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Approximate and local linearizability of non-linear discrete-time
) systems
0wl y
) HONG-GI LEEt and STEVEN 1. MARCUSt 1
X)
[}
.L:' We consider a single-input non-linear discrete-time system of the form
P ."'
:: & L xtt + 1) = f(x(t), 1))
[ ]
SN where xe RY, ue R, and f(x,u): R¥*! +R" is a C® RV -valued function. Necessary I
and sufficient conditions for approximate linearizability are given for . We also give
,- necessary and sufficient conditions for local linearizability. Finally, we present [
Y54 analogous results for multi-input non-linear discrete-time systems.
o
* 1. Introduction
.}« We consider a single-input non-linear discrete-time system of the form
- "
e
K I x(t+1)=f(x(t), u(t)) 1
F
® - where xe R¥, ueR, and f(x, u): R¥** = R" is a C® RV -valued function.
' Many authors have studied (local or global) linearization (Cheng et al. 1985, Hunt
2. and Su 1981, Jakubczyk and Respondek 1980, Krener 1973, Su 1982) and approxi-
’«-';' mate linearization (Krener 1984) by state feedback and coordinate change for non-
. :‘_‘-k linear continuous-time systems. In this paper we discuss necessary conditions and
:,-‘,; sufficient conditions for local linearization and approximate linearization by state
! Jﬂ feedback and coordinate change for non-linear discrete-time systems. A necessary and | e
:) sufficient condition for local linearization has recently been found by Grizzie (1985 c); A Accesrirn Fo r
o a result equivalent to this is proved in our Theorem 5. These conditions are very | 7'  ¥:%I
! "'1 similar to those available for continuous-time systems, but they are more difficult to | 1"~ 7 :
ol calculate than our sufficient condition in Theorem 4. Other related work onnon-; U - ., . . 2
N Y linear discrete-time systems can be found in Grizzle (1985 a, b), Grizzle and Nijmeijer I J.ot L o
NSS (1985), Monaco and Normand-Cyrot (1983 a, b, 1984). .- L
|
- .. B o
" Definition 1 Dleiei sy
3N A point (x,, u,) such that f(x., u,) = x, is called an equilibrium point. toy .7 ieg)
3 T e
Wiy oo Y
8% Now consider the following linear discrete-time system L,: . -
> " =
N
[t Lo A+ 1)=Ap0) + bu(t) = g(y(0). 1)) .
‘b
I..“
%
iy Received 23 January 1986.
a:,!; t Department of Electrical and Computer Engineering, University of Texas at Austin, y
. Austin, Texas 78712, USA. comy
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1104 H.-G. Lee and S. I. Marcus
where
i 1 0 ... 0]
01
0 00 :
A= 0 (N x N matrix)
: 1
(0 0 0 ... O]
[0
b= : (N x | matrix)
0
| 1

Similarly to the continuous-time case (Krener 1984, Su 1982), we can define local
linearizability and approximate linearizability for a discrete-time system. Let (x,, u,)
be an equilibrium point of Z.

Definition 2

X is said to be locally linearizable at (x., u,) if there exist an open neighbourhood
U (= R¥*1) of (x,, u.) and a diffeomorphism T: U — T(U) such that

(i) T=(T,, Ty, ..., Ty) are functions of x,, x;, ..., xy only,

(i) T(x,, ) =0+ 1)x 15

(i) Tof=g°T.

If we let (1(t)"o(1))T = T(x(¢), u(t)) then y(t) and u(t) satisfy Z,. Definition 2 indicates
that we want to find a diffeomorphism T such that the following diagram commutes:

RNY S IRN+ 1
d |
RNf 3 RN +1

Once we find such a diffeomorphism, we can apply linear system theory instead of
non-linear system theory.

Definition 3
Z is said to be approximately linearizable with order p if there exist an open
neighbourhood U (= R¥*!) of (x,, u.) and a diffeomorphism T:U — T(U) such that

i) T=(T,, Ty, ..., Ty) are functions of x,, x,,..., xy only,
(") T(x,, u,) = 0(~+ 1)x 1 and
(iii) Tof=ge T+ 0(x—x,, u—u)y*!,

Thus in Definition 3 we consider the following nearly linear discrete-time system:
Io: e+ 1D)=Ap0)+ bo(t) + Ox — x.,, u—u)!

s MG L R T T A L AT
1,‘1 Q‘ x‘,i', "q“‘~.’ l'.. n .‘ ﬁ" l.,hi."l T

(7\4_’- R

‘‘‘‘‘‘

My
Wit q"‘*“’! DO "l.o o m'l.o L) \t ) .’I'M ih

e S I o SR
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e )
- where the N x N matrix 4 and N x | matrix b are the same as X,. Clearly, local
e linearizability at (x., u.) implies approximate linearizability with arbitrary order.
T . In § 2 some background material is reviewed and notation is defined. In § 3
e necessary and sufficient conditions for approximate linearizability will be given for the
t :$ system (1). Also, we shall give necessary and suflicient conditions for local linear-
2050 izability. We can define local linearizability and approximate linearizability for multi-
‘_\?“.-{ ) input discrete-time systems similarly to Definitions 2 and 3. Then the multi-input case
N will be discussed in § 4.
)
Ll 2. Preliminaries
ooy In this section notations and definitions to be used later will be mentioned. The
}j Kronecker product is very useful in the field of matrix calculus (Graham 1981). First,
Kt define the Kronecker product ® by
'.’n
. a,B a,B .. a,B
. :-‘- A® B - ayB a;;B ... ayB
/ | ';:.:. pxq mxn
’ '\-': anB a,B ... apB |pmim
rY
o where q;; is the (i, jl-component of the p x g matrix 4.
e Define the derivative of a matrix with respect to a matrix by
R -
b '\:f-' ( é B ¢ B é B
:'( dayy cay, day,
( 3 é
vt ‘g Zp . B
¥ DB=| cay,  day, da,,
s " .\" . . .
¥ -"’. . . .
t,' .;. (_;
p:t " ¢ B ¢ B .. —B
:) | day,  day, Cap, J(mp)x(nq)
20" 0 We also define
) };‘5’ DSB=B
'-Ej D\B=D,B
a Dif'B=D(D\,B) forix=1
¥ Let h(x) be a scalar real-valued function of xeR". Then (D*h)(x) and (D%+h)(x) are
: ;/: N*x 1 and 1 x N* vectors respectively.
i::-ﬁ
e Fact (Vetter 1970, 1971)
o Using the definition of Kronecker product and derivative operations on matrices,
-4 Taylor’s formula can be expressed by
S Lo
SO h(x)=h0)+ Y —(Dirh(x)),-o(x@x® ... ®X) + R, (x*)
ey = k!
K :: where R,, (x*) is a remainder term.
PN 4 .
\'
e
Qo
T
J vl‘\-
Sod
d.
W ‘.‘
N

o A AT AT T a7 e AT
¥ \'ﬁ%“’ f GG R i
s ) Y

S, .‘-. LR EREES A N0 NE

LA AP PR ) - PO Y .
AT T R T T

4, &
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L:. ! 1106 H.-G. Lee and S. 1. Marcus
O
::"z Now define the N*x N* permutation matrix U, ; . as follows: the
w i (@, — DN* "' +(a;,— DN* "2 + .. +(a, _,— DN +ay)th column of U,,,, . is the
! K (@, — DN*" ' 4+ (a, — )N*"2 4 .. +(a,-, — )N + a,)th column of the N* x N* iden-
;:: ' tity matrix (Jyu, ) for 1<a,, a,,....,a, <N (the {a,} are related to the ‘base N’
: -,. representation of the column). Here {i}, i,, ..., i, } is a permutation of {1, 2, ..., k}. For
:v“ example, when N =2 and k=3
1
':?!!" U123=la:s
D) and
il (1 0000000
bh 00001000
" 00100000
EXA X
U 0000O0O0T1O0
O o1 000000
o
b 00000100
WA
Y 00010000
X
g _0 000000 l_
“‘.‘ (3
Y \j Let A be a p x N* matrix. Define the operator & by
& k!
Ao
v

"’ :

A
Y

eA =A z Uh.h ----- ix
k! all permutations
{2 ooin) of {1,2.....k)

For example, when A is a p x N3 matrix
DA=AWU,;3+ U3+ Uy 3+ Uyy + Uy, + Uyyy)
3

(NG9 I G TR ¢ M
ou (o.o)’ 0% }(0,0)\0u (o.oy’m’ 0X ) (0,0)\% /(0.0

be linearly independent; that is, they form a basis for RY. Define {:R¥ +R by

WEEEFEA,
AP,

: Ty
o" ;
e "

.

ol

,:’0‘. {(v)=ay, where vis a 1 x N row vector and
- Eal2)(0
F ; 51 \0x /10.0)\4/0.0)

Bl That is, {(v) is the last coefficient of v™ with respect to the basis {w,, w,, ..., wy}, where
; é-‘ wy = (0f/0x )i 3 /ouho.0p | <i< N. Also define {:RP*¥ — RP by

:'.-, {(vy)

R {3)
R r . _ 2

s =]~
(o '
e ((v,)
’::' where v, is the ith row of V.
450
‘t 'l
Sl
e
Y
L) $‘
ol

.

[5G n.;
AR S ) RO AT A N N A e AR PO 4-':./-" AEAEAT™ Bt AR -
“ O ‘M$ “::' ."%-'0‘:» A hﬂ K O ‘!5 W |' * '( u" oL 3
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-
p 3. Single-input case
K In this section our main resulbts will be given. I £(x. u) has an cquilibrium point,
. without loss of generality, we can assume that £(0.0) = 0, for il not. let ¥ = v v and
P =u u. Then Su+ D)= F(8p) () 2 /(3 + Nttt u) v with f0.0) =0
Lot
j TN = ()
‘ FUNe = (U000 for I<is N
iy P R . .- .
« S ) represents the effect of an input w at + =0 on the state at (=i, (v 1) s
:! essential for solving many problems arising in discrete-time non-lincar systems.
Yy
L
Lemma |
‘ T is locally fincarizable at (0.0) if and only if there exists a C* function
§. h:W (e RY) >R such that
3 (1) Wis an open neighbourhood of 0e RY
o
(i) D i ) =0 on some neighbourhood of 0eRY ' ! for 1 i< N — |
N,
'(’h)
i ((".\', N0
1 (n(h ,f‘))
. (iii) det X Jom [#0
) «
; (nm,f*" '))
L~ 3
; | X . |
v
3 (V) (D Mo # 0
5 (v) 0y =
b
i
Proof
. Necessity. Suppose that X is locally linearizable. Then we have a diffcomorphism
: T Let i(x) = Ti(x). (Since T,(x.u) depends only on x. we can write T,(x) instead of
R- Ty(x. u).) Note that T, = T, - /. Since D(T,) = 0 on some neighbourhood of the origin.
'y D,(T, " f)=0 on some neighbourhood of the origin. From now on, for convenience,
we shall omit ‘on some neighbourhood of the origin’. Note that T, =T, (=T, [*
z (Actually. we can write Ty = T, f, because T, - f depends only on v. But f? is used. =
) for consistency of notation.) Since D,(T‘)—O DT, fH=0. Prowcdlng in this -
i . -
! manner, since Ty=Ty " f= ... =T, f* "and D(T)=0. DT, /¥ ')=0. Thus -
i we have shown that D(T," f)_O for t<i<N-—1 Since Tis a dlﬁeomorphlxm N
g >
‘> "
o ">
b, Y
o~
! <
‘ Py
u ;
D -
I ;

o -,-.. “p.- L N P ] J' TUR Y F.-
Fo Py "‘"n"\'.”"' 4

d -,
SRRSO "‘ "" ¥ ; .. Attt '.“ .M'" O .0. s "l !o.. Satiranih) '0.\- gy

')ff.',q“ . ‘h"-‘)‘- * "™ "h"n‘q"‘
P e
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1108 H.-G. Lee and S. 1. Marcus

T=T,°fi tfor2<i<N+1,and T,, Ty, ..., Ty depend only on x,
T (oh 7
ox x=0

(a(hof))
det ox  Jo.0 #0

(60: ofN- ‘))
i ox ©.0)_]

and D,(h°f") #0. Since T,(0, 0) =0, h(0) =0.

Sufficiency. Suppose that there exists h: RY — R satisfying the given conditions. Let
Tix)=hefi"' for 1 <i< N+ 1. Then it can be easily checked that Tof =g T and
T(0, 0) = 0. Since det ((CT/d(x, u))o.0)) # O there exists an open neighbourhood U of
(0,0) such that T: U — T(U)is a diffeomorphism by the inverse function theorem. a

Let ¢=(§).

Lemma 2

Z is approximately linearizable with order p if and only if there exists a C* function
h: W(c= R¥)> R such that

(i) W is an open neighbourhood of 0e R¥

(i) (D‘éDu(h°fi))(o.0)=0(N+1)1x1 for ISiSN—-land0<j<p—1

RO

(a(hof)>
(iii) det ox Joo |#0

(a(h ofN- ')>
L 0x ©0.0) |

(iv) (Du(he f*)o.0)# 0
(v) h(0)=0

Proof

Necessity. Suppose I is approximately linearizable with order p. Let h(x) = Ty(x).
By definition, T, °f(x, u) = Ty(x) + O(x, uP*'. So (DD (h°f))o.0,=0for 0<j<p—1.
Note that T, of2=T,of 4+ O(x,uP*". Since T, °f(x, u) = Ty(x) + O(x, uP*" by defi-
nition, T,°f?=Ty(x)+ Ox,upP*!. Thus (DiD,(hf?)0e=0 for 0<j<p—1.
Proceeding in this manner, we can show that (D{D,(h° f MNo.oy=0for 1 <i<N-1
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RN

}": and 0 <j < p— 1. Note that (T;/xX)g.0,=(Xh " f* )XY for 1 <i< N. Since
¥
1 . . _
. () )
BN —_— —_
,\$: X Jio.m x/, g
[
P (‘?TZ) <n(h _/‘))
'_5',)‘ ’ det o Joo | 20, det xS #0

Wty : :

) : :
i3 () (22)

j ):: [\ % Jo.0 ] B x 0.0y |
’"'(‘-.' . .

“-fy.‘_‘:: It can casily be shown that T, - f¥(x,u) = Ty, (. ) + O,y ' ' Thus (D (k[0 =

(D, Ty, ((x. )0y #0. Finally, h(0) = T, () = 0.
Sufficiency (hby construction). Let

T, (x) = h(x) \

kiimes ‘

2 | - —
Ty(x) = k; Db Noax®x® ... @)

oo .
A0 Ty(x) =kzl F(D’;T(h T N0ofX®X® ... ®x)

~ b
4Ly 4y
b ‘Vlfl.‘

Ia

| .
Tu(x) = kZ Gt [ Dhop(x®x® ... @)
-1 .

g

O
? AP

Tns W w) =T, ‘/—.N(x‘ u)

i ey
%

>

(&

Then it can casily be checked that T as defined above satisfies the conditions of
Dcfinition 3.

*
I'.l'

Now note that

' 2

[

% 5N
i

(DTD,(h f'”m_n, = Z (B:n.l)(()_(i](Di‘ lh’x. o (2)
=0

FRRE] o)

where

Y.
! IEANENS

Br.o = DF(Df')

P
at.

and

ENINEP

<w

m i+ k ki . Py
. Z D:‘" 1+1 k'(D:f”@D’E' k'(D:f"@Dg" k\)

ky=1 k-1 k=1

x (DSfT®..@D% v MD,fTRDY 'D,f T ) for1<I<m

-

Bi

G

i
' RN
WAt

i

IS S &
b

' ‘b'p‘ .
AU

%

'Y
o

M,

7

»
Pl w, »pm . LIS RN S .Y B LV TR B Rl el Tt e O R S 1E U L LI Y I it I T v T SR I P S e
t’ﬁ. Py -'~J' P S, W WL At .r,\.r_’.r . 4,,." q-ya\m o P T ".A".-"f'-“‘a".-" R RN

- d ¢ NN, 8 N N
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1110 H.-G. Lee and S. 1. Marcus

(For a proof of (2) see the Appendix.) Let

Ay A o Aw
Ak - A.zl A‘zz “re A.zk
Ay Ay o Ag

where 4;; is an (N — 1)(N + 1y x N/*! submatrix defined by

A =0 -1y + 1) N1+ ifi<j
(Bi)o.01
(B )o. ,
Aij= <] J.(OO) lfi?j
u+n
(Bﬁ' Yo.0)

Let the (N — 1)(N + 1)* x 1 vector # be defined by
(Blo)o.oy
gio? (Bo)o.0)
—1 s .

(B )o.0)

(See § 2 for the definitions of @ and 7) Also, let B, =(B'T BT ... BTN

- . . . I -
With these preliminaries, we can state our main theorems.

Theorem 3
X is approximately linearizable with order p (> 2) if and only if

(e éf of AN . .

(1) <—) (7) (-—) ,(~ — are linearly independent
{ cu/i0.0) \€x J0.0\Ct /0.0y x J10.0\Ct/ 0.0y y pe

(1) B,_,elmage(A4,_,)

Proof
Necessity. Suppose that I is approximately linearizable with order p. Then there
exists a function h{x) satisfying (i)-(v) of Lemma 2; in particular,

i-1
(Dyth”fYNo.0,= * 7 Z =0 for1<isN -1
' 0x ) -0\X Ji0.00\Ct /0.0,

and

N-t/n
(). (7)o (F), 00
X )y o\X J10.0)\ 4 /10.0)
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Assume that

. . o NN L /Ay .

- . s i
h A B Ty )

CUS oo \CX S0\ U/ 0.0 CX Jio.m \ U/ 0.0 ,

i

are not lincarly independent. Then there exists k such that 1 <A< N - 1 and

A\ k Ay A \J hVS

o of L (Y of ek

- . = z x| o . for some constants [2,}} 4

CXJw\ " .00 S 0 CX S0\ (U /0.0 :

Thus
.

o\ |<‘qj- ,‘Zl ((’f)” 1 .,<‘~1> ‘
< i\ Ay )
X u 0oy i 0 X Jio.m CUJ o .

and ‘

) YN\NN 1/
x /o o\CX S\ 0.0y

This is a contradiction, which implics that

{

- N \ g Af N . 1
of af of of Lo ‘
| M W BV ) AR W I bl I
CUJo.0 \CXJwo.m\CH/ 0.0 CX Jio.oy \ U/ 0.0 |

are lincarly independent. i
Recall that (Dy(h [ Vo = (DTDh [ N0, =0 for m=0 and 1<i<N -1

Sincb
1" (0. X 3 w.m 1‘ l().()). ‘\" -_ 0.0) ju .0y

arce lincarly independent, (D &), is uniquely determined up to a constant multiple (i.c.
(D.h), _, = ac. where the scalar x (# 0) is arbitrary and the N x | column vector ¢ satis-
fies ¢S OxNg ol f 1Ptk 0y =0 for 0<i <N =2 and (S /EX)G o) (Cf U0, = 1).

Now by (it) and (iv) of Lemma 2, (DTD,(h [Ny o, =0 for 1 <m<p -1 and
1 <i< N -1 From (2) we obtain

- B, 0 0 .. 0 B, ;
*" 20 0 .. 0 2 |
o o

; B, 0 0 .. 0 :g‘:: : To'
v L L, 0 L 0 R S I O N1 1

\ YUUOBY, 0 0 D3k, -0 BY,' 3 |
o

:'- 0 B, 1o

;‘}:; B", ] B,l, 1.2 B,l, 1y 1
:::- L B:I Lo - (0.0

S By o8B L, o B,

0.0

wa el B TR O R e A A

YRR M L) e . - : - Ses S Sree s

RCOAN ‘-,'.".-“ .“,-.:-.J'.:,-.__'-. AR R . . A WL e T AN
TNV L R AL G SR G A TG VIt A 6. Ve R CRAL WS e
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Q't:::; . .

:Q; ; Since (B} oho.odDh), o = (D}D,f "o odDh), - o = 2D} D,/ Mo.0)

Y, A

\ B! .

gi""‘ 1.0

¢ 1 Bio . .

_' ?’:\) (th).l:():aﬂ )
'.I' BY5' .o

vy

v Thus the right-hand side of 3)is —a[(8')T ... (8°')"]" = —af}_,. It follows that
a‘.":: B, -, is in the image of the matrix on the left-hand side of (3). However, the {D%h} are
: f_\ constrained because, for example, 02h/dx?dx;=0%h/0x;0x;. Hence the stronger
:I‘: condition f,_, € Image (4,_,) holds, as is proved in the Appendix in Lemma A2
s Sufficiency. Suppose that (i) and (i) above are true. By (i) there exists an N x |
o vector C, such that CHaf/0x)io.0)(0f/0u)o0 =0 for O0<i<N-2 and
;‘ ! CT(Of /0x) o} (&f /0uko.0) = 1. By (i) there exist Cs, Cs, ..., C, such that

',-?'.:1'

o, ‘n FLCZT

s 2

.‘t,. L]

. 1

S —CJ

- Ao 3 =—f,-1
4 ..._ - '

i 1

'4‘,"-? L;)—!Cp
» where C; is an Ni x 1 vector. Let
:’-"j" ) 1
0/ h(x) = fli—‘c,?(xch@ . ®X)

al =18 e
"l’? ; itimes

‘ Then it can be easily checked that (DiD,(h°f"))0 =0 for 1<i<N—1 and
4 0<j<p— 1. Clearly (D(h > f™)io.0) = (DLR)E - o(&f 10X 0y (f /Ou0,0)= 1 # 0.
T Now assume that

B } -

M oh ]
Sor rw

g x /-0

Vs (a(h oi))
" det ox  Jio.0) =0

o .

’i '
ey P(hﬂf”“))
"“ L( 0.0)

ox

Then there exists k such that | <k< N ~ 1 and \

':.' FTAL k-1 A\ ) o
Y ih o L o= E DAoL Torsome (it ;

i=0 ox

'A

X ’

" 2 TV RS I W ).-)- DIPRCIEAE I N L SPL S VI Tl S LY [a

; L SRy Y, D

Do) Q\Q‘ R ATARRIP AN . 9 e v
AR, 2o e ‘ ok DNOAHE]

a‘o"\‘\'"‘ﬂ,.'“lt"”'t'-,l-‘,h ,l.'jn -’.Q.'\ " A ,""“-".‘n !' ) & o‘!‘a“-'n‘ 340 !‘\‘,‘n“ﬁb. .\u fl. .‘,h.!h".h.!'k.!' 0

T o AR P AR AU e A e
CAL O . :.' J'-(‘hl“’_-l' '\"‘;F\Ff.*;f‘ ne

§
‘- 2 LRI
0‘-'&'!.0 -'0‘-'!‘.‘!‘ At A'.‘f-’l‘n » ‘0"‘1. '.l.o N




Linearizability of non-linear discrete-time systems
Thus

6f N-1 af k-1 af)N—l-kH af
1 T_ e el = . lh T . . -
(D2h.- 0(5-‘> -0 (5“)(0,0) A‘ZO 4D )x-o(ax (0.0 Ou /0,0y 0

This is a contraction, which implies (iii) of Lemma 2. Hence, by Lemma 2, X is
approximately linearizable with order p. O

Remark

T is approximately linearizable with order 1 if and only if (i) of Theorem 3 holds,
just as in the continuous case (Krener 1984).

Now a sufficient condition for local linearizability is given in the following
theorem.

Theorem 4
Suppose that f(x, u) of T is an analytic R¥-valued function. Z is locally linearizable
at (0,0) if

(0 R N
(l) (a (0.0)’ E)(O.O)(E)(O,O)’“” Ex— 0,0) E (0.0)

are linearly independent,

(ii) there exists k (< oo) such that B, e span (C}) for all I > 1, where Cf is composed
of the first k columns of A,.

Proof

By (i) there exists an N x 1 vector ¢, such that ¢{(df/x)o.0)(&f/Cu)o.0) =0 for
0<i< N -2 and c[(&f/2x).0)(0f /du)o.0)= 1. By (ii) there exist c;,c3, ..., c; such

that j < o0 and

(1—021

2!

1
31

L

where ¢, is an N' x 1 vector. Let

iterms

h(x)= t lrl;ci’(x@)x@ L ®x)
i=1f.
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1114 H.-G. Lee and S. 1. Marcus

Then it can easily be checked that (D:D(h: Mooy =0for 1 <i<N—1ands>0.
Since both h(x) and f* are analytic, h- f(x u) are analytic, for 1 <i< N - 1. Thus
D.h-f)=0 for 1 <i< N — 1. As in the sufficiency proof in Theorem 3, it can be
shown that h satisfies the other conditions of Lemma 1. {1

it is easy to see that (i1) of Theorem 4 implies (i1) of Theorem 3.

Remark

Conditions (i) and (ii) are also necessary for local linearizability at (0, 0) whenever l
f(x, u) is polynomial and a polynomial T(x, u) is sought. ‘

In the following theorem we give necessary and sufficient conditions for local
linearizability.

Theorem 5
I is locally linearizable at (0, 0) if and only if

@ on (EonEoar = G0 o)
( ) ) T .‘_ DIEREEN T T
4/ 0.00 \CX/i0.0\4 /0.0y €X /.00 \FU /0.0

are linearly independent,

(ii) there exis:ts an open neighbourhood U of 0€ R such that A, = £,(A,) +f,2(Ao)
+ ... + fi(Aq)are well-defined i-dimensional involutive distributions on U for |
<i< N — 1, where A, = span {0/du}.

Proof

Necessity. For condition (i) see Theorem 3. By Lemma 1 there exists h(x) such that
conditions (i)-(v) of Lemma | are satisfied. Let y; = h(x), y, = h°f(x, u), ..., and yy =
he f¥~Y(x, u). Then by (ii) and (iii) of Lemma 1 we can choose (y,(x), y(x), ..., yn(x)) as
new coordinates on an open neighbourhood U of Oe R™. By (ii) and (iv) of Lemma 1,
JulAo) = span {&/dyy}. Similarly, f,(Ag)+ f3(Ag)=span {&/yx . &/dy}, and by
induction, Ay _, =span {9/0y,, &/0y;, ..., &/dyy}. Hence Ay_, is an involutive
distribution.

Sufficiency. By Frobenius’ Theorem there exists a C* function h: RN — R such that
Ay ((h)=0and (2h/dx), - g # 0. Therefore fi(Ao)(h) = 0 for | <i< N — 1. By (i), since
(Ch/OxX) <0 # 0, (@/Cu)(hof¥(x, W0, #0. It is easy to see that h(x) satisfies the
conditions of Lemma 1. |

Remarks

(a) Condition (ii) of Theorem 5 can be replaced by (i) ker f, + (n, ' £,)(Ao) is
involutive for O0<i< N -2, where na(x,u)=x, (n, ‘f,)°(Ao) = A, and
(ny 'S VA =(ny ' [y ' £,V '(Ag) for j=1 (for this see Grizzle 1985c,
Lemma 2.1).

(b) A more geometric necessary and sufficient condition for approximate lineari-
zability of order p can also be obtained (Lee 1986), however, the conditions of
Theorem 3 are much easier to check.

_..--. R \
- \¥-_3~ u'\-; ..\{.‘
R,

5
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Linearizabiity of non lingar disorere tim Con s
Example 1
Consider the following discrete-time non noear sasies
Ve Ve D0 e a
. ;
. -
Vit e Ve a

0
Since () Cudy, ., = ‘ \ ) and ot

Note that

[T TE O Y L JE ( )

and /' =0, for > 2

(B} Voo =D oD

"|=®'B:l'mu.: 0 | 1 v

It can be easily checked that all elements of the dth column ol 4 are 0 1or
Thus fespan(C}) for I 21 where C} s composed of the tirst four columns ot 4
Therefore (1) of Theorem 4 1s also satistied Hence £ is locally hnearizable at (0.
Actually we can construct a diffcomorphism T =(T,. I'.. T,11n the way that s given in
the proof of Theorem 4. Since

{ 0]
0
2 0
=2
A, 1_0 =—f forlzl
3, 8x1
! 0
T AL AR
_(l+l).' i

¢f=(0 0 0 =2). Clearly ¢cT=(1 0). Thus

o
3 - \2
Ti{x)=x, — 3 —=xi=x,—x}

Tx)=T, flx.u)=x,—x}
Tyx.w =T, fAx.u)=x, +u—(x; + 2x,u + )’

AR

-’4’

L )

RIS ) RN

PR R W s R di S S P R g

-

- o -

RARP
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Example 2

oo Consider
i x,(t+1 X5(0) + 2, (Ou(t) + x, (D2u(t) + u(t)?

= 5. 1( ) _ 20 1(8ul 1 — f(x(t). ult)
:_.: x(t+1) xy (1) + ult)
L N Clearly (i) of Theorem 3 is satisfied, because ((f/¢u)o o, and (¢f/8x)0.0)(¢f /CU)(0.0) ar€ -
) the same as in Example 1. Since
=) (2 0] 2
e _
::: (DéD.‘fT)(o,m: 0 B‘=C«D:Dufr)(0.0>)= 0
o
"::' (2 0] 2
_,‘. Since -~ )

2 0

<N 0 0
NS
A 00
::’_-: 0 0
.
® ] (DD, fMo0=|0 0] A=(200000000)
K 0 0
- 00
Pt
__.::_: 00
7(. . _0 0_
' Also we have
R [0 0 0 2

-‘,;.
e A,=[0 1 10
" o
o (0 0 0 2

(B;z)(o,oy = (D;/'T)(o.o; ® (D;fT)(o.on ® (DufT)(o.m

St i
",',:ﬁ' 0 1 0 1
!-t'; =[1 ol®|1 O0]®O N
s [0 1 01
) [0 00000 0 1]
;g‘;i 00000100
N 00000O0O 1
B0
200 00010000
. =[o1 000000
X ‘§ 00010000
0N 00000O0O 1

J 000007100
0000000 1|
R
o
2{%3
e“,:;l
. |
1 22
N
.:?:'#T#:.:Qﬂ e e e B e e e e e L e N L e T e e : 3
T D B e S R R A S
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:’ therefore A,, = ?(B{z)(o_o,
X [0 009 000 6|
. 00020220

00000O0O0GO6
' 00020220
/ =0 2202000
; 00020220
‘ 00000006
! 00020220
. |0 000000 6]
)
: (B} 1)o.00 =(DAD S TR D, f o0y + (D fT®DD,f)o.0)
L DfT®D, DS
’ =D} ®D.f Moo +| Def T®D,DST | +(DfT®DD,f Mo
; DS ®DDST |00
2
i 0 0 4 0]

2000

0240
i 2000
: -lo oo o
! 2000
0240
E 2000
|0 2 4 0
) [0 4 4 0

4000

] 06 60
| 4000
.: Ale?(B;l)(0.0)= 0000
'E: 4000
‘ 06 60
! 4 000
.. [0 6 6 0 |
[ <
B, .'.
,A hY
2 N
N 3

o PN

TN
» 7

) l'lfff(-fi.'.'r'
.

. -
o 7 '.*-.)w.,. o \,«,.,‘-

iy 'Q' . ) X 1
DOOCOOOCUERR Y 'i»l.: N ,' RN C !'.’0 A
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1118 H.-G. Lee and S. I. Marcus

Since fi, e Image (A,), T is approximately linearizable with p = 2. However, since
B,¢lmage (4,). it is not approximately linearizable with p =3. Thus it is also not
locally lineanizable. Let

T, =x, -x}

T,=x,-x}

Ty =x, +u—(x; +2x,u + x3u+u?)?
Then
Vot + DA TUx(e + 1) = 500 + 2x, (0u) + x,(021) + u(t)? — (x,(1) + u(1)?

= x,(0) — x, ()% + x,(1)%ult) = To(x(1) + O(x, u)*
= y,(1) + Ofx, w)?
yalt + DA Tyxte + 1) = Tyxn), u(t) 2 w(e)

4. Multi-input case

The results in § 3 can be easily generalized to the multi-input case. Thus in this
section we give (without proof) a sufficient condition for local linearizability and a
necessary and sufficient condition for approximate linearizability by state feedback
and coordinate change for a multi-input non-linear discrete-time system (for proof see
Lee 1986).

Consider a multi-input non-linear discrete-time system of the form

. xtt+ 1= f(x(r), K1) (4)

where x(t)e RY, ulh)e R™, and f(x. u):RY*™ > R" is a C* R"-valued function. Also,
consider the following multi-input linear discrete-time system X

Iy M+ D= Ap) + Bor) = g( (1), e(t)

where y(r1e R, t{t)e R™, 4 = block diag | A,,. 4. ..., Ay}
[0 1 0 .. 0 0]
001 .. 00
A,=| - = S| (K, x K, matrix)
0 0 0 1
[0 0 0 0
iﬁg:N.
B = block diag !b,. b,. ... b,!

b;=(0 ... 0 1)) (K,x ! matrix)

Definition 4
T is said to be locally linearizable at (x., u.) if there exist indices |K,!™ . an open

neighbourhood U (= RY*™) of an equilibrium point (x.. u.} and a diffcomorphism
T:U - T(U) such that

(i) T=(T,, Ty, ..., Ty) are functions of x,, x;...., xy only,
(“) T(xes ue) = 0(N+mix 1

i) T-f=g T
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Linearizability of non-linear discrete-time systems 1119

If we let

; o\

then y(1) and «{1) satisfy the relation I,.

Definition 5

T is said to be approximately linearizable with order p if there exist indices { K} |,
an open neighbourhood U (= R¥*™) of an equilibrium point (x,, u.) and a dif-
feomorphism T: U — T(U) such that

(i) T=(T,, Ty, .... Ty) are functions of x,, X, ..., Xy only,
(1) Tlxe, ) =Oin v myx
@) T f=g T+O0(x-x,u—uy*'

Thus in Definition 5 we consider the following nearly linear multi-input discrete-
time system:

Ty U+ )= A+ Bo{) + O(x — x, u—u.Y*!

where the N x N matrix 4 and N x m matrix B are as in I,

Now we state the generalized version of Lemmas 1 and 2 and Theorems 3 and 4.
Just as in the single-input case, we can assume f(0, 0) = 0 without loss of generality, if f
has an equilibrium point. Also, we define f(x, u) in the same way as in the previous
section.

Lemma §

T is locally linearizable at (0. 0) if and only if there exist {K;}., and C* functions
hytx), hy(x), ..., hy(x): W(<= RY) = R such that

(i) W s an open neighbourhood of 0e R”,
(i) Dyh; f1=0 fort<j<mand 1 <i<k;—1

(1)
(%)
ex / 0o
~ (‘:hl *f
cx -)co.on
chy o fKt
( x )(o.m

det . #0

x /..o

(m-. fr1
) ax )<o.on_J

—

. " . R T e e . '-.. LN

T R P N I, Y I

~ Y - L
S SRS S I A

; . . .:-_. _..-... PRI . Ve <o
Lad ™.

. A SN .
PRI SO T R SR R W et
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.' W . :
W (iv) )
! (a(hl “f")) -
1 du
:ﬂ. 0.0)
'-.:s det #0
3 (™)
s L fu 0.0 |
@ V) h{0)=0 forlgjsm
A
? Let § =(xT u«")'. Thus &is a (N +m) x | vector.
)
e
Lemma 6
- I is approximately linearizable with order p if and only if there exist {K;}/, and
. C~ functions h,(x), hy(x), ..., ha(x): W(= R¥)— R such that

(i) W is an open neighbourhood of 0e R¥,
(i) (DADuth;~ fNo.0y=0 for 1<j<m 1<i<k;—1,0<k<p—1
(iii), (iv) and (v) of Lemma § are satisfied.

i/ d o
{<f“|)<o 0 (C’—)(o on(‘ “l)(o o ( )w 0) (5“1>(o 0 (a“z)(o.oy’m’
I G R € O 5 M W
<‘3 )wo» <5_'h 00 \noo T\@ )(oo; (0.0)
SN Gy R Y I € R )
{(‘“n)wo»( )(00» cuy oo (ax (0.0 (5“1 ©0.0 \02 )00y
' IO G R € IO N € N N
x Jio.o0 \ 42 Ji0.00 Cum)i00) \EXJi0.00 \Cthm/ 0.0 ’ T

-. -
= en
>~y 4 *

el

e ” %D
2t

-,
-

Lo

ey . . . .
WYy Suppose that the clements of E are linearly independent; that is, they form a basis

Y for RY. Let ,= Y K, for 1 <i<m. Define {{(v): R >R by {/(v) =a,,, where vis a

j=1
‘i 1 x N row vector and
é el Ky-1 a P

o T = :11(’1) + .. +a,'<5f—) (—f) +am,<—f + ..

.t Ui /0.0y X /0.0 \CU1 /(0,00 cu; /0.0y
.-, Kr-1/ of A
e of

'Y + 2, + ... ta,, . - + ...

o 2(‘ ")(o.o» (‘1“2)40.0) 'H<5“m)(o.oy

" (+)ow ()

+a, | o —

~ x Ji0.00 \Cm/(0.0)

N Also, define 7 RP*¥ s RPfori=1,2,...,m by

N f =@y T o ST

'

."‘5

- )
3 h
) b
o4
4

4'1"")-"’\-"1'"" e T Y v('h‘\" > ,:/_.'- (.',(-J‘F-,p,n O B '4‘*."-..‘_(‘('.'(‘1_-(."!. AT D ._.:
- )

Pk’ 54.‘!' ¥, . '“;’;‘n O‘.'l‘~ ﬁo s, ' 2% _‘ { "0 la“ﬂy‘. 3,000,000 " “‘." . “' ‘““-‘
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Linearizability of non-linear discrete-time systems 1121

where v is the jth row of V. Let
(DiDuf 0.0
(DéDufﬂ.)(O.Ol

(DiD. % 1 )60, j
Also, let yi =((B1)" (BT ... (BOD. Let

D}l D:z e D}k

D= D'}, D.iz D.i,‘
Dy, Di ... Di
where
D:j=0m(kpn(~+m)~'xm” ifi<j
(BY)o.0)
(B¥)o.
D= ® oo if i)
g+ .
(B o0
Theorem 7

T is approximately linearizable with order p (>2) if and only if there exist { K},
such that
(i) the elements of E are linearly independent,
(i) span E, =span(E;nE) for1<ig<m
(iii) 74, elmage (D, _,) for 1<I<m

Remark

T is approximately linearizable with order 1 if and only if (i) and (ii) of Theorem 7
hold, just as in the continuous-time case (Krener 1984). If m = 1 (single-input case) then
K, = N. Thus (i} of Theorem 7 is the same as (i) of Theorem 3. Since E, = E;nE,
(i) of Theorem 7 is trivially satisfied. Since the operator {' is the same as the opera-
tor { in the previous section, y,_, =f,_,. Since D}_, = A,_,, (iii) of Theorem 7
is the same as (ii) of Theorem 3. Therefore Theorem 7 is a generalized version of
Theorem 3.

Now a sufficient condition for local linearizability is given in the following
theorem.

Theorem 8
Suppose that f(x, u) of Z is an analytic R¥-valued function. X is locally linearizable

r e v o x oy
P

L v,

oY YN Y

v Y-

.
’

> T
B

»

. 72

- rer o
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Ph,
"N at (0, 0) if
;" (i) the elements of E are linearly independent,
N (it span E, =span(E,nE) forl<igm
2: ) (i) there exists k (< o) such that y}espan ((F!)*) for 1 <I<m and i> 1, where
f‘: v (Fi)* is composed of the first k columns of D'
::" Given the system (4), we choose the Kronecker indices {K,}™, in a similar way to
O) the continuous-time case (Hunt and Su 1981). First we form the matrix
10y cuy Ji0.01 cu; /i0.00 Ctim/ 0.0,
1
i (Fooliideo Chual)en = ()
A < o 7 .
b €X Jo.o\ %1 Ji0.00 €x /10.0\CU3 /0.0y X /10.0)\Clm /0.0y
- : : :
¥ (oolic)ee Chalihn -~ (G
X 1:: [ \€x J0.00\ Uy Ji0.0) ¢x Ji0.00\ U3 /0.0, X /0.0y \ Clim /10.0) |
Z. Let ; be the number of linearly independent vectors in the first i + 1 rows for 0 <i
e <N — 1. Take y, =1, and vi=o,—a  for 1 <i<N -1, and define K; to be the
SHE number of ;; with 7, =i
’.o.
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Appendix
Lemma A.1
Equation (2) holds.

i) 5.'},- Iy,
P I

‘.
AN

| Proof
Wt Clearly,
o DEDUR S = 3, (B s D5 Hlivc

; J::: m+ 1 i ~! i i+ 1
D: D"(h Of )= ,Z:o (Bm+ l.l)(x.u)(D.( h)/‘u,m

FEa

where {f:,,} are to be determined. Then
B, \.0=DyB o) (A1)
B =D(BL)+D.fT®B.,, , forl<li<m (A2
Buiime1 =D f"®B,, (A3)
By (A 1), since By, =D, f7, Bi,o=D?D,f" for m> 1. Note that (2) is true when
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m = 1. Now suppose that (2) is true for m < p. Let 1 <I<p. Then, by (A 2),
B,...=DB,)+D.f"®B,,

p vl Kk ki

= z Z § z Dgol'hl k‘(D:f”@D? h(D:f”@...@Dé' Y

ki=1 k=1 k=1

. .. pri-I+1 &, ks .
(D T®DY 'DfTy.N+ Y Y DfTEDPT 1k

k=1 ky=1 ki =1
(D“flT ® Df:' fk‘.(D:js“ ® ® D‘E' 2 ky '(D:f”@D? V- lDuj’iT) )
Changing the dummy variables k,. k,, ..., k,_, of the second term into ky Ky, .o kpy
respectively. the second term becomes

ptl U+l &k,

kr
Z Z D;j"r®0f” 1+1 "(D:f”@D?" h(D‘sfiT@...@(Di‘,' ke

k=1 ky=1 ki=1
&> ki
Z z Dp'l'l+l~k,

ki=p+l 1+1ky=1ky=1 ki1
(D:f‘iT®D‘E|*k:(D:j’iT®D§; k‘(D\.f”@...@D:' ' k'(D:f”@D'E' 'D,fiT)...))

Thus (2)is true form=p + I and 1 </ < p. By (A 3}, it is easy to see that (2) is true for

m=1=p+ 1. Hence (2) is true for m = p + 1. By induction, (2) is true form>1. &

p+l 1+1 ky

(D STRDY D, fT) .. )=

Let h(x):RY >R be a C* function.

Lemma A.2
If
‘th)J =0

(Dzh)x~0

S, S, ... S =d,,, (A 4)

(D‘;‘ lh’(—‘(h

where S;is a p x N'* ! matrix for | €i <k, then de Image (B), where

B= ((?s,). (05:) - (@s))

Equation (A 4) is equivalent to
SUDZh), o+ SyDIR), o+ .+ SUDN Ty, =d

Consider
SUAD2hy, o =d’
Note that ((2hix,ox,), o2 by =h; 2(¢h ¢x,éx), o for 1<i<N and | <j<N.

Let (s,), be the ith column of S,. Then, since h,; = h,,.

N N N
SiD 0= Y 51hay, tventaa t Y Y Uy 1neos

a; =1 ay=1ay=ay+1

+ (Sl )laz NN *al)halaz =d’
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,;:. Therefore d' e span (Q). where

\

A N A N
!,, | Q=< U l\) :S(a| Il“\"u;+'\.(ug Ii\'al:)u< lJ Ism, lb\'u‘:) .

e a;=1lay-a+1 ay =1
e Now consider the matrix §| defined by
SN
Y Si=@S =5l +Uyy)
v It is easy to see that the {ta, — )N + u,)th column of §
-:‘ ) A hay 1ixea, fa,=a,
‘.". ‘Sl’lﬂn 1IN +ay — )
- Sha, v eus ¥ 1da, 1ivew, Way #a,
o . , . e
-Q where | <a, <N and | <u, < N. Clearly Image (S}) = span (Q). Similar arguments
R can be applied for (DYh), o.....{D " 'h), . Therefore d € Image (B).
ja ¥ °f
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A Structure-Independent Approach to the
Analysis and Synthesis of Recursive Linear

Time-Variant

Digital Filters

TZONG-YEU LEOU, STUDENT MEMBER. IEEE, AND J. K. AGGARWAL. FELLOW. IEEE

Abstract — This paper develops a systematic approach to select a time-
dependent state transf. rmation which can map a linear time-variant (1.TV)
digital filter to an equivalent filter having diagonal state-feedback matrices.
Due to the structural simplicity of the diagonal systems, this time-depen-
dent state transformation is a convenient tool for analyzing recunsive LTV
filters expressible in the state-variable form. In this paper, we discuss both
the theoretical basis and the application of this diagonalization procedure.
The properties of two types of recursive LTV filters are examined by using
this state transformation technique. Based upon the separable properties of
the impulse responses, we have explored a new algorithm for synthesizing
desired impulse respoases with a major cfass of recursive LTV filters. This
technique, though suboptimal, can substantially reduce the computation
required in the synthesis procedure.

[. INTRODUCIION

N RECENT YEARS. there has been considerable inter-
Iest in the analysis and svnthesis of linear time-variant
(L'TV) digital filters for processing signals whose character-
istics change significantly with time. Generally speaking, a
straightforward extension of a synthesis technique for lin-
car ime-invanant (LTI) filters 1s sufficient for implement-
g LTV hiters which have finite-duration impulse re-
sponses. However, the use of a recursive structure has the
advantages of saving computation time and storage space,
if the duration of the desired tmpulse response of an LTV
filter s relatively long. But the synthesis of a recursive
LTV filter 1s difficult because the characteristics of an
I.TV filter are related to the filter coeffictents in a com-
pheated fashion, except for certain filters implemented
with some special structures [1]. Some researchers have
suggested a very simple but somewhat heuristic synthesis
method. which 1s based on the implementation of the
frozen-time transfer function of an LTV filter {2], [3].
However, as illustrated in [4], noticeable differences be-
tween the desired and the realized filter characternistics of
an LTV filter exist. unless the filter coefficients change
very slowly with ime.

The basic properties of a continuous-time LTV system
realizable as a differential equation have been investigated
i the Interature {5] [7]. Recently, the properties of the

Manuscript received November 26, 1984: revised November 14, 1985
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[ lectronies Program under the Air gmcc Office of Scaentfic Research
Contract F49620.82-C-00313

The authors are with the Department of Electnical and Computer
t nginerning. The Univeraity of Texas at Ausun, Austin, TX 78712
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discrete-time counterpare have also been reported {1}, [8].
But the previous studies of discrete-time recursive LTV
filters are limited to those filters realized with time-variant
difference equations. Since there are many other conceiv-
able structures which can be utilized to implement an LTV
filter, a structure-independent approach to the analysis
and synthesis of recursive LTV filters 1s desirable. Unlike
the implementation of a recursive LTI filter, the structure
selected for implementing a recursive LTV filter is an
important factor in determining the charactenstics of the
realized filter.

The main objective of this paper is to develop a struc-
ture-independent approach to analyze and synthesize re-
cursive LTV filters. Therefore. we express the basic model
of recursive LTV filters in the state-vaniable form. which 1s
capable of representing most recursive LTV filters. A
time-dependent state transformation 1s devised to reduce
the complexity of the state-variable model of LTV filters.
We then examine the basic properties of recursive LTV
filters by utilhzing the time-dependent state transforma-
ton. Further, we explore the solutions to the synthesis
problem of realizing an LTV impulse response with a
finite-order recursive digital filter.

In Section 11, we first introduce several descriptions of
LTV digital filters, and discuss the properties of those
representations relevant to the synthesis of recursive LTV
filters. In Section III. attention is devoted to the analysis
of LTV filters represented in the state-variable form. A
time-dependent state transformation that diagonalizes the
state-feedback matrices has been developed so that an
LTV filter expressed in the state-variable form can be
transformed into a filter consisting of K parallel first-order
filters. This leads 10 a general expression for the impulse
response realizable via a recursive LTV filter. In Section
1V, we illustrate how this diagonalization procedure can be
applied to analyze the properties of LTV filters realized
with different filter structures. In Section V, we formulate
the time-domain synthesis problem of a recursive LTV
filter by minimizing the squared difference between the
desired impulse response and the impulse response realiz-
able as a major class of recursive LTV filters. The numer:-
cal difficulty of obtaining the optimal solution is ex-
amined. An efficient suboptimal algorithm based on the
minimization of the localized squared difference between
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*-! the desired impulse response and the realized impulse ol
.. response is also developed. A numerical example has been v
at selected as an illustration of this synthesis aigorithm.
\
P II.  CHARACTERIZATIONS OF LTV FILTERS
: Generally speaking, most methods for describing LTV
W\ filters are evolved from those used for LTI filters. A x(n) y(n)
.:: common time-domain description for LTV filters is the
b time-variant impulse response, which is defined as the
) output measured at the instant n in response to a unit-
-, sample input applied at instant m. Then. the input x(n)
_:" and the output y(n) are related to the impulse response
- h(n.m) by the summation Fig. 1. Block diagram of the direct form II realization of a recursive
"'. = TV filter.
oY vin)= Y h(n.m)x(m) (1)
e , . tively, the input and the output of the filter, the input-
o where the filter is said to be causal if the impulse response output relationship of a recursive LTV filter can be ex-
i- h(n.m) satisfies pressed in terms of the state equations
‘o h(n,m)=0 for n <m. 2
e . ( ) . ( ) W(n)=A(n)W(n-1)+ B(n)x(n)
z If one considers the computation and storage require-
Py ments of implementing an LTV filter having a long-dura- y(n) =C(n)W(n) (5)
o tion impulse response, it is desirable to synthesize the filter )
. using some recursive filter structure. A widely used struc- Where W(n) is the state vector and A(n). B(n) and C(n)
o ture for implementing LTV filters is a time-variant dif- are matrices of appropriate dimensions. It is clear that a
N ference equation. which relates the output sequence y(n) Tecursive LTV fllter‘reallzed via a QIfference equation can
+O to the input sequence x(n) by be easily expressed in the state-variable form by choosing
" X ; an appropriate set of variables as ‘iic state vector. Further,
: - ) ; the state-variable form is very suitable for representing a
a,(n)y(n—i)= 3 b(n)x(n—i 3) : : ) uran p 2
,: ,);'0 (n)( ) ,);(, ) ( recursive LTV filter with multiple inputs and multiple
L. he order of the diff outputs.
e wherg do(1) # 0 for all .and the order ol the difference The basic properties of an LTV filter realizable as a
- equation is equal to K if a,(n)#0 for some n. By . . . .
h" o . . . . time-variant difference equation has been explored by
. adopting the direct form II structure [9] used in the Huang and Aggarwal [1]. The main result of Huang and
) synthesis of LTI filters, one can define another LTV filter .. : .
" structure in terms of a two-stage difference equation Aggarwal's work relevanl. 1o our present study is stated
A0 ) below. The time-variant impulse response of a recursive
: K . . . . .
By LTV difference equation given in (3) is a K th-order causal
g = - (n—i q
wy ) z‘al(n)u(n i)+ x(n) separable sequence of the form
. -
4‘?': K-1 K
. ‘
@ y(n)= Y ¢ (n)w(n-i). 4) h(n.m) = ZI“.(")U.('")' nzm (6)
¢ 1=0 ;-
._: The block diagram of the direct form Il realization of LTV 0. elsewhere
s filters is shown in Fig. 1. Many other filter structures can where u,(n), i =1,2,- - -, K are K independent solutions of
o be developed in the same way. However, unlike the case of K
"':, representing recursive LTI filters, it is diffiqult to establish Y a(n)y(n-i)=0 (7)
. the explicit relationships among the recursive LTV filters =0
\.. realized with different structures. ' _ and v,(m) is given by
.- For the purpose of analyzing recursive LTV filters D,
W synthesized with a variety of structures, we focus our v(m)= Z b, (m+ k) (m+k) (8)
o attention on the state-variable representation in the pres- * D(m+k)
8¢ study. Assuming that x(n) and y(n) denote, respec- :
oor’ ent study suming x(n) y(n) pec where D(m) denotes the determinant of
il" ul(m) “z('") Uy |(m) uA'(m)
0N
! u,(m-1) uy(m-1) uy (m-1) ug(m-1)
a0 . . . . 9
,":‘ (9)
B
PY u(m—-K+1) (m=K+1) u,(m-K+1)
'l.
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and D (m) 1s the cofactor of the element u (m) of the
determinant Dgm). An 1implicit formulation of this result
can also be found in [8]. However, after careful examina-
tion, we find that the expression in (6) holds true for all n
and m only when L<K -1 and a, ()= 0 for all n
Fherefore. we suspect that there exasts a more generahized
capression for the impulse response of an LTV difference
equation. In additon to the ume-varnant difference equa-
uon. we are also interested in anabvzing LTV filters real-
ized with other filter structures Consequently, the devel-
opment i this paper 15 based upon the state-vanable
maodel for 1.1V filters The detailed derivations associated
with the state-vanable model are discussed in the following

sechon

L DIAGONATIZING TRANSFORMATION FOR

Statr-VariaBt + Mobit

[he technique of state transformation is a very conveni-
ent ool for unalvang hnear modebs represented 1n the
state-vanable form. In most cases. we want to reduce the
sate-feedback matniy o a diagonal matnx or a diagonal-
<hape muatrin consisting of Jordan blocks. Methods for
selecting state transformation matrices for a continuous-
te svtem have been discussed in [10]. But these proce-
dures are not applicable 1o discrete-time filters having
angulur state-transition matrices. Therefore, we devote our
ctiort to develop a new procedure for selecting transforma-
ton fnatnces for a general discrete-time LTV filter.

Lot v virst restrict our consideration to a single-input
single-output LTV filter. For the K th-order filter given by
(%), the muatrices A(n), Byny and C(n) are of dimension
A < K. K <1, and 1x K. respectively. After the input
xtn) m 5 s substituted with a shifted unit impulse

d¢n m) the impulse response of the filter can be derived
ds
{ n m 1
Cin) n A(n—j)]B(m). nxm+l
htrn.m) = peu
lC(n)B(n). n=m
. n<m.

(10)

Because the impulse response given in (10) is a com-
plicated expression involving multiple matrix multipli-
cations, it is difficult to examine the properties of the
impulse response without further simplification.

One way to circumvent this difficulty is to select a
time-dependent state transformation that can transform ali
the state-feedback matrices A(n) into diagonal matrices.
Assume the new state vector W*(n) is related to the
original state vector W(n) by

W(n)=P(n)W*(n) (11)
where P(n) is a nonsingular transformation matrix. After
substituting (11) into the original state equation (5) and
rearranging the result, we can define an equivalent filter

6RY
charactenzed by the state equations
Be*(n)=A*(n)W*(n-1)+ B*(n)x(n
v(n)=C*(n)W*(n) (12)
where
A*(n)y=P Y(n)A(n)P(n-1)
B*(n)=P '(n)B(n)
C*(n)=C(n)P(n). (13)

Consequently. the expression for the impulse response
given in (10) can also be rewntten for the equivalent filter
as

h(n.m)
I("ln) r] A‘ln-/>]8‘(m). noom+1
C*(niB*tny, n=m
0. n< om.
(14)

I all the state-feedback matrices 4*0n) are of diagonal
form, then the onginal filter has been decomposed into A
parallel first-order filters. In this wav, we can represent
cach recursive LTV filter in terms of an equivalent di-
agonalized filter. Hence the diagonalizing transformation
1s an useful tool for the analysis of recursive LTV filters of
different structures. Next. we will show that such a di-
agonalizing transformation exists for every recursive LTV
filter represented in the state-vanable form.

Assuming that the system matrices of an LTV filter are
defined for all n such that M, < n < N;. we should be able
to choose the transformation matrices P(n) for M, - 1<n
< N, in order to completely define the equivalent filter.
L.¢t us define the forward state-transition matrix ®(#, m)
of the original filter as

n m

’ IT atn-).
)= 0

.

and let S (n) denote the linear vector space consisting of
all the column vector ¢ such that

n>m

d(n.m) = (15)

n=m

O(n+ y.n)qg=0. (16)

We also choose A(M;~1)=A(N;+1)=0 to facilitate
the illustration of this algorithm. Then the transformation
matrices P(n) may be chosen in sequence by carrying out
the following steps from n=M;—-1to n= N

1) Let P(n) denote the 1th column of the transforma-
tion matrix P(n). Then choose P(n)=A(n)P(n-1) if
A(n)P(n—-1)+#0, where i=1,2,---. K. Let I(n) denote
the set of index i such that A(n)P(n—-1)#0 and let
(n) denote the linear expansion of the column vectors
P.(n) for 1 € I(n). The rest of the column vectors in P(n)
are to be determined in the next step.
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2) For j=1.2.--- Ny~ n+1, define

S, {n) = the linear space generated by the vectors
in S (n)un) (17)
and

T(n)=S(n)LS" (n)

!
= { qlge S (n)and ¢'p=0

forevery pe ST l(n)}.

(18)

Let {g,,(m1<k <K/ (n)} be a basis of the subspace
T (n) and {n,(n), k=12 K(n)} be an arbitrary
vector setin S, (n). Forj—l 2. — n +1, we choose
g, (my+mn,, (n) I<k< K, (n) as Lolumn vectors of the
tmn\formalmn matrix P(n) if T(n)# {0} The column
vectors selected in this step will exactly fill the empty
columns of P(n) which have not been determined in
step 1.

The basic properties of the state transformation defined
by the procedure stated above can be summarnized in the
following two theorems. The proofs are given in the Ap-
pendix.

Theorem [: Assuming that a discrete LTV filter repre-
sented in the state-variable form of (5) is defined in the
interval M, < n < N, then the state transformation matrix
P(n) selected with the iterative procedure stated above has
the following properties:

1) The matrix P(n) s of full rank.
2) Each column of P(n) belongs to one of the dis-
jointed sets

AS,(n)=5(n)=S |(n)

={qlge S (n)and g€ S, (n))}

where y=1.2.---. N, —n +1. The number of the column
vectors of P(n) belonging to AS, is equal to the difference
between the dimensions of S](n) and S, |(n).

(19)

Theorem 2: Under the same assumptions of Theorem 1.
there exists an equivalent filter given in (12) such that the
new state-feedback matrix is of the form

A"(n)=diag[a,(n) a,(n) ak(n)]
a(n) 0
- ax(m) (20)
0 aA(n)

where a(n)y=0or1fori=1.2.--

The essence of these two theorems is that once an LTV
filter of the state vanable form is completely specified in
an interval, there exists a time-dependent state transforma-
tuon which can define an equivalent filter having diagonal
state-feedback matrices in the same interval. However, the
state transformation thus determined is not unique be-
cause in step 2 of the selection procedure, we have some

"f“f'
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BN yim cinm
», .
a,n)
< z*
b3(n) wi(n) & c3(n)
@,in)
x(n) — y(n)
L]
.
.
b, (n) w, (m) €y (0)
a,(n)
Fig. 2 Block diagram of the equivalent filter having a diagonal state-

feedback matrix.

freedom in choosing the column vectors and assigning
them to respective column pasitions. Even though selecting
different sets of transformation matrices may generate
different diagonalized filters, the input-output characteris-
tics of these filters remain the same.

A general expression for the impulse response can be
derived from the result in Theorem 2. Since the state-
feedback matrix of the equivalent filter has the form of
(20). the corresponding forward state-transition matrix of
the equivalent filter is given as

&*(n.m) =diag{B,(n.m) By(n.m) By (n.m)]
(21)
where
n-m- 1
[T a(n-). nem+l
B{n.m)={ =9 (22)
1. n=m
L0, n<m
for i =1.2.---, K. After substituting (21) into (14). we can

derive the impulse response of the LTV filter as

h(n.m)=C*(n)®o*(n.m)B*(m)

X
=Y c*(n)B(n.m)b*(m)

=1
where C*(n)=C(n)P(n). B*(m)=P ‘(m)B(m) and
¢*(n) and b*(m) denote ith elements of C*(n) and
B*(m). respectively. This result can also be easily verified
by examining the block diagram of the equivaient LTV

filter shown in Fig. 2.

The expression for the time-variant impulse response
shown in (23) somewhat resembles the result given in (6),
which is obtained specifically for time-variant difference
equations. However. an additional weighting factor
B,(n.m), which is a function of m and n. has been
included in the summation of (23). Further, for some LTV
filters. certain terms in (23) might cancel. This leads to the
situation that fewer terms in (23) really contribute to the
impulse response. This property will be illustrated later by
applying the diagonalization procedure to an LTV filter
realized as a time-vanant difference equation.

(23)

hat _ant et dar Sab et Sar sl G S’
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IV. ANALYSIS OF LTV FILTERS VIA
DIAGONALIZING TRANSFORMATION

Now, the usefulness of this diagonalizing transformation
is illustrated by applying it to several realization schemes
for recursive LTV filters. The analysis of LTV filters using
the diagonalizing transformation is usually accomplished
by the following steps. First, we represent an LTV filter in
the state-vaniable form. Then we can obtain a set of
transformation matrices by using the diagonalizing proce-
dure discussed in Section I11. The properties of the original
filter can be extracted from the system matrices of the
corresponding diagonalized filter.

The first example is an LTV filter whose state-feedback
matrix A(n)is nonsingular for all n such that M, < n < N,
Following the selection procedure discussed in Section III,
we can choose the transformation matrix P(M,—1) as
any nonsingular K X K matrix P,. Then, just by carrying
out step 1 of the selection procedure, we can select the rest
of the transformation matnices as

{n‘.wo

P(n)=\ [T A(n-j)} P,

1=0

for My<ng Ny (24)

After substituting (24) into (13), we can derive the system
matrices of the equivalent filter as

A*(n)=P Y(n)A(n)P(n-1) =1
B*(n) =P '(n)B(n)

C*(n) =C(n)P(n) (25)

where M, < n < N,. The impulse response of such a filter
can be obtained from (23) as

K

Y cr(n)br(m),

t=1

0, n<m.

nzm

hin.m) = (26)

A typical example of such an LTV filter is the direct form
11 realization of the recursive LTV filter given in (4).

The second example is the time-variant difference equa-
tion shown in (3), where a,(n) is assumed to be 1. In this
case, the state vector may be chosen as

y(n=1) y(n) |
x(n=1) x(m)]” (27)

Note that the dimension of the state vector is K+ L.
Then. the corresponding system matrices of the filter are
found to be

Win)=[y(n-K+1)
x(n—L+1)

B(n)=|0 0 by(n) |0 0 0 1)’
Cc(n)=[0 0 110 0 - 0]
and
Ay(n) | 4,5(n)
A = - 28
(") [Au(") Azz(")] (28)

Sad 28 Sul 2.0 S 0 Sl Sok Aol Yol Bal Sall Bat Bal Bl
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where
[ o 1 0 0
1
Au(")= .
0 1
| —ak(n) —a,(n) -ay(n)
0
Aa(n) =1 p, (n) by(n)  by(n)
AZI(")=[0]
(0 1 0
1
'422(")= .
0 1
L 0

By using the diagonalization procedure discussed earlier,
the transformation matrix P(n) may be chosen as

_ Pn(”)l Pn(")
P(")_[ 0 Ils(n—Mo)] e
where
n— M,
putny={ Hh A=z My
1. =M,-1
I(j) = [15(0)])' "
o1 0
1,(0) = :
s(0) 0 0 |
1 0 0

MIN i
P,(n)=— Py (n) Z Z Pl_ll(" +j)bL—<(:-;))("+ 1)]

=] ]y=1

AL, ((n+i~My))+1]

MIN
+Q(n)[l-— Y I(n+i- MO)]

i=]

Pu(") i Pl_ll(i)"lz(i)ls(i— Mo - 1)'
Q(n) = oM

Nozn>= M,
0, n=M,-1

MIN = minimum { L, N, - n}
I()) =151 (J)ALK. K] 15( )

where A[i, j] is an L X L matrix having a single nonzero
element 1 at the position (i, j) and ((i)) denotes the
L-modulus of i.

After substituting (29) into (13), we obtain the corre-
sponding system matrices of the equivalent diagonalized
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filter as

A*(n)=P Y(n)A(n)P(n-1)

1] 0

o] 1-1n-M,)
B*(n)=P Y(n)B(n)
C*(n)=C(n)P(n). (30)

Then the impulse response of this filter can be obtained by
substituting (30) into (23). After some simplification of the
resulting expression, the impulse response is of the form

min{!l.n m}
J Y [0---0

y =90

l]l’“(n)l’“l(m-#-j)
hi{n.m) =
] b(m+ j)0---0 1], n>m
0

. n<m

(31)

which is somewhat different from the expression given in
(6). But, with further simplification, it can be shown that
(31) is equivalent to (6) for L. < K — 1. From the definition
of P, (n) given in (29), it is clear that the upper K —1
rows of P, (n) are obtained by shifting each of the corre-
sponding rows of P;;(n—1) upward by one row. This
leads to the relation

(0 0---1jP, ()P, (m+ D6 0---1}" =0 (32)

<n—m+ K —1. After substituting (32)
< L into (31). we have

forn—-—m+1</
forn—-m+1<j

.
¥y b{m+ )0 - 1)P,(n) P, (m+ j)

(0--1]".

0. n<m.

hin.m)=

n>=m

(33)

This expresston is equivalent to the result given in (6).

From the above discussion. we have shown that the
diagonalizing transformation is a valuable tool for the
analysis of digital LTV filters. Therefore, a systematic
approach based upon the diagonalizing transformation can
be developed to reduce the complexity of the LTV filters
synthesized with a variety of structures. Since the original
filter is state-to-state equivalent to the corresponding di-
agonalized filter. the use of the diagonalizing transforma-
tion 1s promising in such areas as the stability analysis and
the roundoff noise analysis of LTV filters.

V. SyYNTHESIS OF RECURSIVE LTV FILTERS

In this section, we examine the time-domain solutions to
the deterministic synthesis problem of recursive LTV filters.
Our main objective is to develop techniques for synthesiz-
ing a desired time-variant impulse response with a recur-
sive LTV filter such that the difference between the desired
and the synthesized impulse responses is minimized

according to some error criterion. In a practical problem.
the desired impulse response may be determined either by
solving a statistical filtering problem or by using some
empirical rules. Since the computation for obtaining the
true optimal solution grows rapidly as the order of the
filter or the duration of the impulse response increases. it
1s necessary to develop efficient solutions for the synthesis
of recursive LTV filters. In this section, we introduce an
efficient suboptimal technique which is based upon the
minimization of the squared difference between the desired
impulse response and the synthesized impulse response in
localized regions. A numerical example is selected to il-
lustrate this new synthesis technique.

It 1s quite difficult to synthesize a desired impulse re-
sponse in terms of impulse responses given in (23) that
have arbitrary 8,(n. m)’s. In order to obtain a manageable
formulation of the synthesis problem. we restrict our con-
stderation to a subset of recursive LTV filters whose
impulse responses are causal Kth-order separable func-
tions, 1.€.,

R
h(n.m)={lgl“'(”)",('")- nxm (34)

L0, elsewhere

where {u,(n). i=1.---. K} and {(¢,(m). i=1.--- K} are
two sets of independent functions. Even though (34) is a
special case of the expression given in (23). (34) is still
capable of representing a major class of the recursive LTV
filters. In particular. the impulse responses of most recur-
sive LTV filters discussed in Section 1V satisfy (34). As-
suming that the desired causal impulse response is
h,(n.m). the svnthesis of the recursive LTV filter can
then be formulated as the minimization of the squared
error function
A :

\ "
Yo X thpnim) = X w(mye,(m)] (38

=0 m=10 [

where @ = {uw (n). e, (Ml <i< K. 0O<ng N} is aset of
unknown variables and K is the order of the recursive
LTV filter. Once we determine the optimal @ which mini-
mizes the cost function, the coefficients of the recursive
LTV filter synthesized with a particular filter structure can
be derived from the optimal @. An unrestricted nonlinear
optimization algorithm may be applied to find the solution
of this optimization problem. The coefficients u, (n)'s and
r,(m)'s are considered as the unknown variables in the
optimization process. However, since the number of un-
known parameters is proportional to the order of the {ilter
times the duration of the impulse response. it is impract-
cal 1o find the true optimal solution of (35) for an LTV
filter with a large K or a large N. Therefore. it is useful to
develop some efficient suboptimal techniques for solving
this nonlinear mimimization problem.

In Huang and Aggarwal’s work [11]. the causal condi-
tion in (35) 1s removed so that a straightforward algorithm
can be applied to solve this filter synthesis problem. The

D(O) =

*-,'\\-\
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new error function is defined as
K

N N
D(8)= ¥ X [hp(n.m)=- ¥ u

n=0m=0 =1

,(n )v(m) (36)

The minimization of (36) can easily be solved by using a
procedure that was originally developed for finding the
spectral decomposition of a matrix [12]. The required
computation is approximately equivalent to that of obtain-
ing K most dominant eigenvalues and eigenvectors of an
(N +1)X(N + 1) matrix.

The main drawback of using the noncausal error func-
tion is that the performance of this synthesis procedure
depends largely on how we choose the desired impulse
response in the noncausal region. In order to make the
result obtained by the spectral decomposition technique
close to the optimal one, the function hp(n,m) in the
region {(n. m); 0 < n < m < N} must be selected such that

>

n=0m=mn-+1\

[h,,(n.m)—hopT(n.m)]zzo (37)
where hpr (1. m) s the noncausal separable impulse re-
sponse defined by the optimal @ that minimizes (35).
Since there are no explicit rules for making a good guess of
the noncausal part of the desired impulse response. the
spectral decomposition technique often achieves less than
satisfactory result. It usually takes a high-order recursive
LTV filter to make a good approximation of the desired
impulse response.

To circumvent the problems in the nonlinear optimiza-
ton technique and the spectral decomposition technique. a
new suboptimal technique for solving the svnthesis prob-
lem of recursive LTV filters 1s formulated by minimizing
(25) in a localized sense. The solution of w (n) for ;1 =

.-+ K s obtained by miminuzing the localized error
function
" A N
D, (n)= Z hp{n.m} - 2_ wln)e {m) (3R8)
m =1 [
under the conditions that
IS
hp(n.m) =Y u(n)e(m).
form=n.n-1.- - n-K+1. (39)

With an index change in (39). we can express the hnear

equations for obtaining v,(m). 1 = K as
X
hy(m+ jom)=3 u(m+ ) (m).
=1
for y=0.1.--- K -1. (40)
After substituting (39) tnto (38). we have that
n K A 2
D,(n)= Y |hp(n.m)= Y u(n)e(m)| . (41)

mo= r=1

Differentiating (41) with respect to u,(n) and setting the
result equal to zero, we can find a set of hinear equations

693

N, N.°K n

Fig. 3. Regions of the impulse response where the error function 1s

evaluated in different steps of the localized technique

for u,(n)s

N n-K
Y u‘(n)[ Yy l‘,(m)l'k(nt)]

k=1 =0

n KN
= Y hy(n.m)e,(m),

n =0

i=1.--- K. (42)

Note that the coefficients u,(n)'s in (42) can be easily
calculated once we determine the values of v,(m) for
r=1,--- K and m=0.1.---.n~ K. Therefore, by using
(40) and (42) uerauvely. we can determine a suboptimal
set of w (n)s and ¢ (n)'s.

The constraints given in (39) ensure that the synthesized
tmpulse response 1s the same as the desired one in the
region 0 < n —m < K -1. Hence, the localized synthesis
technique will favor the synthesis of a impulse response
having dominant components along the diagonal hine n =
n. Now let us summanze the complete algorithm of this
suboptimal solution as follows:

1) Apply the nonlinear optimization technique to find
the optimal solution of (35) in a small interval [0. N,]. For
example, the Fletcher - Powell technique [13] works well for

a small N

2) Use (4") tofind u (n)yforn=N +1..
=1, K.

3 For y=1.2.-- N~ N, use (40) and (42) to obtain
the solutions for (N, +j) and w (N, + K+ ), i=
l.--- K.

N+ K and

In fact, this localized minimization technique has divided
the domain of the impulse response into four distinct
regions as shown in Fig. 3. Regions | and Il denote,
respectively, the areas where steps 1 and 2 of the algorithm
are applied. And regions HI and 1V represent. respectively,
the areas where (40) and (42) are applied at step 3 of the
algorithm. The computation of this localized minimization
algorithm at each sampling point is equivalent to that of
solving two K th-order linear equations.

We have tested both the spectral decomposition tech-
nique and the localized minimization technique with a
variety of time-variant impulse responses. The results show
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TABLE 1
PERFORMANCE INDICES OF THE SYNTHESIS ALGORITHMS FOR | TV A
Fii FeRy Y

F T T =
] + -

[ D(K) l

! : . —r- ,

1 ! 1

Y | SPECTRAL DECOMPOSITION | LOCALIZED MINIMIZATION |

) ; 1 . '

: : M 1 1

1 ] ) i ]

| I B 0.74114 ) 0.17202 |

1oy o2 0.58230 ; 0.01803 |

H HE 0.46670 : 0.00552 |

; [ T 0. 5559 : 0.00273% i

H ) ! i J

| \ ) | — .

+ ] ] ) 1}

H . H 0.88489 ! 0.19549 H

: e 0.773%7 , 0.03869 1

10057 3 ) 0.58461 i 0.00403 i

E [ 0.60011 H 0.00074 1

] 1 v ]

] ] L} I ‘

that the localized minimization techmque consistently per-
forms better than the spectral decomposttion technique. A
numerical example is selected to illustrate this situation.
The impulse response of the desired filter 1s chosen as

hp(n.m)=h.(n/16,m/16) (43)
where

exp( - [0.02(1 - r)2+0.11]
h(“'f)=\' sinc [2(7 — 7)(1 = y1)]. 1z27

0, elsewhere

(44)

and sinc(x) =sin(7x)/(7x). The domain of the desired
impulse response under consideration is limited to the
region where 0 < n <128 and 0 < m <128. Basically, the
desired impulse response 1s a truncated sinc function along
the axis n+ m =0, but with time-vaniant frequency con-
tents and an accelerated decay. A normalized squared
error function

2% ”
Dky={ L X (hln.m)=hyin m)
n=im=(
! 128 "
Y ¥ ai(n.m)| (49
! n=(m=0

1s selected as the measure of the performance of the
synthesis algorithm. A lower value of the normalized error
function means a better approximation of the desired
impulse response. Two sets of the normalized errors have
been obtained: the first set is for the spectral decomposi-
uon technique in which the noncausal half of the impulse
response is assumed to be symmetrical to the causal half;
and the second set is for the localized minimization tech-
nique. Table I lists the normalized error indices obtained
for the desired impulse response functions with y values
0.1 and 0.05. The desired impulse response with y = 0.05,
the impulse response of a fourth-order filter synthesized
with the localized minimization technique, and the dif-
ference between the two are shown in Fig. 4.

It is clearly seen from Table I that the localized synthe-
sis technique achieves much better results than the spectral

N

Fig 4a) Desiced impulse response for y = 0004 10 the numencal exam
ple () Impulse response synthesized with 4 fousth order 1TV filter
usmng the localzed mimmization techrmigue () Difference between the
destred impulse response and the svathewzed impulse response
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decomposttion technique does. We also attempt to find the
opumal solution of mummuzing (35) with o general nonhn-
car mimnuzation algonthm so that we can evaluate the
results obtained by those suboptimal techmiques After
cexperimenting with a number of inual conditions, we find
that the performance index settles at o much larger value
than that obtained by the localized technique. This seems
to confirm the congecture that it s guite difficult 1o use a
general nonlinear mimimezation techmigque for finding the
optimal solution of a svathess problem which has mod-
erate values of Dlter order A and impulse response dura-
non A

VI Conartsions

It has been demonstrated that the diagonalhizing trans-
formation s a helpful tool for the analvsis and svathesis of
recursive LTV filters.
equivalence between the ongimal filter and the correspond-
ing diagonalized filter, the diagonalizing transformation
can be useful in other rescarch areas related to the recur-
sive LIV systems. In particular. the observability and the
controllabihity properties of a recursive LTV Nilter are
castly obtainable from the system matnices of the equiy-
alent diagonalized filter. Since the diagonalizing transfor-
mation procedure introduced in this paper works only for
LTV Olters defined 1n a finite interval, further mvestiga-
s warranted on whether we can generahze the
diagonahizing procedure such that its appheable to hilters
defined i an infhingte interval

Because there oy g state-to-state

toen

APPENDIY

Proot tor Theorem |

It~ castly seen that Sony STon and T ony are hinear
subspaces of R for ;o ool 0N e boand that (0)
S S < S, .. .tny R* Then.
ANy o N ! becomes a collection of dis-

jornted sets Further af {e . omy v )
hasts of Tony and any set {n (n). n(n)--oq (1)} s
contaned o S () then g tm)y s (n)oe () +
noany g, o) Fm Gos a collechion of independent
column vectors i the set AS () And the number of
vectors i this collection 1s equal to the dimension of the
subspace T(n). which 1s equivalent to the difterence
petween the dimension of S und the dimension of
the mtersecton of S (ny and Sy Furthermore, s
Jear that the
n ANy g (my+m () together with any ser of inde:
pendent vectors in 87 () constitute o new idependent
vector set.
Then, Theorem 1 can be shown by induction At »

g, 0m) s a

vector set e (i) o iy, e iy

A1, - ). we have that A(M, 1y 0 which deads 1o tha
M, 1) ={0)and that S¢M 1y S M ) Sinee
(M, g =0 forall g.all the column vectors o P

1) are selected in step 2 of the dragoenal anstormation

procedure. From the discussion in the prese s paragraph

we know that each column of POM Dy bowns toone ol
the disjointed sets AS (ny. - 1 A adthese
SRR .uﬁ_ __;,N.:; B IR S

698

columns are independent. Because the dimension of the set
ItM, —1) 15 the difference between the dimensions of
S(M, Dyand S, (M, = 1)1t s clear that the number of
column vectors of P(M, - 1) belonging 10 A5 (M, - 1) 1s
equal to the difference between the dimensions of the
subspaces S(M, -hand S (M, N

Assume the statements in Theorem 1 are true for n = N
we need to show that they are also true for n =N + 1. In
step 1 of the selecuon procedure. we choose PN + 1) =
AN DPCN)f AN DYPAN ) # 00 Assume that the
dimension of the subspace S;(N) 18 equal 10 K. Since
SCN Y 1O s equivalent to the set 3 S (V) there are A
column vectors of PN belonging to S;( V). Therefore,
there are K - K| column vectors of P(N « 1) selected 1n
the step 1 And these A - K| vectors must be independent
because the matrix AN + 1) has rank A - A} and matnix
P(N) has rank K Further. each of these K - K| vectors
selected in step 1 satisfy one of the conditions

DN el A g0 and PN+ N L)y 20

(46)
for ;=120 N, = N Therefore. each of the vectors
selected 1in step 1 belongs 1o one of the sets _\S,( N +1).

~1.2. -0 N, = Nand the number of vectors belonging to
cach set iy equal to the difference between the dimension
of the intersection of the sets §7 (N +1) and S(N +1)
and the dimension of the set S, (N« 1) In the step 2 of
the selection procedure. each column vector selected also
helongs to one of the sets AS(N + 1)y for j=1.2..-- N, -
N. From the discussion at the beginning of this pioof, the
number of column vectors belonging to AS (N +1) is the
difference between and the dimension of § ( NV + 1) and the
dimension of the intersection of §7 (N + Tyand (N + 1),

After reviewing the properties of the column vectors in
both steps of the selection process. we have that the
number of column vectors belonging to AS(N +1) is
equal to the difference between the dimeastons of § (N + 1)
and S, (N +1)for yj=1.2.-- N, - N Further, the new
vectors selected at each stage of step 2. together with the
column vectors of P(N +1) previousty chosen, sull con-
stitute a set of independent vectors. Thus the matrnix
P(N + 1)y a nonsingular matnix: Now we have shown that
the statements in Theorem 1 holds true for the matnix
PN + 1) By anduction, the statementan Theorem 1 s true
for alt n such that M, ~1<ne< ¥

e
Proot for Theorem

By using the result ohtained in Theorem 1. we can find
the  transformation Piny for n- M -1,
M. . Moand these matnices have the properties stated
m Theorem 1 Assume that matrie 40n) has rank K For
Moo« o< N we have that there are A independent col-
umn vectors Pon by such that

madatrices

Pin) 4iniPin 1)=20 t47)
and the rest of the columns sausty that
4n)Pin 1y 0 {4}
- T S - oL <.
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From these two equations. we have that P '(n)A(n)P(n
=Dy =3p}f A Pin-1)y=0 and P '(m)A(n)P(n -
H=0.f A(m)P(n—1)=10. where A[¢] denotes a column
vector having the only nonzero element 1 at 11s 1th posi-
uon. Therefore, the equivalent feedback matnix corre-
sponding to the time-vanant state transformation obtained
in Theorem 1 15 a diagonal matny with the diagonal
elements of the value 0 or 1
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Temperature Response of GaAs in a Rapid Thermal Annealing
System

T. R. Block, C. W. Farley,* and B. G. Streetmon*

Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas, Austin,
Texas 78712

Rapid thermal annealing (RTA) systems are used to
heat semiconductors for short periods of time, usually
seconds. This technique has a variety of applications in
the processing of Si and III-V compound semiconductors
(1). In an RTA system which uses radiant energy to heat
the semiconductors, one might expect to find variations
in the temperature response of materials due to their dif-
ferent absorption properties. An investigation of GaAs
and Si shows that this is indeed the case, and that the
temperature \ariation 1s quite pronounced.

Experimental

The RTA system used in these experiments is similar to
that described by Davies and Kennedy (2), and consists of
a heating chamber containing two elliptically shaped cav-
ities which focus light produced by two 2 kW tungsten
filament quartz lamps onto a sample suspended at the
center of the chamber. A microprocessor controls power
to the lamps with a thermocouple for temperature feed-
back. Samples are suspended on very thin (~250 um
thick) silica slides inside a silica tube which allows an-
nealing in a selected gas ambient.

Semi-insulating (100) GaAs doped with Cr, p-type (100)
GaAs doped with 7 x 10" ¢cm~* Zn, and n-type (100) Si
doped with 4 x 10" P were cut into samples ~8 mm x 8
mm. Holes were etched into the GaAs using a 20% bro-
mine-methanol etch and a mask of CVD deposited SiO,,
and into the Si using a solution of pyrocatechol, ethylene
diamine, and water (3). 200 nm of CVD SiO, containing
7% P was then deposited on each sample. K-type thermo-
couples (0.002 in. diam wire) were glued intc the holes
with a mixture of Aremco no. 516 cement (ZrO) and either
ground GaAs or Si using a procedure similar to that sug-
gested by Cohen et al. (4). Such small thermocouples
were used to insure that the temperature response of the
samples would be little affected by the thermocouples.

Throughout the experiments, the GaAs samples were
either thermally isolated from each other or placed on a
larger piece of silicon to thermally connect them, as
shown in Fig. 1. Temperature feedback to the controller
was provided by the Si sample. These two configurations
were then submitted to a heat cycle consisting of a pre-
heat at 300°C for 30s to stabilize initial conditions, then an
instantaneous change of setpoint to 750°C, a hold at this
temperature for 30s (counted after the sample is within
30°C of 750°C), and then a change of the setpoint back to
zero. The heat cycling was done in a stagnant N, atmo-
sphere.

Results and Discussion

Temperature response curves for the thermally isolated
samples are shown in Fig. 2. Curve (a) is the programmed
setpoint and curve (b) is the thermocouple output of the
Si sample. The Zn doped and semi-insulating GaAs
samples are shown as curve (c¢) and (d), respectively.

Clearly, GaAs couples to the radiant flux differently
than Si, exhibiting a drastically different temperature re-

*Electrochemical Society Active Member

sponse. Comparison of doped vs. semi-insulating GaAs in
Fig. 2 shows the tremendous effect of free carrier concen-
tration on the temperature response, an effect also found
in silicon by Seidel et al. (5). However this is not enough
to explain the data completely. At 750°C the free carrier
concentration of Si is greater than that of the doped
GaAs, yet GaAs is at a higher temperature. This effect
must be due to basic differences in the bulk material
properties, for example direct vs. indirect bandgap, size of

Thermocouple

Silkca

b)

N
g s | [ Yos |
L Ss‘mca 1 J

Fig. 1. Schematic diagrom of somple configuration for (a) thermolly
isolated and (b) thermally connected coses.
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1000 - (b) Si: -

c) GaAsZn — - r
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| I I 1
40 60 80 100
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Fig. 2. Temperature response curve for thermally isolated samples:

{a) temperature setpoint, (b) P doped S, (c) Zn doped GoAs, ond (d)
Cr doped GoAs.
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(a) Setpoint would contain the thermocouple. In such a setup, we ¢
1000 « (b) Si:go - - have observed negligible temperature overshoot and the '
(c) GaAsZn — - temperature difference between GaAs and Si is usually
(d) GaAsCr — — less than 15°C at 750°C. It should be noted that this an- .

nealing arrangement requires good thermal contact of the
800 — ~ sample to the large Si susceptor. We also found the tem-
perature response to be sensitive to gas flow in the sys-
tem. A high flow rate resulted in a GaAs temperature
50°C higher than the temperature of the Si susceptor at
750°C. The source of this pheno.nenon is not clear; the an-
neals were therefore performed in a stagnant atmosphere.
These results point to an important fact: GaAs behaves
quite differently from Si in a rapid thermal annealing sys-
tem. Consequently, the temperature of the GaAs must be
used to control the system. This can be done either di-
rectly, by using a pyrometer looking at the GaAs or indi-
rectly, by having the GaAs in isothermal contact to a sus-
ceptor to which a thermocouple is attached. The latter
method is the less complicated of the two and avoids
problems pyrometers themselves face in a radiant RTA
| | 1 | system (7).

40 60 80 100
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bandgap, optical absorption parameters, and thermal con-
ductivity. Theoretical work by Borisenko et al. (6) pre-
dicts different heating rates for materials with different
emissivities. Another factor may be a shift in the fre- The University of Texas assisted in meeting the publica-
quency distribution of the tungsten lamps’ output at dif- tion costs of this article.

ferent power levels (due to blackbody radiation at differ-
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Results for the thermally connected samples are shown
in Fig. 3. Curves (a) and (b) are again the programmed
setpoint and the Si sample response, (¢) and (d) the Zn
doped and semi-insulating GaAs samples.

When the materials are put in thermal contact, their
temperature behavior becomes similar. The significant
temperature overshoot of setpoint is due to thermal lags
in the control loop from the configuration in Fig. 1b. In
actual anneals, the large piece of Si pictured in Fig. 1b
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Factors Influencing the Photoluminescence Intensity of InP

S. D. Lester,* T. S. Kim, and B. G. Streetman**

Department of Electrical and Computer Engineering. Microelectronics Research Center. The University of Texas.
Austin, Texas 78712

Room temperature photoluminescence (PL) has recently
been used as a tool to assess the quality of InP substrates
during and after various processing steps and the quality of
InPrinsulator interfaces. It has generally been suggested that
high PL intensites reflect high quality bulk material or high
quality interfaces. For example, band edge PL intensity has
been used to assess the effectiveness of annealing treatments for
activating ion-implanted dopantsl and has been used in a
number of studies to monitor ;,)rocessing steps used during the
fabrication of MIS devices.” In the former studies it was
suggested that high PL intensities reflect high quality annealing
{a bulk property) and in the latter studies it was suggested that
the PL intensity of n-type InP yields a reliable estimate of the
interface state density in the upper part of the band gap. In this
communication we discuss factors which influence band-edge
PL intensity and point out that great care must be iaken in
interpreting such data.

Although many factors are involved in determining PL
intensity, three important influencing factors are bulk
parameters (i.e., mobility, lifetimes, doping level, etc.), the
surface recombination velocity (S), and the presence of a space
charge region (electric field) at the surface. The first of these
reflects bulk crystal quality and the second two are determined
by surface properties. The relative influence of these factors in
determining the PL intensity of a given sample is, in general,
very difficult to determine; thus, processing-induced changes in
PL intensity can easily be misinterpreted. We note that PL
intensity changes have been used as a quantitative measure of
GaAs surface properties.™

Although PL has long been recognized as a near-surface
probe of bulk material, surface effects can very strongly
influence the intensity of band-edge luminescence. This surface
sensitivity is dramatic in the case of n-type InP where both
liquid and gas ambients have been shown to have pronounced
effects on PL intensities. In the case of n-InP immersed in
chemical solutions, it has been demonstrated.> and confirmed in
our laboratory, that PL intensities can be changed by three
orders of magnitude. For example, in-situ measurements of
n-InP alternately flushed with DI water and dilute HF show that
the band-edge intensity can be reversibly varied by ~1000x in a
very short time. Apparently, different chemical treatments also
leave the InP surface with varying degrees of "stability” to
subsequent changes in PL intensity caused by exposure to air or
low temperature annealing.”

*Electrochemical Society Student Member
**Electrochemical Socicly Active Mcmber

Another example of surface effects on PL intensity is
the case of InP exposed to various gas ambients. Fig. 1 shows
the band-edge PL intensity of an undoped (n=5x1015cm'3)
sample repeatedly exposed to oxygen and nitrogen. As the
figure shows, the PL intensity is reduced in oxygen, increased
in nitrogen, and can be cycled repeatedly. The size of these
ambient-induced PL changes are influenced by many factors,
including pressure (flowrate), substrate doping concentration
and type, the laser intensity, humidity, and the history of the
sample. _Some of these effects have been reported
previously,7'8 and a more detailed description will be presented
elsewhere.” We also note that GaAs is sensitive to ambient
effects, but to a lesser degree than InP. Like the effects of
chemical solutions, these ambient effects are very substantial
(in certain cases the intensity can be change by >5x) and
illustrate the high surface sensitivity of band edge PL intensity.
The fact that PL intensity is so strongly influenced by these
suriace effects (including interface effects at InP/dielectric
interfaces) indicates that great care must be taken in extracting
bulk information from PL intensity data. We also note that PL
intensities measured at low temperatures (samples immersed in
liquid He) are sensitive to sample surface properties prior to
cooling. To safely compare the PL intensities of a number of
samples it is therefore important to insure that the samples
have nearly identical surfaces.

t
2 ¢ 0
1

PL Intensity

—® S min. wg——
1

Time

Fig. 1. Band-edge PL response of n=5x10'5 cm3 1P 1o
ambient changes.

Another notable feature of Fig. 1 is the gradual
reduction of PL intensity. This slow trend is at least partially
reversible and has previously been attributed to oxidation.” We
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have found that this slow wend is a direct result of the
illumination process and can substantially reduce the PL
intensity under high laser power levels. Therefore, it should be
recognized that the illumination process itself can markedly
alter the surface properties and consequently the PL intensity of
InP, so care should be taken to account for it when taking room
temperature PL data (i.e., samples should receive comparable
amounts of laser excitation prior to the start of the
measurement).

The previous examples have shown that surface
properties have an important influence on PL intensity and need
to be considered if bulk information is to be extracted from PL
intensity data. On the other hand, these surface effects can be
used as a tool for studying InP surfaces and interfaces. If
surface information is to be obtained it is important to
distinguish between the effects of band bending changes and
surface recombination velocity changes on measured PL
intensities. As suggested by Aspnes.10 to do this, it is
extremely helpful to have a second measurement technique
which can give an independent measure of the surface Fermi
level (EFS). Possible techniques for this include Raman or
photoemission spectroscopy or the use of PL with two
excitation wavelengths; however, the simplest example of such
a technique is to measure the resistance of a thin film resistor
which will have a resistivity that is a function of the depth of
the space charge region at the surface.

Figure 2 shows the resistivity of an n-type resistor
structure in oxygen and nitrogen. The structure was made by
implanting Si (10’2 cm™2 @ 150 keV) into a ~3 x § mm
InP:Fe sample and alloying In/Sn ohmic contacts. Figure 2
shows the resistance under illumination and Fig. 2b shows the
resistance in complete darkness. It is clear from these figures
that the resistance of this structure, like the PL intensity, is
reversibly changed with ambient.  Since the resistance
under illumination depends on the surface recombination
velocity, Fig. 2a is not sufficient to indicate wi..ther a change

Fig. 2 Resistivity response of an n-type resistor (a) under
illumination and, (b) in complete darkness.

PHOTOLUMINESCENCE INTENSITY OF InP 2209

1n > or a change in band bending is responsible for the PL
intensity and resistance changes. However, Fig. 2b clearly
indicates that ambient changes result in changes in the surface
Fermi level (depletion depth). This change in EFs and the
depletion depth then results in the PL intensity response
shown in Fig. 1. Such PL intensity variations have
previously been attributed solely to changes in s.” Ourd.1a,
of course, does not exclude a change in S, and in fact S should
be a function of Fermi level position. However, this does
demonstrate that the surface Fermi level is affected by ambient
changes and that changes in Ep; must be considered when
interpreting PL intensity variations.

In summary, room temperature PL can be an extremely
useful technique for investigating bulk and surface properties of
InP. However, since the intensity of the band-edge transition 1s
strongly affected by a number of factors, great care must be
taken in interpreting intensity data. If bulk information is to
be obtained, samples must be prepared with identical surfaces
and if meaningful surface information is sought, a second
measurement should be used to separate the effects of band
bending from the effects of changes in the surface
recombination velocity.
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Experimental observation of adsorbate orbital splitting at single-crystal metal surfaces

Marshall Onellion and J. L. Erskine
Department of Physics, University of Texas, Austn, Texas 8712
(Received 30 May 1985)

Sphitting of the $P, ; component of the photoexcited Xe ion doublet is observed on the (110) planes of
several metal surfaces. This effect is shown to originate from a true ““crystal-field”" effect, not as a conse-

quence of adatom-adatom interactions
screened on

One of the more important parameters associated with
surface phenomena s the local potential. Recent efforts to
more thoroughly understand local surface potentials include
calculations of the orbital splitting of atoms approaching a
metal surface,! studies of dipole moments and polarizabili-
ties of adsorbed atoms® (both ground-state effects), and
analysis of charge transter and screening etfects at metal
surfaces which accompany vanous photon and electron exci-
tation phenomena.”"* One particular focus of work on this
problem has nvolved excitation properties of rare-gas
atoms™™'' on metal surfaces, 1.e.. systems which have well-
defined ground states.

Waclawskr and Herbst® conducted one of the first photo-
emission investugations of 4 rare-gas monolayer on a metal
surface. They reported significant broadening of the SPy;
component of the spin-orbit split Sp level of Xe physisorbed
on WI100), and auributed the broadening to unresolved
splitting resulung from the surface crystal field. This inter-
pretation stimulated several model calculations’® and addi-
uonal expeniments'” aimed at testing the hypothesis of sur-
tace crystal fields in more detail. These calculations. and
subsequent experiments,'®'? which were conducted under
more carefully controlled conditions, have shown that the
broadening of the 3P;. line observed by Waclawski and
Herbst at full monolayer coverages was not due to crystal-
field or image charge effects.”® In this case, the line
broadening resulted trom Xe-Xe interactions as shown by
angle-resolved photoemission determination of the Xe-band
dispersion throughout the surface Brillouin zone and com-
parison with results of simple tight-binding calculations,

More recent experiments by Opila and Gomer'} have
again raised the issue of surface image dipole or crystal-field
effects in relation to the photoemission spectra of phy-
sisorbed rare-gas atoms on meta!l surfaces. In these careful-
ly conducted experiments a very convincing case is present-
ed in support of the existence of a mechanism, unrelated to
adatom-adatom interactions, which splits the 5Py, line of
rare-gas atoms on W(110). This result is in contrast to the
null result obtained by Erskine'® under similar experimental
conditions tor Xe on W100).

We have recently conducted extensive photoemission
studies of physisorbed rare-gas atoms on single crystal NjAl
alloy surfaces!™ to investigate surface stoichiometry and local
work functions as probed by the photoemission of adsorbed
xenon {PAX) techmique ' During this study we observed
sphitting of the SPy;; component of photoexcited Xe atoms
on the NIALTTO) surface, but not on the (100) surface of
the same ordered alloy. The spliting was observed using
experimental conditons under which Xe-Xe interactions are

33

By R R

Pl ORI .« S .

-‘,4-"5 5,"...’:"4_ ‘q'fl.' ._'-.\'.._ .
ot hi

The splitting therefore provides a probe of local fields av the

negligible (i.e.. low coverages), leading to the conclusion
that the splitting is similar in nature to that reported by Opi-
la and Gomer. We have conducted additional experiments
on Ni(110) and Ni(100) surfaces which yieid the same
result, i.e., that the lower-symmetry surface produces split-
ting of the 5Py, line. The purpose of the present Brief Re-
port is to present these results which suggest that splitting
of the J——-%r component of photoexcited Xe atoms phy-
sisorbed at low coverage on (110) surfaces results from the
lower coordination symmetry of the adsorption site.

Experiments reported here were conducted using an
Auger-photoelectron  spectrometer'® equipped with low-
energy electron diffraction (LEED) optics and a cold stage
manipulator capable of sample temperatures ranging from
1200 to below 30 K. The 4-in-diamx ¢ -in.-thick
NiAlI(110) samples were aligned to +1° using x-ray Laue
techniques, and spark cut and mechanically polished using
alumina powder to 0.05-um grit. /n situ cleaning using Ne
ion sputtering (500 eV. 10 gA/cm?) and annealing to
800°C yielded clean, well-ordered surfaces. Auger analysis
of the clean surfaces, our work'* in which work-function
changes were studied. and chemisorption experiments'® in-
volving CO indicate that the well-annealed NiAl(110) sur-
faces exhibit a stoichiometry (ratio of Ni to Al) equal to the
bulk value (i.e.. 1 10 1). Recent LEED studies of this sur-
face suggest a reconstruction involving atomic rippling.'”
which consists of small displacement of the surface atoms
(~0.08 A) perpendicular to the surface. Extensive angle-
resolved photoemission studies'® of the NiAl(110) surface
using synchrotron radiation have yielded bulk band struc-
ture in good agreement with calculations. These experi-
ments constitute  additional  characterization of the
NiAl(110) surface.

Our interpretation of the splitting of the 5P peak in
terms of local-substrate-related fields rather than adsorbate-
adsorbate coupling relies on accurate knowledge of the sur-
face conditions, including substrate order and composition.
which was just discussed, as well as adatom coverage and
spatial distributions. Adatom concentration was accurately
calibrated at integral monolayer coverages by analysis of
multipeak spectra resulting from  layer-dependent NOO
Auger energy shifts.!"” and checked using SP valence level
shifts observed in photoemission spectra.  Uniform Xe
layers of n=1. 2. and 3 monolayers could be obtained by
adsorption followed by carefully monitored annealing. Sub-
monolayer coverages were determined from work-function
changes. which are roughly linear in the U-0.5-ML range,
and from the intensity of the angle-integrated photoemis-
sion peaks relatnve 1o the NiAl « bands measured in the
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same configuration used in calibration experiments. Sample
temperatures during and after adsorption were maintained
below 40 K to ensure low surface mobility of the adsorbed
rare gases. No evidence of island or cluster formation of Xe
atoms was observed in photoemission (i.e., k, dispersion of
peaks) or by LEED analysis at these temperatures. Weak
halos having sixfold symmetry were observed in LEED
studies of low coverage Xe films only after annealing to
~ 100 K, indicating that temperatures in this range are re-
quired to induce island formation.

Figure 1 displays angle-resolved electron energy distribu-
tion curves (EDC’s) for various coverages of physisorbed
Xe on NiAl(110) at T~ 30 K. Various features'® of the
d bands of NiAl along the A direction of the three-
dimensional Brillouin zone are apparent in the energy range
within 5 eV of the Fermi energy, Er. Submonolayer Xe
spectra exhibit two primary peaks corresponding to the
5Py, 5Py, states of the ion. Spectra for coverages greater
than one monolayer exhibit two additional peaks which in-
crease in strength with coverage. These are the second
layer peaks, which are shifted to higher binding energy due
to less effective screening of the ion (relaxation shifts), and
which werz used in thickness calibration.

Close inspection of the 5Py;-derived peaks corresponding
to low coverage reveals that it is not symmetric as is the
5Py, peak at equal coverage. Figure 2 illustrates, on an ex-
panded scale, the two peaks for equal coverages of Xe on
NiAl(110) and on NiAl(100). One does not expect to be
able to resolve the actual crystal-field splitting of the Py,
level because the intrinsic broadening of the lines due to re-
laxation mechanisms related to the presence of the metal
surface is approximately equal to the splitting. The inset of
Fig. 2 compares results of curve fitting the two EDC's using
three Gaussian functions, assuming that the 5Py, com-

Xe / NiAl(l10)

T~ 30 K
hy=2122eV

7]
=
Z
o
o COVERAGE
@ (MONOLAYERS)
>
L
(%]
2
w
-
Z
o710
053
CLEAN—=" N\ / /\-\9&
030
‘A 020
00
i 1 Y
- 10 5 0:E¢

ELEC TRON BINDING ENERGY (eV)

FIG. 1. Angle-resolved photoemission spectra for Xe adsorbed
on NiAl(110) as a function of Xe coverage.

Y

ORI
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poncnt in each case is composed of two Gaussians having
the same width as the 5Py; component. This analysis
shows that splitting of the 5Py, line is approximately 0.35
eV.

There are no detectable shifts in peak positions as a func-
tion of Xe coverage at low coverages. This coverage in-
dependence suggests that splitting of the 5Py line results
from coupling between the screened ion and the substrate
rather than with neighboring Xe atoms. The annealing ex-
periments which established the temperature at which is-
lands did form also eliminated the possibility that the in-
dependence of binding energy with coverage resulted from
islands or clusters of constant density at all coverage.

We have carried out corresponding experiments involving
low coverage Xe layers on Ni(100) and Ni(110). These ex-
periments yield a similar splitting of the 5P, peak for Xe
on the Ni(110) surface but not on the Ni(100) surface.
Close inspection of experimental results of Jacobi and
Rotermund,'® which were obtained under similar experi-
mental conditions, aiso reveals a split 5P;; level for low
coverages of Xe on Ni(110), in agreement with our results.
Our previous search for crystal-field splitting on the W(100)
surface revealed no splitting of the SPy, level,'® but photo-
emission studies of Xe of Opila and Gomer on the W(110)
surface exhibit splitting of this level.!” Based on these ex-
perimental data.” it appears that the splitting of the 5Py,
state could be related to the reduced symmetry of the ad-
sorption site on the (110) surfaces.

To validate this possibility, one must be convinced that
the (110) and the (100) faces of W, Ni, and 8-NiAl can and
probably do yield qualitatively different local environments

1 1 T
P
172 372
Xe / NiAl NIAI(IOO) i
T~30 K s 4
hy=2122eY a0 _J_)J_
RN SR W S
— 10 -75 5
7 ,
4 \\ /\ N ENERGY (eV)
5 /L
g:j \\‘ : :
< A \
>\ AT
i
é \\\/ AN Xe /NiAl (100)
. ~
4 N o e
A\
‘\\ : ‘\
CLEAN —= !
\\ \ xe / NiAl (11Q)
\
~ Y pZ
M\‘\\;%_}_/
1 1 L
-10 -75 -5 EXs

ELECTRON BINDING ENERGY (V)

FIG. 2. Expanded scale of angle-resolved photoemission spectra
for Xe adsorbed on NiAl(110) and NiAI(100) surfaces. Inset, line
intensities as determined by Gaussian fitting of the data. Values of
the splitting are Xe on NiAl(110), A=1.221004 eV, A'=0.37 £04

Qmv
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TABLE 1. Polar-angle dependence of 5Py;; and 5Py, linewidths of photoemission spectra for Xe adsorbed
on NjAl(110). Photon energy hv =21.22 eV, sample temperature 7~ 30 K. Angle is measured from the
sample normal along the [110) direction, center and width energies are in eV Angular resolution

. +4°.

]
«

5Py 5Py, ~

Polar Center Width Center Width "

angle (below €f) (below €;) .

0° 7.05 0.54 583 075 [ )

10° 7.05 0.53 583 070

20° 7.05 0.52 5.83 0.67 _
30° 7.05 0.50 5.83 0.63 .: \

40° 7.05 0.50 5.83 0.63 .
3

[ ]

for adsorbed Xe. For physisorbed atoms, at low coverage, field split level witl be different. -~

the preferred site will most likely be the deepest hollow sites Table 1 illustrates the experimentally determined polar an- -
in a surface unit cell. For bcc W(100), Xe should physisorb gle dependence of the SPy,;, 5Py, linewidths for Xe on 4
at the C,, fourfold hollow site; for W(110) the correspond- NiAl(110). The intrinsic broadening is 100 large to clearly :—

ing site has C,, symmetry. In the case of fcc Ni, again, the resolve the SPy; state splitting (as shown in Fig. 2). How- .‘.:

preferred surface site on the (100) face will have C4, sym- ever, two features are clear from our polar-angle-variation

metry, and C,, symmetry on the (110) face. The crystal data. First, the binding energies of the 5P, and 5Py, -

structure of B-NiAl is the CaF, (cubic) structure. Here states are independent of polar angle, confirming that lateral .

again, the (100) surface offers only C,, sites, whereas the interactions (which would produce band dispersion)} are not :

(110) surface offers C,, sites. Qualitatively, the argument present. Second. the 5Py, linewidth is nearly constant, o

of a symmetry based origin of the splitting appears valid. whereas the 5Py, linewidth changes significantly, as would j:

Herbst® has investigated theoretically the angular depen- be expected if the intensity ratio of the component lines S

dence of photoelectrons from atoms adsorbed on metal sur- changed. This constitutes additional evidence of a local

faces, taking into account the effects of the substrate atoms. crystal-field origin of the splitting. -

Although none of the specific results obtained by Herbst ap- -

ply directly to Xe adsorbed in the C,, site on NiAl, one of o

the general characteristics of the model should apply. This This work was supported by the National Science Founda- -

characteristic is that the polar-angle variation of photoelec- tion, Grant No. DMR-83-04368, and by the Joint Services .:

tron emission associated with component lines of a crystal- Electronics Program. >
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Results of a combined experimental-theoretical study of the electronic structures and properties of epitax-
ial Fe on Cu(100) are reported. Angle-resolved photoelectron spectroscopy is used to determine the elec-
tronic structure of one, two, and four layers of epitaxial Fe on Cu(100). The experimentally determined
two-dimensional energy bands of p(1x1)Fe monolayers and bilayers verify predictions of local spin-density
full-potential linearized augmented plane-wave calculations. Changes in electronic properties with coverage
and the evolution of the bulk electronic structure of the substrate-stabilized fcc iron are described.

Advances in (i) novel sample preparation techniques, in
particular epitaxial growth of layered structures, and (ii) in
local spin-density electronic-structure theory of surfaces and
interfaces are stimulating new interest and excitement in the
field of thin-film magnetism. Taken together, they offer
unique opportunities for developing new magnetic materials'
as well as advancing our understanding of fundamental
magnetic interactions in solids.? The opportunities for ad-
vancing our fundamental understanding of magnetic phe-
nomena are particularly attractive in the subfield of solid-
state physics in which carefully characterized materials of
known structure are experimentally studied and the results
coordinated with first-principles calculations.

In a recent publication’ we reported experimental results
for epitaxial p(1x1)Ni films on Cu(100). This study
presented some of the first detailed experimental evidence
showing that high-quality epitaxial magnetic films could be
grown on metallic single-crystal surfaces.* and that the two-
dimensional electronic structure and magnetic exchange
sphtting of these films could be determined with sufficient
accuracy to provide meaningful tests of the predictions of
first-principles caiculations.’

The present Rapid Communication continues to expiore
the prospects of advancing our understanding of two-di-
mensional magnetic structures based on the interplay
between ab initio first-principles calculations and photoemis-
sion studies of novel thin-film structures fabricated by
molecular-beam epitaxy. Qur experimental results confirm
the predictions of the computational studies,’ and indicate
that the p{1x1)Fe on Cu(100) system is a second suitabie
candidate for detailed experiments in which electronic and
magnetic properties can be probed by the rapidly increasing
number of surface and spin sensitive spectroscopic tech-
niques.®

Our experiments were performed at the Synchrotron Ra-
diation Facility in Stoughton, Wisconsin. The 1-m stain-
less-steel Seya-Namioka monochrometer was used to
dispense radiation from the Tantalus storage ring, and an

< _".."_ _:‘ v""ﬂl‘ff’\v"

.' ‘... ‘ 'Q"' "Q...!. .. L) J.‘A

angle-resolving photoelectron spectrometer, described previ-
ously,>’ was used to prepare the epitaxial crystals and to ob-
tain the photoelectron spectra. Our sample preparation
techniques and surface characterization methods were also
identical to those described previously.’

The theoretical electronic structures were determined
from local spin-density functional theory by means of the
highly precise all-electron full-potential linearized augment-
ed plane-wave (FLAPW) method.® The surfaces are mod-
eled by a single-slab geometry with Fe layer(s) atop a five-
layer Cu(001) substrate: The stacking has atoms in the
fourfold holiow site of adjacent atomic planes. The Fe-Cu
interlayer spacing was determined from total energy calcula-
tions. We find that Fe forms an ordered overlayer on
Cu(001) with an Fe-Cu interlayer spacing which is very
close (within 0.05 A} to that of the substrate. This result is
confirmed by low-energy electron-diffraction (LEED) stud-
ies described later. For the case of two monolayers
p(1x1)Fe/Cu(001), the problem is complicated by the
magnetic coupling between the Fe layers. The magnetic
ground state was therefore determined from a comparison
of spin-polarization energy between various magnetic states.
The ferromagnetic coupled bilayers are found to have the
lowest total energy, whereas the antiferromagnetic coupling
between the Fe layers exists as a metastable state with a to-
tal energy 0.2 eV above the ferromagnetic state.

Despite the presence of the nonmagnetic Cu substrate,
strongly enhanced magnetic moments localized at the Fe
site are found from these calculations: (1) 2.85us for 1
Fe/Cu(001); and (2) 2.83u g and 2.58u g for the surface and
interface Fe layers, respectively, for the two monolayer cov-
erage. The Fe-derived localized interface states and the nar-
rowing of the d band appears to be the mechanism driving
the enhancement of the magnetic moments over the value
(2.12u ) in bulk Fe.

Previous experimental work® has established that the ex-
cellent bulk lattice constant match permits pseudomorphic
growth of fcc Fe on Cu(001). Evidence for pseudomorphic
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growth is based on transmission electron microscopy studies
of 1000 A Fe films grown on Cu(100) films in high vacuum
(10-7 torr). Unlike the Ni on Cu(100) system, which we
previously studied,’ apparently, no structure studies of
1-5-monolayer films grown on well-characterized substrate
surfaces in 10~ '%-torr vacuum are currently available for the
Fe on Cu(100) system. Therefore, we have conducted an
extensive investigation of the growth properties and struc-
ture of thin Fe layers on Cu(100) surfaces. Our LEED and
Auger analysis of this system are reported elsewhere.!® The
important results of this work relevant to the present paper
are (1) p(1x1)Fe grows on Cu(100) as an extension of
the substrate with identical ( £0.1 A) lattice constant, (2)
thicker films (up to 4 layers) appear to form excellent epi-
taxial layers of fcc iron stabilized by the Cu(100) substrate
and having a lattice constant equal to the substrate, (3) in-
terdiffusion on Fe and Cu at the interface is not apparent
for substrate temperatures below 250°C, and (4) the epitax-
ial growth appears to be dominated by a layer-by-layer
mechanism at substrate temperatures of 150°C.

Figure 1 displays representative angle-resolved photoemis-
sion spectra for one and two monolayers of p(1x1)Fe on
Cu(100) along the T'-X direction of the two-dimensional
Brillouin zone. Ali of our energy distribution curves

T T T Y

p(iX1) LAYER
Fe/Cu (100)

. ODD SYMMETRY
T -X DIRECTION: :
hy = 21228V |
----- | LAYER

—— 2 LAYERS ;"

1

k, =100 A-'

INTENSITY (ARB. UNITS)

n

7 6 5 -4 3 2 4 &
BINDING ENERGY (eV)

FIG. 1. Angle-resolved photoemission spectra for one- and two-
layer p(1x1)Fe films on Cu(100). Values of k, correspond to the
I'-X direction of the two-dimensional Brillouin zone.

(EDC’s) for epitaxial layers were taken using s-polarized
light with the 4 vector along a symmetry axis of the crystal
and with the emitted electrons detected either in that mirror
plane (even symmetry) or perpendicular to it (odd sym-
metry). All spectra were taken at room temperature (300
K) at an energy resolution {monochromator plus analyzer)
of approximately 100 meV. Approximately 200 spectra for
one- and two-monolayer Fe films on Cq_(lQO) were taken in
even and odd geometry for &k, along I'-X and I'-M direc-
tions of the two-dimensional Brillouin zone. Several photon
energies were used. Except for some minor variations of
binding energies with film thickness (discussed below),
spectra corresponding to a given symmetry and k, value
were consistent.

Figure 2 presents the two-dimensional electronic structure
of one- and two-layer films obtained from our photoemis-
sion data. Solid lines and dashed lines in Fig. 2 represent
calculated® majority spin and minority spin bands for a
p(1x1)Fe film on a five-layer Cu(100) slab which have
over 50% of their wave function derived from Fe basis
functions. These are the specific two-dimensional energy
bands to which our experiments should be most sensitive.

p (IX1) MONOLAYER Fe/Cu(100)
EVEN SYMMETRY

M T X
& A A i " i s y) e " J
50 100 Q50 O Q50 100
E, .y
050
100 } sp BAND
he =16 85 eV
150
hy = 21 228V —
2.00 ¢}
ODD SYMMETRY
M T X
150 100 050 O 050 100
E, T a
050 W
~ [.] 0
100
150 }
2.00
CALCULATED
2ML IML hy ML 2ML
° . 16 8% oV MAJORITY —o—
a [ ] 2122V ~-=-= MINORITY «.0-.

FIG. 2. Two-dimensional electronic structure of p(1x1)Fe on
Cu(100). The two broad curves indicate the regions of binding en-
ergy and k, where a prominent structure resulting from the Cu sp
band is observed. Light solid and dashed curves represent caiculat-
ed (Ref S) surface Fe bands having over 50% surface character.
Data are represented by empty (two-monolayer films) and solid
(one-monolayer films) circles (hv=1685 eV) and rectangles
(hv=21.11 eV).

R U S T S S
@« . "e"'a DR S ST B
. S, . S L e




:"“ 7324
N
i
‘;r The broad shaded areas in the even symmetry bands
o represent regions of k, where prominent features associated
r with the Cu sp band sweep through the angle-resolved
N : energy-distribution curves (EDC's) near Er. These struc-
-y tures were identified by k, scans on clean Cu(100) sur-
.‘:w faces; their presence precludes the study of even symmetry
" Fe bands in several regions of the two-dimensional Brillouin
A zone at specific photon energies. Interference of the sp

X band in studies of p{1x1)Ni on Cu(100) (Ref. 3) and on
Ag(100) (Ref. 11) is less of a problem because the over-
layer Ni d-band features are much narrower than cofre-

‘.

-.‘; sponding Fe features, and are therefore more easily dis-
s tinguished from the sp-band features.
?';': Some results of the theoretical studies are shown in Fig.
N 2. It is clear from the comparison that the calculations are
1] in reasonably good agreement with the results shown in Fig.
% 2 in the regions of the two-dimensional Brillouin zone effec-
. tively probed by our experiments. Based on the calcula-
::-, tions, the most prominent features observed in even sym-
- metry geometry in the vicinity of Ef should be minority
<. spin bands. Clearly, spin-polarized photoemission studies of
o this system will be informative. Our experimental results
[ ) around [, where Fe-derived features are not masked by the
X _'.f. Cu sp band, support the number of bands and their binding
- energies predicted by the calculations. Odd symmetry bands
'}',-' observed along T"-X also appear to agree rather well with the
.:-: calculated results, although there are significant differences
::‘, (0.25 eV) between measured and calculated binding ener-

gies. In general, we find that the measured bands lie closer
to the Fermi energy than the calculations predict for the
majority and minority spin bands. This result could imply
that the magnetic exchange splitting is actually smaller than
predicted theoretically, or could be a manifestation of the
importance of many-body effects (i.e., core-hole relaxation
and correlation). Our previous experimental studies of the
bulk” and surface'? electronic properties of ferromagnetic Fe
have shown, however, that correlation effects appear to be

o A, e o

’.l'.‘l_}l.-'ll"l" [N

< ik

»

o

[~ > small, we therefore assume that these effects are also of

minor importance in the Fe overlayer system.

: One source of the discrepancy between the experiments
‘ and the theoretical results could be due to the fact that our
“ measurements were conducted at 300 K. and our calcula-
_‘ tions correspond to T=0 K. We have not yet attempted
'_’ any low-temperature experiments or experiments above
ff-' T=2300 K to detect possible temperature dependences in
’ the results. A second possible source of disagreement
) between our experimental results and the calculations are

. ~ some subtle layer dependencies we have observed in elec-

." tronic properties of the Fe layers. Our LEED studies re-

L~ vealed two domain (2x1) LEED patterns in the coverage

v range between 0.5 and 1.0 monoiayers.!” These structures

f were not observed above full monolayer coverage, but their

- presence at low coverage suggests a competition between

the substrate stabilized fcc structure and the possible ten-

N dency for Fe to form some other structure, in particular the

normal bce structure of bulk Fe. Displacement of iron

B, atoms too small to detect by our LEED measurements is

;.'-: not inconceivable, and such displacements would cause sig-
o nificant changes in the electronic properties, particularly in
,':' the T -M portion of the two-dimensional Brillouin zone. As

b, noted in detail elsewhere.'” while we have climinated film
3 growth models that assume the second layer begins before
o the first layer is more than 85% complete, we cannot
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discriminate between film growth in which islands of the
second layer begin to nucleate when there is less than 15%
of the first layer remaining to be completed.

The calculated bands for two layers of Fe and Cu(001)
are modified from those of the monolayer coverage. The
overall Fe surface layer derived features and dispersions
remain similar to those shown plotted in Fig. 1. However,
the localization of the surface state wave functions on the
surface Fe layer becomes less pronounced due to the hy-
bridization between surface and subsurface Fe layers. This
change of bonding also manifests itself in a reduced upward
dispersion of odd symmetry bands (dominated by d,, and d,,
character) along the T -M direction (cf. Fig. 2). Furlher-
more, the calculation predicts the existence of additional
majority spin bands having a strong admixture of wave
functions localized on the subsurface Fe layer. in particular,
odd symmetry bands with binding energy =2 eV along r-
X, and an upward dispersion band along T'-M (not shown in
Fig. 2). Interference from the Cu sp band precludes observ-
ing the new even symmetry band for two monolayers, and
the broad peak widths associated with the Fe overlayers
renders it very difficult to differentiate smail differences in
spectra for one- or two-monolayers. Since the size of the

T T

FOUR LAYERS
fece Fe/Cu(i00)
NORMAL EMISSION

INTENSITY (ARB. UNITS)

o " " n -

T -6 -5 -4 -3 -2 - €
BINDING ENERGY (eV)

FIG. 3. Normal emission photoemission spectra for four-layer fcc
Fe films stabilized on the Cu(100) surface. Peaks ncar £, resuit
from the Fe film and exhibit clear evidence of direct bulk interband
transitions.
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magnetic moments for the surface Fe layers remains almost
identical for one- or two-monolayer coverage, the exchange
splitting (AE,., ) is expected 10 be the same for both cases
(AE.,,=2652005eV).

Figure 3 displays normal emission spectra for four layers
of Fe on Cu(100). Our LEED analysis'® has shown that
high-quality fcc films of epitaxial Fe form at this coverage.
Features in the spectra near £; are definitely due to emis-
sion from the Fe overlayer. This assignment was checked
by obtaining corresponding spectra for clean Cu(100).
Peaks near Ef exhibit clear dispersion with photon energy
\k,;), indicating strong influence of direct bulk transitions.
Dipole selection rules limit the symmetry of initial states
probed in normal emission to A, and A, symmetry. The
dispersion of the peaks near Er with k| is consistent with
the calculated bulk bands'’ of fcc Fe along the [*-X direction
of the three-dimensional Brillouin zone. It is therefore pos-
sible to carry out detailed energy band measurements of the
bulk band structure of the fcc phase of ferromagnetic iron
stabilized on Cu(100)."

In summary. our results have identified a second thin-
film magnctic system in which considerable success has
been achieved in the synthesis of the film, in its character-
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ization, and in obtaining accurate electronic structure infor-
mation. The p(1x1) Fe on Cu(100) appears to represent
an additional excellent model system in which to explore the
relationship between magnetism and electronic structure
from the point of view of thin-film magnetism (two-
dimensional magnetism), and the magnetism of a new arufi-
cially stabilized bulk phase (fcc Fe).
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Laser-induced damage and ion emission of GaAs at 1.06 um

Austin L. Huang, Michael F. Becker, and Rodger M. Walser

This study fuocused on the multipulse laser damage and the subdamage threshold ion emission of GaAs. The
initial goals were to determine the pulse-dependent damage threshold and to correlate ion emission with
surface damage. A @-switched Nd:YAG laser was used to irradiate the (100) GaAs samples. Using values of
N from 1 to 100, we obtained accumulation curves based on 50% damage probability. Corresponding damage

threshold fluences were 0.4-0.8 J/cm? for N > 1 and 1.5 J/cm? for N = 1.

We observed large site-to-site

fluctuations in ion emission and found the onset of emission at 0.2 J/cm? for all cases. Once surface damage
occurred, ion emission increased greatly. The observed behavior supports a surface cleaning model for the
ion emission which precedes surface damage. Measurements of linear and nonlinear free carrier absorption
were made, but no anomalous absorption was observed.

I. Introduction

The interaction between laser radiation and solids
has been a perplexing problem for many years. Often
the lifetime of an optical device is determined by its
susceptibility to optical damage. For example, it is
still a significant problem that the performance of
GaAs injection lasers degrades at different rates with
respect to power level thus implying an accumulation
effect.! There has been much controversy and unex-
plained phenomena associated with the energy trans-
fer mechanism of normal laser damage as well as the
physical nature of surface damage.

The objectives of the experiments reported here
were to characterize the statistical nature of surface
damage for GaAs, particularly for multiple pulses on
one site (N-on-1), to observe the relationship of
charged particle emission to surface darage, and to
observe the damage morphology of GaAs. Insilicon it
has been reported that charged particle emission is
coincident with surface damage.? A relation between
charged particle emission and surface damage has yet
to be reported for GaAs. To explore the statistical
nature of surface damage of GaAs, we performed vari-
ous single-shot and N-on-1 subthreshold laser tests.
We measured the positive charged particles emitted
during each laser pulse to correlate the charge emission
events with surface damage. Theoretical calculations
for a thermal model, as well as a plasma production
model, have been carried out to determine the mecha-
nism responsible for the surface damage.
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H. Samples and Apparatus

The GaAs samples used in the experiment were sup-
plied by the microwave integrated circuit production
group at Texas Instruments in Dallas, TX. The sam-
ples had a (100) orientation and were very lightly
doped with chromium (=1 X 10'® cm~3) but otherwise
undoped and unannealed. These samples were char-
acterized by a resistivity of >1 X 10" 2-cm and an etch
pit density of 40-60 X 10° cm~2. Only the front face of
the wafer was polished to optical quality.

To prepare the sample for the vacuum tank we se-
quentially cleaned the GaAs wafers in boiling solvents
of trichlorethylene, acetone, and methanol to assure
that all contaminants had been removed. While in
each solvent, the wafer was ultrasonically cleaned be-
fore proceeding. After the final cleaning in methanol,
the wafer was rinsed in deionized water (>5 min at
room temperature) and placed into the vacuum tank.

To measure the linear and nonlinear absorption in
the transmission tests, the GaAs wafers were given an
optical quality finish on both sides. The backside of
the wafer was mechanically polished in a two-step
process. Rough polishing with a grinding pad and 6-
um diamond ferrous paste was used to initially buff the
wafer. The finishing pad used a liquid 0.05-um alumi-
na nonferrous suspension as a grinding media. After
polishing, the wafer was chemically cleaned as de-
scribed above.

The experimental system is shown schematically in
Fig. 1. It utilized a Q-switched Nd:YAG laser with a
full width at half-maximum (FWHM) pulse length of
45 ns, TEM, transverse mode, and wavelength of
1.064 um. Although the pulse envelope was Gaussain,
the laser was not single longitudinal mode. A knife-
edge scanning technique was used to measure the fo-
cused spot diameter on the sample surface, which was
found to be 580 um. The laser energy fluctuated from
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pulse to pulse resulting in a 2-5% standard deviation in
energy tor each data run. The laser was operated at a
15-Hz repetition rate, and the incident energy was
attenuated by rotating a halfwave plate in front of a
polarizer.

A computer was utilized to control and count the
laser pulses striking the GaAs sample and to record the
charge collected. The computer had a Z80 micro-
processor and supported several data acquisition ports
via sample and hold amplifiers and a multichannel A-
D converter. The delay for the sample and hold am-
plifiers was set to 130 us in hardware. This assured
that the integrated values read for the charge emission
were near the peak value but were collected well after
the laser noise burst. The electronics were triggered
by a vacuum photodiode. A shutter, controlled by one
of the computer’s digital output ports, was used to
select pulses for sample irradiation. To allow time for
data computation and storage betwee pulses, the shut-
ter selected every third pulse from the laser train.

A 760-mm focal length lens focused the beam onto
the sample. The long focal length gave a region of
constant spot size ~3 mm deep at the focal plane and
permitted greater error in the placement of the sample.
A system of 90° prisms was placed after the lens toscan
the beam across the sample in the vacuum tank.

To detect charged particle emission the sample and
detection device were placed into the vacuum environ-
ment. The system was dry pumped to achieve experi-
mental pressures of <1 X 10~¢ Torr. A Hamamatsu
electron multiplier tube model R596 served as the ion
detector and was placed inside the vacuum system at a
36° angle to the laser beam path. The sample surface
was normal to the optical path. The output of the
electron multiplier was connected to a capacitive volt-
age divider and amplifier. The dynamic range of the
data acquisition system was increased by making one
channel 100X less sensitive than the other. The elec-
tron multiplier current gain was estimated to be ~0.75

AR - PO
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O-Switched Na YAG Laser
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Experimental setup.

X 108 at a voltage of —2 kV at the first dynode. A data
value of 1000 in the more sensitive A-D converter
channel corresponded to a charge of ~1.5 X 1017 C.
This —2-kV bias potential not only determined the
gain of the electron multiplier, but it created an attrac-
tive potential sufficient to collect all emitted positive
ions.

M. Experimental Data

Three experiments were conducted on the cleaned
samples: (1) an emission scan of the GaAs sample at a
fixed laser fluence; (2) an N-on-1 emission/damage
threshold test; and (3) a transmission test. All the
tests were performed in vacuum with the exception of
the transmission test. The calibration and beam pro-
files were checked at the start and end of each experi-
mental session to assure accurate beam fluence mea-
surements.

The emission scan of the GaAs sample checked the
uniformity of charge emission under constant laser
fluence. The scan spots were separated by 0.8 mm,
and forty-two samples were taken. The sample was
irradiated with a constant fluence of 0.63 J/cm? (+ 7%).
The results in Fig. 2 show a bilevel emission contour.
A different pattern of emission variations was ob-
served on each sample. Site-to-site fluctuations of the
defect density in GaAs have been previously noted?
and could disrupt the statistics of charged particle
emission and the emission threshold. To minimize
the effects of these site-to-site variations, we conduct-
ed the emission/damage tests over a small area of the
wafer.

Other experiments were concerned with the multi-
pulse and single-pulse irradiance of GaAs. Inthe mul-
tipulse experiments, fluences below the single-pulse
damage threshold were used to search for accumula-
tion effects associated with either emission or damage.
The objectives of these experiments were (1) to identi-
fy accumulation effects associated with surface dam-
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age, (2) to measure a damage threshold based on 50%
probability statistics, (3) to search for correlations be-
tween surface damage and charged particle emission,
and (4) to determine the damage morphology as a
function of fluence and number of pulses.

For each value of the number of pulses N used (N =
1, 3, 10, 30, and 100) we irradiated 150 to 200 different
sites to obtain the statistics of surface damage. Sur-
face damage was identified by searching for surface
changes with a Normarski optical microscope at 200X.
The damage data for N = 1, 10, and 100 are plotted in
Figs. 3-5, respectively. In each plot we used a linear
curve fitting program to obtain the damage probabili-
ty. From the linear fit we obtained the 50% probabili-
ty fluence for each value of N and used this value in the
accumulation plot in Fig. 6.

For all values of N, we observed the onset of charged
particle emission at an average fluence of 0.2 J/cm?
(£0.07 J/cm?). The values for the onset of emission
and the 50% damage threshold are given in Table I.
From these damage fluence values and their plot in
Fig. 6, it is apparent that an accumulation effect was
present in that the threshold decreased after the first

3866 APPLIED OPTICS / Vol. 25, No. 21 / 1 November 1986

-"n" '

'1

$ 'FJ“

1
0.9 4
0.8
]
& o7 4
] e
H
a8 087 )
- ° v
° n ),
5 08 o
2 04 .
2 [ ] [ ]
S o03-
[ ]
o
0.2 [ ] [ ]
o ® Damage
0.1+ & Emission
: . =Fit to
-—a & Dnmuge Data
] 8T T
[} 02 04 o068 08 1 1.2 1.4 1 6 1.8

Fluerce (J/cm?)
Fig. 3. Damage and emission probabilities vs fluence for N = 1.

- 7 L 2
0.9+
./
0.8 /
[
o 074
: .
'g 0.6
5 o5 .
-3 /
= /
o 044 /
L3
S
& 0.3 K
[ ]
0.24 s
® Damage
0.14 @ Emission
=Fit to
-~ Oamage Dats
[} 0 T

o oAz 04 068 08 1 12 14 18 18
Fivence (J/cm?2)
Fig. 5. Damage and emission probabilities vs fluence for N = 100.

1004

304

10

Number of Puises

34

1 T T Y T T T T

0.0 02 0.4 X} 0.8 1.0 1.2 1.4 1.6

FLUENCE (J/cm2)

Fig. 6. Number of pulses required to reach 50% damage probability
vs fluence. The line was hand drawn to aid the viewer.

ST AT R N

%ﬁ:‘fm\{ R



e " : ~
w
B
k- Table . Onset of Charge Emission and 50% Damage Threshold F)
R -_:'-, for N-on-1 Experiments
L% N
‘X Charged particle
K. s N emission onset 50% Damage
el pulses fluence (.J/cm?) fluence (J/cm?)
L) —~
7 :l; 8.18 1.52 & g
. 15 0.78 2 -
oY 10 0.17 0.64 v
30 0.32 0.79 g
o 100 0.17 0.68 Ez
I‘_:.
R
! ' pulse. As the number of laser pulses incident on the
- wafer increased, the 50% damage fluence decreased
N and then leveled off. It is not clear from this scattered oy
L data whether the decrease continues slowly for N > 1 A
2 orthe curveislevel. Scatterin the thresholddataand = _ o
K the related observation of low slopes in the damage [ /& Pl be ot o e tor = 30 at an
o probability vs fluence curves have been associated b
3 with the presence of the local defects.* This possibili-
e ty will be correlated with damage mcrphology in a later
_’,'-.‘ section. Similar curves to the one shown in Fig. 6, but
- showing a monotonic decrease in threshold, have been
ol reported for metals,®> polymethylmethacrylate, and
XS modified polymethylmethacrylate.® The single-shot
0 50% damage fluence for GaAs is in agreement with
@ values previously measured.”*
A8 The positive charged particle emission data were
A collected on a pulse-by-pulse basis. A typical profile
< for N = 30 isshown in Fig. 7. The site from which this
A emission profile was obtained was damaged. From
b these data we note that the first few pulses (from two
P up to ten depending on the case) induced a charge
: emission that decreased as the pulse number in-
; a:‘_ creased. After this, the emission increased greatly.
" Since the microscopy and determination of damage
4 :,-'_“- were done after termination of the experiment, we
.:j.' were unable to fix accurately the pulse number at
v 2 - S
, rhichdamas waeiined, Voulohen DI s b b bt
0 damage initiation. We interpret the decrease in the
[+ first few pulses as a surface cleaning effect. These first
’_',.:_ pulses cleaned any residue either left from the chemi-
ACY cal cleaning process or ejected from previously laser
Ry irradiated sites. This emission could also be due in
¥ part to the depletion of the more volatile specie, As,
@ 3 from the surface atomic layers. Figure 7 also shows
o that, once the site experiences surface damage, charge
O emission is greatly increased. The emission at non-
::.-:: damaged sites always decreased with increasing num-
b~ ber of pulses.
:L Figures 8 and 9 are SEM micrographs showing the
development of laser-induced surface damage mor-
phologies. The initial surface was featureless and
':-.: without contrast. In the Normarski microscope, the
‘A initial surface change appeared as a depression with an
3 -':: area equal to that of the laser spot. Within this area,
!"_.:;, tgere w:re seve;al vgr)ll) small pittedl lrggi;)ns (S;imlixlar ltlo
¥ those shown in Fig. 8 but not as well defined). Asthe e — -
F, fluence increased, or the number of pulses increased, 25KV X308 0001 100 AU UTNHSE
;',4 ~ the initial surface damage evolved into the melt pits  Fig. 9. SEM micrograph ot danee dic to thirty pulses at an
- shownin Fig.8. Similar damage pits have been seenin average Huence ot ooaseme
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GaAs at 1.064 um."*3 The damage evolution ends
with severe cratering as shown in Fig. 9. The theory of
Fauchet and Siegman® would seem to apply in this
case. They postulate that laser initiated ripple pat-
terns on the surface of silicon and GaAs are formed
from the interaction of the incident laser wave front
with scattered optical surface waves. At 1.064 um,
however, with a pulse length of 45 ns and spot diameter
of 580 um, no ripple patterns were seen in our experi-
ments. Accordingly, the longer pulse lengths may in-
hibit ripple formation.

{V. Discussion and Modeis

Thermal models have been used in the past to ex-
plain both laser annealing processes and laser damage
phenomena. These models assumed uniform heating,
and the possibility of inhomogeneities was not includ-
ed. The necessity of inhomogeneous processes is
made apparent by examining the laser absorption in
the sample. From the slope and intercept of the linear
fit of the inverse transmission vs intensity shown in
Fig. 10, the linear and nonlinear absorption behavior
may be determined. Although small values of linear
absorption coefficient o, are not measured accurately
by this method, a value for «, is a by-product of the
curve fitting procedure. The linear absorption coeffi-
cient was found using the equation

Ty =11 = Ry expl—a,L) . 1

where T, is the zero fluence transmission intercept, R
is the reflectivity at the air-gallium arsenide wafer
interface, and L is the thickness of the GaAs sample.
In our case T,y was 0.45 (from Fig. 10), R was calculated
to be 0.306 based on tabulated refractive-index data,
and L = 0.0635cm. Substituting these values into Eq.
(1) and solving yield ay = 1.2 em™! (£40%). The free
carrier or nonlinear absorption can be determined
from a linearized equation for inverse transmission vs
intensity as shown in the following analysis. The cou-
pled differential equations describing the carrier den-
sity and optical intensity are
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dN/dt = ad/hf + 3J°/2hf — N/t . 2)
dl/dz = —a ) — 3,° — aNI , 3)

where N = N(x,y,2,t) is the time- and space-dependent
carrier density, I = I(x,y,z,t) is the time- and space-
dependent optical intensity, hf is the photon energy, ¢,
is the free carrier lifetime, 8, is the two-photon absorp-
tion coefficient, and o is the free carrier optical cross
section. In Eq. (2), carrier relaxation due to Auger
recombination has been neglected due to the low ex-
pected carrier densities. At 10 MW/cm?, for example,
two-photon absorption is negligible with respect to one
photon and free carrier absorption; 8/ = 0.23 cm™!
and By = 0.023 cm/MW.® For this reason, two-photon
absorption will be neglected in both Egs. (2) and (3).
Also in Eq. (2) we have assumed that the one-photon
absorption is impurity dominated and that only one
charge carrier is generated per absorbed photon.

The solution to these equations will proceed much as
described by Boggess et al.!! except that in our case the
optical pulse length is much longer than the free carrier
lifetime, and the solution to Eq. (2) may be taken to be
quasi-steady state. The solution to Eq. (2) for instan-
taneous carrier density is given by

N =t adlhf. 4)

This allows Egs. (3) and (4) to be combined and solved.
That is, Eq. (3) must be integrated over z as well as x,v,
and ¢ to obtain a solution in terms of toal transmitted
energy, which is an experimentally observable parame-
ter. These integrations may be performed as shown in
Ref. 11 for Gaussian temporal and spatial profiles if
the free carrier absorption is not excessively large.
This approximation is possible if the intensity is less
than a critical intensity for free carrier absorption as
given by
hf 1 .

<. Toat, (1= RI1 = expl—u,l.I] ' o
For the paramaters in our experiments, [, = 17.3 MW/
cm?.  The solution to Eq. (3) for this case is conven-
tionally written in terms of the inverse total energy
transmission T, which linearizes the relationship

T =00 = RV expl—a, L™
\/—ln"l (ot M1 = expt—a,lL}| E .
+ CE Y 3]
2r hf(1 = Ri[expt—aul)} (,m‘“-‘r;»)

where E is the total transmitted laser energy, ¢, is the
optical pulse width (FWHM), and wy, is the laser spot
radius (1/e® intensity). The term on the right in
brackets may be thought of as an effective intensity

and is the quantity plotted on the abscissa in Fig. 10.
A linear fit to the data in Fig. 10 gives a slope of 40.2
and a corresponding value of (at,) = 2.0 X 1072*s cm”.
This product of two experimentally measurable quan-
tities may be checked against published data, but un-
fortunately there is uncertainty and dispersion in the
published values. For ¢, values ranging from 5 x 10~

(Ref. 12) to 5 X 10™!" cm? (Ref. 6) extrapolated to 1.06
um have been reported. For ¢t,, one direct measure-
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ment gave 32 ns,!* but this value is known to be strong-
ly dependent on impurities and defects which increase
the recombination rate. If we use a valueoft, = 3.2 X
1073 s (one of the largest values reported, presumably
for relatively pure material), our experiments predict a
free carrier cross section of 6.3 X 107" cm*, which is
well within the range of reported values given above
even if the free carrier lifetime were a factor of 10
smaller to account for a possibly larger deep level im-
purity density. In addition, the functional depen-
dence of T~! on intensity agrees with the theoretically
predicted form as shown in Fig. 10. From this, we
conclude that we have included the major homoge-
neous absorption mechanisms in our calculations and
that no gross anomalous absorption was involved.

To determine the mechanism responsible for the
laser-induced damage, we examine the temperature
change of the surface. Both linear and free carrier
absorption must be included in the heating model.
Assuming that all the absorbed energy is thermalized
without thermal or carrier diffusion, the peak surface
temperature rise can be written

AT = (dl/dx) it/ Cop . (M

where ¢ is the pulse length, C. is the heat capacity, and
g is the mass density. In this approximate calculation
we assume a rectangular pulse shape. Substituting
Eqgs. (3) and (4) into Eq. (7) and taking the surface
reflectivity into account give

AT = [ay + (1 = Rhat aoly/hfI(1 — RVt ,/C o, (8)

where I is the incident intensity. For GaAs at room
temperature, we have C,. = 0.327J/g Kand p = 5.32 ¢/
cm?®. Using a typical damage intensity for the single-
shot case, Ip = 19 MW/cm? and the measured value for
(at.), we obtain a maximum temperature rise of 6.1°C.
This diffusionless model assumes homogeneous ener-
gy absorption and temperature-independent reflec-
tion and linear and nonlinear absorption coefficients.

From the results of the previous calculation we con-
clude that uniform heating is not sufficient to explain
the melting effects observed on the GaAs surface. A
similar conclusion has been reported for GaAs by Gra-
syuk and Zubarev!! and for silicon by Merkle et al.l®
and Becker et al.> However, this does not exclude the
possibility of an abnormal absorption or heteroge-
neous absorption in defects at or near the GaAs sur-
face.

An alternative process that might lead to damage is
lattice disruption caused by a high-density carrier
plasma produced during the laser-solid interaction.
The possible relation of this process to silicon anneal-
ing has been reported previously.!6:7 To investigate
this possibility, we calculated the peak number of car-
riers produced by the impurity absorption.

The peak carrier density produced is calculated
from Eq. (4) where ambipolar diffusion was neglected
because of the short pulse length. To obtain an upper
bound for the carrier density, we used the incident
intensity of a typical 1-on-1 damage pulse, I = 19 MW/
cm®.  Accounting for the reflectivity, we obtained a

peak carrier density of N = 1.7 X 10" ¢em ‘. For
comparison, the compensated intrinsic carrier concen-
trations were calculated. Accounting for the chromi-
um dopant concentration (=1 X 10'* ¢m ) and the
resistivity of the sample (21 X 10° Q ¢cm), we calculated
an electron concentration of 7.35 X 10" cm~*and a hole
concentration of 1.56 X 10 cm™%, Mobilities of 5000
and 300 cm”/V s were used for the electrons and holes,
respectively. Although the photogenerated carrier
density is much greater than the compensated intrin-
sic density, it is still quite small compared to the densi-
ties where plasma effects become important, 10!*-10%"
cm~’. Therefore, we can disregard the piasma model
from further consideration as a primary damage mech-
anism in GaAs.

The charged particle detector system monitored the
pulse-by-pulse charge emitted from the GaAs sample.
The magnitude of the emitted charge has been plotted
Fig. 7 on a pulse-by-pulse basis for a site which exhibit-
ed surface damage. By examining the emission pro-
files, the emitted charge was observed to decrease after
the first few pulses and later increase at least 2 orders
of magnitude when damage occurred. The reiatively
small decreasing emission profile of the initial pulses
appears to be a surface cleaning effect. The later
increase of charge emission after the fifth pulse in this
case is attributable to surface damage. For GaAs, only
two types of charge emission profile were observed:
either a cleaning effect without damage or a cleaning
effect with damage. Damage in the absence of a ciean-
ing effect was never observed, although at very high
intensities the two profiles merged and became indis-
tinguishable. This differs greatlv from the emission
characteristics of silicon as reported in Ref. 2. For
silicon, emission of charged particles coincided with
surface damage initiation, and no cleaning emission
was observed. Furthermore, the emission of charge
prior to damage in GaAs did not affect the observed
damage behavior in any detectable way.

It appears that neither the uniform heating model
nor the carrier pair production model can adequately
describe the damage mechanism of GaAs. Inaddition,
it does not seem possible to relate the nature of the
damage to charge emission due to surface cleaning,
although the latter appears to be a necessary, and
possibly essential, precuisor to damage. From these
results we are led to speculate on other possible influ-
ences that may cause, or enhance, surface damage.
Lattice defects near the surface of the GaAs wafer are
possible energy absorption sites for nucleating dam-
age. These lattice defects include anomalous vacan-
cies, interstitials, and dislocations introduced during
the crystal growth or surface preparation processes. A
single-point defect seems an improbable physical area
for absorbing sufficient energy to cause a melt spot. It
is more probable that a cluster of point defects will act
as an efficient absorption site. This would result in a
surface damage morphology of random melt points
within the beam diameter of the laser.

Other possible sites for the nucleation of damage are
physical surface defects caused by processing or physi-
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cal handling of the wafer that would scratch the sus-

face. Surface defects on an optical surface will in-
crease absorption and scattering, possibly creating
absorption nuclei which couid lead to damage. The
potential for nucleation at physical defects have been
previously speculated by Smith.? In our experiments,
microscopic inspection before damage has eliminated
the possibility of gross surface defects (>1 um) as a
cause of damage. One would not have expected these
types of defect in integrated circuit quality material.

V. Conclusion and Comments

We observed accumulation effects in GaAs with
multiple-pulse laser irradiance below the 1-on-1 dam-
age threshold fluence. These experiments also yield-
ed various N-on-1 laser damage thresholds derived
from the statistics of the surface damage. In the ex-
periments we also measured the linear and nonlinear
optical absorption constants for the GaAs sample.
With this information, calculations were performed to
determine the mechanism responsible for the surface
damage. Results for the uniform heating and carrier
production models clearly show that these mecha-
nisms could not be responsible for damage. The possi-
bility remains that nonuniform localized carrier gener-
ation and heating may be involved in the damage
process. An inhomogeneous heating model is sup-
ported by the observed damage morphologies. It is
also possible that the sample contained absorbing de-
fects, or defect clusters, that could grow and contribute
to the damage process or surface defects (e.g., pits and
scratches) that might cause a melt spot to nucleate.
Although in our experiments the former is believed to
be more likely.

By investigating the pulse-by-pulse history of the
charged particle emission, a cleaning-type profile was
discovered. This cleaning emission proved to have no
observable influence on the subsequent damage. Ap-
parently, adsorbates remaining on the wafer surface
after cleaning did not act as absorbing sites to cause
surface damage. The charge emission proved to be
very noisy from site tosite. Although the emission did
not strongly correlate with the event of surface dam-
age, once surface damage commenced an increase in
charge emission was observed. This behavior is con-
sistent with the idea of a hot partially ionized vapor
being released from melt pits as damage proceeds.

Further investigation is needed to understand the
mechanism of energy transfer that causes damage and
emission. The relationship of the accumulation effect
to lattice defects could prove to be a fundamental key
in understanding the damage process. Another pa-
rameter which might influence the damage threshold
is the dopant level of the semiconductor material.

We gratefully acknowledge support given by the
DoD Joint Services Electronics Program under re-
search contract AFOSR F49620-82-C-0033. We also
thank John Beall at Texas Instruments for providing
the GaAs samples.
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Modeling of Ion-Implanted GaAs MESFET’s by
the Finite-Element Method

N. SONG. DEAN P. NEIKIRK. MEMBER.

4bstract—We discuss the results of 2 new (wo-dimensional (2-D)
finite-element model for GaAs MESFET's made by ion implantation.
Several different devices are characterized by varving gate recess and
doping profile. The simulation, in qualitative agreement with experimen-
tal findings, shows that a8 FET with a shallow gate recess exhibits a similar
behavior 10 a FET with a deep implantation, i.e., an improvemeat in
linearity, a higher pinch-off voltage, and a decrease in transconductance.

1. INTRODUCTION

HE PERFORMANCE of ion-implanted GaAs MESFET's

is usually predicted [1), [2] using an analytical model such
as the “‘two region model’” {3]. To include diffusion current
terms and transverse current terms more adequately. we have
adopted a two-dimensional finite-element method (2-D FEM)
to numerically simulate GaAs MESFET's with nonuniform
doping profiles and various gate recesses. In particular, we
have studied a model ion-implanted structure, varying both the
depth of the implant relative to the source-drain surface and
the depth of the gate recess. For these numerical simulations
the FEM has several advantages over the finite-difference
method, such as the flexibility of the mesh size used in the
calculation and the inclusion of current conservation without
the need of phantom nodes at insulatory boundaries where
default Neumann boundary conditions are applied.

II. SimuLATION

Using a finite-element algorithm from a previous work [4],
the coupled Poisson equation and current continuity equations
in the device are solved to find the unknown potentials and
electron concentrations under various bias conditions using a
standard FEM formulation [5]. Orce the electric field is
calculated by taking an average for all Gaussian point values in
an element, an effective mobility is obtained using the
assumed velocity versus electric-field relationships [6]. Using
the culeulated electric field and velocity, a temperature is
found from the energy transport equation [7] neglecting the
time dependence of energy for a first-order approximation.
With the effective mobility and temperature, the diffusion
coefficient 1s calculated from Einstein's relation.

The time step used in the simulation is fixed at 0.01 ps, ie.,
the dielectric relaxation time for material doped to a level
similar to the peak of the doping profile. From these, I-V

Manuscnpt received November 4, 1985, revised January 16, 1986, This
work was supported by Joint Services Electronics Program under Contract F-
49620-82-C-0033

The authors are with the Department of Electrical and Computer Engineer-
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characteristics and equivalent circuit parameters have been
calculated. Unlike the triangular elements preferred in many
semiconductor simulations, the bilinear rectangular elements
adopted here make it easier to manipulate the input and output
data by block mesh generation. The boundary conditions are
applied easily by the so-called penalty method [8]. It is found
that satisfactory results are obtained with less than 500 nodes.
For a typical node number of 307, it takes less than 2 s of
execution time for each iteration on a CDC Dual Cyber 170/
750 at the University of Texas at Austin.

III. DEVICE STRUCTURE AND APPROXIMATIONS

The basic device structure used in this simulation is shown
in Fig. 1. We have assumed a finite active-layer depth,
neglecting carrier transport far from the implant peak. The
deep region is considered to be semi-insulating. This assump-
tion is based on the reported observations that phenomena such
as deep traps (2]. [9]. {10] contribute to mobility degradation
in this deep active region. For all the simulations we have also
assumed a Gaussian-like active-layer doping profile, with a
constant peak carrier concentration of 2.5 x 10" cm~3. First,
the effects of gate recess changes were studied by holding the
depth of the doping profile constant (as shown in Fig. 1(b)).
with the peak located at 85 nm from the source-drain surface.
Next, to study the effects of implant depth, the gate recess was
set to zero and the surface location of the electrodes was varied
instead, which results in a change in the gate-to-profile peak
distance. Here the implanted doping profile is left unchanged.

The doping concentration below the source and drain
contacts is fixed at 2 x 10" cm -3, and below the Schottky
gate contact is set to zero to approximate the built-in depletion
region. The built-in gate voltage is assumed to be 0.8 V. It is
assumed that the low field mobility is 3200 cm?/V s (appro-
priate for electrons near the peak of the doping profile), the
saturation velocity is 107 cm/s, and the threshold electric field
is 4 kV/cm. In order to simplify the model we have taken these
parameters to be independent of doping.

IV. Restts anp DiscussioNn

The /- V characteristics obtained by varying the gate recess
depth are shown in Fig. 2. The data for a gate depth of 55 nm
are comparable to previous experimental results [11]. As the
gate depth increases. the transconductance becomes larger, the
magnitude of pinch-cff voltage becomes smaller, and the
linearity of transconductance variation becomes poorer. Simi-
lar phenomena are observed for the various implantation cases
shown in Fig. 3. Here the /- ¥ curves behave in a fashion quite
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SONG ef al.: MODELING OF ION-IMPLANTED GaAs MESFET's

Lgs Lg Lgd
— " ——pe—
source drain

I gate II gate depth

active layer

(a)

™~

CARRIER CONCENTRATION(10'7/cn®)

0 50 100 150 200
DEPTH (nm)
(b)

Fig. 1. Two-dimensional GaAs MESFET model. (a) Dimensions of device
sumulated. Drain and source length: 0.2 um. gate length L,: 0.5 um: gate-
to-source distance L, | um; gate-to-drain distance L. 1.5 pm; gate
width: 300 um. (b) Carrier profile used in simulation. All the carrier
profiles used have a peak concentration of 2.5 x 10'"/cm’. For Fig. 2, the
source and drain surface is located at 0 nm, and for Fig. 3 the source, drain,
and gate surfaces are all located at 30, 55. and 70 nm for project ranges 55,
30. and IS nm, respectively.

recessed gate depth Vg(iV/step)
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Fig. 2. I-V characteristics simulated by varying gate depth in recessed gate
structure.
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Fig. 3. I-V characteristics simulated by varying carrier profile in nonre-
cessed gate structure.
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Fig. 4. Plot of drain-current variation versus gate-to-source voltage for Figs.
2 (recessed) and 3 (planar).

similar to the /- V curves for a gate recess with identical gate-
to-profile peak distances. These phenomena are explicitly
shown in Fig. 4 for one typical drain voltage. Here, the
variation of the slope is related to the linearity. Such results as
an improvement in linearity with a corresponding decrease in
intermodulation distortion for deeper implants (i.e., larger
gate-to-peak distance) have been reported previously [12]-
[15]). This particular characteristic is important in large-signal
applications, and therefore a trade-off between transconduct-
ance and linearity may be required in these applications.

The effects of changes in the tail of the active-layer doping
profile have also been investigated. Current-voltage curves
for devices with the same profile shown in Fig. 1(b) but with
an additional tail 10-20 nm long (extending the active-layer
doping concentration down to 3 X 10" cm} from the
original 1 X 10'®) have been calculated. It is found that the
pinch-off voltage increases somewhat, while the transconduct-
ance decreases near pinch-off. These changes are thought to be
related to the steepness of the doping profile near the substrate
interface. The steeper profiles appear to give more linear
behavior near pinch-off—an important consideration in the
design of low noise devices.

Typical values of the small-signal transconductance and
gate-to-source capacitance at zero gate bias are shown in Fig.
5. In the case of recessed gate device, it can be seen that the
cutoff frequency fr(fr = gm/(27C,)) increases with gate
recess depth. This effect can be explained as follows: as the
distance between the gate and the active layer implant peak
decreases, a smaller gate voltage swing is required to affect a
given drain current change [2]. thus increasing the transcon-
ductance g,,. At the same time gate-to-source capacitance C,
decreases because the gate depletion layer extends beyond the
implant peak as the recess becomes deeper. These effects
combine to produce an increase in f7. For very deep recesses
(i.e., very small gate-to-implant peak separation) the transcon-
ductance begins to decrcase, and the cutoff frequency fr
saturates at about 24 GHz. Although no graphical data are
shown here, somewhat different results are obtained for gate
bias voltages near pinch-off, where the depletion layer is
always deeper than the implant peak. It is found that as the
recess increases, C,, increases rather than decreases as it does
in the low gate bias case.

The results for planar devices obtained by varying gate-to-
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gate-to-profile peak distance in progress to determine bias-dependent parameter changes,

which are especially important in large-signal applications.
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ESTIMATION OF NONLINEAR TRANSFER FUNCTIONS

FOR FULLY DEVELOPED TURBULENCE

Ch.P. RITZ and E.J. POWERS
Universuty of Texas at Austin, Austin, TX 78712, USA

Received 13 March 1985
Revised manuscript received 3 September 1985

A statistical method for modeling the linear and quadratically nonlinear relationship between fluctuations monitored at two
points in space or time in a turbulent medium is presented. This relationship is described with the aid of linear and quadratic
transfer functions and the concept of coherency is extended to quantify the goodness of the quadratic model. A unique feature
of the approach described in this paper is that it is valid for non-Gaussian “input™ and “output” signals. The validity of the
approach is demonstrated with simulation data. The method is applied to experimental data taken in the turbulent edge plasma
of the TEXT tokamak. The results indicate a three wave process with energy transfer to large scale fluctuations. The estimation
of transfer functions is a first step in quantitatively measuring coupling coefficients and the energy transfer.

1. Introduction

Many fluctuation phenomena in nature, as well
as in various technical problems, can be reduced
to relatively simple systems which are describable
by a set of source (*“input”) signals and the re-
sponse (“output™) signals of the system. The sys-
tem can then be considered as a “black box”. By
modeling this “black box” by an appropriate net-
work, consisting of linear, quadratic and higher-
order nonlinear elements, it is possible to gain
considerable insight into the dynamics of the sys-
tem under test.

The simplest such network consists of a single
input, single output system which is purely linear,
since the nonlinear contributions of the system are
assumed to be negligible. The determination of the
linear system model from the measured input and
output signals is based upon cross-correlation
techniques. Applications of the linear network led
for example to the estimation of the dispersion
relation in plasmas [1-4). It is also often used to
test complex electronic circuits. In this work we
will discuss a system which can be described by a

single input and single output which will be mod-
eled in the spatial or temporal frequency domain
by linear and quadratic elements of the form

Y,=L,X,+} Y QmrX X, +¢e,. (1)

P\ P2
P=pP1+P:

Such a system is presented schematically in fig. 1.
L, and QF-?: are usually called linear and
quadratic transfer functions and are generally
complex quantities. The Fourier transforms of the
measurable input signal x(s) and of the output
signal y(s) are X, and Y, respectively. The sig-
nals x(s) and y(s) are assumed to be zero mean
stationary random processes. The error term e, is
the Fourier transform of a process which is as-
sumed to be statistically independent of the first
two terms of eq. (1). It can be regarded as the
error due to noise inherent in the measurement as
well as systematic errors not described by linear
and quadratic terms. The goal is to estimate the
linear and quadratic transfer functions from the
measured input and output signals.

0167-2789,/86/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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Fig. 1. Schematc model of the nonhinear svstem, given in eq.
th

Indeed. we have motivation for modeling vari-
ous nonlinear physical systems with such a
quadratically nonlinear equation, e.g. eq. (1). Ex-
amples of applications include electronic net-
works. electromagnetics [S. 6], and parametric
excitation in mooring dynamics [7-9]., in structural
vibrations {10] and in nonlinear optics [11]. Char-
actenistic of these examples is that the spectral
components X, and Y, stand for the temporal
frequency spectra. On the other hand, many physi-
cal phenomena can be described by an equation
similar to eq. (1) with Founier components X,, and
Y, representing spatial frequencies, i.e. wave num-
bers. When we consider the Navier-Stokes equa-
tion for neutral fluids and Founer transform in
space, we find a wave-coupling equation which
describes the temporal change of a spectral com-
ponent of given wavenumber due to a linear mech-
anism (growth rate. dispersion) and due to three
wave coupling [e.g.. 12, 13]. The linear and qua-
dratic nonlinear terms in this equation can be
modeled by eq. (1). Similiar wave coupling equa-
tions describe the turbulent behavior in plasmas
{14, 15] and in the solid state [16]. In several of
these fields, competing theoretical models exist to
describe the formation of the turbulent spectra.
Therefore, it is useful to have an experimental
measurement available with which the competing
theories can be compared directly. In the past we

reported preliminary experimental results which
estimate the coupling coefficient and energy
cascading in such a turbulent plasma [17). The
estimation of the nonlinear transfer function is a
necessary first step to quantifying the coupling
cocflicients and the energy transfer. The approach
has not yet been published.

Note that eq. (1) is the simpiest variant of an
equation which can be related to wave-wave cou-
pling. as we assume that four-wave coupling and
higher order processes are much weaker than
three-wave coupling. In some cases when
three-wave nonlinear coupling is forbidden by the
dispersion properties of the system, as for example
for surface gravity waves in water [18]. higher-order
terms must be included.

The determination of the transfer functions L,
and Q7" ”: is straight forward and well known for
the case of a Gaussian input signal x(s) [19-21].
Such a method can be used for analyzing a system
that can be excited externally by a Gaussian noise
source [20] and for systems with input signals
which can be assumed to be Gaussian [21]. Many
systems such as turbulent fluids and plasmas, how-
ever, do not allow such a restrictive assumption for
the input signal. In order to obtain insight into the
physical mechanisms of turbulence in these media.
one can monitor the fluctuations at two points in
time or space and study the change of the spectra
between these points. In these cases and in general
the input should not be considered to be a Gauss-
1an process because of nonlinear history of the
fluctuations.

The main objective of this work is to present a
technique which enables one to estimate, in an
efficient way, the linear and quadratic transfer
functions from the measured Ructuation signals
x(s) and y(s). These transfer functions serve as
the fundamental quantities with which to estimate
the growth rate, the wave-wave coupling coeffi-
cients and finally the energy transfer between
different spectral components [17]. This paper
focuses on the technique of estimating the transfer
functions and qualitatively describing the physical
results. A subsequent paper will cover the applica-
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tion of this concept to estimating quantitatively
the coupling coefficient and energy cascading.

In section 2 we present a new technique to
estimate transfer functions. For the case of non-
Gaussian input signals the usual definition of the
coherency must be generalized. The influence of
noise and of systematic errors will also be briefly
discussed. As the approach involves rather exten-
sive computation, the convergence and accuracy of
the model must be tested prior to applying it to
real data. We present the results of such a test in
section 3. In section 4. the method is applied to
data from turbulence measured in the edge plasma
of the TEXT tokamak. We estimate the linear and
quadratic transfer functions between two points in
space and interpret them in physical terms. Next
we compare the linear transfer function with the
one obtained by neglecting nonlinear contribu-
tions. Such a comparison is of interest since most
present correlation methods are based on a linear
assumption.

2. Method

The transfer functions for the quadratic nonlin-
ear system given by eq. (1) can be derived in a
straightforward way when a sufficient number of
independent realizations of the spectra X, and },
are available. The vanable p represents for exam-
ple the wavenumber or temporal frequency.

We first rewrite eq. (1) by using the symmetry
relation, Q)72 = Q2:+? (Note that the spectral
components X, and X, are interchangeable in
eq. (1)). It is therefore sufficient to sum the
quadratic terms over the frequency components
with p, 2 p,.

Y,=LX,+ Y QnrX X +e, (1a)

Py = p2
P=pycp:

Multiplying eq. (1a) with the complex conjugate of
the input signal X, and computing the expected
value by ensemble averaging ( ) over many statis-

tically similar realizations, we obtain

X2y = L QP P(XrX, X, ) = (e, )
Pr2p:
’ XX

p=pitp. (2)
Similarly, by multiplying ¥, by XX and en-
semble averaging. we have

(Y, X2 X2 =LAX, X3 X0

PP

+ Z Q;I.p:<XP|XP:XI"iX/"'I> + <€FXI’.‘:"’I"':

P2 p:

with
p=p, tp,=p+ps.

To simplify eq. (3) and, therefore. reduce the
computation time we approximate the fourth-order
moment (X, X, X*X*) with second-order mo-
ments (|Xp|X,,:|2> by neglecting components
(X, X, Xp Xp) with (py, p2) # (p. p3). How-
ever, we retain the third-order moment of the
input signal (X, . X*X*) as we assume that
the input signal 1s non-Gaussian. Such an ap-
proach was proposed by Millionshchikov (22] and
1s used to close the system in weak turbulence
theories [12-15]. This approach was also used in
many strong turbulence theones [23, 24], in which
the linear mode structure is strongly altered by the
turbulence and for which dw/w ts large. Compari-
son with simulations which do not use such a
closure scheme confirmed the validity of this ap-
proximation also in strongly turbulent cases
{24, 25). Approximating the fourth-order moments
requires that the fluctuations must be close to
Gaussian distributed, a condition which 1s not
generally valid for strong turbulence. In a future
work it 1s planned to compute the complete set of
fourth-order moments and solve for the transfer
functions. This will allow us also to test the valid-
ity of the closure scheme on real data. Using the
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Milhonshchikov hypothesis we have

Ql"»”:
;
_ RN T LXK XKD — (e X XD
(X, X,.0%)

p=p, +p, (3a3)

The second term in the numerator of equations
{2) and (3a) vanish for a Gaussian input because
then the skewness ((x3(s))/{x%(s))"?) is zero.
therefore (X, ., XX ) =0. The second terms
can thus be interpreted physically as corrections
due to the nonhinear ..istory of the fluctuation
detected at the input. As long as the error term ¢,
v zero mean and statistically independent with
respect to the input signal, the error terms tn eqgs.
12) and (3a) vanish.

The set of dependent equations (2) and (3a) can
be solved iteratively to find the transfer functions
L, and QF7:. As an inttal guess we neglect the
quadratic contribution in eq. (2) and find for the
linear transfer function

(Y, X}
P XY (22)

The number of iterations used for a given frequency
p depends on the accuracy of the estimated mo-
ments. It is also sensitive to the stationarity of the
signal to be analyzed and is thus larger for real
data than for simulated data. The number of itera-
tions is also dependent on the magnitude of the
quadratic transfer function with respect to the
linear one. The typical number of iterations needed
for L, to change by & less than 1%c is of order 5
for simulation data and of order 10 for measured
data (8 < 1%). Note that the special case of a
Gaussian input signal can be solved directly
without an iterative procedure as the first term on
the right-hand side of eq. (3) vanishes.

As indicated by equations (2) and (3a). /., and
Q% can be obtained by determination of the

well-known  statistical quantities in the pointed
brackets, the auto-power spectrum P, = (X, X,%),
the cross-power spectrum C, = (Y, X* ). the auto-
bispectrum B, (p,. p,) =X, ., X X') and the
cross-bispectrum  B.(p,. py) = (Y, ., X} X\ ).
The cross-power spectrum measures the statistical
dependence of amplitude and phase of the same
spectral components in the input and output.
Therefore the cross-power spectrum must play an
important role in detecting the dispersion relation
and the growth rate. The auto- and cross-bispectra
measure the statistical relationship of amplitude
and phase between the spectral components p,, p,
and p=p, +p,. If the waves at p,. p, and p
have statistically independent random phases, then
the resulting (bi-)phase of the polar representation
(0,,| R 69,,I - 0',,:) will be random and the ex-
pected value of the bispectra converges to zero. If,
however. a coherent phase relationship exists due
to nonlinear coupling of these waves, the bispec-
tra. averaged over many realizations, will reach a
finite value. The auto- and cross-bispectra play,
therefore, an important role in detecting three-
wave coupling effects. The mathematical and stat-
istical background of the estimation of these ex-
pected values with the aid of digital signal
processing are thoroughly discussed in [26-28].

The amount of information gained from the
transfer functions can be quite large. Therefore it
is useful to introduce normalized quantities to
provide an easier interpretation of the input-out-
put relationship. A convenient normalization is
the coherency, which gives the fraction of the
power in the output signal which can be accounted
for by the linear and the quadratic transfer func-
tion model. To define the coherencies in terms of
the transfer functions, we multiply eq. (1a) by its
complex conjugate, take a statistical average and
divide the result by the output-power (Y, Y *). We
find

1=y (p)+73(p) +vio(p)

+v,( p) + (error terms)., (4a)
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with
h < >
vilp) =L} <ypyi>
N 1<,XP /""":>
2 ) = PP ~——';’-——_
(P ,».X»:,JJQ" NS A T
ZRC(LP Z [Q:"P:] <¥po..Xp‘:>
yfu(p)= Py P YV
vy,
G 34
Y,.(P)‘ <)I’yl‘.> (4b)
where
p=p,tp;

The linear coherency y{(p) and the quadratic
coherency y3( p) denote the fraction of output
power accounted for by the linear and quadratic
transfer functions. The value under the summa-
tion in yg(p) is called the cross-bicoherency
bl.,(p,. p,)and measures the portion of the power
of the output signal ¥,_, ., which is phase locked
with X, and X, in the input signal. The
coherency yﬁQ( p) gives the portion of the output
power, for which the response due io the linear
transfer and due 1o the quadratic transfer are
correlated. Note that this term arnises because of
the non-Gaussian input x(s). The term vy} (p)
represents the ratio of the output power due to
noise. which can not be accounted for by the
system. The error terms in eq. (4a) vanish as long
as the error term ¢, of the output signal is zero
mean and independent of the input signal of the
system. The usual definitions of the coherencies
{19] are bounded by zero and unity (as we shall
show below for the case of a Gaussian input
signal). However, the individual coherencies
YE(p). ¥§(p) and y[( p) defined above are not
necessarily bounded by unity. While yl(p) and
7(3( p) must be larger than zero, the term yf_Q( p)
15 allowed to take on negative values as well. The
noise term y;( p) can take on any value between

zero and unity. The “goodness of fit” of the model
can then be characterized by the total coherency
of the model,

YIp)=vi(p)+¥3(p) +violp) (5)

Note that the above definition of the coherency
converges to the commonly used definition {19, 20]
when the input signal is Gaussian. In this case
(X, ., X2X>*)=0and the term v{q( p) vanishes.
We find

()= XD
[EARE A GIAAD

YZ(P) _ Z |<YPXP.|XP':>|Z (6)
¢ PP <|XP|XP1|2><YPYP‘>

YLZQ(P)=0

where
pP=P*+P:

The linear coherency y?(p) is bounded by zero
and unity as can be shown with the Schwartz
inequality. Because of eq. (4a). y( p) must also be
bounded by unity. The application of eq. (6) to
experimental data with a non-Gaussian input sig-
nal will thus lead to an erroneous result and can
vield values for the total coherency which are
greater than unity.

3. Simulation test

To test the validity of the approach descnbed in
the previous section, we have carried out a com-
puter simulation. We start with analytically de-
fined linear and quadratic transfer functions. For
given non-Gaussian input signals we compute the
corresponding output signals. Next, we apply the
method of section 2 to estimate the linear and
quadratic transfer functions from the input and
output data, and then we compare the results w'th
the expected values.
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For this example, we define L, and Qf"*: as

-

L,=10-04-5—+i08-2

’

p.\'vq Nvg

i pupid pi-pi)
Q,(p.p)=
Pt 5p%q 149 /Pha
where

p=p *p:. 1=v-1.

The magnitude and shape of the quadratic trans-
fer tunctions detined above are chosen arbitrarnly,
but are realistic 1n that the values are of the same
order of magnitude as the ones predicted by the
Hasegawa - Mima equation {15). The linear trans-
fer function 1s defined such that the input and
output spectra are simular in shape as would be
expected for a stationary state. The Nyquist
frequency shall be abbreviated as py,* The real
and imaginary parts of L, are illustrated in fig. 2a.
2b and the absolute value of Q7'"#: is shown in a
contour plot in fig. 3a. To approximate the situa-
tion which actually occurs in a continuous medium,
we consider five identical “black boxes” of the
type shown in fig. 1. which are connected in series.
A Gaussian signal is applied to the input of the
first black box. The output. which i1s now
non-Gaussian because of the nonlinear nature of
the black box. becomes the input to the second
black box and so on. For the simulation we utilize
the input and output of the fifth black box. The
input signal, X,. for the estimation can thus be
assumed to be approximately as “non-Gaussian”
as the output signal Y,,.

In a second step we estimate the linear and
quadratic transfer functions lp and Q:"’l using
the approach of section 2. As shown in figs. 2c, 2d
and fig. 3b, the estimated transfer functions, are in

*The maximal frequency which can be resolved digitally is
given by the Nyvquist theorem. The theorem indicates that the
smallest detectable period must contain at least two sampling
points Frequencies larger than py,, produce an erroneous
spectrum below py, due to ahasing.
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Fig 2 Companison of the analytically defined linear transfer

function with the reconstructed ones: a) shows the real; and
b) the imaginary component of the *true” values; ¢) and d) the
estimated ones

good agreement with the true values. The symbol,
*"*, denotes an estimator. To save space, we com-
pare here only the absolute value of the quadratic
transfer function. The phase comparison would
show a similar agreement. Note, however, that the
phase information is also important for the inter-
pretation of the nonlinear system. Because of the
symmetry properties possessed by the quadratic
transfer function, it is not necessary to plot Q-
over the entire two-dimensional planet. Fig. 3
gives the value of | Q27| at the frequency p = p,
+p, due to wave-wave coupling with p, and p,.
The area, for which the transfer function is plotted.
can be subdivided into three regions with essential
differences in the physical content (I, II, 111 in fig.
3a). The triangular region (I) gives the quadratic
transfer function at the highest frequency p in-
volved in the interaction ( p > p,. p,). Region (II)

t1tis sufficient to compute and plot the transfer function for
Py 2 py (because QP-Fr=QF2-71) and for p>0 (because
@y rr=(Q fv P2]*, as the Fourier transform for real data
v(s) satisfies X, = X‘,p),
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Fig. 3. Contour plot of the amplitude of a) the analytically defined quadratic transfer function. Point A illustrates |Q]'#3] at
P1/Pxvg = 0.78 due to coupling with p,/py,q =022 and p/py,, = 0.56: b) reconstruction of { Q7' 72| by the iterative method. The
vontour interval is 0.05 in a) and 0.06 ir b).

gives the strength of the coupling at the inter- difference between the estimated total coherency
mediate frequency p due to wave-wave coupling and unity can be regarded as due to systematic
with a spectral component of larger frequency p, errors of the estimation approach and due to the
and one with a smaller frequency p,(p,>p> variance of the estimator of the statistical quanti-
|221). The triangular region (11I) shows Q) 72| at ties (e.g. the cross-bispectrum). Fig. 4a shows
the lowest frequency component p due to cou- the contribution of the linear, quadratic and mixed

pling with the two others (p <p,,ip,|). For a coherency to the total coherency of the model
convenient graphical representation of the three ¥2( p). We have chosen relatively small values of
coupling regions, we plot positive and negative the quadratic transfer function with respect to the
values of p,. Note, however, the positive and linear component in order to simulate a realistic
negative spectral components are related by X _, situation; consequently the contribution of y3(p)
= X,*. To facilitate the interpretation of fig. 3, we is small. Note that the total coherency of the
arbitrarily pick out one point, which is indicated model y2(p) is close to unity indicating that the
as A. The number of contours at this point gives systematic error of the approach is small. We
the amplitude of the transfer function |Q2 73| at conclude that the iterative method is able to pro-
frequency p/pn,q = 0.56 as a result of its coupling duce a good fit of the data.

with a higher frequency component p,/py,,= To illustrate the necessity of applying the itera-
0.78 and with a lower frequency component tive method, we compute the transfer functions
1P2l /PNy = 0.22. with the usual method by disregarding the

To test the *“goodness of fit” of this simulation, non-Gaussianity of the input signal, X,. The

we compute the coherency from eq. (4b). The non-iterative method then leads to a quadratic
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Y¥(p)
10 < P~ T
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>
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Frequency p/pNyq

Fig. 4. Coherence spectra. y/(p) lincar component, y§( p) quadratic contribution. yf?( p) mixed term. y2( p) summation over the
three components. The difference between v p) and 1.0 represents the error term v, ( p): a) gives the coherence for the iterative
procedure (eq. (4a.b)); b) the one computed with the usual definition (eq.(6)).

transfer function which is much different from the
true one. This erroneous result can easily be visual-
ized by applying the usual definition of the
coherency, given by eq. (6), which leads to values
for the total coherency much larger than unity (fig.
4b). The systematic error introduced by assuming
a Gaussian input signal can thus be considerable.
Note. for the non-Gaussian case, the linear
coherency is very close to unity. This is due to the
very small change of the signal between the input
and output as a result of the quadratic interaction
(which is of order y3(p) in fig. 4a).

It is important to recognize that a good estima-
tion of the quadratic transfer function requires a
large number of realizations. For this simulation
we have used 2000 realizations. This large number
of realizations is necessary in order to estimate the
auto- and cross-bispectra accurately and thus to
assure a proper convergence of the iterative pro-

cess. To illustrate this, we show in fig. 5 the
convergence of both the power spectrum P, and
the amplitude of the auto- and cross-bispectra to a
stable value as a function of an increasing amount
of realizations. We have chosen for this demon-
stration the frequency components p/p y,q = 0.47,
P1/Pryq=031, and p,/py,=0.16. While the
auto-power spectrum stabilizes after 500 reali-
zations, more than 1500 realizations for the auto-
and cross-bispectra are needed. The large variance
of the higher-order spectra can be attributed to
the fact that all spectral components in a turbu-
lent spectrum couple with each other and there-
fore the contribution of each triplet of waves is
relatively small.

By testing the iterative method under different
conditions, we have found another interesting fea-
ture which we briefly report. For a purely Gauss-
ian input, X, the iterative nrocedure appears to
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]
— Ba(p1.pa)
/ a\P1.P2
Pp B.(py.p2)

Arbitrary Units

[+ .

o

0 2000

0
[} 2000

a) Realizations b)

Fig. 5. Convergence of the spectral estimates to a stable value as function of the number of realizations. a) Convergence of the power
spectrum at p/py,q = 0.47; and b) of the amplitude of the auto- and cross-bispectra at p/pyyq = 0.47 due to wave-wave coupling

with py/prnyg =0.16 and p,/py,q =031

considerably reduce the number of realizations
needed for a given statistical error of the quadratic
transfer function. While the auto- and cross-power
spectra are already estimated acceptably, the
estimate of the bispectra is significantly poorer for
the same amount of realizations. Because of a
similar behavior of the auto- and cross-bispectra
(see their convergence in fig. 5), the statistical
errors therefore approximately cancel in eq. (3a)
and the estimation of Q27 is improved for the
same amount of realizations. We conclude that the
iterative procedure is valuable to increase the speed
of the calculation for systems with a purely Gauss-
ian input signal and also requires fewer realiza-
tions.

4. Nonlinear wave coupling in the edge of a tokamak

The plasma which connects the hot interior
plasma of a tokamak with the cold wall is often
called edge plasma. This region of the tokamak is
characterized by steep density and temperature
gradients and by a high density fluctuation level.
Asymmetries induced by the limiter and an
increased impurity level due to the plasma wall
contact make this region even more complex. A
good understanding of the physics of the edge
plasma in a tokamak can, however, be crucial for

% '.""‘:S.Lﬁb

fusion, as the fluctuations in the edge can substan-
tially affect the global plasma confinement. The
study of the linear and nonlinear behavior of the
waves and instabilities in the edge plasma can add
important information which, together with theo-
retical models, lead to optimized edge conditions
with minimized particle and energy fluxes to the
wall.

The linear features of fluctuations in the edge of
tokamak plasmas have been studied for some time
with probes [e.g. 1-4, 29-31]. In the following we
extend this observation and give information about
the nonlinear wave interaction by the estimation
of the nonlinear transfer functions.

To make a direct comparison with theoretical
works on turbulence in plasmas one is most inter-
ested in the transfer function for wavenumber
spectra. Such spectra are, however, not easily ob-
tainable in tokamak plasmas as this would neces-
sitate a large number of spatial samples with
probes or a simultaneous measurement of many
spectral components with scattering technique. In
a tokamak the installation of a Langmuir probe
array has recently been realized [4). A large probe
array may substantially perturb the plasma. Multi-
channel scattering experiments are able to mea-
sure instantaneously different wave numbers. For
the analysis a heterodyne system would be needed
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and the influence due to different scattering
volumes has to be understood. To circumvent
these technical questions we chose for this initial
experiment a two probe technique.

Two spatially separated probes are capable of
measuring temporal variations of the fluctuation.
Instead of computing the bispectra for different
wave numbers which fulfill the selection rule & =
k, + k, we compute them for the frequency com-
ponents f=f, + f,. This approach enables us to
detect only the resonantly coupled compenents,
for which the frequency mismatch is zero. Those
coupled spectral components with frequency mis-
match, which are present in strong turbulence
causing the broadening of the dispersion relation.
contribute to the error term in our method.

We measured the signals with Langmuir probes
in the turbulent edge region of the TEXT tokamak
(major radius 100 cm, minor radius a =27 cm).
To measure the density fluctuations, the probes
were biased into ion saturation current and the
potential fluctuations were detected with floating
probes. The signals are digitized with a 10 bit
digitizer with 32k words storage capability per
channel. Each time series is subdivided into 512
time segments of 64 data points. To estimate the
transfer functions we have averaged over more
than 1500 realizations gathered from 3 identical
shots. The sampling interval used in the following
presentation is 1 ps, which defines a temporal
Nyquist frequency of 500 kHz, which is well above
the dominant components of the turbulent power
spectrum.

We will consider data obtained with the follow-
ing tokamak parameters. The toroidal magnetic
field is B,=1 T, the plasma current 1s /, =100
kA, the chord averaged density is 1.0 X 103 cm ~*
and we have a peak electron temperature of 600
eV. In the region behind the limiter we observed a
broad turbulent spectrum with fluctuation levels
fi/n| of up to 50%. The edge plasma is char-
acterized by a nonuniform radial electric field
which changes sign just inside of the outermost
closed flux surface. Behind this flux surface the
radial electric field causes an E, X B plasma rota-

tion in the 1on diamagnetic drift direction while it
results in a rotation in the electron direction on
the inside. The measurements also exhibit a local-
ized instability which occurs in the region of maxi-
mum velocity shear and which is different from
the turbulence structure outside of the velocity
shear. The measured phase velocity of the turbu-
lence can be described by an E, X B drift super-
imposed on a pressure gradient drift [29]. In this
work we include a description of nonlinear effects
for the region outside the shear layer. Model equa-
tions [23, 24, 32, 33] applicable in the edge region
are characterized by quadratic nonlinearities,
hence, the three wave interaction is the relevant
wave coupling process. Model equations with cubic
nonlinearities [34, 35] giving rise to four wave
interaction are generally not considered in the
edge plasma context.

Our goal is to estimate the linear and quadratic
transfer functions between the signals of two
poloidally separated points. The expenmental
setup is as follows: two radially movable Lang-
muir probes are located at the top of the toka-
mak. They are separated by Ax = 3.5 mm. For the
dominant power at low frequencies, this sep-
aration is small compared to the poloidal correla-
tion length (several centimeters). In this paper. we
analyze data taken at a radial position 1 c¢m
behind the limiter. The density at this location is
approximately 5.0 X 10'! cm " ?, the electron tem-
perature 7, =10 eV and |i/n| = 40%. The power
spectra of the density fluctuations monitored by
both probes located at this radial position are
shown in fig. 6. Both probes yield nearly the same
spectrum.

The data, which have been digitized and stored
in the computer, are processed using the procedure
discussed in section 2. The propagation direction
is first determined by observing the sign of the
phase shift of the cross power spectrum between
the two probes. The signal of the probe which first
samples the turbulent structures (i.e. the *“up-
stream” probe) is treated as the input signal. The
“downstream™ probe signal is considered as the
output.
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‘*;. Fig. 6. Power spectrum of the density fluctuation 1.0 cm be- propagating a distance Ax'.An amphtgdc smaller
a hind the limiter for the two Langmuir probes. separated by 3.5 than one can be due to a linear damping mecha-
T mm in the poloidal direction. nism or a transfer of energy to other waves as a
SRS result of nonlinear wave-wave coupling. Other
fLs - . . . . . .

T The linear transfer function estimated from this reasons for the change of the amplitude also exist,
e data is presented, for easier physical interpretation as for example, the neglect of higher-order nonlin-

Y in terms of amplitude and phase of L/ ear terms, an external source of noise or a multidi-
. lL/\exp(\GL( ). Amplitude and phase are shown mensional behavior of the fluctuation. In fig. 7a we

in figs. 7a.b. The phase of the linear transfer
function 9L( f) gives the phase relationship be-
tween the input and the output signal due to
linear effects. In our experiment, éL(f) can be
related to the mean dispersion relation, E,( .
because a wave which propagates with wavenum-

observe that |l/| is always smaller than unity and
drops off rapidly for frequencies greater than 350
kHz. We conclude that all spectral components are
damped; however, we would require an unphysi-
cally large damping coefficient to describe the
damping at high frequencies. For more insight we

v w
' ber k,( f). will undergo a phase shift in propaga- look at the “‘goodness of fit” of the model by
::-& ting between the two probes equal to k4( f)Ax. In plotting the coherency (fig. 8). The total coherency
"3"': fig. 7b we give the phase information as well as the of the model (eq. (5)). Y2(f). is high for spectral
:{; related averaged wavenumber k o( f) = 9L( f)/4ax. components up to the frequency where the ampli-
; We find an approximately linear dispersion rela- tude of the linear transfer function starts to de-
R tion and thus a nearly constant phase velocity of crease rapidly. The fast increase of y2(f)=1.0—
.f_(’ the wave over the observed frequency range. At y2( f) for frequencies larger than 350 kHz demon-
--:-.. the radial position discussed here (1 cm behind the strate that systematic errors become important at
(-~ limiter), the propagation direction of the phase high frequencies. The effect of instrument noise
iy velocity is in the ion diamagnetic drift direction. can be neglected, as the power of the signal is
;vvg The magnitude, {L/|, gives the change of the significantly larger than the noise power for all
ol signal level between the input X, and the output frequencies. We believe that the deviation of the
o ¥, due to linear effects. An amplitude |L | larger ~ coherency from unity is mainly due to the one-
};- than unity indicates a wave which grows while dimensional approach we have chosen. In our
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Fig. 8. Coherence between the two probes.

experimental set up, we look only at the poloidal
component of the fluctuation. When a turbulent
structure propagates at an angle with respect to
the two probes it may be observed by only one of
the probes and will cause a decorrelation between
the signals. This effect will dominate when the
scale length and thus the wave length of the struc-
tures becomes very small, as is the case for high
frequencies (see fig. 7b).

We now turn our attention to the quadratic
transfer function, for which the amplitude, |/ /3],
is shown in a three-dimensional plot in fig. 9.
During the propagation between the two probes,
only a relatively small amount of the spectral
amplitude of the output signal. Y,, is generated at
frequency f=/f, +f,>f;, f, due to wave-wave
interaction with the frequency components f, and
/> (see region (I) in Fig. 3a). The amount of the
signal which is transferred to intermediate fre-
quencies due to coupling with a higher frequency
and a lower frequency component is larger. The
largest values of the transfer function occur in the
shaded region in fig. 9, corresponding to region
(111) in fig. 3a. We conclude from this that the
quadratic transfer function is strongest for the
dominant low frequency components of the spec-
trum in fig. 6 (around 30 kHz) as a result of their

e et Ry
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interaction with two waves of similar frequency.
The strength of this wave-wave coupling increases
when f, and f, approach the Nvquist frequency.
We must keep 1in mind. however, that because of
the low power at high frequencies the absolute
contribution of the high frequency components to
the output signal 1s small, despite a large value of
the transfer function.

When we examine the coherency due to qua-
dratic interaction of the waves yé(/) (fig. 8a) we
find very low values. The fraction of the total
power at frequency f/ which oniginates from inter-
action with all frequency pairs which satisfy the
selection rule f=f, + f, is therefore small for a
probe separation of 3.5 mm. The fact that the
magnitude of the mixed term ny(f) 1s larger in
magnitude than yé(/) is not surprising. For small
probe separations the turbulent structures reach-
ing the first probe are still present when they reach
the second probe (due to the linear transfer) and
contribute even more to the output signal than
that generated due to quadratic interaction be-
tween the two probes.

Having discussed the various sources of errors
which affect the “goodness of fit” of the model, we
have to ask if the measured quadratic transfer
function gives a meaningful result. This question
is critical, as we know from the coherency of the
quadratic term as well as from theoretical models
that the quadratic interaction is small. Also, the
variance of the estimate is larger than that of the
linear one. just as an estimate of a two-dimen-
sional surface has more vanance than an estimate
of a one-dimensional curve, using the same num-
ber of data points. We have, however, good indi-
cation that the quadratic coefficient is qualitatively
correct. When we look at the scaling of the coeffi-
cients with probe separation. we find: for an in-
creased spacing of the probes, yé(/) increases and
yﬁQ( f) decreases. We can expect such a result for
a correct measurement: for an increased probe
separation, the interaction time for quadratic
processes and linear damping is longer. This ob-
servation indicates that the quadratic transfer
function is estimated correctly.
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Fig. 9. Three-dimensional plot of the amplitude of the quadratic transfer function. obtained from the density fluctuations measured

at the two probes.

How do these results compare with different
theoretical predictions? Fundamental differences
are predicted theoretically for two-dimensional and
three-dimensional turbulence: in three-dimen-
sional turbulence the energy cascades due to vortex
stretching from large scale turbulent structures to
small scale structures. In two-dimensional turbu-
lence the energy is predicted to cascade, in con-
trast to the three-dimensional model, to smaller
wave numbers and frequencies, as the vorticity is
independent of the third direction. For tokamak
plasmas with inherently strong. mainly toroidal,
magnetic field a two-dimensional behavior of the
turbulence is generally expected. The essentially
two dimensional picture of the turbulence can be
justified by the strong magnetic field which con-
fines the charged particles in the perpendicular
direction, while the electrons and ions can propa-
gate relatively freely along the field lines. There
are many different theoretical turbulence models
for tokamak plasmas because a variety of linear
instabilities and nonlinear mode coupling pro-
cesses can be included [36]). Our experiment shows
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a dominant coupling of higher frequency spectral
components in a way as to increase the amplitude
at the lowest frequency component of the triplet.
The strongest effect is found for coupling of two
spectral components of comparable frequency to a
very low frequency component. This result indi-
cates an efficient “one step™ process between rela-
tively small scale turbulent structures (k > 10
cm ') to large scales (k<5 cm™'). The experi-
ment indicates that the turbulence in the edge
plasma of the TEXT tokamak is essentially of
two-dimensional nature as expected theoretically
for tokamak plasmas.

We mentioned in the introduction that much
work dealing with turbulence is based on linear
transfer functions [e.g. 1-4, 29]. The contribution
of the nonlinear term in eq. (2) can then be
neglected. The magnitude of the quadratic transfer
function and, thus, the coherency yé,(/) we ob-
served suggest that such an assumption is, indeed.
valid. The approximation can be confirmed quan-
titatively. When we neglect the quadratic terms
and compute the linear transfer function (eq. (2a))
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we find values which are very close to the ones for
the non-Gaussian input case (dashed lines in figs.
7a and b). While our results are obtained for
turbulence observed in the edge plasma of the
TEXT tokamak with probes separated by 3x = 3.5
mm, they suggest that the quadratic terms can be
neglected for similar experimental arrangements
when one 1s interested only in the linear behavior
of fully developed turbulence in the edge region of
tokamaks. Note that the neglect of the nonlinear
terms in the estimation of the linear transfer func-
tion can lead to an incorrect result for cases with
small hnear component [ . as in this case the
contribution of the quadratic term to eq. (2) can
be considerable.

§. Conclusion

We have found that the usual method of esti-
mating linear and quadratic transfer functions be-
tween two measurement points for Gaussian input
signals can be extended to non-Gaussian input
signals. This extension leads to a model with which
a self-excited and fully turbulent system can be
studied expenimentally. The model is tested with
simulated data and can reproduce the transfer
functions. A check of the “goodness of fit” shows
that the coherency is close to unity. The true
output signal can thus be modeled nearly exactly
from the input signal by using the estimated linear
and quadratic transfer functions. Analysis of the
same signals with the usual method, which as-
sumes a Gaussian input signal, gives nonphysical
values of the coherency with values larger than
unity.

Using two Langmuir probes in the edge plasma
of the TEXT tokamak we find: the linear transfer
function yields a nearly linear dispersion relation
of the waves with propagation in the ion diamag-
netic dnft direction. All spectral components are
at least marginally damped. The amplitude of the
quadratic transfer function s largest at the do-
minant low frequencies around 30 kHz due to
coupling with two waves having comparable fre-
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quencies and lead to an increase of the amplitude
at the low-frequency component. This result indi-
cates an efficient “one step” process between small
scale and large scale structures. The poruon of the
signal which 15 generated between the two probes
due to quadratic interaction is small with respect
to the linear contnbutions, but proves that many
waves couple with each other in a fuliv turbulent
spectrum. Our observation is consistent with two-
dimensional turbulence models which predict an
energy transfer to smaller scale structures due to
three-wave coupling, which is in contrast to three
dimensional models with energy cascading to
larger scales.

We demonstrated in this paper the usefulness of
the method to estimate the linear and quadratic
transfer function for non-Gaussian inputs. Al-
though we applied the method to plasma turbu-
lence data, we emphasize that the method is equally
applicable to analyze other data, as in fluid turbu-
lence. for example. In a future work. we will
extend this method to estimate the three-wave
coupling coefficients and thus quantfy energy
cascading in turbulence. Such experimental mea-
surements can be useful for a direct comparison
with theoretical models.
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THE APPLICATION OF HOMODYNE SPECTROSCOPY
TO THE STUDY OF LOW-FREQUENCY
MICROTURBULENCE IN THE TEXT TOKAMAK

D. L. Brower, N. C. Luhmann, Jr., and W. A. Peebles
University of California, Los Angeles
Los Angeles, CA 90024

and

Ch. P. Ritz and E. J. Powers
University of Texas, Austin
Austin, TX 78712

Received December 19, 1985

A new homodyne spectroscopy technique has been applied
for the first time to tokamak microturbulence measurements
in order to ascertain the frequency spectra and wave
propagation direction of low-frequency density
fluctuations. This method is employed 1n lieu of more
expensive and complicated heterodyne detection schemes
typically available for far-infrared laser scattering
systems.

Introduction

Laser and millimeter—-wave scattering techniques are
commonly used to study the space-time statistics of
electron density fluctuations in tokamak and other plasmas.
Of particular mportance 1s the determination of the
direction of propagation of the fluctuations. Since the
scattering geomeiry fixes the direction of the scattering
wave vector k. the direction of propagation i1nformation 18
carried by the sign of the fluctuation frequency w. The
fact that waves may be propagating both parallel and
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antiparallel to k 13 manifested by the presence of blue and
red sidebands centered around the incident wave frequency
Wy

To recover the propagation direction information
contained in the blue and red sidebands. heterodyne
detection techniques are typically employed. This approach
requires two coherent sources, with a frequency difference
Ow, to be utilized as the i1ncident and local oscillator
beams . After mixing, the frequency range of the resuitant
signal 1s &w * w, where w 1s the frequency associated with
the plasma fluctuations. As long as Aw >> w, the blue/red
sidebands may be resolved. In contrast, 1f a classical
homodyne approach 1s wused, Aw = 0, and it 1s no longer
possible to unambiguously determine the wave propagation
direction.

Realization of a heterodyne detection system in the
far-infrared is expensive and technically nontrivial.
Utilization of a rotating grating to frequency shift a
portion of the source beam is a feasible alternative
although the frequency offset 1s limited to roughly &v <
150 kHz (insufficient for microturbulence measurements
where fluctuations are observed up to 1 MHz). In addition,
there is noise associated with the grating which limits
resolution near zero frequency and fabrication can be
costly.

Experimental Iechnigque and Apparatus

A considerably simpler and éhexpensnve method proposed

by Tsukishima! and Asada et al. permits detection of the
wave propagation direction fru: the analyals of homodyne
signals. The |IF output of the scattered signal after the

mixer 1s a real quantity described by

v(t) = Re ;f*"——N(k w)elwty

where k = ks is the wave vector of the plasma
!luctuntnon and N?k W) = E(k+.wl with n being the density
fluctuation level. The sign of the f{requency spectrunm
represents the propagation direction of the wave in the
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Homodyne Spectroscopy in the TEXT Toksmak “9

laboratory frame of reference and thus N(k+.u) ¢ N(k*.—w).
However., from the real time signal v(t), one 1s restricted
to the reconstruction of the spectrum N'(k,.w) with the
symmetry property N'(k,6.w) = N' (k,.-w), thereby losing
wave propagation direction i1nformation The key 1dea of
the new homodyne spectroscopy technique proposed by
Tsukishima® 1s to reconstruct the complex time signal w(t)
and recover the complete wave 1nformation by using two
homodyne IF signals vl(t) and v,(t) which are phase shifted
by 90° with respect to each other permitting one to write
w(t) = v (t) + 1 vy(t) I

The blue and red sidebands of the scaltered radiation,
S,(w) and S_(w) where S!(u) « [n,(w)]°. can be readily
calculated from the two IF signals vl(t) and vz(()A

S,(w) = (G, (w) + Gyo(w)) * 2 Im{Gyp(w)}). w >0,

where G,,(w) and G,,(w) are the auto-power and G,,(w) the

11 22 12
cross—-power spectral densities of the two signals vl(t) and
vz(t). and are given by

G, (@) = <V (W)Vp(w)> . ik o=1.2

The spectral component V (w) = f{v.(t)} 1s the Fourier
transform of the IF signal vl(t$ and < > denotes an
ensemble average over many statistically similar
reali1zations.

In the experimental results to be shown later, a time
series of 32k date points (length of the time sample T = 16
ms at a sampling rate of 2 MHz) was subdivided i1nto 128
reali1zations of 256 data points (T = 122 us) By
employing a fast Fourier transform algorithm. the frequency
spectrum was obtained with s resojution of &w/2m = 1/T = 8
kHz Mixer and amplifier noise contributions could be
subtracted from the autopower spectra although
signal-to—noise levels were sufficientiy large so as to
make 1t unnecessary
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A schematic of the experimental arrangement enplgyed
for application of the homodyne spectroscopy technique” to
collective far-infrared scattering 1s shown 1n Fig. 1. The
source beam utiljzed for the incident and local oscillator
radiation 1s a C! F far-infrared laser producing = 20 mW
of power at 245 GHz (1.22 mm). Detection 1s achieved by

Y Incident Beam

— Plasma

Scattered Beam
/‘.‘“"}T'An\ Phase

: zz#zz;f/Shifter
|
~

|
I
. (¢="7/2)
N N g . £
1 s O
E l:].//_,_,.Mixers
N-————— r————3 B.S.

Local Oscillator

[}

Source

Figure | Experimental arrangement for homodyne
spectroscopy measurement
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£

the use of quasi-optical biconnical Schottky barrier diode

(ZFE
T

’ pL) mixers. The frequency shifted scattered radiation may be
( . collected over a range of wave vectors from 0 < k, < 15
“2; cm . Detailed 1nformation on the scattering system and
o calibration procedures 1s described by Park et al. The
:::. portion of the far-infrared laser utilized as the probe
_i\: beam 1s weakly focussed along a vertical chord to a waist
N of =_% cm producing a measured wavenumber resolution Akl =
\ ‘{ t1l cm . The length of the scattering volume vuiies as a
e function of wavenumber and ranges from :B cm (e point of
NS scattered power) at k, = 12 cm™~ to a chord average as k, -+
Gfxf 0. Scattered radiation in the plane perpendicular to ihe
,::; toroidal magnetic field is examined.
A
"" At a particular wave vector k, , the scattered
radiation beam is divided equally into *wo components which
oer are coupled into detectors 1 and 2 by 50 % reflectivity
L2 - beam splitters. Similarly, the local oscillator beam is
N equally divided to provide rf drive for each mixer. In one
{::J leg of the local oscillator beam (det. 2), a phase shifter
,f\. is inserted. This phase shifter consists of a piece of
0 high density polyethylene (excellent transmission
L ] characteristics at 245 GHz) mounted on a rotation stage.
g By tuning the rotation angle, the path of the LO beam
\js' through the polyethylene is altered thereby changing its
a5 phase with respect to det. 1. This phase shifter is tuned
?:fb such that there is a 90° phase difference between dets. 1
4 }\t and 2. The signal from each detector is then amplified and
i digitized so that the cross- and auto- power spectra may be
. computed.
N
'tz-l Experimental Results
My '
, }: The above described technique may now be applied to
bW density fluctuation measurements in a high temperature

tokamak plasma. Microturbulence (low-frequency density
fluctuation) is driven by the free energy associated with
plasma inhomogeneities such as density and temperature
gradients. For drift wave type fluctuations, it 18
predicted that the turbulence will exhibit a phase velocity
Ype = w/Kg = [kBTe/eBTne] Vn, x By/|Bypl. where yp, 15 the
electron diamagnetic drift velocity, ko and w are the
poloidal wave vector and frequency of the fluctuation,

18 the toroidal magnetic field, Te 18 the electron
temperature, and n, 1s the electron density. The geometry
for scattering from electron drift waves 18 shown
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482 Brower et al.

schematically 1n Fig. 2. The scattering system 1s
positioned such that the 1ncident beam i1mpinges upon the
plasma from the top of the torus (also see Fig 1) aelong a .

vertical chord at the major radius R = | m. This provides
for scattering from {luctuations with a poloidal wave
vector, k@' Depending wupon the orientation of the
collection optics with respect to the 1ncident beam., the
wavenumber matching condition (momentum conservetion) gives
ks = ko ¢t k where ks' ko. k are the wave vectors of the
scattered beam, 1ncident beam, and plasma fluctuation,
respectively. It 1s 1mportant to note that for a
particular scattering geometry. a sign change will occur
(tk) when one switches from the plasma top to bottom (see
Fig. 2 (a) and (c) or (b) and (d)).

(a) kg = kg +K (b) kg = kg - k

() k=~ kg -k (d) kg = ko *+ K

Figure 2. Tokamek scattering geometry

[ I R L

Experimental results from the TEXT tokamak (major
radius R = Im and minor radius a = 27 cm) are shown 1n Fig
3. for & scattering volume located at the plasma botiom
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X
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V) w?2x [kHz) w?2n  [kH2)

.
- 1 r—r——————
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electron
—

¢ L
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electron
-—
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A A A A A A A D & 5 A AL

A A "

S -1000 0 1000
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] Figure 3. Application of homodyne spectroscopy technique to
P . tokamak low-frequency microturbulence data, (a)
homodyne signal from detector 1, (b) homodyne signal
from detector 2, (c) frequency spectra using homodyne
spectroscopy, ks = k, - k. and (d) frequency spectra
using homodyne spectroscopy, ko = k, + k.
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with poloidal wave vector k = 7 em ) The dlschur*g
pazsneters were 1 = 400 kA, Bp = 28 kG, and Ee =2 x 10

cm In Figs. 3 (a) end (b), the homodyne power spectra
Sk(w/2n) from the two mixers are 1llustrated. Each 1s
characterized by a broad spectra which falls-off in power
for w/2n 2 300 kHz. The homodyne spectra provide no
information regarding wave propagation direction as the 2w

components are detected as |*u|. Now however., by
implementing the homodyne spectroscopy technique of
Tsukishima’. wave propagation direction information can be
ascertained as depicted 1n Fig. 3(c). Here, the

fluctuations are observed to possess a clear peak at +w/2n
= 250 * 50 kHz i1n the electron diamagnetic drift direction
as measured 1n the laboratory frame of reference Tha
indicates a fluctuation phase velocity v h(=u/k ) =2 x 10
cm/sec which 1s 1n the drift wave region of velocities. A
substantial component 1s also observed at w/2r < O,
corresponding to the 1on drift direction. The scattering
geometry for this measurement 1s oriented according to Fig.
2(c), 1.e k. = k, -~ K. If we reverse the geometry to
that of Fig. E?d). 1.e. ks =Kk, + k. one would expect a
change 11n sign from the results of Fig. 3(c). which 1s
indeed the case as shown 1n Fig. 3(d). The features of
the scattered spectra are the same except that —w now
corresponds to the electron drift direction.

The component of the frequency spectra corresponding
to the 1on drift direction may result from factors other
than a true i1on drift feature of the plasma On the TEXT
tokamaek, density fluctuations 1n the limiter shadow and
scrape~-off regions have been observed to propagate in the
1on drift direction due to a strong radjal electric field
inducing & plasma rotation effect Another possibility 1s
that the i1nteraction volume may extend to the opposite side
of the plasma thereby introducing components at *w although
both represent the same propagation direction This effect
will be described more thoroughly in the ensuing paragraph

In Fig 4. the frequency spectra at wave vector k =

7T cm are shown at three spatial positions along a
vertical chord through plasma center. scattering volume (L
= *t 14 cm) positioned at the plasma top., midplane and
bott-m The tokamak dlschagse cogdntnons were | = 300 kA.
= 28 kG. and ﬁe =3 x 10" cm” At the plasga top (see
Fig 4(a)). the low (frequency density fluctuations are
observed to be propagating largely 1n the electron

e
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{a) TOP

K =Tcm ' electron

S | e jON

i

-1000 ~500 0 500 1000

FREQUENCY kHz

(bIMIDPLANE

k‘L-7Cﬂ-I1

A At et

-1000 ~500 0 500 1000

FREQUENCY kHz

k.l.- 7061
electron

ion >~ —

(c)BOTTOM

-1000 -500 ] 800 1000

FREQUENCY kHz

Figure 4 Homodyne spectroscopy frequency spectra for

scattering volume centered at plasma
midplane, and (c) bottom

(a) top, (b)
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diamagnetic dri1ft direction with a peak at w/2n = -300 kHz.
The fluctuations traveling 1n the 1on drift direction are
typically at much lower frequency with no clear peak except
at zero frequency. Likewise, at the plasma bottom (see
Fig 4(c)). the fluctuations are again observed to be
propagating primarily i1n the electron drift direction with
w/2n = +300 kHz. The <change 1n sign results from the
reversal 1n direction of the fluctuations wave vector k,
with respect to the fixed wave vectors ko and kg of the
incident and scattered radiation (see Fig. 2). When the
scattering volume 1s centered on the midplane (see Fig.
4(b)). fluctuatons are detected both above and below the
midplane resulting 1n peaks at ¢ w/2n. The wave
propagation direction can only be resolved 1f the
scattering volume 1s situated completely above or below the
midplane. Similar observations have been made at other
wavenumbers .

Summary

The wave propagation direction of microturbulence in a
tokamak plasma has been accurately measured by application
of a new homodyne spectroscopy technique. This method has
been used 1n conjunction with a collective far-infrared
laser scattering experiment on TEXT. The low-frequency
density fluctuations are observed to propagate primarily 1n
the electron diamagnetic drift direction, however, the
broadband spectra also possess an appreciable level of

fluctuations traveling 1in the i1on draft direction.
Application of the homodyne spectroscopy technique
represents an 1nexpensive and eas1ily implemented

alternative to the more technically demanding heterodyne
schemes available 1n the far-infrared. )
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Digital complex demodulation applied to interferometry
D. W. Choi,® E. J. Powers, Roger D. Bengtson, and G. Joyce®
The University of Texas at Austin, Austin, Texas 78712
D. L. Brower, N.C. Luhmann, Jr., and W. A. Peebles

University of California. Los Angeles, California 90024
(Presented on 11 March 1986)

The objective of this paper is to describe the principles of digital complex demodulation, and to
summarize its advantages with respect to rapid time response and insensitivity to noise. These
advantages are demonstrated by application to interferometry data collected on the Texas

experimental tokamak (TEXT).

INTRODUCTION

Interferometry involves the measurement of the line-inte-
grated index of refraction of a medium. In any interferome-
ter a beam of coherent radiation is split, passed along two
paths (known as the reference and working arms), and re-
mixed on a detector surface. Changes in the index of refrac-
tion of the medium along one of these paths, the working
arm, alter the interference of the remixed beams, changing
the detector output. If the variable medium is a plasma, mea-
surement of the detected signal leads to an estimate of the
line-averaged electron density along the working beam path.

In the simplest interferometer, the probe beam associat-
ed with the working arm is mixed with a reference beam
whose phase is fixed. However, this simple scheme suffers
from a severe limitation. It is not possible to distinguish
between the cases of increasing and decreasing plasma den-
sity. This shortcoming may be overcome by introducing a
small constant frequency shift w, between the beams of the
working and reference arms. The detector output becomes a
phase-modulated sine wave at frequency w, with the relative
phase proportional to the line-integrated plasma density.
The phase of the detector output s obtained by comparison
of this signal with a reference signal oscillating at the fre-
quency w,,. In an electronic system, the relative phase of the
detector signal with respect to the reference signal is ob-
tained via sine and cosine producing phase comparators.
Electronic systems are attractive for the following reasons:
the comparator output signals require only simple process-
ing, allowing for real-time data reduction and the computer
signals need only be sampled at a low rate. There are also
several disadvantages: the comparators are sensitive to var-
iations in the amplitude of the detector and reference signals;
the comparators may introduce large errors into the phase
calculation; and electronic systems have difficulty coping
with transient noise. As a result of this notse sensitivity,
fringes are often skipped or added. To counter the effects of
noise, the time response of the electronic system is length-
ened (1.e., bandwidth reduced). Unfortunately, however,
this has the undesirable effect of “washing out™ rapid fluctu-
ations in plasma density assoctated with phenomena such as
sawlooth oscillations.

1989 Rev. Sci. Instrum. 57 (8), August 1986

0034-6748/86/081989-03801.30

The objective of this paper is to describe the principles
and application of digital complex demodulation, which is
the equivalent of digital heterodyning. The advantages of the
digital technique include an insensitivity to transient noise,
faster time response, and improved accuracy of the phase
measurements.

In the following sections, we describe the principles of o
complex demodulation, our approach to avoiding 2 phase
ambiguities, the effects of noise, and an application to inter-
ferometry data collected on the Texas experimental toka-
mak (TEXT).

—
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I. DIGITAL COMPLEX DEMODULATION

Digital complex demodulation is a digital version of
analog heterodyne demodulation and allows the simulta-
neous measurement of the amplitude and phase modulations
of a narrow-band modulated carrier signal as functions of
time. This technique has been shown to be effective and flexi-
ble compared with other demodulation techniques.’ In the
following, we outline the key ideas of digital complex de-
modulation.

A sampled narrow-band signal x(z, ) at a “carner fre-
quency” w,, whose amplitude and phase are modulated, may
be described by

x(1,) = A(1,)cos{wy(t,) + 6(c,) ], (1

where A(¢,) and 6(z,) are the respective amplitude and
phase modulates at the time ¢, = nAt. Equation (1) may be
rewritten in the form

x(t,) = 1724(1,)(exp[iwyt, + i0(1,)]

N

.

P ey
£

o .
(]

T A
C v I ]

+exp{ — i[wyt, + 61,011 (2)

As in analog demodulation, we must downshift the frequen-
cy by an amount — w,,. In digital demodulation this down-
shifting is accomplished by simply multiplying (in the com- .
puter) the time series data representing Eq. (1) or (2) by a

“local oscillator™ component 2 exp( — 1w o1, ). This results

in difference and sum frequency terms. w, — w, and -
w, + W, respectively. By choosing w o = w,, the difference ~
frequency is set 1o zero, ¥
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x(t,)2exp( —iwyt,)
=A()exp[i0(1,)] + exp{ — i[2wpt, +6(1,)1} .
(3

Also, as in analog demodulation, a low-pass filter s aj plied
to the signal. In this case a digital low-pass filter is applied
whose passband w, is chosen to block the sum frequency
component, wg < Wy + @, but to admit the inherent band-
width of the carrier due to phase modulation, wp > |d6(r)/
dr | ... - A linear digital low-pass filter, MAXFLAT,? is se-
lected for this purpose. This filter has a variable passband
and a vanable transition region in which the filter response
drops from 0.95 to 0.05. The amplitude modulation 4(¢, )
and phase modulation 8(¢, ) are easily recovered from the
digital filter output, p(¢, ) = A (¢, Yexp[iB(z, )],

A = (e, (4)

I
6(t,) = arctan(M) + 2Nm, (5)
Re[y(r,)]

where N is any integer.

Il. PHASE AMBIGUITIES AND NOISE

As a result of the multivalued nature of the arctangent
function, there is a 2 ambiguity in the phase demodulation;
we make two assumptions: (1) The original phase demodu-
late 6(1) before sampling is continuous. This assumption is
reasonable if 4 (¢) never crosses zero, since the bandlimited-
ness of the modulated signal x(¢) ensures the continuity of
&(¢). (2) The change in the calculated phase modulate
between any two consecutive samples is less than 7. Thus, if
one obtains a true, unambiguous value of (¢, ), this condi-
tion guarantees an unambiguous value of (¢, , ) by re-
stricting the range of possible values in the interval

6(t,) ~m<bt,,,)<b8,) +m.

The length of this interval is 2.

We now show that the proper choice of the sampling
rate ensures that the phase shift between two samples is less
than 7 The function x(z,) is a product of A(t,) and
explilwgt, + 0(1,)]1}. According to the convolution
theorem, the bandwidth B, of x(r,) is greater than the
bandwidth of either A(1, ) or exp{i{wyt, + 6(t,)]}. Thus,
we have |A6(t,)/27A¢t ... <B,. This inequality may be
written in terms of the Nyquist frequency f, = (24r) ', as
|AG(1, ) max <7T(B,./ [ ). If the sampling frequency is suf-
ficiently high to satisfy the sampling theorem (B, < fy),
then {A8(1,)|,... <. and the problem of 27 phase ambigu-
ities Is removed.

A time series to be demodulated may be contaminated
by noise which includes the quantization noise at the A/D
conversion stage as well as electronic pickup and plasma
noise. The muluplication of x(¢,) by exp( — iw ,t,) trans-
lates the frequency contents of x(1,) by -, in the fre-
quency domain, but has no effect on the signal-to-noise ratio.
However, low-pass filtcring increases the signal-to-noise ra-
tio when the signal A (¢, Jexp[if(r, )] is within the pass-
band. If the noise is assumed 1o be white up to the Nyquist
frequency f . and the low-pass cutoff frequency 1s /. then
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the gain of the signal-to-noise ratiois £/ f . In view of the
fact that the low-pass filtering is being done digitally, it is a
relatively simple matter to adjust the low-pass cutoff fre-
quency to enhance the signal-to-noise ratio.

The error in the calculated phase modulate (¢, ) de-
pends on the signal-to-noise ratio SNR(¢, ) of the filtered
signal, y(¢, ). Toavoid errors in the calculated phase dueto a
momentary low signal-to-noise ratio, a threshold value of
V() Ymm, 18 defined which depends on the amplitude of the
noise. When the signal amplitude drops so that [y(r, )|
<Ymm» the calculated phase modulate 8(¢, ) is ignored and
the previously calculated phase modulate is carried over. If
the noise is a transient, it is reasonable to neglect the phase
measurement and assume the previous value of the phase as
the current value.

In most interferometers the shift frequency w, (referred
to as the carrier frequency in this section) is generally not
known with perfect precision and may also be unstable. The
application of a constant digital local oscillator frequency
shift, w o, which is not precisely equal to w, will therefore
result in an accumulated phase error which increases linear-
ly in time, (v, — w, )¢, . Other sources of phase error in-
clude phase distortions introduced by the low-pass filter and
deviations from a uniform sampling rate. To cancel these
errors a reference signal x, (), which equals the carrier sig-
nal without the plasma phase modulation (¢, ), is also sam-
pled,

xr (tn ) = Ar (tfl )e“p(iwotn ) N
Digital complex demodulation is then applied to this signal
as well, to yield a reference phase modulate 6, (¢, ). The de-

sired phase modulate 8, (7, ), due to the plasma is simply the
difference of these calculated phases,

6,(t,) =6(1,) —6,(1,) .

lll. APPLICATION TO INTERFEROMETER DATA

We have applied digital complex demodulation to dat..
from a 1.2-mm far-infrared laser interferometer on TEXT.
The detector and reference signals had carrier frequencies of
80 kHz. These signals were sampled at 200 kHz for 325 ms.
The digital low-pass filter, MAXFLAT, was set to a band-
pass frequency of 209 of the carrier, resulting in 200 filter

30 — T T T !
".; }» DIGITAL COMPLEX DEMOOULATION 1 2 mm '
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F1G. 2 Companison of sawtooth oscillations observed by electronic demodu-

lation and digital complex demodulation.

coefficients which characterize the filter impulse response.
The amplitude threshoid y,,,., for phase interpolation was set
to 5% of the maximum signal level when free of noise. Figure
1 shows the calculated density for a typical shot. Note that
the digital complex demodulation result faithfully tracks the
density including the dip during the current rise at ~25 ms.

Figure 2 compares data reduced via complex demodula-
tion with data from a standard interferometer utilizing elec-
tronic phase comparators. Both data are from a portion of a
discharge during which “sawtooth” activity was occurring.
The digitally produced traces display the sawtooth shape
(generally observed via other faster diagnostics) while the
electronically reduced data resemble a sine wave, due to the
smoothing resulting from a derated time response, the latter
being necessary to avoid skipped fringes due to noise effects.

1991 Rev. Sci. Instrum., Vol. 57, No. 8, August 1986

Note also that the time response of the complex demodula-
tion approach is sufficiently fast to recover the Mirnov oscii-
lations which are superimposed on the sawteeth oscillations.
These examples demonstrate that digital complex de-
modulation possesses a number of advantages with respeci
to insensitivity to noise, faster time response, and phase mea-
surement accuracy. Also, the digital approach is inherently
flexible, allowing relatively easy adjustment of the low-pass
filter cutoff frequency and the amplitude threshold y,,,. The
limitations of digital complex demodulation stem from the
memory and computation requirements. We typically sam-
ple the 80-kHz detector and reference signals at 200 kHz for
325 ms, yielding 130 000 samples. In addition, a 16-kHz di-
gital low-pass filter (209% ) contains 200 coefii-tents repre-
senting the filter impulse response. The resulung -onvolu-
tion integrals require 13 min on a VAX 11/780 with a
nonoptimized code. The use of an array processor would
probably reduce this time requirement considerably
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Resolving the propagation direction of tokamak microturbulence via

homodyne spectroscopy

D. L. Brower, W. A. Peebles, and N. C. Luhmann, Jr.

Criversuy of California, Los Angeles. California 90024
Ch.P. Ritzand E. J. Powers

University of Texas. Ausun, Texas 78712

{Presented on 11 March 1986)

A new homodyne spectroscopy technique [T, Tsukishima and O. Asada, Jpn. J. Appl. Phys. 17,
2059 (1973) | has been applied to tokamak microturbulence measurements in order to resolve the
frequency spectra and wave propagation direction of low-frequency density fluctuations
Apphcation of this method provides a high-resolution, inexpensive, and easily implemented
alternative to the more technically demanding heterodyne detection schemes typically available
Companson of heterodyne and the new homodyne spectroscopy results will be made.

INTRODUCTION

Laser and millimeter-wave scattering techniques are com-
morly used to study the space-time statistics of electron den-
sity fluctuations in tokamak and other plasmas. Of particu-
lar importance is the determination of the direction of
propagation of the fluctuations. Since the scattering geome-
try fixes the direction of the scattering wave vector k, the
direction of propagation information is carried by the sign of
the fluctuation frequency w. The fact that waves may be
propagating both parallel and antiparallel to k is manifested
by the presence of blue aund red sidebands centered around
the incident wave frequency w,,

To recover the propagation direction information con-
tained in the blue and red sidebands, heterodyne detection
techniques are typically employed. This approach requires
two coherent sources, with a frequency difference Aw. to be
utilized as the incident and local oscillator beams. After nuy-
ing, the frequency range of the resultant signal is Aw + w,
where w is the frequency associated with the plasma fluctu
ations. As long as Aw»w, the blue/red sidebands may he
resolved. In contrast, if a classical homodyne approach s
used, Aw = 0, and it is no longer possible to unambiguousl
determine the wave propagation direction

Realization of a heterodyne detection system i the Lar
inirared i1s expensive (e.g., two lasers) and techmcally
trivial {e.g., intermediate frequency (1F ) stabilinn T
mentation of a rotating grating to frequency shitt oo -
the source beam 1s a feasble altermatinve alor e
quency offset 1§ limuted to roughly Ay TS0 ol
cient for microturbulence measurements we
areobserved upto I MH/z: A onsider e
expensive method proposed by Taubovr o
mits resolutbion of the wave propaa
analysis of homodyne signais Thisnow -
copy techmique utthizes advance! o
while requiring mimnor moditic st
tem
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I. EXPERIMENTAL TECHNIQUE AND APPARATIS

Tie IF output of the scattered signa atrer o
real quantity described by

o) = Re(l do v

-

- - -

wherek . =k, - A isthewave veue
ation, and V(A Lo sonmoa W
fluctuation level The sign 1o, o
sents the propaganion g+

frame of reference anyg ot
However. from the rea’ o,

the reconstruction v b o
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F1G. 1. Experimental arrangement for homodyne spectroscopy measure-
ment.

transform algorithm, the frequency spectrum was obtained
with a resolution of Aw/27 = 1/T’~8 kHz. Mixer and am-
plifier noise contributions could be subtracted from the auto-
power spectra although signal-to-noise levels were suffi-
ciently large so as to make it unnecessary.

A schematic of the experimental arrangement employed
for application of the new homodyne spectroscopy tech-
nique to collective far-infrared scattering is shown in Fig. 1.
Detailed information on the scattering system is described
by Park et al.?

At a particular wave vector k, the scattered radiation
beam is divided equally into two components which are cou-
pled into the detectors by 50% reflectivity beam splitters.
Similarly, the local oscillator beam is equally divided to pro-
vide rf drive for each mixer. In one leg of the local oscillator
beam a phase shifter is inserted. This phase shifter consists of
a piece of high-density polyethylene (excellent transmission
characteristics at 245 GHz) mounted on a rotation stage. By
tuning the rotation angle, the path of the LO beam through
the polyethylene is altered, thereby changing its phase. This
phase shifter is tuned such that there is a 90° phase difference
between the detected signals in the two channels. The signal
from each detector is then amplified and digitized so that the
cross- and auto-power spectra may be computed.

. EXPERIMENTAL RESULTS

The new homodyne spectroscopy technique will now be
applied to density fluctuation measurements in a high-tem-
perature tokamak plasma. Microturbulence (low-frequency
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density fluctuations) is driven by the free energy associated
with plasma inhomogeneities such as density and tempera-
ture gradients. For drift-wave-type fluctuations, it is predict-
ed that the turbulence will exhibit a-phase velocity of order
Vpe =w/ke = (kg T,/eBn, )Vn,XB/|B,|, where vy, is
the electron diamagnetic drift velocity, kg and w are the
poloidal wave vector and frequency of the fluctuation, B is
the toroidal magnetic field, T, is the electron temperature,
and n, is the electron density. The scattering system is posi-
tioned such that the incident beam impinges upon the plas-
ma from the top of the torus (see Fig. 1) along a vertical
chord at the major radius R = 1m. This provides for scatter-
ing from fluctuations with a poloidal wave vector. kg . De-
pending upon the otientation of the collection optics with
respect to the incident beam, the wave-number matching
condition (momentum conservation) gives k, =k, + k,
where k,, k, and k are the wave vectors of the scattered
beam, incident beam, and plasma fluctuation, respectively.
Similarly, energy conservation dictates w, = w, + w, where
the subscripts have the same meaning as above. In addition,
it is important to note that for a specific scattering geometry,
a sign change ( + k) will occur in the detected signal when
one switches from the plasma top to bottom for fluctuations
traveling in a particular poloidal direction.

Experimental results from the Texas Experimental To-
kamak (TEXT) for a scattering volume located at the plas-
ma bottom with poloidal wave vector kg =7 cm™" are
shown in Fig. 2. The discharge parameters were I, = 400
kA, Br =28kG, and A, =2x10'*cm~2. In Fig. 2(a), the

1 v v
a)
ion electron
4 —

P, [Arb. units]

oL . e s D,

-1000 0 1000
w2r {kH2)

b)

electron
<

P, [Ab. units)
Ty Yo §g ov 3 v §ovygy vy v § v

Acd A A A 8 8 A A A A L. A &

0 N

-1000 0 1000
w?2rn (kHz)

Fia. 2. Application of homodyne spectroscopy technique to tokamak low-
frequency microturbulence data; (a) k, =k, — k. and (b) k, = k¢ + k.
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Fi1G. 3. Heterodyne detection frequency spectra.

fluctuations are observed to possess a clear peak at + w/
2m~275 + 50 kHz in the electron diamagnetic drift direc-
tion as measured in the laboratory frame of reference. This
indicates a fluctuation phase velocity vy, (=a/
ke )=2 % 10° cm/s, which is in the drift wave region of ve-
locities.> A substantial component is also observed at w/
27 <0, corresponding to the ion drift direction. If we reverse
the geometry from that of Fig. 1, one would expect to see a
change in sign, which is indeed the case as shown in Fig.
2(b). The features of the scattered spectra are the same ex-
cept that — @ now corresponds to the electron drift direc-
tion.

The component of the frequency spectra corresponding
to the ion drift direction may result from factors other than a
true ion drift feature of the plasma. On the TEXT tokamak,
density fluctuations in the limiter shadow and scrape-off re-
gions have been observed to propagate in the ion drift direc-
tion because of a strong radial electric field inducing a plas-
ma rotation effect.

Heterodyne scattering results for kg = 7 cm ™' under
plasma conditions of /, =300 kA, By =26 kG, and
A, =2x 10" cm~* are shown in Fig. 3 for scattering vol-
ume positioned at the plasma bottom. The frequency differ-
ence between the local oscillator and incident beams (IF) is
Aw/2r=~1100 kHz. By subtracting the IF frequency contri-
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bution from the scattered spectra and defining it as the new
zero, one can plot the fluctuation spectrum. The resolution
near zero frequency is limited by the IF bandwidth which is
+ 20 kHz. As with the homodyne spectroscopy technique,
moving the scattering volume from plasma top to bottom
results in a change of sign for the fluctuation spectrum. In
comparing the results of Figs. 2 and 3, it is very evident that
both the new homodyne spectroscopy and heterodyne detec-
tion methods produce similar spectra. Any differences can
be attributed to plasma discharge conditions. The homodyne
spectroscopy method provides improved resolution near
zero frequency ( + 8 kHz).

I1l. SUMMARY

The wave propagation direction of microturbulence in a
tokamak plasma is measured by application of a new homo-
dyne spectroscopy technique. The accuracy of this method is
established by comparison with results from a heterodyne
scattering system which are similar. Both techniques show
the low-frequency density fluctuations to be propagating
primarily in the clectron diamagnetic drift direction: how-
ever, the broadband spectra also possess an appreciable level
of fluctuations traveling in the ion drift direction. Applica-
tion of the homodyne spcctroscopy technique represents an
inexpensive and easily implemented alternative to the more
technically demanding heterodyne schemes available in the
far infrared.
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DIGITAL ESTIMATION OF LINEAR/QUADRATIC TRANSFER FUNCTIONS
WITH A GENERAL RANDOM INPUT

Kyoung Il Kim and Edward J. Powers

Department of Electrical and Computer Engineering
and Electronics Research Center
The University of Texas at Austin
Austin, Texas 78712, U.S.A.

ABSTRACT

A new digital method of estimating linear and
quadratic transfer functions of a quadratic system
with a general random input is presented. The
feasibility of the technique is demonstrated by
analyzing simulated data. It is also shown that
considerable error occurs in estimating the
transfer functions based on a Gaussian input
assumption, when in fact the input is non-
Gaussian,

1. INTRODUCTION

A difficulty encountered when one attempts to
apply the Volterra functional series to nonlinear
problems is the measurement of the VYolterra ker-
nels [see, e.g. 1]. So far, a fundamental assump~
tion underlying many approaches involves the fact
that the "input" {s assumed to be a stationary
random process which possesses Gausaian statis-
tics, an assumption which allows a substantial
simpliffication of the relevant mathematics. In
many practical cases, however, the input excita-
tion i{s not under the direct control of the exper-
imentalist which precludes the use of the so-
called "probing™ method, thus one wmust use the
measured input data as they are observed.

It has been shown in [2] that, for a zero-
mean Gaussian input, expressions for the linear
and quadratic iransfer functions are respectively
given in terms of various spectral moments up to
third order (i.e., the bispectrum). However, when
a general random input is applied to the system,
it 1s extremely difficult to find such closed form
expressions for the transfer functions. Katzenel-
son and Gould [3) described an {terative method to
solve this problem, and Eykhoff (4] considered a
discrete time version. Also Ritz and Powers [5)
showed that when the input is weakly non-Gaussian,
transfer functions of a quadratic system can be
estimated by an iterative approach in the discrete
frequency domsin.

It is the purpose of this paper to descridbe a
new digital method of processing input and output
signals in order to quantitatively measure the
linear and the quadratic transfer functions even
wvhen we cannot assume a particular characteristic
of the (input. In the next section, it is shown
that the linear and the quadratic transfer func-
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tions can be evaluated in the discrete frequency
domain by solving matrix equations. In section 3,
a known system is analyzed to show the feasibility
of the analysis results. In addition, the results
are compared with the transfer functions estimated
by the "Gaussian input method™ in order to 1llus-

trate the deleterious effects of assuming a Gauss-

ian input when in reality it is not.
2. ESTIMATION OF TRANSFER FUNCTIONS

Since we will concentrate on frequency domain
analysis and the objective is to find a digital
method that can be practically implemented, we
will start from the input-output relationship in
the discrete frequency domain. In the following,
we assube the unknown nonlinear system {s of
second order (i.e., quadratic), thus, higher order
terms may be safely neglected. Then the model to
be studied can be expressed as follows;

Y(f,) = B (£IX() + T Hy(L, 0 0X(LIX(E)) (1)
+lem

vhere X(f ) and Y(f_ ) respectively represent the
discrete mFourter !ranaforns (DFT's) for a finite
number (N) of observations of the input and the
output signals of the nonlinear system described
by Volterra series up to second order. On the
other hand, H (fn) and H,(f ,f,) are linear and
quadratic trnns}er functiong wﬁlc . are given by
the Fourier transforms of Volterra kernels at a
discrete set of frequencies
(f_=n/N; ne=(N-1)/2,...,=1,0,1,...,N/2}. It will
be assumed that the quadratic transfer function
H(f ,f,) 1s a symmetric function of its argu-
sént, 1., Hy(, £ )oH, (F),1,).

Determination of the linear and quadratic
transfer functions in terms of the input and out-
put characteristics can dbe carried out by solving
the following set of equgtions which gre objained
by multiplying (1) by X (f.) and X (f )X (),
respectively, and then taktn= an expected vnluojor
each side.

. 2
ELX (£ 0Y(£,)] = H (£ )EC[X(f)|°)

*
+ Il Hz(fk.fl)E[X (f.)X(fk)X(fI)] 2)
felem
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BOX (200" (£,0X(1,0) = R, (e 2RTx" (£ X (£ XUE,)]

. .
+ Il Hz(fk.t‘l)E[X (r1)x (fJ)X(fk)X(fl)] 3)

AU b.
«",l. b
(M)
vt
"ﬂ:: Note that (3) is  meaningful only when
"::l X fu=f,*f1=f,*f, because of the properties of higher
‘c.:‘n ordery* apec!ra moments [6].
]
v Y When the system input is zero-mean Gaussian,
,-!;.: the terms containing the third order moment of the
AQ"[’ input in (2) and (3) vanish. In this case, the
l’(' linear and the quadratic transfer functions can be
9: .\' determined separately and expressed by the various
:.'0. spectra up to third order [2). More specifically,
.l:' they are given by

erx’ (£ )x(e,))
wa. Ht(fn) - 3 (8)
[ EC|x(r,)|)
N
- [} *
1808 ECX (£,)X (£)X(f,+£,)]
o Hy(f,.0)) = 5 3T k*ls0.  (5)
,_ &[] X(1)] JEC|X(f))[€)
iy However, for the case of a general input, we have
& to solve (2) and (3) simultaneously so that it is
: 0 extremely difficult to find the closed form solu-
.> ) tions like (4) and (5).
it Next, we will describe a method of solving
: 'y (2) and (3) which can be digitally implemented.

* Due to the symmetricity assumed for M (f .f.), we

~ can express the output only in teng o’ t}w por-
‘0;.'0: tions of the quadratic transfer function which are
:‘. in the sum and difference interaction regions of
.'l’g the two dimensional frequency domain (regions S

. L]

o and D in Fig. 1). Using this fact and expanding
.g the summation term in (1), we can rewrite (1) |in
‘:{. L the following vector form;

) (e = H° = x'n (6)
hel -
:tb:e where t denotes transposition, and

(MO
B
e [H‘(fm). -?H?(f.,,.f..__l
'?’l:' Ht 2 2
i ,.f‘ R -

« s 2 2 2

' :: mrm). X(rm;, =

1208 X"~ exqe X(£) X(f

., - [(.).X(f_.-)(z. s, ,

K00 2 2 2 7

- In (6), f, signifies the Nyquist frequency associ-
oy ated with the sampling of the fnput and output
‘q.l signals. Then solving simultaneously (2) and (3}
;0::, is equivalent to solving the following matrix
,:g. D equation;

DO
X ) » .t
.:,:Q EFX Y(f,)) = ECX X IH. n

Equation (7) 1s linear in the transfer function
an vector H, and so H is given by

2
o
.)“1'

,’:('.
l'i‘!i;
&
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#
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RN RN MR U OO 2 W
R DR

Fig. 1 Twvo dimensional frequency

domain.
e e e v (8)

if s[_)g'g(_"] is not singular. The solution given by
(8) can also be considered as a result of mul-
tivariate linear regression analysis and thus the
transfer functions obtained in this manner are
optimum in the mean aquare sense when there 1s any
addptve noise present in the output. Note that
E[X X") 1s a Hermitian matrix consisting of vari-
ous spectral moments of the input signal., Except
for the first element, the first row and colummn of
this matrix represent the bispectrum while the
first element is the auto power spectrum of the
input. The remaining elements are fourth order

)....,Zﬂz(f-,ro).....2H2(f".f._u)]. for m odd

).....2H2(r.,f°).....ZHz(f",r-_H)]. for o even,

]
2
XL Veees o XUEIXUEG) e u XUEIXT, ()], for m odd

ey ).....X(f.)x(fo).....x(fH)X(f-_")]. for m even,

SRR _
R GACHE A,

spectral no'eets of the input. The size of the
matrix E[X X"] to be inverted depends on the
number of data points (N=2M) taken for the DFT's
and the frequency index m. For example, it is a
(Moz-:;g)-(mz-s(g) matrix if m is even, and it {s
(M2 )x(M+2~—==) when m is odd. Therefore the
size d&creases aa ® increases. The largest one 1is
(noz)-(noz) vhen =<0, and the smallest one is
(3+2)=(3+2) when meM-1 or M.
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' :::1 If the input is zero-n.aq Gaussian, it can be two methods. In this case, the mean square errors
UM shown that the matrix E[X X ) becomes a diagonal have been calculated as follows; by the GCaussian i
M { matrix and thus the transfer functions given by input method, "SEI'9 .5, MSE _«4,0, and by the gen-
S hd (8) have the same expreasions for the linear and eral input method, MSE =0, os" MSE =0.04. Compar-
1,,4‘. quadratic transfer functions as those given bdy () ing the mean square error valuas as well as the
,:'_,. and (5). Consequently the solution given by (8) plots, one can clearly see the obvious differences
ol is a general one for the tranafer functions of a between the transfer functions estimated by the
TN . quadratically nonlinear system with an arbitrary two methods. This indicates that, in order to
*"\_‘,' random input, {.e., it {includes the zero~mean obtain useful estimates, one nmust use the new
LAt Gaussian input as a special case. method developed in this paper when there {s not
Y any good a prior!{ knowledge about the input signal
. 3. ANALYSIS OF SIMULATED DATA statistics or when the input is not a zero-mean
W Gaussian signal.
o FORTRAN programs have been written on the
Ao basis of the analysis results described in the b, CONCLUSION
~;,,"\'-' previous section and tested by analyzing simulated
:_ _' data generated by a known system. In this paper, we have discussed the problem
¢ of estimating system transfer functions by pro-
The known system is formed as follows; cessing random {nput and output data, and
e 2 > described a new digital estimation method which
Jeind y(t) = -0.64x(t) + x(t-2) + 0.9x°(t) + x“(t-1).(9) can be successfully applied to the modeling of a
X s quadratically nonlinear system excited by a non-
K Therefore the transfer functions are given by Gaussian input. Analyzing simulated data, we have
‘l" . also demonstrated the feasibility of the tech-
Wty H,(r) = 0.6k + e (10) nique. Conaldering the computation time and the
Sty ton(L.ot.) size of the processor memory available for practf-
Ho(f.,£.) = 0.9+ e - 172 . an cal applications, it is desirable that the number
“. o- 212 ort :atal point: in ::c: segn:nt of ;econ: dat.: be
Yidd; - not too large since etermines the dimensions
.‘4'.: I:;s:r:c:::ulmt::n:‘{” ;u::;i:r;: O; the given sys of the matrices that must be inverted in order to
o g © solve the matrix equations.
B \.1\ .
<o The approach developed in this paper has been
. A tested by applying a zero-mean exponentially dis- ACKNOWLEDGEMENT
‘ A Poogt o o W S R This vork uas supported by the Department of
. . L] ]
; : 128000 sample points of data record have been gen— Defense's Joint Services Electronics Program
K) 3 erated, and they were divided up into 2000 seg- through the Air Force Office of Scientific
’ - - »
:.'. ments of 64 data points each. Research Contract F49620-82-C-0033.
,'..“:' For a quantitative measure of the quality of REFERENCES
Tah the estimates, the normalized mean square errors " _
J involved in the computed transfer functions are Elgnc'nle{::gdang Lé:;’::k'ofm;h:::;fl C:g::::::g:.
", defined as follows; Application, and Interpretation, Math Biosci.,
i MM, (£)-R(F )|z 37, pp. 135-190, 1977.
e MSE. = 1 T 1V '’ MVm (12) (2] L.J. Tick, "The Estimation of Transfer Func-
! 4 1 M nel [H, (f )lz tions of Quadratic Systems,” Technometrics, Vol,
'6'.’ 1V, 3, No. 4, pp. 563-567, Nov. 1961,
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:1.':- (5] Ch.P. Ritz and E.J. Powers, "Estimation of
_-.:,' R Nonlinear Transfer Functions for Fully Developed
':d'; ::Gf'e .gignl;:esr:: ::::lln:t:n::af;:i::; :::‘:ﬂs s Turbulence,” FRCR No. 273, Fusion Research Center,
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Identification of Nonlinear Systems in the Walsh
Sequency Domain

KYOUNG IL KIM, JAE YOUNG HONG. MEMBFR. IEEE, AND
EDWARD J. POWERS. JR.. FELLOW, IEEE

Abstract—A method of measuring transfer functions for nonlinear
dyadic-invariant (NLDJ) systems described by Barreit’s orthogonal model
is discussed. In particular, this paper develops the expressions for the
transfer functions up to third order, and the results show thai the transfer
functions can be obtained from the raw input and outpul data by
computing the appropriate Walsh sequency power spectra.

Key Words—Nonlinear systems, Walsh sequency domain, transfer
functions.

Index Code—P2d, K2d.

I. INTRODUCTION

Ever since J. L. Walsh published a complete set of orthogonal
functions [1]. Walsh functions have been one of the most important
examples of nonsinusoidal functions in engineering applications. The
computational cfficiency of the fast Walsh transform (FWT) and the
feasibility of its software and hardware implementation provide the
incentive to find useful applications. On the other hand. motivated by
the fact that the Walsh functions form the natural basis for
representing dyadic-invariant systems just as trigonometric functions
do for ime-invariant systems, some studics have been carried out to
find useful properties of the dyadic-invariant systems. For example.
an optimal lincar dyadic-invariant (LDI) system was developed [2].
the problem of modeling a multiple input/output LDI system in terms
of sequency transfer functions was considered [3]. and Walsh series
expansions were utilized to develop a method of measuring the
kernels up 1o order two in Wiener's nonlincar system model [4].

In this study. we present a method of measuring kernels for the
dentification of a class of nonlincar systems which can be described
by Barrett’s model. Since we let the model have dyadic convolution
operations, we refer to these systems as nonlinear dyadic-invariant
(NLDI) systems. In particular, we will obtain the cxpressions for
kernels up to third order using Walsh transform techniques. Thus this
study can be considered as an extension (through a different
approach) of the results in {4}, and also a parallel study to that which
has been carried out by Hong er al. in the Fourier frequency domain
[5].

By orthogonalizing the Volterra functional series for a white
Gaussian input signal. Wiener provided a representation for nonlincar
systems [6]. In many practical situations, however, the input to the
system is usually nonwhite. In such cases, Barrett’s orthogonal model
[7] for nonlincar systems is a useful one since it is valid for Gaussian
inputs with arbitrary spectral densitics.

Manuscript received September 6. 1985. revised February 28, 1986. This
work was supported by the Department of Defense Joint Services Electronics
Program through the Air Force Office of Scientific Research Contract
F49620-82-C-0033.
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1. DEVELOPMENT

Now we consider the space of real nonncgative-coordinate signals.
Thus the input x(/) is defined for + = 0. Following Barret's
orthogonal representation, we can express the output v(r) of an
unknown NLDI system for a zero-mean dyadic stationary (3]. 8]
Gaussian input process x(f) as follows:

,V(’)=ho+§0 hn)x(t @ ) dt,
+ ‘.ugw h:(lh ':){X(l (-] l[)X(’ [} (:)
Jo Jdo

-Elx(t ® t))x(t ® 1;)]} dty dt,

+ Eg:s: hn, t, B{x(t & 1)x(te L)x(te )
-x(t® n)E[x(te )x(te t))

-x(te L)Ex(te L)x(te 1))]

—x(1® K)E[x(t® t)x(t® )} di, di, diy+ -+ - 1))

where h, is the nth order kernel. F[-] denotes the expectation

operator, and the operator @ signifies modulo-two addition (without

carry) of the two real numbers involved. In the following context, and

without the loss of generality, we assume that the kernels are

symmetric functions in their arguments since it can be seen that the

output (/) would be identical for any permutation of the arguments.
The Walsh transform of (1) is given by

Yo = Wiy = v, 0 ar
= hodl0) + S: Hy(0)X(0)8(0 ® ) do,

+S S Hx(0y, 02){ X(0:) X (02)
0o vo

-E[X(a,)X(az)I}b(a ® 0 & 02) d0| daz

TT Mo, o ot x @)X (@)X (@)
00

0

- X(0)E[X (o) X (a3)] - X (02) E[ X (03) X (0)))
- X(a)E[ X (0)) X (02)]}

Mo ® 0y ® 0, ® 03) doy do, doy+ -+ (2)

where W{-} signifies the Walsh transform operator, ¥(o, 1) denotes
a gencralized Walsh function [8], and H,(0), 03, - *, 0,) and X(0)
are Walsh transforms of the nth order kernel and the input,
respectively. We refer to H,(0), 0, * - -, 0,) as the nth order transfer
function in the Walsh sequency domain. Note that the nth order
transfer function has the same symmetry property as that of the ath
order kernel. In (2), the delta function 8(o) is the Walsh transform of
the unit step function, i.e., &d) = [F¥(o, 1) dt, and it has the

0018-9375/86/0800-0162801.00 © 1986 IEEE

L%

LR e AN COSA IO O,
B Yo IO -
RUODUER ORI ORI OO NG

v ‘Jl‘g.

.' ‘..‘| O X} LN i ) () M - 4
Y N P T L TG g e R e

N

N RACT RO ROATRS

IR T
-‘.-« "‘.\.ﬂ




b Bl Tl " Al T S Y Y

Y - - T

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. VOL EMC-28. NO. 3. AUGUST 1986

following properties (8] which are similar to those of the Dirac delta
function:

S:f(t)w @ 1) dr=f(1))

g Mt e 1) di=1, for 1,>0.
(1]

To get (2) from (1), we have utilized the product rules of generalized
Walsh functions which arc expressed as

Yo, V¥(o:, N=V¥(o, ® 0>, 1)

Yo, ,)¥(e. i:)=¥(o, 1, ® 1;).

By averaging (2) and then integrating, h, is readily obtained such
that

ho= 50 E| Y(o)] do.

Since we assume that the transfer functions are symmetric
functions of their arguments, other transfer functions up to order n,
e.. Hy(o), 02, -, 0,). may be obtained by multiplying (2) by
X(o/)X(a,) -+ X(o,). respectively. and then taking an expected
value of each side. Because of the Gaussian nature of the input
process and the orthogonality of the functional series in (2), only one
term containing (0, - - -, 0,) remains in calculating E| Y{(a)X(a )
* X(o,)]. In particular. the transfer functions up to third order arc
given as follows:

Tx(0)

H@=1 0

3)

(0))8(c, ® 02)} “@

_vxx(oh 02) - horx

1 {r
Hxa), 02) =37 {

vx,\x(ol» adz, 0_\)
T2 (0))T'(02)T (0))

Fx(al)r.r(az)

Hio})
{n(a)) 8(a; ® 03)

l
Hyo,, 1, o3) = [

H(ay) Hi(ay)
rx(‘,l) 6(0| ® X( 6(0] @ 02)}] (5)

a3) +

In (3)-(5), T,(0) is the Walsh sequency power spectral density
function of x(f), and I',,... (0}, 03, ' - *, 0,) is the nth order Walsh
cross spectrum such that I',(0)(c ® o)) = E[X(d)X(0))], and
T (oy, 02, 25, 0,)0(0, ® 0, @ ® 0, ® 0) =
E[ Y(0)X(a,)X(a3) X(a,)]. Note that the nth order Walsh
spectrum can be defined as the Walsh transform of the nth order
logical correlation function, and, in general, it is not directly related
to the Fourier spectrum. In the case of the second-order moment, the
relationship between discrete Walsh and Fourier power spectra and
their computation was discussed in [9], and the algorithmic properties
of logical and arithmetic autocorrelation functions were investigated
in (10).

We can see that the resulting expressions for the kernels up to third
order have much the same form as those obtained in the Fourier
frequency domain [4], except that they are expressed in terms of
Waish instead of Fourier spectra. This result implies that we may take
advantage of the computation procedure with which we are familiar
in Fourier analysis [11]; that is, the nth order transfer function
H,(o,, 0;, * -+, 0,) can be obtained from the raw input and output
time-series data by computing the appropriate power spectra using
the fast Walsh transform algorithm.

Finally, we note that the statistical approach used in this paper to
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obtain (3)-(5) is equivalent to the approach in which we minimize the
mean-square error between the output of the actual system and the
model [12], [13]. Therefore, considering () in (1) as the estimate of
the desired signal and x(f) as the signal immersed in noise, the
transfer functions developed in this paper would specify the nonlinear
filter which is optimum in the mean-square sense [13}. [14].
Although, due to the lack of a simple relationship between arithmetic
convolution and logical convolution, the existence of natural systems
that can be modeled by (1) is open to question, we can extend the
results developed in this paper so as to design an optimal NLDI filter
which can be used as an alternative to a time-invariant filter, The
implementation as well as the design of such filters in the Waish
sequency domain would be very efficient.
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