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Abstract set of most frequently executed operations is determu4 by
We ported the Portabll Standard Lisp compiler to MIPS-X, studying a number of programs wrilten in hil vel

a reduced-instruction-set processor. In this paper we report languages, mostly Pascal and C for the projects to date.

on a number of profiling measurements made on a set of I1 We ported the Portable Standard Lisp (PSL) compiler to
LISP programs. The measurements give information on two IMIPS-X, a reduced-instruction-set processor. Our goal was
levels. First, we look at what instructions LISP programs use two-fold. First, we wanted to determine whether MIPS-X, the
at the assembly level. Because the instruction set of MIPS-X design of which is based primarily on extensive
contains only very simple, basic instructions, the profiling measurements of programs written in Pascal and C, is a goo
information is at a very low level. In a second group of host for LISP. Second, we wanted to get detailed information
measurements, we determine how much time each program on the behavior of LISP programs, both at the machine level

spends on the most common primitive LISP operations. and at the source level. In this paper we report the results of
Because MIPS-X executes all machine instructions in a single the second part of this project.
cycle, it is possible to get very accurate timing measurements

by instruction counts. 1' A study of the Berkeley RISC processor as a host for LISP
[16], suggests that reduced-instruction-set processors are
potentially good hosts for LISP. However, the study is based

1. Introduction on a single benchmark, and the project never resulted in a
In the last couple of years a number of reduced-instruction- working compiler.

set processors have been designed: the IBM 801 [171, the
Berkeley RISC machine [151, and the Stanford MIPS
processor (10]. The design of these processors is based on the 1.1. The MIPS-X architecture
obervation that during the execution of compiled programs, MIPS-X 11] is the successor of MIPS 110]. It has a simple
mostly simple operations are executed. Reduced-instruction- instruction set with single cycle execution for all instructions.
set processors exploit this feature by only implementing The projected cycle time is 50 ns. The processor has a
simple operations in hardware, and by handling the more load-store architecture with 32 general purpose registers. A
complicated operations in software. This makes it possible to VLSI implementatiun of the architecture is in progress.
execute the more frequent, simple operations very fast. The The instruction set contains 3 groups of instructions. The

The NI researh project has been supported by the Defe compute instructions take two operands from the registers and

Advanced Reseach Project Agency under contract 8 MDA903-83- leave the result in a third. The compute operations include
C-0335 add, subtract, logical bit operations, arithmetic and logical

shift, byte rotate, and one bit multiplication and division steps.
The memory instructions transfer data between memory and
the registers. Thcy are the only instructions that acccss
memory. The branch and jump instructions include a pc-

relative unconditional branch, a full set of pc-relative
. : . , ,conditional branches, and an absolute jump for procedure

- calls and returns.

All branches and jumps have two delayed branch slots.
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This means that the control transfer to the branch target * inter. a simple interpreter for a subset of LISP is used to
occurs two cycles after the execution of the branch, and that calculate the Fibbonachi number 10, and to sort a list of
the two machine instructions immediately following the numbers. The interpreter is adapted from "Lisp in
branch are always executed, independent of whether the Lisp" [24]. (1533)

•deduce:, a deductive information retriever for a database
branch goes or noL Delayed branch slots are not visible at theoraed s a dsciination tre er of ruleu organized as a discrimination tree. A number of rules
assembly level. The reorganizer, a special pass in the are added to the tree, and a number of deductions are
assembler, creates the delayed slots, and tries to fill them with made. Adapted from [2]. (3419)
useful instructions from before the branch or from the * ded-gc, the same program as deduce, but the heap has
predicted branch successor. All conditional branches come in been reduced so that the copying garbage collector is
two flavors. A first type always excute the instructions in invoked a number of times. The program spends about

the two delayed slots. If these instructions are taken from a 50% of its time in the garbage collector. (4112)
o rat- a rational function evaluator that comes with the

branch target, then they should not overwrite any resources PSL system. (6315)
that might be needed if the branch goes the other way. The o comp: the rst pass of the fntend of the PSL
second type, called squashed branches, only executes the compiler. (9466)
instructions in the delayed slots if the branch goes, otherwise o opr. the optimizer that was added to the compiler. It
two no-ops are executed [13). uses lists, and vectors with and without type and range

checking. (11121)
if *frl: a simple inventory system using the frwne

1.2. The PSL compiler representation language. (11802)
Portable Standard lisp (8, 7] is built around a portable o boyer: the boyer benchmark; a rewrite-rule-based

compiler. It is a small, efficient LISP system and it has been simplifier combined with a dumb tautology-checker,

ported to a large number of architectures, benchmark published by R. Gabriel in [6]. (1793)
o brow: a short version of the browse benchmark; creates

Bringing up PSL on a new architecture requires a running and browses through an Al-like database of units;
PSL system. The backend of the compiler is changed to benchmark published by R.Gabriel in [6]. (22%)

generate assembly code for the new processor, and this is * trav a short version of the traverse benchmark; creates
and traverses a tree structure; uses structures with fullused to compile the entire PSL kernel, which is written in type and range checking; benchmark published by

PSL The kernel can then be assembled and linked on the R. Gabriel in [61. (1673)
new machine. This was done for MIPS-X with a VAX PSL * trav.f same as tray but without type and range checking.
implementation as host. Because the MIPS-X hardware (1547)
implementation is not finished, all programs have to be run on
a simulator. For this reason we did not port the whole kernel,
but only the parts that are necessary to run the test programs. 2. Low Level Profiles

In this section we look at the behavior of the above PSL
We chose the PSL dialect mainly because it was reputed to programs on the assembly level (that is, before the creation of

be fairly efficient, anO easy to port. This proved to be correct delayed branch slots). We fust look at the execution
although we added a few standard optimizations. An frequency of the different groups of assembly instructions,
important question is whether the results presented here apply and we compare these numbers with similar numbers for
to other LISP dialects. We believe they do. Although PSL is Pascal and C programs on the MIPS architecture [91, which
a rather small dialect it supports all widely used 11SP data has an almost identical assembly language. Then we try to
types like numbers, lists, structures, arrays, and strings, link the low level assembly level information back to high
Several other LISP dialects, for example Common LISP [18], level operations in the LISP program.

support more complicated features like default parameters and
closures. Although these features are important, we do not
think that they will be used often enough to have a lot of 2.1. Assembly Instruction profilesSinfluence on the behavior of the programs. Table 2-1 gives the instruction frequencies for the

following instruction groups: register to register operations
(alu), local branches with the frequency for conditional

1.3. The programs branches following in parenthesis, non-local jumps (used
We now describe the II programs that were used to study mainly for procedure calls and returns), and memory to

behavior of LISP programs on MIPS-X. The number register (load) and register to memory transfers (store).
between parenthesis is the number of MIPS-X machine
instructions in the compiled program. For a group of large, optimized Pascal programs we found
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on average, 55% ALU operations. 30% load and store The ratio of arithmetic instructions to bit and shift
operations, and 15% branches and jumps. For a group of instructions for our set of Pascal programs is 3:1. For the C
large C programs these numbers were 44%, 37% and 19% programs, more than 20% of the ALU instructions are
respectively, connected with character handling, and the ratio decreases to

We see that the branch frequency in LISP is substantially 1.1:1. For the above LISP programs the ratio of arithmetic to

higher. As we will discuss later, this is mainly a result of the bit and shift instructions is 0.7:1, what clearly shows that

high frequency of procedure calls. We also observe a slightly LISP programs spend their time on different operations than

higher load and store frequency in our LISP programs than in Pascal and C programs. Tag handling is definitely one
important difference, but the low frequency of arithmeticour suite of Pascal and C programs. The load/store frequency instructions also suggests that LISP programs execute fewer

depends strongly on the quality of the register allocation ithuctios aos
though, and PSL has a very simple register allocation

strategy. The high procedure call frequency makei it difficult Over 50% of the add/sub instructions are add immediate
to effectively use of the 32 registers in MIPS-X. instructions that are used to adjust the stack pointer during

procedure calls (two adds per call). Pascal and C programs

also use add instructions for this purpose, but the higher
2.2. More about ALU Instructions procedure call frequency in LISP (see section 2.4) would

In Table 2-2 we giv r the frequencies for groups of related normally generate more add immediate instructions in LISP
ALU instructions, relative to the total number of ALU programs. The fact that LISP numbers actually show fewer

instructions executed. The instructions in the bit and shift add instructions indicates that our set of LISP programs
groups are used almost exclusively to handle tags. They contain very few explicit arithmetic operations.
constitute almost 50% of the ALU instructions!

alu branch(cond) jump load store

inter 31.38 15.06 (12.83) 6.75 34.10 12.71
deduce 35.00 13.43 (11.02) 9.66 28.17 13.74
ded-gc 33.23 14.82 (12.67) 8.56 28.40 14.98

rat 42.63 14.16 (13.75) 10.68 22.27 10.26
comp 35.91 15.08 (13.25) 9.02 26.72 13.27
opt 38.62 19.78 (15.44) 6.63 27.15 7.82
frl 33.34 17.01 (13.25) 9.17 26.77 13.71

boyer 33.96 12.24 (11.47) 10.60 28.02 15.17
brow 35.02 11.93 (9.35) 6.26 32.81 13.97
trav 40.57 15.25 (13.38) 9.18 25.13 9.87
travf 32.01 14.11 (10.43) 10.44 33.41 10.03

average 35.61 14.81 (12.44) 8.81 28.45 12.32 Ace' ',.son For

Table 2-1: Assembly instruction frequencies - &I

add/sub mul/div bit shift move

inter 23.45 0.00 49.59 18.64 8.29
deduce 27.91 0.00 26.86 21.51 23.71 -
ded-gc 41.50 0.00 22.39 19.86 16.25

rat 40.21 7.62 17.87 16.37 17.92
comp 31.44 0.06 26.40 21.08 21.05 ,'-i" abil Ity Codes
opt 25.61 0.00 34.54 25.48 14.37 Avai " I ,Io"
frl 51.05 0.00 20.86 15.28 12.81 "

boyer 29.51 0.00 38.66 17.46 14.34
brow 25.10 0.03 42.86 13.71 18.28
tray 35.20 1.38 13.93 23.05 26.45
travf 35.08 3.66 33.80 6.06 21.40

average 33.28 1.16 29.80 18.05 17.72

Table 2-2: ALU instruction frequencies



The high frequency of mov instructions might be a surprise, recursive calls that call the calling procedure itself don't show
considering that all MIPS-X ALU instructions take three up in the call frequency column, because they are transformed
operands. In PSL, procedures get most of their parameters in into local branches by the front-end of the compiler. One in
registers, and they always return the result in register 1. Most every 11.7 instructions executed is a non-local jump, so the
moves are used to rearrange parameters and results between average number of instructions executed between two jumps,
procedure calls. The constant NIL is kept permanently in a each of which is a procedure call or return, is less than eleven
register, and 24.5% of the moves are used to move NIL into instructions.
another register, either to be used as a parameter, or to be call ret other
returned as a result. A small fraction of the moves could be
eliminated. The PSL intermediate language uses 2 operand inter 3.97 2.69 0.09
instructions, and the compiler front-end sometimes generates deduce 5.22 4A2 0.01

ded-gc 4.86 3.70 0.01a move to duplicate a register, so that its value will not be rat 6.66 3.38 0.64
overwritten by a later operation. This move is not necessary comp 5.07 3.94 0.01
at the assembly level, but it is not removed during code opt 3.80 2.49 0.34
generation. fri 4.60 3.76 0.79

boyer 6.32 4.28 0.00
brow 3.14 3.11 0.01
trav 4.87 4.04 0.28

2.3. The target of load and store Instructions travf 5.81 4.06 0.58
In this section we take a closer at what parts of memory are

accessed by the load and store instructions. We distinguish 3 average 4.94 3.62 0.25
memory areas: the heap, the stack, which is used for local Table 2.4: Use of non-local jumps
variables and return addresses, and a globalluser area with Table 2-5 gives more information on pc-relative branches.
fluid (global) user variables, constants, and system variables".r. One very interesting result is that almost 5% of all
(e.g.: the heap pointer). The first 3 rows of table 2-3 show instructions executed, that is 20% of all branches and jumps,
what percentage of the loads, stores, and memory references
(loads + stores) access each area. The last row gives the the large difference in tag checking frequency between tray

geometric mean over all programs, of the load to store ratio in and travf. The fairly high frequency of comparison with NIL,
eh oftes m o are. T e a rand of copying NIL into a register (see section 2.2) indicate

m rcsi.that the allocation of NIL to a register is an important

user optimization, especially for a machine without versatile long
heap stack global immediates.

loads 23.96 47.76 28.28 cmp tag other
stores 14.21 73.21 12.07 nil check cond uncond

all accesses 20.09 55.37 24.54
inter 1.53 4.43 6.87 2.23
deduce 2.27 6.81 1.94 2.41load/store ded-gc 1.72 5.36 5.59 2.15ratio 4.26 1.51 7.11 rat 1.03 4.99 7.73 0.41

Table 2-3: Target of load and store instructions comp 3.64 6.60 3.01 1.83
opt 1.29 7.45 6.70 4.34

Most stores go to the stack, and both the heap and the area frI 1.39 4.12 7.74 3.76
with global data have a high load/store ratio. In a later section boyer 4.48 4.33 2.66 0.77
we study the accesses to the heap in more detail. brow 2.17 3.24 3.94 2.58

trav 1.85 4.53 7.00 1.87
travf 4.00 0.66 5.77 3.68

2.4. Branches average 2.31 4.77 5.36 2.37
In Tables 2-4 and 2-5 we break up the jump and branch Table 2-5: Use of pc-relative branches

frequencies according to the source level operation they
implement. The difference between the call frequency
(4.94%) and the return frequency (3.62%) in the first two 2.5. Comparison with earlier work
columns of Table 2-4 shows what fraction of the procedure A few papers have been published with dynamic profiling
calls have been converted into tail-recursive jumps, or tail- data of LISP. In 122], Urmi describes the design of a
transfers [19] (1.32%, that is one out of every 4 calls). Tail- compiler for InterLisp. The compiler uses an intermediate



language that is very close to LISP, and an interpreter was the Dorado [4]. Measurements of VAX Macsyma [5], written
written to interpret this intern, .diate language. The profiling in Franz LISP, show a jump frequency of 6%. but Franz LISP
information generated by the interpreter is on a higher level, has a kernel written in C, so only part of the executed code is
but the results are very similar. The most frequently executed really LISP code.
intermediate language instructions were: load and setq (they The high jump frequency on MIPS-X is certainly
would translate into loads and stores on MIPS-X), ip (shift unexpected: programs on RISC architectures are usually less~~~~~followed by conditional branch), car and cdr (logical anduepetdprgasoRICrcicuesaesalyes
followed by a load), and procedure caos dense, so one would expect lower procedure call frequencies.
fThis suggests that the high procedure call frequency is typical

Foderaro measured the Franz LISP implementation of the for LISP programs. A comparison with the branch frequency
algebraic manipulation system Macsyma [5]. Dynamic for Pascal and C on the MIPS [9] confirms this observation:
profiling information shows that mort is the most executed for Pascal and C. I out of every 7 branches is a call or return.
VAX instruction (implemented by load, store, and move in For LISP this ratio is 1 out of 3.

0 MIPS-X), followed by cmpl, bnequ, and beqas (these
cTnsp ototed aMIP cnd a , and The call frequency, not including tail transfers, on SPURdcorrespond to the M IPS-X co nditional bran ches), an d [ 0 ,a oh rR S x c t n I P s3 5 . T i s si hlarithmetic shift. They found that 3% of all instructions were [20], another RISC executing LISP, is 3.5%. This is slightly

lower than for our set of programs on MIPS-X. On SOARprocedure calls, and there were very few arithmetic [21], a RISC executing Smaitalk, the frequency of non-local+ ~~~~instructions. [1,aRS xctn mltltefeunyo o-oa
intrc s i jumps for 4 macro-benchmarks is on average 13.3%. This is

The SPUR microprocessor is described in [20]. The SPUR extremely high, so high call and return frequencies seem to be
architecture is very similar to the RISC-Il, but hardware was common in exploratory programming languages.
added to support the fast execution of Common LISP. Type
checking is done in parallel with arithmetic operations, and a
trap occurs if both operands are not integers. Some primitive 2.6. Summary of low level profiling Information
operators, like car and edr, are implemented in hardware. Figure 2-1 summarizes the results of this section. The total
Multiple overlapping register windows are used to avoid surface of the square corresponds to all instructions executed
memory accesses for locals. The assembly instruction (100%). The surface of each rectangle shows for some
frequencies for Gabriel's benchmarks on SPUR are: 16.9% instruction type, e.g. loads to the stack, what fraction of the
loads, 7.7% stores, 43.8% ALU, and 28.1% branches and total instruction count are instructions of that type.
jumps. We notice a lower load and store frequencies than in
the assembly instruction frequencies of Table 2-1. To account
for the presence of the register file on SPUR, we subtract
from the assembly frequencies for the MIPS-X, the loads and arithmetic bit shift move
stores that access the stack, using the results of Table 2-3.
This gives the following adjusted frequencies for MIPS-X:
46% ALU, 31% branches, 19% loads, and 4% stores. These
numbers are almost equal to the numbers for SPUR.

SOAR [21] is a RISC processor especially designed for call/return tag other unc
Smalltalk-80. Smalltalk also uses tags to store the type of
variables, and SOAR has hardware support for tag handling. ... .-...-... . -. . . .. - .- -...... .. ------..
About 9% of the instructions executed on SOAR are tagged -...... ........ ° .°.... .. I........ .......... . ....... o... o....... o.... o.... ..... .. .. . .. .... .. .....

arithmetic instructions, that do automatic typechecking in .........
hardware. The mean of the ratio of add and subtract ... .. .. .. .. .. ....... ..... ° - - ° ...... o .. . ... ......o.....

instructions to bit and shift instructions for 4 macro- - ... .. . ..........benchmarks is 3.2. This is the same ratio that we found for iiiiiiiiiiiiiiiiiiiiiiiiiiii lii !iiiiiiii iiiiiiiii iii [

Pascal programs. This is not a surprise, considering all tag ________________u__________________

manipulation is done in hardware.

An overview of the literature shows non-local jump E alu branches
frequencies that are consistently lower than what we found for
LISP on MIPS-X: 5.3% and 6.5% for bliss on the VAX [12], load store
an average of 4.9% for a set of compilers written in basic,
pascal, bliss, and pill on the VAX [231, and 5.3% for mesa on FIgure 2-1: Overview of low level profiling
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3. Cost of some Important operations the cons function, vector operations with type checking, and
In this section we look at the relative frequency of a list functions like append and reverse. We observe that LISP

number of source level operations, and at the fraction of the programs spend a substantial part of their time, 52% on
total execution time that is spent on these operations. All average, ine LISP system. Comparing trav with
MIPS-X instructions are executed in a single cycle, but the travf also shows that high system time is for a large pan a
cost of executing a load, store, or branch instruction can result of the use of general operators, implemented as
sometimes be higher. The result of a load instruction is only procedures that do type checking, in contrast with the use of
available in the second cycle after the load. The reorganizer fast, in-line operators.
tries to put an instruction that does not need the loaded value
after the load, but if no such instruction can be found, a no-op
(idle) instruction will be inserted. Similarly, no memory 3.2. Frequency and cost of list operations
access instructions can be executed after a store, and an idle Table 3-3 shows the number of list operations executed,
instruction may have to be inserted. The two instructions normalized by the number of cons operations. The first line
after branches and jumps are always executed before control gives averages for these ratio's for the programs in our set.
is transferred to the branch target, and if no assembly Because the amount of time each program spends on list
instructions can be moved from before the branch or from the operations varies strongly, the average has been weighted by
branch target, idle cycles are again inserted. In this section, the time spent on list operations. Clark [31 has done an
cost always includes any idle cycles present immediately after elaborate study of the use of lists in LISP, and the average

. load and store instructions and in any of the two cycles ratio's for his 3 programs are given on the second line. The
(statically) after branch instructions. The cost of an ALU results are very similar.
instruction is always I cycle. We consider only cpu cycles in cons car cdr rplaca rplacd
our cost measurements.

Our set 1 13.2 12.9 0.11 0.22

Clark's set 1 9.2 9.7 0.13 0.523.1. Time In the USP system versus time In the user
program Table 3-3: Comparison of frequency of list accesses

Table 3-1 gives the fraction of time that each program In Table 3-2 % t give the fraction of the total execution time
spends in procedures that are part of the LISP environment. that was spent on each individual list operation. The
Examples of such procedures are generic arithmetic routines, allocation of space is done with a procedure call, and requires

inter ded de-Rc rat comp opt 19 cycles. This cost does not include the cost of garbage
46.8 36.1 69.8 49.7 61.1 67.1 collection. Car and cdr require 2 or 3 cycles: one cycle to

mask out the tag, one for the load, and 75% of the time an idle
frl borer brow trav travf cycle to wait for the result. Rplaca and rplacd require the
74.1 29.9 64.3 51.5 21.2 masking of the tag, a store and, in 50% of the cases, an idle

.- Table 3-1: Time in LISP system procedures cycle. In the case of car and cdr, the cycle after the load can

cons car cdr rplaca rplacd total

inter 19.21 17.78 10.02 0.01 0.02 47.05
deduce 11.07 9.52 9.62 0.00 0.37 30.58
ded-gc 4.77 5.44 4.80 0.76 0.16 15.93

rat 15.13 8.91 5.04 0.01 0.01 29.10
comp 12.01 9.59 5.71 0.16 0.13 27.61
opt 3.79 14-56 13.52 0.10 0.09 32.07
fr 9.60 6.19 6.39 0.01 0.10 22.29

,. boyer 21.72 14.33 8.81 0.00 0.00 44.86
brow 21.92 13.22 14.03 0.00 2.04 51.21

V.,,' tray 0.27 3.39 3.87 0.01 0.02 7.55
travf 0.55 6.96 7.94 0.03 0.06 15.54

average 10.91 9.99 8.16 0.11 0.27 29.44

Table 3-2: Cost of list operations in percent of all cycles
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only be used 25% of the time because of car-cdr chains; when type alic vector vector
there are several car and cdr operations in a row, it is often check vector read write total

hard to find an unrelated instruction to execute after all but opt y 1.23 4.45 9.67 15.39
the first load in the sequence. n 0.03 0.01

tray y 0.02 33.26 4.75 38.03
In the program opt, a special effort has been made to avoid travf n 0.05 2.85 0.44 3.34

(unnecessary) allocation of cons cells. This shows up clearly Table 3-4: Cost of vector operations in percent of all cycles
;,, the cons column.

In PSL, the allocation of cons cells is done with a Comparing the entries for trav and travf clearly shows that

procedure, which results in a fairly large cost. Keeping copies runtime type and range checking can be very expensive, and
of the heap pointer in a register, with a 'pair'-tag already these cot diffc re dsee larer cas vco
inserted, and doing the allocation of pairs in-line would bring

accesses without checking are done in-line, there are morethis cost down from I I% to about 3% of the execution time,wthoi ces wn roram sie To e aboutr3io e exoutn tbe, aprocedure calls in the user part of the program in tray than in
with no increase in program size. The price would be a very taf h ihfeunyo al erae h fetvns

small increase in the cost of allocating space for other data travf. The high frequency of calls decreases the effectiveness

types, and the loss of 2 registers for user data. An additional of the register allocator and it inhibits many optimizations. In
advantage would be fewer procedure calls, which may allow tray and travf, for example, several vector accesses occur in
adathe wptimiztioud bthe same basic block. In travf, the compiler detects this, and
further optimization. the masking of the tag in the vector item is done only once at

PSL does not do any type checking on list operations. the beginning of the basic block. This is not possible in tray,

Adding type checking increases the execution time of our because the vector operations are done with procedure calls.
programs by 14.6% on average. Some of these tests could be
eliminated by an optimizing compiler that uses information
available in the program to determine the type of variables, or 3.4. Cost of some other operations

by type declarations. Table 3-5 summarizes the cost of a number of additional
p LISP operations. We see that on average almost 25% of all

time is spent doing procedure calls and returns. This includes
3.3. Cost of vector operations only the cost of the jump and of maintaining the very simple

Table 3-4 gives the fraction of the execution time spent on stack frame. The cost of putting the parameters in place is not
vector operations. In opt, some vector operations are done included. The cost of procedure calls might very well be even

.r with type and range checking (line 1), and some without (line higher in LISP dialects with a more complicated procedure
2), and trav has been executed once with and once without call convention.

checking (travf).

call ret jcall nilcmp arith tagch

inter 8.81 6.79 2.99 1.48 3.68 10.75
deduce 14.57 13.18 1.90 2.01 0.44 15.02
ded-gc 11.47 9.80 1.95 1.65 0.19 11.98

rat 10.17 8.18 6.28 0.82 24.82 13.17
comp 12.59 11.11 2.39 2.96 0.36 16.07
opt 7.94 6.74 2.46 1.04 11.91 15.69
frl 11.48 11.18 1.66 1.06 2.24 9.35

boyer 13.91 12.01 4.20 3.64 0.00 11.44
brow 10.62 8.12 0.06 1.85 0.28 7.68
tray 12.20 11.77 2.55 1.41 8.77 12.20
travf 11.89 11.92 3.17 2.89 18.01 2.02

average 11.42 10.07 2.69 1.89 6.43 11.40
V Table 3-5: Cost of some important LISP operations
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Generic arithmetic operations are very expensive: adding operation. Certain areas are overlapping. For example, the
two numbers in a register costs only 1 cycle, but the cost right most columns shows the how much time is spent on

increases to 59 cycles when type and overflow checking is generic arithmetic operations, and it also indicates how much
done. This can become very expensive for arithmetic of that time is used for procedure calls and tag checking.
programs (e.g.: rat). One way to reduce this cost is to use theni"sadfocmpronwtnllual vnlvfast, unchecked operators that are provided by PSL. For a isrcin.Tecnrbto fh paaadrlc

progam iketak[61 ths otimiatin seed uptheproramoperations is so small that it should be represented by a line.
by a factor of 6.3. Using unchecked integer operations is only The exact form of the graph depends strongly on the program.
possible if the programmer is (feels) sure that all numbers
involved are small integers. This is not always possible, and
errors introduced by an undetected overflow can be very hard
to find. A more attractive solution is to speed up the generic
operations for the most frequently used datatype (integer), by V.
doing a fast, specific test for this type before going through
the expensive general test.

Our set of LISP programs spend an average of I1.4% of
their time checking the tag of data items. This number othe
includes both the cost o? extracting the tag and the cost of the car/cdr
conditional branch with possibly empty delayed slots. ToI
determine the cost of tag handling we should add to this the
cost of inserting and removing the type tags. These

operations are done using logical bit operations (see table 2-2)
so the total cost of tag handling becomes about 22% of the
total execution time. Type checking does not only involve tag N

procedure calls, so the cost of doing runtime type checking is

slightly higher. It is this cost that LISP machines try to
reduce with special hardware or micro-code for tag handling

V [1, 141. ____fraction of time of car/cdr and cons

It is not really correct to count the full cost of tag handlingthtispnonag adlg

as runtime type checking cost, because not a tageheck fraction of time of cons, vector and
operations are real type checking operations. An example is arith that is spent on call/return
the implementation of the function appevd. To detect the end and on tag checidng
of the first list, it checks whether the cdr of the successive
cells is a pair. Although this is technically a type checking Figure 3-1: Overview of the cost of LISP operation

operation (taking the car or cdr of an atom has to be avoided),
it is different from the type checking required for the operands 4. More about procedure calls

* of the addition operator. Compile-time declarations canLIPporm aerpudtobvry rcdreal
eliminate the type checking in arithmetic operations, but they iesPve proams a ae repte o bell vecriv proceduresal
cannot eliminate the test in the append function. If no runtime inenfisivelad toscontaintadlot o r mallhrecu si procures
checking were available, this test would have to be replaced Tefrtcamwsspotdb u ecmrsi eto
by some other test to detect the end of the list. This shows2..Tcoltdaaoveiyhesoncamwcagd

thateve wih copil tie delartios, te ericent the VAX compiler for PSL to insert before each procedure
thateve wih copil tie delartios, te eficent call a statement that prints out trace information. We

checking of tags will remain important. recompiled and rebuilt the PSL system, and we recompiled

.,,- -,and ran our 10 programs (dcd-gc was excluded because it is

3.5. Summary not possible to rebuilt PSL with a small enough heap). The

Figure 3-1 gives an overview of the cost of primitive LISP resulting trace files, together with static information about the

operations, averaged over the 11I programs. The surface of programs, were then used to generate tables 4-1 and 4-2.

the square represents the total execution time, and the surface The procedure size in column 3 of Table 4-1, is expressed
of each rectangle shows how much time was spent on each



in lines of intermediate code. Each intermediate instruction substantial shift from arithmetic instructions towards logical
expands on average to 1.1 assembly instructions. We see that bit operations and shifts. By linking our low level
procedures pass an average of less than 2 parameters, and information to LISP level operations, we found that LISP
allocate fewer than 2 words on the stack (plus one word for programs spend about 25% of their time doing procedure
the return address). The average procedure size is about 28 calls, and that they spend another 22% of their time on
assembly instructions, operations related to tag handling and tag checking. We also

noticed that the use of generic arithmetic and vectoraverage average average
parameter frame procedure operations can be very expensive and that specific operations,
count size size without type checking should be used if possible.
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