesis committee, Dr. Lynn Wolaver and Dr. Charles Hatsell. A special thanks goes to my collegues Captain Robert Miller and Captain Dana Hartle whose ideas, encouragement, and friendship are appreciated more than they will ever know.

Finally, I would like to extend my sincerest thanks and love to my wife Darlene and my daughters Kelly and Krysten for their love and understanding that helped me to reach my goal at AFIT.

Mike McPherson

ii

Table of Contents

e 2

このころの ちょうちょう

0. C.

22

9.Q

8

Ň

Ň

53

																							рe	ge
	Prefa	ice		•	•	•		•	•		•	•		•	•		•	•	٠	•	•	•		ii
	List	of	F	ig	ure	es		•	•		•	•	•	•	•		•	•	•	•	•	٠		v
	List	of	T	ab	les	з.		•	•		•	•	ı	•	•		•	•	•	•	•	•	V	11
	Abstr	ac	t	•	•	•		•	•		•	٩	I	•	•		•	•	•	•	•	•	t v	.ii
	I.	In	tr	ođ	uct	tio	n																	-
			Ba n	Ck	gro	משכ	d	•	٠		٠	•		•	•		٠	•	•	٠	•	•	٠	1
			Pr	OD	ler	n S	ta	te	me	nt		٩	I	٠	٠		•	٠	•	٠	٠	٠	٠	10
			5C	op	e 	•		•	٠		٠	•	•	٠	•		•	•	٠	•	•	٠	٠	10
			AS Ma	ธบ: + ค	mp: mil	610 919	ns	i n d	• ਜ	.	•	•		•	•		•	•	•	•	•	•	•	11
				しだ	0 a 4 T T 6	313 - h	. 2	und		qu	- }) III 6	: 11 0	•	•		٠	•	٠	٠	٠	•	•	12
			0 г	ЧЧ	r d	-‼ nf	P۲	• • •	• •	ta	•	• 0		•	•	1	•	•	•	•	•	•	•	13
			~		• •		• •		••••				•	•	•	I	•	•	•	•	•	•	•	10
	II.	Ηi	st	or	ica	a 1	Pe	ers	De	ct	i١	7e												
			ΑĹ	r	For	rce	Ē)ir	ec	ti	or	1	,			I	•				•	•		14
			Pr	io	r /	AFI	Т	Th	es	es				•	•	I	•	•	•	•		•	•	14
			Cu	rr	ent	t E	ff	or	t				,	•		I		٠	•	ა	٠	•		16
			Sy	st	em	Ha	rd	lwa	re		•	•	,			ı	•		•	•	•	•	•	16
			Ha	rd	was	re	Ρr	ob	1e	ms			•	•		I	•	٠	•	•	٠	•	•	18
			Ha	rd	wa	re	Cŀ	nan	ge	S	٠	•	•	•	•	ı.	٠	•	•	•	•	٠	•	21
			Sy	st	em	So	ft	:wa	re		٠	•	•	•	•		٠	٠	٠	٠	•	٠	•	23
			Po	S 5	ib	le	Sy	st	em	E	rı	01	S	٠	•	I .	•	٠	٠	٠	٠	٠	•	25
	T T T	n	• -			1		_																
	┺┺┺╺	νa	ta T-	А 	na.	1 y s	115	3																20
			፲ቤ ሞኬ		0 U I	ucu	L C) []	•	•		•	•	•	٠	•	•	•	•	•	•	•	•	20
			Da	eu * a	L y C	.11	-	, + -	•	•		•	٩	•	•	•	•	•	•	•	•	•	•	30
	.**		Da	ca ec	ri. rii	0 I I n f i	. e . v e	5 5	.01 + 0	• + i	a t	• • • •	• • • 1		And	11	, ogi	•	•	•	•	•	•	31
1	$\tilde{\mathcal{L}}(0)$		20	Ga	1 v i	ani	. • •	้ระ	'in	R	6	F 1 e	· 4 ·			נ ב ב			•	•	•	•	•	36
71				Sii	r f :	ace		ki	n.	Te	m	n e t	r≞∠ °at	ワ 111	re:			•	•	•	•	•	•	36
(", \	1,		ζ.Σ	ĒĨ	é'c '	tro		ird	io	gr	ал											-		36
(J			ر ۲۰۰	Pa	11	or						•			•				•		•	•		43
			et p	Ře	Sp:	ire	ti	Lon	1			•			•			•	•			•		43
			6.10	EG	G	a n d	E	ΞC	5			•		,	•			•	•	•	•	•	•	44
			Co	rr	e1;	ati	. o r	ı A	ín/a	1 y	si	ĺs					•	•	•	•	•		•	44
			Sp	ec	tra	a 1	Ar	ıaļ	/y s	is	ł	•		•	•		•	•	•	•	•	•	•	47
			-	Ga	st	roi	.nt	:ø∕s	iti	na	1	•	•		•		•	•	•	•	•	•	•	48
				ΕI	G	•	,	{	•	•		•	•		•		•		٠	•		•	•	48
				EG	G	•/	1	•	٠	•		٠	•	,	٠		•	٠	٠	•	•	٠	٠	54
				Re	s p	if a	tj	lor	l	•		٠	•	•	•		•	•	٠	•	•	•	•	55
				E E	G :	Spe	ect	ru	m	•		٠	•	ı.	•	. (•	•	•	•	•	٠	٠	56
			and the second																					
		\mathcal{L}	~>	74		(1								4.	4 4									
			•		.	· 🔶 🔾	-							L	<u>ь</u> .ь									

iii

IV.	Mod	e 1	Im	pli	cat	ion	S											
	I	ntr	od	uct	ion		•	٠	•	•	•	•	•	•		•	•	57
	R	legr	es	sio	n T	heo	rу	•	.•	•	•	•	•	•	•	•	•	57
	P	red	ic	tiv	e M	oti	on	Sic	kne	SS	Mod	e 1	•	•	•	•	٠	58
V.	Con	c1u	si	ons	an	d R	eco	mme	nda	tio	ns							
	C	lonc	1 u	sio	ns	•	•		•	•	•	•	•	•	•	•	٠	63
	A	.pp1	ic	ati	ons	to	Fu	rth	er	Res	ear	ch	•	٠	٠	•	٠	64
	R	leco	mm	end	ati	ons		•	•	•	•	•	٠	•	•	•	٠	64
Append	ix	A :	E	хре	rim	ent	a 1	Pro	toc	01	•	•	•	•	` •	•	٠	70
Append	ix	В:	S	ubj	ect	Da	ta	•	•	•	•	•	•	•	•	•	•	85
Append	ix	С:	Т	ape	Ed	it	Inf	orn	ati	.on	•	•	•	•	٠	٠	٠	171
Biblio	gra	phy	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	67
Vita .	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	٠	175

2020 C C C C C C

2.4.2.4.2.4.2.4

6). -

38

677 1

. . .

List of Figures

w.E.	List of Figures		
	HISC OF FIXULES		
	Figure		Page
5	l. The Vestibular Cavity	•	3
	2. Rotating Chair		4
114	3. Schematic Illustration of Cross Coupling	٠	4
	4. Current System Configuration	•	17
DH.	5. Sensor Placement (Central)	٠	19
8	6. Sensor Placement (Peripheral)	•	20
	7. Skin Pallor Calibration	•	22
	8. Thoracic Respiration Calibration	•	24
8	9. Hypothetical Data Acquisition System	•	26
DA	10. Quantization Noise in Data Acq Systems	•	26
Y	11. Motion Sickness Model	•	30
3	12. Galvanic Skin Reflex	•	37
85	13. Surface Skin Temperature	•	37
	14. Heart Rate	•	30
3	15. Finger Pallor	•	39
	16. Facial Pallor	•	39
3	17. Breathing Rate (normal breathers)	•	40
73	18. Thoracic Respiration (normal breathers)	•	40
8	19. Diaphragmatic Respiration (normal breathers)	•	40
14	20. Breathing Rate (tachypneic)	•	41
X	21. Thoracic Respiration (tachypneic)	•	4 1
8	22. Diaphragmatic Respiration (tachypneic)	•	4 1
	23. Gastrointestinogram	•	42
	24. Electrogastrogram	•	42
	v		

25.	Electrointestinogram	42
26.	EIG and EGG Spectrum	49
27.	Gastrointestinal and Ballistocardiogram Spectrum	50
28.	Diaphragmatic Respiration Spectrum	51
29.	Thoracic Respiration Spectrum	52
30.	EEG Spectrum	53

8

<u>%</u>

523

8

8

Ţ

<u>List of Tables</u>

<u>8</u>

8

č,

88

ß

5.Q.

8

<u>8</u>

8

Ň

78

and the second second

Table	1		Page
1.	Episodes of Space Sickness Among Apollo Astronauts	•	. 7
2.	Estimated Motion Sickness Parameter Values	•	. 33
з.	Confidence Intervals of Estimated Parameters	•	. 35
4.	Correlation of Motion Sickness Parameters .	•	. 46
5.	Mean Frequencies for Respiration	•	55
6.	Mean Values of Parameters for Regression .	•	60
7.	ANOVA Table for Regression Analysis	•	61
8.	Residuals From Regression Analysis	•	62

Abstract

Biophysical data were collected on human volunteers to study the effects of the motion sickness syndrome. Physiological parameters were analyzed by descriptive statistical methods and by means of a spectrum analyzer. Descriptive statistical anaysis showed at least five separate physiological parameters were linearly correlated to a motion sickness symptom index. Spectral analysis showed definite frequency and amplitude shifts during the onset of motion sickness for various parameters. Low frequency brain wave activity on the order of 0.1 Hz was discovered as the subject approached nausea. A multiple linear regression model was constructed from the correlated data obtained by descriptive statistics. Six separate physiological parameters were useful in describing a predictive motion sickness model that can be used as a major construct in developing a complete biofeedback system for countering effects of motion sickness.

Koyunda:

L

viii

A Collection and Statistical Analysis of Biophysical Data to Predict Motion Sickness Incidence

I Introduction

Background

R

8

J

<u>N</u>

8

2

۴M)

Motion sickness is a malady that affects the entire human species, from the child that gets sick traveling in an automobile to the most experienced fighter pilot who experiences unusual acceleratory forces. Motion sickness also may affect the astronaut who must function under the abnormal weightless conditions in the space environment (24:31). The study of motion sickness is important to any organization that operates in a motion environment, particularly the Air Force. Efforts to counteract motion sickness have included drug therapy, desensitization, and biofeedback training. Most of the research effort has been conducted by the National Aeronautics and Space Administration (NASA) and the Air Force in order to identify the causes and mechanisms of motion sickness and establishing an effective treatment.

The first major contribution of understanding the cause of motion sickness came in 1881 when Irwin described the cause as follows:

Foremost among the physiological facts revealed by the brilliant experiments of the past half century is the knowledge that our bodies are endowed with what may be termed a supplementary sense, quite independent of, but at the same time in the closest alliance with, our other special senses, the function of which is "to determine the position of the head in space", and to govern and direct the aesthetiko-kinetic mechanism by

which is maintained the equilibrium of the body. This faculty of equilibrium appears to be more or less connected with the cerebellum, the optic lobes, and possibly other parts of the nervous organisation, but beyond doubt its principal seat is in the semicircular canals of the internal ear, which may for practical purposes be regarded as the organs of equilibration (25:7).

Thus, the semicircular canals in the inner ear (see Figure 1) were recognized more than one hundred years ago as the means by which we detect angular accelerations and rotational movement.

a state of the second sec

X

X

ÿ

8

8

3

Ê

Ş.

3

Motion sickness can be evoked in an individual by stimulating the semicircular canals in the inner ear with cross coupled angular accelerations that occur when the head position is moved out of the axis of rotation (13:229). This effect was principally studied by McIntyre and later came to be called "Coriolis accelerations" (25:20). The Coriolis illusion is elicited by tilting the head about axes other than the axis of bodily rotation. Such head motions deliver a Coriolis accelerative stimulus (cross-coupled angular acceleration) to the canal system, and produce illusory sensations of perceived motion and whole body rotation about an axis that is orthogonal to both the head-tilt and rotational axis (25 :49). The magnitude and persistance of these sensations is a function of the speed of rotation, the angle through which the head is tilted, and the direction of the head movement (25:49). Motion sickness is an almost inevitable consequence of continued exposure to Coriolis accelerations if the angular speed of the rotating device is sufficient to exceed the subject's personal tolerance threshold. Specifically, if an individual seated on a rotating litter chair

2

Ŷ

3

Ĵ,

83

S

Ì

23

G.

23

8

3

 $\left\{ \right\}$

ŧ

Figure 1 The Vestibular Cavity

8

No.

Ø

ĹЦ)

22

8

ŝ

1000

Figure 2 Schematic illustration of rotating chair used to induce motion sickness response (22:602).

Figure 3 Schematic illustration of cross-coupling. If an individual rotates clockwise at a constant velocity and tilts his head forward 90 degrees, his horizontal semicircular canal will signal counter-clockwise velocity and his vertical semicircular canal will indicate clockwise velocity (20:230).

(Figure 2) turns his head quickly, he will experience spacial disorientation (Figure 3). Repetition of this stimulus will almost invariably evoke symptoms of motion sickness. This can occur frequently when a pilot moves his head in high-G maneuvers. The most common occurences of motion sickness include air, sea, and car sickness and is usually characterized by a pale complexion, cold sweating, nausea, drowsiness, and vomiting (27:1075). There appears to be two kinds of sensory derangement responsible for motion sickness. One is the intermodality conflict, primarily between the eyes and the vestibular receptors. The other is an intra-modality or intra-labyrinthine conflict between the semicircular canals and the otolith organ (25:26).

S.

Ň

Ř

8

招

S

Since all of these senses are potentially involved either directly or indirectly (as in the case of the vestibular system during visually-induced sickness), in the motion perceptions that cause sickness, it becomes pointless to ask which of them canals, otoliths, eyes, or non-vestibular proprioceptors are the prime offenders (25:26). The one common factor in all of the sickness provoking situations is not the predominance of either linear or angular accelerations, but rather the presence of sensory rearrangement in which the inputs to the vestibular receptors are artificially distorted to render them incompatible either with each other, or with the eyes, or both (25:26).

The study of motion sickness is important to the Air Force because there is a high incidence of motion sickness experienced

5

by student pilots in their first phase of flight training. This malady eventually leads to a 2% attrition rate from pilot training and approximately a 40% attrition rate from navigator training (16:984). Additionaly, even veteran pilots are occasionally afflicted with this vestibular disorder which can inhibit mission success because of decreased flight performance (5:66;15:1).

1.

Sector Contractor

Ň

Since the inception of manned spaceflight, motion sickness has affected as many as 50-80% of both space shuttle astronauts and Soviet cosmonauts (21:1148). Space motion sickness usually occurs during the initial 24-72 hours of orbital flight during vestibular adjustment in the weightless environment (23:601). Space motion sickness symptoms range from lethargy and loss of appetite to vomiting (23:601). Sensory conflict appears to be the basic mechanism underlying space motion sickness (23:604). During orbital flight, signals from the otolith receptors in the inner ear would conflict with those from the semicircular canals and the eyes (23:604). The cost of space motion sickness in lost working hours during a mission is immense (21:1148). The sheer expense associated with each manned space launch, the high task loading of spacecrew, and the relative irrevocability of each space mission once committed makes space sickness a hazard of primary importance. Furthermore, the consequences of an astronaut vomiting during extra-vehicular activity are potentially dangerous (23:601). Just in the Apollo program alone, 10 of 21 astronauts had suffered some kind of space

sickness. Symptoms ranged from mild sensations of tumbling to serious cases of prolonged nausea and vomiting. In the few months between Apollo 7 in October, 1968 and Apollo 13 in the spring of 1970, there were more recorded episodes of sickness than in all the preceeding seven years of manned flight (20:35). These instances are summarized in Table 1 below:

X

83

5

8

2

8

3235555404.0

Table 1 Episodes of Space Sickness Among Apollo Astronauts

Mission	Nature of Symptoms
Apollo 7	Mild sensations of tumbling (1)*
Apollo 8	Stomach awareness, nausea and
Apollo 9	Strong sensation of tumbling,
	anorexia, queasiness (2); persistent
1. 11. 10	nausea and vomiting (1)
Apollo IU	Stomach awareness, anorexia,
A	nausea (1)
WDOTTO II	Mild anorexia (1)
Apollo 12	No reported symptoms
Apollo 13	Stomach awareness (2); nausea and
	vomiting (1)
Apollo 14	No reported symptoms
* number of crew members	(20:35)

Past efforts aimed at relieving motion sickness have mainly included anti-nauseant drug treatment. However, these drugs were unreliable and carefully administered only during rehabilitation therapy in a non-operational setting since it has been held that any medication, or condition that requires medication, will diminish operational flying proficiency to a potentially dangerous level (30:310;5:67). This claim is supported by the well known side effects of anti-nauseant or anti-motion sickness drugs, namely "dry mouth, dizziness, and drowsiness (30:311)." Air Force flight surgeons and the Federal Aviation Administration (FAA) maintain the position that the use of medication is prohibited for essential crew members during flight (30:316).

8

3

Current efforts have been directed towards designing and evaluating an effective drug free rehabilitation program. One such program was evaluated at the Brooks AFB School of Aerospace Medicine in Texas for student pilots as well as veteran fliers that were experiencing problems with air sickness (17:2). Training included desensitizing the individual to the forces experienced which seems to cause the airsickness. Because motion sickness is recognized as a stressful experience but one to which an individual can adapt, there had been hope in using biofeedback training (19:465). The subject was first streased close to the point of experiencing motion sickness so that he could recognize the forewarning symptoms and apply relaxation techniques to bring his physiological reactions under control (17:2). As training progresses, the level of stress was increased and the subject was able to control his motion sickness in the operational environment (17:2).

This form of biofeedback training had proven successful in that approximately 84% of aircrew individuals have returned to operational flying status; however, Air Training Command (ATC) has encouraged the USAF School of Aerospace Medicine (SAM) to

develop a less expensive and more effective program suitable for use at flying training bases (15:1). Developing such a system requires a more accurate and effective means for measuring physiologic changes in an individual and must minimize the time the physician spends with the subject as well as eliminating the need for a technician in the treatment room (15:1). As currently implemented, "the desensitization treatment for each subject requires 20 hours of close supervision by a highly trained psychotherapist who titrates the level of stimulus to the psychotherapist's appraisal of the subject's motion discomfort (15:1)."

To date, research has not quantitatively identified those processes in the human body that can be measured objectively to establish values for predicting the onset of motion sickness (17:5). At the request of the USAF School of Aerospace Medicine, an apparatus was built at the Air Force Institute of Technology (AFIT) to collect a wide spectrum of data on human subjects in an effort to identify potential predictive parameters of motion sickness (15:1). The apparatus currently consists of a multiaxis motion simulator to evoke motion sickness symptoms in a subject and physiological monitoring equipment to measure the subject's consequent physiologic changes. Additionally, a computerized data acquisition system was developed during a previous thesis effort by Captains Douglas Fitzpatrick and Robin Williams in an attempt to reduce future manpower requirements in a biofeedback training session (11). With the current system configuration,

8

data collection is more efficient and flexible. This will allow more time and effort to be directed towards performing an indepth statistical analysis on the data collected to identify potential parameters of motion sickness.

Problem

.....

The purpose of this thesis project is to continue collecting biophysical data on human volunteers and then statistically analyze the data to determine if there is a relationship between motion sickness incidence and specific physiological measurements and if it is possible to identify the predictive parameters of motion sickness.

Scope

This thesis project will be limited to:

relocating the multiaxis motion simulator to building
640 room 150;

 collecting biophysical data from human volunteers using a multiaxis motion simulator to elicit a motion sickness response;

3) incorporating parallel paper strip-chart recorders for real-time hard copy output;

4) performing a statistical analysis on the data collected to see if there are predictive relationships between the physiological measurements. Analysis techniques that will be considered are:

a. time variations in statistical parameters such as

mean and standard deviations of the data samples compared to baseline values;

b. spectral analysis techniques to evaluate differences
in the frequency spectra;

c. multivariate statistical techniques to evaluate interrelationships between variables;

5) interfacing with Captain Robert Miller and Captain Dana Hartle whose concurrent thesis efforts involve correlating all data regarding motion sickness.

Assumptions

Ş

In order to use certain statistical techniques, an essumption that must be made is that the dependent variables involved are of a continuous nature and that the variables are somewhat correlated. It is also assumed that the reader is somewhat familiar with basic statistic terminology. Finally, it is not the intention of this thesis project to identify or understand the specific causes of getting motion sick. Thus, it is immaterial if motion sickness is caused from psychological factors, somatic factors, or a combination of both.

Support Equipment and Materials

The equipment needed for this study is available through the Electrical Engineering Department and includes the following:

1) MASSCOMP MC500 minicomputer and appropriate peripheral units.

2) A multiaxis motion simulator (hereafter referred to as the chair).

Three 6 channel strip chart recorders (Brush Mark
260 recorders).

4) Kyowa Dengyo 14 channel Beta tape recorder.

5) Various physiological sensors developed by Dr. Czelen including:

a. electrocardiogram

b. thermistor to measure skin surface temperature

c. electronastagmogram to measure eye movement

d. galvanic skin reflex to measure resistivity

e. photo-plethysmographs to measure pallor

f. electrogastrogram to measure gastric motility

g. electrointestinogram to measure intestinal tone

h. pneumographs to measure respiration rate

i. ballistocardiogram to measure heart rebound

j. electroencephalogram to measure brain wave activity

6) Hewlett-Packard 3582A Spectrum Analyzer.

Approach

X

Ņ

3

Ŕ

ß

The approach taken includes the following steps:

1) A literature search was performed by reading past theses, correspondence from the School of Aerospace Medicine, documentation of the BDAS program, documentation about the MASSCOMP computer, previous books and articles on the subject of motion sickness, and books about techniques regarding multivariate statistical analysis.

2) Relocating the multiaxis motion simulator from building 470 to building 640 in order to better control environmental conditions.

3) A continuing effort to improve the physiological monitoring equipment.

- 4) Standardizing testing procedures and protocols.
- 5) Data collection from volunteers.
- 6) Statistical analysis on the data collected.

Order of Presentation

討

Ň

ß

ġ

ß

8

Ŕ

XX XX

323-34 S S S

usesess hereiter

11 - -----

Chapter 2 is a summary of past efforts to quantify parameters and estimators of motion sickness. Chapter 3 is the methodology of this thesis project. It includes the theory and procedures taken to statistically analyze subject data. Chapter 4 is a further analysis with implication on modeling motion sickness and Chapter 5 contains conclusions and results of the experiment and provides recommendations for further research in this area.

II Historical Perspective

Air Force Direction

8

Å

У

The Air Force Institute of Technology (AFIT) was requested by letter in February 1982 from the School of Aerospace Medicine (SAM), Brooks AFB, TX to provide technical assistance in developing a system for treatment of airsickness using biofeedback techniques. Specifically SAM envisioned a system that would be cost effective and suitable for use at flying training bases (13:2). The system should be suited to collect up to 16 independent channels of physiological data on a subject. The system would be capable of inducing Coriolis stimulation on the subject by varying the speed of chair rotation and timing head tilts based on an experimenter's appraisal of motion susceptibility and ultimately feed back to the subject predictions of their physiological motion discomfort by some visual cue as well as a variable pitched sound (13:3). In a simplistic sense, SAM wanted to automate the existing motion sickness rehabilitation program implemented at Brooks AFB. TX by using physiological monitoring equipment that was computer controlled and required only one technician.

Prior AFIT Theses

In response to the SAM request, Captains Earl and Peterson in 1983, constructed a Biophysical Data Acquisition System (BDAS) consisting of a rotating motion simulator (the chair), a CIM-800 microcomputer, various physiological monitoring devices, and a

14

ዾፚኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯ

MASSCOMP MC500 data acquisition computer (9:1-2). Physiological monitoring equipment to measure heart rate, gastric motility, respiration rate, and skin pallor were designed and built. Commercially available sensors were also used and included devices to measure skin surface temperature, galvanic skin reflex (GSR), and electromyogram (EMG) of superficial muscles (9:vii).

23

ġ.

Ĥ

ß

33

Ŷ.

7**4** 2. v

33

Ŕ

Ņ

Next, Captains Fitzpatrick, Rogers and Williams in 1984, developed a user friendly BDAS computer program to process the multiple channels of biophysical information that included data storage as well as graphical display. Also, amplifier circuits that transmit the physiological signals used to measure heart rate, gastric motility, respiration rate, skin pallor, intestinal tone, and eye movement were documented. They also used commercially available equipment including a thermometer, myograph and dermograph (11).

In 1985, Captains Jarvis and Uyeda concentrated mainly on refining the BDAS program and collecting subject data. However, they experienced considerable trouble with the MASSCOMP MC500 hardware due mainly to the malevolent environmental conditions of building 470 (excessive humidity, no air conditioning in the summer and no heat in the winter). Also, an effective head motion protocol had not been established to elicit effective motion sickness symptoms in the subject. Finally, initial data collected could not be statistically analyzed due to the small sample size and non- uniformity of the data itself. However, basic trends between groups of data were identified. For

example, they found that as a subject becomes motion sick, stomach awarness and galvanic skin reflex showed the same trend by sudden increase in both EGG and GSR readings (17:81). Also, they elected not to use EKG, peripheral photoplethysmograph, EMG, and ballistocardiogram because of the questionable value of the information provided by their sensing and recording system.

Current AFIT Theses

This thesis effort intended to continue collecting subject data and then statistically analyze that data. However, during the experiments, the decision was made to relocate the chair and peripheral equipment to building 640 in order to assure better control over environmental conditions for both the test subjects and the MASSCOMP MC500 computer.

System Hardware

8

3

83

Kí,

X

ž

Ŷ

8

 The current hardware configuration of the biophysical data acquisition system can be seen in Figure 4. The multiaxis motion simulator was constrained to rotate only about the vertical axis (planetary yaw). A hardware improvement over the prior theses came in the form of a Kyowa Dengyo 14-Channel Beta recorder. Also, modifications to physiological sensors placement were made. The following is a list of all the physiological sensors used to collect subject data:

- 1) A Electroencephalogram / EEG (frontal)
 - B Electroencephalogram / EEG (front.1)
 - C Electroencephalogram / EEG (occipital)

Ņ

ŝ

ġ

 \hat{k}

Ď

Ç

8

i.

8

2

88

Ļ

156

Figure 4 Current System Configuration

- 2) Photo plethysmograph (facial)
- 3) A Electronystagmogram / ENG (vertical)

B - Electronystagmogram / ENG (horizontal)

- 4) Electrocardiogram / EKG (vector)
- 5) Electrogastogram / EGG (left upper quadrant)
- 6) Electrointestinogram / EIG
- 7) EGG/EIG Common
- 8) Thoracic Respiration and Ballistocardiogram
- 9) Diaphragmatic Respiration
- 10) Blood Pressure and Pulse
- 11) Galvanic Skin Reflex (GSR)
- 12) Photo plethysmograph (finger)
- 13) Thermistor (surface skin temperature)
- 14) FM microphone (subject input)

The placement of the above sensors can be seen in Figures 5 and 6 on the following pages. Explanation for the use of individual sensors can be found in the Jarvis and Uyeda thesis (17).

Hardware Problems

A good deal of time and effort was consumed during the move. Once the chair was disassembled, it was evident that new spacers o and bearings were required for smooth 360 rotation. The main bearing plate also needed to be recut and nickel plated. Upon reassembling the chair in building 640, some additional obstacles appeared. For example, it was necessary to construct a carpenter's 3 ton A-frame to raise and move the chair to its new

KALEN KANTALENEN KANTALEN KANTALEN KANTALEN KANTALEN KANTALEN KANTALEN KANTALEN KANTALEN (KANTALEN KANTALEN KAN

の時から

.

(A)

ていたちのかまとい

3

an.

8

8

Ň

98 72

X

Ĵ,

201

101111111

いいのでのできる

- Artes Vesses

platform. Another time consuming task included wiring the proper power to the console (three-phase 220 volts) and repairing an inoperative 15 volt power supply. Upon successfully completing these tasks, testing the equipment began. The only other obstacle encountered was a ground loop which introduced considerable noise into the system. The problem was rectified by carefully grounding the motion simulator via the slip rings to the recording equipment.

Hardware Changes

Ŋ

22

Minor changes to some of the physiological sensors were made and new calibration techniques were employed. Establishing a numerical reference point to calibrate the sensors was essential since past data collection resulted in only percent of estimated baseline changes rather than quantifiable units. For example, skin temperature is now measured in degrees Farenheit rather than plus or minus a percent of the individuals estimated baseline. Temperature is measured via thermistors taped to a finger on the subject's right hand (see Figure 6) and is recorded using commercial Autogen equipment.

Likewise, skin pallor, which was a very subjective measurement in the past, is now quantifiably measured by first totally exanguinating the subject's forearm with an Esmarch bandage and blood pressure cuff and then calibrating both the finger and facial photo-plethysmograph for complete pallor (See Figure 7a). The cuff is removed and the immediate blood flow into the arm represents a complete flush which also equates to an

の

60

3

 $\hat{\boldsymbol{\beta}}$

28

 $\Delta \Delta \Delta \Delta$

2022

A- 100 percent Pallor

B- 100 percent Flush

Figure 7 Skin Pallor Calibration

absence of pallor (See Figure 7b). Thus the two extremes of the scale are found for each subject before the test run begins. The data collected during the experiment can be represented as a percentage of total pallor.

The galvanic skin reflex (GSR) is a measure of subject surface resistivity (sweating). A scale of varying resistances from 10K to 1.5M resistance is used to calibrate the GSR instrumentation. This covers the subject's range of possible resistivity. Previously collected data only indicated a percent of the variation in the subject's baseline. Now, actual resistance values may be acquired.

Finally, both thoracic and diaphramatic respiration are calibrated using a commercially obtained spirometer (See Figure 8). The spirometer is placed in the subject's mouth and the subject is instructed to make a series of normal breaths. The spirometer measures the volume of air in cubic centimeters. As the subject breathes into the spirometer, the values in cubic centimeters are annotated simultaneously on the respiration strip chart recording.

System Software

8

ÿ

8

8

Ċ,

8

The BDAS computer program is hosted on the MASSCOMP MC500 computer. Since the MASSCOMP MC500 hardware problems were not corrected until mid 1986, data reduction was performed by 1) manually sampling the hardcopy output from the strip chart recorders and 2) replaying edited tape through a spectrum analyzer. Thus the BDAS program was not used to collect real-

23

1.2.2.2.2.2.

0.000 C

-1 -2 -2 -2 -2 -

14

1 - and 1 - assessed 1 - assessed

3

88

÷.

8

Figure 8 Thoracic Respiration Calibration Using Spirometer to Measure Volume (Cubic Centimeters)

7 M

time subject data. However, the MASSCOMP MC500 was used to analyze the manually obtained subject data. A statistical package called "S" was the primary software program used. Once room 150 in building 640 is air conditioned, the MASSCOMP MC500 will be colocated with the motion simulator and facilitate direct real-time data acquisition and storage. Until then, the subject data will be collected on Beta tape and strip chart recorders.

Possible System Errors

Į,

Ň

8

之

3

Ţ

A discussion of the errors that may be introduced by a typical data acquisition system is relevant since such errors must be known when analyzing the final data output. Figure 9 shows a hypothetical data acquisition system. The transducer produces a voltage proportional to the function being observed (10:26). The limiter in the figure symbolize the fact that there are definite limits to the magnitude of the voltage which the data acquisition system will pass (10:27). Some error is introduced in the form of noise. The noise may be either correlated or uncorrelated with the data. Next the data are digitized and the the analog to digital conversion also introduces a type of noise into the data known as quantization noise shown by Figure 10 (10:30).

There are other sources of noise. In summary:

1. Capacitive coupling exists between the human body and AC power systems. For instance, even the proximity of the subject to a metal chair, which probably picks

i i i

3

ĽĊ.

Ø

8

Ľ

9752 S

Figure 10 Quantization Noise in a Data Acquisition System (6:30).
up power line signals itself, forms a capacitive coupling and affects stray 60 Hz skin pickup. Because of the complexity of the 60 Hz noise source, it is almost impossible to avoid power line pickup by the human body except in carefully shielded and insulated environments (6:578).

333

3

R

§]

B 9 n

8

8

X

ho ho

2) Electrode noise results from the action of the electrode and the skin of the subject. The most effective way to reduce electrode noise is in properly designing the electrodes themselves by using high input impedence amplifiers that minimize the effects of variations in the electrode's impedence (6:580).

3) Random noise can occur due to biological artifacts, such as involuntary subject movements and muscle contractions picked up by the sensors and leads. Depending on the frequency characteristics of the desired signal and noise, high or low pass filters can be used to reduce the noise (6:580).

27

III Data Analysis

Introduction

ġ

33

Ŕ

88

This chapter outlines the approach taken to analyze the subject data collected using standard experimental testing procedures. Data on each of the physiologic parameters were collected both in the form of 1) a hard copy output on a strip chart listing and 2) recorded signals on magnetic tape.

Although only 12 subjects were used in the database, an extremely large amount of data was collected. Only subjects considered susceptible were used in the database. Data were used only from the most recent 12 subjects and not from prior theses effort since testing procedures and head motion protocol had not been fully standardized. Current data were collected in a uniform fashion using a standardized protocol. The majority of the data was reduced by manually measuring the tracings from the strip chart recorder outputs. The remainder was done through Discrete Fourier Transform (DFT) Spectral Analysis.

The channels of subject data must be analyzed using techniques appropriate to the nature of their signals. For example, to assure meaningful results, surface skin temperature, GSR, and finger and facial photo-plethysmographs will be analyzed using descriptive statistics while EEG, EGG and EIG will be analyzed solely using spectral density techniques. However, EKG and thoracic and diaphramatic respiration will be analyzed using both spectral density and descriptive statistical methods. Other collected parameters were not analyzed because their importance

has not yet been well established.

Theory

X

8

ģ

Ś

Ŕ

3

X

82

盗

Multivariate statistics are an amenable way to handle situations where a number of variables are involved either as predictors or as measures of performance (14:,5). For example, stimulating a subject up through the range of motion sickness may affect many somewhat different but partially correlated physiological parameters. Similarly, many different parameters of motion sickness may be of value in predicting the onset of motion sickness and it is necessary to consider how to combine all these pieces of information into a single best prediction of motion sickness (14:5).

In order to develop a worthwhile analysis of the subject data, it is necessary to identify those predictive relationships that may be of value. For example, one relationship might be that: given the independent variable called motion sickness, predict the effects on the dependent output variables (i.e. the various measurable physiological channels). Another useful relationship might be: tell what motion sickness symptoms the subject is experiencing by looking at the physiological channels being monitored and ultimately provide the subject with feedback to help him control his malaise. These relationships may be defined by building a table of the various physiologic parameters and the corresponding statistics obtained during specified phases of motion stimulus. This may give insight into structurally defining the motion sickness syndrome. These relationships may

29

then be used to predict the effect on a subject's measurable physiological parameters as he becomes motion sick and consequently suggest corrective actions through some feedback method to help the subject control and eventually overcome his motion sick condition. A basic model of this process may be graphically summarized as follows:

INPUT		PROCESS	OUTPUT	
stimulus	>	subject	> motion sic	kness

Figure 11 Basic Motion Sickness Model

Data Collection

8

8

22

钌

 $\sum_{i=1}^{n}$

81

8

In order to conduct valid experimental testing using human volunteers as outlined in AFR 169-3, a research protocol was written and submitted to the Human Use Resource Committee (HURC) for approval (see Appendix A). Since human volunteers are needed to collect data, this research protocol must be submitted to the HURC annually for approval.

Data collection began by giving subjects a series of questionaires to complete before each experiment (see Appendix C Jarvis and Uyeda Thesis). Only those subjects who were considered susceptible to motion sickness were used in the

᠋ᠧᢞ᠋ᡧ᠋ᢢ᠋ᡯᡐᠺᡀ᠊ᢢ᠋ᡱᠧ᠕᠋ᡸᡵᠧᠼᡸ᠋ᡱᠼᡄᢂᡧ᠖ᢣᡬᡘ᠕᠖ᢣᡬ᠕ᢣ᠘ᡩ᠘ᡧᡌᡢ᠋ᡱ**ᠧᡌᡘᡧᡛᡍᢛ**ᡐᡬ᠘ᡐᠺᠥᢕᡬ᠅ᢧ

experiments. Once a subject was selected, he was briefed on the procedural aspects of the experiment. Physiological electrodes were then attached to the subject as previously described in Chapter Two. The equipment was calibrated and one minute of control data was collected. The subject was seated in the chair and blindfolded. Subjects were briefed on specific head motions to make as directed by an on-board tape recorder. Data on each subject were recorded using three 6-channel strip chart recorders, a 14-channel Beta recorder, and a 14-channel backup Ampex magnetic tape recorder. The data were collected continuously throughout the experiment until one minute after the chair stopped or until the subject's physiologic signals returned to those approximating the control period. Data were originally collected on 12 subjects (see Appendix B). Data on one additional subject were later added to the data set and included only in the spectral analysis.

「こうこう」というという

CERTIFICATION SPECIAL CONSIGNATION OF THE SPECIAL CONSIGNA

KOOR REF.

Descriptive Statistical Analysis

2

 \mathbf{X}

13

X

Ļ

Ϋ́,

<u>}</u>

Because of the nature of their strip chart trace, surface skin temperature, pallor, respiration, EKG and GSR are amenable to descriptive statistical analysis.

In order to facilitate using descriptive statistics, each physiologic parameter taken from the strip chart recordings was sampled at 10 second increments over a range of five intervals. The intervals consist of 1) control interval, 2) symptom 0-3 interval, 3) symptom 4-7 interval, 4) symptom 8-10 interval, and

5) post interval. The five different intervals were chosen based upon common groups of symptoms encountered during each test run. This was done to standardize the number of divisions of each run into five specific time periods. The interval numbers correspond to a scale reported by the subject. The subject reports his subjective condition in the form of a numerical scale. The subject is queried every minute for a number from one to ten (one means no symptoms, ten means vomiting).

R

ł

Same and the second sec

Å,

Ň

3

The control interval was selected as a baseline period for each subject. The symptom 1-3 interval was characterized by a general sense of well being and some slight discomfort. The symptom 4-7 interval consisted of symptoms ranging from dizziness and slight disorientation to sweating and mild stomach awareness. symptom 8-10 interval was characterized by heavy stomach churning, extreme dizziness, headaches, and nausea. Finally, the post interval consisted of the subject returning to near baseline conditions after the stopping of head motions.

The subject data can be analyzed by first estimating the arithmetic mean and standard deviation of the sample population for each physiological channel over each of the five ranges identified above. Each sample mean value is then an indication of the specific physiologic parameter value at a particular phase of motion sickness. Table 2 shows the estimated mean and standard deviation for each parameter over the entire experimental run. This sample data can allow one to make inferences about the entire population assuming, of course, that

the population from which the sample is drawn has a normal distribution. Since the estimate of each of the means is based on a small sample, it is necessary to determine a confidence interval that will indicate how far off the estimate might be from the actual population statistic.

Ň

0

N.

学校

t.

38

影響

					والمتعادية والمتعادية والمتعادية والمتعادية والمتعاد	demonstration and the second second
Parameter		<u>Control</u>	<u>1–3</u>	4-7	8-10	Post
Temperature	x=	90.5	90.9	89.3	90.3	91.4
	sd=	5.4	5.2	5.4	5.0	5.2
Facial	x=	· 54.2	60.2	73.0	73.3	65.6
	sd=	18.9	18.6	15.5	29.3	29.9
Finger	x=	74.5	77.8	73.6	56.1	57.6
	sd=	10.8	8.8	11.9	15.9	15.5
Thoracic	x=	539.3	569.1	700.7	824.7	829.4
	sd=	166.4	182.4	202.6	332.2	284.7
Diaphragm	x=	501.4	585.1	679.4	692.8	664.6
	sd=	391.0	334.9	345.3	443.9	423.3
EKG	x=	79.8	89.2	95.8	90.4	79.1
	sd=	17.2	19.2	19.4	19,2	15.6
GSR	x=	673.9	610.3	628.7	585.8	688.5
	sd=	435.9	329.4	291.9	291.5	190.8
#Breaths	x≖	2.9	3.5	3.2	3.0	2.1
	sd=	0.6	0.8	1.2	1.5	0.5

Table 2 Estimated Motion Sickness Parameter Values

A commonly used method to compute a confidence interval is Student's t-test (7:320). The equation is:

33

$x - 1.96 (s/\sqrt{n}) < u < x + 1.96 (s/\sqrt{n})$

R

0

80

83

ş

where x is the estimated sample mean, sd is the sample standard deviation, u is the actual population mean, and n is the sample size (7:320). Table 3 displays the confidence intervals for each motion sickness parameter. It should be noted that subject data for GSR were from only two subjects and thus does not contain as large a number of sample points as the other parameters.

The parameters selected for analysis by means of descriptive statistics may be represented graphically by the figures on the following pages.

Parameter	Phase	<u>Confidence Interval</u>
Temperature	Control Sx 1-3 Sx 4-7 Sx 8-10 Post	89.24 to 91.77 90.16 to 91.64 88.03 to 90.57 89.22 to 91.38 90.66 to 92.14
Facial Pallor	Control Sx 1-3 Sx 4-7 Sx 8-10 Post	44.94 to 63.46 55.38 to 65.02 63.39 to 82.61 61.33 to 85.27 57.64 to 73.58
Finger Pallor	Control Sx 1-3 Sx 4-7 Sx 8-10 Post	71.97 to 77.03 76.55 to 79.05 70.79 to 76.41 62.68 to 69.52 55.41 to 59.79
Thoracic Resp.	Control Sx 1-3 Sx 4-7 Sx 8-10 Post	500.32 to 578.28 543.23 to 594.97 652.90 to 748.50 753.23 to 896.17 789.13 to 869.67
Diaphramatic	Control Sx 1-3 Sx 4-7 Sx 8-10 Post	409.81 to 592.99 537.60 to 632.60 597.93 to 760.87 597.30 to 788.30 604.72 to 724.48
EKG	Control Sx 1-3 Sx 4-7 Sx 8-10 Post	75.77 to 83.83 86.48 to 91.92 91.22 to 100.38 86.27 to 94.53 76.89 to 81.31
GSR	Control Sx 1-3 Sx 4-7 Sx 8-10 Post	567.11 to 780.69 561.05 to 659.55 557.72 to 699.68 520.28 to 651.32 660.23 to 716.77
#Breaths	Control Sx 1-3 Sx 47 Sx 8-10 Post	2.74 to 3.04 3.37 to 3.61 2.93 to 3.51 2.70 to 3.34 2.06 to 2.18

Table 3 Confidence Intervals

Galvanic Skin Reflex (GSR)

GSR mean values during each phase show an overall decrease in subject resistivity from Control interval to symptoms 8-10 interval. This equates to a change in skin conductivity. Increasing conductivity in a subject is closely associated with sweating on the subject's skin. Upon stopping head motions (post interval), the subject's resistivity increases to approximately that of the control interval.

Surface Skin Temperature

R

X

ð

8

R

(Å)

Ŋ

In most cases, the subject's skin temperature, which is measured on the finger, decreased during pre-nauseating symptoms (symptom 4-7 interval) and then increased well after stopping head motions. The decrease in temperature may be due to the subject's sweating coupled with effects of surface cooling. Caution should be taken in accepting this finding since the experiment was run under less than perfect environmental conditions. After reducing the data for this parameter, another temperature measuring device (thermistor) on the subject's face will be used to get a better indication of surface skin temperature.

Electrocardiogram

The EKG data indicate that as the subject experienced motion sickness symptoms, their heart rate increased 20% on the average. Once initial symptoms were attained, the heart rate returned to near control interval conditions. On one occasion

RECORDER AND COOKS

R.COOOR

MALINE MILAN MALAN

0' 8' 4'

. . .

Ň

d,

8

Ż

Figure 14

<u>аны какалаа каналала какалана какалана какала к</u>

1

Articles and

1-555555

à

X

<u>.</u>

3

1

88

Ş,

X

8

8

 $\langle i \rangle$

3

3

N.

8

È,

ž

X

2225

Figure 22

Ň

X

R

8

Ŋ

8

8

×.

2

the subject passed the nausea stage (vomiting) and the subject's heart rate at that point doubled. It should also be noted that in three of the subjects, their heart rate fell to approximately 40 beats/min. These particular cases were classified as sinus arhythmia by Dr. Czelen and results will be further explained in his motion sickness study (to be published).

Pallor

R

Ŕ

8

×

ß

j.

ξų

Finger blood flow was found to decrease on the average and was indicated by an increase in pallor. This is supported by a visible confirmation of subject paleness as they progressed through the stages of motion sickness. However, facial blood flow did not indicate this same decreasing trend but instead showed a flush in the subject's skin color. This may be explained as an error or atypical response since only two subjects' data were used (because the sensor was under continual refinement). The finger pallor indication confirms that pallor increases in the majority of subjects and precedes the onset of severe motion sickness (17:87).

<u>Respiration</u>

From the data collected it can be clearly seen that, on the average, the typical subject's respiration volume increased from the control interval through symptoms 8-10 interval. It should be noted that subjects were classified in two ways. Subjects whose control interval respiration rate was less than or equal to 15 breaths/min, were classified as normal breathers.

Those whose control interval respiration rate exceeded 15 breaths/min, were classified as tachypneic. The dip in the graph of normal thoracic respiration is indicative of the weak confidence interval noted earlier in Table 3. For normal breathers the number of actual breaths taken also increased from 14 breaths/min to more than 18 breaths/min. For those who were tachypneic, the respiration rate decreased as symptoms progressed while volume of breaths increased. The data also suggest that there is a noticeable diaphragmatic contribution to respiration as the subject becomes motion sick. Caution in this conclusion should be exercised since diaphragmatic volume may not be linearly related with thoracic respiration as was assumed when the system was calibrated.

EGG and EIG

Ĩ

8

5

3

R

2

8

X

The data of the electrogastrogram and electrointestinogram as well as the combined EGG and EIG shown in the gastrointestinal graph merely represent mean amplitudes at each symptom interval. The major reason for doing this was to show that the subject's abdominal region showed increased activity during the onset of nausea.

Correlation Analysis

Although descriptive statistics present important characteristics of the sampled data, it would be very useful to determine whether the selected physiological parameters or if any others have a relationship among themselves, or more importantly,

to motion sickness. To accomplish this, a correlation analysis was performed.

X

S

Ŕ

8

影

Ļ

Ņ

A correlation analysis is a common method to measure the association between variables. Through the use of a statistical package called Microstat, a sample correlation matrix was calculated in which each element of the matrix is a correlation coefficient (r) between two variables. Each r value is a measure of how strongly related the variables are in a sample. The value of r lies between -1 and +1 and is equal to +1 only if all pairs of the two variables lie on a straight line with positive slope and r = -1 if all pairs lie on a straight line with a negative slope (7:449). Thus r measures the degree of linear relationship among variables. If r is near zero, it does not imply a lack of relationship but rather only an absence of a linear relation.

The relationship is described as strong if $r \ge .8$, moderate if .5 < r < .8 and weak if r <= .5. A strong positive relationship suggests that a large value of one variable is paired with a large value of another variable. Table 4 shows the correlation matrix for the indicated parameters. It should be noted that the parameters diaphragmatic respiration and facial plethysmograph were not correlated. Diaphragmatic respiration was not used due to the uncertainty of the calibration and thus the usefulness of information. The facial plethysmograph data were not used since valid measurements were obtained only on two subjects.

The values of the correlation coefficient r indicate that

	Temp	Finger	Thoraci	c EKG	GSR	Breath	Msick
Temp sig	1.0000 0.0000						
Finger sig	0.3127 0.3833	1.0000 0.0000					
Thoracic sig	5417 0.1058	9097 0.0003	1.0000 0.0000				
EKG sig	7641 0.0100	2698 0.4536	0.6421 0.0451	1.0000 0.0000			
GSR sig	0.1453 0.6886	0.6088 0.0619	7902 0.0065	-,6399 0.0463	1.0000 0.0000		
Breath sig	0.0669 0.8151	0.6169 0.0497	2811 0.3929	0.4279 0.2486	2324 0.5644	1.0000 0.0000	
Msick sig	4822 0.1581	8980 0.0004	0.9948 0.0001	0.6405 0.0459	8392 0.0024	2298 0.4753	1.0000 0.0000
Note: sig Perc	is the s ent = (1	ignifica - sig)	nce valu	e			

Table 4 Correlation of Motion Sickness Parameters

19 14

5-2-5-4-5-4-5-

8

8

8

5

22

Š

 $\hat{\beta}$

X

8

X

8

1X 1 finger pallor, thoracic respiration, and galvanic skin reflex are all strongly correlated to motion sickness while EKG is only moderately correlated. The significance values suggest that all three strongly correlated parameters are statistically significant. The significance values 0.0004, 0.0001, and 0.0024 correspond to finger, thoracic and GSR. One minus each of the significance values suggest the percent confidence in each corresponding correlation value. Thus, the parameter finger shows 99.96% confidence of being correlated to motion sickness in a linear relationship. Thoracic is 99.99% and GSR is 99.76% confidence bound.

Finger pallor shows a negative correlation (finger blood flow decreases as motion sickness symptoms become more severe) which supports the previous findings of Jarvis and Uyeda (17). Galvanic Skin Reflex also shows a negative correlation with motion sickness which supports previously stated claims that there is a decrease in the subject's resistivity as motion sickness symptoms increase. Thoracic respiration is positively correlated to motion sickness which corresponds to an increase in the amplitude of breaths as motion sickness symptoms increase. Finally, EKG shows positive correlation to motion sickness while surface skin temperature and breathing rate both show weak negative correlation.

Spectral Analysis

S

1.227.222

82

Y.

The remainder of the physiologic parameters were analyzed using a DFT Spectrum Analyzer. Spectral analysis is useful in

47

<u>ᡧ᠋ᠿᡚᡛᡈᢔᠺᢙᡚᡛᡇᡘᡚᡘᢧᡘ᠘ᡀᡘᠼᡘᢌᡘ</u>ᢌᡘᢘᡘᢣᢌᡞ᠈᠐ᠰ᠊ᡞᡐ᠒

identifying amplitude changes in energy as well as frequency shifting between the five intervals. The graphs on the following pages were plotted using a Microcomputer software package called Lotus. Points to create the graphs were obtained by first performing a spectral analysis on each parameter at each interval and then using the built-in marker to extract data points. The resolution of the DFT Spectrum Analyzer allowed plotting points every .008 Hz. Thus each graph is a separate parameter shown over all five intervals. Mean frequencies for each parameter were also calculated over each interval.

<u>Gastrointestinal</u>

S

8

3

î. I

Ň

2

X

The gastrointestinal spectrum indicates the total stomach and intestinal response through the five intervals. It is clearly seen that there is a significant increase in energy which corresponds to the increase in amplitude as the subject approaches nausea (Sx 8-10). This increase in amplitude also indicates an increase in smooth muscle activity in the gut. The frequency data indicate that the EGG component is noticeable at 0.008 Hz and that the EIG component of the spectrum can be seen at approximately 0.16 Hz.

Electrointestinogram (EIG)

The EIG is a measure of small intestine activity. The basic electrical rhythm (BER) of the small intestine is approximately 11-12/min at the duodenum and decreases distally to the ileum where the frequency is 7-9/min (9:95). The EIG spectrum

48

10000 C

5

3

ß

.

Figure 26 Spectrum of EIG and EGG

S

ß

X

Ŗ

100000 - 10000 - 10000

с^р) -

R

5

Ň

8

X

Figure 28 Spectrum of Diaphragmatic Respiration

51

N.

2.4

Ň

Ŕ

22

3

8

 \mathcal{Y}_{i}

2

Figure 29 Spectrum of Thoracic Respiration

8

Q.

223

8

č,

8

G

C. G.

Figure 30 EEG Spectrum

indicates that amplitude increased from the control interval up through symptoms 4-7 interval. Even though the amplitude stayed about the same from symptoms 4-7 interval to symptoms 8-10interval, a definite shift in frequency was observed. The majority of EIG activity appeared to occur at 0.20 Hz for symptoms 4-7 interval while it shifted to 0.12 Hz during symptoms 8-10 interval. This suggests that intestinal activity slowed down from BER of the control interval. However, the mean frequencies between intervals were not as varied. The control phase had a mean frequency of 0.21 Hz, symptoms 1-3 mean frequency was 0.20 Hz, symptoms 4-7 was 0.17 Hz, symptoms 8-10 was 0.19 Hz, and the post interval had a mean frequency of 0.20 Hz. Mean frequencies were calculated by summing the products of the amplitude and the frequency and then dividing that value by the sum of the amplitudes.

Electrogastrogram (EGG)

A GU A SUAXKI MANNASAN DI SUZUCION DO PA

9

the second in the second

눦

íX.

The EGG spectrum was useful as an amplitude measure as well as a display of mean frequency shifts. As can be seen in the graph, the amplitude levels increased with the onset of motion sickness. This indicates that gastric tone and motility increased with increasing motion sickness symptoms. There was a shift in mean frequecies between intervals. The control interval had a mean frequency of 0.07 Hz. This shifted to a mean frequency of 0.117 Hz during symptoms 1-3 interval and even higher to 0.121 Hz at symptoms 4-7. Upon reaching symptoms 8-10, the mean frequency again shifted to 0.062 Hz. The post interval

had a mean frequency of 0.089 Hz.

Respiration

8

8

69

X

Ŕ

8

8

aler -

While the descriptive statistical information on diaphragmatic respiration was uncertain due to assumed linear calibration with thoracic breathing, the spectral results were more conclusive. From the four spectra of respiration, it is evident (because of the increase in amplitude) that there was a significant recruitment in the subject's diaphram from the control phase until the onset of motion sickness. Frequency means for both classification of breathers were also calculated and are listed in the following table:

Table 5 Mean Frequencies for Respiration

Diaphragmatic (normal)	Phase	Hz
	Control	64
		71
		• / 1
	3x 4/	• / 1
	Sx 8-10	. 64
	Post	.65
Diaphragmatic (tachypneic)		
	Control	.69
	Sx 1-3	.66
	Sx 4-7	.71
	Sx 8-10	. 77
	Post	. 64
Thoracic (normal)		• • •
	Control	60
		•00 6/
		.04
	5x 4 - 7	. 64
	Sx 8-10	.62
	Post	.62
Thoracic (tachypneic)		
	Control	.60
	Sx 1-3	.62
	Sx 4-7	. 59
	Sx 8-10	. 71
	Post	. 62
		• V 4+

EEG Spectrum

The analysis of EEG was sampled both at the 25 Hz and the 1 Hz range. This was done mainly because the strip chart recordings showed the possibility of very low frequency brain wave activity occuring during the onset of motion sickness. EEG electrodes were placed on the subject's forehead.

The brain waves most commonly studied are alpha with a frequency of 8 to 13 Hz and are found in normal adults in a quiet, resting state (17). As indicated by the graph, it is apparent that there is indeed a significant amplitude of EEG at the 0.1 Hz frequency range. Also, there was a large frequency shift from .25 Hz to .16 Hz during the onset of motion sickness. This is perhaps the most significant finding of this thesis. However, it should be noted that the amplifiers used in transmitting this signal have a cutoff at 0.1 Hz of -3 db/octave. This means that at the 0.1 Hz range, only one-tenth of the actual signal is shown in the spectrum plot. Nevertheless, it appears that there is definitely a low frequency component of EEG during the onset of motion sickness. If this extremely low frequency component can be verified through more test runs, it would be of great interest since no where in the literature has such a low EEG frequency component been reported.

IV Model Implications

Introduction

Ň

3

 $\left\{ \right\}$

Using the results from the descriptive statistical analysis, it is possible to construct an empirical predictive model for various stages of motion sickness. If a suitable relationship can be explained, then it can be used on additional test runs to verify its usefulness or aid in selecting a more appropriate experimental design. The most basic type of relationship to build and explain is a linear relationship. One method that allows building a linear predictive model is regression analysis.

Regression Theory

Regression analysis is a part of multivariate statistics that deals with investigating the relationship between two or more variables related in a nondeterministic fashion (7:423). It is a natural extension of the idea of simple linear regression to consider the regression of one variable on several independent variables. The need stems from the fact that the relation with any one independent variable (physiologic channel) does not give a high enough correlation to be of much value (24:23). Additional variables may contribute more.

Multiple regression can be used to predict a dependent variable based upon various predictor variables. It is necessary to have a relationship between motion sickness and the set of measurable physiologic channels. Motion sickness represents the dependent or predicted variable while the physiologic channels represent the independent or predictor variables. The

deterministic mathematical relationship between variables is a linear relationship :

$Y = B + B x + B x + \dots + e$ 0 1 1 2 2

where B, B, etc are the coefficients of variables x, x 1 2 respectively, B is the Y intercept, and e is the residual error. 0 The parameters can therefore be estimated (7:427). The regression line provides a good fit to the data if the vertical distances (deviations) from the observed points to the regression line are small. The measure of goodness of fit is the sum of the squares of these deviations. The best-fit regression line is then the one having the smallest possible sum of squared deviations (7:427). The results from the correlation analysis will be used as a starting point for choosing which physiologic parameters will be the independent variables that can be regressed on the dependent variable called motion sickness.

Predictive Motion Sickness Model

A predictive model can be constructed by arranging the subject data into a multiple regression matrix. The rows of data in a regression matrix represent the variables, while the columns represent case values for each variable. To use matrix operations in regression, the number of variables must be less than the number of case values for each variable. Likewise, all variables must contain the same number of elements. This was the guiding force behind selecting the five symptomatic intervals.

Table 6 shows the mean values of each physiologic parameter that was selected as a result of the correlation analysis.

A multiple regression analysis was then performed using the software package Microstat. The primary predictor variables selected were Thoracic, Finger and GSR since they showed the highest correlation to motion sickness (each with a significance value higher than 95%). The parameters EKG, Temp and Breath were used in a secondary manner since they were only moderately correlated to motion sickness.

10

П

The overall prediction equation for motion sickness can be described linearly by the following:

Y = 0.9358 + 0.0095(Thoracic) + 0.1465(Finger)- 0.0004(GSR) + 0.0334(EKG) + 0.2449(Temp)+ 0.3696(Breath)

In this equation the variable Y indicates the possible range of symptom numbers that are obtained from various instances of the given physiological parameters. The right side of the equation indicates that, if one is given the instantaneous values of each parameter, then the symptom level of motion sickness (over the range 1-10) can be predicted.

Once a prediction equation for motion sickness was found, an Analysis of Variance (ANOVA) table was constructed in order to test the significance of the regression (8:31). Table 7 shows the values used for this model.

SELFERTEDEDEDEDEDEDE

Subj	Phase	Thoracic	Finger	GSR	EKG	Temp	Breath	Msick
1	Data is	incomple	te for G	SR param	eter			
2	Contr	0.00	0.00	0.00	0.00	0.00	0.00	1
	Sx1-3	100.00	1.70	233.60	9.80	0.05	1.26	2
	Sx4-7	303.30	2.30	614.90	2.60	0.10	2.73	6
	Sx8-10	445.80	0.45	605.20	5.50	9.40	3.08	9
3	Sx1-3	59.60	6.43	138.90	8.40	0.00	0.68	2
	Sx4-7	161.10	12.22	366.70	11.33	0.05	0.53	6
	Sx8-10	416.70	11.00	426.70	6.60	14.35	0.65	9
4	Sx1-3	93.80	14.38	235.90	17.50	0.78	0.59	2
	Sx4-7	89.30	11.07	426.70	16.10	0.40	0.55	6
	Sx8-10	675.00	3.75	426.70	14.50	5.30	0.78	9
5	Sx1-3	141.70	0.10	24.20	29,90	0.20	1.10	2
	Sx4-7	177.40	2.67	61.90	19.60	1.40	0.57	6
	Sx8-10	331.70	8.10	161.00	4.90	9.30	0.10	9
6	Sx1-3	111.30	7.38	13.10	1.50	0.15	0.36	2
	Sx4-7	408.30	5.20	28.30	3.50	1.00	1.58	6
	Sx8-10	456.30	5.83	53.70	1.20	2.00	1.31	9
7	Sx1-3	88.50	1.97	31.50	9.90	0.85	0.36	2
	Sx4-7	287.50	10.45	15.50	10.00	0.30	0.91	6
	Sx8-10	272.20	27.26	4.80	6.80	0.35	0.74	9
8	Sx1-3 Sx4-7 Sx8-10	82.40 25.00 266.70	17.63 20.55 14.97	176.50 300.00 257.30	26.60 26.50 10.50	$0.10 \\ 0.10 \\ 8.15$	1.07 2.00 2.42	2 6 9
9	Sx1-3	57.20	1.79	70.20	27.50	0.00	0.76	2
	Sx4-7	8.30	19.17	38.70	20.90	0.15	0.59	6
	Sx8-10	118.80	16.43	65.30	17.20	5.75	0.98	9
10	Sx1-3	144.60	1.76	257.30	3.20	0.15	0.40	2
	Sx4-7	333.40	13.33	195.90	2.50	0.65	0.24	6
	Sx2-10	375.00	23.75	229.20	1.50	15.00	0.65	9
11	Sx1-3 Sx4-7 Sx8-10	8.70 187.50 79.20	5.50 17.50 22.50	11.20 11.20 11.20	$ \begin{array}{r} 18.50 \\ 0.80 \\ 2.30 \end{array} $	0.25 0.60 8.85	0.92 0.25 0.67	2 6 9
12	Sx1-3	139.60	0.76	86.90	11.50	0.15	0.83	2
	Sx4-7	154.10	2.50	153.00	30.50	0.35	0.34	ၒ
	Sx8-10	176.60	7.00	236.60	30.20	9.00	0.49	9

Table 6 Mean Values for Individual Changes in Physiologic Parameters

Services

1000 X 2001

Boardense Bradeed

8

2

ĸ١

6

33

Š

33

803 1

) i'''

8

<u>%</u>

3

8

200

Ŗ

60

Source	df	<u>s.s.</u>	<u>M.S.S.</u>	Ē
Reg S.S.	6	376.10918	62.68486	30.970
Res S.S.	37	74.89082	2.024076	
Tot S.S	43	451.00000		

Table 7 ANOVA for Regression Significance

8

R.

EX.

8

N.

8

Ņ

Ś

The F value from the model is 30.970. This is compared to the F value calculated from the standard tables (7:624). Since the model F value is much greater than the tabulated F value (8.94), we conclude that the model is useful for predicting motion sickness symptom intervals.

Another indication of a good model fit is the R-squared value of the regression. In this case the R-squared value is 0.834 which means that 83.4% of the variation in the dependent variable can be explained or predicted through knowledge of the independent variables using a straight line equation.

Finally, the residuals from the regression equation indicate that a linear relationship provides a good fit. The residuals describe the difference between the observed values of Y and the predicted values of Y (7:434). Ideally, a perfect linear relationship would be one that had no residual error; however, this is not the case. Table 8 shows the residual errors for the regression.

Table 8 Residual Error Values for Regression Model

Å.

8

Ĭ

8

8

К D

Ļ

3

Observed Y (Motion Sick Inte	rval) <u>Calculated Y</u>	<u>Residual</u>
1.0	0,998	0.0025
2.0	2,005	0049
3.0	2.997	0.0031
4.0	3,999	0.0009
5.0	5,004	0042
6.0	6.009	0094
7.0	6.994	0.0065
8.0	7.982	0.0178
9.0	9.007	0069
10.0	10.005	0054
		I
V Conclusions and Recommendations

<u>Conclusions</u>

The collection and statistical analysis of biophysical data on motion sick subjects proved to be an enormous task. Each test run lasted well over two hours and resulted in generating large amounts of data. At the time of this writing, the descriptive statistical analysis was performed manually by sampling the strip chart recordings since the Masscomp MC500 computer was inoperative. Spectral analysis could be performed after many weeks of editing subject data.

Overall, the system was very effective in both eliciting a motion sick response from the subject and in collecting and storing the biophysical data for later analysis. Changes to the hardware as well as quantifying more of the physiologic parameters through new calibration techniques, enabled a more accurate and complete statistical analysis of the data. Thoracic respiration, finger pallor, and galvanic skin reflex were shown to be highly predictive parameters of motion sickness. Heart rate, surface skin temperature, and breathing rate were not as strongly correlated with motion sickness but added to the overall effectiveness of constructing a predictive motion sickness equation.

A major finding during the spectral analysis was the discovery of a very low frequency brain wave occuring during the onset of motion sickness on the order of 0.1 Hz. However, it is necessary to add increased frequency response range to the EEG

preamplifiers to verify the actual low frequency component and also to collect more data to confirm these findings.

Multiple regression analysis was performed as a last step in this project to develop an initial predictive model for motion sickness. Only those parameters that could be used in a descriptive statistical manner were used because of the need for a practical model. Those parameters that required spectral analysis could not be included because a spectrum analyzer could not be incorporated in a real-time biofeedback system.

Applications to Further Research

This thesis has established a reliable biophysical data acquisition system and an accurate statistical analysis procedure. With only the data from 12 subjects to form a sample of a much larger population, it is necessary to continue to collect more data to confirm the results of this thesis. Also, it is a relatively easy task to incorporate the predictive model in an automated fashion to test and verify its accuracy. The model may then be used as a major element in building a biofeedback system to prevent motion sickness.

Recommendations

÷

8

Ķ

×

Š,

8

8

No.

The Masscomp MC500 computer was under repair for the majority of this thesis; therefore, any potential future use is questionable. However, at the time of this writing, there exist Analog to Digital systems that support 16-channel data collection, are relatively inexpensive, and can be used at the

64

. የአለውኤ ሀሳት ውጤ ሆነት እስት እግድ ሆንት ሆንት ሆን

microcomputer level. Once room 150 is air-conditioned, the Masscomp MC500 may be colocated with the rest of the system and then its performance can be re-evaluated. The BDAS software was not tested again and still requires some minor debugging. Commercial software for data analysis is now available for the microcomputer A/D systems.

The strip chart recordings are the only hardcopy output of the entire experimental session. All relevant data should be marked on them as the experiment progresses. It is beneficial to record each tape recorder counter values at specific time periods as they occur. The most obvious and significant time periods are:

- 1) 60 seconds before chair rotation for baseline data
- 2) at the start of chair rotation
- 3) when head motions begin

88

8

8

Participation and and a second a second second

Ň

- 4) at each symptom the subject reports
- 5) when head motion stops
- 6) when chair rotation stops
- 7) when test run stops

The strip chart recorders should be consistently marked for each experimental test run. Switching pens and recorder signal wires confused data reduction and often required playing back many channels to ensure the identity of each signal. Logistical considerations should be stressed before each test run. Batteries often ran low and the demand for electrodes, medical tape and strip chart recording paper always pressed the supply

capability.

Ŕ

8

22

いる

 The basic statistical procedure has been developed; however, more data must be collected to confirm these initial findings. The predictive equation for motion sickness should now be incorporated into the experimental test runs to test its validity. Even though a linear relationship has been formulated, non-linear techniques should also be explored to determine if a better fitting model is possible.

Finally, all parameters should be scrutinized to see if they are in phase, out of phase, or periods of both throughout a test run. This will confirm whether each variable is independent or shows correlation in another physiological manner. This procedure would be necessary to validate certain spectral analysis findings such as the discovery of a very low frequency EEG wave previously mentioned.

<u>ᡁᡙᠧ᠕ᡶᢣᡓᡆᡄᡆᢁᠼᡑᢣᠧᡄᡄ</u>ᡓᡓᠧᠧᠧ<u>ᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧ</u>ᠧᠧᠧᠣᠣᡄᠣᡐᢓᠧᠧᢓᠧᢕᠧᠧᠧᠧᠧᡬᡱᠧᠧᠧᠧᡭᡱᡄᠧᠧᠧ᠘ᡀᡘᠧᠪᠧᡛᡱᡭᡭᢤᡬᠧᢜᡭᡭᢤ

BIBLIOGRAPHY

 Abraham, Bovas and Johannes Ledolter. <u>Statistical</u> <u>Methods for Forecasting</u>. New York: John Wiley and Sons, 1983.

and the second second because and the second provide a second the second s

8

X

8

5

ğ

- Banks, Jerry and J.S. Carson. <u>Discrete-Event System</u> <u>Simulation</u>. New Jersey: Prentice-Hall, Inc., 1984.
- 3. Beatty, Jackson. <u>Biofeedback and Behavior</u>. New York: Plenum Press, 1977.
- Becker, Richard A. and John M. Chambers. <u>An Interactive</u> <u>Environment for Data Analysis and Graphics</u>. Belmont: Wadsworth Advanced Books, 1984.
- Borison, Herbert L. "A Misconception of Motion Sickness Leads to False Therapeutic Expectations, "<u>Aviation. Space</u> and Environmental Medicine, 56: 66-68 (1985).
- Buchsbaum. "Biomedical Electronics", <u>A Complete</u> <u>Handbook of Practical Electronics Reference Data.</u>
- Devore, Jay L. <u>Probability and Statistics for</u> Engineering and the Sciences. Monteray: Brooks/Cole Publishing Company, 1982.
- 8. Draper, N.R. and H. Smith.<u>Applied Regression Analysis</u>. New York: John Wiley and Sons, Inc., 1966.
- 9. Earl, Capt Orville A. and Capt Charles N. Peterson. <u>Physiological Data Acquisition System and Motion</u> <u>Sickness Prevention Trainer</u>. MS Thesis, GE/EE/83D-19. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, Dec 1983.

- Enochson, Loren D. and Robert K. Otnes. <u>Programming</u> and <u>Analysis for Digital Time Series Data</u>. Washington: Navy Publication and Printing Service Office, 1968.
- 11. Fitzpatrick, Capt Douglas G. and Capt Robin Williams. Computerized Biophysical Data Acquisition System for Motion Sickness Studies. MS thesis, GCS/ENG/84D-30. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, Dec 1984.
- 12. Gottman, John. <u>Time Series Analysis</u>. London: Cambridge University Press, 1981.

- Graybiel, Ashton and James R. Lackner. "The Effective Intensity of Coriolis, Cross Coupling Stimulation is Gravitoinertial Force Dependent; Implications for Space Motion Sickness," <u>Aviation. Space and Environmental</u> <u>Medicine</u>, 57: 229-235 (Mar 1986).
- Harris, Richard J.<u>A Primer of Multivariate Statistics</u>. New York: Academic Press, 1975.

- Hartman, Bryce O. Personal Correspondence. Clinical Sciences Division, SAM/NGN, Brooks AFB TX, 23 Feb 1982.
- 16. Hutchins, Lt(JG) Charles W. and Lt Robert S. Kennedy. "Relationships Between Past History of Motion Sickness and Attrition from flight Training," <u>Aerospace Medicine</u>: 984-987 (Oct 1965).
- 17. Jarvis, Capt Norman R. and Capt Charles T. Uyeda. <u>An Analysis of Potential Predictive Parameters of Motion Sickness Using a Computerized Biophysical Data Acquisition System</u>. MS thesis, GSO/ENG/85D-1. School of Engineering, Air Force Institute of Technology(AU), Wright-Patterson AFB OH, Dec 1985.
- Joyce, Christopher. "Your Inner Ear", <u>Psychology</u> <u>Today</u>: (May 1984).

Ŕ

X

5

8

8

- Kohl, Randall L. "Sensory Conflict Theory of Space Motion Sickness: An Anatomical Location for the Neuroconflict," <u>Aviation. Space and Environmental Medicine</u>, 54: 464-465 (May 1983).
- 20. Lackner, James R. and Ashton Graybiel. "The Effective Intensity of Coriolis, Cross-coupling Stimulation is Gravitoinertial Force Dependent: Implications for Space Motion Sickness, "Aviation, Space and Environmental Medicine, 57:229-235 (Mar 1986).
- 21. Martin, Neil F. "Carbonic Anhydrase Inhibitors for Prevention of Space Motion Sickness: An Avenue of Investigation," <u>Aviation, Space and Environmental</u> <u>Medicine</u>, 55: 1148-1150 (Dec 1984).
- 22. Miller, Earl F. and Ashton Graybiel. "Experiment M-31-Human Vestibular Function," Aerospace Medicine, 44: 593-608 (Jun 1973).
- 23. Parker, D.E. <u>et al</u>. "Otolith Tilt-Translation Reinterpretation Following Prolonged Weightlessness: Implications for Preflight Training," <u>Aviation, Space</u> and Environmental Medicine, 56: 601-606 (Jun 1985).

- 24. Pitman, JV Randall and Robert L. Yolton. "Etiology and Treatment of Motion Sickness: A Review," <u>Journal of</u> the American Optometric Association, 54: 31-38 (Jan 1983).
- 25. Reason, J.T. and J.J. Brand. <u>Motion Sickness</u>. London: Academic Press, 1975.

a constant of some second

12563635

STATES ST

126226221 12222222

200022255 L

38

88

Ř.

ŝ

88 88

R

8

X

.у;

8

Ę,

- 26. Ryback, R.S. <u>et al</u>. "Motion Sickness in USAF Flying Personnel," <u>Aerospace Medicine</u>, 41: 672-677 (Jun 1970).
- Stern, Robert M. <u>et al</u>. "Tachygastria and Motion Sickness," <u>Aviation, Space and Environmental Medicine</u>, 56: 1074-1077 (Nov 1985).
- Weinraub, E.L. <u>Anatomy and Physiology</u>. Dubuque, Iowa: Wm. C. Brown Publishers, 1984.
- 29. Williams, E. J. Regression <u>Analysis</u>. New York: John Wiley and Sons, Inc., 1959.
- Wood, Charles D. <u>et al</u>. "Evaluation of Antimotion Sickness Drug Side Effects on Performance," <u>Aviation</u>, <u>Space and Environmental Medicine</u>, 56: 310-316 (Apr 1985).

Appendix A Motion Sickness Protocol

86-13--21 July 1986--Page 1

1.	Title: Motion Sickness:	A Study of its Etiology and A Statistical Analysis.
2.	Principal Investigator:	Dr. William Czelen, M.D.; 255-5276; AFIT/ENG.
	Associate Investigator:	Dr. Matthew Kabrisky, Ph.D.; 255-5276; AFIT/ENG. Captain Michael McPherson; 255-5533; AFIT/ENG. Captain Dana Hartle; 255-5533; AFIT/ENG. Captain Robert Miller; 255-5533; AFIT/ENG.

3. Date: 21 July 1986 Type: Facility Renewal; No

4. Synopsis

3

8

Ş,

53

X9 X9

۶¢

essage brown in an arrest

The objective of this research is to investigate the causes of motion sickness and to develop a metric that can be used to determine each individual's susceptibility to motion sickness symptoms. The research will expand on the work done by previous researchers (Levy, Jones, & Carlson, 1981; Lackner & Graybiel, 1983; etc) by measuring more than one or two physiologic parameters at a time. This research will simultaneously measure 16 parameters utilizing a system developed by researchers at the Air Force Institute of Technology (Earl & Peterson, 1983; Fitzpatrick, Rogers, & Williams, 1984; Jarvis & Uyeda, 1985). By measuring this many physiologic variables at once, it is hoped that the extremely complex physiologic interrelationships involved in motion sickness symptomatology can be more easily studied and analyzed.

5. N/A.

6. Attachments: Consent Form Addendum to Consent Form Protocol Curricula Vitae

A CALANCE DE DESEMBLES EN MEDINEN DE LA LAR DE LES LES DE LES

AFIT/EN Research Protocol

I. IDENTIFICATION

8

1.	Title: Motion Sickness:	A Study of its Etiology and A
~		Statistical Analysis.
2.	Date: 21 July 1986	
з.	Project/Task/Work Unit:	N/A.
4.	Principal Investigator:	Dr. William Czelen, M.D.; 255-5276; AFIT/ENG.
5.	Associate Investigator:	Dr. Matthew Kabrisky, Ph.D.; 255-5276; AFIT/ENG.
		Captain Michael McPherson;
		255-5535; AFII/ENG.
		Captain Dana Hartle; 255-5533; AFIT/ENG.
		Captain Robert Miller;255-5533 AFIT/ENG.

6. Medical Consultant: Colonel Charles Hatsell; USAF/MC.

II. RESEARCH BASIS

1. Objective

- a. To investigate and quantify motion sickness symptoms in an attempt to predict the onset of motion sickness symptoms as well as develop a motion sickness metric to improve the ability of determining individual motion sickness susceptibility.
- b. To standardize the experimental procedures of every motion sickness experiment in order to facilitate statistical analyses.
- c. To initiate the incorporation of biofeedback techniques into motion sickness experiments.
- 2. Background and Relevance

The physiological characterization of motion sickness has spawned new research regarding possible predictive parameters. Previous efforts suggest that there are relationships between the onset of motion sickness symptomatology and specific measurable physiological criteria. Only a few physiological variables (i.e. skin conductance response and surface skin temperature) have been identified as predictive parameters of this vestibular maladaptation syndrome. Therefore, attempts to model motion sickness have met with little success.

We propose to accurately monitor at least 14 physiologic analog channels from a subject experiencing motion sickness symptoms. As recommended in the literature, the subject will encounter motion sickness symptoms by rotating about their vertical axis (planetary yaw) as they are seated in a rotating chair and tilting their head out of the axis of rotation, Physiologic sensors attached to the subject will transmit data to recording equipment via sliprings on the rotating chair. This will allow us to collect sufficient data for valid statistical analysis and possibly lead to the development of a motion sickness model. Also, identifying those physiological parameters that are most closely associated with motion sickness may be useful in treatment by providing information for biofeedback techniques.

3. Impact

, s ; • •

6

X

Ķ.

X

図

Ķ

Ň

Ľ

Additional testing is required to collect enough data for a valid statistical analysis. There is a definite need to study multiple channels simultaneously since prior relationships were developed between only one or two variables and did not give a high enough correlation to be of much value. Without this, the motion sickness syndrome and its possible trigger mechanism will remain unknown. Desired data cannot be derived from valid animal studies or from reliable computer modeling techniques.

4. Experimental Plan

- a. Equipment and Facilities
 - (1). All experimental test sessions and data collection will be conducted in the AFIT Engineering Building 640, room 150.
 - (2). All experiments will consist of a test subject performing head movements in a rotating chair. The required head movements are broadcast on a self-contained, hand held cassette tape recorder and instruct the subject to make a head movement every 10 seconds.
 - (3). Overall, the following equipment will be used:

(a). equipment-subject interface:

- 1. Rotating chair for eliciting the motion sickness response.
- 2. Chair control console which controls the chair's rotation speed.
- 3. NDM Corporation Silvon Stress Test ECG electrodes and Medtronic Medical "Huggables" Infant Monitoring Electrodes (Note: All electrodes and sensors connect through high resistance (100K to IMega ohm) isolation resistors connecting to batterypowered (12 Volt Lantern Batteries) amplifiers and processing circuitry. The data passes through slip-rings to data recording equipment.
- 4. Safety belt to hold the subject in the rotating chair (this is an added safety precaution).
- 5. Self-contained battery, hand-held, portable tape recorder used for letting the test subject know what head movement to make.
- 6. An Astropulse 90 Blood Pressure Cuff to record blood pressure.
- Manual blood pressure cuff for pallor calibration.
- 8. Two pneumographs used to measure respiration (both abdominal and thoracic). The pneumographs are circumferential belts that employ strain guages to detect respiration rate and depth changes (Note: The pneumographs are electrically isolated from the subject).
- 9. Two thermistors for measuring skin temperature
 - a. One thermistor is connected to an AUTOGEN 1000 Temperature Indicator
 - b. The other thermistor is attached to the fourth digit of the test subject.
- 9. Two Galvanic Skin Response (GSR) electrodes for measuring skin conductance.
- Two plethysmographs for measuring blood flow volume (pallor).

ኯዀኯዀኯዀኯዀኯዀኯዀኯዀኯዀኯዀኯዀኯዀኯዀኯዀኯዀ

a. the plethysmographs are LED and photo transistors and one is attached to the third digit and the other is attached to the test

subject's forehead. Both plethysmographs are self-adhesive and in a balsa housing.

- (b). offline equipment:
 - 1. Three Brushmark 260 6 channel strip-chart recorders.
 - 2. A Hewlett-Packard 3582A Spectrum Analyzer will be used for signal averaging.
 - 3. A VAX 11/785 computer or a Zenith 241 computer will be used for statistical data analysis.
 - A Kyowa Dengyo RTP-610A Data Recorder.
 - 5. An AMPEX FR 1300 14 track FM recorder
- b. Method

8

Sį,

22

88

8

3

335

00

X.

સ્

3

3

λ,

Ľ,

SCORE S

As much as possible, each experiment will be standardized and follow an identical approach. The first step of the experiment will entail the human volunteer filling out a Medical History Questionnaire, an AFIT Motion Sickness Questionnaire, and a Subject Consent Form. Additionally, each test candidate will receive both a written and an oral briefing describing what he/she can expect to experience during the experiment, as well as have any questions answered by the experimenters.

The second step of the experiment will consist of a medical examination (See Attachment 4) by the attending physician, Dr. William Czelen, to determine each subject's physical capability to participate in the experiment. Once the subject's exam is completed and no problems cited, the subject will have electrodes of the silver/silver chloride type attached. Parameters to be studied will be electrocardiogram, electroencephalogram, nystagmus, galvanic skin response, pulse rate, blood pressure, electrointestinograph (a surface electrode over the abdomin for measuring surface potential. This procedure is similar to that of the elctrocardiogram), temperature, electrogastrogram (the same procedure as the electrointestinograph), respiration, and pallor. Prior to each electrodes placement, the site will be thoroughly and vigorously scrubbed

with alcohol pads in an attempt to remove the outermost layer of epidermis and oil to assure good electrical contact. Once all electrodes are in place and the electrode leads attached to the appropriate electrode, the subject will be assisted into the chair and then restrained by safety belts. The subject's eyes will then be covered by ocular patches and a blindfold to prevent any extraneous visual stimuli. Also the subject will receive final instructions on the tape recorder's operation. The tape recorder is used to give instructions to the test subject regarding the appropriate head movements during the experiment.

Q.

X

8

8

X

8

3

ġ

3

The third step in the experiment will consist of spinning the subject in addition to the subject performing the necessary head movements to elicit a motion sickness response. The chair will initially spin at a rate of 14 revolutions per minute. The subject's vital signs will be allowed to stabilize for approximately two minutes during which time the subject will not perform any head movements. Approximately five seconds after the subject is instructed to start the tape recorder, the individual will commence random left, right, forward, and upward head movements at ten second intervals. The subject's physiological state will be constantly monitored and the subject will be asked for verbal inputs on his/her condition. If after two minutes, the subject shows no signs of motion sickness, the chair speed will be increased by two RPMs. Thereafter, every two minutes the chair will be increased by two RPMs if the subject shows no motion sickness signs. Maximum speed of the chair is 30 RPMs and if a test subject rides the chair long enough to get to the 30 RPM state, then the test subject will ride at this speed until a motion sickness response is elicited.

Upon the subject's request to stop the experiment, the chair will be decelerated at a rate of approximately five revolutions per minute to avoid any further provocative stimulus. After the chair has come to a complete stop, the subject will remain seated until all physiological indicators return to a state that approaches the pre-test values. All power to the chair control console will then be removed to prevent accidental chair acceleration. After the subject stabilizes, the

blindfold and ocular patches will be removed and the subject assisted from the chair. All electrode leads and electrodes are next removed. After a post experiment interview with the subject regarding his/her comments about the experiment and with the approval of the physician, the subject will then be released.

c. Subjects

ß

Ŗ

8

8

83

kj

Ŋ

(k) (k)

X.

Ň

Subjects will be chosen at random using personal contact and publicity. Both DOD military and civilian volunteers will be chosen. We hope to attract a wide spectrum of test subjects, to include healthy, adult males and females with no chronic, disabling injuries. Additionally, no special training is required. Each potential test subject will fill out a Medical History Questionnaire and receive a relevant medical evaluation to determine their fitness for participating in the experiment. Subjects will participate in only one experiment and each experiment's length will depend on an individual's susceptibility to motion sickness but will not exceed an hour. The total number of subjects run will depend on the number of volunteers we receive

d. Reporting

All test data will not be associated with the subject's name. Any publication of the data will not reveal an individual's name or any other subject specific information. Data will not be available to anyone other than the investigators. Upon request, subjects will be debriefed on the general results of the study. However, after each experimental test session, the test subject will be shown the results of their particular test session.

e. Schedule

The time frame for the experiments will begin upon protocol approval and it is anticipated all data should be collected by July 1987.

f. Data Analysis

The data will be subjected to a variety of statistical analyses. The major analysis

techniques will be analysis of variance (ANOVA) and time series analysis.

III. Medical Risks, Safety Precautions, and Measures

This research using human subjects places the subjects at minimal risk in accordance with the definition of risk in AFR 169-3.

Standard medical history and physical evaluations (See Attachment 4) are administered prior to each experiment.

No history of subject harm has been reported in previous studies. As part of the initial informed consent briefing subjects will be assured that if discomfort or displeasure is experienced, they are free to terminate the exposure without prejudice.

All physiologic sensors and instrumentation are battery powered (12 volts). All electrodes with direct electrical contact with the subject are isolated from the onboard signal processing instrumentation and power supplies through 100,000 to 1 million ohm resistors.

The modified MATS chair has been man rated and used safel over the years in several prior experiments. Further, only the planetary component of rotation is used and only in the yaw axis, eliminating risk from cab tilting or rolling. As an added safety precaution, the subject is secured in the cab by a seat belt.

Finally, as part of the calibration procedures before an experiment, the subject's forearm and hand are tightly wrapped for approximately a minute with an elastic bandage to blanch the region--a period too short to create any clotting danger or discomfort.

IV. References

A PROPERTY AND

3

ŝ

Adams, V. Deafness, Dizziness, and Disorders of Equilibrium. Principles of Neurology. 2nd Ed. 1981.

Berkow, R. (Ed.). Motion Sickness. Chap 252:2135-2136. Merck Manual. 14th Ed. 1982.

Buchsbaum, W.H. Buchsbaums Complete Handbook of Practical Electronic Reference Data. 2nd Ed. Prentice-Hall Inc. July 1980

Carr, J.J., Brown, J.M. Introduction to Biomedical Equipment Technology. John Wiley Sons. 1981.

Clark, R.G. Chap 14. Essentials of Clinical Neuroanatomy & Neurophysiology. 5th Ed. Manter & Gatz. 1975

R

8

Ŕ.

Si

8

8

Ś

E.

Dhenin, G. Motion Sickness. Chap 22:468-493. Aviation Medicine 1978.

Earl, Captain Orville A., Peterson, Captain Charles H. Physiological Data Acquisition System and Motion Sickness Prevention Training, MS Thesis. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohio, December 1983.

Fitzpatrick, Captain Douglas G., Rogers, Captain Michael A., Williams, Captain Robert. Computerized Biophysical Data Acquisition System for Motion Sickness Studies, MS Thesis. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohio December 1984.

Graybiel, A., Lackner, J.R. Evaluation of the Relationship Between Motion Sickness Symptomatology and BP, HR, & Body Temp. <u>Aviation. Space. and Environment Medicine</u>: 51(3):211-214. 1980.

Guyton, A.C. The Reticular Activating System, Wakefulness, Sleep, Attention, Brain Waves, and Epilepsy. Chap 54. <u>Textbook</u> of <u>Physiology</u>. 6th Ed. 1981.

Hartman, Bryce O. Personal Correspondence. Clinical Sciences Division. USAF School of Aerospace Medicine. 23 Feb 1982.

Irwin, J.A. <u>The Pathology of Seasickness</u>. Lancet. Vol 2:907-909. 1881.

Jarvis, Captain Norman R., Uyeda, Captain Charles T. An Analysis of Potential Predictive Parameters of Motion Sickness Using a Computerized Biophysical Data Acquisition System, MS Thesis. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohio December 1985.

Johnson, D.E., Johnson, J.R., Moore, H.D. A Handbook of Active Filters. Prentice-Hall, Englewood Cliffs, N.J.

Kohl, R.L., Homick, J.L. Motion Sickness: A Modulatory Role for the Central Cholinergic Nervous System. <u>Neuroscience</u> and <u>Behavior Review</u>. Vol 7:73-85. May 1982.

Lancaster, D. Active Filter Cookbook. H.W. Sams & Co. Ind, Ind.

Levy, R.A., Jones, D.R., Carlson, E.H. Biofeedback Rehabilitation of Airsick Aircrews. Aviation, Space and Environmental Medicine. 52(2):118-121. 1981.

Mathog, R.H., Cramer, R.L. Testing of the Vestibular System. Aerospace Medicine 42(7):741-745. 1971.

Ň

8

8

82

 \mathcal{C}

衍

Ŵ

調

8

à

¥1

McEachern D., Morton, G., Lehman, P. Seasickness and Other Forms of Motion Sickness. <u>War Medicine Vol. 2</u>, No. 5. Sept. 1942.

Mohler, S. Motion Sickness and Problems of Air Travel. <u>Textbook</u> of <u>Medicine</u>. Beeson-McDermott. Chap 29.1. 15th Ed. 1979.

Money, K.E. Motion Sickness. <u>Physiological Reviews</u>. Vol 50, No. 1. Jan. 1970.

Pitman, J.R., Yolton, R.L. Etiology and Treatment of Motion Sickness A Review. Journal of the American Optometric Association. Vol 54(1):31-38. 1983.

Ryback, R.S., Rudd, R.E., Matz, G.J., Jennings, C.L. Motion Sickness in USAF Flying Personnel. <u>Aerospace Medicine</u>. 41(6):672-677. 1970.

Schuster, M.M. Disorders of Motility. <u>Textbook of Medicine</u>. 15th Ed. Pg. 1475-79. Beeson-McDermott.1979.

Wolff, H.S. Chap 3. Biomedical Engineering. McGraw Hill. 1970.

PROTOCOL CURRICULUM VITAE

1. Name: William E. Czelen, M.D. Grade or Rank: N/A (On a grant) 2. Current Position Title: Senior Research Associate. Location: AFAMRL/AFIT, Wright-Patterson AFB, Ohio. 3. Education: B.S., Electrical Engineering, Carnegie-Mellon University, Pittsburg, Pa. 1971. B.S., Biology, University of Pittsburg, Pittsburg, Pa. 1973. M.D., Temple University School of Medicine, Philadelphia, Pa. 1979. M.S., Wright State University School of Medicine, Dayton, Ohio, 1986 4. Relevant Experience: 1985-1986: Senior Research Associate-National Research Council/Air Force School of Aerospace Medicine AFAMRL/AFIT. : Clinical Instructor-Wright State University 1986 Department of Community Medicine. 1983-1985: <u>Residency in Aerospace Medicine</u>-Wright State University Department of Community Medicine. 1984-1985: Physician-Wright State University/FAWCAC. 1983-1985: <u>Emergency Room Physician</u>-Independent contractor in Western Ohio. 1982-1983: General Medical Practice-Washington, D.C. 1982-1983- Medical Director, Consumer Medical Services-Manna Corp, Arlington, VA. 1979-1981: Residency in Anesthesiology/Critical Care Medicine-Georgetown University Hospital, Washington, D.C. 1979 : National Aeronautics and Space Administration/ Johnson Space Center, Houston, TX. 1973 Endocrinologic Research Assistant-University of Pittsburg School of Medicine, Pittsburg, PA. 1968 : WTAE Radio/Hearst Corp-Radio Engineer-Wilkensburg PA. 5. Licensure: 1983: Doctor of Medicine-Ohio State Medical Board. 1980: Medicine and Surgery-District of Columbia. 1980: Diplomate-National Board of Medical Examiners. 1967: 1st Class Commercial Radiotelephone. 1964: Advanced Class Amateur Radio. Current as of July 1986.

8

٤ E

3

8

R.

3

۸ {}}

Ñ

8

5.

PROTOCOL CURRICULUM VITAE

- Name: Matthew Kabrisky, Ph. D. Grade or Rank: GM-15.
- 2. Current Position Title: Professor of Electrical Engineering. Location: Air Force Institute of Technology, WPAFB, Ohio.
- 3. Education: B.S., Electrical Engineering, Polytechnic Institute of Brooklyn, 1951. M.S., Electrical Engineering, Polytechnic Institute of Brooklyn, 1952. Ph.D., Electrical Engineering, University of Illinois, 1964.
- 4. Relevant Experience:

Member of the Series of Biomedical Engineering Research Team with AMRL since 1964.

5. Licensure: N/A.

S.

8

Ń

Ś.

53

. У У

X

E

Current as of 23 July 1986.

PROTOCOL CURRICULUM VITAE

 Name: Robert Miller Rank: Captain, USAF.

Ň

14 12

8

20

1

X

N X

X

Ï

3

2000 P

14 C 14

- 2. Current Position: Student at the Air Force Institute of Technology; Graduate in Computer Systems. Location: Air Force Institute of Technology, WPAFB, Ohio.
- 3. Education: B.S.; Business Administration, Pennsylvania State University 1976. M.S., Computer Systems, Air Force Institute of Technology, (May 1985 - Present).
- 4. Relevant Experience:

Based on courses taken at AFIT since enrollment in 1985.

5. Licensure: N/A.

Current as of 24 July 1986.

ግሬ የሚያኖሩ እና እንዲያኖሩ እንዲ

PROTOCOL CURRICULUM VITAE

1.	Name: Michael R. McPherson Rank: Captain, USAF.
2,	Current Position: Student at the Air Force Institute of Technology, Graduate in Computer Systems.
	Location: Air Force Institute of Technology, WPAFB, Ohio.
3.	Education: B.S., Biology, USAF Academy, 1981. M.S., Systems Management, Western New England College, 1985. M.S., Computer Systems, Air Force Institute of Technology, (May 1985Present).
4.	Relevant Experience:
	Undergraduate Pilot Training - Sept 1981-April 1982.
5.	Licensure: N/A.

Current as of 24 July 1986.

8

Ĭ.

Š.

8) }

12

8

y.

N N

Ŷ

8

8

ļ

a Marka Kalila Kajia ji a Tajia, Tajia ji a ta**jia kajia kajia** kali ki kali

- <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

APPENDIX B - Subject Data

Ĩ

8

Ž.

ß

Ĩ

Å

З.

3

<u>ل</u>

Ĵ

Event Time (sec) Value (%) Symptom baseline - 75 - 80 - 75 - 75 - 75 - 80 start spin 0 80 10 90 20 95 30 90 40 90 50 80 60 85 head motion 70 90
- 75 - 75 - 80 start spin 0 80 1 10 90 20 95 30 90 40 90 50 80 60 85 head motion 70 90
- 75 - 80 start spin 0 80 1 10 90 20 95 30 90 40 90 50 80 60 85 head motion 70 90
start spin 0 80 1 10 90 20 95 30 90 40 90 40 90 50 80 60 85 60 85 head motion 70 90 90
start spin 0 80 1 10 90 20 95 30 90 40 90 40 90 50 80 60 85 60 85 head motion 70 90
10 90 20 95 30 90 40 90 50 80 60 85 head motion 70 90
20 95 30 90 40 90 50 80 60 85 head motion 70 90
40 90 50 80 60 85 head motion 70 90
50 80 60 85 head motion 70 90
60 85 head motion 70 90
head motion 70 90
80 90
90 85
120 80
130 75
140 70
150 75
160 75
200 80
210 75
220 70 7
230 70
250 75
270 70
280 65
stop head motion 290 60
300 70
310 70
330 70
340 70
350 65
360 60
370 65
380 65
20 00 400 65
410 65

85

ouoject: #1			Time:	1100 - 111
lvent	Time (sec)	Value (%)	Symptom	
aseline	-	75		
	-	75		
	-	75		
	-	75		
	-	75		
tart spin	0	80	1	
•	10	80		
	20	80		
	30	75		
	40	75		
	50	75		
	60	75		1
ead motion	70	75		
	80	75		
	00 00	75		
	100	75		
	110	80		
	120	80		
	120	0U 9 E		
	130	85		
	140	85		
	150	85		
	160	90	•	
	170	90		
	180	90		
	190	90	4	
	200	90		
	210	85		
	220	85	7	
	230	100		
	240	105	9	
	250	105		
	260	105		
	270	105		
	280	105		
top head mot	ion 290	105		
	300	105		
	310	105		
	320	105		
	330	105		
	34)	105		
	350	105		
	360	105		
	370	105		
	380	105		
	300	105		
	400	105		
	400	105		
	410	702		

R S

2

88

83

8

Ë

È

8

Ś

j. V

13 11.

86

8	Parameter: Surf Subject: #1	ace Skin Ter	nperature	Date: Time:	23 Jul 86 1100 - 1115	
	Event T	ime (sec)	Value (F)	Symptom		
×.	baseline	-	92.1 92.1			
₩ _D		-	92.1			
		-	92.1			
90.	start spin	0	92.2	1		
8 8		20	92.3			
68		30	92.3			5.8.5.4
~		40 50	92.4			A star
Σ.		60	92.4			
ų.	head motion	70	92.4			
8		80 90	92.4			5 T 5 T 5 T 5 T 5 T 5 T 5 T 5 T 5 T 5 T
		100	92.4			
C.G		110	92.4			e ∎• ∹e*
8		120	92.4			(6 ⁴ , दर्भ) (8 ⁶) (4) (4
		140	92.4			
<u> </u>		150	92.4			
		170	92.4			3. 5 ago
6h		180	92.3			
		190	92.3	4		
		200	92.3			3 ¹ 4 4
		220	92.3	7		
		230	92.2	0		at ≥t at st
20		240	92.2	9		A Post of the second
8		260	92.1			2 a b d b
		270	92.1			
R.	stop head motio	n 290	92.2			Bry de
625	•	300	92.4			8.8
100		310	92.6			388
		330	93			
		340	93.2			
28		350	93.4			
94		370	93.7			
83		380	95			1. S. S.
		390	97			10.02 m
M .		410	99.4			2008
83						338
61.5 -			87			
6			57			10560 1010
1						888

				· · · · · · · · · · · · · · · · · · ·		

凶

Parameter: Electrocardiogram (EKG) Subject: #1

ので、「「「「」」

Contraction Contraction

and the second sec

ľ

8

8

88

Date: 23 Jul 86 Time: 1100 - 1115

Event	Time (sec)	Value(Beats/min)	Symptom
baseline	-	78	
	-	78	
	-	60	
	-	54	
	-	60	
start spin	0	66	1
·	10	66	
	20	. 60	
	30	72	
	40	66	
	50	66	
	60	66	
head motion	70	60	
	80	72	
	90	78	
	100	72	
	110	78	
	120	72	
	130	72	
	140	75	
	150	81	
	160	75	
	170	78	
	180	84	
	190	90	4
	200	90	
	210	78	
	220	78	7
	230	84	
	240	84	9
	250	75	
	260	84	
	270	75	
	280	72	
stop head mot	ion 290	75	
*	300	96	
	310	78	
	320	72	
	330	69	
	. 340	69	
	350	72	
	360	72	
	370	72	
	380	66	
	390	63	
	400	72	
	410	72	

Parameter: Thoracic Respiration Subject: #1

•

.

.

Į,

8

349 8

i Si

1.22

Date: 23 Jul 86 Time: 1100 - 1115

Event	Time (sec)	Value(Vol/#Breath)	Symptom
baseline	-	400/3	
	-	400/3	
	-	400/2	
	-	400/3	
	-	400/3	-
start spin	10	400/1	Ţ
	20	500/5 200/5	
	30	300/3	
	40	300/4	
	50	350/3	
	60	500/4	
head motions	70	450/3	
	80	450/3	
	90	550/4	
	100	650/3	
	110	600/3	
	120	000/2 650/2	
	140	700/2	
	150	750/2	
	160	800/3	
	170	850/2	
	180	900/2	
	190	800/3	4
	200	850/2	
	210	900/2	_
	220	950/2	/
	230	950/1	0
	250	1200/2	ン
	260	1200/2	
	270	1400/2	
	280	1100/1	
stop head mot:	ion 290	1100/2	
	300	1000/2	
	310	1100/3	
	320	1000/2	
	340	900/3	
	350	900/2 9nn/2	
	360	900/2	
	370	800/1	
	380	800/1	
	390	700/2	
	400	700/1	
	410	800/2	

Parameter: Diaphragmatic	Respiration	Date:	23	Ju1	86
Subject: #1		Time:	1100	-	1115

N ANURA SANA

Event	Time (sec)	Value(Vol/#Breath)	Symptom
baseline	_	100/3	
		100/3	
	_	100/2	
	-	100/3	
	~~	100/3	
start spin	0	250/1	1
-	10	250/3	
	20	300/4	
	30	250/3	
	40	250/4	
	50	400/3	
	60	300/4	
head motions	70	300/3	
	80	250/3	
	90	300/4	
	100	550/3	
	110	600/3	
	120	600/2	
	130	550/2	
	140	500/2	
	150	500/3	
	160	600/3	
	1/0	600/2	
	180	600/2	,
	190	550/3	4
	200	450/2	
	210	400/2	~
	220	400/2	/
	230	550/2	0
	250	550/2	,
	260	500/2	
	270	550/2	
	280	600/1	
stop head moti	Lon 290	550/2	
000p	300	500/2	
	310	450/3	
	320	400/2	
	330	400/3	
	340	400/2	
	350	400/2	
	360	300/2	
	370	300/1	
	380	300/1	
	390	300/2	
	400	300/1	
	410	300/2	

000

<u>8</u>

<u>}</u>

Parameter: Fi Subject: #2	nger Photopl	ethysmograph	Date: 25 Jul Time: 1030 -	86 1033
Event	Time (sec)	Value (%)	Symptom	
baseline	_	90		
	-	85		
	_	90		
	_	90		
	_	85		
start spin	0	90	1	
uvuru opan	10	95	-	
	20	90		
	30	95		
	40	90		
	50	85		
	60	90		
head motions	70	9 Ę		
	80	90		
	90	90		
	100	85		
	110	85	2	
	120	90	-	
	130	95	3	
	140	85	5	
	150	85	4	
	160	85	·	
	170	90		
	180	85	6	
	190	85	7	
	200	90	•	
	210	90	8	
	220	95	0	
	230	95		
	240	85		
	250	85	9	
	260	85	-	
stop head moti	on 270	85		
	280	80		
	290	80		
	300	75		
	310	75		
	320	75		
	330	75		
	340	75		
	350	70		
	360	70		
	370	75		
	380	75		
	390	75		
	400	70		

Ĭ,

31.00

CARLEADER CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACT OF CONT

8 88 120	Parameter: Skin Subject: #2	Surface Te	mperature	Date: Time:	25 Jul 86 1030 - 1033
2	Event I	ime (sec)	Value (F)	Symptom	
	baseline		97.6 97.6 97.6		
	start spin	- - 0	97.6 97.6 97.6	1	
8		10 20 30	97.6 97.6 97.6		
8	head motions	50 60 70	97.6 97.6 97.6		
		80 90 100	97.6 97.6 97.6		
		110 120 130 140	97.7 97.7 97.7 97.7	2 3	
		150 160 170	97.7 97.7 97.7	4	
8		180 190 200	97.7 97.7 97.7	6 7	
Ę.		210 220 230 240	97.7 97.7 97.7 97.8	8	
8	stop head motic	250 260 n 270	97.8 97.8 97.8	,	
		280 290 300	97.8 97.8 97.7		
		320 330 340	97.7 97.7 97.7 97.7		
R.		350 360 370	97.6 97.6 97.6		
		380 390 400	97.6 97.5 97.5		
×.		410	92		
n Dollovy symptom					NUMBER CONTRACTOR CONTRACTOR CONTRACTOR

1.5

88

Parameter: Electrocardiogram (EKG) Subject: #2

8

(2) (1)

8

8

STANDAR CHARACTERIA.

Date: 25 Jul 86 Time: 1030 - 1033

Event	Time (sec)	Value(beats/min)	Symptom
baseline	-	90	
	-	96	
	-	84	
	-	78	
	-	84	
start spin	0	66	1
*	10	66	
	20	66	
	30	72	
	40	66	
	50	66	
	60	72	
head motions	70	78	
	80	78	
	90	78	
	100	78	
	110	78	2
	120	78	
	130	78	3
	140	78	
•	150	78	4
	160	78	
	170	84	
	180	78	6
	190	84	7
	200	84	
	210	90	8
	220	90	
	230	90	
	240	90	9
	250	90	
· · · ·	260	84	
stop head mot:	ion 270	90	
	280	81	
	290	81	
	300	93	
	310	84	
	320	/ O g /	
	340	04 97	
	350	70	
	360	70	
	370	ял Ял	
	380	84	
	390	70	
	400	75	
	410	75	
	•		

	Event Ti	me (sec)	Value(vol/#br	eath) Symptom	
La la	baseline	_	500/2	. •	
	PADGTTNG		400/3		
,		-	300/2		
7		-	400/3		
		-	400/3		
ŗ	start spin	0	500/3	1	
n		10	450/3		
		20	350/4		
U		5U 40	350/3		
		50	200/2		
		60	400/4		
y	head motions	70	450/3		
U.		80	400/4		
		90	450/4		
		100	650/4	-	
2		120	650/5	2	
}		130	1000/4 1000/6	а	
		140	600/5	5	
2		150	650/5	4	
		160	750/6		
-		170	550/6		
ġ.		180	850/5	6	
8		700	800/5	7	
		200	/50/0 250/5	٥	
7		220	850/5	o	
Į		230	. 900/6		
		240	950/6		
1		250	850/6	9	
9	aton hand	260	850/6		
	scop nead motion	270	900/6		
		290	900/4		
Ŋ		300	800/4		
_		310	800/3		
		320	800/3		
8		330	900/3		
5		340	700/3		
Š		350	000/4 600/2		•
l.		370	500/2		
٦		380	400/2		
		390	600/3		
•		400	500/1		
4		410	400/2		
1					
			94		
9			/ T		
i					

Parameter: Diaphragmatic Respiration Subject: #2

ž

6 6

8

Ň

33

83

89

% }}

2

Ø

Date: 25 Jul 86 Time: 1030 - 1033

Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	_	800/3	
	_	700/2	
	-	600/2	
	-	600/3	
	-	600/3	
start spin	0	700/3	1
	10	900/3	
	20	750/4	
	30	600/3	
	40	70073	
	50	900/4	
hand mations	00 70	900/4	
nead motions	20	750/3	
	00 00	900/4	
	100	800/4	
	110	800/5	2
	120	800/4	-
	130	950/6	3
	140	750/5	-
	150	700/5	4
	160	650/6	
	170	500/6	
	180	500/5	6
	190	500/5	7
	200	400/6	
	210	500/5	8
	220	500/5	
	230	600/6	
	240	600/6	0
	250	550/6	9
	260	450/6	
stop head mot	10n 2/0	400/6	
	200	500/4	
	290	500/4	
	310	600/3	
	320	600/3	
	330	500/3	
	340	400/3	
	350	500/4	
	360	600/4	
	370	500/2	
	380	500/3	
	390	400/2	
	400	400/3	
	410	400/1	

95

	Event	Time (sec)	Value (K)	Symptom
0	baseline	-	1000	
8		-	975	
		-	950	
0		-	925	
<u>(1</u>	start spin	0	884	. 1
		10	875	
3		20	875	
S .		30	875	
A 9		40 50	8/J 875	
		60	865	
10	head motions	70	854	
ы Nu		80	700	
		90	700	
		110	503	2
61		120	420	4
63		130	420	3
		140	380	
(9)		150	380	4
U		170	340	
		180	350	6
		190	170	7
60		200	280	
0		210	180	8
		220	280	
		240	350	
6 1		250	400	9
ß		260	420	
	stop head moti	on 270	440	
		280	450 745	
		300	480	
		310	500	
88		320	520	
40		330	540	
4/L		340 350	203 570	
R		360	580	
₩. .		370	595	
en l		380	610	
¥		390	625	
		400 410	04U 655	
100		410		
54				
			96	
h _T r				

88

rarameter: Fi Subject: #3	nger Photople	tnysmograph	Date: 30 Jul 86 Time: 1018 - 102
Event	Time (sec)	Value (%)	Symptom
baseline	-	90	
	-	90	
	-	90	
	-	90	
	~	90	
start spin	0	90	1
-	10	90	
	20	90	·
	30	90	
	40 ·	95	
	50	80	
nead motions	60	80	
	70	80	
	80	80	
	90	80	
	100	80	
	110	80	
	120	80	2
	130	75	-
	140	75	
	150	75	5
	160	85	5
	170	75	
	180	80	
	190	75	
	200	80	
	210	75	
	220	80	
	230	70	
	240	75	8
	250	85	6
	260	85	9-10
stop head mot	ion 270	80	9-10
scop nead mot	280	75	
	290	75	
	300	70	
	310	65	
	320	65	
	330	70	
	340	70	
	350	70	
	360	70	
		/0	
	370	75	

4

8

Ę

Ś

Ļ

Parameter: Surface Skin Temperature Subject: #3

, t

and the second sec

8

. Х

į

8

8

£

22222221 1222222

The second second

Date: 30 Jul 86 Time: 1018 - 1024

1

Ri

Event	Time (sec)	Value (F)	Symptom
baseline	-	79.8	
	-	79.8	
	-	79.8	
	-	/9.0 70.8	
start snin	-	79.8	1
otart opin	10	79.8	-
	20	79.8	
	30	79.8	
	40	79.8	
haad wendere	50	79.8	
nead motions	50 70	/9.8 70.8	
	80	79.8	
	90	79.8	
	100	79.8	
	110	79.8	
	120	79.8	2.
	130	79.8	
	140	/9.8 70 8	E
	160	79.8	5
	170	79.8	
	180	79.9	
	180	79.9	
	190	79.9	
	200	79.9	
	210	79.9	
	230	79.9	
	240	80.0	8
	250	80.0	
	260	80.0	9-10
stop head mot	ion 270	80.0	
	200	80.0	
	300	80.0	
	310	80.0	
	320	80.1	
	330	80.1	
	340	80.2	
	300	80.3 20 A	
	370	о ч.4 80.4	
	380	80.5	
Parameter: Electrocardiogram (EKG) Subject: #3 Date: 30 Jul 86 Time: 1018 - 1024

i,

ß

8

8

Ç

8

S.

Event	Time (sec)	Value(beats/min)	Symptom
baseline	_	84	
		72	
		66	
	-	66	
	-	60	
start spin	0	66	1
-	10	69	
	20	69	
	30	75	
	40	78	
	50	75	
head motions	60	81	
	70	84	
	80	84	
	90	84	
	100	78	
	110	78	
	120	90	2
	130	72	
	140	9 0	
	150	87	•
	160	87	
	170	78	5
	180	90	
	190	75	
	200	75	
	210	66	
	220	75	
	230	69	8
	240	84	-
	250	75	
	260	75	9-10
stop head moti	on 270	75	, 10
	280	60	
	290	66	
	300	60	
	310	66	
	320	54	
	330	54	
	340	54	
	350	63	
	360	57	
	370	66	
	380	60	
	500	00	

99

Parameter: Thoracic Respiration Subject: #3

B^Y U

A REPART OF THE REPART

seen l'average accesse l'endere

12

X 0

,

8

(V

83

, ve

8

k

×

Ĉ

Date: 30 Jul 86 Time: 1018 - 1024

Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	_	700/3	
	_	650/3	
	-	600/3	
	-	600/2	
		600/2	
start spin	0	650/3.5	1
•	10	650/3	
	20	700/2.5	
	30	800/2.5	
	40	700/3	
	50	700/3.5	
head motions	60	° 750/3	
	70	900/3.5	
	80	650/3.5	
	90	750/3,5	
	100	350/5	
	110	500/4	
	120	700/4	2
	130	900/3.5	
	140	700/3.5	
	150	900/2.5	5
	160	850/3.5	
	170	850/4.5	
	180	650/3	
	190	700/3	
	200	400/3.5	
	210	850/3	
	220	1250/3	
	230	1250/4	8
	240	1200/3.5	
	250	1000/3.5	
	260	900/3	9-10
stop head mot	tion 270	900/3	
	280	900/3	
	290	1000/3	
	300	1200/3	
	310	1000/3	
	320	1000/2	
	330	900/3	
	340	900/2	
	350	1000/2	
	360	1000/2	
	370	800/2	
	380	1000/1	

Parameter: Di Subject: #3	aphragmatic	Respiration Da Tin	ate: 30 Jul 86 me: 1018 - 1024
Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	-	350/3	
	-	300/3	
		300/3	
	-	300/2	
start sain		300/2	1
scart spin	10	300/3	I
	20	300/2.5	
	30	400/2.5	
	40	400/3	
	50	500/3.5	
head motions	60	700/3	
	70	550/3.5	
	80	800/3.5	
	90	550/3.5 700/5	
	110	700/5	
	120	700/4	2
	130	750/3.5	-
	140	700/3.5	
	150	550/2.5	5
	160	550/3.5	
	170	700/4.5	
	180	800/3	
	200	800/3.5	
	210	800/3	
·	220	600/3	•
	230	850/4	
	240	650/3.5	8
	250	400/3.5	0 10
stop bood mot	200 ton 270	400/3	9-10
scop nead mot	280	400/3	
	290	600/3	
	300	500/3	
	310	450/3	
	320	400/2	
	330	450/3	
	340	500/2	
	300	500/2	
	370	500/2	
	380	500/2	

and the second second

i.

Ņ

8

Ģ

38

2

ě

C,

O

- 1

1

Subject: #3			Time: 1018 - 1024
Event	Time (sec)	Value (K)	Symptom
baseline	-	380	
	-	380	
	-	390	
	-	390	
start spin	0	390	1
	10	390	
	20	390	
	30 40	420	
	50	450	
head motions	60	465	
	70	495	
	80	540	
	90	5/0	
	110	690	
	120	765	2
	130	750	
	140	750	-
	150	840	5
	170	760	
	180	780	
	190	735	
	200	660	
	210	690	
	220	/20 870	
	240	750	8
	250	780	-
	260	750	9-10
stop head moti	.on 270	750	
	280	740	
	300	720	
	310	720	
	320	720	
	330	720	
	340	720	
	360	· 750	
	370	750	

Ŀı

S. 1. N. 1. 4.

11,0

Parameter: Galvanic Skin Reflex (GSR) Date: 30 Jul 86

, ŝ

5

8

ų

1 1

102

750

380

Ľ,

Ľ,

1.1

Parameter: Fing Subject: #4	er Photople	thysmograph	Date: 5 Aug 86 Time: 1054 - 1059
Event 1	lime (sec)	Value (%)	Symptom
baseline	-	50	
	-	75	
	-	80	
	-	75	
	-	. 80	1
start spin	10	90	1
	20	90	
	30	90	2
	40	90	-
	50	90	
head motion	60	85	
	70	90	3
	80	85	5
	90	90	
	100	90	
	110	90	
	120	85	
	130	85	
	140	85	
	150	85	
	160	85	6
	170	85	
	180	85	
	190	90	67
	200	00 85	0-7
	220	85	8
	230	75	Ŭ
	240	80	9
	250	75	-
	260	80	
	270	80	
	280	75	
stop head motio	on 290	80	10
-	300	70	
	310	75	
	320	70	
	330	65	
	340	70	
	350	70	
	300	/U 6 E	
	370	00	
	300		
	290	60 60	
	410	65	
	410	05	

1

8

A I I I

5.00

2.5

1.2

8

Х́Т.

103

8				
<	Parameter: S Subject: #4	Surface Skin Ter	nperature	Date: 5 Aug 86 Time: 1054 - 1059
	Event	Time (sec)	Value(F)	Symptom
8	baseline	-	87.8 87.8	
	start snin	-	87.7 87.7	1
R	start spin	10 20	88.7 88.5	1
	bood mobiles.	40 50	88.4 88.4	2
сэ) 19	neau motions	* 80 70 80	88.3 88.3 88.3	3 5
		100 110	88.2 88.2	
88 10		130	88.2 88.2 88.1	
		160 170	88.1 88.1 88.0	6
88		190 200	88.0 88.0 88.0	6-7
		210 220 230	88.0 87.9 87.9	8
		240 250 260	87.9 87.8 87.7	9
	stop head r	270 280 notion 290 300	87.0 87.5 87.4	10
		310 320 330	87.4 87.3 87.3	
		340 350 360	87.5 87.7 87.9	
ζ.		370 380 390	88.1 88.3 88.6	
8		400 410	88.8 89.0	
349 (***			104	
				እንዲቀን የሚሰሩ የሚሰሩ የሚሰሩ የሚሰሩ የሚሰሩ የሚሰሩ የሚሰሩ የሚሰሩ

Event Time baseline start spin head motion stop head motion			Time: 1054 - 1059	
baseline start spin head motion stop head motion	e (sec)	Value(Beats/min)) Symptom	
start spin head motion stop head motion	-	108		
start spin head motion stop head motion	-	102		
start spin head motion	-	102		
start spin head motion stop head motion		114	_	
head motion	0	123	1	
head motion	20	129		
head motion	30	135	2	
head motion	40	132		
stop head motion	50	105		
stop head motion	00 70	120	3	
stop head motion	80	132	5	
stop head motion	90	125		
stop head motion	100	129		
stop head motion	120	120		
stop head motion	130	111		
stop head motion	140	120		
stop head motion	150	120		
stop head motion	160	120	b	
stop head motion	180	132		
stop head motion	190	126		
stop head motion	200	135	6-7	
stop head motion	210	126	8	
stop head motion	230	114	6	
stop head motion	240	126	9	
stop head motion	250	120		
stop head motion	260	126		
stop head motion	280	120		
	290	120	10	
	300	129		
	310			
	330	114		
	340	108		
	350	102		
	360	1.05		
	380	102		
	390	90		
-	400	93		
0	410	96		
R				
		105		

Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	-	600/3	
	-	600/4	
	-	600/3	
	-	800/3	
start snin	- 0	1000/2-5	1
oraro oktu	ıŏ	1100/3	-
	20	700/3.5	
	30	800/3	2
	40	650/3	
head motions	00	500/3.5	
WEAR WOLTONS	70	900/5-5	3
	80	1000/3	5
	90	500/1.5	
	100	400/3.5	
	110	300/4.5	
	130	700/3.5	
	140	700/3.5	
	150	500/4	
	160	1200/3.5	б
	170		
	100	900/4	
	200	1000/2.5	6-7
	210	450/3.5	
	220	1000/3.5	8
	230	900/4.5	0
	240 250	100/3	9
	260	2100/3	
	270	1600/3.5	
	280	1700/4	
stop head mot	ion 290	1500/4	10
	300	1500/2	
	320	1500/2	
	330	1500/2	
	340	1500/2	
	350	1300/3	
	360	1500/2	
	370 186	1000/1	
	390	1400/2	
	400	1300/2	
	410	1300/1	
		106	
		100	

1. 1. 9

.

Parameter: Dia Subject: #4	phragmatic	Respiration	Date: 5 Aug 86 Time: 1054 - 1059
Event	Time (sec)	Value(vol/#breat	th) Symptom
baseline	-	600/3	
		600/4	
	-	600/3	
	-	500/3	
	-	700/2	
start spin	0	800/2.5	1
	10	800/3	
	20	850/3.5	
	30	1200/3	2
	40	900/3	
	50	900/3.5	
head motions	60	1300/4	-
	70	1000/5.5	3
	80	1060/3	5
	90	/00/1.5	
	100	1000/3.5	
	110	600/4.5	
	120	800/4 800/2 F	
	130		
	140	500/4	
	150	500/4	6
	170	500/4	0
	180	500/3 5	
	100	1100/4	
	200	1000/2.5	6-7
	210	700/3.5	v r
	220	600/3.5	8
	230	700/4.5	C C
	240	600/3	9
	250	450/4	-
	260	500/3	
	270	400/3.5	
	280	600/4	
stop head moti	on 290	500/4	10
•	300	500/2	
	310	400/2	
	320	400/2	
	330	400/2	
	340	400/2	
	350	400/3	
	360	400/2	
	370	500/1	
	380	500/2	
	390	500/2	
	400	500/2	
	410	500/1	

2.23

ľ

ß

8

2

107

Parameter: Galva Subject: #4	nic Skin Re	eflex (GSR)	Date: 5 Aug 86 Time: 1054 - 1059
Event Ti	me (sec)	Value (K)	Symptom
baseline	-	1300	
		1300	
	-	1300	
	-	1300	
	-	1300	
start spin	0	1184	1
	10	1104	
	20	1104	0
	30	1104	2
	40	1024	
head motions	50	1024	
neau motions	70	900	3
	80	854	5
	90	854	5
	100	854	
	110	854	
	120	854	
	130	854	
	140	854	
	150	854	
	160	854	6
	170	854	
	180	854	
	190	854	
	200	854	b- /
	210	804	Ø
	220	834 854	o
	230	854 854	0
	240	854	2
	250	854	
	270	854	
	280	854	
stop head motior	290	854	10
•	300	950	
	310	95 0	
	320	950	
	330	950	
	340	925	
	350	900	
	360	875	
	370	854	
	200	825	
	230	800 760	
	400	700	
	410	100	

ł

0

8

8

S

3 2.20 00 Pc

Descent.

いいりますす

さ うち ちちちち ちちち ちちちち

a).

Parameter: Finger Photoplethysmograph Subject: #5

ß

X

Ï

R

83

(U)

F

8

8

ß

STREETE LEVEL

and the second of the second second

Assessed I assessed

1.200.20

3- 1

Event	Time (sec)	Value (%)	Symptom
baseline	_	70	
	-	75	
		75	
	-	70	
	_	75	
start spin	0	80	1
	10	85	
	20	80	2
	30	60	
	40	65	
	50	75	
head motions	60 70	65	
	70	/5	~
	80	80	6
	90	6U 6E	
	110	00	
	120	70	0
	130	70 60	o
	140	65	
	150	65	
stop head moti	on 160	70	Q
beop nead moet	170	65	3
	180	60	
	190	50	
	200	60	
	210	60	
	220	60	
	230	55	
	240	60	
	250	60	
	260	60	
	270	65	
	280	70	
	290	60	
	300	60	
	310	60	

Parameter: Surface Skin TemperatureDate: 12 Aug 86Subject: #5Time: 1149 - 1152

C ALL DALLAS

Event	Time (sec)	Value (F)	Symptom
baseline		84.8 84.8 84.9 84.9 85	
start spin	0 10	85 85	1
bood motions	20 30 40 50	85.1 85.2 85.2 85.2	2
nead motions	70 80 90 100	85.2 85.3 85.3 85.4	6
	1 10 1 20 1 30 1 40 1 50	85.5 85.6 85.7 85.9 86.1	8
stop head moti	on 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310	86.3 86.5 86.7 87.2 87.5 87.8 88.2 88.5 88.9 89.5 90.0 90.6 91.3 92.0 92.5	9

Parameter: Electrocardiogram (EKG)Date: 12 Aug 86Subject: #5Time: 1149 - 1152

a, i

にためない。

8

8

V

Į,

 \mathfrak{Y}

8

Event	Time (sec)	Value(beats/min)	Symptom
baseline	_	54	
	-	60	
	-	54	
	-	54	
	-	60	
start spin	0	78	1
	10	84	
	20	96	2
	30	96	
	40	96	
	50	90	
head motions	60	84	
	70	84	
	80	84	6
	90	78	
	100	72	
	110	<u>56</u>	
	120	48	8
	130	48	
	140	66	
	150	54	
stop head mot	ion 160	60	9
	170	60	
	180	42	
	190	36	
	200	39	
	210	36	
	220	36	
	230	57	
	240	60	
	250	60	
	260	60	
	270	66	
	280	66	
	290	63	
	300	63	
	310	66	

111

888

いんしもももい

.......

8

SOUTH A STATE

200 200

1.1

83

i

88

520 1

Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	-	400/4	
	-	400/4	
	-	500/4	
	-	500/4	
	-	600/4	
start spin	0	650/4	1
-	10	500/6	
	20	600/6	2
	30	650/5.5	
	40	850/4	
	50	800/4.5	
head motions	60	800/5	
	70	600/4.5	
	80	650/4.5	б
	90	550/4.5	
	100	750/4	
	110	650/5	
	120	850/4.5	8
	130	700/4.5	
	140	900/3.5	
	150	900/3	
stop head mot	ion 160	850/4	9
	170	1000/2	
	180	1100/2	
	190	1100/2	
	200	1100/2	
	210	1000/2	
	220	1200/2	
	230	1100/2	
	240	1100/2	
	250	1100/2	
	260	800/2	
	270	900/2	
	280	900/3	
	290	1000/2	
	300	1000/2	
	310	1000/2	

	Parameter: Diaphragmati Subject: #5	c Respiration	Date: 12 Aug Time: 1149 -	86 1152
B	Event Time (sec) Value(vol/#brea	ath) Symptom	
5 <u>7</u>	baseline	100/4 100/4		
	-	100/4 100/4		
uno.	- start spin 0	100/4 450/4	1	
	10 20	500/6 550/6	2	
ST	30 40	450/5.5 450/4	5	
8	50 head motions 60	400/4.5 350/5	5	
	70 80	600/4 . 650/4 .	5 5 6	
	90 100	900/4.5	5	
B	110	850/5	5 8	
5 7 9	130	1200/4.1	5	
Ŭ.	140 150	1250/3	0	
63	170 120	1500/2	7	
(4)	190	1500/2		
C	200 210	1400/2 1500/2		
	220 230	1500/2 1500/2	`	
	240 250	1500/2 1500/2		
Q	260 270	1500/2 1400/2		
8	280 290	1200/2 110C/2		
23	300 310	1100/3 1000/2		
à				
NJ.				
X)				
8				
N 3		112		
		115		

Parameter: Galvanic Skin Reflex (GSR) Date Subject: #5 Time

2

88

Š,

8

Å.

8

X

8

00000

Z

Date: 12 Aug 86 Time: 1149 - 1152 A State State State

Event	Time (sec)	Value (K)	Symptom
baseline	-	46	
	-	46	
	-	46	
	-	46	
	-	46	
start spin	0	46	1
	10	65	
	20	70	2
	30	85	
	40	85	
	50	85	
head motions	60	85	
	70	95	
	80	95	6
	90	135	
	100	140	
	110	120	_
	120	175	8
	130	175	
	140	215	
	150	230	-
stop head mot	ion 160	240	9
	170	250	
	180	265	
	190	280	
	200	290	
	210	300	
	220	300	
	230	310	
	240	320	
	250	320	
	260	330	
	270	330	
	280	330	
	290	340	
	300	350	
	310	320	

Parameter: Fi Subject: #6	nger Photople	thysmograph	Date: Time:	13 Aug 1037 -	86 1045
Event	Time (sec)	Value (%)	Sympto	om	
aseline		65	×		
	-	65 65			
	-	65			
	-	75		_	
start spin	0	75		1	
	20	75			
	30	75			
	40	75			
nead motions	50 ·	80 85			
	70	90			
	80	80			
	90	95		7	
	110	85	•	2	
	120	85			
	130	85			
	150	75			
	160	70			
	170	70			
	180	65 75			
	200	65			
	210	60			
	220	65		.	
	240	70		2	
	250	70			
	260	70			
	270	70			
	290	60			
	300	70			
	310	75		λ.	
	330	75		+ 6-7	
	340	75			
	350	65			
	370	70	1	8	
	380	70	,	<i></i>	
	390	70		9	
	400	75			

e e

ж,

. .

ð.

Ļ

3

6 4

8

Ŗ

1

Sec. 200

25.55 C

0.0000

Æ

(). . 12 1 i. 公司

1 4---

÷,

			420		75
			430	•	70
stop	head	motion	440		70
			450		75
			460		70
			470		65
			480	1	65
			490	1	65
			500		65
			510		65
			520		60
			530		60
			540		60
			550		6.5
			560		65
			570		70
			580		70
			590		70
			600		70
			000		

- States -

Parameter: Surface Skin Temperature Date: 13 Aug 86 Time: 1037 - 1045 Subject: #6 Event Time (sec) Value (F) Symptom 94.8 baseline 94.8 94.8 94.8 94.8 0 94.8 start spin 1 10 94.8 94.8 20 30 94.6 40 94.6 50 94.6 94.6 head motions 60 70 94.5 94.5 80 94.5 90 94.4 100 2 110 94.4 120 94.4 130 94.3 140 94.3 94.2 150 160 94.2 170 94.2 180 94.1 190 94.1 200 94.1 210 94.1 220 94.05 230 3 94.05 240 94.05 250 93.9 260 93.9 270 93.9 280 93.9 290 93.9 300 93.9 310 93.8 320 93.8 4 6-7 330 93.8 340 93.8 350 93.8

j,

 r^{p}_{A} r^{s}_{A}

2. A 8. S

8

8

Ķ.

Ľ

117

93.8

93,7

93.7

93.7

93.7

93.6

8

9

360

370

380

390

400

, H , , , ,	
• • • •	
	E.

i de Set	22
1	
2000	8
	335
1-5	

			420 430	
stop	head	motion	440	
•			450	
			460	
			470	
			480	
			490	
			500	
			510	
			520	
			530	
			540	
			550	
			560	
			570	
			580	
			590	
			600	

93.6 93.6 93.6

93.6 93.6 93.6

93.6 93.7 93.7 93.7 93.9 93.9 93.9 94.0 94.2 94.2 94.3 94.3

•

ŵ

571) (Parameter: El Subject: #6	ectrocardiogram	(EKG) D T	ate: 13 Aug ime: 1037 -	86 1045
	Event	Time (sec)	Value(beats/m	in) Sympt	om
XX	baseline	-	81		
C		-	72 78		
		-	78 78		
50	start spin	0	84		1
		20	90		
9		30 40	78 78		
8		50	72		
550	head motions	60 70	72 78		
		80	84		
()m		100	78		2
8		10 120	66 78		
A:		130	66		
5" ())		140	72 66		
-		160	78		
		170 180	78 84		
UNI		190	72		
<u>Si</u>		200 210	66 78		
<u>.</u>		220	90		2
88		240	78		5
		250 260	72		
		270	72		
		280 290	72 72		
(E)		300	90		
		310	84		4
60		330	78 78		6-7
		350	78 78		
6 0		360	102		8
		380	84		U
_		390 400	72 84		9
		410	72		
W.W			119		
	CONTRACTOR CONTRACTOR		CONTRACTOR CONTRACTOR	<u> Meneral Contract</u>	

Ş

P. P. F. B. P.

eu.
8
rf V L
8
57.5 57.5
5 /2 6 10 6 10
ŝ
8

stop	head	motion	420 430 440 450 460 470 480 500 510 520 530 550 550 550 550 570 580	
			600	

᠔ᠵᡊ᠕ᡊ᠘ᡊ᠘ᡔᠺ᠕᠘ᡔ᠘ᢣ᠘ᡔ᠘ᡊ᠘ᡪ᠘᠋ᡷ᠘᠖᠕᠕᠘ᡧ᠔ᠿ᠕ᡢᡌᡡᡬᠵ᠕ᡬ᠘ᡣᡬ᠘ᠿ᠘ᠿᢓᢓᢓᢓᢓᢓᢓᢓᢓᢓ

.

X

Parameter: Thoracic Respiration Subject: #6

.

このでのないで、 このからのです。

Š

i.

55

7

Date: 13 Aug 86 Time: 1037 - 1045

40

Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	-	300/3	
	-	300/3	
	-	300/3	
	-	300/3	
	-	300/3	
start spin	0	300/4.5	1
	10	350/4.5	
	20	400/3.5	
	30	400/3.5	
	40	400/4	
	50	400/4	
head motions	60	450/4	
	70	300/6	
	80	450/3	
	90	400/4	_
	100	500/4	2
	110	300/4	
	120	400/4	
	130	300/3.5	
	140	400/4	
	150	400/4	
	160	350/4	
	170	250/4.5	
	180	450/3	
	190	550/3	
	200	400/4	
	210	250/4	
	220	600/3 (00/0 F	2
	230	400/2.5	3
	240	250/3	
	250	550/3 500/2 F	
	200	500/2.5	
	280	400/3	
	200	450/5	
	300	700/2	
	310	600/1 5	
	320	700/2	4
	330	650/1 5	6-7
	340	550/2	0-7
	350	550/2	
	360	1200/1	
	370	500/2	8
	380	550/2	0
	390	600/2.5	G,
	400	950/1.5	2
	410	800/2	

121

et N	
	3
9° 9° 9°	
	2.67
	k
	р. Д
	1.01
2001	8
	Ř
	С.
1001	202
н з кан ,	Ľ

			420	
			430	
stop	head	motion	440	
-			450	
			460	
			400	
			470	
			480	
			490	
			500	
			510	
			520	
			520	
			530	
			540	
			550	
			560	
			570	
			570	
			580	
			590	

SXAMXA

050/0
850/2
600/2
1200/1.5
800/1
800/1
900/2
700/2
700/2
600/1
500/2
600/2
600/2
600/2
400/1
400/1 500/1
500/1
500/2
400/2
400/3
400/3

Parameter: Diaphragmatic	Respiration	Date:	13 Aug	86
Subject: #6	-	Time:	1037 -	1045

1 m

122.22

and the present and the

And I wanted

l

, š.

8

8

Å.

Ň

 \otimes

Ľ

Event	Time (sec)	Value(vol/#breath)	Symptom
Baseline	-	250/3	
	-	250/3	
	-	250/3	
	-	250/3	
	-	250/3	1
start spin	10	250/4.5	Ţ
	20	400/4.0 250/3 5	
	20	200/3.5	
	40	300/4	
1	50	300/4	
head motions	60	300/4	
	70	450/6	
	80	600/3	
	90	550/4	
	100	400/4	2
	110	300/4	
	120	300/4	
	130	250/3.5	
	140	200/4	
	150	200/4	
	100	20074	
	190	200/4.5	
	100	250/5	
	200	100/4	
	210	300/4	
	220	300/3	
	230	150/2.5	3
	240	250/3	
	250	250/3	
	260	250/2.5	
	270	150/3	
	280	100/3	
	290	100/3	
	300	300/2	
	310	250/1.5	4
	320	250/1 5	4 6_7
	340	350/2	0-7
	350	150/2	
	360	500/1	
	370	450/2	8
	380	400/2	-
	390	300/2.5	9
	400	350/1.5	
	410	600/2	

stop head motion	4 20 4 30 4 40 4 50 4 60 4 70 4 80 5 00 5 10 5 20 5 30 5 40 5 50 5 50 5 50 5 70 5 80	400/2 300/2 500/1.5 500/1 600/2 600/2 600/2 500/1 500/2 500/2 500/2 500/2 500/2 500/1 400/1 300/2 300/2
	580	300/2
	600	300/3

500

, Vp

,5¹

8

ő,

Ņ

8

на ва чаналися и траналика,

I-BUT BUT BUT BUT BUT BUT

Parameter: Galvanic Skin Reflex (GSR)Date: 13 Aug 84Subject: #6Time: 1037 - 1045

255 255

CARDER CARDER

South States of South States

, j , ,

Ċ,

X

8

Event	Time (sec)	Value (K)	Symptom
baseline	-	845	
	-	845	
	-	845	
		845	
	-	845	
start spin	0	845	L
	10	850	
	20	850	
	30	800	
	40	0/3	
head motions	50	800	
Mead MOLIONS	70	800	
	80	880	
	90	880	
	100	880	2
	110	880	6 -1
	120	900	
	130	880	
	140	900	
	150	880	
	160	900	
	170	890	
	180	870	
	190	880	
	200	880	
	210	880	
	220	880	
	230	845	3
	240	840	
	250	820	
	260	810	
	270	810	
	280	810	
	290	730	
	310	730	
	320	830	4
	330	810	4 6-7
	340	870	0-7
	350	850	
	360	770	
	370	770	8
	380	770	5
	390	840	9
	400	790	•
	410	750	

125

Received and

	-
	ľ
1	
I	
1	8
-	
	88
 	88
	\$
I	8

5

e P 1

Š,

			420	790
			430	810
stop	head	motion	440	810
•			450	820
			460	825
			470	830
			480	830
			400	835
			500	840
			510	8/5
			520	040
			520	010
			530	854
			540	854
			550	854
			560	854
			570	854
			580	860
			590	865
			600	970
			000	070

Parameter: Fing Subject: #7	ger Photople	thysmograph	Date: 14 Aug 86 Time: 1013 - 1017
Event 7	'ime (sec)	Value (%)	Symptom
baseline	-	70	
	-	70	
	-	70	
	-	60	
.	-	60	
start spin	0	70	1
	10	85	
	20	70 6 E	
	30	00	
	40	70	
heed motions	50	75	
Hedd Motions	70	70	
	80	65	2
	90	60	2
	100	60	Ċ.
	110	60	5
	120	60	
	130	55	4-5
	140	55	
	150	5.5	6-7
	160	60	
	170	60	8
	180	50	
	190	50	
	200	45	
	210	35	
	220	· 30	_
	230	25	9
	240	30	
stop nead motio	n 250 260	30	10
	200	20	
	280	25	
	200	20	
	300	35	
	310	35	
	320	35	
	330	30	
	340	35	
	350	30	
	360	30	
	370	35	
	380	35	
	390	40	
	400	40	
	410	40	

Ņ

ÿ

Ŕ

Parameter: Su Subject: #7	rface Skin Te	nperature	Date: 14 Aug 86 Time: 1013 - 1017
Zvent	Time (sec)	Value (F)	Symptom
baseline	- - -	93.3 93.3 93.3 93.3	
start spin	- 0 10 20 30 40	93.3 93.3 93.3 93.2 93.2 93.2	1
head motions	50 60 70 80 90	93.1 93.1 93.1 93.1 93.1 93.1	2
	100 110 120 130	93 93 93 93	3 4-5
	140 150	93 93 02	6-7
	170 180 190 200 210 220	93 92.9 92.9 92.8 92.8 92.8 92.8	8
stop head mot	230 240 260 270 280 290 300 310 320 330 340 350 350 360 370 380 390 400 410	92.7 92.6 92.6 92.5 92.5 92.6 92.6 92.6 92.6 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.8 92.9 93.0 93.1 93.5 93.8 94.1	9 10

i,

Š

Parameter: Ele Subject: #7	ectrocardiogram	(EKG)	Date: 14 Aug Time; 1013 -
Event	Time (sec)	Value(beats/min) Symptom
baseline		69	
	-	78	1, ,
	-	69	
		60	
	-	60	
start spin	0	63	. 1
-	10	66	·
	20	63	
	30	69	
	40	66	
	50	81	
head motions	60	81	
	70	96	
	80	78	2
	90	90	
	100	78	3
	110	72	
	120	90	
	130	72	4-5
	140	87	
	150	75	6-7

stop head motion

4 Aug 86 013 - 1017

X

a Xi

60

Parameter: Th Subject: #7	oracic Respira	ation Date Time	e: 14 Aug 86 e: 1013 - 1017
Event	Time (sec)	Value(vo1/#breath)	Symptom
baseline	-	500/3	
		500/2	
		50073	
	_	400/3	
start enin	0	550/3 5	1
ordir obtu	10	550/3.5	Ŧ
	20	450/3.5	
	30	400/3.5	
	40	550/3.5	
	50	500/4	
head motions	60	600/4	
	70	500/3.5	
	80	650/2.5	2
	90	700/3	
	100	700/3	3
	110	750/2.5	
	120	750/2.5	
	130	800/2	4-5
	140	800/2	<i>.</i>
	150	750/2	6-7
	170	800/2	0
	180	700/2	0
	190	850/1 5	
	200	700/2.5	
	210	700/2.5	
	220	700/2	
	230	750/2	9
	240	800/2	-
stop head mot	ion 250	900/2	10
	260	700/3	
	270	600/3	
	280	800/2	
	290	800/3	
	300	900/1	
	310	900/1	
	320	900/1	
	340	800/2	
	350	700/2	
	360	700/2	
	370	800/1	
	380	700/2	
	390	700/2	
	400	700/2	
	410	800/2	

4 4

Ť Ģ ß

Parameter: Dia Subject: #7	aphragmatic	Respiration	Date: 14 Aug 86 Time: 1013 - 1017
Event	Time (sec)	Value(vol/#breat	h) Symptom
baseline start spin	- - - 0 10 20 30 40	500/3 550/2 550/3 600/3 600/3 600/3.5 500/3.5 400/3.5 650/3.5	1
kead motions	50 60 70 80	500/4 350/4 150/3.5 450/2.5	2
	100 110 120	300/3 350/2.5 400/2.5	3
	130	400/2	4-5
	150	300/2	6-7
	160 170 180 190 200 210 220	300/2 300/2 150/3 200/1.5 150/2.5 250/2.5 200/2	8
	230 240	150/2	9
stop head mot:	240 200 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410	200/2 150/2 200/3 250/3 300/2 300/3 350/1 300/1 350/2 350/1 350/2 350/2 400/1 400/2 400/2 400/2	10

LART IS CARACTER TO REPORT PROVIDE TO REPORT TO R

いた ちんたい

Event '	lime (sec)	Value (K)	Symptom
			- jF
baseline	-	854	
	-	854	
	-	854	
	Lânge-	854	
	-	854	
start spin	0	840	1
	10	820	
	20	840	
	30	840	
	40	840	
· · · · ·	50	760	
head motions	60	800	
	70	800	0
	80	800	Z
	90	830	2
	100	840	3
	110	840	
	120	830	. Ε
	130	850	4-5
	140	82U	£ 7
	150	800	0-7
	170	800	α
	170	800	0
	100	800	
	190	860	
	200	000	
	210	000	
	220	800	Q
	230	030	9
أمنعتم أستعاده	240	920	10
агор нева шогт	260	870	10
	200	870	
	270	870	
	200	85/	
	300	870	
	310	854	
	320	854	
	330	870	
	340	880	
	350	854	
	360	870	
	370	870	
	380	880	
	390	870	
	400	870	
	400	0,0	

ļ

*

Ъ. У

88

ğ

8

Parameter: Fin Subject: #8	ger Photople	thysmograph	Date: 14 Aug 86 Time: 1203 - 120
Event	Time (sec)	Value (%)	Symptom
baseline	-	45	
	-	45	
	-	50	
	-	55	
start sain	-	70	1
start spin	10	75	L
	20	75	
	30	75	
	40	70	
•	50	70	
head motions	60	70	
	70	80	
	80	80	
	90	75	
	100	75	
	110	75	-
	120	/5	2
	1.30	70	3
	150	75	
	160	75	
	170	75	4
	180	80	6
	190	70	-
	200	75	
stop head moti	on 210	70	9
	220	65	
	230	60	
	240	50	
	250	50	
	200	50 50	
	280	20 45	
	290	÷5 50	
	300	5.5	
	310	45	
	320	50	

, *****.

.

€p €t

ľ

8

8

.

こことろう - こうちゅうちょう

133

Parameter: Electrocardiogram (EKG) Subject: #8

1 6. ¢ 5 \

×.

8

R

,

100

8

8

Date: 14 Aug 86 Time: 1203 - 1207

			<i>.</i>		
baseline	-	72			
	-	72			
	-	6 6			
	-	66			
	-	69			
start enin	0	72	1		
Start Spin	10	96	•		
	20	100			
	20				
	30	110			
	40	90			
	50	87			
head motions	60	90			
	70	81			
	80	93			
	90	87			
	100	96			
	110	90			
	1 2 0	70 109	0		
	120	108	4		
	130	99	3		
	140	117			
	150	108			
	160	96			
	170	102	4		
	180	90	6		
	190	84	-		
	200	78			
aton hand mati	200 on 210	79	9		
eroh near moer	220	70	<u>,</u> ,		
	220	/ O			
	230	95			
	240	87			
	250	90			
	260	96			
	270	87			
	280	75			
	290	78			
	300	84			
	310	78			
	220	70			
	J20	70			
	•				
		1.0.4			
		134			
Parameter: Th	oracic	Respiration	Date:	14 Aug	86
---------------	--------	-------------	-------	--------	------
Subject: #8			Time:	1203 -	1207

atteretes betatere atteres which a mar a case the

2

X.

Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	_	600/2	
	-	700/1.5	
		700/1.5	
	-	700/2	
	-	750/2	
start spin	0	750/1.5	1
	10	900/2	
	20	1000/2	
	30	1000/2	
	40	800/2	
	50	750/2.5	
head motions	6 0	800/3	
	70	700/3	
	80	750/3	
	90	600/4	
	100	700/2.5	
	110	850/3	
	120	650/3.5	2
	130	800/3	3
	140	750/3.5	
	150	700/3.5	
	160	800/4	
	170	700/3.5	4
	180	650/4	6
	190	450/4	
	200	400/4	
stop head mot	ion 210	450/4.5	9
	220	550/3	
	230	550/3	
	240	600/2	
	250	650/2	
	260	650/2	
	270	650/2	
	280	650/2	
	290	600/2	
	300	650/2	
	310	600/2	
	320	650/2	

aseline - 650/2 - 650/1.5 - 600/2 - 550/2 tart spin 0 500/1.5 1 10 600/2 20 750/2 30 1000/2 40 1100/2 50 1100/2.5 ead motions 60 850/3 70 750/3 80 800/3 90 900/4 100 850/2.5 110 900/3.5 2 130 950/3 3 140 850/3.5 150 800/4.5 9 200 800/4 170 925/3.5 4 180 850/4 6 190 800/4 190 800/4 190 800/4 190 800/4 100 850/3.5 150 800/4.5 9 200 750/3 230 750/3 230 750/3 230 750/3 230 750/3 230 600/2 250 700/2 250 700/2 250 600/2 310 600/2	vent	lime (sec)	Value(vol/#breath)) Symptom	
- 650/1.5 - 650/2 - 550/2 - 550/2 - 550/2 - 550/2 - 750/2 - 750/2 - 750/2 - 750/3 -	aseline	-	650/2		
tart spin 0 500/1.5 - 550/2 20 750/2 20 750/2 30 100/2 40 1100/2.5 ead motions 60 850/3 70 750/3 80 800/3 90 900/4 100 850/2.5 110 900/3.5 2 130 950/3 3 140 850/3.5 150 800/4 170 925/3.5 4 180 850/4 6 190 800/4 190 800/4 200 800/4 190 800/4 200 800/4 190 800/4 200 800/2 200 800/2 20		-	650/1.5		
- 600/2 - 550/2 tert spin 0 500/1.5 1 10 600/2 20 750/2 30 1000/2 40 1100/2 50 1100/2.5 ead motions 60 850/3 70 750/3 80 800/3 90 900/4 100 850/2.5 110 900/3 120 900/3.5 2 130 950/3 140 850/4.5 150 800/4 170 925/3.5 4 180 850/4 170 925/3.5 4 180 850/4 170 800/4.5 9 220 750/3 230 750/3 240 750/3 240 750/2 250 700/2 250 700/2 250 700/2 250 700/2 250 650/2 300 650/2 300 650/2 300 600/2 310 600/2 320 600/2			650/1.5		
tart spin 0 500/1.5 1 0 10 0 1000/2 1000/2 40 1100/2.5 ead motions 0 100 100/2.5 ead motions 100 100 100 100 100 100 100 10		-	600/2		
tart spin 0 500/1.5 1 10 600/2 20 750/2 30 1000/2 40 1100/2.5 ead motions 60 850/3 70 750/3 80 800/3 90 900/4 100 850/2.5 110 900/3.5 2 130 950/3 3 140 850/4.5 150 800/4 170 925/3.5 4 180 850/4 6 190 800/4 190 800/4 200 800/		-	550/2		
10 600/2 20 750/2 30 1100/2 50 1100/2.5 60 850/3 70 750/3 80 800/3 90 900/4 100 850/2.5 110 900/3.5 120 900/3.5 130 950/3 140 850/3.5 150 800/4.5 170 925/3.5 180 850/4 190 800/4.5 200 750/3 230 750/3 230 750/2 230 750/2 230 750/2 230 750/2 230 750/2 230 750/2 230 630/2 310 600/2 320 600/2 320 600/2 320 600/2	tart spin	0	500/1.5	1	
20 750/2 40 1100/2 50 1100/2.5 ead motions 60 850/3 70 750/3 80 800/3 90 900/4 100 850/2.5 110 900/3.5 2 130 950/3 3 140 850/4 170 925/3.5 4 180 850/4 170 925/3.5 9 220 750/3 230 750/3 230 750/2 240 750/2 250 700/2 250 700/2 250 700/2 250 700/2 250 700/2 250 700/2 250 700/2 250 700/2 250 650/2 300 600/2 310 600/2		10	600/2		
and motions and motions and motions and motions and motions and motions and motions and motions and motion and motion		20	750/2	i	
ead motions 60 1100/2.5 60 850/3 70 750/3 80 800/3 90 900/4 100 850/3.5 120 900/3.5 130 950/3 3 140 850/3.5 150 800/3.5 160 950/4 170 925/3.5 4 180 850/4 6 190 800/4 200 800/4 200 800/4 200 800/4 200 750/3 230 750/3 240 750/2 260 700/2 260 700/2 260 650/2 300 650/2 300 600/2 310 600/2		30	1000/2		
ead motions 60 1100/2.5 80 800/3 90 900/4 100 850/2.5 110 900/3.5 2 130 950/3 3 140 850/4.5 150 800/3.5 160 950/4 170 950/4 170 950/4 170 800/4.5 200 800/4 top head motion 210 800/4.5 230 750/3 240 750/2 250 700/2 260 700/2 260 700/2 260 700/2 260 650/2 300 650/2 320 650/2 320 600/2		40	1100/2		
ead motions 600 830/3 70 750/3 80 800/3 90 900/4 100 850/2.5 110 900/3 120 950/3 3 140 850/3.5 150 800/3.5 160 950/4 170 925/3.5 4 180 800/4 170 925/3.5 4 180 800/4 200 800/4 200 800/4 200 750/3 230 750/3 230 750/3 230 750/3 240 750/2 250 700/2 250 700/2 260 650/2 300 650/2 310 600/2 310 600/2		50	1100/2.5		
136 100 100 100 100 100 100 100 10	ead motions	60	850/3		
source in the second se		70	/50/3		
100 \$5072.5 110 900/3 120 900/3.5 2 130 950/3 3 140 \$50/3.5 150 \$00/3.5 160 950/4 170 925/3.5 4 180 \$50/4 6 190 \$00/4 200 \$00/4 200 \$00/4.5 9 220 750/3 230 750/3 240 750/2 250 700/2 250 700/2 260 700/2 280 \$50/2 300 \$650/2 300 \$600/2 310 \$600/2 320 \$600/2		80	80073		
100 830/2.3 120 900/3.5 2 130 950/3 3 140 850/4 6 160 950/4 170 925/3.5 4 180 850/4 6 190 800/4 200 800/4 200 800/4 200 800/4.5 9 220 750/3 230 750/2 250 700/2 250 700/2 260 750/2 250 650/2 300 600/2 310 600/2 320 600/2		90	90074		
110 900/3.5 2 130 950/3 3 140 850/3.5 150 800/3.5 160 950/4 170 925/3.5 4 180 850/4 6 190 800/4 200 800/4 200 800/4 200 750/3 230 750/3 240 750/2 250 700/2 260 700/2 260 700/2 260 650/2 300 600/2 310 600/2 310 600/2		100	850/2.5		
120 900/3.5 2 130 950/3 3 140 850/3.5 150 800/3.5 160 950/4 170 925/3.5 4 180 850/4 6 190 800/4 200 800/4 200 800/4 200 750/3 230 750/3 240 750/2 250 700/2 260 700/2 260 700/2 280 650/2 300 600/2 310 600/2 320 600/2		110	900/3	n	
130 950/3 5 140 850/3.5 150 800/3.5 160 950/4 170 925/3.5 4 180 850/4 6 190 800/4 200 800/4 200 800/4 200 750/3 230 750/3 240 750/2 250 700/2 260 700/2 260 700/2 260 650/2 300 600/2 310 600/2 320 600/2		120	900/3.5	2	
140 000/3.5 150 800/3.5 160 950/4 170 925/3.5 4 180 850/4 6 190 800/4 200 800/4 200 800/4 200 750/3 230 750/3 240 750/2 250 700/2 260 700/2 260 700/2 280 650/2 300 600/2 310 600/2 310 600/2		130	950/3 850/2 5	.5	
130 00073.3 160 95074 170 92573.5 4 180 85074 6 190 80074 200 80074 200 80074 200 75073 230 75073 240 75072 250 70072 260 70072 260 70072 280 65072 300 60072 310 60072 320 60072		140			
1360 930/4 170 925/3.5 4 180 850/4 6 190 800/4 200 800/4 200 800/4.5 9 220 750/3 230 750/3 240 750/2 250 700/2 260 700/2 260 650/2 290 650/2 300 600/2 310 600/2 310 600/2		150	800/3.5		
170 925/3.5 4 180 850/4 6 190 800/4 200 800/4.5 9 220 750/3 230 750/2 250 700/2 260 700/2 260 700/2 280 650/2 290 650/2 300 600/2 310 600/2 320 600/2		100	950/4	1.	
top head motion 210 800/4 200 800/4 200 750/3 230 750/3 240 750/2 250 700/2 260 700/2 280 650/2 300 600/2 310 600/2 320 600/2		120	923/3.3	4	
top head motion 210 800/4 220 750/3 230 750/3 240 750/2 250 700/2 260 700/2 270 700/2 280 650/2 300 600/2 310 600/2 320 600/2		180	800/4	0	
top head motion 210 800/4.5 9 220 750/3 230 750/2 250 700/2 260 700/2 270 700/2 280 650/2 300 600/2 310 600/2 320 600/2		190	800/4		
136 136 100 100 100 100 100 100 100 10	the beau mand	200	900/4	0	
220 750/3 240 750/2 250 700/2 260 700/2 270 700/2 280 650/2 300 600/2 310 600/2 320 600/2 320 600/2	top nead moti	220	750/3	9	
240 750/2 250 700/2 260 700/2 270 700/2 280 650/2 300 600/2 310 600/2 320 600/2 320 600/2		220	750/3		
136 136 130 130 130 130 130 130 100 100		230	750/2		
136 100/2 260 700/2 280 650/2 300 600/2 320 136		250	700/2		
136 100 100 100 100 100 100 100 10		250	700/2		
136 136 136 136 136 136 150/2		270	700/2		
136 130 130 136 130 130 130 130 130 130 130 130		280	650/2		
300 310 320 136		200	650/2		
310 320 600/2 136		300	600/2		
320 600/2 136		310	600/2		
136		320	600/2		
136		~~ ~	· · · · · ·		
136					
136					
136					
136					
136					
136					
136					
136					
136			•		
			136		

Ļ

nan kanananan kanan k

Parameter: Galvanic Skin Reflex (GSR) Date: 1 Subject: #8 Time: 1

10 . 3 1 .

Ň

8

8

NXC NXC

ß

8

1132555

Date: 14 Aug 86 Time: 1203 - 1207

Event	Time (sec)	Value (K)	Symptom
baseline	-	1100	
	-	1100	
	-	1100	
	-	1100	
	-	1000	
start spin	0	1100	1
	10	950	
	20	900	
	30	900	
	40	950	
	50	975	
head motions	60	975	
	70	854	
	80	854	
	90	854	
	100	854	
	110	760	
	120	854	2
	130	900	3
	140	900	
	150	925	
	160	854	
	170	760	4
	180	800	6
	190	760	
	200	854	
stop head mot:	ion 210	854	9
	220	854	
	230	800	
	240	/ 50	
	250	800	
	260	800	
	270	800	
	200	/ 20	
	290	/ 20	
	300	/ 20	
	210	800	
	320	800	

-	Event	Time (sec)	Value (%)	Symptom	
S	baseline	-	75		
		-	75		
		-	70		
X		-	75		
-	start spin	0	80	1	
		10	85		
		20	85 75		
9		40	80		
5		50	80		
-	head motions	60 70	80		
8		80	د <i>ر</i> 80		
		90	75		
T ()		100	75		
Č.		110	70		
19		130	65	3	
r		140	65	-	
£		150	50	5	
		160	55		
		180	55		
Ø		1.90	50	7	
-		200	60		
ł		210	55 55	9	
		230	60		
8		240	50		
6		250	45		
	stop head mot	200 100 270	45 40	10	
24	Stop negg mot	280	40	10	
τų.		290	45		
6 2		300	50		
		320	40		
~ ~		330	40		
8		340	40		
8		350	40 45		
1.4		370	45 50		
		380	50		
		390	50		
N		400	60 50		
X.		410	50		
• •				1	
. Ally			138		

Parameter: Surfa Subject: #9	ace Skin Ter	nperature	Date: 18 Aug 86 Time: 1036 - 1041
Event T:	ime (sec)	Value (F)	Symptom
baseline	-	93.4	
	-	93.4	
	-	93.4	
		93.4	
	-	93.4	
start spin	0	93.4	1
	10	93.4	
	20	93.4	
	30	93.4	
	40	93.4	
	50	93.4	
nead motions	50	93.4	,
	70	93.4	
	80	93.4	
	90	93.4	
	110	93.4	
	120	93.4	
	130	93.4	2
	140	93.4 03 /	3
	150	93.4	5
	160	93.2	5
	170	93.2	
	180	93.2	
	190	93.2	7
	200	93.1	·
	210	93.1	9
	220	93.1	
	230	93	
	240	93	
	250	92.9	
	260	92.9	
stop head motion	n 270	92.9	10
	280	93	
	290	93.1	
	300	93.3	
	310	93.5	
	340	93.7	
	340	93.0	
	350	54 0/ 2	
	360	94•2 94 A	
	370	0/ 5	
	380	94.6	
	390	94.8	
	400	95	
	410	95.1	

í,

8

5

Ĩ

6

82

Ľ

Parameter: Elo Subject: #9	ectrocardiogram	(EKG) Date: Time:	18 Aug 86 1036 - 1041
Event	Time (sec)	Value(Beats/min)	Symptom
baseline		87 90 87 93 102	
start spin	0 10 20 30 40 50	120 120 126 126 123 123	1
head motions	60 70 80 90 100 110 120	126 123 120 114 123 117 114	
	130	114	3
	150 160 170	117 117 120	5
	180 190	114 102	7
	200 210 220 230 240 250	120 120 111 117 108 99	9
stop head mot:	260 200 290 300 310 320 330 340 350 360 370 380 390	99 108 84 96 90 96 84 90 84 90 90 84 84 84 84	
	400 410	84 90	

· · · · · · · · · · · · ·

SAROWAN.

れたないののないで、 大臣が時期的にす し、「「「「「「」」」のないである」

8

X

8

Ĺ,

" Total and a set of the set of t

140

No.

Parameter: Tho Subject: #9	racic Respira	ation Date Time	e: 18 Aug e: 1036 -	86 1041
Event	Time (sec)	Value(vol/#breath)	Symptom	
baseline	-	700/3 700/3 750/4		
start spin	- - 0	800/4 900/4 800/4	1	
	10 20 30	800/5 800/4 800/4.5		
head motions	40 50 60 70	800/5 700/4.5 650/5		
	80 90	650/5 600/4 650/5 650/4 5		
	110 120 130	650/4 750/4 750/3.5	3	
	140 150 160	750/3.5 700/4 800/2.5	5	
	170 180 190	850/3 850/2.5 750/3	7	
	200 210 220 230	850/2.5 950/2.5 900/3	9	
	230 240 250 260	900/2.5 900/3 850/3.5 900/2 5		
stop head moti	on 270 280 290	900/2 800/3 900/2	10	
	300 310 320 330	900/2 900/2 900/2 750/1		
	340 350 360	730/1.5 700/2 600/1.5 600/2		
	370 380 390	600/1.5 600/2 650/2		
	400 410	600/2 650/2		

S.

Ő

<u>8</u>

N

23

Ęğ

ŝ

Ļ

Ì

ŀ

1

Ň

8

Ï

141

R

3	5 0	Parameter Subject:	: Diaphragmati #9	ic Respirati	ion Da Ti	te: 18 Aug me: 1036 -	86 1041
	, . , .	Event	Time (sec	c) Value	e(vo1/#breat	h) Sympton	m
00	3	baseline			1600/3 1600/3 1600/4		
		start spi	n 0		1600/4 1600/4 1500/4	1	
8			20 30 40		1500/5 1500/4 1600/4.5 1500/5		
	<u></u>	head moti	ons 60 70		1500/4.5 1400/5 1100/5		
			80 90 100		1250/4 1500/5 1200/4.5 1300/4		
ġ	0		120 130 140		1100/4 1000/3.5 1000/3.5	3	
			150 160 170		1300/4 1800/2.5 1700/3	5	
8	ğ		180 190 200 210		1800/2.5 1500/3 1800/2.5 1850/2 5	7	
			220 230 240		1750/3 1600/2.5 1800/3	3	
		stop head	250 260 motion 270		1750/3.5 1850/2.5 1900/2	10	
			280 290 300 310		1800/3 1800/2 1700/7 1600/2		
			320 330 340		1600/2 1600/1.5 1600/2		
	Š		350 360 370		1600/1.5 1500/2 1500/2		
			380 390 400 410		1500/2 1500/2 1500/2 1500/2		
8	Ś			142	130072		
	4, }						
		eren and a contraction					

£

F	m. / \	** ** ***	n .	
Event	Time (sec)	Value (K)	Symptom	
baseline	-	563		
	-	563		
	-	563		
	-	563		
	-	563		
start spin	0	563	1	
	10	563		
	20	420		
	30	420		
	40	480		
	50	480		
head motions	60	. 480		
	70	500		
	80	510		
	90	470		
	100	450		
	110	480		
	120	520		
	130	563	3	
	140	580		
	150	600	5	
	160	600		
	170	610		
	180	620	_	
	190	600	7	
	200	580	_	
	210	563	9	
	220	563		
	230	600		
	240	640		
	250	680		
	260	/00		
stop nead mot:	ion 270	700	10	
	280	750		
	290	760		
	300	/00		
	330	760		
	320	760		
	330	/00		
	34U 3 KA	700		
	320	740		
	300	700		
	380	700		
	300	110		
	230	000 200		
		800		

а Дел

222

Ŋ

<u></u>

8

8

Ĩ

Parameter: Fing Subject: #10	er Photople	thysmograph	Date: 19 Aug 86 Time: 1033 - 1038
Event I	'ime (sec)	Value (%)	Symptom
baseline		80 75 70 70 75	
start spin	0 10 20 30 40 50	80 95 90 90 85 80	1
head motions	60 70 80 90 100	75 75 75 70 70	
	110 120 130 140 150 160	70 70 75 75 60 70	3-3
	170 180 190 200 210 220	60 55 60 70 70 55	4
	230 240 250 260	55 60 60 70	7-8 9
stop head motio	270 n 280 290 300 310 320 330 340 350 360 370	70 70 75 70 60 60 65 60 60 60 60	10
	380 390 400 410	55 55 55 55	

.*t .*t

8

8

and the second second between the second second

144

Parameter: Surface Skin TemperatureDate: 19 Aug 86Subject: #10Time: 1033 - 1038

.

Event T	'ime (sec)	Value (F)	Symptom
heseline	_	94.8	
Daserine	-	04 8	
		05 1	
	_	05 1	
	-	93.I 05 1	
stant sain	-	95.1	
start spin	10	95.1	
	10	93.1	
	. 20	95	
	30	95	
	40	94.9	
bood motions		94.9	
neau motions	70	54.7 0/ 9	
	20	94.0 04 9	
	80	94.0	
	100	94.0 0/ 9	
	110	94.0	2-3
	120	94.7	2-5
	120	04.7	
	140	94.7	
	150	94.0 94.6	
	160	94.0 94 5	
	170	94.J 04 5	
	180	94.J 94.4	4
	100	94.4 94.4	+
	200	04 3	
	200	04 3	
	220	04 3	6
	230	94.9	7-8
	240	94.2	, 60
	250	94.2	
	260	94 - 1	9
	270	94.1	2
ston head motio	n 280	94	10
beop neur moure	290	95.5	
	300	95.3	
	310	95.3	
	320	95.2	
	330	95.2	
	340	95.4	
•	350	95.5	
	360	95.6	
	370	95.6	
	380	95.6	
	390	95.8	
	400	95.9	
	410	95.9	

Parameter: Electrocardiogram (EKG) Subject: #10

Date: 19 Aug 86 Time: 1033 - 1038

14 A A

17M	Lvent .	l'ime (sec)	Value(beats/min)	Symptom
	baseline	_	81	
		-	87	
		-	96	
1.		-	78	
(3 4)		***	87	
ത	start spin	0	96	1
		10	96	-
		20	102	
		30	96	
		40	93	
		50	93	
	head motions	60	90	
		70	90	
4		80	78	
-		90	84	
(P)		100	87	
		110	93	2-3
19'ù		120	84	
<i>6</i> 7.9		130	90	
N		140	96	
		150	102	
		160	72	
10		170	84	•
RY		180	84	4
		190	90	
D		200	102	
4. 1.0		210	90	
1. M.		220	90	6
1 73		230	96	7-8
83		240	84	
		250	90	_
		260	84	9
(1 4	aton bood mente	270	90	
64 ⁶	stop nead motio	n 280	90	10
		290	84	
61		300	96	
<u>66</u>		210	/ ð	
		320	96 6 /	
12		370	84	
55		340	87 87	
4 %		360	87	
#14		370	90 00	
		320	9U 6 /	
5			84	
		290	/ ð 0 /	
(X)		400	84	
64		410	10	
			146	
14			140	
T U				

Parameter: Thoracic	Respiration	Date:	19 Aug	86
Subject: #10	-	Time:	1033 -	1038

: - 1

e i Vie Nie

1

8

Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	_	350/2	
	-	350/2	
	-	350/2.5	
	-	400/3	
		300/3	
start spin	0	400/3	1
	10	500/3	
	20	500/3	
	30	600/3	
	40	600/2.5 550/2	
hand mandama	50	550/5	•
nead motions	00 70	300/3 5	
	80	300/3.5 400/4	
	90	300/3	
	100	450/3	
	110	500/2.5	2-3
	120	550/3	
	130	550/2.5	
	140	550/3	
	150	600/3	
	160	700/2.5	
	170	600/3	
	180	600/3	4
	190	500/2.5	
	200	750/2	
	210	800/2	6
	220	700/1.5	0 7 9
	230	750/2	/-0
	240	750/2	
	260	800/1.5	9
	270	650/2	
stop head moti	lon 280	750/2	10
•	290	700/2	
	300	800/2	
	310	1200/2	
	320	1200/1.5	
	330	1300/1	
	340	1300/1.5	
	350	1300/1.5	
	360	1200/2	
	370		
	νος	750/2	
	400	750/2	
	410	750/2	
•	410	73072	

147

Parameter: Subject: #1	Diaphragmatic O	Respiration	Date; Time:	19 Aug 1033 -	86 1038
Event	Time (sec)	Value(vol/#bro	eath)	Sympton	n
baseline	-	200/2			
	-	200/2	_		
	-	200/2.1	5		
	-	250/3			
start enin	-	200/3		1	
Start Spin	10	200/3		T	
	20	200/3			
	30	200/3			
	40	250/2.5	5		
	50	200/3			
head motion	s 60	200/3	_		
	70	150/3.9	5		
	80	250/4			
	100	200/3			
	110	250/2.	5	2-	-3
	120	400/3	-	-	•
	. 130	400/2.	5		
	140	250/3			
	150	250/3	_		
	160	350/2.5	5		
	170 .	350/3		,	
	180	400/3		4	
	200	500/2			
	210	650/2			
	220	700/1.5	5	6	
	230	600/2		7-	-8
	240	600/2			
	250	800/2	_		
	260	1200/1.9	5	9	
stop hond m	270 ation 280	300/2		10	
scop neau m	290	300/2		10	
	300	350/2			
	310	400/2			
	320	500/1.5	5		
	330	500/1			
	340	600/1.5	5		
	350	400/1			
	360	400/1.5)		
	0/C NRS	200/2.5)		
	300 300	300/2	5		
	400	300/2			
	410	250/2			
		, -			

j,

j,

X

action becauses

Parameter: Galvanic Skin Reflex (GSR) Subject: #10

Date: 19 Aug 86 Time: 1033 -1038

A/ B	Event	Time (sec)	Value (K)	Symptom
8	baseline	-	1200	
		-	1400	
		-	1100	
25		-	850	
	start spin	0	750	1
88		10	700	-
Q		20	700	
		30	700	
		40	750	
		50	750	
-	head motions	60	300	
94		70	825	
		80	854	
		90	854	
		100	900	0.0
		110	900	2-3
F.B		120	854	
<i>i</i> nta		130	930 050	
		150	950 050	
		160	950	
		170	870	
		180	900	4
8 N		190	900	7
		200	900	
		210	900	
. (e		220	854	6
		230	854	7-8
94		240	854	
RG		250	854	
		260	854	9
		270	854	
	stop head moti	on 280	854	10
- 4		290	800	
NN I		300	800	
2		310	800	
		320	825	
C Ma		330	040 015	
W.		240	04J 800	
W.		320	800 800	
1.44		370	854	
2		380	854	
		390	750	
		400	750	
2		410	750	
R				
			149	
N . 1				

63					
	Parameter: Fin Subject: #11	ger Photople	thysmograph	Date: 22 Aug 86 Time: 1512 - 1516	
	Event	Time (sec)	Value (%)	Symptom	
	baseline		65 55		
	start spin	-0	75 75	1	
ß	-	10 20	85 85		6 6 1
85		30 40	75 70		
	head motions	50 60	65 75		ļ
		70 80	· 75		2
		90 100	65	2	
60		110	65 65	-	
8		130	50 50	5-6	
		150	50 45	8	۲
		170	45	9	
g Bi	stop head moti	190	45	1. O	
n	stop nead mott	210	40	•	
		230	30		
81		250	25		
<u>(7</u>)		270	25		
		290	35		
Ма		310	30		
		330	20		
88		350	20		
		370	25		ł
		200	20		
5 1 1 1 1 1 1 1 1 1 1					
RA .					5 5
			150		2
lei -					Ş
				<u>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</u>	0000

Parameter:Facial PhotoplethysmographDate: 22 Aug 86Subject:#11Time: 1512 - 1516

Ń

10⁴

Ņ

Ď

X

8

8

Event 7	lime (sec)	Value (%)	Symptom
baseline	-	30	
	-	30	
	-	30	
start spin	0	30	1
-	10	40	
	20	40	
	30	45	
	40	30	
	50	30	
head motions	60	25	
	70	- 25	
	80	30	
	90	30	n
	110	30	2
	120	40	
	120	40 60	
	140	40	5-6
	150	40	5-0
	160	30	5
	170	30	9
	180	25	-
	190	30	10
stop head motio	on 200	20	
	210	30	
	220	50	
	230	45	
	240	50	
	250	30	
	260	30	
	270	35	
	280	20	
	290	40	
	300	40	
	310	5U 0 4	
	320	20	
	370	3U 25	
	340	20	
	360	30	
	370	25	•
	380	20	

151

Parameter: Surface Skin Temperature Subject: #11

57 g 4

ß

Ň

Ş

Sector Preserve

Date: 22 Aug 86 Time: 1512 - 1516

Event	Time (sec)	Value (F)	Symptom	
baseline	-	88.9		
		88.9		
	-	88,9		
start spin	0	88.9	1	
	10	88.9		
	20	88.8		
	30	88.8		
	40	88.7		
	50	88.7		
head motions	60	88.6		
	70	88.6		
	80	88.6		
	90	88.5	_	
	100	88.5	2	
	110	88.4		
	120	88.4		
	130	88.3		
	140	88.3	5-6	
	150	88.2	8	
	160	88.2	_	
	170	88.2	9	
	130	88.2		
	190	88.2	10	
stop head moti	on 200	88.2		
	210	88.2		
	220	88.2		
	230	88.2		
	240	88.7		
	250	89		
	260	89.5		
	270	90		
	280	90.3		
	290	90.7		
	300	91		
	310	91.2		
	320	91.4		
	330	91.5		

Parameter: Electrocardiogram (EKG) Subject: #11 Date: 22 Aug 86 Time: 1512 -1516

8

C

ß

i)

Ş

1

5.00

44

Event	Time (sec)	Value(beats/min)	Symptom
baseline	-	90	
	-	90	
	-	105	
start spin	0	132	1
	10	. 138	
	20	129	
	30	129	
	40	120	
hand making	50	123	
nead motions	0U 70	120	
	70	120	
	80 90	114	
	100	114	n
	110	108	4
	120	111	
	130	100	
	140	108	5-6
	150	108	8
	160	108	•
	170	84	9
	180	108	-
	190	96	10
stop head moti	on 200	108	
	210	96	
	220	102	
	230	108	
	240	105	
	250	99	
	200	102	
	270	102	
	200	90	
	290	90	
	310	102	
	320	96	
	330	96	
	340	96	
	350	96	
	360	96	
	370	96	
	380	90	

Parameter: Thoracic Respiration Subject: #11 Date: 22 Aug 86 Time: 1512 - 1516 , i,

6.41

10000000

B322229

Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	-	500/3	
		500/3	
		550/4	
start spin	0	600/4	1
•	10	600/4	
	20	600/4.5	
	30	700/4	
	40	700/4.5	
	50	600/4.5	
head motions	60	600/4.5	
	70	550/4	
	80	500/5.5	
	90	500/4.5	
	100	500/4.5	2
	110	350/4	
	120	300/5	
	130	350/3.5	
	140	350/4	5-6
	150	450/3	8
	160	500/3	
	170	350/3	9
	180	700/3	
	190	150/2	10
stop head mot	ion 200	600/3	
-	210	800/2.5	
	220	1100/3	
	230	1200/3	
	240	1200/3	
	250	1200/3	
	260	1200/3	
	270	1100/3	
	280	1200/3	
	290	1000/3	
	300	1000/3	
	310	1100/3	
	320	1000/3	
	330	750/3	
	340	700/3	
	350	700/3	
	360	1000/3	
	370	850/3	
	380	800/3	

ß

3

Ø,

ž

[,

ı,e

17.77.75.15

	Parameter: Dia Subject: #11	phragmatic Re	aspiration	Date: Time:	: 22 Au; : 1512
	Fuent		Velue/ue1/#b		Sumata
88			varue(vor/#D	(eath)	зушрсо
ίψ) I	Daserine	-	300/3		
	start spin	- 0	300/4 300/4		1
59	•	10	400/4	e	
		30	350/4	• 2	
KN		40	400/4	.5	
1	head motions	60	400/4	• 5	
8		70	600/4		
7 1		80 90	400/5	.5 .5	
		100	400/4	.5	2
		110 120	400/4		
þ.		130	350/3	• 5	
		140	450/4		5
6		160	600/3		Ū
		170	550/3		9
<u>)</u>		190	550/2		10
Ř.	stop head motio	on 200	800/3	5	
~~		220	1000/3	ر _۲	
L,		230	1100/3		
		250	1200/3		
83		260	1200/3		
n.p		280	1200/3		
		290	1200/3		
00		310	1000/3		
KN		320	1000/3		
R .		340	800/2	.5	
(* =)		350	800/3		
		370	750/3		
		380	750/3		
Ул На					
-					
Ň					
₩2			155		
ers.			155		

Parameter: Galvanic Skin Reflex (GSR) Subject: #11

. .

8

Ĵ

N)

Ĉ

8

Š

8

ŝ

Date: 22 Aug 86 Time: 1512 - 1516

333.635

Event	Time (sec)	Value (K)	Symptom
baseline	-	30	
	-	30	
	-	30	
start spin	0	15	1
-	10	15	
	20	15	
	30	15	
	40	15	
	50	15	
head motions	60	15	
	70	15	
	80	15	
	90	15	
	100	15	2
	110	15	
	120	15	
	130	15	c 4
	140	15	3-0
	150	15	o
	170	15.	0
	180	15	2
	190	15	10
stop head moti	on 200	15	2.0
coop mede meas	210	100	
	220	200	
	230	300	
	240	400	
	250	500	
	260	550	
	270	600	
	280	640	
	290	680	
	300	700	
	310	740	
	320	800	
	330	820	
	340	840	
	350	854	

	Parameter: Fin Subject: #12	ger Photople	thysmograph	Date: 26 Aug 86 Time: 1033 - 1040	
	Event	Tíme (sec)	Value (%)	Symptom	
8	baseline		70		
-			75 80		н н н
20		-	80		4 •
w. r	start spin	0	80	1	9 j. (*
	•	10	80		
<u>QU</u>		30	80		
		40 50	80		84
88	head motions	50 60	75 75		() ()
0.0		70	80		
		80 90	75 75		
(3)		100	60		3
83		110 120	70 80	2	8
		130	75	-	52 4 4
14		140 150	75 80		
		160	70		4
80		170	75		
64		190	85		
		200	75		
0.5		220	75		
		230	80		
8		240	75	4	ļ,
		260	80		1
2		270	85	6	0 0
HNC .		290	85	8	
6 3		310	75		L. L
80		320	65	0	2
3 (3)		330	65	У	ĺ.
1 (S)		350	65		1
-		360 370	70 70		l l
	stop head moti	on 380	70		
_		390 400	75 70		
		410	75		, ,
) }
			157		
F					}
ามหายเบละและเล	auseren eren er	TUTIC CONTRACTION	LATATAT AT ALL AND ALL	unany an an <u>aladan analan</u> ana analana ana	<u>xaxanana</u>

•

1

D Ģ on In the second In the second second

1.2.2.5.

. Ф_у.

4 4

Fuest		Value (9)	Sumpton	
Event	lime (sec)	value (%)	зущртош	
baseline	-	50		
	-	÷2		
		50		
		50		
start spin	0	50	1	
	10	50		
	20 30	50		
	40	50		
	50	50		
head motion:	s 60	50		
	70	60 6 F		
	80 00	0) 65		
	100	60		
	110	60		
	120	60	2	
	130	65		
	140	00 6 s		
	160	60		
	170	65		
	180	60		
	190	60		
	200	60 60		
	210	60 60		
	230	60		
	250	70	4	
	260	70		
	270	70		
	280	70	D R	
	300	75	0	
	310	75		
	320	75		
	330	80	9	
	340	80		
	350	80 80		
	370	80		
stop head m	otion 380	80		
•	390	70		
	400	70		
	410	64		
		159		

BOOK SOL

2

1 2
8
t↓ p
88
888
X
×

ΥG Έ

<u>م</u>

R¹

420	56
430	80
440	75
450	70
460	56
470	49
480	56
490	50
500	50
510	50
520	56
520	56
550	50
540	42
550	60
560	64
570	50

Х., У.,

41.

	Event	Time (sec)	Value (F)	Symptom	
9	baseline	-	83.2		
6		-	83.2		
			83.2		
á.		-	83.1		
7		-	83.1	_	
•	start spin	0	83.1	1	
5		10	83.1		
Ř		20	83.1		
		20	ם גם בע 1		
		40 50	83.1		
N	head motions	60	83.1		
1		70	83.1		
U		80	83.1		
9		90	83.1		
		100	83.1		
ŀ		110	83	·	
<u>ď</u>		120	83	2	
U		130	83		
.		140.	83		
		150	83		
4		100	83		
		190	8J 87 0		
		100	04.7 <u>9</u> 7 0		
₩,		200	82.9		
		210	82.9		
3		220	82.9		
5		230	82.9		
		240	82.9		
4		250	82.9	4	
Á –		260	82.8		
		270	82.8		
8		280	82.8	6	
g		290	82.8	8	
		300	82.8		
จ		310	82.8		
3		320	82.8	7	
-		370	82./ 97 7	/	
5		340	02./ Q7 7		
Ķ.		360	82.7		
		370	82.7		
Ð	stop head moti	on 380	82.7		
y .	F	390	82.7		
		400	82.7		
*		410	82.7		
8					
D					
~			161		
- [

82.7
82.7
82.8
82.8
82.8
82.8
82.8
82.8
82.8
82.8
82.9
82.9
82.9
82.9
82.9
82.9

XX XX

Nø M

Parameter: Ele Subject: #12	ectrocardiogram	(EKG)	Date: 26 Aug 8 Time: 1033 - 1	36 1040
Event	Time (sec)	Value(Beats/min)) Symptom	
baseline	-	72		
	-	78		
	-	72		
	-	72		
	-	78		
start spin	0	84	1	
	10	78		
	20	84		
	30	84		
	40	84		
· · ·	50	84		
head motions	60	84		
	70	84		
	80	90		
	90	96		
	100	90		
	110	84	•	
	120	84	2	
	150	90		
	140	90		
	160	04 9/		
	170	94		
	180	84		
	190	90		
	200	90		
	210	90		
	230	96		
	240	102		
	250	102	4	
	260	108		
	270	108		
	280	108	6	
	290	102	8	
	300	108	-	
	310	108		
	320	102		
	330	102	9	
	340	102		
	350	108		
	360	108		
	370	114		
stop head moti	on 380	108		
	390	93		
	400	93		
	410	84		

1220000

Ň

ŝ

8

S.

ţe
88
Į
8
Ň.
S.

Parameter: The Subject: #12	pracic Respira	ation Date: Time:	26 Aug 86 1033 - 1040
Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	_	650/1.5	
	-	650/2	
	-	600/2.5	
	-	600/2	
	apain.	550/2.5	
start spin	0	500/4	1
	10	350/5	
	20	450/4	
	30	500/4	
	40	600/2.5	
	50	650/2	
head motions	60	300/4	
	70	250/4.5	
	80	200/5	
	90	300/4	
	100	450/3	
	110	500/3	
	120	500/3	2
	130	500/2.5	
	140	500/3	
	160	450/3	
	100	500/4	
	190	400/3	
	100	500/2.5	
	200	500/1.5 500/2	
	200	500/2 5	
	210	500/2.5	
	220	500/3	
	240	400/3	
	250	400/2	1.
	260	400/3	4
	270	450/2 5	
	280	500/2.5	6
	290	450/2.5	8
	300	450/2.5	0
	310	400/2.5	
	320	300/3	
	330	400/3	Q,
	340	500/3	-
	350	400/3	
	360	400/2.5	
	370	500/4	
stop head moti	on 380	350/3	
	390	300/3	
	400	500/2	
	410	500/1.5	

COCONTA

200 200

K

(2)(0)

Î

63

88

Š.

8

22

4

No. No.

国内ないながれた

165

420	750/0
420	75072
430	500/2
440	500/2
450	550/1
460	600/1.5
470	450/2.5
480	450/1.5
490	400/2
500	400/2
510	450/1.5
520	500/2
530	500/2
540	500/2
550	400/2
560	550/2
570	700/1.5

いちわたいのいしてきましたもの

•

ころうろうちのかん おおおろうちちち しろうち あちもう ふんちのちちまま 二日 うちちちちちちちちちちちちちちちちちちちちち

X

8

Ň

8

XI XI

Parameter: Di Subject: #12	aphragmatic	Respiration	Date: 26 Aug 86 Time: 1033 - 1040
Event	Time (sec)	Value(vol/#breath)	Symptom
baseline	_	650/1.5	
	-	700/2	
	-	650/2.5	
	-	500/2	
start onin	-	500/2.5	1
scare spin	10	500/4	l
	20	500/5	
	30	700/4	
	40	850/2-5	
	50	900/2	
head motions	· 60	600/4	
	70	700/4.5	
	80	600/5	
	90	800/4	
	100	700/3	
	110	700/3	
	120	700/3	2
	130	600/2.5	
	140	600/3	
	150	70073	
	170	/00/4 600/2	
	180	750/2 5	
	190	750/1 5	
	200	750/3	
	210	700/2.5	
	220	700/3	
	230	750/3	
	240	750/2	
	250	700/3	4
	260	700/3	
	270	750/2.5	_
	280	650/2.5	6
	290	750/2.5	8
	300	/50/2.5	
	320	650/2.5	
	330	650/3	Q
	340	700/3	7
	350	650/3	
	360	700/2.5	
	370	650/4	
stop head moti	ion 380	500/3	
	390	500/3	
	400	500/2	
	410	550/1.5	

. 72

ίλ^ε

XXX

8

222

88

ŝ

2222.22

666533

223
53
523
R.
X
3
3
2

Ŕ

420	500/2
430	500/2
440	550/2
450	500/1
460	450/1.5
470	500/2.5
480	500/1.5
490	450/2
500	450/2
510	400/1.5
520	400/2
530	400/2
540	500/2
550	400/2
560	500/2
570	500/1.5

Subject: #12			Time: 1033 - 1040
Event	Time (sec)	Value (K)	Symptom
baseline	-	54	
	-	70	
	-	90	
	-	90	
	-	110	
start spin	0	150	1
	10	150	-
	20	150	
	30	150	
	40	150	
	50	150	
nead motions	6 0	150	
	70	150	
	80	150	
	9 0	150	
	100	160	
	110	160	
	120	160	2
	130	160	-
	140	170	
	150	180	
	160	190	•
	170	200	
	180	215	
	190	238	
	200	235	
	210	235	
	220	250	
	230	260	
	240	260	
	250	260	4
	260	260	-
	270	238	
	280	238	6
	290	238	Ř
	300	238	6
	310	260	
	320	290	
	330	320	q
	340	350	2
	350	370	
	360	420	
	370	420	
stop head motion	on 380	420	
	390	420	
	400	460	
	+ • • •	400	

Ē

E

84

8

Ę.

ļ.

5. X

3

Ě

į.

i i

420	460
430	490
440	490
450	490
460	490
470	490
480	490
490	520
500	510
510	520
520	520
530	520
540	520
550	520
560	320
570	563

い きんてい ひんしい

k.

榝

8

5

6

R

M

н. Х

3

j.

Ц.

Ľ

Space
Appendix C MOTION SICKNESS (TAPE EDIT)

2

1. 1. 1.

8

8

<u>23</u>

 $\left\{ \boldsymbol{\lambda}_{i}^{T}\right\}$

R

8

Ŕ

Baseline	0-3	4-7	8-10	10+
Pre-Spin	Spin	Pre-Nausea	Nausea	Post
1 15- 30	30-120	120-140	140-175	175-265
a= 1000-1010	a= 1000-1065	a= 1000-1014	a≕ 1000-1023	a=1000-1066
2 385-415	415-485	485-510	510-550	550-615
a= 1010-1031	a= 1065-1114	a= 1014-1031	a= 1023-1050	a=1066-1114
3 730-760	760-825	825-870	870-895	895-955
a≖ 0-32	a= 0-70	a= 0-48	a= 0-28	a= 0-65
4 245-275	275-310	310-380	380-420	420-540
a= 1031-1051	a= 1114-1138	a= 1031-1080	a= 1050-1075	a=1114-1199
5 635-665	665-685	685-720	720-745	745-820
a= 1051-1072	a= 1138-1152	a= 1080-1104	a= 1076-1093	a=1199-1251
6 970-1000	1000-1140	1140-1170	1170-1220	1220-1310
a= 1072-1092	a= 1152-1248	a= 1104-1124	a= 1093-1126	a=1251-1313
7 1430-1460	1460-1520	1520-1545	1545-1585	1585-1670
a= 1092-1112	a= 1248-1288	a= 1124-1140	a≔ 1126-1151	a=1313-1370
	25- 95	95-110	110-125	125-275
	a≖ 70-144	a= 48-64	a≖ 28-44	a≖ 65-221
9 430-460	460-530	530-560	560-600	600-690
a= 1112-1132	a= 1288-1334	a= 1140-1161	a= 1151-1177	a=1370-1429
1.0 790-880	880-950	950-990	990-1018	8 1018-1103
a= 58-150	a= 144-214	a= 64-106	a= 44-74	a= 221-305
11 0-20	20~ 80	80- 95	95-125	125-210
a=1132-1145	a≖ 1334⊶1374	a= 1161-1171	a= 1177-1196	a≖1429-1485
12 570-600	600-715	715-745	745-790	790-885
a≕ 150-180	a= 214-326	a= 106-137	a= 74-123	a=305-395
13 975-1005	1005-1110	1110-1123	1123-1140	1140-1180
a= 1145-1165	a= 1374-1442	a= 1171-1181	a= 1196-1207	a=1485-1510
RESPIRATION				

 Baseline normal <= 15 bpm)</th>
 Baseline tachypneic (> 15 bpm)

 3, 8, 10, 12
 1, 2, 4, 5, 6, 7, 9, 11, 13

<u>እምራት የሚያስት የሚያስት የስት የአምራት የእምራት የ</u>

MOTION SICKNESS (TAPE EDIT)

Ŕ

ß

K

ß

<u></u>

 $\bigotimes_{i \in I}$

ß

N. N

#1

#2

#3

#4

#5

Add 180 sec after stop head motion GSR - not valid EEG (A) - good 2 EEG (B) - use only after symptoms 10+ 3 EEG (C) - not valid 4 ENG (H) - good 5 ENG (V) - good (positive slow EEG) 7 Add 130 sec after stop head motion GSR - decreased EEG (A) - use only after symptoms 10+2 EEG (B) - not valid 3 EEG (C) - not valid 4 5 ENG (H) - not valid ENG (V) - good (+ slow EEG) 7 Add 120 sec after stop head motion GSR - increased EEG (A) - good 2 EEG (B) - not valid 3 EEG (C) - not valid 4 ENG (H) - good (+ slow EEG)5 ENG (V) - good (+ slow EEG) 7 Switch EIG and EGG 12,13 Add 240 sec after stop head motion GSR - decreased EEG (A) - good 2 3 EEG (B) - not valid EEG (C) - not valid 4 ENG (H) - not valid 5 7 ENG (V) - good (no slow EEG) Switch EIG and EGG 12,13 Add 150 sec after stop head motion GSR - increased EEG (A) - not valid 2 EEG (B) - not valid 3 EEG (C) - not valid 4 ENG (H) - good (+ slow EEG) 5 7 ENG (V) - good (+ slow EEG) 12.13 Switch EIG and EGG EKG - arrhythmia: ++

172

ß		
	#6	Add 180 sec after stop head motion GSR - minimal decrease 2 EEG (A) - not valid 3 EEG (B) - not valid
83		4 EEG (C) - not valid 5 ENG (H) - good 7 ENG (V) - good (+ slow EEG) 12,13 Switch EIG and EGG
	#7	Add 170 sec after stop head motion
		GSR - minimal increase 2 EEG (A) - good after B = 1497 3 EEG (B) - good after B = 1497
<u>S</u>		5 ENG (H) - good (+ slow EEG) 7 ENG (V) - not valid
	#8	Add 300 sec after stop head motion GSR - decreased 2 EEG (A) - not valid
X		3 EEG (B) - good 4 EEG (C) - not valid 5 ENG (H) - overloaded but (+ slow EEG) not val 7 ENG (V)
ĥ	#9	Add 180 sec after stop head motion
8		2 EEG (A) - not valid 3 EEG (B) - not valid 4 EEG (C) - not valid
40		5 ENG (H) - good (+ slow EEG) 7 ENG (V) - good (+ slow EEG) Resp(D) - greater amplitude than Thoracic
	#10	Add 170 sec after stop head motion GSR - minimal increase
R		2 EEG (A) - Use only baseline and 104 3 EEG (B) - not valid 4 EEG (C) - not valid 5 ENG (H) - not valid
	#11	/ ENG (V) - good (+ slow EEG) Add 170 sec after stop head motion
		GSR - increased 2 EEG (A) - good 3 EEG (B) - good 4 EEG (C) - not connected (not valid)
N		5 ENG (H) - good (+ slow EEC) 7 ENG (V) - good (+ slow EEG)

5

B.

•

ት እን ወን እን እን እን እን እን እን እን እ

173

. 7.7.7.

HAL WARDY

#12

#13

6

ß

ξŝ

<u>}</u>

Ĺ

 Add 190 sec after stop head motion GSR - increased 2 EEG (A) - good (+ slow EEG) 3 EEG (B) - good 7 EEG (C) - good (+ slow EEG) 5 ENG (H) - not valid 4 ENG (V) - not valid Add 80 sec after stop head motion GSR - slight decrease

2	EEG	(A)	-	not valid	
3	EEG	(B)	-	not valid	
4	EEG	(C)	-	not valid	
5	ENG	(H)		good (+ slow EEG	slightly)
7	ENG	(V)	-	good (+ slow EEG	slightly)

እን ጋውር**ል መ**ብር የራን ራን ራን ራን ራን ራን ራን ራን ራን አንስ እንዲቀም እንዲ የራን እንዲ የ

Captain Michael R. McPherson was born the son of Glenn and Anne McPherson on 17 December 1957 in Las Vegas, Nevada. He graduated with honors from Westhill High School in Syracuse, New York in 1976 and attended the United States Air Force Academy, Colorado Springs, Colorado from which he received his commission and the degree of Bachelor of Science in Biology in May 1981. After completing technical training in computer programming at Keesler AFB, Mississippi, he was assigned to Electronic Systems Division at Hanscom AFB, Massachusettes. There he served as Manager of Software Plans and Programs until May 1985 when he was assigned to AFIT's School of Engineering at Wright-Patterson AFB, Ohio.

> Permanent address: 514 W. Manchester Rd Syracuse, NY 13219

VITA

Ŕ

Ø

R

R

ß

17

Śj

R

	DOCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE	MARKINGS		
UNCLASSIFIED		3. DISTRIBUTION		OF REPORT	
26. DECLASSIFICATION / DOWNGRADING SCHE	DULE	Approved f distributi	for public on unlimit	release;	
I. PERFORMING ORGANIZATION REPORT NUN	BER(S)	5. MONITORING	ORGANIZATION	REPORT NUN	ABER(S)
AFIT/GCS/ENG/86D-					
Sa. NAME OF PERFORMING ORGANIZATION School of Englineering	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	DNITORING ORG	ANIZATION	
ADDRESS (City, State, and 218 Code)	AFIT/ENG		tents and TIE	Codel	
Air Force Institute of Tech Wright-Patterson AFB, Ohio	1010gy 45433	70. ADDRESS (C/	y, state, and zir		
a. NAME OF FUNDING / SPONSORING ORGANIZATION	3b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
c. ADDRESS (City, State, and ZIP Code)	i	10. SOURCE OF F		RS	
		PROGRAM	PROJECT	TASK	WORK UNIT
			1		1
	18. SUBJECT TERMS	Continue on rever	e if necessary ar	d identify h	v block number)
FIELD GROUP SUB-GROUP	Motion Sickne	ess, Aviation	Medicine,	Descript	live
06 19	Statistics, F	Regression An	alysis		
06 19 9. ABSTRACT (Continue on reverse if necessa	Statistics, F	Regression An	alysis	<u></u>	
06 19 9. ABSTRACT (Continue on reverse if necessar Title: A COLLECTION AND STA MOTION SICKNESS INCL	TISTICAL ANALYSIS	Regression An number) 5 OF BIOPHYSI	alysis CAL DATA TO) PREDICT	
06 19 9. ABSTRACT (Continue on reverse if necessa Title: A COLLECTION AND STA MOTION SICKNESS INCI Thesis Chairman: Matthew Ka Professor	Statistics, F ny and identify by block r TISTICAL ANALYSIS DENCE brisky, PhD of Electrical Eng	Regression An number) 5 OF BIOPHYSI gineering	Alysis CAL DATA TO Approved for Data for Hur Air Force 1. Wilght Pathan	D PREDICI	THE GOT
06 19 19. ABSTRACT (Continue on reverse if necessa Title: A COLLECTION AND STA MOTION SICKNESS INCI Thesis Chairman: Matthew Ka Professor 20. DISTRIBUTION/AVAILABILITY OF ABSTRAC	Statistics, F ny and identify by block r TISTICAL ANALYSIS DENCE brisky, PhD of Electrical Eng	Regression An number) 5 OF BIOPHYSI gineering 21. ABSTRACT SE	CAL DATA TO CAL DATA TO Don for Bur Air Force 1. Wilght Porton.	D PREDICI	I HAW AFR 110-9. J Man Q (2) Jausioneri Davelopment - y faigi
06 19 9. ABSTRACT (Continue on reverse if necessar Title: A COLLECTION AND STAMOTION SICKNESS INCL MOTION SICKNESS INCL Thesis Chairman: Matthew Ka Professor 20. DISTRIBUTION / AVAILABILITY OF ABSTRAC UNCLASSIFIED/UNLIMITED 23. NAME OF RESPONSIBLE INDIVIDUAL	Statistics, F ny and identify by block r TTISTICAL ANALYSIS DENCE brisky, PhD of Electrical Eng of Electrical Eng S RPT. DTIC USERS	egression An number) 5 OF BIOPHYSI gineering 21. ABSTRACT SE UNCLASS	CAL DATA TO CAL DATA TO Don for For Air Force L Wright Portector Wright Portector CURITY CLASSIFI TFIED	D PREDICI	THAN ART 10-1. J Hand () Invelopment inty fact
06 19 19. ABSTRACT (Continue on reverse if necessal Title: A COLLECTION AND STAMOTION SICKNESS INCL MOTION SICKNESS INCL Thesis Chairman: Matthew Ka Professor 20. DISTRIBUTION / AVAILABILITY OF ABSTRAC UNCLASSIFIED/UNLIMITED 22. NAME OF RESPONSIBLE INDIVIDUAL Matthew Kabrisky, PhD, Profe	Statistics, F ry and identify by block r TISTICAL ANALYSIS DENCE brisky, PhD of Electrical Enc s RPT. DTIC USERS SSOT	Aegression An number) 5 OF BIOPHYSI gineering 21. ABSTRACT SE UNCLASS 22b. TELEPHONE ((513) 255.	CAL DATA TO Approved for Data for Form J. Wilght Potter CURITY CLASSIFI IF JETD Include Area Coc -5276	D PREDICI	The go
06 19 9. ABSTRACT (Continue on reverse if necessar Title: A COLLECTION AND STANOTION SICKNESS INCL MOTION SICKNESS INCL Thesis Chairman: Matthew Ka Professor 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED 22. NAME OF RESPONSIBLE INDIVIDUAL Matthew Kabrisky, PhD, Profe D Form 1473, JUN 86	TISTICAL ANALYSIS DENCE brisky, PhD of Electrical Eng S RPT. DTIC USERS SSOC Previous editions are	egression An number) 5 OF BIOPHYSI gineering 21. ABSTRACT SE UNCLASS 22b. TELEPHONE ((513) 255.	CAL DATA TO CAL DATA TO Denored for Denored For Air Form L. Wilght Pathon UNITY CLASSIFI IF IED Include Area Coc -5276 SECURITY	CATION	TICE SYMBOL

UNCLASSIFIED

1,1

K

Ŕ

F

Ŕ

(block 19 cont)

Biophysical data were collected on human volunteers to study the effects of the motion sickness syndrome. Physiological parameters were analyzed by descriptive statistical methods and by means of a spectrum analyzer. Descriptive statistical analysis showed at least five separate physiological parameters were linearly correlated to a motion sickness symptom index. Spectral analysis showed definite frequency and amplitude shifts during the onset of motion sickness for various parameters. Low frequency brain wave activity on the order of 0.1 Hz was discovered as the subject approached nausea.

A multiple linear regression model was constructed from the correlated data obtained by descriptive statistics. Six separate physiological parameters were useful in describing a predictive motion sickness model that can be used as a major element in developing a complete biofeedback system for countering the effects of motion sickness. UNCLASSIFIC