
R-A17S S3 A PROTOTYPE KNOWLEDGE-BASED 5STEM FOR SATELLITE /
MISSION PLANNING(U) AIR FORCE INST OF TECH
NAIGHT-PATTERSON RFB OH SCHOOL OF ENGINEERING

LNCLASIFIED D E PERALES DEC 66 RFIT/GE/EMG/96D-17 F/0 22/1 ML

EIl.



1. ti 8 L2
&3L2 12

111.254' LA.: 1 I
El,..-



- 9'I

-FILE

Go

A PROTOTYPE KNOWLEDGE-BASED 
SYSTEM

FOR
SATELLITE MISSION PLANNING

THESIS

David E. Perales DTICCaptain, USAF
° 1 LECTE

APR 10 W7

DWRXMTON STATEMENT A1
ApvdfrpubLic ze1.aum

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

W right- Patterson Air Force Base, Ohio

87 4 10 094



AF IT/GE/ENG/86D-17 ARJOtSU

D U

A PROTOTYPE KNOWLEDGE-BASED SYSTEM
FOR

SATELLITE MISSION PLANNING

THESIS

David E. Perales
Captain, USAF

AFIT/GE/ENG/86D-17

DISTRTO FtAToMNr
Approved for public release;

Distribution Unlimited

Approved for public release; distribution unlimited

"I



AFIT/GE/ENG/86D-17

A PROTOTYPE KNOWLEDGE-BASED SYSTEM

FOR

SATELLITE MISSION PLANNING

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

David E. Perales, B.E.E.

Captain, USAF

December 1986

Approved for public release; distribution unlimited

'i-i



Acknowledaements

There are several people who deserved recognition for their

support and help during the duration of this thesis project. I

am deeply Indebted to thank LtCol Cochran and the Air Force

Satellite Control Facility for showing Interest in this project

and sponsoring it. Special thanks is extended to Maj Woffinden

for his insight into what was expected out of a thesis. A debt

of gratitude is owed to LtCol Parnell, my thesis advisor, for his

guidance during the formulation of this project. His influence

has enabled me to reach my full potential. However, my greatest

appreciation goes to Shirley, my wife, for all her patience,

support, and advice during the past 18 months. Despite both of

us working on our master degrees and sharing our home computer

for our theses, our marriage has survived the assignment at AFIT

and grown stronger in the process.

David E. Perales

Accesion For

NTIS CRAMi
DT iC TAB U

Ja: t'fcctorn

-By

D; t ibt,to- I

A ),;,,y Codes

.i , or

i K2L 1.l



TABLE OF CONTENTS

Page

Acknowledgements .. ...... ....... . .. .. .. . . i

List of Figures..........................v

List of Tables ......................... v

Abstract ............................ V1

1. Introduction ......................... 1

Background . .. .. . .. . . .. .. .. .. .....

Problem . .......... . . . .. .. .. ... 2
s cope . . .. .. .. .. .. .. ... ... .... 3
Assumptions. ..................... 3
General Approach .. ........ . .. .. .. 4
Materials and Equipment .. . .. .. .. .. .....

Overview .. ........... .. ... .. . 5

11. Literature Review ...................... 7

ISIS. ............ ... .. ... .... 7
G ENSCHED . . .. .. .. .. .. .. ... .. .... 9
KAOS..........................10
SPOT .. ......... ... .. ... ... .. 11
1P3DGE/BARGAIN . . .. .. .. ... . . .. .. .... 11
Summary .......... .. ... .. ... .. 12

III. Analysis of the Task Domain...............14

Satellite Operations. .................. 14
Mission Planning Constraints ............. 15

User Requirements .. .. .. .. .. ... .. 15
Satellite Orbit. .................... 17
Satellite Capabilities and Resources* . . . 17

Payload Configurations .. .......... 1
Tape Recorders. ............ 19
Power . . . . . .. .. .. .. ... .. 21

Tracking Stations. .. ............... 23
Mission Planning Tasks ................ 24
Su.mmary ......................... 28

IV. Requirements Definition .................. 29

System Requirements ................. 29
Hardware .................... 29
Software .................... 30

Knowledge-Base. .. ................. 34
Human-Computer Interface ............... 35
Summary ....... ............... 37



V. Design . . . . . . . . . . . . . . . . . . . . . . . . . 38

User Selections ................. 38
Input Functions ................. 40
Output Functions ................. 41
Knowledge-Base ...... .................. ... 44

Satellite Resources .... ............. . 46
Tracking Station Resources .. ......... .. 47
Requirements .................... 49
Timeline Slots ..... ............... . 50

Control Strategy ...... ................. 51
Scheduling Functions ..... ............... . 52

VI. Analysis and Evaluation ...... ................ .. 55

Prototype System ..... ................. . 55
Two Requirement Cases .... .......... . . 56
Randomly Generated Requirements Cases . . .. 57

Software Environment. . . . . ............. 58
Hardware Environment ..... ............... . 59

VII. Conclusions and Recommendations ... ........... . 61

Summary . . . . ...................... 61
Recommended Improvements .... ............. . 62
Future Extensions ................ 64
Conclusion . . . ................... 65

Bibliography ......... ........................ . 66

Appendix A
Prototype User's Guide ................ A-1

Getting Started ................ A-1
Automatic Initialization.. . . . . . . . . A-i
Manual Initialization ........... A-2

System's Operation . . . ............... A-2
Modifying Database Information ........... .. A-3
System Constraints............. . A-3

Appendix B
Operational Concept Using an Knowledge-Based System . . B-1

User's Implementation .... ......... .. B-1
Mission Planner's Implementation. .......... B-i
Onboard Satellite Mission Planning ....... B-3

Vita .............. ........................... V-1

iv



List of Figures

Figure Page

1. Scheduling Flowchart .................. 26

2. System Structure Chart ...... ................. ... 38

3. Main Menu Display ....... ................... .. 39

4. Knowledge-Based System Display . . . . . . . . . . . . . 42

5. Sample Timeline ....... .................... 44

6. Knowledge-Base Structure Chart . . . . ............ 45

List of Tables

Table Page

I. Selected Scheduling Systems ................ 8

II. Knowledge-Based System Building Tools/Software
Packages ......... ....................... . 31

III. System Requirements ...... ................. .. 32

IV. System Test Matrix ...... .................. 56

V. Range of Random Requirements ..... .............. . 57

v

iV



Abstract

The growing complexity of modern~satellites and limited

resources available for satellite operations has caused satellite

mission planning to become a data intensive job which overwhelms

mission planners. The purpose of this reesr1I was to determine

the feasibility of using Artificial Intelligence techniques,

specifically knowledge-based systems, in satellite mission plan-

ning.

Research was conducted to determine the type of knowledge

representation that best accommodates data intensive problem

domains. Using this basis, a prototype knowledge-based system

for use on a microcomputer was designed, constructed, and evalu-

ated. The satellite schedule was generated based on prioritized

user requirements, the requirements' acquisitions, and available

resources. Explanations were provided to enable the mission

planner to understand how the schedule was generated and allow

him to make changes as user requirements change.

The prototype system showed that a knowledge-based system

can assist the mission planner in scheduling satellite opera-

tions. This establishes a base from which more research can be

done to help determine the optimal environment required to sup-

port an operational mission planning knowledge-based system.

vi



A PROTOTYPE KNOWLEDGE-BASED SYSTEM FOR

SATELLITE MISSION PLANNING

I. Introduction

Backaround

During the 1960's, the use of satellites was in its In-

fancy. The mission planning for those satellites consisted of

turning the satellite on and off at desired times of operation.

Today, modern satellites have increased in complexity and

satellite users are insisting that more requirements be satis-

fied while using fewer resources. Therefore, much more careful

and accurate planning Is required.

Satellite mission planning is composed of two activities:

analysis of user requirements and satellite scheduling. The

analysis of user requirements includes understanding and inter-

preting requirements which may not be explicitly stated. In

addition, the analysis requires understanding the health and

operation of the satellite. This analysis allows the schedule

to be tailored and insures as many requirements as possible are

scheduled. These activities are time consuming events that

depend on the knowledge and experience of expert mission plan-

ners. Satellite scheduling consists of arranging satellite

operations so that user requirements are satisfied and the

health of the satellite Is maintained. Application of artifi-

cial Intelligence techniques to satellite mission planning can

cut time, cost, and risk (26:50).

%1



In summary, the mission planner has three basic areas of

concern: understanding and interpreting user requirements,

understanding the operation and maintaining the health of the

satellite, and scheduling the satellite to meet as many

requirements as possible with limited constraints. By using

knowledge-based system technology, a mission planning system

can improve efficiency because the satellite schedule is gene -

ated quicker using less manpower. The Jet Propulsion Lab

conducted tests with the system Deviser III and showed that

this improvement in time can be 10-50 times faster than humar

mission planners (26:50). In addition, the effectiveness of

mission planning is improved because lower priority require-

ments have an increased probability of getting scheduled wher

the knowledge-based system is used.

Problem

For satellite scheduling, the complexity of satellites E I

their mission requirements are such that a human mission plar

ner can only do an average job of optimizing the limited re-

sources (tape recorders used to record data when the satellit

is not In view of a tracking station, satellite power, and

ground tracking facility equipment on earth) while satisfyin

only some of the user requirements. As satellites increase

complexity, consideration needs to be given to artificial

Intelligence-based expert systems that have been designed to

execute tasks without preprogramming all conceivable paths

(8:77). This thesis project takes an initial look at the

2



feasibility of using a knowledge-based system to assist the

mission planner in satellite operations.

Scope

As mentioned earlier, the mission planner has three areas

of concern. This thesis takes an initial look at the feasibil-

ity of using a knowledge-based system to assist the mission

planner in the area of satellite scheduling. Satellite sched-

uling is composed of procedures and rules used for scheduling

the greatest number of requirements possible within a given

time span. A prototype knowledge-based system that automati-

cally schedules prioritized user requirements was designed and

implemented in this thesis. In addition to scheduling require-

ments, the system provides explanations of the system's actions

with respect to each requirement.

Assumptions

This thesis is based on three assumptions. The first is

that satellite systems are composed of a satellite which has

limited tape, power, and payload configurations, and tracking

stations which are required to communicate with the satellite.

The second Is that actual requirements for a satellite program

can be prioritized. The third is that the parameters (name,

duration, payload, acquisition time, etc) used in the require-

ments in this thesis approximate those used in an operational

system. These assumptions allowed the designer to concentrate

on making sure that the prototype correctly:

1. Schedules by priority if resources are available.

3

.* ~ "~ |



2. Gives proper reasons for requirements not being

scheduled.

General Approach

The following seven steps were taken in developing the

prototype knowledge-based system:

1. Research was conducted to determine how other mission

planning and scheduling systems represented their

knowledge-bases and what control strategies were used.

Information gathered from the research was reviewed to

determine if there were any commonalities that cor-

respond to systems of this type.

2. Procedures and methods used by mission planners to plan

and schedule satellite operations were specified.

3. The knowledge representation and the control strategy

were selected.

4. System requirements were described for an operational

system. The requirements were then reevaluated within

the constraints of a thesis effort to lead to a proto-
9

type system.

5. The prototype was designed and coded based on the

modified requirements from step 3.

6. The prototype was tested and evaluated to determine if

it met the system requirements defined in step 3.

7. Modifications were made to the prototype to correct any

discrepancies that were identified. In addition, minor

design modifications were made to make the prototype

meet system requirements.

4



8. Steps 6 and 7 were repeated to construct the prototype

knowledge-based system. This evolutionary development

technique has emerged as the dominant expert/knowledge-

based system methodology (13:23).

Materials and Equipment

The prototype knowledge-based system designed in this

thesis was implemented in PC Scheme, a microcomputer implemen-

tation of Texas Instrument's Scheme. Selection of PC Scheme is

discussed in the system requirements section in Chapter IV. PC

Scheme includes the Scheme Object-Oriented Programming System

(SCOOPS) which allows the implementation of a frame-based

knowledge-based system. The schedule timellne graphics were

implemented by interfacing TURBO Pascal with PC Scheme.

The software was developed and evaluated on two hardware

systems. The first system was an AT&T 6300 with a 20 MB hard

disk and the second was an IBM PC AT computer. Both systems

included a graphics capability.

The materials and equipment required for this thesis were

available from the onset of the thesis. No other support was

required to conduct this thesis.

Overview

This first chapter provided a brief presentation of the

background and assumptions pertaining to this thesis. In addi-

tion, a description of the problem, scope, and approach used in

this thesis was given.



The second chapter reviews current scheduling systems.

The features of each system are presented and commonalities are

highlighted.

The third chapter discusses satellite mission planning.

The objectives, inputs, and constraints of mission planners are

defined and examined. Examples are used when applicable to

show how the thesis relates to actual operations.

The fourth chapter presents the system requirements.

First, system requirements are defined for the system's hard-

ware and software. Second, the system requirements for the

knowledge-base are presented. Finally, the human-computer

interface for the prototype is discussed.

The fifth chapter describes the design of the prototype

system, including module descriptions.

This sixth chapter analyzes and evaluates the prototype

system designed in this thesis.

The seventh and final chapter summarizes the thesis

effort, presents conclusions, and offers recommendations for

future research including system enhancements and suggestions

for follow-on thesis work.

Appendix A is a short user's manual that gives future

users an insight into how to operate the prototype and some of

the limitations of the system.

Appendix B presents how a fully operational knowledge-

based system may be used by different groups in an operational

environment.

6



II. Literature Review

As management science has recognized, it is not practical

to separate planning from scheduling (9:15). Satellite mission

planning is a good example since one specific phase of the

planning is satellite scheduling. Since this thesis is con-

cerned with scheduling, several scheduling systems were

reviewed to analyze their features and to note any commonallt-

ies between the systems. These systems are summarized in Table

I. The table is divided Into selected categories which de-

scribe the systems. System details are written into each

category when the information for the specific system was

available. The first column states the system name and the

type of scheduling the system performs. The stage of develop-

ment and the agencies where the systems are developed is pre-

sented in the second column. The third column presents the

type of software and hardware environments that support the

systems. The type of knowledge representation used in the

database is indicated in the fourth column. Finally, the last

column presents some key areas the systems support and/or some

capabilities which are built into the systems.

ISIS

In the thesis "Constralnt-Directed Search: A Case Study

of Job-Shop Scheduling" by Mark Fox, the scheduling system ISIS

is presented (9). ISIS is a scheduling system that was de-

signed for the Job-shop scheduling domain. The goal of ISIS is

7



Table I. Selected Scheduling Systems

NAM/ STAG OF SOFTWARE/ JONUDGE DESCRIPTION

SCHEDULING DIEVEL0MMT/ HARDWARE RDRESr-ATION
TYPE RESPOn ILE

AGENCY

ISIS Prototype Schema Frame / Rules - addresses
Representation constraint

Job-Shop Carzegie-oelln a satisfaction and
University relaxation

DE VAX 11/780 - hadxles
changes in
plant status
- suggests
alternative
schedules

In use / Zetallsp flavor Frames / Rules - mnual and
Prototype system automatic

Job-Shop scheduling
Georgia Tech - '1what-if"

Research processing of
Institute orders

KAOS In use M (Meta-evel- Rules - addresses
Reasoning- constraint

Flight NASA Ames System) satisfaction
Planner Research Center

VAX 11/780
(operational)
Symbolic 3600
(developmenlt)

Prototype SIPE (System Rules - user can
for Interactive watch, guide, or

Resource SRI Planning and control planning
Utilization International Execut ion process

monitoring) - addresses the
cooperative
process between

cmputer and IIdecision maker

NUDGE Prototype IN'TRLISP under Frames / Rules - addresses
TENEX knowledg-ase

Office Stanford vs power-base AI

Research PFP-O p -,

Institute

8

. ? ., ,: ' 'P ]-,~ , / .P' .'-? ' ' " . -. .- • .-.. .- - ,- ..



to construct schedules which satisfy as many constraints as

possible in near realtime.

There are several key components of ISIS. First, the

knowledge-base representation is a frame-based system that

models constraints as well as the organization.

Second, ISIS introduces a number of new concepts in the

area of search:

1. A general representation for constraints including

relaxations, interactions, and obligations.

2. Constraint-directed bounding of the solution space.

3. The generation and evaluation of constraint relaxation

during the search process.

4. Techniques for diagnosing poor schedules.

Finally, ISIS represents a system that for the first time

can represent and consider all the domain constraints during

the construction of a schedule. In addition, ISIS has been

created with all the facilities required for practical use in

the factory.

GENSCHED

In "GENSCHED - A Real World Hierarchical Planning

Knowledge-Based System" by Semeco, GENSCHED is described as a

hierarchical planning system designed to schedule production

orders In manufacturing facilities (22). The system is com-

posed of three components; the data entry subsystem, the data

display subsystem, and the hierarchical planning subsystem.

The data entry subsystem allows manual and semi-manual schedul-

* ing and "what-if" processing of orders. The data display

9



subsystem provides the user immediate feedback to the effect of

the changes made to the schedule. In addition, the data dis-

play subsystem presents the schedule graphically with prece-

dence and response conflicts being highlighted. The final

subsystem, the hierarchical planner, uses the repetitive nature

of the plans to efficiently generate valid schedules.

KAOS

The system KAOS (Kuiper Airborne Observatory Scheduler) is

presented in NASA's technical memorandum "A Knowledge-Based

Expert System for Scheduling of Airborne Astronomical

Observations" (18). KAOS is a knowledge-based system designed

to assist in route planning of a C-141 flying astronomical

observatory.

The user inputs the astronomical bodies and viewing dura-

tions he wishes to observe. KAOS then generates flight plans

by conducting a search of bodies that satisfy the constraints.

The scheduling is accomplished by generating one leg of the

flight plan and then testing It. Observations are usually

rejected if they violate one of the following constraints:

1. The object is outside the window.

2. The leg overflies a restricted zone.

3. The leg overflies a warning zone.

4. The leg leads to a point that the aircraft runs out of

fuel.

Any of the constraints can be relaxed except for the first

constraint. Relaxing the first constraint would violate the

Input requirement of the user.

10

%* % *9 * **** ****~ ~ - '5-



SPOT

Robinson and Wilkins discusses SPOT in the article "Man-

Machine Cooperation for Action Planning" (21). This system is

designed to assist in planning the movement and launching of

planes on a carrier. SPOT generates plans automatically but

has the capability to allow the user to interactively guide

and/or control the planning process. Planning for the system

is performed hierarchically from general to specific actions

with the actions being performed sequentially or in parallel.

The user Interface Is given a great deal of consideration with

a display graphically containing the planned carrier deck

configuration.

NUDGE/BARGAIN

In the article "Using Frames in Scheduling", Goldstein and

Roberts summarizes NUDGE as a knowledge-based office scheduling

program in which the actual scheduling is handled by the pro-

gram called BARGAIN (10). NUDGE accepts informal scheduling

requests and produces a schedule containing conflicts and a set

of strategies for conflict resolution. BARGAIN, a domain inde-

pendent search algorithm program, uses traditional decision

analysis techniques to control the search process involved in

conflict resolution and scheduling.

The knowledge representation in NUDGE consists of frames.

When Informal requests are received by the system, a frame

structure is generated from a set of generic frames. Informa-

tion missing In the request Is computed from defaults,

11



constraints, and procedures associated with these generic

frames.

BARGAIN accepts the schedule containing conflicts from

NUDGE and resolves the conflicts individually using resource-

driven or purpose-driven conflict resolution techniques. The

resource-driven strategy attempts to reschedule the particular

time interval while maintaining the event requirement. The

purpose-driven strategy attempts to analyze the goal of the

event requirement and modify or delete requirements of lower

priority.

Summary

The scheduling systems presented point out several key

concepts and trends that should be kept in mind when designing

a scheduling system.

1. Most of the systems' knowledge representations are

framed-based. As their structure suggests, frame

systems are useful for problem domains where expecta-

tions about the form and content of the data play an

important role in problem solving (27:74-75). Sched-

uling satellite operations falls into this problem

domain.

2. Most of the systems demonstrate that constraints play a

major role in generating a schedule. Some systems have

provides facilities for context-dependent constraint

relaxation.

3. All systems indicate that conflicts will occur and

methods have to be created to handle the conflicts.

12



Resource-driven or purpose-driven conflict resolution

(NUDGE/BARGAIN) are two ways that conflicts may be

resolved.

4. All systems demonstrate that when generating a sched-

ule, a method that bounds the generation of a desired

scheduled (i.e. constraInt-directed search) should be

specified.

5. Most of the systems are prototypes that have not been

used to generate operational schedules.

6. All of the systems were supported by hardware environ-

ments that consisted of at least a minicomputer.

With these concepts In mind, an analysis of the task domain for

satellite mission planning can be accomplished.

13

'. , ,. , , ,,, .... _ , ., { ..--.. ... - *..--.- .-.. .- .. ,



III. Analysis of the Task Domain

Everyone wants their system to be intelligent. Waterman

proposes this method:

To make a program Intelligent, provide it with lots
of high-quality, specific knowledge about some prob-
lem area. This realization led to the development of
special-purpose computer programs, systems that were
expert in some narrow problem area. (28:4)

This thesis implemented a prototype knowledge-based system in

the problem domain of satellite mission planning. This chapter

summarizes satellite mission planning and provides a basis for

discussion of system requirements. Where applicable, examples

are given using a weather satellite. The mission of this

satellite Is to take pictures and sensor readings of weather

all over the world.

Satellite Operations

Once a satellite is in orbit, the mission planner must

insure the accomplishment of the satellite's mission while

maintaining the health of the satellite.

The satellite's mission is to satisfy as many of the user

requirements as possible. In order for the mission planner to

do this, he needs to understand several areas of satellite

operations. First, he must understand the user requirements

and know how to use requirement alternatives or modifications

that allow the requirement to still be satisfied. Second, the

mission planner must take into account the satellite's orbit,

the satellite's capabilities and resources, and tracking sta-
%I

tion resources. By understanding these areas, the mission V

14 I
f :1



planner can maximize the use of the satellite and optimize use

of the available limited resources.

Mission Plannina Constraints

As previously mentioned, there are several constraints

that the mission planner must consider when scheduling user

requirements. These constraints are the specifications of the

user requirements, the satellite orbit, the satellite's capa-

bilities, and the available tracking stations. Each of these

constraints is discussed in detail in the following sections.

User Requirements

User requirements are requests from the community of users

which specify a desired operation of the satellite. Each re-

quirement contains all the information essential to satisfy the

user's needs. The following list presents the type of informa-

tion included and an explanation for each:

1. Requirement Name: The name of the requirement, which
should give some Indication of the type of re-

quirement.

2. Area of Interest: The location, area, or coordinates of

the area of interest.

3. Requirement Start Date: The date the mission planner

starts to attempt to schedule the requirement.

4. Requirement Duration: The duration the requirement is

active. The duration may be given in hours, days,

weeks, or months.



5. Requirement Priority: The priority of the requirement

with respect to all the other requirements for the

specified satellite. This priority is assigned by

the satellite's program office. 1 is considered

the highest priority with 100 being the lowest.

Several user requirements may have the same prior-

ity, in which case the scheduling order is deter-
Pa'

mined by which requirement the scheduler encoun-

ters first in the data base.

6. Minimum Acquisition Duration: The minimum time the user

requires any satellite operation to occur for

their specific requirement.

7. Payload Configuration: The desired configuration that

the satellite must be in when satisfying the

user's request.

The mission planner understands this Information and knows what

can be changed. An example using a weather satellite helps to

clarify the information contained in a user requirement.

The Navy requires the satellite to observe the weather in

the middle of the Atlantic Ocean during an exercise. The

requirement might look like:

1. Requirement Name: Naval exercise "Tough Exercise"

2. Area of Interest: Latitude - 25N Longitude - 40W

Circle of 100 mile radius

3. Requirement Start Date: 14 August 1987

4. Requirement Duration: 1 month

5. Requirement Priority: 3

16

.1 N N.



6. Minimum Acquisition Duration: any duration acceptable

7. Payload Configuration: visual sensor

A mission planner would interpret this information to indicate

that the Navy wants the visual sensor covering an area centered

at latitude - 25N ,longitude - 40W and having a radius of 100

miles. The mission planner plans to satisfy this requirement

starting on 14 Aug 1987 and attempts to schedule It for one

month. The requirement is scheduled when it does not conflict

with any number 1 and 2 priority requirements, there are satel-

lite resources available, and an acquisition of the area of

interest occurs.

Satellite Orbit
-6

When a mission planner attempts to schedule requirements,

he is limited to satellite acquisitions of the areas of inter-

est. The acquisitions for the areas of Interest are determined

by the orbit of the satellite. For a geosynchronous satellite,

the visible areas on earth are limited, but they can be seen

100% of the time. For an orbiting satellite, all areas on
lot

earth are accessible, but only periodically.

Satellite Capabilities and Resources

The mission planner is also constrained by the satellite.

He is constrained by the possible payload configurations of the

satellite. In addition, the satellite has limited resources

(power and tape recorders) which the mission planner needs to I
optimize in order to schedule the maximum number of require-

ments. The following sections describe and give examples of

17
'S

1%1 % % %ti' '. '. . "- .'° %.. .'-.'.%J'i'--.' - .. ". ' " - "';-;.' '. . -.- ' ." 1



satellite limitations for payload configurations, tape

recorders, and power.

Payload Configurations. Satellites are designed and

constructed to meet certain mission requirements. Once in

orbit, the mission planner is constrained to only predetermined

configurations. Some configurations are compatible while other

configurations must be alternated between each other. An

example shows why the mission planner needs to understand

payload configurations.

Suppose that an acquisition for the requirement previously

stated (the naval requirement "Tough Exercise") occurs at the

same time as a lower priority requirement. The lower priority

requirement requires the satellite to look at Puerto Rico with

the infrared sensor. The pointing angles for the two require-

ments are 120 degrees apart, and the satellite has a view of

only 45 degrees. The mission planner would normally select the

naval exercise requirement because it has a higher priority and

the satellite cannot look at both requirements at the same

time. However, by understanding the payload configurations,

the mission planner realizes he can satisfy both requirements

by selecting a payload configuration that alternates between

the two configurations. This can only be done if the two

requirements do not require constant monitoring of the areas of

Interest. The alternating between two configurations is possi-

ble because the satellite has two independent systems (visual

and infrared) that share satellite resources (tape and power).

By understanding the payload configurations, the mission plan-



ner can satisfy the lower priority requirement In atddition to

the higher priority requirement that is scheduled.

There are times when a lower priority requirement will be

scheduled over a higher priority requirement due to payload

configurations. Suppose there are three requirements with

priorities 3, 4, and 5 (priority 3 is the highest and 5 the

lowest) that occur during the same timeframe. If the priority

3 requirement is scheduled and the priority 4 requirement Is

not a compatible payload configuration, then the priority 4

requirement will not be scheduled during this timeframe.

However, if the priority 5 requirement is compatible with the

priority 3 requirement, then priority 5 will be scheduled with

the priority 3 requirement during the specified timeframe. In

this case, the priority 5 requirement would be scheduled, but

not the priority 4 requirement.

Tape Recorders. There are two methods for receiving

information from the satellite during operations. The first

method consists of having the satellite transmit the data

directly to a tracking station. This can be accomplished only

when the station is operational and in view of the satellite.

The second method consists of recording the Information on a

tape recorder and playing the data back when the satellite

comes in view of a tracking station.

Two tape recorder constraints that the mission planner has

to take Into account are:

1. The number of cycles that are on a tape recorder.

2. The number of tape recorders onboard the satellite.

19



A tape cycle is the tape recorder operation that is com-

posed of reading in data and playing it back. This operation

is important because it is a mechanical operation and devices

used in mechanical operations tend to be the first to fail.

Therefore, mission planners can only use a limited number of

cycles per day for each tape recorder to insure the tape re-

corders operate for the life expectancy of the satellite. Due

to the limited number of tape cycles, the mission planner tries

to use 100% of the tape recorder's capacity on every cycle to

gather the maximum amount of data. This is why a mission

planner attempts to fill one tape recorder before going to

another one.

The number of tape recorders onboard the satellite also

restricts the mission planner to the number of requirements

that can be scheduled. Once a tape recorder is filled with

data, the mission planner looks to see if another tape recorder

is available. If there Is, the mission planner continues to

schedule more requirements. If there is not another tape

recorder, the mission planner has to playback the data from the

tape recorders at a tracking station prior to scheduling any

more requirements.

As occurs in payload configurations, a lower priority

requirement may be scheduled over a higher priority requirement

but due to tape recorders instead of payload configurations.

For example, suppose there are four requirements with priori-

ties 1, 2, 3, and 4 (priority 1 is the highest and 4 the low-

est) and the requirements with corresponding priorities 1, 2,

20

* , .'3 > ~~~?*



and 3 occur in sequence prior to a tracking station acquisi-

tion. The priority 4 requirement occurs after the same track-

ing station acquisition. The priorities 1 and 2 requirements

use all of the available capacity of the tape recorders and the

priority 3 requirement cannot be scheduled. Since no other

acquisitions of the priority 3 requirement occurs after reading

out the tape recorders at the tracking station, the priority 4

requirement is scheduled. Thus, the priority 4 requirement is

scheduled instead of the priority 3 requirement because of tape

recorder constraints.

Power. Power is the final satellite constraint. The

power available on the satellite is based on three factors:

1. The type of satellite orbit.

2. The capacity of each satellite battery.

3. The number of batteries onboard the satellite.

The satellite orbit determines when the sun is shining on the

solar arrays. Power is available via the solar arrays when the

satellite is In the sunshine and via the batteries when the

satellite is In the shadow of the earth. For a satellite in

geosynchronous orbit or a satellite orbiting the earth, the

satellite will be in the earth's shadow during certain times

forcing operations to use power from the batteries.

When the mission planner is scheduling satellite opera-

tions, he must insure that critical satellite components remain

on. These components include the satellite's communication and

encryption subsystems which are required to communicate with

the tracking stations. The available power for scheduling user

21 A



requirements is excess power which is not required to maintain

these critical subsystems.

When an electronic component onboard the satellite is

turned on, it uses power which is measured in ampere-

hetoseconds (AHS). The mission planner keeps track of the com-

ponents turned on and calculates the total AHS used during a

desired payload configuration. If the power output from the

solar arrays and the batteries is greater than or equal to the

amount of power required for the critical subsystems and the

desired payload, then the mission planner can schedule the

desired configuration. If there is not enough power, the

mission planner can modify the desired configuration to use

less power or not schedule the requirement at all.

When the satellite is in the sunlight, plenty of power

will be available for user requirements. However, when the

satellite is in the shadow of the earth, the health of the

satellite must be maintained by the batteries with any left

over power available for user requirements. Thus, the power

constraint is a function of the time the satellite is in the

earth's shadow, the number of batteries onboard the satellite,

and the capacity of each of the batteries. The mission planner

can schedule a larger number of user requirements in the dark

if more batteries are onboard the satellite and/or the capacity

of each battery is increased.

Due to power, a lower priority requirement may be sched-

uled over a higher priority requirement similar to what occur-

red with the previous two satellite resources. For example,

22



suppose there are four requirements with priorities 1, 2, 3,

and 5 (priority 1 is the highest and 5 the lowest) and the

requirements with corresponding priorities 1, 2, and 3 occur in

sequence in the earth's shadow. The priority 5 requirement

occurs later in the orbit in the sunlight. The priority 3 re-

quirement may not be scheduled because the satellite is in the

dark and there is only enough power to schedule priorities 1

and 2 requirements. Later in the orbit, the satellite moves

into the sunlight and the sun provides plenty of power to

schedule the priority 5 requirement and other lower priority

requirements. If no other acquisition of the priority 3 re-

quirement occurs where power is available, then the priority 3

requirement will never be scheduled. Once again, a lower

priority requirement is scheduled instead of the higher prior-

ity requirement.

Tracking Stations

In order to command and control the satellite, a communi-

cation link needs to be established. Tracking stations are the

system segments on the earth that communicate with satellites.

At the tracking station, commands are sent to the satellite to

tell it what to do. Some of these commands are stored in the

satellite's memory to control the satellite when it is out of

view of the tracking station. In addition, the tape recorders

are readout at the tracking stations to allow more data to be

recorded.

Some satellite programs have dedicated tracking stations

and support multiple satellites (such as the Defense Meteoro-

23



logical Satellite Program). Othor satellite programs may have

to share tracking station resources, such as the programs

hosted at the Satellite Control Facility in Sunnyvale, Califor-

nia. In both cases, the mission planner must schedule the

tracking station to insure no other satellite is using the

station at the desired time.

When scheduling a tracking station, the mission planner

analyzes the activities planned for the tracking station. For

all station contacts, a certain amount of time is required to

evaluate the status of the satellite and insure it is in good

health. Once this is complete, the mission controllers (sta-

tion personnel controlling the satellite) begin to command the

satellite. The commands may Include both reading out the tape

recorders and/or loading commands for future operations. The

mission planner must plan the tasks to be accomplished at the

station and then selects a tracking station that has sufficient

time to allow the mission controller to complete all the

desired activities.

With these mission planning constraints established, the

tasks that a mission planner must accomplish to generate a

schedule can be described.

Mission Planning Tasks

The mission planner has many activities that must be

accomplished to plan out a daily schedule for satellite opera-

tions. The following is a description of the activities that

the mission planner performs throughout a day.

24



First, a mission planner must gather all the information

required to schedule the satellite. This Information Includes:

the active user requirements and their acquisitions, the avail-

able tracking stations and their acquisitions, and the avail-

able satellite resources. Once this information is gathered,

the mission planner analysis the user requirements and the

health of the satellite. The mission planner then schedules

satellite operations using a prioritized list of requirement

acquisitions. The acquisitions are assigned the priority of

the corresponding requirement.

The scheduling of requirements is an iterative process.

The flowchart in Figure 1 depicts the steps a mission planner

performs. The mission planner starts at the highest priority

acquisition and follows these steps:

1. Reviews the desired requirement's acquisition to verify

that all the user constraints are met.

2. Checks to see if an acquisition is already scheduled

during this time. If there is, he verifies the desired

acquisition is compatible with the one already sched-

uled. If the acquisitions are not compatible, the

mission planner notes the desired acquisition was not

scheduled because it conflicted with a higher priority

acquisition. If the desired acquisition was compatible

or there was no other requirement was scheduled during

this time, the mission planner attempts to select a

tape recorder.

25



All
Req Acqs

SVerity acqs
meet

constraintsN

I I-mat
SSort acq

bypio ap

Figur 1.ShdligFocat?

26Y

~ ~*. . . .... *~ 5. .*~5 Get~s



3. Checks to see if tape is available on the tape recorder

presently be used. If no tape is available, the mis-

sion planner looks to see if another tape recorder is

available. If no other tape recorder is available then

the mission planner attempts to readout the tape re-

corders at a station prior to the desired acquisition.

If this is not possible, the mission planner notes the

acquisition was not scheduled due to lack of tape.

Otherwise, the mission planner proceeds to power.

4. Checks to see if power Is available to read in and

playback data from the acquisition. If there is no

power, the mission planner notes the desired acquisi-

tion was not scheduled due to lack of power. Otherwise

the mission planner attempts to schedule a tentative

station.

5. Checks to see if a tracking station is available to

readout the desired requirement. The station duration

must be long enough to readout the tape and must occur

after the desired acquisition. If such a station

exists, the mission planner tentatively schedules it.

If no station is available, the mission planner notes

the desired acquisition was not scheduled due to lack

of a readout station. In both cases, the mission

planner proceeds to the next highest priority acquisi-

tion and starts with step 1.

As the mission planner generates the schedule, he may notice

that a particular requirement was not scheduled. At this

27



point, the mission planner has the option of changing priori-

ties and modifying the schedule or noting the desired changes

and Implementing them in the next schedule.

Summary

This chapter has presented an overview of satellite mis-

sion planning. The overall goal of the mission planner is to

protect the health of the satellite while satisfying as many

user requirements as possible. This is accomplished by per-

forming the steps outlined in the Mission Planning Tasks sec-

tion. Some of the limitations the mission planner has to

consider are: constraints described in the user's requirements,

orbital constraints, satellite constraints (payload configura-

tions, tape recorders, and power), and tracking station con-

straints.

Now that the task domain has been presented, the system

requirements can now be discussed.

P

.

28

C 4 . .t * *.*. % * . ., . . . t A



IV. Requirements Definition

This chapter presents the requirements for a satellite

mission planning knowledge-based system. First, hardware and

software requirements are presented under the system require-

ments section. For the software requirements, differences in

the operational system and the prototype system are reviewed. I

Next, the requirements for the knowledge-base are examined.

Finally, the human-computer interface requirements are

considered.

System Requirements

System requirements are separated into two categories:

hardware and software. The hardware requirements are common to

both an operational system and to the prototype system. There-%

fore, only one set of hardware requirements are discussed. Due

to the time constraint associated with the thesis, the software

requirements for the prototype system are a subset of the

operational system. Hence, the operational software require-

ments are presented with the subset for the prototype

specified.

Hardware. The type of hardware that a system is built on

has to be carefully selected when the number of users that may

be affected is large. Several organizations within multiple

satellite programs may desire to use a mission planner advisor

system so there will be a wide range of users. Therefore, easy

dissemination of the prototype was a main consideration when .

29



selecting an AT&T 6300 computer and an IBM AT. Most offices

presently possess an IBM microcomputer (or compatible) thereby

allowing the hardware to be an insignificant issue when acquir-

ing a mission planning advisor system. In addition, the proto-

type would be highly transportable.

Software. The software requirements for both an opera-

tional system and the prototype system are based on defined

heuristics, rules, and constraints obtained from a mission

planner in addition to a single mission planning goal. The

goal is to schedule all the user requirements by priority

unless satellite or tracking station resources are not avail-

able or the desired user requirement conflicts with a require-

ment of higher priority.

The selection of a microcomputer tool/software package was

the first step in generating the software requirements. Table

II shows the different microcomputer tools/software pack~ies

.available to the author with a list of the capabilities of

each. Most of the systems examined in chapter 2 used frame-

Abased knowledge representation. This observation supports the

statement that frames are useful for problem domains where

.. expectations about the form and content of the data play an

Important role in problem solving (27:74-75). Therefore, the

tool selected had to have the capability to support frames, as

described by Minsky (17), since scheduling satellite require-

ments Is data intensive. This narrowed the choice to three:

KES II, PC Plus, and PC Scheme. KES II and P; Plus do not sup-

port a frame system that contains frame templates and instan-

30



Table II. Knowledge-Based System Building
Tools/Software Packages

Features KES II PC Plus M.1 PC Scheme

Knowledge-Base
Objects

Frms Yes Yes Must be Yes
progranuned

Rules Yes Yes Yes Must be
progranmed

Certainty Factors Yes Yes Yes No

Inference Strategy Yes Yes (also Yes (also Must be
(Backward Chaining) forward forward programd

chaining) chaining)

Interfaces

Data Bases Yes Yes Yes Yes

External Programs Yes Yes Yes Yes

Sensors Yes No No No

Graphics Options None Being added Being added Limited

tiations of the template. These systems only support inherl-
P.

tance and permit procedures to search down a tree structure to

find necessary parameters. In addition, KES II was on order

and not available for development of the thesis prototype.

Therefore, PC Scheme was selected as the software package to

implement this prototype system.

The final step in generating software requirements was to

* determine the operational requirements that need to be coded

into the system. This is where the requirements for the thesis

prototype system became a subset of the operational system re-

quirements. Table III shows the software requirements and the

#4. 31



Table III. System Requirements

Requirements Thesis Prototype Operational System

Generate a schedule 24 hr 24 hr
based on priorities
and resources

Graphics to display Sample 24 hr 24 hr
a satellite schedule timeline only

Graphics to zoom in not implemented any size window
on a window of the
schedule and display
what requirements
compose the window

Edit payload accomplished by able to modify
compatibility table modifying the code
for requirements

Add/Delete accomplished by interactive
requirements hard coding the

reqs

Edit requirements edit all edit all
requirement slots requirement slots

Explanation 1) req was 1) req was
capability scheduled scheduled

2) why req was not 2) why req was not
scheduled scheduled

3) why req was
modified

Schedules required has 2 RTS in has up to 16 RTS's
remote tracking database in the database
stations

Suggestions for not implemented required
scheduling
requirements that
were not previously
scheduled

Handles multiple not implemented as many as the
satellites satellite program

requires

32

'-4,.-.'.~~~ ~~~ %..~~*** 4.. V ' . . ~ 4 4..



Table III. System Requirements (cont)

Requirements Thesis Prototype Operational System

Edit satellite available tape available tape
resources recorders, tape on recorders, tape

specific recorders, on specific
tape cycles on recorders, tape
specific recorders, cycles on specific
and power recorders, and

power

Edit RTS resources hard coded when station is
available and any
limitations to the
station

Has a power model handles varying utilizes the power
amounts of power usage of each
during a given day component on the

satellite and the
power generated
from the batteries
and solar arrays

Handles multiple handles 2 handles the number
satellite tape on the satellite
recorders

Number of 50 300
requirements handled

Generate a "what-if" not implemented the ability to
capability make changes to

satellite
4 resources or

requirements,
generate a
schedule, and
determine if it is
desirable

Generate 1) priority ordered 1) priority
. requirements lists 2) time ordered ordered

2) time ordered
3) by satellite

degree to which each requirement must be satisfied in both the

operational and prototype systems. These requirements were

33

k



deleted from the prototype because of the amount of work and

time required to implement the requirements and the limited

time available to complete this thesis. These were determined

not to impact the overall feasibility demonstration. Also some

of the requirements only have to be partially implemented in

order to demonstrate the feasibility of the knowledge-based

system as done In the prototype. Extension of all these re-

quirements to their full capability requires only time to

implement. The coding and methods for these requirements are

the same as those implemented. The final group of system

requirements are those Implemented in the prototype exactly as

they would be in the operational system. These requirements

are critical in showing the feasibility of using a knowledge-

based system in satellite mission planning.

Knowledge-Base

The knowledge-base for the prototype knowledge-based

system can be divided into three sections: user requirements,

satellite constraints, and tracking station constraints. The

knowledge was acquired by writing down cases the author experi-

enced while working as a mission planner. All this knowledge

is represented in the knowledge-base by frames.

The user requirements section must contain the require-

ment's name and the following information for each requirement:

coordinates, start date, duration, priority, minimum acqui-

sition duration, and desired payload configuration. The satel-

lite constraints section must include the following information

for each satellite: power available, tape available, number of

34



tape recorders, number of available tape cycles for each tape

recorder, and payload configurations available on the satel-

lite. Finally, the tracking station constraints section must

consist of the following information for each of the tracking

stations: tracking station's acquisitions, lock on time re-

quired for each tracking station, times the tracking station is

not available, and satellite power required for each tracking

station contact. Descriptions of all the previous items can be

found In chapter 3, "Analysis of the Task Domain".

Human-Computer Interface

There is no concrete structured procedure or method to

guide the design process with respect to the human-computer

Interface. However, in the thesis "Interactive Environment for

a Computer-Aided Design System", Woffinden presents twelve

design principles (31:40-52) that aid In designing a human-

computer interface. Six of the principles strongly relate to

this thesis and the system requirements. These principles are

defined in the following subsections.

Determine the Purpose of the System The purpose of the

knowledge-based system is to assist the mission planner in

scheduling satellite operations. This is accomplished by

having the system gather all the information required to gener-

ate a schedule and then the system actually generates the

schedule based on mission planner rules. After the schedule

generation, each requirement contains an explanation specifi-

cally stating what the system did with the requirement. This

35



explanation includes the reason why a requirement was not

scheduled or why it was modified. These explanations allow the

mission planner to examine the requirements or database and

make changes if desired. A knowledge-based system assisting

the mission planner In this manner, allows the mission planner

to concentrate on finding ways to schedule the largest number

of requirements while optimizing the use of the limited

resources.

Know the User. The designer of the prototype system

served as a mission planning officer for over two years. He

understands the duties of the mission planner and knows that

most of the mission planners have no computer background.

Therefore, the ability to input information and control the

system should require minimum computer knowledge.

Identify Resources Available. Resources vary between

satellite programs, but most of the program offices contain an

IBM PC compatible computer. Therefore, the main resource to be

used is the AT&T 6300.

Consider Human Factors. The user is assumed to have few,

If any, handicaps and is able to operate a PC computer. How-

ever, the user is not a skilled typist so use of keyboard

emphasizing typing skills will avoided. Consideration that the

users have limited computer background indicates that a menu

driven system should be Implemented. In addition to menus,

graphics such as satellite ground tracks and the satellite's

36
k



coverage of the earth would be helpful in an operational

system.

Optimize Training. The system will be menu driven which

allows a new user to do meaningful work without the assistance

of an experienced mission planner.

Anticipate Errors. Since the users are not skilled typ-

ist, the system will verify that all the user's menu selections

are valid inputs. If an error is found, the user is notified

and a list of valid selections is shown.

Summary

This chapter presented the requirements definition for a

knowledge-based system for satellite mission planning. The

first section defined the system requirements in terms of the

hardware and software requirements. The hardware requirements

are the same for both the prototype and operational systems but

the software requirements for the prototype system is a subset

of the requirements for the operational system. These software

requirements are summarized in Table III. The second section

stated the information required in the knowledge-base. Final-

ly, the third section defined the six principles that guide the

design of the human-computer interface.

With the requirements having been defined for the system,

the next chapter can describe how the requirements were imple-

mented in the code.

37

J' j~ j 'j~~n ~ . b '..- % % ''%'' %' " •, . .. . ° '+' + ' '' o'' _,'_ _o°_ .I



V. Desian

This chapter describes the design and implementation of

the prototype knowledge-based system. The system is composed

of user selections, input functions, output functions, the

knowledge-base, the control strategy, and schedule functions.

The main control of the system is performed by the user selec-

tions module. This module controls the operation of the proto-

type system by calling the other modules as the user dictates.

These relationships can be seen in the system block diagram in

Figure 2. The following sections summarize each of the modules

and provide examples where possible.

SUser Selections I .

Input 
Output 

Knowledge 
P

Functions Functions Base

Strategy Functions

Figure 2. System Structure Chart

User Selections

The desires of the user are received by input options from

two menus presented to the user. At each phase in the system's

38

%-5jo5o*5 :..-* -;-,.' - **.° °. . .5. . •. . .. - .°. - - - . . . - - . - .. o% ° ".° . ° ' ". o % . ° % ' ° ' .% ''



operation, the system presents a menu to the user. The user

then decides what option he desires and inputs the preferred

number. This allows the user to guide and control the system's

scheduling process. The main menu Is shown In Figure 3.

SATELLITE MISSION PLANNING ADVISOR

SATELLITE PAYLOAD SCHEDULING OPTIO

1. Display Requiremerts
2. Display Timeline (sample)
3. Display Resources
4. Generate Schedule
5. Generate Output Listing
6. Exit

Please select a number:

Figure 3. Main Menu Display

The menus were developed using the windows capability in PC

Scheme. PC Scheme gives the programmer the options to specify

window labels and border attributes in addition to declaring

the size and location of the windows. The main menu window,

"menu-window", was generated by the following code:

(define menu-window
(make-window "SATELLITE PAYLOAD SCHEDULING OPTIONS" #!true))

(window-set-position! menu-window 3 20)
(window-set-size! menu-window 10 40) ..
(window-set-attribute! menu-window 'border-attributes 15)

39
• -m



Anytime the main menu is needed, the designation "menu-window"

is used to indicate which window is requested. Using designa-

tions, the programmers can call desired windows anytime in the

program without having to redefine the window.

Input Functions

The input functions were designed to input information

through the files "resource.s", "reqs.db", and "variable.db".

The file "resource.s" contains the initial values for the

satellite power available, the available tracking stations, and

the available tape cycles for tape recorders 1 and 2. The file

"resources.s" looks like:

(define (load-Initial-resources)
(begin

(send satellitel set-initial-power
'((0 800 790)(801 1230 775)(1231 1440 725)))

(send tracking-station set-initial-tracking-station-acqs
'((96 30 tsl)(219 30 ts2)(319 38 ts2)(443 33 tsl)

(572 30 tsl)(669 30 ts2)(775 33 tsl)(888 28 tsl)
(1026 26 ts2)(1158 40 ts2)(1265 23 tsl)
(1397 29 ts2)))

(send satellitel set-initial-tapel-cycles 7)
(send satellitel set-initial-tape2-cycles 6)))

The file "reqs.db" contains all the user requirements. Each

requirement is composed of the following information: require-

ment name, priority, payload mode, acquisition time, duration,

and the power required per minute. An sample of the "reqs.db"

file can be seen below:

reql 31 payload7 441 8 5
req2 64 payload9 417 12 3
req3 76 payload4 1298 13 3
req4 54 payload2 1390 11 5
req5 53 payloadl 1259 8 5
req6 62 payloadl 1408 1 1
req7 42 payload9 881 6 5

40



The information for each requirement must follow the given

sequence since the software module reads in the values and

assigns them to slots based on the assumption that the informa-

l:Ion is In the correct order.

The last file, "variable.db", defines all the variables

which are used as designators for each instantiated require-

ment's class. This file presently has 50 variables defined and

must be modified if the system is to increase the number of

requirements that can be handled. A small segment of this file

follows:

((define reqO-1) (define reqO-2)
(define reqO-3) (define reqO-4
(define reqO-5) (define reqO-6)
(define reqO-7) ...... (define reqO-50))

The terms reqO-1, reqO-2, reqO-3, etc. are arbitrary variables

assigned to instantiations of the requirement's class unlike

the terms reql, req2° req3, etc. in the previous file which are

the names given to the requirements.

Making changes to the requirements (i.e. changing priori-

ties) or modifying the available resources (i.e. the number of

tape cycles) can be accomplished by editing the previously

* mentioned files. These files can be edited by any word proces-

sor but must be saved In ASCII text. This capability will not

be required once an editor is designed in the knowledge-based

system.

Output Functions

There are four output functions designed into the proto-

type system but only the first two are implemented in the

41



system. The first function allows the user to review the

requirements on the screen both before and after the system

generates a schedule. After a schedule is generated, the user

can determine if the system scheduled a particular requirement

and see an explanation of why the system performed the way it

did. The user also has the capability to call two requirements

up side by side to compare information. In addition, the

system allows the user to examine the available tape and power

resources before and after the schedule is generated. A sample

display is show in Figure 4.

SATELLITE MISSION PLANNING ADVISCt
REQUIR12ET MEN-

1. Display Next Requirement
2. Display Additional Requirement
3. Display Satellite Resources
4. Exit Back to Main Menu

Please select a number:

REQUIRDET A

REQUIRE NT NAME : REQ36 SATELLITE RESOURCES

Priority: 2 Acq Time: 1397 Available Power
Duration: 4 Power Required: 4 Start Stop Amout-Available

000 800 122
Payload Mode: PAYLOAD4 801 1230 174
Scheduled R/O Station: Not Scheduled 1231 1440 276
Req Status: Available-Tape #-Cycles Tape-length

Requirement is not scheduled due Recorderl 1 1
to lack of a readout station! Recorder2 1 0

Figure 4. Knowledge-Based System Display

The second function allows the user to receive an output

listing that summarizes the status of the requirements after

42



the schedule has been generated. Two types of listings are

available: a priority ordered list and a time ordered list.

The following shows the beginning and end of a priority ordered

list:

NAME PRIORITY ACQ DUR END POWER PAYLOAD STATUS R/O-STN

REQ36 2 1397 4 1401 4 PAYLOAD4 no R/O stn none
REQ26 2 1248 6 1254 3 PAYLOAD5 scheduled 1 1265
REQ33 3 619 14 633 3 PAYLOAD1 scheduled 2 669
REQ47 6 200 2 202 5 PAYLOAD7 scheduled 2 219
REQ24 10 374 3 377 1 PAYLOAD3 scheduled 1 443

REQ20 90 52 4 56 4 PAYLOAD2 no power none
REQ18 91 974 8 982 2 PAYLOAD5 scheduled 2 1026
REQ8 92 1302 10 1312 5 PAYLOAD9 no tape none
REQ17 95 906 3 909 2 PAYLOAD9 scheduled 2 1158
REQ28 95 1224 6 1230 2 PAYLOAD3 no tape none

The time ordered list contains the same information but is

sorted by time rather than priority.

The third function allows the user to graphically see a

timeline of when the satellite is operating. A call for the

timellne function is implemented but the function only produces

a sample timeline which is shown in Figure 5. Since PC Scheme

has very limited graphics capability, it was decided to use

Turbo Pascal to draw the graphics. To generate an actual

timeline, the schedule information is passed to Turbo Pascal by

reading the timeslots into a file and then having them read out

by Turbo Pascal. Once in Turbo Pascal, the timeslots are

mapped into the timeline and correspond to every minute the

satellite is operational.

The final function allows the user to save changes made to

the requirements database. This function is implemented in the

43



SATELLITE 24 HOUR OPERATION TIMELINE

0 3 6 9 12 15 18 21 24

I I I I I I IiI
1. Display 24 Hour Timeline
2. Zoom on 4 Hour Window
3. Exit Timeline Menu

Enter Desired Number:

Figure 5. Sample Timeline

system by calling a dummy function. The capability to save

database changes is designed to be used when an editor is built

into the knowledge-based system. When changes are made to the

database, the global variable *database-changes* is changed to

yes and the user has the option to save the modified database.

Knowledge-Base

The knowledge-base is built in the Scheme Object-Oriented

Programming System (SCOOPS) which allows frames to be imple- V

mented in the knowledge-base. The knowledge-base is divided

into four classes: satellite resources, tracking station re-

sources, requirements, and timeline slots. The knowledge-base

and the classes that compose it are shown in Figure 6. Each

class contains class variables and/or instantiation variables.

In addition, each class can specify if the variables can be

set, obtained, or initialized. A class variable is a variable

44

. . . ,".i . * .. . .. ..' - . ... ..



Knowledge-Base

Timeline Satellite Tracking Requirements
Slots Resources Station

Resources

Figure 6. Knowledge-Base Structure Chart

that is common to all instantiations of the class. A instan-

tiation variable is a variable that is associated with a speci-

fic Instantiated class. Examples of a class variable and an

instantiation variable can be seen in the following subsec-

tions. Information contained In instantiation variables is

obtained and set by sending messages to the instantiated class.

Examples are:

(send satellitel get-available-power)

(send satellitel set-available-power '124)

Methods can also be defined for a class which allows instantia-

tion variables within the class to be obtained and/or set

without sending messages. The method "update-scheduled-rts" ".

which updates the class variable "scheduled-tracking-stations"

In the class "timeline slots" is:

(define-method
(tracking-station-resources update-scheduled-rts)
(tracking-stn)
(set-scheduled-tracking-stations

(cons tracking-station scheduled-tracking-stations)))

45

%* %



Specific descriptions of each class is contained in the follow- 6

ing subsections.

Satellite Resources. The satellite resource class con-..

tains information on the satellite's power, tape recorders, and

payloads. The code that defines the satellite resources is:

(define-class satellite-resources
(instvars

(possible-payloads
'(payloadi payload2 payload3 payload4
payload5 payload6 payload7 payload8
payload9 payloadlO))

initial-power
initial-tapel-cycles
initial-tape2-cycles
(initial-tape-length 15)
avail-power avail-tapel-cycles
avail-tape2-cycles
avail-tapel-length avail-tape2-length)

(options
gettable-variables settable-variables
inittable-variables))

The instantlation variables in the satellite resource class is

divided into two areas; initial variables which contain initial

values for the parameters and available variables which contain

the available values for the corresponding parameters. The

Instantiation variables (including a description) are: U,
1. possible-payloads: a list of possible satellite pay-

loads 7
2. initial-power: a list of daily power initially avail-

able

3. inltial-tapel-cycles: the daily number of tape cycles

available for tape recorder 1

4. initial-tape2-cycles: the daily number of tape cycles

available for tape recorder 2

46

* .I,

*. *"--"



5. initial-tape-length: the full duration of the tape

recorders

6. avail-power: a list of power available after taking

into account power required by scheduled requirements

7. avall-tapel-cycles: the number of cycles available on

tape recorder 1 after subtracting cycles already used

8. avail-tape2-cycles: the number of cycles available on

tape recorder2 after subtracting cycles already used

9. avail-tapel-length: the duration of tape on tape

recorder 1 that is presently available

10. avail-tape2-length: the duration of tape on tape

recorder 2 that is presently available

All values of initial variables (except "initial-tape-length")

are set when the system is loaded. The values are read from

the file "resource.s" during system initialization (refer to

the input functions section to review the contents of

"resource.s"). The values of the available variables are

originally set to their corresponding initial variables and are

updated as the system schedules requirements.

Trackknq Station Resources. The tracking station resource

class contains information on the tracking station's acqui-

sitions, station lock on time, and the satellite power required

to readout the tape recorders. The code that defines the

tracking station resources is:

(define-class tracking-station-resources
(Instvars
Initial-tracking-station-acqs
(lock-on-time 3) (power-reqd-per-minute 3)

47
U
4,
S.



(scheduled-tracking-stations ())
(tracking-statlon-acqs ())

(options
gettable-variables settable-variables
inittable-variables))

The instantiation variables within the tracking station

resource class (including a description) are:

1. initial-tracking-station-acqs: a list of tracking

station acquisitions which include the acquisition

time, acquisition duration, and station name

2. lock-on-time: the time required for the station to

acquire the satellite and verify the communication link

3. power-reqd-per-minute: the satellite power required per

minute to readout the tape recorders

4. scheduled-tracking-stations: a list of scheduled track-

Ing stations by acquisition time and station name

5. tracking-station-acqs: a list of available tracking

station acquisitions that have been updated after a

requirement Is scheduled. Information includes the

acquisition time, the remaining acquisition duration

available, and the station name.

All the instantiatlon variables have Initial values assigned

except for "initlal-tracking-station-acqs" and "tracking-

station-acqs". The value for "initial-tracking-station-acqs"

is read from the file "resource.s" during the system initial-

Ization. "Tracking-station-acqs" is originally assigned the

value of "inltial-tracking-station-acqs" and is updated as the

system schedules requirements.

48

U.



Requirements. The requirement class contains information

on the user requirements. The code that defines the require-

ments is:

(define-class requirements
(classvars list-of-requirements)
(instvars
requirement-name priority payload-mode
acquisition-time duration
power-required-per-time-unit
explanations readout-station)

(options
gettable-variables settable-variables
inittable-variables))

The instantiation variables within the requirements class

are:

1. requirement-name: the requirement name

2. priority: a number between 1 and 100 indicating the

requirement's relative importance with respect to the

other requirements

3. payload-mode: the payload's required configuration

4. acquisition-time: the time the satellite acquires the

requirement's location

5. duration: the length of time the satellite observes the

requirement's location

6. power-required-per-tlme-unit: the power required per

minute to read in the data in the desired payload

configuration

7. explanations: contains the reasons why the system

processed the requirement the way it did

8. readout-station: contains the station's name at which

the scheduled requirement is readout

49



All values for each requirement are set during system initiali-

zation. All the variables (except 7 and 8) are read in from

the file "reqs.db". When variables 1-6 are read in from the

file, variables 7 and 8 are assigned default values (refer to

input functions to review contents of "reqs.db"). When the

system attempts to schedule the requirement, the explanation

variable is updated to indicate the system's action. If the

system schedules the requirement, the system also updates the

readout-station variable The requirements class also contains

a class variable. The class variable is "list-of-requirements"

which contains a list of all the requirements in the system.

When the requirements are initially loaded, the variable "list-

of-requirements" is updated to include all the requirement

names. Prior to scheduling, this list is sorted according to

priority so the system attempts to schedule the highest prior-

ity first.

Timeline Slots. The timeline slots class contains sched-

ule information. The code that defines the timeline slots is:

(define-class timeline-slots
(classvars (list-of-timeslots ()

(list-of-timeslots-and-reqs U))
(options
gettable-variables settable-variables
inittable-variables))

This class contains two class variables: "list-of-timeslots"

and "list-of-timeslots-and-reqs". The variable "list-of-

timeslots" contains a list of all the timeslots that are sched-
I.

uled. A timeslot corresponds to a specific minute of the day.

50
U.

/" j~'., v. "." . ... " " e ": ''/ " " 'e.''-'".° " "" .... -' ' ''-'.



Use of timeslots is described in the scheduling functions

section. The variable "list-of-timeslots-and-reqs" contains a

list of the timeslots in addition to all the requirements that

are scheduled during the specified timeslot. Both of these

variables are initially set to nil and are updated as the

system schedules the requirements.

Control Strategy

The control strategy used In the prototype was forward

chaining with depth-first search. Due to the lack of an infer- P

ence engine in PC Scheme, this strategy was embedded in COND

statements. The statements were written to emulate the steps

taken by a mission planner when scheduling the satellite. In

addition to COND statements, both class methods and macros were

used to control the knowledge-based system. Class methods are

functions that have direct access to slots contained in an

instantiated class and are used to process Information in the

specific class. The method "tape-check" demonstrates the use of

methods and COND statements:

(define-method
(requirements tape-check) (selected-requlrement)
(write-char #\return scheduling-window)
(write-char #\tab scheduling-window)
(princ "doing tape check" scheduling-window)
(set! *selected-recorder-cycles* ()) -
(cond

((and (>=? (send satellitel get-avail-tapel-length)
duration)

(>-? (- (send satellitel get-avail-tapel-length)
duration) 0))

(begin
(set! *selected-recorder* 'recorderi)
(send-requirement-for-power-allocation

(eval *selected-requirement*))))

51

' * ~1.. J ~ f ~ ~ / , ~ * * * -q~ ~ N



((and (>=? (send satellitel get-avall-tape2-length)
duration) 

0

(>-? (- (send satellitel get-avail-tape2-length)
duration) 0))

(begin
(set! *selected-recorder* 'recorder2)
(send-requirement-for-power-allocation

(eval *selected-requlrement*))))
((>? (send satellitel get-avail-tapel-cycles) 1)
(begin

(set! *selected-recorder* 'recorderl)
(set! *selected-recorder-cycles* 'recorder1)
(send-requlrement-for-power-allocation

(eval *selected-requirement*))))
((>? (send satellitel get-avail-tape2-cycles) 1)
(begin

(set! *selected-recorder* 'recorder2)
(set! *selected-recorder-cycles* 'recorder2)
(send-requlrement-for-power-allocation

(eval *selected-requirement*))))
(else
(send-not-scheduled-due-to-tape

(eval *selected-requirement*)))))

Macros are used to allow procedures and functions access to

multiple instantiated classes. When trying to access

information in SCOOPS (the frame-based system in PC 
Scheme),

procedures and functions could not be evaluated directly.

Therefore, macros were used. Macros use one or more argument

expressions to build an intermediate form and then the

intermediate form is evaluated to produce an output value.

"Get-req-name" is an example of a macro:

(macro get-req-name
(lambda (e)

(list 'send (cadr e) 'get-requirement-name)))

SchedulingFunctions

All the functions and procedures used 
for scheduling user

requirements check to see if a requirement is compatible, tape

is available, power is available, and there is a readout sta-

52



tion available. The method "tape-check", which is displayed in

the previous section, is an example of a function that is used

to schedule user requirements. If the requirement satisfies

the all the checks previously mentioned, the software module

allocates resources to the requirement. Once the module has

allocated resources, the timellne slot class is updated to

correctly reflect the schedule. If the requirement does not '-

satisfy any of the checks, the software module updates the

requirement's explanation slot.

The timeline slots class is the focal point for schedule

information. The timeline slots class contains the class var-

ables "list-of-timeslots" and "list-of-timeslots-and-reqs" (as

shown in the subsection "Timeline Slots"). When the system

initially starts to schedule user requirements, the two class

variables are set to nil. As the system determines a require-

ment can be scheduled, timeslots are created. A timeslot is a

number that corresponds to a specific minute the requirement is

scheduled. For every minute that a requirement is scheduled, a

corresponding timeslot is generated. If a timeslot already

appears in the "list-of-timeslots", the system simply adds the

requirement name to the corresponding timeslot listed in the

"list-of-timeslots-and-reqs". If the timeslot does not appear

in the "list-of-timeslots", the system adds the timeslot to the

"list-of-timeslots" and adds the timeslot and corresponding

requirement name to the "list-of-timeslots-and-reqs".

This process Is carried on as long as the system is sched-

uling requirements. After the scheduling process is complete,

53

*- 5~~ 5. ... .. .
-5- .*~Ar°h -.



the timeslots contained in the "list-of-timeslots" will corre-

spond to every minute the satellite is operational.

With the design of the prototype system presented, the

system can now be analyzed and evaluated to determine if the

system requirements were met.

eI

*44

4. %



VI. Analysis and Evaluation

This chapter presents the analysis and evaluation of the

prototype knowledge-based system. The system was evaluated in

three separate areas: the prototype system, the software envi-

ronment, and the hardware environment. Each area is analyzed

and evaluated in the following sections.

Prototype System

The prototype system was considered working if it sched-

uled user requirements based on priorities and resources avail-

able. If a requirement was not scheduled then its explanation

would state that it conflicted with a higher priority require-

ment or a particular resource was not available. Two methods

were use to verify the system's operation; evaluation of the

scheduling process using six cases containing only two require-

4 ments and evaluation of the scheduling process using three

cases containing 50 randomly generated requirements. Table IV
-p

summarizes the nine cases and indicates the specific software

area that each case tested and verified. These areas are main

components of the scheduling functions module and are critical

to the systems operation. Since the scheduling functions

module is decomposed into specific areas, each area can then be

tested and validated by only a two requirement case. In cases

3, 4, and 5 several areas were not tested because the system

immediately exits the scheduling process when one of the areas

cannot be satisfied. Each of these methods are reviewed In

more detail In the following subsections.

55

a, - . , : . ?. " - ". . ' e . - " ," e " , eE . o



Table IV. System Test Matrix

Software Areas Cases
Tested and
Validated 1 2 3 4 5 6 7 8 9

Priorities taken into X X X X X X X X X
account

Compatibility check X X X X X X X X X

Tape recorder check X X X X X X X X

Power check X X X X K X X

Readout station check X X X X X X

Resource allocation X X X X X

Two Requirement Cases. The system was evaluated against

the two requirement cases because the process of scheduling

satellite operations is composed of individual processes of

scheduling each requirement. This allowed the system to be

evaluated using a simplified requirements database which sim-

plifies the testing procedure. There were 6 two requirement

cases that the system was tested against. The six cases were:

1. Non-overlapping requirements with plenty of resources

2. Overlapping compatible requirements with plenty of

resources

3. Overlapping incompatible requirements with plenty of

resources

4. Non-overlapping requirements with insufficient power

5. Non-overlapping requirements with insufficient tape

56



6. Non-overlapping requirements with no station to readout

the tape recorders

After a minor modification to the program, the system performed

well in all six cases. As time allowed, several variations of

these cases were tested. These variations also indicated the

system was running according to system requirements.

Randomly Generated Requirements Cases. After the initial

test with the six simplified cases, the system was tested three

more times using a requirements database with 50 randomly

generated requirements. The randomness of the requirements in

Table V. A sample of one of these cases can be found on

Table V. Range of Random Requirements

Requirement Segment Range

priority 1 - 100

payload configurations 1 - 10

start time 0 - 1410

duration 1 - 15

required power/minute 1 - 5

page 40. Again, the program needed several minor modifications U

in order to perform correctly. After the changes, the system

performance for all threc cases supported the fact that the

prototype system ran according to the system requirements.

57 .4

€1



Software Environment

The software environment of PC Scheme generally supported

the prototype system well. However, there were two problems

that occurred. The first problem, a major one, was uncovered

while the code was being written to read the requirements from

the file "reqs.db". A variable has to be assigned to each user

requirement in the database and the number of requirements is

not necessarily known. This variable is used to access the

frame of each requirement. As requirements are read in, the

system should create a variable and assign it to the require-

ment. The problem is that this cannot be done in PC Scheme.

In Common Lisp this is simple because the function 'setq can be

used to define a variable and set it equal to an item. How-

ever, there is no 'setq in PC Scheme. In fact, the only way to

define a variable is to use the function 'define. The problem

Is that you cannot have a 'define inside a defined function.

One option was to use macros to use 'define in specific func-

tions, but any other function calling the function containing
.?

the macro also has to be called by a macro. This was not 5

acceptable because the majority of the Input module would have

to be written using macros. Instead, the file "variable.db"

was created to define all the variables necessary to assign the

requirements to specific frames. This solution requires the

file "variable.db" to be modified any time the number of user

requirements increases to over 50. The problem was brought to

the attention of technical representatives at Texas Instruments

and they could not find a way to resolve it.

58

5.5



The second problem that occurred was due to the lack of an

inference engine in PC Scheme. This meant that every control

rule had to be explicitly coded into the program. The proto-

type system was simplified enough that this caused only minor

problems. However, if the prototype is going to be extended to

an operational system, an inference engine needs to be added.

Hardware Environment

The hardware environment never showed any problems with

running the prototype system. However, there was a problem

that was encountered when constructing the system. The system

could not support both the Scheme environment and the Edwin

environment (the LISP editor) at the same time. Due to the

limited RAM memory of the microcomputer (640K), programs

quickly grew to a size that caused the system would go into an

infinite loop when trying to compile a file in edwin and then

test it in the scheme environment. A work around was devised

by exiting PC Scheme and using a word processing editor.

However, this negated the advantages of using the edwin envi-

ronment (i.e. matching parentheses, evaluating programs without

loading them, etc.).

Another potential area of concern is the time required to

do garbage collecting. The system time spent garbage collect-

Ing increased when the number of requirements in the database

increased from 2 to 50. This is a potential problem because if

300 requirements are in the database, it is questionable if the

system could handle the computations with the limited memory of

a microcomputer. Testing the system with small increments in

59



the number of requirements will be the only way to evaluate if

the limited memory will be a problem.

With the assessment of the prototype system's operations

complete, the conclusions and recommendations can now be
V1.

presented.%

16

ie*

60



VII. Conclusions and Recommendations

This chapter presents a synopsis of the thesis project.

This is accomplished by first summarizing the thesis project

and presenting conclusions based on the project. Next, im-

provements and enhancements to the system are suggested.

Finally, future areas where this thesis project could be ex-

tended are discussed.

Summary

The purpose of this thesis was to take an initial look at

the feasibility of using a knowledge-based system to assist

mission planners in satellite operations. A prototype know-

ledge-based system was built on an IBM compatible computer

which showed that the idea of a knowledge-based system for

satellite mission planning was indeed feasible. However, the

system has several difficulties that will need to be overcome

in order to have operational system. First, the system must

be upgraded to meet the operational requirements and not just

the subset the prototype system was designed to implement.

Second, the software environment that the prototype was design-

ed in was marginally acceptable. The problem encountered with

defining variables required by the system must be resolved if

the knowledge-based system is to become operational. As the

system receives new user requirements, it must be able to

create new variables for the required frames without having to

have them predefined. Having variables predefined limits the

number of user requirements that can be handled and is an

61

C! .



unnecessary constraint. In addition, consideration has to be

given to finding a new software package that not only contains

a frame-based knowledge representation system but also an

inference engine. An inference engine is required to allow the

user, knowledge engineer, and programmer more flexibility in

constructing the knowledge-based system. As the system becomes

more complex, the user, knowledge engineer, and programmer will

be able to produce a system without explicitly specifying every

rule required. An inference engine could be added to PC

Scheme, however, the hardware environment may not support the

expansion required for an operational system. This leads to

the final area of concern, the hardware environment. Designing

this knowledge-based system on an IBM compatible computer has

many advantages but this type of knowledge-based system is a

too advanced for the present state of microcomputers. RAM

memory limitations pose the biggest problem for knowledge-based

systems using microcomputers. Microcomputers are being up-

graded to several megabytes of memory but not all utility

programs are able to access the full amount of available memo-

ry. When it is a common for microcomputers to have several

megabytes of RAM memory and all utility programs access the

full amount of RAM, then microcomputers will be ready and cap-

able of supporting large operational knowledge-based systems.

Recommended Improvements

There are several areas where Improvements can be made.

These improvements can be divided into two areas, the way the

62

- .



system is implemented and the capabilities of the system. The

suggested changes with the way the system is Implemented are:

1. Consider upgrading the system from PC Scheme to PC Plus

after PC Plus is upgraded. Presently, PC Plus is a

rule-based system with an inference engine and allows

inheritance of rules In a tree structure. Texas

Instruments Is presently working on an upgrade that V

would furnish a frame-based knowledge representation

capability within PC Plus. This would give the capa-

bility of both rules and frames with an inference

engine on a microcomputer.

2. If the upgraded version of PC Plus does not work, then

I suggest looking into moving to a Lisp machine. The

way prices are dropping on Lisp machines makes them a

viable alternative to the minicomputer. In addition

there are many knowledge-based system tools such as

FLAVORS, LOOPS, and KEY already available.

There are many Improvements that must be made to the prototype

system to make it operational. However, there are three that

are recommended to upgrade the prototype to the next level of

development. The three recommended improvements are:

1. To have the system schedule the acquisitions of user

requirements and take into account when a requirement

has been satisfied. A requirement usually has multiple

acquisitions, depending on the satellite's orbit, and

when only one acquisition must be satisfied the system

63
m.*J

*- • . . .,- *.a, - * % -, .* . . . ,.- -. . .- - - -. ... ....- -..- - - . .- '



nusr- uV-u WuW'W -arg -'aV _W p -3V rrrr.-R~' YVw lr r, 'l . -. Y1flW PYY.'Fa ,uT.W trWw w u-f A

should schedule other requirement acquisitions even

though they may be of lower priority.

2. Creating the capability for the knowledge-based system

to handle soft and hard constraints for each require-

ment. A user requirement usually has constraints that

must be met in order to satisfy the requirement. These

constraints are defined as hard constraints. There are

other constraints the user desires but do not have to

be met in order for the requirement to be satisfied.

These constraints are soft constraints. The capability

to differentiate between these constraints provides the

system greater flexibility in generating the schedule.

3. Improve the explanation capability of the knowledge-

based system. Not only should the system give the

reasons for the way it scheduled the requirement, but
. %

when the requirement was not scheduled, the system

should also provide suggestions for changing require-

ments so that it can be scheduled. Each suggestion

should also state what other requirements may be

impacted if this suggestion is implemented.

Future Extensions

If the results of the prototype continue to prove as

positive as the initial examination indicates, there are two

areas where application of this prototype may apply.

The first area would be to tailor th,? prototype to a

specific satellite program. This would include creating a P-S

64



knowledge-based system interface to software modules that A

generate satellite ephemeris and tracking station acquisitions.

In addition, all the capabilities of the specific satellite

would have to be incorporated into the knowledge-based system.

This would include Information about the tracking stations that

support the specific satellite.

The second area for extension would be to use this know-

ledge-based system for autonomous on-orbit satellite mission

planning. If this system proved to generate viable schedules,

then the system could generate a mission plan onboard the

satellite as a contingency for satellite operations. For

example, assume the satellite has a timer onboard. If after a

certain amount of time has passed with no tracking station

contact, the satellite will begin to generate its own mission

plan and automatically transmit the data when it came into view

of the tracking stations. The information required onboard the

satellite would be the user requirements, the satellite's

ephemeris, constraints on the satellite's resources, and the

tracking station locations.

Conclusion

This thesis effort was designed to take an Initial look at

the feasibility of using a knowledge-based system to assist

mission planners in satellite operations. A prototype know-

ledge-based system was built on an IBM compatible computer and

showed that the idea of a knowledge-based system for satellite

mission planning was indeed feasible. Several upgrades and qi
improvements have to be made to the prototype system to make it

65



nfl w * ~rTu ru w-. I . ~ V Cu 1Cu jw .rwn Ju ru t-ww.n VWtw r 11 t,'WT~~~P~ Wt tW r'W ~W'" -w *'r--w .~ .- ~ -~- - nw. V

'p

operational, but this thesis has provided a foundation for the

development of an operational mission planner knowledge-based

system.

(

,1

is
~5

w.

~I.

'p

,~I.

'S

q

'p
'p

4.

'p

S.p
'p.

'p.

'p..

'p.
'p66

I- - ~ *~. %



Bibliography

1. Abelson, Harold, et al. Structure and Interpretation of
Computer Programs. New York: McGraw-Hill Book Company,
1985.

2. Bahnij, Robert B. A Fighter Pilot's Intelligent Aide For
Tactical Mission Plannina. MS thesis. Wright Patterson
AFB, Ohio: School of Engineering, Air Force of Technology,
December 1985.

3. Barr, Avron. and Edward A. Feigenbaun. The Handbook of
Artificial Intelli~gence, Volume 2. Los Altos, California:
William Kaufman, Inc., 1981b.

4. Barr, Avron. and Edward A. Feigenbaun. The Handbook of
Artificial Intelligence, Volume 1. Los Altos, California:
William Kaufman, Inc., 1981a.

5. Charniak, Eugene, et al. Artificial Intelligence Program-

a4ng. Hilldale, New Jersey: Lawrence Erlbaum Associates,
Inc., 1980.

6. Cohen, Paul R. and Edward A. Feigenbaun. The Handbook of
Artificial Intelligence, Volume 3. Los Altos, California:
William Kaufmann. Inc., 1982.

7. Draper, Stephan W. and Donald A. Norman "Software Engi-
neering for User Interfaces," IEEE Transactions on Soft-
ware Engineering, SE-11: 252-258 (March 1985).

8. Evans, David D. and Major Ralph R. Gajewski, USAF. "Ex-
panding Role for Autonomy in Military Space," Aerospace
America, 74-77 (February 1985).

9. Fox, Mark S. Constraint Directed Search: A Case Study of
Job-Shop Scheduling. PhD dissertation. Computer Science
Department, Carnegie-Mellon University, Pittsburgh Pa,
1983.

10. Goldstein, I.P. and R.B. Robert. "Using Frames in Schedul-
ing," Artificial Intelligence: An MIT Perspective Volume
1. Cambridge, Mass.: The MIT Press, 1979.

11. Grenander, Sven. "Toward the Fully Capable AI Space Mis-
sion Planner," Aerospace America, 44-46 (August 1985).

12. Harmon, Paul and David King. Expert Systems: Artificial
Intelligence in Business. New York: John Wiley and Sons,
Inc., 1985.

13. Hayes-Roth, Frederick, et al. Building Ejx e Sysems.
Reading, Massachusetts: Addison-Wesley Publishing, 1983.

67



14. Hayes-Roth, Frederick, et al. "The Knowledge-Based Expert
System: A Tutorial," CoMuter, 17: 11-28 (September
1984)b.

15. Hayes-Roth, Frederick, et al. "Knowledge-Based Expert Sys-
tems," qommuter, 17: 263-273 (October 1984)a.

16. Koch, Fred H., MS Student. Summary of Scheduling Expert
Systems in Artificial Intelligence generated for OPER699,
Independent Study Course. School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, Ohio, 1986.

17. Minsky, M. "A Framework for Representing Knowledge," The
Psycholg of Coputer Vision. New York: McGraw-Hill,
1975.

18. Nachtsheim, P.R., et al. A Knowledge-Based Exert System
f or Scheduling of Airborne Astronomical Observations.
Technical Memorandum 88194. Moffet Field, Ca.: Ames Re-
search Center, NASA, December 1985.

19. Parnell, Gregory S. "Artificial Intelligence and Space
Operations: Implications for Aerospace Doctrine," Tenth
Air UniversityAerospace Power Symosium. Maxwell Air
Force Base, Alabama: Air War College, 1986.

20. Rich, Elaine. Artificial Intelligence. New York: McGraw-
Hill Book Company, 1983.

21. Robinson, Ann and David Wilkins Man-Machine Coqoeration
for Action Planning. SRI International. Menlo Park, Ca.,
1982. (AD-A 124 243)

22. Semeco, Antonio C., et al. "GENSCHED - A Real World
Hierarchical Planning Knowledge-Based System," SPIE -
Applications of Artificial Intelligence III, 635: 250-256
(1986).

23. Slagle, James R. and Henry Hamburger. "An Expert System
for a Resource Allocation Problem," Communication of the
ACM, Volume 28, Number 9: 994-1004 (September 1985).

24. Srivastava, Dr. Sadananad. Autonomous Scheduling Tech-
nooggy for Earth Orbital Missions. NASA-CR-168939; Bowie
State College, Maryland: Goddard Space Flight Center,
NASA, 1982. (N82-29217)

25. Troussaint, A.L. and M.E. McFall. "Spacecraft Application
of Expert Systems," Proceedings of the IEEE, National
Aerospace and Electronics Conference: 1342-1346 (May
1985).

26. Vere, Steven. "Deviser: An AI Planner for Spacecraft
Operations," Aeropace America, 50-53 (April 1985).

68



, . : i, .. - .. ...-w w- ....rY .... .-- ,w.a r r .,su r , -?' - r. - . V " f -. J

27. Waterman, Donald A. A Guide to Expert Systems. Reading,
Massachusetts: Addison-Wesley Publishing Company, 1986.

28. Wilensky, Robert. LISPcraft. New York: W.W. Norton and
Company, 1984.

29. Winston, Patrick Henry. Artificial Intelligence (Second
Edition). Reading, Massachusetts: Addison-Wesley Pub-
lishing Company, 1984.

30. Winston, Patrick Henry. and Berthold Klaus Paul Horn. &4s2
(Second Edition). Reading, Massachusetts: Addison-Wesley
Publishing Company, 1984.

31. Woffinden, Duard S. Interactive Environment for a
Computer-Aided Design System. MS thesis. Monterey,
California: Naval Post-Graduate School, June 1984.

69

-,.

ON

69 
1I



.-- WWVWW VWUWWV U

Appendix A

PrototVe User's Guide

Gettina Started

The knowledge-based system for satellite mission planning

is designed so the user of the system needs no experience with

a computer. However, several files are required In order to

have the system operate. These files and a description for

each are listed below:

1. thesis.fsl - the source code for the prototype expert

system

2. reqs.db - contains all the user requirements which the

system will attempt to schedule

3. resource.s - contains the initial values for the

satellite power, tracking station acqui-

sitions, and available tape cycles

4. variable.db - contains all the variables that are used

to assign the requirements to frames
p

The system can be initialized by two methods: automatic Ini-

tializatlon and manual initialization. Each of these methods

are described in the following subsections.

Automatic Initialization. A person with minimum computer

experience can modify the file "scheme.ini" for the prototype

system to automatically be initialized when the user calls up

the PC Scheme environment. Using an editor that can save a

file as an ASCII "DOS" text file, a person should enter the

following statements: (load "thesis.fsl") and (ss). These

A -i

g.. 4 ' . ' **,.. .• " ,-. "• •



statements will load the source code for the prototype system,

load the requirements, and present the main menu to the user.

Manual Initialization. The user can initialize the system

manually If the file "scheme.ini" has not been modified to

include automatic initialization. The user first loads the PC

Scheme environment into the computer system. When the cursor

prompt appears, the user types the statement '(load

"thesis.fsl")'. This causes the source code for the prototype

system to be loaded. When the cursor prompt for PC Scheme

appears again, the user types in the statement '(ss)'. This

causes the system to load the user requirements and then pre-

sents the user with the system's main menu.

System's ODeration

Menus were used to give the user control over the opera-

tion of the system. At each menu, the system requests the user

to select an option by Inputting the number corresponding to

the desired selection. Once the number is entered, the system

verifies the Input Is a valid selection. If the input is not

valid, the error window appears and states the input was in-

valid. In addition, the error window presents valid options

and requests the user to make another selection. If the input

is valid, the system proceeds to implement the desired option.

Two options need to be mentioned. First, if a user de-

sires to generate output listings, the listings will be found

in the file "time.lst" for the time ordered list and in the

file "prlority.lst" for the priority ordered list. When the

A - 2

N

p..~ N...



listings are generated, any information previously in the files

will be lost. Second, if the user desires to exit the system,

the user must select the exit option at the main menu. The

remainder of the options are self explanatory.

Modifying Database Information

Having the capability to modify database information

allows the user to investigate other alternatives that may

allow the mission planner to satisfy more requirements. Al-

though the prototype system does not have a built in editor

that allows modification to database information, the system

was designed so the user can make changes to the database by

using any editor that can save files as ASCII "DOS" text files.

Two files contain all the data information that needs to be

modified (a description of these two files can be found inI. Chapter 5 on page 40). The first file, "reqs.db", contains all

the requirements which the system will attempt to schedule. If

the user wants to change any parameters of a specific require-

ment, he simply modifies the requirement in the file and saves

it as an ASCII "DOS" text file. The second file, "resource.s",

contains the initial information that is used by the system.

The information that can be modified in the file is: the satel-

lite power available, the tracking station acquisitions, and

the number of available tape cycles.

a' System Constraints

The system has several constraints that limit the capabil-

ities of the prototype system. The constraints are:

A - 3



V*'111; W- K.Y - vW~3V * W lkk WIAM - W-W9 49W

p
1. The number of variables - Presently, the system is

designed with 50 variables in the file "variable.db".

The variables are used to assign requirements to

frames. If more than 50 requirements are desired to be

scheduled, then "variable.db" has to be modified to

generate as many variables as there will be

requirements.

2. The number of tape recorders - The system is designed

to schedule requirements using only two recorders on

the satellite.

3. The power module - The system has the day divided into

three time spans and checks the time span the require-

ment occurs in to verify that there is enough power to

schedule the requirement. The system does not take

into account the power used by each satellite component

or the power generated by the batteries and the solar

arrays. -

4. The number of satellites - The system is designed to

schedule only one satellite per set of requirements.

A -4

.............. er.-



Appendix B

O9perational Conce~t Usin a Knowlede-Based System

There are many people that participate in satellite mis-

sion planning and scheduling. Table A-I summarizes the tasks

that are performed by the different support personnel. The

knowledge-based system is designed to directly assist the

satellite scheduler in scheduling satellite operations. The

system performs the satellite scheduler's actions thus allowing

the scheduler to concentrate on ways to schedule more user

requirements while optimizing the available resource. In

addition to assisting the satellite scheduler, the knowledge-

based system could assist the satellite users and mission

planners and perform onboard satellite operations. The follow-

ing three sections discuss how a system could assist satellite

users, mission planners, and conduct onboard mission planning.

User's Implementation

A knowledge-based system could assist a satellite user by

allowing him to make requirement changes (i.e. change priori-

ties, add requirements, delete requirements, etc.) and then

permit him to check the effects of the changes prior to imple-

mentation. This allows the user the opportunity to optimize

the requirements and the requirement's priorities prior to

passing them on for implementation.

Mission Planner's Implementation

A knowledge-based system could assist a satellite mission

planner by generating an Initial schedule and then allowing the

B -I

e I'M



Table B-I. Satellite Mission Planning and Scheduling

Legend
A - Satellite Users
B - Mission Planners (System Program Office)
C - Satellite Engineers (System Program Office)
D - Satellite Schedulers (System Program Office

or Mission Control Complex)
E - Mission Control Complex Personnel
F - Range Operations Schedulers

Support People
Satellite Mission Planning

and Scheduling Tasks A B C D E F

1. Issues requirements X

2. Analyzes & combines user & health X
requirements to determine best
use of satellite

3. Generates tentative schedule for X
individual satellite programs

4. Schedules mission control complex X
resources/identifies tracking
station needs

5. Notification of conflicts/allocation X
of ground support systems

6. Reschedules mission control complex X
resources to meet alloiited
ground support systems

-7. Comnds satellite X

* 8. Maintains health of satellite X X X X

9. Analyzes satellite health telemetry X

10. Analyzes satellite payload data X

Notes: "X" indicates the specified task is done by the speci-
fied support person.

B -2

......................................................... ,v-. ..,~.'~.



mission planner to go back and find out what requirements

did/did not get scheduled. The system wolid .also provide the

reasons why a requirement did not get scheduled and would

recommend changes that would allow the requirement to be sched-

uled. The mission planner could then make the changes and have

the knowledge-based system generate an schedule with the new

changes. This allows the mission planner to observe the impact

of the satellite engineering constraints on the number of

requirements that can be satisfied. The mission planner can

use this information to determine if the engineering

constraints are so conservative that the mission of the satel-

lite can not be accomplished.

Onboard Satellite Mission Planning.

A knowledge-based system designed to assist in scheduling
I.

satellite operations could be used to do simplified onboard

mission planning during contingency operations. The satellite

would be programmed to plan and execute its own satellite

operations if it Is not contacted after a specific amount of

time. The satellite would maintain the status of all its

components, its orbit, the location of tracking stations, and

the power available. With this information, the satellite

would attempt to satisfy any mission requirements that were

previously loaded. This allows satellite operations to occur

in any contingency condition.

8 3



-~ - C_ W VT - V J

I

The growing complexity of modern satellites and limited
resources available for satellite operations has caused satellite
mission planning to become a data intensive job which overwhelms
mission planners. The purpose of this research was to determine
the feasibility of using Artificial Intelligence techniques,
specifically knowledge-based systems, In satellite mission plan-
ning.

Research was conducted to determine the type of knowledge
representation that best accommodates data intensive problem
domains. Using this basis, a prototype knowledge-based system
for use on a microcomputer was designed, constructed, and evalu-
ated. The satellite schedule was generated based on prioritized
user requirements, the requirements' acquisitions, and available
resources. Explanations were provided to enable the mission
planner to understand how the schedule was generated and allow
him to make changes as user requirements change.

The prototype system showed that a knowledge-based system
can assist the mission planner in scheduling satellite opera-
tions. This establishes a base from which more research can be
done to help determine the optimal environment required to sup-
port an operational mission planning knowledge-based system.

,%

°|



UNCLASSIFIED
59CURITY CLASSIFICATION OF TRIM= fAE7______________________

REPORT DOCUMENTATION PAGE I A No.r 704rove

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIE! _____________________

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE d istri butioni unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENC/861 -17
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(tf applicable)

School of Engineering AFIT/ENG ______________________

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
WPright-Patterson AFB, Ohio 45433

0a. NAME OF FUNDING /SPONSORING 8b.OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Ifapplicable)
Satellite Control Facility ASCF/DVE ______________________

& ADDRESS (City, State, and ZIP Cod#) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK IWORK UNIT

Sunnyvale, Ca 94086 ELEMENT NO. NO. NO [ CCESSION NO.

11. TITLE (Include Security Classification)

A PROTOTYPE KNOWTETGE-BAE' 5'Y TEI-' FOR SATE~LLITE MISSION PLANNING (U)
12. PERSONAL AUTHOR(S)

Perales, ravid E., B.E.E., Capt, USAF
13s. TYPE OF REPORT I3b. TIME COVERED I14. DATE OF REPORT (Year, Month, ay PAGE COUNT

MS Thesis FROM _____TO 1986 December 87
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identfy by block number)
FIELD GROUP SUB-GROUP Artificial Intelligence

06 04Artificial Satellites
'-I

19. ABSTRACT (otneon reverse if necessary and identify by block number)

(see reverse) W'owedI If Imrlwnazs.

20 DISTRIBUTION /AVAILABILITY 09 ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[5UNCLASSIIEDUNLIMITED 0 SAME AS APT CDTIC USERS 1~ l 2

22a NAME OP RESPONSIBLE INDIVIDUAL. 22b TELEPHONE (Include Area Code) 22c OF~iCF SYMBOL
Greqory Farnel 1ItCol 1: A;A

DO Form 1473, JUN 16 Previous editions are obsolete SECURITY CLASSIFICATION Of THIS PAGE
1I jT T'



Vita

Capt David E. Perales was born to Heriberto and Juanita Perales

on 14 August 1957 in Selma, Alabama. He graduated from

Salpointe High School in Tucson, Arizona in 1975 and attended

Auburn University, Auburn, Alabama from which he received the

degree of Bachelor of Electrical Engineering in August 1980.

Upon graduation, he received a commission into the USAF through

the ROTC program. In October 1980, he was assigned to the Air

Force Satellite Control Facility at Sunnyvale AFS, California.

He performed duty as the Chief of Spacecraft Operations in the

Vehicle Operations office, VOF until October 1982 when he had a

permanent change of assignment to Operating Division 1,

Secretary of the Air Force, Special Projects. There he per-

formed duty as Flight Mission Planning Officer until he entered

the School of Engineering, Air Force Institute of Technology in

May 1985. He is a member of Eta Kappa Nu and Tau Beta Pi.

Permanent address: 7301 E 33rd St
Tucson, Arizona 85710

V 1



* -= n a t.-w- ss7 ,... . 6. -*'WS~ M~razLr~as-.r A.p1 S -

wom~w
6

ft

0 o.

* 0.


