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LISP on a Reduced-Instruction-Set-Processor

Peter Steenkiste and John Hennessy
Computer Systems Laboratory
Stanford University

Centract MLA-903-83-C-0335

~ Abstract

We ported the Portablg Standard Lisp compiler to MIPS-X,
a reduced-instruction-set processor. In this paper we report
on a number of profiling measurements made on a set of 11
LISP programs. The measurements give information on two
levels. First, we look at what instructions LISP programs use
at the assembly level. Because the instruction set of MIPS-X
contains only very simple, basic instructions, the profiling
information is at a very low level. In a second group of
measurements, we determine how much time each program
spends on the most common primitive LISP operations.
Because MIPS-X executes all machine instructions in a single
cycle, it is possible to get very accurate liming measurements
by instruction counts. ¥

1. Introduction

In the last couple of years a pumber of reduced-instruction-
set processors have been designed: the IBM 801 {17], the
Berkeley RISC machine [15], and the Stanford MIPS
processor {10). The design of these processors is based on the
ob:ervation that during the execution of compiled programs,
mostly simple operations are executed. Reduced-instruction-
set processors exploit this feature by only implementing
simple operations in hardware, and by handling the more
complicated operations in software. This makes it possible to
execute the more frequent, simple operations very fast. The

The MIPS-X research project has been supported by the Defense
Advanced Research Project Agency under contract 8 MDA903-83-
C-0335
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set of most frequeatly executed operations is detemﬁnéﬂ} by
studying a number of programs written in higliJevel
languages, mostly Pascal and C for the projects to date.

We ported the Portable Standard Lisp (PSL) compiler to
MIPS-X, a reduced-instruction-set processor. Our goal was
two-fold. First, we wanted to determine whether MIPS-X, the
design of which is based primarily on extensive
measurements of programs written in Pascal and C, is a goo e
host for LISP. Second, we wanted to get detailed information -
on the behavior of LISP programs, both at the machine level
and at the source level. In this paper we report the results of
the second part of this project.

A study of the Berkeley RISC processor as a host for LISP
[16]), suggests that reduced-instruction-set processors are
potentially good hosts for LISP. However, the study is based
on a single benchmark, and the project never resulted in a
working compiler.

1.1. The MIPS-X architecture

MIPS-X [11] is the successor of MIPS [10]. It has a simple
instruction set with single cycle execution for all instructions.
The projected cycle time is 50 ns. The processor has a
load-store architecture with 32 geperal purpose registers. A
VLSI implementatiun of the architecture is in progress.

The instruction set contains 3 groups of instructions. The
compute instructions take two operands from the registers and
leave the result in a third. The compule operations include
add, subtract, logical bit operations, arithmetic and logical
shift, byte rotate, and one bit multiplication and division steps.
The memory instructions transfer data between memory and
the registers. They are the only instructions that access
memory. The branch and jump instructions include a pc-
relative unconditional branch, a full set of pc-relative

e = - —y
- e . ", conditional branches, and an absolute jump for proccdure
v calls and returns.
All branches and jumps have two delayed branch slots.
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This means that the control transfer to the branch target
occurs two cycles after the execution of the branch, and that
the two machine instructions immediately following the
branch are always executed, independent of whether the
branch goes or not. Delayed branch slots are not visible at the
assembly level. The reorganizer, a special pass in the
assembler, creates the delayed slots, and tries to fill them with
useful instructions from before the branch or from the
predicted branch successor. All conditional branches come in
two flavors. A first type always execute the instructions in
the two delayed slots. If these instructions are taken from a
branch target, then they should not overwrite any resources
that might be needed if the branch goes the other way. The
second type, called squashed branches, only executes the
instructions in the delayed slots if the branch goes, otherwise
two no-ops are executed [13]).

ir
1.2. The PSL compiler
Portable Standard Lisp (8, 7] is built around a portable
compiler. It is a small, efficient LISP system and it has been
ported to a large number of architectures.

Bringing up PSL on a new architecture requires a running
PSL system. The backend of the compiler is changed to
generate assembly code for the new processor, and this is
used to compile the entire PSL kemel, which is written in
PSL. The kemel can then be assembled and linked on the
new machine. This was done for MIPS-X with a VAX PSL
implementation as host. Because the MIPS-X hardware
implementation is not finished, all programs have to be run on
a simulator. For this reason we did not port the whole kemel,
but only the parts that are necessary to run the test programs,

We chose the PSL dialect mainly because it was reputed to
be fairly efficient, anll easy to port. This proved to be correct
although we added a few standard optimizations. An
important question is whether the results presented here apply
to other LISP dialects. We believe they do. Although PSL is
a rather small dialect it supports all widely used LISP data
types like numbers, lists, structures, arrays, and strings.
Several other LISP dialects, for example Common LISP [18],
support more complicated features like default parameters and
closures. Although these features are important, we do not
think that they will be used often enough to have a lot of
influence on the behavior of the programs.

1.3. The programs

We now describe the 11 programs that were used to study
the behavior of LISP programs on MIPS-X. The number
between parenthesis is the oumber of MIPS-X machine
instructions in the compiled program.

e inter: a simple interpreter for a subset of LISP is used to
calculate the Fibbonachi number 10, and to sort a list of
numbers. The interpreter is adapted from “Lisp in
Lisp” [24]. (1533)

o deduce: a deductive information retriever for a database
organized as a discrimination tree. A number of rules
are added to the tree, and a number of deductions arc
made. Adapted from [2]. (3419)

o ded-gc: the same program as deduce, but the heap has
been reduced so that the copying garbage collector is
invoked a number of times. The program spends about
50% of its time in the garbage collector. (4112)

e rat: a rational function evaluator that comes with the
PSL system. (6315)

ecomp: the first pass of the frontend of the PSL
compiler. (9466)

o opt. the optimizer that was added to the compiler. It
uses lists, and vectors with and without type and range
checking. (11121)

efrl: a simple inventory system using the frame
representation language. (11802)

e boyer: the boyer benchmark; a rewrite-rule-based
simplifier combined with a dumb tautology-checker;
benchmark published by R. Gabriel in [6]. (1793)

© brow: a short version of the browse benchmark; creates
and browses through an Al-like database of units;
benchmark published by R.Gabriel in [6]. (2296)

o trav: a short version of the traverse benchmark; creates
and traverses a tree structure; uses structures with full
type and range checking; benchmark published by
R. Gabriel in [6). (1673)

¢ travf. same as trav but without type and range checking.
(1547)

2. Low Level Profiles

In this section we look at the behavior of the above PSL
programs on the assembly level (that is, before the creation of
delayed branch slots). We first look at the execution
frequency of the different groups of assembly instructions,
and we ccmpare these numbers with similar numbers for
Pascal and C programs on the MIPS architecture {9], which
has an almost identical assembly language. Then we try to
link the low level assembly level information back to high
level operatioas in the LISP program.

2.1. Assembly Instruction profiles

Table 2-1 gives the instruction frequencies for the
following instruction groups: register to register operations
(alu), local branches with the frequency for conditional
branches following in parenthesis, non-local jumps (used
mainly for procedure calls and returns), and memory to
register (load) and register to memory transfers (store).

For a group of large, optimized Pascai programs we found
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; on average, 55% ALU operations, 30% load and store The ratio of arithmetic instructions to bit and shift
B operations, and 15% branches and jumps. For a group of instructions for our set of Pascal programs is 3:1. For the C
A large C programs these numbers were 44%, 37% and 19% programs, more than 20% of the ALU instructions are
respectively. connected with character handling, and the ratio decreases to
¢ RHWN ti ithmeti
, We see that the branch frequency in LISP is substantially l.l For th e‘above I.JSP p rograms the ratio of arithmetic to
' : N ' e i bit and shift instructions is 0.7:1, what clearly shows that
¥ higher. As we will discuss later, this is mainly a result of the LISP pro spend their time on different operations than
! high frequency of procedure calls. We also observe a slightly Prog pe .. )
N . . . Pascal and C programs. Tag handling is definitely one
K higher load and store frequency in our LISP programs than in R " . )
) . important difference, but the low frequency of arithmetic
our suite of Pascal and C programs. The load/store frequency . R
. . . instructions also suggests that LISP programs execute fewer
depends strongly on the quality of the register allocation arithmetic operations
i though, and PSL has a very simple register allocation pe )
:t strategy. The high procedure call frequency makes it difficult Over 50% of the add/sub instructions are add immediate
0 to effectively use of the 32 registers in MIPS-X. instructioas that are used to adjust the stack pointer during
b procedure calls (two adds per call). Pascal and C programs
also use add instructions for this purpose, but the higher
. 2.2. More about ALU Instructions procedure call frequency in LISP (see section 2.4) would
[ In Table 2-2 we givs, the frequencies for groups of related normally generate more add immediate instructions in LISP
: ALU instructions, relative to the total number of ALU programs. The fact that LISP numbers actually show fewer
:‘ hsncﬁons executed. “e insmlc‘ioﬂs in the bit and shift add insuuctjons indicates that our set of Llsp pmgrams
N groups are used almost exclusively to handle tags. They contain very few explicit arithmetic operations.
constitute almost 50% of the ALU instructions!
I
" ' alu branch(cond) jump load store
b ter 3138 15.06 (12.83) 675 34.10 1271
p deduce 35.00 13.43 (11.02) 9.66 28.17 13.74
’ ded-gc 33.23 14.82 (12.67) 8.56 28.40 1498
. rat 42.63 14.16 (13.75) 10.68 2227 10.26
comp 3591 15.08 (13.25) 9.02 26.72 1327
o opt 38.62 19.78 (15.44) 6.63 27.15 7.82
~ frl 3334 17.01 (13.25) 9.17 26.77 13.71
N boyer 33.96 12.24 (1147) 10.60 28.02 15.17
: brow 35.02 11.93 (9.35) 6.26 32381 13.97
trav 40.57 15.25 (13.38) 9.18 25.13 9.87
travf 32.01 14.11 (10.43) 1044 3341 10.03
) e .
' average 35.61 14.81 (12.44) 8.81 28.45 1232 | Acenzsion For
E Table 2-1: Assembly instruction frequencies Thry aRakd
", I iR
X) . . . : 1za0ced I
, add/sub mul/div bit shift move - f teation
) S
4 inter 23.45 0.00 49.59 18.64 8.29 T ‘
3 deduce 27.91 0.00 26.86 21.51 2371 By -
ded-gc 41.50 0.00 22.39 19.86 1625 . ; thr bution/
rat 40.21 7.62 17.87 16.37 1792 - ey N
[ comp 3144 0.06 26.40 21.08 2105 Avallabillity Codes
‘ opt 25.61 0.00 3454 25.48 14.37 IAvail rui/jor
2y frl 51.05 0.00 20.86 15.28 1281 - ¢ [ vl
J boyer 29.51 0.00 38.66 17.46 1434 | e
brow 25.10 0.03 42.86 13.71 1828 - . !
\ trav 35.20 1.38 13.93 23.05 26.45 J ’
" travfl 35.08 3.66 33.80 6.06 21.40 { ‘
' .
average 33.28 1.16 29.80 18.05 17.72
) Table 2-2: ALU instruction frequencies
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The high frequency of mov instructions might be a surprise,
considering that all MIPS-X ALU instructions take three
operands. In PSL, procedures get most of their parameters in
registers, and they always return the result in register 1. Most
moves are used to rearrange parameters and results between
procedure calls. The constant NIL is kept permanently in a
register, and 24.5% of the moves are used to move NIL into
another register, either to be used as a parameter, or to be
returned as a result. A small fraction of the moves could be
climinated. The PSL intermediate language uses 2 operand
instructions, and the compiler front-end sometimes generates
a move to duplicate a register, so that its value will not be
overwritten by a later operation. This move is not necessary
at the assembly level, but it is not removed during code
generation.

2.3. The target of load and store instructions

In this section we take a closer at what parts of memory are
accessed by the load and store instructions. We distinguish 3
memory areas: the heap, the stack, which is used for local
variables and return addresses, and a global/user area with
fluid (global) user variables, constants, and system variables
(e.g.: the heap pointer). The first 3 rows of table 2-3 show
what percentage of the loads, stores, and memory references
(loads + stores) access each area. The last row gives the
geometric mean over all programs, of the load to store ratio in
cach of the 3 memory areas. The mean load/store ratio for all
memory accesses is 2.34.

user
heap stack globat
loads 23.96 47.76 28.28
stores 1421 73.21 12.07
all accesses 20.09 55.37 24.54
load/store
ratio 4.25 151 711

Table 2-3: Target of load and store instructions

Most stores go to the stack, and both the heap and the area
with global data have a high load/store ratio. In a later section
we study the accesses to the heap in more detail.

2.4. Branches

In Tables 24 and 2-5 we break up the jump and branch
frequencies according to the source level operation they
implement. The difference between the call frequency
(4.94%) and the return frequency (3.62%) in the first two
columns of Table 24 shows what fraction of the procedure
calls have been converted into tail-recursive jumps, or tail-
transfers [19]) (1.32%, that is one out of every 4 calls). Tail-

recursive calls that call the calling procedure itself don’t show
up in the call frequency column, because they are transformed
into local branches by the front-end of the compiler. One in
every 11.7 instructions executed is a non-local jump, so the
average number of instructions executed between two jumps,
each of which is a procedure call or return, is less than eleven
instructions.

call ret other

inter 397 2.69 0.09
deduce 522 442 0.01
ded-gc 4.86 370 0.01
rat 6.66 3.38 0.64
comp 5.07 3.94 0.01
opt 3.80 249 034
fil 4.60 3.76 0.79
boyer 6.32 4.28 0.00
brow 3.14 3.11 0.01
trav 4.87 4.04 028
travf 581 4.06 0.58
average 4.94 362 025

Table 2-4: Use of non-local jumps

Table 2-5 gives more information on pc-relative branches.
One very interesting result is that almost 5% of all
instructions executed, that is 20% of all branches and jumps,
are conditional branches related to tag checking. Note also
the large difference in tag checking frequency between trav
and travf. The fairly high frequency of comparison with NIL,
and of copying NIL into a register (see section 2.2) indicate
that the allocation of NIL to a register is an important
optimization, especially for a machine without versatile long
immediates.

cmp tag other

nil check  cond uncond

inter 1.53 443 6.87 223
deduce 227 6.81 1.94 241
ded-gc 1.72 5.36 559 2.15
rat 1.03 4.99 173 041
comp 3.64 6.60 3.01 1.83
opt 129 745 6.70 434
frl 1.39 4.12 774 3.76
boyer 448 433 2.66 0.77
brow 2.17 324 394 258
trav 1.85 4.53 7.00 1.87
travf 4.00 0.66 577 3.68
average 231 4.1 536 237

Table 2-§: Use of pc-relative branches

2.5. Comparison with earlier work

A few papers have been published with dynamic profiling
data of LISP. 1In{22), Urmi describes the design of a
compiler for InterLisp. The compiler uses an intermediate
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: language that is very close to LISP, and an interpreter was the Dorado [4]. Mecasurements of VAX Macsyma [5], written
3

written to interpret this interm. :diate language. The profiling in Franz LISP, show a jump frequency of 6%, but Franz LISP
I information generated by the interpreter is on a higher level, has a kernel written in C, so only part of the executed code is
i but the results are very similar. The most frequently executed really LISP code.
. intermediate language instructions were: load and setq (they . . ) .
~ would translate into loads and stores on MIPS-X), listp (shift The high jump frequency on MIPS-X is certainly
., . unexpected: programs on RISC architectures are usually less
followed by conditional branch), car and cdr (logical and .
\ followed by a load), and procedure calls. dex?sc, so one would ex?ecl lower procedure call frcrjlucnc'les.
",' This suggests that the high procedure call frequency is typical
. Foderaro measured the Franz LISP implementation of the for LISP programs. A comparison with the branch frequency
N algebraic manipulation system Macsyma([S].  Dynamic for Pascal and C on the MIPS [9] confirms this observation:
i profiling information shows that movl is the most executed for Pascal and C, 1 out of every 7 branches is a call or return.
:: VAX instruction (implemented by load, store, and move in For LISP this ratio is 1 out of 3.
:: MIPS-X), followed by cmpl, bnequ, and beqlu (these The call frequency, not including tail transfers, on SPUR
o correspond to the MIPS-X conditional branches), and . . .
. - . . {20), another RISC executing LISP, is 3.5%. This is slightly
arithmetic shift. They found that 3% of all instructions were
] procedure calls, and there were very few arithmetic lower than for our s‘ct of programs on MIPS-X. On SOAR
5. {nstructions. [21), a RISC executing Smalitalk, the frequency of non-local
c i jumps for 4 macro-benchmarks is on average 13.3%. This is
The SPUR microprocessor is described in [20]. The SPUR extremely high, so high call and return frequencies seem to be
1 architecture is very similar to the RISC-II, but hardware was common in exploratory programming languages.
P added to support the fast execution of Common LISP. Type
by checking is done in parallel with arithmetic operations, and a
- trap occurs if both operands are not integers. Some primitive 2.6. Summary of low level profiling information
- operators, like car and cdr, are implemented in hardware. Figure 2-1 summarizes the results of this section. The total
: : Multiple overlapping register windows are used to avoid surface of the square corresponds to all instructions executed
- memory accesses for locals. The assembly instruction (100%). The surface of cach rectangle shows for some
frequencies for Gabriel's benchmarks on SPUR are: 16.9% instruction type, ¢.g. loads to the stack, what fraction of the
o loads, 7.7% stores, 43.8% ALU, and 28.1% branches and total instruction count are instructions of that type.
. jumps. We notice a lower load and store frequencies than in
the assembly instruction frequencies of Table 2-1. To account
for the presence of the register file on SPUR, we subtract
::! from the assembly frequencies for the MIPS-X, the loads and arithmetic bit shift | move
stores that access the stack, using the results of Table 2-3.
i, This gives the following adjusted frequencies for MIPS-X:
N 46% ALU, 31% branches, 19% loads, and 4% stores. These
9 numbers are almost equal to the numbers for SPUR. o
W : , . calireturn | 129 Other
o SOAR [21] is a RISC processor especially designed for -cailirelur | eheck cond unc
; Smalltalk-80. Smalltalk also uses tags to store the type of L SR ‘ :

variables, and SOAR has hardware support for tag handling.
About 9% of the instructions executed on SOAR are tagged
j arithmetic instructions, that do automatic typechecking in
) hardware. The mean of the ratio of add and subtract
: instructions to bit and shift instructions for 4 macro-

benchmarks is 3.2. This is the same ratio that we found for

:; Pascal programs. This is not a surprise, considering all tag
¢ manipulation is done in hardware.
W An overview of the literature shows non-local jump E alu D branches
Lh frequencies that are consistently lower than what we found for
- LISP on MIPS-X: 5.3% and 6.5% for bliss on the VAX [12), load store
K an average of 4.9% for a sct of compilers written in basic,

' pascal, bliss, and pl/1 on the VAX [23], and 5.3% for mesa on Figure 2-1: Overview of low level profiling
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o 3. Cost of some important operations the cons function, vector operations with type checking, and
: = In this section we look at the relative frequency of a list functions like append and reverse. We observe that LISP
:,’ number of source level operations, and at the fraction of the programs spend a substantial part of their time, 52% on

' total execution time that is spent on these operations. All average, in the underlying LISP system. Comparing trav with
gy MIPS-X instructions are executed in a single cycle, but the travf also shows that high system time is for a large pant a
N cost of executing a load, store, or branch instruction can result of the use of general operators, implemented as
.‘i: sometimes be higher. The result of a load instruction is only procedures that do type checking, in contrast with the use of

o available in the second cycle after the load. The reorganizer fast, in-line operators.

.(‘;‘, tries to put an instruction that does not need the loaded value

e after the load, but if no such instruction can be found, a no-op

; . (idle) instruction will be inserted. Similarly, no memory 3.2. Frequency and cost of list operations

N, access instructions can be executed after a store, and an idle

instruction may have to be inserted. The two instructions
after branches and jumps are always executed before control
is transferred to the branch target, and if no assembly
instructions can be moved from before the branch or from the

Table 3-3 shows the number of list operations executed,
normalized by the number of cons operations. The first line
gives averages for these ratio’s for the programs in our set.
Because the amount of time each program spends on list
operations varies strongly, the average has been weighted by

'n" branch target, idle cycles are again inserted. In this section, the time spent on list operations. Clark {3} has done an
‘,,5_; cost always includes any idle cycles present immediately after ela.bcrratc s“.’d)’ of the use of “f‘s in LISP, and lhe. average
e _j load and store instructions and in any of the two cycles ratio’s for his 3 Prc?grams are given on the second line. The
-"‘" (statically) after branch instructions. The cost of an ALU results are very similar.

Q instruction is always 1 cycle. We consider only cpu cycles in cons car _cdr__ rplaca_ rplacd

our cost measurements.

.;_')- Our set 1 13.2 129 011 022
L Clark’sset 1 92 97 013 052

’ 3.1. Time in the LISP system versus time in the user
£ program

i Table 3-1 gives the fraction of time that each program
spends in procedures that are part of the LISP environment.

Table 3-3: Comparison of frequency of list accesses

In Table 3-2 we give the fraction of the total execution time

! that was spent on each individual list operation. The
~3 Examples of such procedures are generic arithmetic routines, allocation of space is done with a procedure call, and requires
:\ inter ded de-gc rat comp opt 19 cycles. This cost does not include the cost of garbage
: :).: 468 361 698 497 61.1 67.1 collection. Car and cdr require 2 or 3 cycles: one cycle to
W' mask out the tag, one for the load, and 75% of the time an idle
frl bover brow trav travf cycle to wait for the result. Rplaca and rplacd require the
" 741 299 643 515 212 masking of the tag, a store and, in 50% of the cases, an idle
7,.’; - Table 3-1: Time in LISP system procedures cycle. In the case of car and cdr, the cycle after the load can
N
"y cons car cdr tplaca  rplacd  total
LA
0 .;..: inter 19.21 17.78 10.02 0.01 0.02 47.05
: ,._::._ deduce 11.07 9.52 9.62 0.00 0.37 30.58
Agyig) ded-gc 4.7 5.44 4.80 0.76 0.16 15.93
" rat 15.13 8.91 5.04 0.01 0.01 29.10
. comp 12.01 9.59 57 0.16 013 27.61
opt 79 14.56 13.52 0.10 0.09 32.07
o) frl 9.60 6.19 6.39 0.01 0.10 2229
1S boyer 21.72 1433 8.81 0.00 0.00 44.86
Y brow 2192 1322 14.03 0.00 2.04 51.21
.-..:: trav 0.27 3.39 3.87 0.01 0.02 7.55
A travf 0.55 6.96 7.94 0.03 0.06 15.54
i ¥
- average 1091 9.99 8.16 0.11 027 29.44
Wi Table 3-2: Cost of list operations in percent of all cycles
:x »
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O only be used 25% of the time because of car-cdr chains; when type alloc vector  vector
o there are scveral car and cdr operations in & row, it is often check _ vector  read = write total
£ . .
o hard to find an unrelated instruction to exccute after all but opt y 123 445 967 15.39
’ the first load in the sequence. n 0.03 0.01
y . . trav 0.02 33.26 4.75 38.03
v ‘ In the pmgr:lnl: opt.. a sp;cml cf&:ﬁ ha-;h tfccnhomade to avo:d travf lyi 0.05 2.85 044 334
" : Sunneccssary) ocation of cons cells. This shows up clearly Table 3-4: Cost of vector operations in percent of all cycles
4 3.4 in the cons column.
;, ” In PSL, the allocation of cons cells is donc with a Cf)mpanng the entries for u:av and travf clearly shc?ws that
i . . . . . runtime type and range checking can be very expensive, and
. procedure, which results in a fairly large cost. Keeping copies . .
L . . . . R the real cost difference is even larger. Because vector
T of the heap pointer in a register, with a ’pair’-tag already . ) .
e ) . ) . . accesses with checking are done with procedure calls and
‘0 inserted, and doing the allocation of pairs in-line would bring . . o
! , L. accesses without checking are done in-line, there are morc
f this cost down from 11% to about 3% of the execution time, . . .
) . . . . . procedure calls in the user part of the program in trav than in
- with no increase in program size. The price would be a very ) .
. ) . travf. The high frequency of calls decreases the effectiveness
ey small increase in the cost of allocating space for other data . ey S
) " of the register allocator and it inhibits many optimizations. In
types, and the loss of 2 registers for user data. An additional .
. ) trav and travf, for example, several vector accesses occur in
2 advantage would be fewer procedure calls, which may allow . . .
= further optimization. - the same basic block. In travf, the compiler detects this, and
.‘2 P - the masking of the tag in the vector item is doue only once at
[ :‘ PSL does not do any type checking on list operations. the beginning of the basic block. This is not possible in trav,
';- Adding type checking increases the execution time of our because the vector operations are done with procedure calls.
r programs by 14.6% on average. Some of these tests could be
>, eliminated by an optimizing compiler that uses information
g available in the program to determine the type of variables, or 3.4. Cost of some other operations
‘._}: by type declarations. Table 3-5 summarizes the cost of a number of additional
\: LISP operations. We see that on average almost 25% of all
g time is spent doing procedure calls and returns. This includes
3.3. Cost of vector operations only the cost of the jump and of maintaining the very simple
W, Table 34 gives the fraction of the execution time spent on stack frame. The cost of putting the parameters in place is not
oy vector operations. In opt, some vector operations are done included. The cost of procedure calls might very well be even
j. with type and range checking (line 1), and some without (line higher in LISP dialects with a more complicated procedure
- 2), and trav has been executed once with and once without call convention.
o checking (travf).
J
e
a call ret jeall nilcmp arith tagch
ol inter 8.81 6.79 2.99 148 3.68 10.75
{] deduce 1457 1318 1.90 201 044 15.02
4 ded-gc 11.47 9.80 1.95 1.65 0.19 11.98
'\ rat 10.17 8.18 6.28 082 24.82 13.17
A comp 12.59 11.11 2.39 296 0.36 16.07
v, opt 7.94 6.74 246 1.04 11.91 15.69
\ﬁ frl 11.48 11.18 1.66 1.06 2.24 935
i boyer 13.91 12.01 4.20 3.64 0.00 11.44
.. brow 10.62 8.12 0.06 1.85 0.28 7.68
r trav 12.20 11.77 2.55 141 8.77 12.20
£X travf 11.89 11.92 3.17 2.89 18.01 2.02
o average 142 1007 269 1.89 643 11.40
) . Table 3-5: Cost of some important LISP opcrations
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Generic arithmetic operations are very expensive: adding
two numbers in a register costs only 1 cycle, but the cost
increases to 59 cycles when type and overflow checking is
done. This can become very expenmsive for arithmetic
programs (e.g.: rat). One way to reduce this cost is to use the
fast, unchecked operators that are provided by PSL. For a
program like tak [6], this optimization speeds up the program
by a factor of 6.3. Using unchecked integer operations is only
possible if the programmer is (feels) sure that all numbers
involved are small integers. This is not always possible, and
errors introduced by an undetected overflow can be very hard
to find. A more attractive solution is to speed up the generic
operations for the most frequently used datatype (integer), by
doing a fast, specific test for this type before going through
the expensive general test.

Our set of LISP programs spend an average of 11.4% of
their time checking the tag of data items. This number
includes both the cost of extracting the tag and the cost of the
conditional branch with possibly empty delayed slots. To
determine the cost of tag handling we should add to this the
cost of inserting and removing the type tags. These
operations are done using logical bit operations (sce table 2-2)
so the total cost of tag handling becomes about 22% of the
total execution time. Type checking does not only involve tag
handling, but also dispatching on the arguments and, for PSL,
procedure calls, so the cost of doing runtime type checking is
slightly higher. It is this cost that LISP machines try to
reduce with special hardware or micro-code for tag handling
(1, 14].

It is oot really correct to count the full cost of tag handling
as runtime type checking cost, because not all tagcheck
operations are real type checking operations. An example is
the implementation of the function append. To detect the end
of the first list, it checks whether the cdr of the successive
cells is a pair. Although this is technically a type checking
operation (taking the car or cdr of an atom has to be avoided),
it is different from the type checking required for the operands
of the addition operator. Compile-time declarations can
eliminate the type checking in arithmetic operations, but they
cannot eliminate the test in the append function. If no runtime
checking were available, this test would have to be replaced
by some other test to detect the end of the list. This shows
that even with compile time declarations, the efficient
checking of tags will remain important.

3.5. Summary

Figure 3-1 gives an overview of the cost of primitive LISP
operations, averaged over the 11 programs. The surface of
the square represents the total execution time, and the surface
of each rectangle shows how much time was speat on each

TR T TR T BT T T T TR T T T TR TR TR T TR S T T s T e e

operation. Certain arcas are overlapping. For example, the
right most columns shows the how much time is spent on
generic arithmetic operations, and it also indicates how much
of that time is used for procedure calls and tag checking.

“nil" stands for comparison with nil, plus all mov nil
instructions. The contribution of he rplaca and rplacd
operations is so small that it should be represented by a line.
The exact form of the graph depends strongly on the program.
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5 fraction of time of car/cdr and cons
Y/,
2 that is spent on tag handling

N

AT

other
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CO\X

fraction of time of cons, vector and
XX arith that is spent on call/return
and on tag checking

Figure 3-1: Overview of the cost of LISP operation

4. More about procedure calls

LISP programs are reputed to be very procedure call
intensive, and to contain a lot of small, recursive proccdures.
The first claim was supported by our benchmarks in section
2.4. To collect data to verify the second claim, we changed
the VAX compiler for PSL to insert before each procedure
call a statcment that prints out trace information. We
recompiled and rebuilt the PSL system, and we recompiled
and ran our 10 programs (ded-gc was excluded because it is
not possible to rebuilt PSL with a small enough heap). The
resulting trace files, together with static information about the
programs, were then uscd Lo generate tables 4-1 and 4-2.

The procedure size in column 3 of Table 4-1, is expressed
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in lines of intermediate code. Each intermediate instruction
expands on average to 1.1 assembly instructions. We see that
procedures pass an average of less than 2 parameters, and
allocate fewer than 2 words on the stack (plus one word for
the return address). The average procedure size is about 28
assembly instructions.

average average average
parameter frame procedure

count size size
inter 20 1.6 259
deduce 16 15 14.2
rat 20 13 269
comp 18 20 228
opt 2.1 14 323
frl 19 1.1 18.8
boyer 1.8 12 209
brow 16 12 163
trav 22 36 24.7
travf 19 22 50.8
average 19 1.7 254

Table 4-1: Procedure properties, weighted by call frequency

Table 4-2 shows that 23% of the calls are recursive, but this
number is reduced to 14% if we exclude the four Gabriel
benchmarks. A call from procedure A to procedure B is
recursive, if procedure A can be reexecuted before the call
returns. This is determined at compile time, so paths through
functions like eval do not count. Only three of the programs
use apply and eval, and of these three only frl uses eval
extensively.

apply/

recursion eval
inter 26.7 -
deduce 16.3 -

rat 19.3 0.5

comp 120 1.1
opt 32 -

frl 4.7 24
boyer 51.8 -
brow 70 -
trav 173 -
travf 70.7 -
average 229 -

Table 4-2;: Procedure call properties

5. Conclusion

In this paper we looked at how LISP programs bchave,
both at the assembly level, and at the source level. We
compared dynamic profiling information for a2 number of PSL
programs, with profiling information for Pascal and C
programs, and we observed a larger branch and jump
frequency for our set of PSL programs. We also noticed a

AR STTR @SB eSS OS2 mE

substantial shift from arithmetic instructions towards logical
bit operations and shifts. By linking our low level
information to LISP level operations, we found that LISP
programs spend about 25% of their time doing procedure
calls, and that they spend another 22% of their time on
operations related to tag handling and tag checking. We also
noticed that the use of generic arithmetic and vector
operations can be very expensive and that specific operations,
without type checking should be used if possible.
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