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1. Introduction

Stochastic linear programs can be formulated for a variety of applications. Some examples include airline

scheduling (Ferguson and Dantsig [19561), financial planning (Kusy and Ziemba [1986]), energy modeling

(Birge 11987]) and water resource planning (Prikopa and Ssantai [1978]). The basic model we consider here

is the stochastic linear program with recourse in the following general form:

min.{crz + Q(z)jAz = z 2! 0)

where

12M f fQ(z, f , )P(df , d)

and the recourse function is defined as

Q(z, f, 0) = min{qyIWy = - TZ, U + 0 > Y > 0),

where z E R"', y G tn,', b E It", and (, s) s a random vector on the probability space (g3+nt2, 7, P)

with support, 3 x 0. The vectors, c, q, and u, and matrices, A, W, and T are dimensioned correspondingly.

The fundamental problem in stochastic programming is to evaluate the integral of Q. In this paper, we

describe a method for finding an upper bound on Q that requires a polynomial number of operations in the

number of random variables.

Previous results in bounding expressions for Q are described in Birge and Wets [1986a]. The bounds are

based on the convexity and positive homogeneity of Q. The first result is due to Jensen [19061's inequality

which provides a lower bound on Q. The usefulness of this lower bound is that it requires an evaluation of Q

at one point (the mean of the random variables) and has been found to be generally sharp in some practical

examples (see, e.g., Hausch and Ziemba [19831). Madansky [19591 provided an upper bound following

Edmundson [19561 that is based on the theory of moment spaces and amounts to weighting the extreme

points of the support of the random variables. Ben-Tal and Hochman [1972] and Huang, Ziemba and Ben-Tal

[1977] refined this bound for independent random variables. Dupatovi 119761 formulated a bound of the same

general type for dependent random variables that was extended to unbounded ranges and non-polyhedral

sets in Gasmann and Ziemba [19861. Frauendorfer [1986 provided a sharper bound in the bounded range,
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dependent variable case, and Birge and Wallace 119861 gave a bound and method for refinement for special

caes of dependent random variables.

The upper bounds mentioned above all have the property that they are solutions to moment problems

with varying conditions. Dupsfovi's work on minimax solutions (Nlkovi [1966]) led to these conclusions

and to the use of the generalised moment problem. Ermoliev, et al. 119871 provided a general programming

framework for solving the general problem. It is used in Birge and Wets 119871 for bounds with piecewise

linear approximations on moment constraints and in Cipra 119851 with first and second moment constraints.

The problem with each of these bounds is that they require an exponentially increasing number of

function evaluations as the number of random variables increases. An alternative for this situation was given

by the ray approximation procedure in Birge and Wets 11986a]. This uses the sublinearity property of the

recourse function to obtain a separable function that majorises Q. This approach is generalized in Birge

and Wets 11986b]. Wallace 11987b], on the other hand, formulated a procedure that applies to problems in
1%

which the recourse function involves the solution of a network problem. Our procedure is a combination and

generalization of these two basic approaches. The algorithm we give provides a separable piecewise linear

function that bounds Q throughout the support of the random variables and can be easily evaluated.

Section 2 presents our basic algorithm and the separable piecewise linear upper bound ( SPLL. Its '

properties are described in Section 3. Section 4 gives an illustrative small example and provides comparison

with the upper bound of Edmundson and Madansky. Extensions of the basic algorithm and conclusions are #%

given in Section 5. %

2. The Basic Algorithm %P%

We give a general method for finding an upper bound on the expected value of the value of a linear

program with random right-hand sides and random upper bounds on the variables. To simplify notation

and to establish general results, we consider the following system :

Alz = b, +

A2z = b2 I
0< z<c+

3
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where A1  , M ,, A2 E 3 (i-u ' )x., (AiIA2)7 = A is the coefficient matrix, (bilb2 ) = b is the fixed

part of the right-hmd side, c is the fixed part at the bounds on the variables, t is the random availability

of resources and 0 is the random part of the variable capacities, where 0 > 0. We assume that there is a

positive probability that € =0. Next define Q(, f) by

Q(f, 0) =min(qjzj(l)). (2)

Finally define X(, #, d-, d+ ) as the set of x-vectors satisfying

A2 z = 0 (3)

d_ <z< +d+.

Our goal is to find an upper bound on Q(fo), or, more precisely, on EQ(f,o). We do this by finding a

separable piecewise linear function U(C, 0) defined by

U(Q, ) = 0(,o) + H(O) + {qT"1 - 10if
-, qrz-( -(&,f < ,'

where , = Ef,, and H(#) is a piecewise linear function in #.

Algorithm I

Step 0: Find Q(1,0) with optimal solution z° , where

rT eB' (b +) ifuiis basic,
= 0 if i is nonbasic at lower bound,

c(i) if i is nonbasic at upper bound.

Assume for simplicity that the first m variables are basic. Let z' + = (B,1e, 0,0,...,0) and z' - =

(-Bj'ei,0,0,...,0) wherei= 1,2,...,ml. Let

as(i) = max - z°(i) - zi+(i} + - 1: z- (i)V-

subject to

V+YJ- -

4U



Let

f =) =mn - s°(i) - Ej(Wv+' - -i)y- +c()
j-v2 Y=2

subject to

for alli= 1,...,n.

If 01 (i) > 0 for some i or p1(i) < 0 for some i, let z'+ = al(i) = (0,...,O), and 0'(i) = z°(i) + C(i) for all

i= 1,...,m and go to Step 1 with r = 1.

Otherwise, check

e() = max- x'+ (y + -Z-('- y"

subject to
y + - Y= 1 - 1

and

f(s) min - z'+(i)y+ - z'-(i)-

subject to
y + - Y-= -I

If a' + e < 0 and f' + f >0, then Q(f, 0) is linear in f, go to Step 4.

Otherwise, let r = 1 and go to Step 1.

Step 1: If C,'" < +oo, solve

min~qz I X( " - 1,)e,,O, 0,, q'z+ -,

Else (let 0'(i) = oo if r(i) = +oo, fr(i) = 0 otherwise) and solve

min{qrz i x(e,O,,,)} = qTZw,+.

If .> -c, solve

min{qTz I X[(C?"' - r)e,0,,,,rI} = qTxr+(-_fmi" + c.).
5

-.5

" 1%,.*',",' t "*N " " , ' ."..' '. u. , "_ ._,_ '_.-.,_el l, #. .,ea'. ." . ;_ ., , ,' . .r .. .. '. , ,.'.!, .'. '.,I,



Else (let X(i) = oo if '(i) = +o0, f.(i) = 0 otherwise) and solve

min{q T z I X(-e,,o,0,r.)) = -qTz'-.

If Step 1 was entered with z'+ = (0,..., 0) for all i, go to Step 2; otherwise, go to Step 4.

Step 2: For i =1,..., n, solve

a?+1(i)=max-=z(i) -  z+(s)j- I -ih"

subject to

yj+ _- ,

+1(i) = min- zO(i) - i+1) - (i) + cli)
j~r+1 j#r'+1

subject to

V + - Yj- = -

Step3: Ifr<m, let r=r+l andgotoStep 1.

Otherwise, go to Step 4.

Step 4: Find

'(i) = max - zo(i) - E ZZ +(i)yi+ - Z - (i)vi-

subject to

ef+ < f, !5 fJ,= 1 .... , ,

#*(i) =min - zo(,) - Ez+iV - ~x('+ c(t)
j=1 A=

subject to

for '= ,...,n.

6
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Let z" = argnmin {qTz I x(O, * a", a*,SB*)I. Find a conformal realisation of z" (Rockafellar 11984,p. 4551),so

that

z* aE kZ# with ai& > 0,

such that x*(i) > 0 =:, zZ(i) > 0 and z*(i) < 0 =o z;(i) <5 0, and z*(i) = 0 =: z;(i) = 0. An algorithm for

finding such a realization is the "painted index algorithm in Rockafellar 11984,p.4761. Paint all columns Aj

of A such that
white if z(j) > 0,

Ai is black if z(j) < 0,
red if z" (j) = 0.

Let k = 1. Pivot until a Tucker-tableau is reached in which there is a compatible column. This will always

be possible in our case. Let the compatible column be A', and let F be the set of indices for the basic %

columns in the final Tucker tableau. We now have that

ZAA() + A= 0.
iEF

If Aj is white, let

JA(i) if i E F,
1 if j,"
0 otherwise.

If Ai is black, reverse all signs in z. (Note that the sign convention in a Tucker tableau is opposite of the

convention in the standard simplex tableau.)

Let ak = miniz'(i)/zk,(i),x4*(i) 6 0}, z*(i) = z*(i) -ahz;(i) and re-paint every column for which x'(i) = 0 d
I.|

red.

If z" 0 0, let k = k + 1 and repeat. Otherwise, go to Step 5 with the conformal realization aj=x c,z .

Step 5: Using the cost coefficients q Ti*, find ECU(fO). This amounts to performing mi simple line

integrals.

Step 6: Ifx*(i) > 0 (so that zx(i) 0,Vk), we are using avariable z(i) with random capacity fi(i)+4,( ,).

If z'(i) < 0, we are using a variable x(i) with deterministic capacity a*(i)(< 0). We shall in the following

assume that each variable z(i),such that z'(i) $ 0, has associated with it a random arc capacity 0:. .

7 d
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If z(i) < 0, we have Pr{( = * ,(i)} = 1, if z*(i) > 0,0* = 0 + P(i). For each k = 1,...,K, let

qk = q(i)z;(i)(< 0). Sort the primal supports z such that q, _ q2 _< " _< q. Let k = 1, p = 0 (where

p will become EH(O)).

Step 7: Let P = {i I z,(i) # 0). Consider the random variable

j#k = max(O, minp (0! /z, (i) } }, pk E [0, aj.

Find Eqkpk. (This work amounts to increasing the capacity of each confoi-mal flow until the first variable

capacity is met. This continues on each conformal flow. Details are given for the network case in Wallace

[1987b].) Let p = p + Eqhflk, and 0* = 0" - chz;. If k = K or if qk+. = 0, stop with p = EH(O), otherwise

let k = k + 1 and repeat Step 7.

End.

The value obtained in Algorithm 1 is indeed an upper bound on the expected linear program value.

Theorem. The value SPLU= Ef.#[r(C, O)j obtained in Algorithm I is an upper bound on Q = EQ(, 0)1.

Proof: The proof requires only showing that z = z' + '(xa'+(fi - f)+ + zJ-(f - ei)+ ) + E(Pqkzx) is

feasible in x(C, 0,0, c). This is obtained by noting that the definitions of zx', r , and 0' in Steps 0 to 2

maintain feasibility for 0*.n

The algorithm as described above is our basic version. We prove certain properties of it in the next

section. In Section 5, we present alternative versions of some of the steps in Algorithm 1.

3. Properties of the Upper Bound

The purpose of this section is to show that the upper bound presented in this paper has some desirable

properties and to relate the procedure to other bounding methods.

3.1 Exact Bounds for Linear Problems

All other bounds used in stochastic programming are exact whenever Q(C, 0) is linear in € and over

the support of the random variables. This is true of the Madansky upper bound, the piecewise linear upper

8
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bound in the pure network case (Wallace 11987bi), the linear upper bound on the expected max flow in a

network (Wallace [1987a]), the Jensen lower bound, and the sublinear approximation in Birge and Wets (if

the random variables have unbounded support). All acceptable bounds should have this property.

Property 1: The bound SPLU given by Algorithm 1 is exact if Q( , 0) is a linear function.

Proof: Assume Q(f, 0) is linear in f and 0 and that the reduced cost of a non-basic variable is always

different from zero (a dual non- degeneracy assumption). Then EU(f, 0) = EQ(f, 0). Of course, if Q is

linear, it can be written as

QV = 0Q(1) +,E ft(ft. -4) +
k=1

Clearly, Step 0 provides us with Q(j, 0). Also, if Q is linear, a' + e < 0, 68' + f 0 in Step 0,since the basis

corresponding to Q(j, 0) is feasible for all C E E. Hence, fh = q2! = -qz - . Therefore, if Q is linear, the

algorithm will discover the coefficients of e in Step 0 and then go to Step 4.

Let us define a variable i to be stochastic if OSm ax > 0, otherwise, it is deterministic. Consider the

conformal realization of z* - k .First note that x; is an elementary vector (Rockafellar 11984, p.4531).

This means that there is no way to split x; into two or more other vectors where at least one has fewer

non-zeroes than z.

Assume there exists an elementary vector y such that y(i) $ 0 for more than one stochastic random

variable. Then fix the value of O, at 0 for all variables except for those with y(i) $ 0. Then, Q would not be

linear. (Compare with the random variable P in Step 7.) Hence, if Q is linear, there is no elementary vector

with more than one stochastic variable.

Now, assume that we have found two elementary vectors yj and y2 , such that they share the stochastic

variable i (i.e., y1(i) $ 0, y2 (i) j 0). Also assume that q1/y 1 (i) 4 q2/y 2 (i). (The variable q, defined as in

Step 6.) Let all 0j, = 0 for i 6 j'. Then Q is not linear in variable i, because the marginal gain of increasing

0j is not the same in both elementary vectors. Hence, two elementary vectors can only share a stochastic

variable if qj/y(i) = q2/y 2 (i). (This corresponds to two circuits in a pure network that have the same cost

and share an arc with a random capacity.) Of course, h. = q1 /y, (i).

Hence, if Q is linear, no elementary vector x has more than one stochastic variable and two elementary

9



vectors can only share a stochastic variable if they have the same cost (in the sense described above). Since

Step 6 only creates elementary vectors z;, the random variable P in Step 7 is linear in its single random

variable. Hence, our method produces the exact solution"

3.2 The Bound is Polynomial

The Edmundson-Madansky bound requires that Q(f, 0) be solved in all extreme cases of e and 0. There

are 2 m"+n, such points; hence, the method is exponential in the number of stochastic variables. Only for

very moderate values of n, and m is it possible to apply this bound.

The major goal of this paper is therefore to find a good upper bound that can be computed in a number

of operations that is polynomial rather than exponential in the number of random variables.

Property 2: Algorithm I calculates SPLU in a number of operations that is polynomial in the number of

random variables.

Proof. The amount of work is in the worst case:

Step 0: 1 LP (a', ' can be found by inspection).

Step 1: 2m, LPs.

Step 4: 1 LP to find z'. The conformal realization is independent of n, and ml. (The worst case is n LP's,

,p

nt !5 fl.)

Step 5: The integration is a constant amount of work for each random variable.

Step 7: Finding Eqaiamounts to checking the ,n * ma.x{N,} (in the worst case) possible values of 4k. The

value m, is the total number of possible values for ,. This has to be done not more than n times (since the

number of seroes increases by one for each k).

Hence, the algorithm is linear in n, and n1 .o

3.3 Relation to Networks

The method presented in this paper is closely related to the network method in Wallace I971. The

10 UI
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major difference is in Step 1, where we only solve two networks in the network case and not 2m, as here.

Below is a short network interpretation of some of the vectors and scalars used in the algorithm to help

in its understanding.

Step 0: The variable zi+ shows how the flow changes on the basic arcs as the supply at node i is increased

by one unit or (the demand is decreased). Hence,

(+1 if arc j is a forward arc on the path from node i to the slack node,
z+(j) " - 1 if arc j in a reverse arc,

0 if arc j is not on the path.

zX- is similarly defined for increased demand (or decreased supply).

01'(i) > 0 implies that with the chosen set of paths (zr) there are supply/demand combinations that give a

negative flow on arc i , even when we disregard node 1.

1 (i) > 0 implies that with the chosen paths, there are supply/demand combinations that overuse arc i even

when we do not consider node 1.

Step 1: zi are still paths, but not along a basis. Both basic and non-basic arcs are used. If Step 1 finishes

successfully, we have actually replaced the original network by a star-shaped network (where the slack node

is in the center of the star). The arc going from the center node to node i has unit cost qzi-, the arc in

the other direction has unit cost qz + . The way we have used a' and 61 has guaranteed that whatever

combination we get of supply and demand, sending that flow along the paths zx would be feasible and cost

the same as in the star-shaped network.

Hence, we have found an upper bounding simple recourse problem (Wets [19831). In stochastic programming

this approximation depends on the actual value of the first stage decisions (as in the recourse function in

the introduction). Hence, in some sense, it is a local approximation.

Step 4: a* < 0 shows how much flow can be sent along the original arcs in the negative direction without

making that total flow negative (whatever the supply/demand is). Similarly, 8* shows how much is left of

the capacity in the arcs in the worst case.

z* is just a circulation in the network, and zZ are circuits of minimal length (in terms of the number of

arcs in them). ork shows how much flow the circuit can take (or, more precisely, how much flow it has been

allotted.)

11
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Step 7: #A is a random variable describing the capacity of circuit k.

3.4 Relation to Subllnear Appradzmatons

The separable piecewise linear upper bound is also a generalisation of the ray function approximation in

Birge and Wets 11986a] and its extension in the sublinear approximation in Birge and Wets [1986b]. These

procedures find the value of Q(t, 0) in different coordinate directions to again obtain a separable function

that can easily be integrated. The approach in Birge and Wets 1 1986b] uses varying choices of the coordinate

system that leads to an extension of the SPLU bound given here. This extension would involve solving for

z' + and xzi- in different directions so that a variety of bounds could be obtained.

The ray function approximation amounts to solving for

qTzJ+ = min(qTz I Az = e',z 2! 0}

and

qTzj- = min{qTz I Az = -ej, z _ 0).

These values of "+ and r- are then used in U(t, #) as in SPLU. The extension is to use the elements of

other coordinate systems in place of ±eS in the definitions (i.e., use some vectors d " that form a basis for

R'). This procedure can be used in Algorithm 1 to obtain an alternative bound.

The sublinear approximation with varying directions has been found to produce accurate approximations

in a variety of examples. The advantage of the SPLU bound is that it applies to bounded regions so it may

be used on partitions of the support of the random variable in a refinement procedure in solving a stochastic

program. Algorithm 1 also incorporates the procedures for handling random bounds that often arise in

practical examples.

3.5 Finiteness

There is no guarantee that our upper bound is finite, i.e., that all linear programs that must be solved ,

are feasible. An infinite bound of course results if EQ(f, 0) = +oo, i.e. the problem itself is infeasible, but

12
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it can also be that EQ(C, 0) < +oo, whereas EU(C, 0) = +oo. This is not always avoidable. We note that

the only other polynomial upper bound, the ray approximation, is never better than our bound (assuming

the possible extensions mentioned above), and that exponential bounds may be necessary in some cases.

3.6 Partitioning

When approximations, such u the one in this paper, are used in two-stage stochastic programming, a II

comparison is made with a lower bound (EL) usually based on Jensen's inequality. Then, if EU - EL is

too large (according to some rule), the support rectangle (for independent random variables) is partitioned

into smaller rectangles called cells, and the bounding procedures are applied to these cells, which in turn are

weighted by their probability.

Hence, whenever a partition is called for, one must decide which cell to partition and, along which

coordinate direction, to perform the partition. With an upper bounding method that can take on the value

+oo even for a feasible problem, one should clearly partition the cell where EU = +oo, along the coordinate

direction that was being treated when the infeasibility was discovered. This provides a dynamic scheme in

which the algorithm is applied on each cell until either an infinite value is obtained or the difference between

lower and upper bounds is above the acceptable threshold. A partition is made in either instance. Partition

strategies are discussed in Birge and Wets [1986a], Birge and Wallace [19861 and Frauendorfer and Kall

119881.

4. Examples

In this section, we first present a small example to illustrate the bound. We then give computational

results on a larger problem from energy modeling (Louveaux[1987]).

4.1 A Problem with Two Random Variables

The first example is a problem with two random variables and without random capacities. We wish to

find bounds on EQ(f) where

Q()= min +z2 + X3 + 4 + ozS + lO (4.1)

13



subject to

1 +32 +X3 zs = (4.2)
3z1 +z2 +Z4 -2e =f2 (4.3)

Z , ... I 2 O,

where CI and f2 are uniformly distributed on 11,41. This problem is illustrated in Figure 1, where A., refers

to the ith column in the constraint matrix of (4.2-4.3). We follow Algorithm I step by step.

Step 0:

(i) Find = 1.25.

z0 = (0.625,0.625,0,0,0,0).

-
X + = (-0.125,0.375,0,0,0,0); z - = (0.125, -0.375,0,0,0,0).

22+ = (0.375, -0.125,0,0,0,0); z2- = (-0.375,0.125,0,0,0,0).

'(1) = -0.0625; a' (2) = -0.4375;(Note: (i) = +oo.)

Now e(1) = 0.1875 > -al(l) = 0.0625, so go to Step 1. Note in Figure 1 that we have essentially moved

along the vertical line through 1. The bound ol recorded the (negative) minimum multiples of the vectors

A., and A. 2 for points along that line. The value e(I) recorded the greatest change in the multiple of A.,

from the multiple for I for other points along the horisontal line through 1. The function is not linear

because this change is greater than the minimal multiple (a(1)) for movement in the vertical direction.

Step 1.

Solve min(qTz I X[l.Sel,0,(-0.0625,-0.4375,0,0,0,0),oo))) = 1.125 = (0.75) (1.5) = 9 T2 1+( 
n
e - ,

where z'+ = (-0.0625,0.1875, 1.0, 0, 0, 0), and

min(qTz I xI-l.Sei,0,(-0.0625,-0.4375,0,0,0,0),oo)]) = 1.375 = (0.9167) * (1.5) = qTx-( j - nin),

where z1- = (-0.0625,-0.4375,0,0.625,0.125,0). Next go to Step 4. .

Step 4:

We can skip this since there are no random bounds. Step 5 then is the terminal step.

Step 5:

14
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Here we compute E_( ) -

+( ) +.._, s1 +(CI - I1)dF(CI) + J<11 zl-( I - jdF(Cj

+f X+(C2- 12)dp(C2) + f Z2-(12 - 2d C)

= 1.25 + o.5(0.75)(0.75) + (0.5)(0.9167)(0.75) + 0.s(0.25)(0.75) + (0.5)(-0.25)(0.75) = 1.875.

End.

So, we have SPLU = 1.875. We compare this with the Edmundson-Madansky (EM) bound. In this

example, the EM bound assigns equal weights to the values of Q(C) at each of the extreme points of 3.

Hence,

EM - 0.25 * (Q(1, 1) + Q(1, 4) + Q(4, 1) + Q(4, 4)) = 1.625.

The EM bound is better than the SPLU bound but this difference may be eliminated by refinements of the

SPLU bound. We describe possible refinements in Section 5.

4.2 Computational RmAlts for an nergy Model

The usefulness of the SPLU bound is best demonstrated on a practical example in which the number of

random variables varies. We wish specifically to observe the performance of SPLU relative to the EM bound

as the number of random variables increases. The performance is measured in the sharpness of the bound

and the computational effort. As a practical example, we consider the small energy model in Louveaux

[19871. We do not consider random bounds because that is directly analogous to the network case discussed

in Wallace (1987bi.

In this example, we have four technologies which can be used to satisfy three demands at varying costs.

High cost "backstop technologies are also available to satisfy demand so the problem is feasible for any

demand realisation. The randomness occurs in the capacity of the technologies and the demands. This allows

from one to seven random variables. The examples were also chosen with varying ranges (narrow,medium,

and wide) on the random variables resulting in twenty-one sets of examples. We assume uniform distributions.

This assumption favors bounds (such as the Edmundson-Madasky bound) that place weights at extreme

values since other distributions generally have more mass around the center of the support.

15
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The experiments were conducted on the Amdahl 5860 at The University of Michigan Computing Center.

The SPLU and EM bounds were both implemented in FORTRAN codes using the same linear programming

routine LPM-1 (Pfefferkorn and Tomlin [1976]). Each bound wa computed for each of the twenty-one test

problems. The Jensen inequality lower bound was also computed to determine the values of the upper -

bounds relative to the lower bounds. The results are given in Table 1.

The results in Table 1 show that the polynomial bound SPLU does not generally provide as accurate a

bound as the EM bound, but that as the number of random variables increases the computational time in

SPLU increases much less rapidly than the time for EM. In these examples, the growth of time for SPLU

is indeed approximately linear (gaining ten milliseconds for each random variable), while the time for EM

approximately doubles as each new random variable is introduced. This demonstrates that the real advantage

of the SPLU bound is in problems with a large number of random variables where the EM bound cannot be

computed. These results are comparable with the results in Wallace [1987b] for networks.

Refinements are also possible to reduce the error in SPLU. In Section 5, a refinement scheme using

parametric linear programming is introduced. The use of different coordinate directions is another possibility

as mentioned above. For unbounded ranges, the resulting sublinear approximation values were reduced up

to thirty percent from the coordinate direction values for a similar set of test problems (Birge and Wets

[1986b1).

%-I
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PROBLEM TIME2  VALUE

EM SPLU EM SPLU Jensen

1-NAR 9 10 182.75 182.75 182.75

I-MED 10 18 220.50 220.25 220.00

I-WID 10 21 385.50 341.50 297.50

2-NAR 16 20 183.38 183.06 182.75

2-MED 17 26 220.50 220.50 220.00,. ,

2-W ID 22 35 389.85 389.10 297.50 -: e-', : 61

3-NAR 22 28 183.38 183.38 182.75

3-MED 25 38 221.38 222.50 220.00

3-WID 33 40 433.60 439.58 297.50

4-NAR 51 41 184.09 185.50 182.75

4-MED 44 41 227.22 255.18 220.00

4-WID 47 45 434.26 469.50 297.50

5-NAR 94 52 184.19 186.44 182.75

5-MED 87 51 227.41 278.38 220.00

% %
5-WID 75 54 434.35 499.18 297.50

6-NAR 163 54 185.58 192.49 182.75 % %

6-MED 193 61 235.91 303.35 220.00

6-WID 149 72 443.52 524.30 297.50

7-NAR 329 64 186.23 215.48 182.75

7-MED 366 70 236.27 328.35 220.00

7-WID 304 76 444.12 549.30 297.50

1 - Number of random variables - range of random variables. 

2 - CPU milliseconds.

Table 1. Results for Edmundson-Madansky and SPLU bound..
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5. Extenslon and Conclusions

The SPLU bound can be refined in a variety ways. The use of other coordinate directions may be

possible, but it is best used when linear transformations of the random variables have a known distributional

form as is the case for normally distributed random variables. As mentioned above, a common procedure

is to partition the support of the random variables and to apply the bound on each of the partitions. Here

we give a parametric programming approach that can obtain more accurate results without partitioning the

random variables. The following modifications of Algorithm I provide this basic bound.

Algorithm 2

Substitute the following steps into Algorithm 1 to obtain

U'(f, Q(j,O) + H() + i I+(-)((-)C, - (+),).
€,>(<)/ I

Step '.PSolve the parametric linear program

minqWz I X(-,,0,

for e E 10, 1- ,l (orI e 10, oo) if , is unbounded). This generates a piecewise linear function f+(ee,)

with break points {0, It,... ,eT), and with slope values, qTz'+,..., qTzV+*.

Then,solve the parametric linear program

..

min{q T z I X(-ee, ,0c', "'))

for e E [0, f, - 0 (or I E [0, oo) if fr unbounded.) We then obtain a piecewise linear function f; with

breakpoints {0, t,. .. IeT), and with slope values, qT z-,..., qZ*-

Step r and Step 4': Substitute min,{ +(i)} for zJ+(i) and mint{z-(i)) for zj-(i) in the definitions of

a'+(i) and a*(i) and substitute max (z+(i)) for +(i) and max,{z:.-(i)) for z'-(i) in the definitions of

'+1 (i) and '(i).

The changes in Step V of Algorithm 2 lead to better bounds if a" and ft are the same and q? ; < qT4X,

In Algorithm 2, the approximation obtains as low a value as possible for all , for changes in the rth direction
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given the values found for movement in previous directions. In Algorithm 1, the approximation just uses the [.

extreme values of 4.

This difference can be sen in the example from Section 4.1 which is illustrated in Figure 2. The dashed

line corresponds to the function used in Algorithm I by using the extreme values. The solid line corresponds

to the functions f,+ and f,-. The new bound is

SPLU' = E[U'(0 ) 1.449.

We note that SPLU' is now below the EM bound value of 1.625.

The bound from Algorithm 2 is not always better than SPLU because the bounds may change for .,

different values of r, i.e. a'+' may increase and #+1 may decrease. Although this difference appears to rarely

make SPLU' worse than SPLU according to our limited coumputational experience, it may be advantageous %".

to guarantee that a bound at least as good as SPLU is obtained. This guarantee is accomplished in the

following modification of Step 1'. -.

Step 1". Solve

minq z X(( ,""  yJU, O, , . .

Let

X(,) if < 0,
10 otherwise.

and

/ (i) if 7>o0,
t0 otherwise.

Then solve the parametric linear program

min{qz IX((

to obtain ,+(ee,) as explained in Step 1'. ... ,

19
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This modification of Algorithm 2 results in bounds that are at least as sharp as SPLU and can still

benefit from the parametric program as in the example given above. The key benefit of the SPLU bound

that the computational effort only grows polynomially with increases in the number of random variables is

maintained. We have demonstrated how this improvement results in reduced times on one set of examples

and that the greatest value of the SPLU bound may be in cases where the EM and other exponential bounds

cannot be reasonably computed. The refinements mentioned above may allow the SPLU bound to be even

more useful in the solution of practical stochastic linear programming problems.
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