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Summary:

Consider an array X=(X

i,3&N) of random variables, and let’

ij’
U=(U§3) and V=(Vij) be orthogonal transformations, affecting only
finitely maﬂy coordinates. Say that X is separately rotatable 1f

UXV? g X for arbitrary U and V, and jointly rotatable if this holds

with U=V. Restricting U and V to the class of permutations, we

get instead the property of separate or joint exchangeability.

vt o

Processes on Ri, R*x[o,;] or [0,1]° are said to be separately or

P el

jointly exchangeable, if the arrays of increments over arbitrary

1

square grids have these properties. For some of the above cases,

explicit representations have been obtained by Aldous (1981) and

I3

Hoover (1979). The aim of theQPresent paper is to continue the

PSS ANy

work of these authors by deriving some new representations, and by

solving the associated uniqueness and continuity problems.
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l. Introduction

Consider an infini.e two-dimensional array of random variables

X=(X i,jeN) . We shall say that X is separately (or row-column)

ij’
exchangeable, if its distribution is invariant under permutations

of both rows and columns, i.e. if (Xi*) d (X ) for all permutations
4

p.d.
173
(pi) and (qj) of N. If this condition holds with the same permutaticn

) d (X ) for all (pi), we shall

i] P;P.
1°)
say instead that X is jointly (or weakly) exchangeable. In the

Pl AL S ]

for rows and columns, i.e. if (X

above definitions, it is clearly enough to consider permutations

(pi) such that pi=i for all but finitely many 1i.

NN

Aldous (1981) and Hoover (1979) proved independently that an

AT

array as above is separately exchangeable iff it is distributed as

X5 = O0GE M A ), i3eN, (1)

WA Y Y

for some measurable function f: [0,1]4—+-R, where the guantities

5

4

& and 51'7j'” i,jéN, are i.i.d. random variables, uniformly

ij’

.o
»

distributed on [O,l] (U(0,1) for short). Hoover also showed that

YR Y
2 "

an array 1is jointly exchangeable iff it is distributed as

xij = f(u,Ei,gj,)«ij), i,jeN, (2)

AT

for some function f as above, where d,El,EZ,... and Aij’ i<j, are
i.i.d. t(0,1), while Aii=0 and Aij=Aji for all i and j. Aldous 3
gives the same result without proof, in the special case of

symmetric arrays (where Xij=X and hence f(-,x,y,-)=f(-,y,%x,°)).

ji
Since the representation in (2) will play a basic role in this
3 paper, we give a short proof in Section 3 below, employing the D

) techniques of Aldous. (Hoover's as yet unpublished procof uses ideas

VI

from logic and non-standard analysis, and may be difficult to read N
for probabilists.) Note, incidentally, that representation (1)

follows immediately from (2), since the two representations are -

equivalent for (i,j)€(2N)x(2N-1). This observation will often be L2

A e
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useful in the seguel.

Aldous, in his brilliant 1981 paper, goes on to prove a

|
;
o
]
'
]
)

conjecture of Dawid (1978), giving the general form of a separately

rotatable (or spherical) array. By this we mean an array X as above,

such that UXVT g X for all linear operators U and V on R® which

rotate finitely many coordinates while leaving the others invariant.
Transformatiocns of this type will be called rotations, and for these
the matrix notation above will coften be convenient. The general

representation theorem states that an array is separately rotatable

iff it is distributed as

13
. . 2
for some random variables o and O‘l’a?' ... with qu<ao, where the

quantltles Aij' €ik and ’hk are i.i.d. N{(0,1) and indevendent of

i
00
X.. = GAij + Z"‘ksik"ljk' i,jeN, (3)
k=1
o and (ak). In fact, the general array is known to be a mixture
(in the distributional sense) of dissociated ones, where (Xij’
iajgn) and (Xij’ ivj>n) are independent for each n, so Aldous
restricts his attention to the latter and obtains a representation
(3) with censtant coefficients. He also needs a moment condition for
his proof. Given Aldous' work, it is not hard to supply the additional
arguments needed for the general version, which is done in Section 4
below. Even this result will play a key role in subsequent sections.
In Section 5, the characterizations in (2) and (3) will
be combined with some methods from Aldous'paper to yield a
corresponding representation in the jointly rotatable case, where

1t is assumed that UXUT d X for all rotations U. For the special

case of symmetric arrays, our representation becomes

& N

- - co RS

X454 ?513. YRS WO }_f‘k‘giksjk 5.5, i, (4) e

k= 2,

where J, . denotes the Kronecker delta. while the A,. and £,  are A
1] ij ik b

i.i.d. N(0,1) as before, and o, ¢ and «d,°5,... are arbitrary random e




variables independent of the /\ij and €ik and satisfying Za§< oo,

Dawid (1978) discusses the further restricted case when the finite

s e 40 B aLg

subarrays are non-negative definite. In this case (4) simplifies to

[* -]
Xy = ?égj + Eé;*kzikgjk’ i,jeN, (5)

PLLEELS

with non-negative ? and o(l,o(.z,... satisfyinag zo(k< pa, as conjectured

.

by Dawid. In fact, Dawid proves that the representation (5) is

equivalent to (3) above, and so his conjecture was essentially

rov s
RO

settled already by Aldous paper.

The last two sections are devoted to exchangeable and continuous

3 random processes X in the plane, as introduced in Aldous (1985).

O

Here the definition of exchangeability is stated in terms of the

t

increments of X over finite rectangles I, given by

: X(I) = X(b:d)'X(&,d)"X(b,C)*’X(a,C)

# . when‘I=(a,b)x(c,d). e shall say that a process X on Ri, R+x[0,l],

Lay % -' :' ‘-.

T_O,l]xR+ or EO,I]Z is separately exchangeable, if the array of

o f 1T‘

increments of X with respect to an arbitrary rectangular grid has

S

this property. The definition of jointlyv exchangeable processes

{UAA

2 2 . .. ,
on R, or [p,1]° is similar, except that we have to consider square

grids emanating from the origin. For definiteness, we shall assume

RS

in both cases that X(s,0)=X(0,t)=0.

>

In Section 6 we show that a process on Ri is separately

exchangeable and continuous iff it is distributed as

L v« 1 " v
',/1-_...

= +
Xst ?st dAs

S . . B . sC.. , 6
. j}z_l (ochj(s)C](t)+{33BJ(s)t+a’Jst(t)) (6)

. . 2
for some random variables P' o and “j'ﬂj'xj’ j€N, with Z(.xj+/3§+6§)

< so. Here A denotes an independent Brownian sheet, while the Bj

A AR AR

and Cj are mutually independent Brownian motions, which are also R

BT

assumed to be independent of everything else. The same representation

1s valid for processes on R+K[0,l] or [0,1]2, but now with the .




Bj and Cj interpreted as Brownian bridges in appropriate cases,

and with the Brownian sheet A accordingly tied down. Our proof of
(6) devends on the simple observation that exchangeability is
eguivalent to rotatability for continucus and suitably tied-down
processes on R_. By this coincidence, the representations of
rotatable arravs derived in previous sections become the basic
tnols to analyze exchangeable processes in higher dimensions.

In the final Section 7, we characterize jointly exchangeable
processes on Ri. For the special case of symmetric processes, our
rerresentation formula becomes

Xst = ?st + W(sat) + U(Ast+Ats)

(7)

M3

+ {o¢. (B. (s)B.
3 11 373 j

where ?,‘J, o and the 0%, pj and Kﬁ are arbitrary random variables

(£)-sat) + [, (sBy (t) +tB, (s))+ ¥, (sat)},

satisfying 'E}¢§+P§+‘§)<Oo a.s., while A is an independent Brownian
sheet and the Bj are independent Brownian motions, as before. This
may be compared with Conjecture 15.20 in Aldous (1985), where it is
suggested that instead

oo
- B. L (t) . 8
Xop ?st + A3 (SAt) + OA(sat,swvt) + j§:_lc=<jxaj(s)133(t) (8)

Note that the centering of the product terms Bj(s)Bj(t) is
necessary for convergence in general. The missing components
Zﬁstj(t) and ijtBj(s) represent centered drift terms in the
horizontal and vertical directions reprectively, themselves
exchangeable, while 1¥(sat)+ f_b'ij(SAt) represents an exchangeable
process along the diagonal.

We conjecture that (7) and the more general non-symmetric

version below remain valid for jointly exchanceable processes on

[0,1]2, with A and the Bj tied down as before. We might also mention

the open problem of characterizing jointly spreadable arrays
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and processes, where spreadability is defined as in [14].

Once a characterization problem has been solved, the next step
becomes to examine the associated problems of unigqueness and
continuity. Here the former is to identify the equivalence classes
of representations giving rise to the same distribution, while the
latter problem consists in describing the topology in the so defined
representation space that corresponds to weak convergence for
the distributions of X. This program will be carried out below for
the representations in (3), (4), (6) and (7). (Note that the
uniqueness problem for the representations in (1) and (2) has
already been solved by Hoover (1979).) We shall use the approach
from the univariate discussion in ([12]. Thus for each case we shall

introduce a suitable set of directing random elements, F say, to

be given as functions of the coefficients in the representation
formula, such that convergence in distribution of ? and X will be
equivalent.

Our discussion of the main problems, as stated above, will be
preceded by some general prerequisites in Section 2. Here we shall
present some results based on the powerful section theorem (cf.
Dellacherie and Meyer (1975)), which will provide the technical
tools to extend a representation from the dissociated to the general
case. Likewise, they will yield without effort the X-measurability
of the directing random elements directly from their uniqueness in

the dissociated case. Throughout the paper, we shall further make

frequent use of the simplifying device of randomization, based on

the elementary Lemma 1.1 in [14]. In particular, this will enable
us to proceed directly from an explicit formula for an equivalent
array or process (i.e. some X' d X) to an a.s. representation of

X itself. Section 2 will also contain the required background on

- R . - . i "—..'--\-.\1..‘..".-. S -.'.f—‘-‘;." IR ."‘-" _“' o K ..."." ‘.
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the univariate case, as well as a brief discussion of some processes
related to Brownian motion and sheet.

As for relevant literature, the lecture notes by Aldous (1985)
provide a broad survey of exchangeability theory. The reader is
especially urged to read his Sections 14-15, dealing with the
multivariate case. Several of our arguments below have been

patterned on similar passages in Aldous (1981). On such occations,

XSV ¥V VY W W W W T e Y. Y W W ThEm. oy ,T

we shall often give only a brief outline, so the reader may need
to consult Aldous' paper for details. Other references on the
multivariate case, not mentioned before, are the papers by Dawid

(1977), Hoover (1982) and Lynch (1984).

t an an g S SN

our discussion of weak convergence and tightness for random
arrays and processes presupposes some general theory on the subject,
b as given in Chapters 1-2 of Billingsley (1968). We shall further
need some weak convergence theory for probabilities on measure
} spaces, as provided by Chapter 4 in [13]. The reason for this is that,

typically, one or more of the directing random elements will turn out

| to be random measures on some appropriate space. Finally, we shall
often need to refer to [12], not only for the basic univariate

representations, but also for its elementary randomization Lemma

1.1, which will often yield immediate extensions of our weak

convergence results from the dissociated to the general case.
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2. Breliminaries

In this section, we shall first derive some general measure theoretic
results, which will be useful in proving the main theorems of the
vaper. The first result will be needecd to extend a representation
formula, cbtained under suitable conditioning, to the unconditional
case.

{ Bv an extension of a probability space (f,#,P) will shall mean

a product (o', F',P")=(AxI,FxB,PxAd) with some arbitrary probability
scace (I,B,A), e.g. with the Lebsgue unit interval. Note that random
T elements on f1 extend immediately to {1' with the same distribution.

The procecdure of constructing random elements on some extended

probability space will be called randomization.

Lemma_2.l. Fix a probability space n,#,P), a o-field gc 7,

and three Polish spaces S, T and U. Let §: N — S, q:fl—» U and

f: TxXU— S be measurable mappings, and put mt=P{f(t,q)e-}. Assume

that

Plee- ]Gle {m : teT} a.s. (1)

Then there exists a G-measurable random element T in T and an

indevendent random element vf g‘q on some extension of {1, such that

E=f(T,W’) a.s.

Proof. Let £ and 7 denote the Borel o-fields in S and T
respectively, and conclude by Fubini's theorem that mtB is 7=
measurable for every Bef. Writing p for a version of P[EE'IQJ, it
is further seen that pB is g—measurable for all Bef. Letting By /By,
...€f be measure determining in S, we get

) {(w,t): Pij=mtBj} € GxT.

Note also that the projection of A onJ{) has probability 1, by

o0

A= {(w,t)eIIxT: Fw=mt} = ;3

assurction. By the section theorer (cf. [6]), there exists some

gmreasurable random element T in T. such that pre a.s. Choosing

L R N T T e e e e e e e e N e e

Tt

R R - RS c . ...4_.._-._.1‘._-.'_

A R I T Y S TR A e PN
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by randomization some q“ Q,q independent of T, we get by Fubini's
theorem
rlee-ft]l=p = me= PlE(T.y"e-{T] a.s.,

wnich shows that (£&,T) d (f(T.q"),T). Bv Lermma 1.1 in [14], there

{feN)

exists some random pair (T',n') (t,n") on an extension of fl, such
that E=f(T',7') and T=T' a.s. Thus €=f(t,q') a.s., and moreover 7'

is indevendent of 7, since (T,q') d (r,w"). a

More can be said when the m, are invariant anc ergodic under
a suiltable class of transformations. Here we are using the terminology

of Section 12 in Aldous (1985).

Lemma_2.2. Let the measures my in Lemma 2.1 be invariant and

ergodic under some countable group of measurable transformations

of S. Then the random measure m, is a.s. unigue and §-measurable

and there is even a f—measurable choice of T. Moreover, the

distributions of § and m_ determine each other uniguely.

T
Proof. Let 3% be the o-field of invariant Borel sets in S,
and put‘7=€-lﬂéc-?: From Dynkin (1978) (cf. Theorem 12.10 in [2])
it is known that P[ﬁe-l?] is a.s. ergodic, and that the integral
representation of Ps—l over the ergodic measures is unigue. Hence
the random measures m. and P(£€-|7] have the same distribution.
Since the range of m is analytic, it foilows that P{Ee:r7]e{mt, teT}
a.s. Thus Lemma 2.1 applies with G=7J, so there exists some 7-
measurable random element T' in T satisfying
r{Ee |7] = m., a.s. (2)
Let us now return to the relation
m_= P[§€-|G] = plge [T]. (3)
Here the left-hand side is a.s. ergodic, so

plrjt] € {0,1} a.s., 1e7,

and 1t follows easily that




1 = {p[1jT]=1} € o(®) a.s., Te 7.
This shows that Jc 6(T). We now obtain from (2) and (3)

m_, = p[¢e-|T7] = E[p[ge |T]|T] = E[m_|T] a.s.

Letting B be an arbitrary Bore® set in S, we get
- o _ 2 _ 2
EmE m,B=EmnBFmP|7] = E(E[mB|T])" = [(m_,B)",
- d
and since mf, = m.
E(mB - m_,B)% = E(m.B)% - E(m_,B)2 = 0
(m B o r My .

as above, it follows that

This shows that m=m a.s., SO mg is a.s. unigue and J-measurable.

‘rl

It follows in particular that ngl determines Pm;}. The converse

is also true, since PE-1=Emr.

In the apprlications we have in mind, T is the array of

coefficients in the representation formula for X, and mt is the

distribution of ¥ when T=t is fixed. Now suppose that f is a

measurable maprping from T to some space V, such that my and ft

determine each other uniquely. If the mappings between m, and ft
can be shown to be measurable, a.s. PT-I, then the conclusion of
Lemma 2.2 will remain true with mT.replaced by ?=ﬁt, and ? can

serve as a‘'directing random element for X. The following result

yields the desired measurability when V is Polish.

Lemma_2.3. Let § and n be random elements on some Polish

probability space (), and taking values in the Polish spaces S

and T resvectively. Assume that £=f(7) a.s. for some mapping

f: T—> S. Then f can be chosen to be measurable.

Proof. Recall that the range A={(E,7)(w):uJefl} is analytic
in SxT. Add to £ an entra point 9. By the section theorem (cf. T6])

tnere exists a measurable mapring g: T— Sv[d} with g(q)ES a.s.,

anc¢ such that
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We need to make some further remarks on the application of
the above results. I'irst recall that the separate or joint
exchangeability of a process on a continuous parameter space was
defined in terms of transformations of the associated increment
arrays rather than of the process itself. However, there exists in
each case a countable group G of measurable transformations of the
process, such that exchangeability is equivalent to invariance in
distribution under G.

To see this, let us e.g. consider the case of joint
exchangeability for continuous processes X on Ri, the other cases
being similar. We then define for fixed h>0 the processes

h

¥7s(s,t) = X((ih,ih+s)x(jh,Fh+t)), s, t€(0,h), i,3I€N.

It is easily seen that the joint exchangeability of X carries »nver

to the array Yh=(Y?j). Moreover, there exists some measurable .
. h o h h h h
mapping £, such that X=f (Y ). Writing T_V =(V ) and T X=f (T Y
pping f, p) riting T ( P;P, b h( D )
for finite permutations p of N, it follows that Tgx d X for all p.
h Q Xh, where Xh

Conversely, this property implies that TpX
denotes the array of increments with respect to the h-grid. Thus
4

X is jointly exchangeable iff it is invariant in distribution under

n

the transformations Tg with h=2" ", nEéN, and with p a finite

permutation of N. These transformations clearly form a countable
group.

A second remark concerns the ergodicity of the measures m,

required in Lemma 2.2. In our applications below, the arrays or

N corresponding to m, will have representations with

constant coefficients, and so will be dissociated, when defined on

N2 or Ri. (In case of processes, this means that the associated

processes X

arrays of increments are dissociated.) The desired ergodicity then

follows as in the usual proof of the Hewitt-Savage 0-1 law (cf. [8]).

.l"l ...-,’l'. -.-.-,‘.f--._"-._

0% DA )
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For processes on [O,l]z or R ,x[0,1], the conclusions of the lemma
1 may instead be obtained via the transformations in Lemma 2.7 below. by
We turn to the characterization of continuous and exchangeable

processes on R_ or [O,l]. Pecall that a one-parameter process X is

T

exchangeable, 1if XO=O and if the increments of X over an arbitrary ;
&

set of disjoint intervals of equal length form an exchangeable

r seguence. For continuous processes, it is clearly enough to consider :

intervals with dyadic endpcints. Say that an Rd~valued process B

is a Brownian motion or bridge, 1f the component processes are

independent Brownian motions or bridges respectively in R. The

‘a1 a v &

following result extends the one-dimensional version in [12]. Here

and below, we shall use a self-explanatory matrix notation.

TR R A

and exchangeable, iff a.s.

]

X, =«t + 0B, ter, or [0,1], (4)

. d .
for some random vector « in R”, some random dxd-matrix <, and some

RN

Rd—valued Brownian motion or bridge, respectively, B. Here o¢ and OGT

are a.s. uhigue and X-measurable, and their joint distribution

determines that of X. N

The representation (4) can be established in the same way as
in the one-dimensional case, i.e. via weak convergence as in [12],
or by the martingale argument in [2]. The last statement is an -
easy exercise in the use of Lemmas 2.2 and 2.3 above, given the

fact that, in the two cases,

E exp(ijdeX) = <{

where f is an arbitrary Rd—valued and measurable function with

E exp(id J£-5[)oT£)%),

E exp(i«ij-%fch(f—f)lz), "y

.

}f/ELlﬁLv. (It is of course enough to consider simple step functions

ORI
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-2 of this type.) Alternatively, we may obtain &« and oo directly as
- o = lim t™1x, or «=x,, oot = [x,X] a.s.,
. t 1 1
. t-»o0
where [X,X] denotes the dxd-matrix of mixed quadratic variations
Y
2
ﬁ for the components of X.
5

Using characteristic functions as in Theorem 5.3 of [12], we

may easily deduce the uniqueness of extensions (which incidentally

7.

s

remains true in the presence of jumps):

.. process on R, or [0,1], and let Y denote the restriction of X to

some subinterval [0,€] with €>0. Then PY-l determines Px-l.

We shall also need the following multi~dimensional version of
Schoenberc's theorem (cf. [2,5]). Say that an r®-valued random
seguence X=(Xij, igd, JeN) is rotatable, if XU d X for every rotation
U. For a process X on R+ or [O,IJ to be rotatable, we require that
X be continuous in probability, and that the above property should
hold for the increments over an arbitraryv set of disjoint intervals

of equal length.

Lemma_2.6. An Rd—valued random sequence X=(Xij' i<d, je€N) is

rotatable iff a.s.

d

i5 < ;Elcikskj' i=1,...,d, jeN, (5)

for some random dxd-matrix dt(di

K and some i.i.d. N(0,1l) random

variables Eyj' ke¢d, jeN. Similarly, an Rd-zglued random process X

on R_or [0,1] is rotatable iff

AT L L Ll

X, = 0B, a.s., te€r or [0,1], (6)

for some random rmatrix o as above and some d-dimensional Brownian

m
motion B. In both cases, 00" 1is a.s. unique and X-measurable, andgd

its distribution determines that of X.
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We conclude this section with an elementary discussion of some :}
nt
processes related to Brownian motion. First recall that a Brownian N
- “
sheet is a centered Gaussian process X on Ri with covariance function <,
2= X
¢
F
F XStXS.t, = (SAS')(tAt')I S,S',t,t'€R+. .".:
Starting from X, we may construct the further processes 2{
Yoo = Xgp - sXy se[0,1], ter_, &
Zop = Xgp~tX q-sX +stX ) = Y_ -t¥ ., s,te[0,1], :-_:-_:_
with covariance functions =
E YstYs't' (sas'=ss') (tat'), s,s'GEO,L], t,t'eR+, >
E 2o Zgrp (sAs'-ss') (tAt'-tt'), s,s',t,t'ef0,1].
All these processes will be referred to as Brownian sails. (The :
process Y above is also known as the Kiefer process.) ;
Iy
In the next result, we list some simple relationships -i}
which will be needed below. For their proofs, it suffices to compute ;i
L
the covariances. -
.:~
Lemma_2.7. Starting from a Brownian motion W and a Brownian }:
..N
sheet X, we may construct a Brownian bridge B and Brownian sails ?ﬁ
Y and Z thyxough the formulas ;L
s o
B(s) = (l-s)W(;=2), sef0,1], I
>0
S
Y(slt) = (l_s)x<ﬁlt)l S€[0,l], teR+, :.-.'
t S t 2 -
Z(s,t) = (1-t)¥(s,y¢) = (1-8) (1-8)X(y=g/7-¢)» s.te[0,1]°. N
Conversely, W and X may be obtained from B, Y and Z through I{f
- s N
W(s) - (l+s)B(l+s)l s€R+I N
- S _ S t -
X(s,t) = (l+s)Y(I;§,t) = (1+S)(l+t)z(TI§’T:E)’ S,t€R . "
e
\'.
We finally state a simple consequence of Lemmas 2.4, 2.6 and e
-
2.7, which will play in important role in Section 6. 3
N
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exchangeable process on [0,1] with xl=0. Then the process

t
Y(t) = (l+t)X(T1€)' t€R .

is rotatable.
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The purpose of this section is to give a proof, in the spirit of
Aldous (1981, 1985), of the representation formula (1.2) (equation

(2} of Fection 1) for jointlv exchangeable arravs of random variables.

Theorem_3.1. An array X=(X i,jeN) of random variables is

SE==E=====szs Do T4 13 ’
Jjointly exchangeable 1iff
= i \ \{
X, 5 f(«,si,ﬁj,kij), i,jeN, (1)
nolds a.s. with Aiiio and A*jizji’ for some reasurable function

£: [0,1]%— 7 and some i.i.d. U(0,1) random variables =, £ ,E,,..

and Xij' i<j.

It is clearly eguivalent to write instead of (1)

f(u,ﬁi,Ej,kij), i<j,

= o( ¥ . ,

le f( lEilE]rAjl); i>7,
q(dlgl)l i=j,

for some measurable functions f: [0,;]4—1 R and g: [0,1] 2+ R,

and some i.i.d. U(0,1) random variables «, Ei and Xij as above.
For the proof, we shall need a couple of simple exercises on

conditionai probabilities, stated here for random variables but

applied below to infinite arrays.

(§,n7) and (§',n') are conditionally independent, given &. Then £ is

conditionally independent of £', given (q,n',C), and also

conditionally independent of q', given (n,§).

o)

Lemma _3.3. Let 51,55,71,72 be random variables with (51,71) =

(€é,72). Then there exists a transition kernel m on R, such that

P[SjEr/7j] = m(vj,-) a.s., j=1,2.
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Proof of Theorem 3.1. Define Yij=

(X ), i,jeN, and note that

D S
137751
the joint exchangeability of X carries over to Y=(Yij). By

Kolmogorov's consistency theorem, we may extend Y to a jointly

exchangeable array indexed by Zz. Write A=(Yij, ir3<c0), Bi=(Yij'

3=1,0,-1,~-2,...), 1€Z, and B=(B1,B ).

g
Our first aim is to prove that Bl'BZ"" are conditionally

1.1.d., given A. It is clearly enough to prove this for the

runcated arravs Ei=(Yij, j=1,0,-1,...,-n), for fixed neN. Now

the secuence (B;,Bg,...) is exchangeable over A and hence

concitionally 1i.1i.d. and independent of A, given its directinag

random measure, sc¢ we need only show that the latter is A-measurable.

But this is true since the extended sequence (""B?n—z'E?n~l’
n _n .
Bl'B2"") is exchangeable.

Let us now fix néN, and define Yn=(Yij, i,j=1,...,n) and Ci=

(Yli,...,Yni), isn. It may then be seen as above that the pairs

(Ci’Bi)’ i>n, are conditionally independent and independent of Yn,
+1 1S
conditionally independent of Yn, given (A,B), and further that

given (A,Bl,...,Bn). By Lemma 3.2 it follows that Cn

C is conditionally independent of B, given (A,B B ).

n+1l 177" ""n+l

From the latter statement for n=1 it is seen that le is

conditionallyv independent of B, given (A,B BZ)’ and by the

1’
exchangeability of Y it then follows that, more generally, Yij is
conditionally independent of B, given (A,Bi,Bj), for all distinct
i, JjEN.

On the other hand, it follows by induction from the first
statement above that the rows of Y below the diagonal are
conditionally independent, given (A,B), and in particular that le
is conditionally independent of Y, given (A,B). Again this

generalizes by the exchangeability of Y to arbitrary distinct

indices, so the vij with l<i<j are in fact conditionally independent,

T

p - " N A I
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given (A,B).

As seen above, the conditional distribution of Yij’ agiven (A,B),
is a function of (A,Ei,Bj). From the exchangeability of Y it is
further seen that the array (A,Bi,Bj,Yij) has the same distribution
for all i,3jeN with i#j. Hence there exists by Lemma 3.3 a transition
kernel m, such that a.s. _

p:Yije- A,B! = m(A.Bi,Bj;-), i,j€eN, i#5. (2)

Letting Cl and C2 be arbitrary Rorel sets, it is further seen from

the definiticen of Yij that
= P
p[v, ec,xc,|a,8] = o[v  ec,xc,|a,B] a.s.
SO we get a.s. the symmetry property

m(A,Bi,Bj;C xXC,) = m(A,Bj,Bi;CZKCl). (3)

1772
Replacing m by a suitable average, we may assume that (3) holds
identically.

We may now follow the "coding" argument in Aldous (1961,1985]),
in introducing i.i.d. U(0,1) random variables &« and 51,22,... by
suitable randomization, such that

A = pleh), Bi=q(u,Ei), ieN, a.s. (4)
for some measurable functions p and g. Since Xii is a component
in Bi’ we get in particular

Xii = g(u,Ei) a.s., i€N, (5)
for some measurable function g: [0,L]2—+ R. We may further choose
two measurable functions fl,fzz [0,1]4—+ R, such that

P (a,%,y,0) ,£y(a,%,y,2) "t = m'(a,x,y;-),  a,x,ye[0,1],
for a U(0,1) random variable A, where

m'(a,x,y;+) = m(p(a),qgla,x),qgla,y):-), a,x,vel0,1]. (6)
From (3) it is seen that also

-1

P(f (aIlerk)rf a,Y,X,A)) = m'(a,xf\';')r arXrYEEO,]-]-

2 1(

Now define
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3 fl(a,x,y,z), X<y,
fla,x,y,z) =y f,(a,y,x,2), X>Y,
1 gla,x), X=Y.
Then
’(fl(a,x,y,z),fz(a,x,y,Z)), XY,
(f(a,x.y,2),fla,yv,x,2)) = i
(fz(a,y.X’Z),fl(alY;X,Z)), X>Y'
so vith A as above,
D (a, %,y M, Ela v x,A) " = m'(a,x,y:e),  a,x,v€[0,1], x#y. (7)

Letting Aij’ i<j, be i.i.d. U(0,1) independently oftx,El,gz,...,
and putting Aiiio and Aijixji’ we may easily conclude from formulas
(2) and (4)-(7) and from the conditional independence of Yij’ i<j,
that X has the same distribution as the array

Xij = f(«,Ei,Ej,Aij), i, jEN.
We may finally use Lerma 1.1 in (14] to show that X has an a.s.

recresentation of the same form. 8,




The main purpose of this section is to remove the second moment
condition, imposed by Aldous (1981l), to rrove that separately
rotatable arrays of random variables have the form (1.3), as
coniectured by Dawid (1978). “e shall also solve the associated

unicueness and continuity problems.

Theorer _4.1. An array X=(xij’ i,7€N) of random variables is

separately rotatable, iff a.s.

oo

= i i \
Xij oAij + kzzl«ksikqjk, i,JjE€N, (1)
for some random variables >0 and &;>%,>...>0 with 2—0(12{<ao a.s.

and some independent set of i.i.d. N(0,1) random variables Aij’

gik'qjk’ i,j,keM. llere o and the ﬂ% are a.s. unique and X-reasurable,

and they are a.s. non-randor iff X is dissociated.

Proof. As before, we mav extend X to a separately rotatable
array indexed by 22. Write A=(Xij, ivj<0), and note that X+=(Xij,
1Aj>0) remains separately rotatable under concditioning by A.
Moreover,+it is clear from the proof of Theorem 1.4 in Aldous
(1981) that x* is conditionally dissociated, given A. Finaily, we
shall prove below that E[XiliA]<«: a.s. We may then conclude from
Theorem 4.3 in Aldous (1981) that X has conditionally the form (1)
with constant coefficients, and the unconditional result will
follow by Lemma 2.1 above.

To show that E[XillA]<ao a.s., let us first conclude from

Lemma 2.6 above that Xij=c.€ for some random variables ci:O and

i’ij
sij' where the latter are i.i.d. N(0,1) for fixed i and independent
of g, - Since o& is clearly A-measurable when i<0, and since

4
EE..<eo, it follows that
1]

E[Xij’A] = cﬁE[g‘ing_]qo a.s., 1i<0.

h
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The symmetric argument shows that also
F[X [AJ<oa a.s., i<0. (2)
Let us now fix i=1, and put E % and X ]—U E qj. Fy the
conditional fcrm of Schwarz' inequallty, we get
2
El ( 2 .+ 2 )
M-1 e :

(T Wt

Here the second factor on the right is a.s. finite by (2), while

A

|
1
[
L)
N

E[n]] ]

[aY

“he first one is a.s. finite since

£2 2 ©0 2,
NI G Y S XA
£2,+- .+ s | 0

where x< y means that x=0(y). Thus E[qi]A)<ao a.s., which completes
the proof of the £first assertion.

In order to prove that the coefficients in (1) are a.s. unique
and X-measurable, it suffices by Lemmas 2.2 and 2.3 above to assume
that they are non-random. But in that case it is easily verified that

o0
E exp(itxll) = exp(—%cztz)1T.(l+u§t2)—%, t€R, (3)

j=1
fror which the uniqueness follows by the theory of analytic functions,

or directly by differentiation.

Here we have already used the obvious fact that arrays X with
constant coefficients are dissociated. Pssuming conversely that X
is dissociated, it is seen as in Section 2 that X must be ergodic.
Moreover, the sequence of coefficients is clearly invariant under
serarate rotations of X, and hence measurable with respect to the
invariant o-field for X. Hence the coefficients are a.s. non-random

in this case. D




For every separately rotatable array X as in (1), we shall

define an associated directing random measure p on R+ by

- 2; + 2 “ x , (4)
j=1 b

where 5x denotes the measure with a unit mass at x. Recall that
mnye-m (mn tends weakly to m) for bounded measures m. an¢ m on R,
1£F mnf—a-mf for every bounded continuous function f on R, . Here mf
denotes the integral ffdm. The corresponding notion of convercence
in distribution for a.s. bounded random measures 2 and J on R+ is
dencted by Pnyg'P' It is known that this convergence is ecuivalent
to Pnf g*'Pf for every bounded and continuous function f. Moreover,
a seguence (pn) is known tc be weakly tight, and hence relatively
comzact with respect to the above notion of convergence, iff (FnR+)

is tight and moreover

lim limsup P{Pn(r,w)>e} =0, €>»0. (5)
r-w n—=oo

Analogous results hold for random measures on R and more general
spaces. (For a complete discussion, see Chapter 4 in {13].)

For arrays of random variables, convergence in distribution is
defined wi;h respect to the usual product topology in R*. Here we
shall solve the continuity problem for the representations in (1),

by characterizing convergence in distribution of separately rotatable

arrays in terms of their directing random measures.

ggggggg=gégé Let the arrays Xl’XZ”"

. d . wq .
and directed by PrrPore-- Then Xn—» some X iff pp—" some p, and in

be separately rotatable

that case X is separately rotatable and directed by some F' d P

Proof. If X is separately rotatable and directed by P then

(3) and (4) yield 2 2
log(l+x"t")
E exp(ltXll) = E exp{-%\ > F(dx{}, tER, (6)

X

where the inner integrand on the right is defined by continuity to
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be ecual to t2 at x=0. Assure first that the Fﬂ are non-random with
Pnyﬂ-some n, and note that even u must be of the form (4). From (6)
1t is seen that the one~-dimensional distributions of Xn converge
as n— o, with limits given by (6). This shows in particular that
(Xn) is tight. If Xnéw»x alona some subsequence, then even X will
be separately rotatable and dissociated, so X must be directed by
some non-random measure P'. But then (6) holds for both p and p',
and it follows as before that u'=u. Thus Xnéﬁ-x along the original
sequence, with X directed bv He Py Lemma 1.1 in 212], the conclusion
extends immediately to the case of random directing measures B
such that pnyg-some u.

Assume cecnversely that Xng+ X, and suppose we can show that

(P ) is weakly tight. If Pnﬂg'P along some subsequence, it follows

n
as before that Xng? some X' along the same subsequence, with X'

. Thus X is directed hy some P" d P so the

directed by some g' <
distribution of u is unique. and the convergence Pn!g F heclds along
the original seguence.

To seg that (Pn) is tight, conclude from the subadditivity

of log(l+x) for x>0 that

0 >0 j
02t2+'z log(1+a2t2) > log(l+02t2) + ‘2 log(l+m§t“)
=1 J - 1=]
J 3
2 2 2 2 2
> log (1+t“ (0“4 2 «%)) = log(l+t PR,) -
j=1 J

Using this, we get from (3) for any r,t>0

5

) 2 2 -
E cos (tX E exp(-3loa(l+t“pR )) = F(l+t‘FR+)

11) <
< P{pRrcr} + ‘1+t2r)_5p{PR+>f}
-5

1 - (l—(l+t2r) )P{yR+>r}.
Substituting Xn and Pn for X and u, and letting n-»ee, r—seo and

t— 0 in this order, we obtain

lir limsup p{y R>r} = 0. (7)
I ¥ N->e0 n
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Since un(r,«g>0 implies that unP+>r2, (7) yields in turn

lim limsup P{Pn(r,m)>0} = 0. (8)
Y00 N>

The desired tightness follows from (7) and (8). a

We shall next prove a rather straichtforward extension of

Thecrer 4.1, which will be needed in fec®ion 6.

Lemma_4.3. Let X, Y, Z and T be arrays of random variables

X. ., Y., Zj and T, 1,Jj€N, such that
(UXv, YU, Uz, T) = (X, Y, Z. T) {9)

for all rotations U and V. Then we may write T=9 anéd a.s.

ot < < o
Xij=caij+g§£‘kgiknjk’ Yi=kélﬂk§ik' Zﬁ=k§1vk73k' i,jeN, (10)

for some (X,Y,Z,T)-measurable random variables ?, o and Kk’pk’xk'

keN, with ZW«i+p§+Ji)<sh a.s., and some independent set of i.1i.d.

N(C,1) random variables Aij’iik’qjk’ i,j,keN. If we assume that

c,nl,r130 and &, >x.>...20=%, and that o« =0 implies ﬁk=ik=0 for k>2,

3 k

taen the coefficients in (10) will be a.s. unique, apart from

rotations of the sequence (ﬂk,Fk), k€N, within index sets where the

o(k assume a common value.

Proof. The array (X,Y,Z,T) 1s separately exchangeable, so

by (1.1) it has a representation

(x 25T = £ €, B ), i eN, (11)

fig0 Yyt ij

for some function f and some i.i.d. U(0,1) random variables qui,

74 and‘ﬂij, i,j€N. The proof in [ 1] shows that & may be chosen as

J

a "coding" of A, a stationary extension of (X,Y,Z,T) into the

incex dorain {(i,j): iVjSQ}' Since (9) remains conditionally valid,
given A, 1t suffices bv Lemma 2.1 above to establish the representation
{10) with non-random coefficients, in the case when o¢ is constant.

n that case., (11) reduces to

B
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lezfl(gi'y.’j"’ij) vi=f2(£i), zj=f3<7j>, i,jeN,

for some rmeasurable functions f,: [O,LJ3~+ E and f,,f: [0,1])— R.
€ince Exil< oo by Theorem 4.1 akove, we may henceforth proceed

as in the proof of Theorer 4.3 in Aldous (1981). Thus we may first

subtract from xij a component UAij, such that the Aij are i.i.d.

N(0.1l) and independent of the Ei and Wj' while the remainder

X..-c).. is of the form h(€.,q.). As in [1], we mav further write
13 173 1713
E 3 ~
for some constants xklO and some orthonormal sequences (gk) and
(gk) in L,{0,1 .

The argument in [1], p. 597, next shows that the random variables
fz(é) and h(E,yl),...,h(g,yn) are jointly centered CGaussian for
every neN and a.e. (yl,...,yn)efo,l]n, whenever § is U(0,1). Pgain
we may change the definition of h on a null-set in [0‘1]2, to make
this statement hold everywhere. By the Hilbert space argument in
T11], p. 596, we may then conclude that fZ(E) and g, (§) ,95(§), ...
are jointly centered Gaussian. Adding another Gaussian function 9,
to the orthonormal system g,,95,..., We get an expansion f2(§)=
Z‘3kgk(6) for suitable constants ﬁk' Applying the same argument
teo f3 and the gﬁ, and putting gk(€i)=€ik and gi(qj)=rgk, i,Jj, ke,
we finallv obtain the representation (10).

To prove the uniqueness assertion, it is enough by lLemmas 2.2
and 2.2 toc consider the case of non-random coefficients. A simrle
comrutation then shows that, for any t,u,veR,

E exp(ltxll+1qu+1le)

2 2 2.2 .
= - oo u AL+ vTyL + ituve Y.

= T (+t%d) exp(- 3 t%% - 1 3 ] I 3P % ).
j=1 J j=1 1+ e

From this expression, we may obtain ¢ and the 0& as before by putting
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u=v=0. Next we may divide by (3) to identify the sums

‘g' p? j? U? #0 ,ﬁ.(.
< 2.2 7 = 2 2/ .;; 2 2
j=1 1 + t.aj j=1 1 + t<xj =1 1 + t “j

Here we may differentiate at the crigin, to construct all sums of

the form
20 20 %0
22k 2 2k 2k+1
«St, T YLed, 2 BV XS kez . (12)
jchz 3 &"1% 5030 -

If o, > 0, we mayv finallv divide by ocg :

and let k—» o0 to obtain the
sums

(13)

2l TP, 2

jeg jeg ie3 )
where J={jeN: uj=a2}. Subtracting the corresronding sums from (12)

and continuing recursively, we may construct all sums as in (13)

with J={j6N: «5=x}, x»0, and finally also pi and Ji.
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The aim of this section is to characterize the class of jointly
rotatable arrayvs of random variables, and to solve the corresponding
unigueness andé continuity problems in the special case of symmetric

arrays, for which the explicit representation was given in (1.4).

Theorem_5.1. An array X=(X i,3j€r) of random variables is

PSS S . s 3 ) s e 0 sy  ERETY RS

EEEES=EmaSs=s e lj'
jcintly rotatable, iff a.s.
5 3 i,
Xij=f5;j+oaij+o Rji+k§l fé;xkl(gikgjl— i3 kl), i,7€N, (1)

for some random variables ?, o, o' and “kl’ k,1eN, with qkl+xlk=0

for k#l §99~22d§1<°° a.s., and some independent set of i.i.d. N(0,1)

random variables Aij and Eik' i,j,keN. The random variables P

apart from order.

2 2 .
4 1)
(o+0') " and Zqul are a.s. unigue, as are the &

Moreover, the coefficients in (l) can be chosen to be X-measurable,

and they may further be taken to be non-random iff X is dissociated.

Note that the double sum in (1) converges in probability,
and that the limit is a.s. independent of the order of summation.
To see this, reduce by conditioning to the case of constant
coefficients. In this case the series converges in L2, since the

products Ei are orthonormal for k.leN when i#j, and for kel

kEjl
when i=j. Furthermore, the wvariables Eik-l are i.i.d. with zero

mean and finite variance. Note also that the double sum reduces

2 .. L
to Z«kk(iik-l) when i=j and to ch*klsikejl when i#j.

When X is symmetric, we may write Xij=%(Xij+xji) to see that

Rt |

(1) holds with o=¢0' and with dkl=0 for k#1. Thus (1.4) holds in

y

this case with °(k=°S(k'
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Proof. To prove that arrays as in (1) are jointly rotatable, ﬂ:

we mav clearly assume that the coefficients are non-random. By NS
independence, we may then treat the arrays Sij and AijiAji and the ~
double sum separately. For 6ij the result is well-known from linear f
o>

algebra, and for the double sum it follows easily from Lemma 2.6 g
when the summation is finite, and then in general by approximation ,;
j ; Y ::
in L,. In case of ]ijixﬁi’ notice that the arrays 2 (SiEj éij) and :b
E.q.~537. have mean zero and the same covariances, when the §. and -
i1y i i P
7j are i.i.d. N(0,1). By the multivariate central limit theorem, X
it follows that Aiji)ji can be approximated in distribution by 2}
jointly rotatable arrays of the form ;;
_ 2. k5 _ .o .

and n Ny
X, =0 7Y (£, -E7 ).  i,3€N -

i3 77 2, ik 5kik! 1 JEN, -
respectively, where the €ik and Nk are i.i.d. N(0,1). This shows ")
-

that the arrays Aijtxji are jointly rotatable, and hence completes L
the proof of the sufficiency part. =
Our next aim is to establish the representation (1) for an f‘

]

arbitrary jointly rotatable array X. Since rotatability is stronger }t'
I.\

than exchangeability, we get by Theorem 3.1 a representation of 3}
the form ﬁ;
. _ _ . . 4 v

with Vij:qji and qii:O’ for some measurable function f: [Opu —» R 3
ané some i.i.d. U(0,1) random variables «, & ,52,... and 7ij’ i<i. 3
Rctating bv U, we get an arrav UXUT with the same distribution, :f
and hence with a rerresentation :é
T - v ' ] 1 : 3 1 Ly

(UXU )ij f (e ’gi’gj"hj)' i,iem, (3) =

for some o', (§;) and (qij) as above. Here we may assume that «'=¢, o
and that £5=§j for those indices j which are not affected bv U. :%
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VI U WA TR TR U WA A Y SRS TR W, DAy Dy . PR DT WAL TP VAL WAL DR WA T I




Indeed, we get these relations automatically, if we use the coding
construction of Section 3, based on a stationary extension X' of X,
and on the corresponding extension UX'UT of UXUT.

Under these conditions, X remains jointly rotatable,
conditionally on &. By Lemma 2.1, it is enough to prove that almost
every conditional distribution agrees with the distribution of (1),
fcr some non~random choice of coefficients. Now (2) shows that X
is conditionally of the form

xij = f(.fi,sj,7ij), i.jeNn, (4)
for some measurable function f: [O,L]B—» R, with the same Ei and
Vij as before. Again, the representation of a rotated array
uxu” may be assumed to use the same variables sj' for indices
which are not affected by U. To simplify the writing, we shall
henceforth consider a fixed conditional distribution satisfving
these assumptions, and suppress the conditioning from our language
and notation.

Next we note that the restriction of X to the index set I=
(2N)x(2N~l& is separately rotatable and dissociated. Hence Theorem
4.1 shows that EX§j<fk> for i#¥j, so the arcuments in Section 4 of
Aldous (1981) apply, and we get for (i,j)€éI a decomposition

Xij = g(Ei,gj,qij) + h(Ei,Ej) a.s., (5)
where the variables g(E.,Ej,qij), (i,3)€I, are i.i.d. centered

1

Gaussian, while
5 2
hix,y) = kélwkgk(x)q;((y) in L,([0.1] %) (6)
for some constants “1’“2"" with Z‘(}Z(< oo, and some orthonorral

sequences g,.9,,... and q;,95,... in L2[0,lj. Moreover,

h(&;.§) r[xijfgi,gjj a.s. (7)

for all (i,j)€I, and hence by symmetry whenever i#¥j. Comparina (4)

and (5), it is clear that we can choose
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f(x,v,z)=g9(x,v,2z)+h(x,y), x,y,ze[o,%] with 2z#0, (8)
so even (5) extends to arbitrary i#j.

To analyze g, we note that the array Y=aX+le=(aXij+iji) is

jointly rotatable for fixed a,beéR, since for any rotation U,

m T d
uviT = U(ax+bx)uT = avxuT + buxuD) T € ax+pxT = v.

Yloreover, even Y has a representation (4) in terms of the sare

random variables Si and hij’ since in fact

Yij = axij+bxji = af(ii,ij,qij) + bf(sj’ﬁi'7ij)’ 1,3J¢eN.

Thus the above arguments aoply to Y as well, and show that the

variakles

dC(E Zanlj)"'og(éjrglr?l

= Y, - ! - i
s a (% E[xij,gi,gj])+b(x‘. ElX..

)
] J1

= R \ ]
- Yij ELYij!EiIEjJ

are i.i.d. centered Gaussian for (i,j)eT. By Corollary 3.13 of
Aldous (1981) ., they must then be independent of El,iz,... Since a

anc b wvere arbitrary, it follows that each of the pairs

is bivariate centered Gaussian and independent of €1,§2,... But

then it must also be independent of the other pairs in (9), which
A

means that all these pairs are i.i.d. centered Gaussian and

inderendent of El,gz,... We now put

2 2 2

and define
o, o = 2((1+r) "+ (1-0) )

Letting Aiﬁ’ i#j, be i.i.d. N(0,1) and independent of the Ei' it
is easy to check that the array (d)ij+d'Aji, i#3j) has the same
distribution as (q(ei,Ej,qij), i#j). Dy Lemma 1.1 in [14], we mav

then redefine the )ij such that

g(&i,ej,7ij) = gA.. + 0o'A,. a.s., i#3. (10)

Y
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We shall next examine the functions oy and qi occurring in (6).
T

Let us then fix a rotation U=(uik)’ write X'=(Xij)=UXU , and nocte

that X' has a representation (4) with Ei replaced by Ei. Let us
further denote the shell-o-field (cf. [1,2]) of X by f, and note
that ¥ is also the shell-o-field of X'. Fix indices i<j such that
U only affects components number 1,...,j-1. Combining (7) with

Lemrma 2.7 of Aldous (1981l), we get

e[x;.]7] = g uikE[ij)f}

h(g; E)=rx']| ]

J ]"

=% uikr'[xkjlgk'gj} = % ugh (g )

Assumrince trat §'=£%. and using {(6), we hence obtain

By Fubini's theorem, the same relation holds a.s. for almost every
=, 5 ] ' C
realization (xl,...,xj_l,xi) of (51,...,€j_1,§i). Since cl,oz,...

are orthogonal, it follows that
a, (&) =§uikgn(§k) a.s., i,neN. (11)
Interchanging the roles of rows and columns, we get in the same way
' ! -— 1 : -
9! (€] -% uikgn(ik) a.s., i, neN. (12)
The next step is to replace the sequences (gk) and (gi) by

a single orthonormal sequence. Let us then introduce the Hilbert

space H in Lz[O.lj spanned by 9yrGgre-- and gi,gé,..., and note that
+
h u(x) = ffh(x,y)+h(y,x))u(y)dy, ueH,

. . +
defines a compact and self-adjoint operator on H. Thus h has a

complete orthonormal sequence of eigenfunctions hl,hz,...eH. In
particular, we get an expansion
(x.y) 220( h x)hj(,\/) in L2([O,]]2), (13)
where chxij‘—' Zﬂj < oo . Moreover, ':.
RS

hix,y) + hiy,x) = ZZ(c-(ij+o<ji)hi(x)hj(v)

‘7,
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=Te] “&j+°%i=0 for 1#j. From (11) and (12) it is further seen that

h (g2) =Euikhn(gk) a.s., 1i,neN. (14)
It follows in particular that the array (hn(gk)) is rotatable in k,
and since the {k are further inderendent, we may conclude from
Lermma 2.6 that hl(i),hz(i),... are i.i.d. N(0,1). This proves the
representation (1) for i#j, with €.

ik~ 0k By -

To extend (1) to the diagonal, we put

Yij=%zl°‘k1(51k£j1‘zij5k1)" 2i47Xi57 Y550 1oOEN,
and conclude fror (14) that (Y,Z) 1is jointly rotatable. To determine
the distribution of le, we put Z'=UZUT, where the rotation U=(uik)
H is such that u, =u,, u22=-u12=2-%, and compute
2l = (270,42, 2,0) S . (15)
Here the variables le, 222 and le 221 are independent. while 212

and 212-221 are Gaussian, so it follows from Cramér's theorem (cf.

[8]) that le is N(?,sz) for some ? and s. Computing the variances

in (15) vields by (10)
% (2542 (0-0") %) = oP+a'?,
so 52=(d+d')2. Thus we may extend (10) by writing

= féij A Aji, i,jen,

-

where the )ij are i.i.d. N(0,1).

It remains to prove that Y and Z are independent. To see this,

choose for each néMNM a rotation U= (u ) with u . .= =n-%. Writing

117 nl

m
2'=02U", so that 2=UTZ'U, we get

n 1 B n 5 1 &b
Z!. = 1-2. )72 .+ = z' +
1 ;él ij n fél ;&1( 13) ij n .E (2;3 f) ?

n + Tn + ?.

~
hY

211 =

3
1]

H
Mo

1
[92]

AR

2 -1 L2 p e o

= — S - = =(§.
Here ETn n “(c+0')"—» 0, soO “n+? > le. Writinag (Elk), it is
further seen from (14) that S, is inderendent of Z'=UZ ané hence
of Z=tT='. Hence z.,. is independent of =, and the same thing is

11
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i1’

mutually independent, it follows that the whole diagonal (Z]I,Z

612,...

true for each Zii' Since the sequences (2 ), 1eN, are

iif
is independent of X . and hence of Y. The indeprendence of Y and Z now
follows, since the non-cdiagonal rart of Z was shown before to be
independent of (Ei’€2"")’ and hence of the diagonal »lus Y. This

completes the proof of the representation (1).

If the coefficients in (1) are non-random, then X 1s clearly
dissociated. Conversely, a dissociated array X is not affected by
conditioning on A, and as the above proof shows, a representation
exists in the conditional situation where the coefficients are
non-random. In the general case, it is seen from Lemma 2.2 that the
coefficients can be chosen to be X-measurable. It rermains to ;rove
that ?’ (oic’)z, szxil and the X, are a.s. unigue, and by Lerras
2.2 and 2.3 it is then enough to consider the dissociated case.
The unigueness of ?, (646')2 and the “kk is then obtained fror *he
formula

2293
t°) [{ (1- 2t0<kk exp ‘t“?k\’ 1+
k=1 )

valid for small t, while the unigueness of (d—o') and chxil

E exp(tX = exp(?t+%(d+d')

11

v

follows by applving Theorem 4.1 to the restriction of X-xT cr X

respectively to I=(2N)Xx(2N-1). D
In the symmetric case, i.e. when

[ad
= Péij + O 4+ kélxk(fikgjk—éij), i,jeN. (17)

we may associate with X the directing random elements ? nd B where
(18)

Note that P is a random measure on R in this case, since the o<
may be both positive and negative. In the space M(R) of bounded

. w .
measures on R, we define weak convergence —» as before, and write

wd
for the corresponding notion of convergence in distribution.
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The same notation will be used for convergence with respect to the
assoc:ated product topology on R x M(R)

be symmetric and jointly rotatable

irras iirected by (?n’Pn)’ n€l. Then X g’ some X iff (P P ) wed

1s symmetric, jointly rotatable,

‘9.u>, and in that case
]

o PR,

ant d:irected by some (¢ P (P,P)

+

“roof. In the symmetric dissociated case, formula (16) becomes

ext tX exp{?t + Zozt2 - [loq (1- 2to5)*2totj}

j 1
eXD{Pt - %Jlog(l—Ztg) * 2tx P(dx)},

X

11°
(19)

1]

wihere 1t 1s assumed that lt|<%(maxlqj\)—l. Eere the integrand on
tne richt Is cdefined by continuity to be -2t2 at x=0. !Yote also
*hat the restriction of X to I=(2N)x(2N-1) is separately rotatable
anZ directecé by the measure

Iu’ = 20’250 + Zo(

(20)

Let us first assume that the directing pairs (Fn'Fn) are non-

random, and that F —4-F while F ¥, F' where P must again be of the

. n n
form (18). Then the measures Fﬁ in (20) will converge along with Fn,
so Theorem 4.2 shows that the non~diaconal elements of xn form
tight secuences. As for the diagonal elements, ve get even convergence
in distribution, with the limits satisfving (19). This is because
max]«j} stayvs bounded by the weak convergence of Pn. e may thus
conclude that (Xn) is tight, with every limiting array X satisfving

(19). Since even the limits are dissociated, symmetric and jointly

rotatable, p and u must be the directing elements of X, so the
|

limiting law is unique, and we have in fact convergence an+ X. As
before, the result in this direction extends immediately to the
non-dissociated case.

For the result in the opposite direction, it is enough as before
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to show that xn§.>x implies tightness of the seguences (Pn) and (Pn)'
Considering the restrictions to the index set I and using Theorem
4.2, 1t 1s seen that the associated sequence (Pg) is tight, which
clearly implies tichtness of (un). From the first part of the

I
proof we may then conclude that the reduced arrays Xn-Fn(Jij) form

a ticht sequence, and since Xn converges by assumption, the desired

s
LI

tightness of (?n) follows by subtraction. J
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6. Sepvaratelv_exchangeable processes

CAC AR

In this section, we shall prove the represertation (1.6) of

(s N,

separately exchangeable and continuous processes X on Ri, R+x[0,l]

“vthw

o ¢

or [0,112, and we shall further solve the corresponding unigueness

. v e~
 r
LI

anc¢ continuity problems. Recall from Section 2 the definition and

elementary rroperties of Prownian sails. Say that a process X is

o N

dissociated, if its increment arrays have this property.

Theorem §.1. A process X on I=R., R x[0,1] or [0,1]7

continuous and separately exchangeable, iff a.s.

Xst=?St+OA

st+2 (e;B (8)Cy (£)+PyB, (S) e+¥ SC (), (s,t)el, (1)

jl :.!
. . 2 2

for some random variables p, ¢ and . ., 5., JEN, with (o +R-+ 7~ e

pr o and oty By, Fye 3 '——ZJF]’?) ".

< a.s., some independent Brownian sail A, and some independent NS

seguences (Bj) and (Cj) of i.i.d. Brownian motions or bridges. The b

coefficients in (1) may be chosen to be X-measurable, and if I=Ri,

they may further be taken to be non-random iff X is dissociated.

First of all we need to show that the right-hand side of (1)

+
defines a continuous process:

Lemma_6.2. The series in (1) converges a.s. uniformly on

bounded sets. .

Proof, By Fubini's thecrem, we may take the “j’ pj and 6j to .

l A
AR

be non-random. By Lemma 2.7 we may further assume that I=Ri, so

that the Bj and Cj are Brownian motions. By an obvious scaling

'- ',‘ .'.‘ -J .

argument, it is enough to prove a.s. uniform converaence within

(4

2

the unit sguare.

Yy

For this purpose, put Eszj(l) andé qj=Cj(l), j€N, ancd decompose

the sur S in (1) into three parts T+U+V, corresponding to the

decomposition of each term. Let us first assume that these sums

- . . B IR A ._._...'._._._._.‘.___._...‘._-_‘_._..._ e m m .
<. S PSS
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are finite. By Doob's inecguality, we obtain for U

2 )5 2 _ 5 a2
E sup [U(s,t)|“ < E2 .E,( =2 R*

and similarly for V. (Here x<y means x=0(y), as before.) In case
of T. we may use Doob's and Schwarz' inequalities, as well as the
scalinc and svrmetry properties of Brownian motion, to obtain for

fixed s«<l

4 z 4 2 212
E sup|Tis,t) < E x_.Z. ,, .I
el < STE[2 8, i
_ i3 2.4 2,4, 2 <2 2.2
< s'E Tolgl Y ainy = s EZ x160) (3ol ",
h! -~ j <
Thus
T supr sup T(kZ—P,t)-T((k—l)ch,t)’[ < 277 ztxf)z,
k<D &1 | 37
sc¢ by I'inkowski's inecuality ané a.s. continuitvy,
b osuz ITes, 00l oS sup sup|T(x27%, £)-T((k-1) 27", t)| |
’ s,t<l 44 ! ner | 2n t<l I| 4
2]
< Eoc EREREPRD L)
neN 3
Summarizing these results, we get
Esup 1s(s,0)]% 2 Todenledd), (2)
s,t<l 3 J

Returning to the case of infinite sums, let Sn denote the

n-th partial sur, and conclude ‘rom (2) that, for ren,
2 & 2 .2 .2

E sup | (s,t)-S_(s,t)| & 3 (545400,
s,t<1' T j=m+1 J 03 3

By a standard argument, there must then exist some continuous
2
process S on [0,1]°, such that

sup Sn(s,t)'S(s,t)‘ — 0 a.s., (3)
s,tgl

as n—»x along scme suitable subsecuence. Hence (2) extends to

infinite sums by Fatou's lermma, and we get in particular




A,

37

lim E sup Isn<s,t)-S(s,t)(2 = 0.

n-»m s,til'

Since the terms of § are independent, we mav finally invoke a result
in It0 and Nisio (1968), to conclude that (3) remains true along

the original sequence. a

To prove the necessity of (1), we shall need two further

lemmas, both exhibiting exchangeability preserving transformations.

Lerra_6.3. Let the real valued process X on [0,1]2 be separately

. 4
exchangeable. Then so is the R -valued process

V(s,t) = (X(s,t). sX(l,t), tX(s,l), stXx(1.1)), s,te[n,1].

Proof. By the definition of exchangeability for continuous
parameter processes, it is enough to prove the corresponding
statement in the discrete case. Let us thus assume that X=(Xij,

i,je{l,...,n}) 1s a separately exchancgeable arrav of random variables,

and write

Yij = (xij, x.j, X; 0 X ), 1,36{1,...,n},
where the dots indicate summation over the corresponding indices.
It is then'required to show that (Yp g ) d (Yij) for arbitrary
i3

vermutations (pi) and (qj) of (1,...,n). But this follows immediately

from the fact that

Y = (X , X r X . X )
piqj pin -Qj pi' ..
= (X5 X 40 Xy 0 X ), i,j€{1,...,n},
where QE(X ). o
D.q.
Pid5

Lemma 6.4. Fix I=P+ or [0,1], and let X be a continuous and

separately exchangeable process on IxR_ . Then the process

Y(s,t) = (1-t)X(s,—p), seI, te[o0,1),

has a continuous_and separately exchangeable extension to Ix{0,1].

EL
-

LAY e

.
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Proof. From Lemmas 2.4 and 2.6 it is seen that Y is separately
exchangeable on Ix[O,l), and this property is clearly shared by a
possible continuous extension of Y to Ix[0,1]. It is thus enough
to show that such an extension exists. By scaling, we may then
assume that I=[0,1], in which case it is eguivalent to show that
v is a.s. uniformlv continuous.

h and wg,
v on [0,1]x[0,1) and [O,L]A[O,%], respectively, and let wg, ha0

be the corresponding modulus for the restriction of VY(s,t)-V(s,%)

To see this, let W h>0, denote the moduli of continuity

(o}
+h

to [0,1]A[%,1). Then W¢W'+W", and from the exchanceability of Y it
is further seen that W" d W'. Since Y is a.s. uniformly continuous
on [0,1]x[0.%], it follows that W,—>0 a.s. as h—> 0, which means

that Y is a.s. uniformly continuous even on [0,1]x[0,1). ]

Proof of Theorem 6.1. Let X be given by (l). Then X is

continuous by Lemma 6.2. To see that X is also separately exchangeable,
we may clearly take the coefficients in (1) to be non-random, and
by independence it is then enough to consider separately the

*

individual terms of the form ?st, oAs or'«BSCt+ﬁBst+(sCt. For the

t
first and last of these the result is obvious, and for the second
one it follows easily by Lemmas 2.4 and 2.7.

Suppose ccnverselv that the process X on I=Ri, R+x[0,l] or

fO,l]2 is continuous and separately exchanceable. In order to prove

the representation in (1), it suffices by Lemmas 2.7 and 6.4 to

take I=[O,L]2. In this case we may define
' - - [ = -
Xs1 = Xs178%110 Kpp T Xm0y ()
" pu - - 1
X2y = X =SX ~tX_ +stX ., s,tef0,1],
and conclude from Lemma 6.3 that the R4—valued process
" 1 v
(X2., SXj., tX1), stX;), s,te[0,1],
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| L
| is separately exchangeable as well. Equivalently, the process ;
.
[1] t 3 : : y " . Fd
(Xst’xlt) is conditionally exchangeable in t, given (Xél'xll)' ,
while (X;t’xél) is conditionally exchangeable in s, given (Xit’xll)' A
‘¢
Note also that Xsl= 1t'X11=0' ¢
s
Let us next define the processes ,
L} - 1 s w — t
YS. {(1+s) X (1+S’l)' {.t_(l+t)xv(l'—1-:€)' .
(5) X
v = e St N
Yot (1+s) (1+8)X (1+s'1+t)’ S, t€R_, =
and conclude from Corollary 2.8 that the cair (Y;t,Y‘t) is o
conditionally exchangeable in t, given (Y' ,X.,.), while (Y" ,Y' ) =
: s. 11 st’ s, -
is conditionally exchangeable in s, given (Y‘t,Xll). In terms of 5
. \l
the increments of the process :
v t ] = »
(e, SY' s tY. , stX,)),  s,t€R,, (6) 7
this is precisely the hypothesis of Lemma 4.3, so on every fixed i
square lattice, we get a representation of the form =
[2ad N
= v =0A! .B! ! -
X170, Vi 0A3t+.§ %;Bi(s)CS(t), A
j—l <
(7) e
o0 o0 -
- ' vt o= [} .
Yl g ByBi(s),  ¥! =2 ¥l s, t€R,,
j=1 J=1 ,
for some X-measurable random variables f' o and “ﬁ'@j'aj as in (1), ﬂ
some inderendent Brownian sheet A', and some independent set of i_
J.
i.i.d. Brownian motions B5 and Ci, jem, -
Halving the grid size yields a similar representation (7), and $
by the uniqueness part of Lemma 4.3, we may take the coefficients :;
to be the same. Continuing recursively, it follows that the finite- v
dimensional distributions of (6) for dvadic s and t are the same ;
as for the processes in (7). This result extends by continuity to 5
=9
arbitrary s,teR+. By Lemma 1.1 in [14], we may then assume that (7) LS
holds a.s. for all s and t. -
".
From (7) it is seen that the process -
T T e
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-_ " ] ]
Yst Yst+SY.t+tY +stXll s,teR+,

can bhe represented by the right-hand side of (1), but with A, (Bj)

and (Cj) rerlaced by 2', (Bé) and (Cﬁ). Moreover, we get from (4)
ané (5)
(1-s) (1~ t)Y(T—‘ —EE) = X' +int+tXél+stXll, s,te0,1).
Hence (1) holds with
P, = (1-s) (1-t)a' (12,150,
B,(s) = (1-s)B! ‘i“s‘)' c () = (- t)C,}(ltt) jeN, s,te[0,1),

s

3
9
p
2
3
y

which have the desired distributions by Lemma 2.7.
It remains to show that the coefficients in (1) can be taken

to be non-random, whenever X is dissociated. One way of seeing this

is to extend a fixed increment array for X to the index set 22

and notice that the subarrays indexed by N2 and (--N)2 are independent.

’

As seen above, both determine measurablv the coefficients in (1),

to the extent described by Lemma 4.3. Indeed, under the stated
conventions, the coefficients P, o and the ., as well as the
rotational invariants in (4.13) are all uniquely determined. Thus all

these parameters are independent of themselves and hence a.s. non-

random. In this case, there is clearly even a non-random choice of

the ﬁj and Xj. a

To every process X as in (1), we shall associate the directinag

random elements ? and P=(Pl’°"’P4)’ where the Py are a.s. bounded ﬁ
random measures on R, given under the normalizing condition ajio, g
jeN, by . - ~ ?-_:

F1=0250+j§£x§§;j’ Pz:jélﬂﬁg;j' P3=jiltgégj’ P4 jZ{KJ ﬁ§+5§)§xﬁ' 5
As before, Y > denotes weak convergence in the space JNR+) of bounded g
measures on R, while !g-denotes convergence in distribution with g
respect to the associated weak topology. The same notation will be 2

'''' .- - I.. -'. t.— ‘- ‘s
'
."-'-" -')')\) .




used for convergence in the oroduct spaces (M(R+))4 or RKLM(R+))4
when endowed with the corresponding product topologies.

On the other hand, the processes X in (1) will be considered
as random elements in the space C(I) of continuous functions on
I=Ri, R+&[0,1J or [0,1]2, and here the associated topology is taken
to be that of uniform convergence on bounded sets. Convergence in
distribution with respect to this topology will be denoted by 9»,
and we shall write £C—i;-for convergence of the finite-dimensional
distributions. Note in particular that xnga-x for random elements
in C(Ri) or C(R+<t0,i]), iff convergence holds for the restrictions
to an arbitrary rectangle [0,a]Jx[0,b]. Thus the theory reduces in
both cases to that of C([O,l]z), for which most results in Chapter
2 of Billingsley (1968) remain valid with obvious changes. In
rarticular, a seguence (Xn) of random elements in C([O,l]z) is

tight, iff (X (0)) is tight and moreover

lim sup P{w(X ,h)y>€e} =0, €>0, (8)
h-0 n

where w(f,-) denotes the modulus of continuity of the function f.
The fgllowing theorem justifies the above terminology for P
and B and solves the uniqueness and continuity problems for the

rerresentation in (1).

Theorem_6.5, The directing random elements ? and B of a

continuous and separately exchangeable process X on Rf, R+x[0,1]

or [0,1]2 are a.s. unique measurable functions of X, and the

distributions of (C’P) and X determine each other uniguely. If
_ i _

X1'X2"" are processes as above and directed by (?n’Pn)’ neN, then

the statements

(1) xn‘i’ some X, (ii) xnf-‘i some X, (iii) (Pn'}“‘n)ﬂ some (p,p)

are equivalent and imply that X is separately exchangeable and

directed by (?’P)’

41
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In order to apply the tightness criterion (8) to the processes
in (1), we shall need a bound for the modulus of continuity in a

special case. Recall that f< g means £=0(g).

JEN, and let X' denote the restriction of X to {0,1]2. Then

oo
elwix',n)|% < niE erz, helo,1]. (9)

j=1
Proof. By Fubini's theorem, it is enough to consider the case
0f non-random uj. Let us first assume that X is defined on Ri.

Proceeding as in the proof of Lerma 6.2, we get with s,s',t

restricted to [0,1]

” sup sup ]X(S,t)~X(S',t)l”
Js-s'jc2”™ t 4

= ' 3 sup sup §X(k2“n

,t)—X((k-l)Z-n,t)!”
jmam , on ot ' 4

< (ng)g Z ,~n/4 < 2-m/4(2x?)%.
s~ 3 > ]
J n>m J

The symmetric argument vields the same estimate with s and t
interchanged, and (9) follows by combination.

If X is instead defined on R x[0,1], the transformations in
Lemma 2.7 yvield the above estimates for the restrictions of X tc
[0,1]x[0,%] and [0,1]x[%,1], from which (9) is obtained by
combination. Similarly, (9) follows for processes on [0,1]2 from
the estimates obtained via Lemma 2.7 for the restrictions to the

squares IxJ with 1,J3=]0,%] or [%,1]. g

We shall also need the following simple result about convergence
of measures. Recall that a segquence of Padon measures Pn on some
. . v .
topological space converges vaguely to F (written Fn—" p), if

pnf—+ Pf for every continuous function f with compact support.




Lerma_6.7. Let (un) be a weakly tight sequence of bounded

v
measures on R _, and assume that Pn P on (0,%) . Then Pnf—,-Pf

for every bounded continuous function f: R+—+ R with f£(0)=0.

Proof. The tightness implies that (Pn) is weakly relatively
compact, so it 1s encugh to consider weakly converagent subseguences.

But if un£+ P', then p'=P on (0,©), and therefore an—’ P'f=Pf' a

Proof of Theorem 6.5. To prove the first assertion, it suffices

by Lemmas 2.2 and 2.3 to consider the case of non-random coefficients.
The unicueness of ? and p then follows as in the vroof of Theorem 6.1
from the uniqueness part of Lemma 4.3. Conversely, P determines the
coefficients in (1) to the extent described bv that lemma. Thus it

remains to show that rotations of the tvpe mentioned there do not

affect the distribution of X. Let us then assume that

n

Xgp = 2 (B,

. .B. t+7.sC. ,
& J( )c:](t)+[5j j(s) +735C](t)) (10)

and that, in matrix notation, p'=Up and ¥'=Uy for some rotation

{orthogonal matrix) U. Then

X . =xB.C, + tRB_+ s§.C

st sCt P By t
_T.T T T
= aBsU UCt + t(; UBS + sY UCt

- 'T ? IT ’ 'T ’
= «Bl7C! + tp' Bl + s¥CL,

d (B,C), this shows

s "= [ : y t '
with Bs UBs and Ct UCt. Since clearly (B',C')
that X has a second representation as in (10) with (A',§') in place
of (p,l). Thus both pairs yield the same distribution, as asserted.

Let us next consider sequences of processes Xn directed by

(?n’Pn)' and show that (iii) implies (i). By the continuity of the

maprpings in Lemma 2.7, it is then enough to consider processes on

[0,1]2, and by Lemma 1.1 in [12] we may further take the €n and Pn

............

....................
..................
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w .
to be non-random. If (?n’Pn) —» some (?,P). then the sequences of

parameters e, zac?, Z{;? and zli for these processes are clearly
bounded, so it is seen from (1) and Lemma 6.6 that (Xn) is tight.
If an+ X' along some subseguence, then X' will also be separately

exchangeable, say with directing rair (p',u'). Here P' and P' must
1 4

also be non-random. In fact, this would be obvious for processes

o T & WSSy - W e W W W .

on Ri, since X' would then be dissociated like all the Xn‘ For
processes on :0,1}2 it then follows bv the mappings in Lemma 2.7.
It remains to prove that (?',u')=(p,P), since (i) will then

hold by the uniqueness result above, with X as a process directed

by (?,F). To identify (F B ), let us drop the subscripts of Xn,
Pn Hpr - for convenience, and write
i

U= 2X(%,1) - X(1,1), v = 2X(1,%) - X(1,1),

3
I

4X (% ,%) - 2X(%,1) - 2X(1,%) + X(1,1).
Using the transformations in Lemma 2.7, it 1s seen as in case of
Lemma 4.3 that

E exp(}r?+itT+iuU+ivV)

2o u2p§+v21§+i tuvicj pj :X-j

must then hold in the limit as n—»®, i.e. for the process X' and

1
L]

22, T 2.2
= exp(ir?—%t o=k 2 loa(l+te ;) =% > ]
L j=1 3 =1 1+t “ec’
] 3
- ,log(l+t2x2) p(uzu +v2p ) (dx)
r. - "2 3 R
= exp,lr?-%x > : ul(dx) - %3 > -
L x“ ' 1+t°x S
. ituv(\-(x P2+x FB-P4)(df;] -
4 x(l+t2x2) !ﬂ
N
Here the exponent on the left is continuous in X, while the one on Qﬂ
N
=7
the right is continuous 1in (?'P) by Lemma 6.7. The same relation %ﬁ
N

.ot

the pair (Q,P). Since this relation is also true with (F‘,P') in
)

place of (Q,F), it follows as in case of Lemma 4.3 that indeed




Since (i) trivially implies (ii), it remains to show that (ii)

implies (iii). By Lemma 2.7, we may then restrict our attention to

2.

processes cn RY Assuming (ii), it is enough, as in case of Theorem

4.2, to show that the sequence of pairs (o n,pn) 1s weakly tight. To
see this, drop the subscript n as before, and write X11=?+T+U+V’

where U and V denote the sums in (1) with coefficient arravs (Bj)

and (xj) resgectively. Proceeding as 1in (1ll), we get
log(l+t2x2)
) ) = 1 -
L exp(ltXll, E exp[lt? %S‘ x2 Fl(dx)

2 2 .
i __J. P2+P3 (dx) . it3j(x P2+X P3-'4)(dX)]

1+t x 4 x(1+t2x2)
sSC
{log l+t X )
}E exp(itxll)f <E exp’— ) = fl(d")}'

and it follovs as in case of Theorem 4.2 that the secuence of

random measures u, 1is weakly tight.
v 4

This implies in particular tightness of the variables T

t

above, so even the sequence of variables €+U+V must be tight. Now
2
. _ T _ t
E exp 1t(?+U+Vﬂ = E exlet? 5= (P2+P3)RJ,

so for any c>»0 we get
2

!E exp[it(g)+U+V)], <E exp[— %— (r2+F3)R_]

-tzc/ZP{

< P{(py+u )Rec) + e (p,*+p4) R>cf

2
_ a -t c/2
=1 (1 e )P{(p2+P3)R>C},
which shows as before that the sequence of random variables
(p2+P3)R 1s tight. Thus the random measures P2+P3 form a vaguely

tight secuence, and since clearly f4(dX)32x2(P2+P3)(dX)' the same

thing must be true for the measures Pa- Since By H, and Ha are
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all zero outside the support of Pl' the above conclusions extend
immediately to weak tightness. This proves the desired tightness
of the sequence (Pn)°

From this it follows in particular that the sequence of
random variables T+U+V is tight, so the same thing must be true
for ?. Thus even (?n) is tight, as well as the seaguence of
pairs (e, ,p.)- i
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Here we shall characterize the class of jointly exchangeable and
continuous processes X on Ri, and we shall further solve the
corresponding unigueness and continuity problems, in the special
case of symmetric processes X, for which the representation reduces

to (1.7).

exchangeable, iff

X = Ost+CA
Y s

st

t+O'Ats+ﬂ}(SAt) +iz Zj-“ij (B4 (s)Bj (t) -5ij (sat))

(11)

+ Pthj(s)+pstj(t)+55Bj(sAt)), s, t€R,

(

J
1 "& — N !, L3N 4 .’. ’ '

for some random variables ?,d,d . and a&],{%,p] SJ i,j€N, with

_ . 2 2. ,.,2..2
xij+°lji—0 for i#j, and such that Zz“ij‘” and Z(pj-t—{!é +6j)<oo,

some independent Brownian sheet A, and some independent sequence

(Bj) of i.i.d. Brownian motions. The random variables P g, (cid')z,

<< 2 2 \2 2 s . , .
232Gy 2Py 23Ty 2%, 2P 2py¥y and F ey are a.s. unique,

as are the “%j apart from order. Moreover, the coefficients in (1)

can be chosen to be X-measurable, and they may further be taken to

be non-random iff X is dissociated.

First we need to examine the convergence of the series in (1l).

respect to the uniform metric on every compact set, and the limit

is a.s. independent of the order of summation. If °&j=0 for i#j,

then the convergence is even a.s.

Proof. It is clearly enough to consider the case of non-random
coefficients. The last term in (1) can be treated as in case of
Lemma 6.2, so we need only consider the double sum, S say. By a

scaling argument, it is further enough to consider convergerce within
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the unit square. We shall prove below that

E sup S° T, (2)
3 ]

s,til

<
st °

. A

provided the summation is finite. In the general case, we may then
obtain the desired convergence and uniqueness of the limit by
applying (2) to differences between partial sums. Note that (2)
extends to the limit in this case. If Mij=0 for i#j, then the terms

will be independent, so we may use _l1] as before to strengthen

the conclusion to a.s. convergence.

To prove (2), take s<t, and note that

s - 2 5 -
5.t —gxiiwi(s)--s) + XiZj«xijBi(s) (By(£)-B,(s)) = T  + U,

2 )%
ij
i.1.4. ¥(0,1) random variables. Py Doob's inecquality, we cet

, and let €i ané 5 be

sirce o, .+, .=0 f i#5, Wri x.=()
i5 O(Jl or i#3 rite 3 (2jo<

2 2 _ 2 2 .2 2
Esup T, € B 7] = 2 i ;2(4-1)° £ 2], .
s<1 i 1

Usino Doob's and fchwarz' inecualities rlus the svmmetrv of 11(0,1),

we further obtain for a fixed 56[0,1]

.4 4 2 i 4 2. 2 2]2
Esup U. S EU., < sF[2 . 2e..N. 4513‘2 “(
te[s,lj'bt sl i3 13')3' = ¢ 51 %qur’j)
2 2,4 -2 4 2 2_ .4 -2 4
< =
<s Ezixigi _Z"‘i ( Z“ijqj) s Z“igsi 2 ;K Z“ijqj)
i j i i 3
< sz(z o(i)?' = s 3 Z'xz..)z.
- ~ & i
i i3
The proof may now be completed as in case of Lemma 6.2. a

Proof of Theorem 7.1. A process X as in (1) is a.s. continuous

by Lemma 7.2. To see that X is also jointly exchangeable, it suffices
by the same lemma to consider the case of finite sums. We may further
take the coefficients in (1) to be non-random, and consider

t+6‘Ats,'\3(sat), and the remainder

separately the three terms ?st, OAS
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of X. For the first and third of these, the joint exchangeability

is obvious, and for the second it follows from the joint rotatability
of the corresponding terms in Theorem 5.1. Finally, the result for
the remaining expression in (1) follows easily by the exchangeability
of Brownian motion. This establishes the sufficiency of the
representation (1).

Suppose conversely that X is continuous and jointly
exchangeable. Our first aim is to reduce the discussion to the case
when X is dissociated. Let us then denote by Xn the array of
increments of X with respect to the square grid of size 277, Note
that the sequence of arrays Xn 1s consistent, in the sense that an
element in Xm is the sum of the corresponding elements in Xn
whenever m¢n. By Kolmogorov's theorem, we may extend each Xn to
the index set 22, in such a way that the consistency and the joint
exchangeability are both preserved. Let A

l'AZ""
2

restrictions to (—Z+) of these extended arrays. From the discussion

be the

in Section 3 it is clear that Xn is conditionally jointly
exchangeable and dissociated, given An. The same thing is then
true for all Xm with m<n. Fixing m and letting n—soe, it follows
by martingale theory that Xm is conditionally jointly exchangeable
and dissociated, given all the An. Since m was arbitrary, we get
the same property for X. By Lemma 2.1, it is then enough to show,
in the dissociated case, that X has a representation as in (1) with
constant coefficients. We may thus assume from now on that X is
dissociated.

In that case, it is seen from Theorem 3.1 that any fixed
increment array (xij) as above has a representation

iy = £OE,ELX ) aus.,  i,5eN, (3)

for some measurable function f, where the variables 51,52,... and
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Lij' i<j, are i.i.d. U(0,1), and moreover ;aiio while Xijixai' On
the other hand, the increments of X within squares indexed by
I=(2N)X(2N-1) combine in an obvious way to form a continuous,
separately exchangeable and dissociated process on Ri, so by

Theorem 6.1 we have on I another representation
oo
Xis=p+ c/\ij + kél(“ksikr?jk‘LPkEik”k’]jk) a.s., (i,j)er, (4)
where ?, ¢ and the qk’ﬂk"k are constants, while the )ﬁj' gik and

r are i.1.d. N(0,1l). We need to show that we can choose

iJk
= ’ 4 = z = !

for some functions g, Iy and gi. In that case, (4) determines the

functional dependence in (3) for i#j, so (4) remains valid with

the Aij' ¢£.. and njk given by (5), for all pairs (i,j) with i#j.

ik
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To prove (5), we shall need some relations between (3) and (4).

First note that

= = £ = f "','
where the dots on the right indicate integration with respect to
the corresponding variables. Applyving the law of large numbers to

both (3) and (4), it is further seen that a.s.

o0

1 8 .
lim= I X, .. .=¢+ 2 B.§ =¢€£(,,) i€2N,
nowe 0 51 i, 25-1 ? k=1pk ik i’ !

. 5
lim= 3 X.. .=p + ¥n.. = £(,€.,°), e2n-1.
nrpo i=1 21,7 P k=1 knjk 3

Combining these relations with (3) and (4), we get for (i,j)el

o0
OAJ.J + kélu}IElkq]k = f(gi,Ej,Xij)-f(sir',')—f(',~Ej-')+f('r’.')/

P NI

o

t"‘
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separately rotatable in the sense of Lemma 4.3, so from the proof

of that result it 1s seen that

o4

oAy + kzl“kgik')jk = Tl g K ) ¥ 2 M0k (8 oy (85

(s ﬁo 4 oo

kélgkgik BN SRR kgl"k’?ik - kg 99k (§5)
for some constants o', mi, Pi’ Xi and functions g, Iy s gi, where
the latter are such that the random variables on the left and right
have the same distributional properties. This shows that (4) and
(5) are simultaneously true, but possibly with some new set of
coefficients ?, T, %K, Pk’ Kk and random variables Aij’ Eik’ qjk'
all with the same properties as before. As already pointed out,
the result extends immediately to arbitrary (i,j) with i#j.

Applying the same argument to the array (axij+bxji) for

arbitrary a and b, and proceeding as in the proof of Theorem 5.1,

it may next be seen that
= ' ] L p 3 S
oﬂij C'Aly t O"AL;. iFT,
for some constants o', ¢" and some i.i.d. N(0,1) random variables
Aij' i#j, independent of (Ej). Moreover, the Ejk and Thk are seen
as before to be jointly Gaussian for fixed j, so we may again use
the spectral theorem, to obtain a representation for i#¥j of the form
3 5 3 3
(a€ ..+ E.+ L) = l 'g' g' + (IEI +5|€|'),
S S RS k) = & 2abindin 2 PeBikt Sk
P ; : ' L -
where the coefficients on the right satisfy “kl+“1k_0 for k#1,
while the variables gﬁk are i.i.d. and N(0,1). For convenience,
we may change the notation and assume from now on that
Xi5 = ?+c+>‘ij+o-Aji+gzl"(klsikgjl +§Bk€ik ":i: V85, 173
where the )ij and sik are i.i1.d. N(0,1) random variables, while
?, o,, o_ and thetxkl, ﬂk and Ii are constants satisfying “kl+a&k=o

for k#1, and moreover
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> =, L =,

Y 2 X, < 0o, 2 (3, < oo, 2 I8 < oo,
k1l 1l

k=1 1=1 k=1 1=1

Note that this agrees with (1) if we put o,=0, 0g_=0' and ¥j=P3.
Halving the grid size, we get a similar representation for
the corresponding increments Xi., say with coefficients ?', c;, .

J

a' “il'f3" Kﬁ. Hence the original increments xij have another

4
-

representation of the form
N 3/2
= ' t ) ty ' ' ! (-3 [
Xjj = 4p'+20,4; 442025, +2 %%"‘kliikijl*?' %‘/’*k EixthediK)
where the random variables on the right are again i.i.d. N(0,1).
Eguating the expectations yields ?=4?', and by applying the law of

large numbers as before, we further obtain a.s.
O A 5+ Ayt %zl Xp18ixq1 = 2043 420LA5;+2 %% %1851

= 53/2 ret 1t
%([;](gik+r}<5jk) =2 %‘Pkﬁikﬂ“lkijk) .
Thus the Xij have tlie same joint distribution for i#j as the variables
] 1 1 L ) 1 ] | ] 1) ] [}
Pl Ay + olAy + BT B ES) + 2B NES)
-3/2

= % + 15.(0'+Aij+0'_/\ji+%21 xklgiksjl) + 2

<

é‘ﬂksik”’kgjk"

in full agreement with (1l). Continuing recursively, and using the
fact that both X and the process in (1) are continuous, it follows
that the entire set of increments outside the diagonal is distributed

as in (1). By Lemma 1.1 in [14], we may thus construct a Brownian

;-.7. -",-.',' . .', ‘..

sheet A and an independent sequence of i.i.d. Brownian motions Bj’

such that the increments of the two processes in (1) agree a.s.

outside the diagonal. ;;
oo

To extend this result to the diagonal, we write @*

ii

Y(s,t) = FSt+°Ast+° Ats+ % %_“ij(Bi(s)Bj(t)-(sat)ékj) ﬁﬁ
(6) A

+ %(Bthj(sHp;stj(t)), s, t>0. Y

R
R .
et e,
el




7 . Lo Ta T e Te T - T T Ve Ve D G A &S ‘.'. - <« Ll A A LRl 8 ‘_&\'. i—\ LA S ... '.'. . '.'

53

(n) (n)

Let us further write X =(Xij ) for the increment array of X with

respect to a grid of size Z-n, and put

(n)

Y (s,t) =329 1{i27"%s, j27"%t, i#3}x. %), s,t>0, nen.
n T3 = = ij =

For fixed dyadic s and t and for large enough n, we get with E N(0,1)

E(Y(s,t)-Y_(s,t))° = (s«t){Z_zn?2+2—n(d+d')2+2_nE(§2-l)2 T3 i,
i3]

-2n 2
+ 2 %(pjﬂ‘zj'.) }—’0,
so Yn(s,t) 29 Y(s,t) for dyadic s and t. Note in particular that
Y is measurably determined by X and independent of the choice of
representation.
Let us next define Z=X-Y and Zn=X—Yn, and note that ana-z

at dyadic points. Since moreover

2 (1277,327%) = z_((ia) 27", (ia9) 27", i, jen,
we get the same relation for 2, so there must exist some continuous
process U with U0=0, and such that

Z(s,t) = Z(sat,sat) = U(sat), s, t>0. (7)

From the joint exchangeability of X(n), it is further seen that

+

)(m) is jointly exchangeable for m=n, and hence also for m«n.

(X, ¥
Letting n—»pe for fixed m, we may conclude that (x,Y)(m) is jointly

exchangeable. The same thing will then be true for the Rz-valued

process (Y,Z) on Ri.

(n)

Writing Ui =U(12-n)-u((i-1)2-n),we get from (7)

z (1)
13
which shows that even the process (Y(s,t),sU(t)), s,t>0, is jointly

_ . (n) .
= Ul 5lj, lIJeNI
exchangeable. Proceeding as for X above, we may then obtain a

representation as in (6) for each component, in terms of a common

sequence of Brownian motions Bj. Using the law of large numbers

.......




as before, it is seen that the constants o, &' and all the °&j and ﬁj

must vanish in the formula for sU(t). Thus we get, jointly with

(6), a representation of the form

-]
sU(t) =4st + 2 Y.sB.(t), s,t>0,
where V¥ and the Fj are constants with in <, By (7) it follows
that

0

Z(s,t) = ¥(sat) + o V.B.(sAt), s,t>0, (8)
. J-—

and adding this to (6) yields (1).

In view of the results in Section 2, it remains only to prove
the uniqueness assertions. Then recall that the diagonal process
(8) is measurably determined by X, and that the processes Z[;ij (s)
and Z(}ﬁBj (t) can be measurably recovered through the law of large
numbers. All these processes form together a mixed Brownian motion

in R® with drift (#,0,0) and mixed quadratic variations z:xg,

2(3.32’ 2(%2, Z?’jf‘j' Exjrs:i and 2}3}{35, so these guantities are a.s.

unique. Subtracting the corresponding terms from (1), we end up
with a jointly rotatable process, for which the a.s. uniqueness

of the parémeters ' (0’+c')2 and x?. as well as of the sequence
P ij

(°Sj) follows by Theorem 5.1. a

When X is symmetric, the representation (1) simplifies to

(1.7), i.e. we have o'=qd, pﬁiﬁj and “ijioﬁsij' In this case, we

may introduce the directing random elements ?,19 and P=(P1”"’P4)’

where the Pj are a.s. bounded random measures on R, given by
2 2 T a2 < 2 2
=20°+ T3, , n=2pid =2 V39, , u,=2(p+¥)8, . (9
1 - x. ' 2 £ o, ' : . 4 = o,
P 575 31735 P37 5 T3 %%r Tam 55T e
The uniqueness and continuity problems for the representation

(1.7) have the following solutions in terms of the triple (?,ﬂ,P).




Theorem_ 7.3. The directing random elements ?,'8 and p of a
]

symmetric, continuous and jointly exchangeable process X on Ri

are a.s. unigue and X-measurable, and the distributions of (P,G,P)

and X determine each other uniquely. If Xl,Xz,...

above directed by (?n'dh’Pn)' neN, then the statements

are processes as

(1) Xng+ some X, (ii) Xngg some X, (iii) (?n,ﬁ%,Pn)Yg-some (?,G,P)

are equivalent and imply that even X is such as above and directed

by (p,%p).
For the proof, we shall need a tightness criterion for the

processes X in (l1.7), regarded as random elements in C(Ri).

Lemma_7.4. Let Bi/Bys-n be independent Brownian motions,

g0
Xn(s,t) = ) x_.

5 n](Bj(s)Bj(t)-snt), s,teR+, nenN,

where the “hj are non-random. Then (Xn) is tight if

T 2
sup 2,& < 9o,

n j=1 nJ

Proof. For s,t>0 we write

: = 2 S
v ,t) = X ,S+t) = x_ . (R - < .B. . -B.
n(s ) n(s s+t) ;él nj( J(s) s) + ;EI njBJ(s)(B](s+t) BJ(S))

Tn(s) + Un(S,t).
Proceeding as in the proofs of Lemmas 7.2 and 6.6, we get

2

2 oy
E‘w(Un,h)l < p* 2 %50

3=1
which shows that (Un) is tight.

As for (Tn)’ we write Mj(t)=B§(t)—t, and note that de=2Bdej

by Itd's formula. Since the martingales Mj are further orthogonal,
we obtain for Tn the quadratic variation process
oo g t
_ 2 _ 2 2
[r .71 = jE;cnj[Mj,Mj]t = 4j§1°‘nj ij(s)ds.

Hence
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which shows that the sequence ([T ,T ]) is tight. Since Tn=wno[Tn,Tn]
for some Brownian motions Wn’ it follows that even (Tn) is tight.

The above results combine to show that (Yn) is tight. The
tightness of (Xn) then follows from the fact that Xn=Yno?, where
? denotes the continuous mapping

P(s,t) = (sat, svt - sat), s,t>0. (W]

Proof of Theorem 7.3. Let X be directed by (?,ﬂ,F), and note
that p and  are a.s. unique and X-measurable by Theorem 7.1. To
¢
prove the same thing for u, it suffices as before to con< Aer

processes (1.7) with constant coefficients. By the proof of

Theorem 7.1, we can construct the processes

-]
T(s,t) = O(A +A ) + _Zl«j (B5(s) By (£)-sat),
J (10)
U(t) B.(t v(it) = B.(t), , >0
( Zﬁ”(), (t) 321633() s,t20,
as measurable functions of X. A simple computation further shows
that, for t| sufficiently small,
E exp(tTll+iuUl+iév1)
20 B u2,32+v .8 +2uv{3
= exp(Zt o’-% L{log(l-zto‘j)+2to<j+ J J 3})
j=1 1- 2tw<j (11)
log (l-2tx)+2tx (u +v? +uv(p,~p,-n,)) (dx)
- exp{_%j__ . Yl(d")’%g PatV P3tuvipg=py=ps }’
X 1-2tx

where the first integrand is defined by continuity to be-2t2 at

x=0. Putting u=v=0 yields the uniqueness of Py Using a recursive

argument as in the proof of Lemma 4.3, it may next shown that the

sums
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are unique for all index sets J of the form {jéN: uj=x}. From these o
N

. YA

. we may easily construct the measures BFar P3 and Pg- AP
Conversely, these four measures determine the parameters 02 %%:Ji
.‘-.':\': ]
and NB’Pj’,j' apart from order and from rotations of the sequence A
C ot
'.-..",\‘: :

hJ
f

of pairs (ﬁj,rj) within groups of indices where the qﬁ assume a

common value. As in case of Theorem 6.5, it is clear that such
rotations do not affect the distribution of X. Thus (?,@,F) and
PX_l determine each other uniquely. The uniqueness part of the
theorem now follows by Lemmas 2.2 and 2.3.

Let us next consider a sequence of processes Xn directed by
(?n’ﬂh'Pn)’ neN. To prove that (iii) implies (i), we may assume
as before that the ?n’ ﬁ; and Pn are non-random. From {(iii) it

then follows by Lemma 7.4 that the corresponding sequence of triples

(Tn,Un,Vn), as defined by (10), is tight. Moreover, these triples
are clearly jointly rotatable and dissociated in the obvious sense,
so the same thing must be true for any limiting triple (T,U,V).

The proof of Theorem 7.1 then shows that even the latter must be

of the for? (10), say with coefficients o' and qﬁ,pﬁ,(ﬁ, so (11) A
must hold for (T,U,V) with the associated measure P'. But (11) is .
also true with the limiting measure P' as may be seen by proceeding -
to the limit in formula (11) for (Tn,Un,Vn). As above, we may then
conclude that P'fp, so (T,U,V) is uniquely distributed, and we have

in fact convergence (Tn’Un’Vn) 9’ (T,U,V). Thus (i) holds by

continuity with X directed by (p,%,p).
To complete the proof, it remains to show, as in case of

Theorem 6.5, that (ii) implies tightness of the sequence of

directing triples (fn’ﬁ%’Pn)' For this purpose, consider first the

. - . . ° N ..{ By
increments of X over a square grid outside the diagonal, and conclude -:ﬁy:.
:'~."-.‘:\ ‘
as in case of Theorem 6.5 that the sequence of triples (F'Pl'PZ) NN
NN
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is tight. Using the implication (iii)=$(i), we may next conclude

that the sequence of processes

?st + 2_{0( (B (S)B (t)-sat) + p (sB (t)+tB. (s))} s, t>0,

Jj=1

is tight, and by subtraction from X we get tightness of the

variables Zst in (8) for fixed s and t. Taking c»0 and writing

. . 2 2 2
'E exp(ltle)‘ = !E exp (1t¥-%t ij)| < E exp(-%t 27?)

~5t2 2
<1- - p{Tulxc],
it follows easily that the sequence of sums ZYi is tight. The
same thing must then be true for the measures P3' since their
supports are contained in those for P1- The formula P4£2(y2+P3)
shows that even the measures P4 are tight. From the result for
2x§ it is further seen that the processes z b’ij(sat) form a tight

sequence, and subtracting these from (8), we get the same result

for B(sat) at every fixed (s,t), and hence also for the variables 4 0
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