
a( U) NORTNCRROLI UIY RT CHNPEL HILL. CENTER FOR
STOCHASTIC PROCESSES 0 IcFNi.LEO JUL 96 TR-143

UNCLRSSIFED OSR-TR- ?- F492-85-C- S144 F/6 U/1



11.8I-~l
ill I ll lIInH
111.2 1111.4 m.6

VLCOCOPY PESOLUTION TEST CHART

Nb~~ N- - - - - - - - --qe



UNCLASSI FIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE '

I&. AponT qSFlAIv r, l 1b. RESTRICTIVE MARKINGS

2a, .. OSTRIBUTIONIAVAILABILITY OF REPORTApproved for Public Release; Distribution

21. AD-A177 017Unimte
JUU

S.P . MONITORING ORGANIZATION REPORT NUMBERISI '

Technical Report No. 143 AFQ*SR-TR. 87-0098,'r'.
IN G NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 

7
a. NAME OF MONITORING ORGANIZATION

University of North Carolina (tapibl) AFOSR/NM , :

6. ADOREIS$ (Ci ty. State and ZIP Codes 7b. AOORESS (City. State and ZIP Code)I
Center for Stochastic Processes, Statistics Bldg. 410
Department, Phillips Hall 039-A, Bolling AFB, DC 20332-6448

I&. NAME OF FUNOINO/SPONSOMING jab. OFFICE SYMBOL. 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIATION it applicabe)I _________ F49620 85 C 0144-

a.. ADDRESS C:,Stage; and ZIP Code) !C. S014CE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UJNIT
Bd.40EEMENT NO. NO. NO. No.Bolling AFB, DC 10F20

11 TITLE [Inciuua Security Clam~itication) xhnibit
Some new representations in bivariate _______________________________

12. PERSONAL AUTHORIS)
Kallenberg, 0.

13&. TYPE OF REPORT 130. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Da-y 15. PAGE COUNT

16. SUPPLEMENTARY NOTATION .- c

17 COSATI CODES IB& SUBjECT TERMS (Continue on pyuere it neceua,7 and identify by block number)
PIEL ROPUBGR. Keywords: Exchangeable and rotatable arrays and processes,

rownian motions, bridgcs and sheets, directing random
leinents, random measures, induced topology, weak converi'ence.

19. ABSTRACT rCon ginue on mwverve if neceuarY and identify by blockt number,
Consider an array \=(X .., i,jEN) of random variables, and let U=MIJ . and V'= (V.

be othognaltransformations, affecting only finitely many coordinates. Sax' that X is
* be orhogonalTd133

separately rotatable if UXV =X for arbitrary U and V, and Jointly rotatable if this holds

* with U=V. Restricting U and V to the class of permutations, we get instead the property

of separate or joint exchangeability. processes on R-,R 10,1l or [0,11- are -said to he

separately or jointly exchangeable, if the arrays of increments ovcr arbitrary square

grids have these properties. [~or some of the above cases, explicit representations have

been obtained by Aldous (1981) and Hoover (1979) . The aim of the present paper is to

continue the work of these authors by de riving some new representations, and by solvinoz
the associated uniqueness and continuity problems.

30. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIGO/UNLIMAITED 4 SAME AS APT OTIC USERS cUNCLASSI FIED
22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPH4ONE NUMBER 22c. OFFiCE SYMBOL

oInciu, Arita Code)
~rw~'s.'~'CCTh~u\ rAFOSR/NM

00 FORM 1473, 83 APR EDITION OF 1 jAN 73 IS OBSOLETE. UNCLASS I FIED

~~~ N- 'V-'%.----.'--



A~f'OSR.Th 87-0098

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
* University of North Carolina

Chapel Hill, North Carolina

L~d.

0 *

SOMENEWREPRSENATIOS I BIARIAE ECHANEABLIT

by

Ola Kalnb

TechicalRepot No 14

.........



T- 17 76 11; M L IN 17

b

SOMFE NEW REPPr.FENTATIONS IN BIVARIATE EXCEANGEABILITY 7 2

by Olav Kallenberg 1: 4

Universities of Goteborg and North Carolina at Chapel Hill

OTIC

Abbreviated title: Bivariate exchangeability INSPE1C1T 1

Summzary:_V'

Consider an array X=(Xi j, i,jtN) of random variables, and let-

U=(U.) and V=(Vi.j) be orthogonal transformations, affecting only

finitely many coordinates. Say that X is separately rotatable if

uxvT xfor arbitrary U and V, and jointly rotatable if this holds

with U=V. Restricting U and V to the class of permutations, we

get instead the property of separate or joint exchangeability.

Processes on R+, R KE0,1] or [0,1i are said to be separately or

jointly exchangeable, if the arrays of increments over arbitrary

square grids have these properties. For some of the above cases,

explicit representations have been obtained by Aldous (1981) and

Hoover (1979). The aim of the-present paper is to continue the

work of these authors by deriving some new representations, and by

solving the associated uniqueness and continuity problems.

AMS 1980 subject classification: Primary 60G99.

Key words and phrases: Exchangeable and rotatable arrays and

processes, Brownian motions, bridges and sheets, directing random

elements, random measures, induced topology, weak convergence.

Research supported by the Air Force Office of Scientific Research

Contract No. F49620 85 C 0144.

W %.



1._Introduction

Consider an infinile two-dimensional array of random variables

X=(X.., i,jEN). We shall say that X is separately (or row-column)

exchangeable, if its distribution is invariant under permutations

of both rows and columns, i.e. if (Xij) = (Xp ) for all permutations

(p.) and (qj) of N. If this condition holds with the same permutation

for rows and columns, i.e. if (X (Xi) for all (pi), we shall

say instead that X is jointly (or weakly) exchangeable. In the

above definitions, it is clearly enouqh to consider permutations

(pi) such that pi=i for all but finitely many i.

Aldous (1981) and Hoover (1979) proved independently that an

array as above is separately exchangeable iff it is distributed as

Xi f f(CK, i, jj ) i,jrcN, (i)

for some measurable function f: [0,I--,- R, where the quantities

oand 9i'1j' Aij' i,jEN, are i.i.d. random variables, uniformly

distributed on [0,1] (U(0,1) for short). Hoover also showed that

an array is jointly exchangeable iff it is distributed as

Xij = f (,9iIjAij) i,jrN, (2)

for some function f as above, where c, i,2,.... and i<j, are

i.i.d. U(0,1), while ii=0 and A ij=A ji for all i and j. Aldous

gives the same result without proof, in the special case of

symmetric arrays (where X..=X.. and hence f(-,x,y,-)=f(-,y,x,-)).
1] i

Since the representation in (2) will play a basic role in this

paper, we give a short proof in Section 3 below, employing the

techniques of Aldous. (Hoover's as yet unpublished proof uses ideas

from logic and non-standard analysis, and may be difficult to read

for probabilists.) Note, incidentally, that representation (1)

follows immediately from (2), since the two representations are

equivalent for (i,j)E(2N)N(2N-l). This observation will often be

- ° .° .° °. • ° .. .. .. . - . , - . . ° .o .. .. . - - . - . .. . ° ° , .- . . . . o . ° . o .



2

useful in the seauel.

Aldous, in his brilliant 1981 paper, goes on to prove a

conjecture of Dawid (1978), giving the general form of a separately

rotatable (or spherical) array. By this we mean an array X as above,

T dsuch that UXV = X for all linear operators U and V on R1 which

rotate Finitely many coordinates while leaving the others invariant.

Transformations of this type will be called rotations, and for these

the matrix notation above will often be convenient. The general

representation theorem states that an array is separately rotatable

iff it is distributed as

00

Xi . + Y k ik jk' i,j N, (3)
k=l

for some randorn variables ( and x,,'... with OkP, where the
ij, ik and ljk are i.i.d. N(0,1) and indenendent of

a and (o). In fact, the general array is known to be a mixture

(in the distributional sense) of dissociated ones, where (Xij,

iAjcn) and (Xij, ivj>n) are independent for each n, so Aldous

restricts his attention to the latter and obtains a representation

(3) with censtant coefficients. He also needs a moment condition for

his proof. Given Aldous' work, it is not hard to supply the additional

arguments needed for the general version, which is done in Section 4

below. Even this result will play a key role in subsequent sections.

In Section 5, the characterizations in (2) and (3) will

be combined with some methods from Aldous paper to yield a

corresponding representation in the jointly rotatable case, where

T dit is assumed that UXU = X for all rotations U. For the special

case of symmetric arrays, our representation becomes

x.. = + a(Gk .+A. + i~-N (4)
1] j. k( kktjk i1D ij~N 4

where 6ij denotes the Kronecker delta, while the 13 and ik are

i.i.d. N(0,1) as before, and o, c andci,<2,... are arbitrary random
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variables independent of the and ik and satisfying 2 d<0.

Dawid (1978) discusses the further restricted case when the finite

subarrays are non-negative definite. In this case (4) simplifies to

00p

X = ij + I kik jk' i, j r, (5)

with non-negative ? and ki ,( 2 .... satisfyina I0(k ' , as conjectured

by Dawid. In fact, Dawid proves that the representation (5) is

equivalent to (3) above, and so his conjecture was essentially

settled already by Aldous paper.

The last two sections are devoted to exchangeable and continuous

random processes X in the plane, as introduced in Aldous (1985).

Here the definition of exchangeability is stated in terms of the

increments of X over finite rectangles I, given by

X(I) = X(b,d)-X(ad)-X(bc)+X(ac)

when I=(a,b)x(c,d). We shall say that a process X on R+,

[0,liaR+ or T0 , 1]2 is separately exchangeable, if the array of

increments of X with respect to an arbitrary rectangular grid has
this property. The definition of jointly exchangeable processes

on R+ or ['0,11] is similar, except that we have to consider square

grids emanating from the origin. For definiteness, we shall assume

in both cases that X(s,O)=X(O,t)=O.

2
In Section 6 we show that a process on R+ is separately

exchangeable and continuous iff it is distributed as

X = st + CAst + j)l (jBj (s)C (t) +jBj (s) t+jsCj (t)), (6)
s t j3= ~ ~

for some random variables P, d5 and ,1.j, rj, j CN, with (C+
3~ ID : J

< . Pere A denotes an independent Brownian sheet, while the B.3

and C are mutually independent Brownian motions, which are also

assumed to be independent of everything else. The same representation

2is valid for processes on R >[0,1] or [0,1]j, but now with the

. ~~~~wt the.. . . .. . .
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B. and C. interpreted as Brownian bridges in appropriate cases,

and with the Brownian sheet A accordingly tied down. Our proof of

(6) depends on the simple observation that exchangeability is

eauivalent to rotatability for continuous and suitably tied-down

orocesses on R+. By this coincidence, the representations of

rotatable arrays derived in previous sections become the basic

tools to analyze exchangeable processes in higher dimensions.

In the final Section 7, we characterize jointly exchangeable

2
processes on R+. For the special case of symmetric processes, our

representation formula becomes

Xst = st + -(sAt) + o(A +A
* St ~st ts

(7)

+ c j (Bj (s)Bj (t) -St)+ A. (sBj (t)+tB (s) )+ .B. (sAt,

where , i., a and the j, and j are arbitrary random variables

satisfying 7(02+P2 +2 )< a.s., while A is an independent Brownian

sheet and the B. are independent Brownian motions, as before. ThisJ

may be compared with Conjecture 15.20 in Aldous (1985), where it is

suggested that instead
1 -0

= st + O(sAt) + (SA(sAt,svt) + '5o_.B. (s)Bj (t). (8)Xst F

Note that the centering of the product terms B (s)B (t) is

necessary for convergence in general. The missing components

SjsB (t) and Z ~jtBj(s) represent centered drift terms in the

horizontal and vertical directions reprectively, themselves

exchangeable, while 1(sAt)+ 75B (sAt) represents an exchangeable

process along the diagonal.

We conjecture that (7) and the more general non-symmetric

version below remain valid for jointly exchanaeable processes on

T0,1 2 , with A and the B. tied down as before. We miaht also mention

the open problem of characterizing jointly spreadable arrays
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and processes, where spreadability is defined as in L14].

Once a characterization problem has been solved, the next step

becomes to examine the associated problems of uniqueness and

continuity. Here the former is to identify the equivalence classes

of representations giving rise to the same distribution, while the

latter problem consists in describing the topology in the so defined

representation space that corresponds to weak convergence for

the distributions of X. This program will be carried out below for

the representations in (3), (4), (6) and (7). (Note that the

uniqueness problem for the representations in (1) and (2) has

already been solved by Hoover (1979).) We shall use the approach

from the univariate discussion in E123. Thus for each case we shall

introduce a suitable set of directing random elements, say, to

be given as functions of the coefficients in the representation

formula, such that convergence in distribution of F and X will be

equivalent.

Our discussion of the main problems, as stated above, will be

preceded by some general prerequisites in Section 2. Here we shall

present some results based on the powerful section theorem (cf.

Dellacherie and Meyer (1975)), which will provide the technical

tools to extend a representation from the dissociated to the general

case. Likewise, they will yield without effort the X-measurability

of the directing random elements directly from their uniqueness in

the dissociated case. Throughout the paper, we shall further make

frequent use of the simplifying device of randomization, based on

the elementary Lemma 1.1 in [14]. In particular, this will enable

us to proceed directly from an explicit formula for an equivalent

array or process (i.e. some X' = X) to an a.s. representation of

X itself. Section 2 will also contain the required background on

............ .... n . A
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the univariate case, as well as a brief discussion of some processes

related to Brownian motion and sheet.

As for relevant literature, the lecture notes by Aldous (1985)

provide a broad survey of exchangeability theory. The reader is

especially urged to read his Sections 14-15, dealing with the

multivariate case. Several of our arguments below have been

patterned on similar passages in Aldous (1981). On such occations,

we shall often give only a brief outline, so the reader may need

to consult Aldous' paper for details. Other references on the

multivariate case, not mentioned before, are the papers by Dawid

(1977), Hoover (1982) and Lynch (1984).

Our discussion of weak convergence and tightness for random

arrays and processes presupposes some general theory on the subject,

as given in Chapters 1-2 of Billingsley (1968). We shall further

need some weak convergence theory for probabilities on measure

spaces, as provided by Chapter 4 in [13J. The reason for this is that,

typically, one or more of the directing random elements will turn out

to be random measures on some appropriate space. Finally, we shall

often need to refer to [12], not only for the basic univariate

representations, but also for its elementary randomization Lemma

1.1, which will often yield immediate extensions of our weak

convergence results from the dissociated to the general case.

$1
-; ''-: : - -' -'''- T "i -. '- i .i i"i< -:i " • -,- "- ." - - . , . i~i ; i-i .- " i- ~ i; - iii il-Ui
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2. Preliminaries %

In this section, we shall first derive some general measure theoretic

results, which will be useful in proving the main theorems of the

paper. The first result will be needed to extend a representation

formula, obtained under suitable conditioning, to the unconditional

case.

Bv an extension of a probabilitv space (f,7r,P) will shall mean

a product (n',j',P')=(1xI ,K8,Px A) with some arbitrary probability

scace (I,al), e.g. with the Lebsgue unit interval. Note that random

elements on i extend immediately to Il' with the same distribution.

The procedure of constructinc random elements on some extended

probability space will be called randomization.

Lemma 2.1. Fix a probability space 4l,7,P), a a-field

and three Polish spaces S, T and U. Let :.f.-1 S, n:fl .---P U and

f: TXU---, S be measurable mappings, and put mt=P{f(tn)E-} . Assume

that

I?[ "Ej ]E Mint tET} a.s. (1)

Then there exists a 9-measurable random element T in T and an

independent random element on some extension of A, such that

=f(T, ') a.s.

Proof. Let O and 7 denote the Borel a-fields in S and T

respectively, and conclude by Fubini's theorem that mtB is -

measurable for every BE!. Writing p for a version of P[Ek-fq]' it

is further seen that pB is s-measurable for all BEf. Letting BI,B 2,f

...Ef be measure determining in S, we get

A = 1(w,t)EflxT: ,=mt3 = k(),t) : y,#Bj=mtBjl e J X".
j=1

Note also that the projection of A on.n has probability 1, by

assurFtion. By the section theorem (cf. [6]), there exists some

9-reasurable random element T in T, such that T=m a*s. Choosing...........~~~ ~ ~ ~ ~ s..----............
-.- 4.



by randomization some d independent of i, we get by Fubini' s

theorem

which shows that (,T) d(f( .,,) ) Lemma 1.1 in r14] there

exists some random pair (t',_) on an extension of-'I, such

hat =f(",v') and T=r' a.s. Thus g=f(', 1 ' a.s., and moreover

is indenendent of T, since (tr 1 )

More can be said when the mt are invariant and ercodic under

a suitable class of transformations. Here we are using the terminoloqy

of Section 12 in Aldous (1985).

Lemma 2.2. Let the measures mt in Lemma 2.1 be invariant and

ergodic under some couitable group of measurable transformations

of S. Then the random measure m is a.s. uniaue and g-measurable

and there is even a i-measurable choice of T. Moreover, the

distributions of and m determine each other uniquely.

Proof. Let be the oT-field of invariant Borel sets in S,
S

-l1and put 7=g 7S c Fr. From Dynkin (1978) (cf. Theorem 12.10 in [23)

it is known that P[ge-j7] is a.s. ergodic, and that the integral

-1
representation of P4 over the ergodic measures is unique. Hence

the random measures mr and P[EJ-17J have the same distribution.

Since the range of m is analytic, it foilows that PEt,17J{mtr ET}

a.s. Thus Lemma 2.1 applies with = 7, so there exists some 7-

measurable random element T' in T satisfying

P[4EI m-, a.s. (2)

Let us now return to the relation

m = lg E (3)

Here the left-hand side is a.s. ergodic, so

and- t lo eas ,l a.s.,tha

and it follows easily that
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{ P[TljJ=1JE 01t-) a s, I 7.

This shows that T'c C(T). We now obtain from (2) and (3)
r = EEm[P 7E a.s.

Letting B be an arbitrary Borr' set in S, we get
me m ,B = E m.B F[m P17 3 = E(EmB72 E(mB)2

d

and since m , = . as above, it follows that
2 2 2

E(MTnB - r B) = E(m,B) - E(mrB) = 0.

This shows that m=m-, a.s., so m- is a.s. uniaue and 7-measurable.
r- 1 -1 -I

It follows in particular that P9 determines Pmi. The converse

iLs also true, since P -lEm

In the applications we have in mind, T is the array of

coefficients in the representation formula for X, and rt is the

distribution of X when t=t is fixed. Now suppose that f is a

measurable mapping from T to some space V, such that mt and ft

determine each other uniquely. If the mappings between mt and f
t t

can be shown to be measurable, a.s. P , then the conclusion of

Lemma 2.2 will remain true with m . replaced by ?=., and ? can

serve as a'directing random element for X. The following result

yields the desired measurability when V is Polish.

Lemma 2.3. Let t and i be random elements on some Polish

probability space f), and taking values in the Polish spaces S

and T resoectively. Assume that =f(i) a.s. for some mapping

f: T-- S. Then f can be chosen to be measurable.

Proof. Recall that the range A= ( , )(') "Ef) is analytic

in SXT. Add to S an extra point . By the section theorem (cf. 761)

there exists a measurable mapping q: T- S O(} with g()S a.s.,

anc such that

(g(t) ,t) A as), s A (1aats.T.
This means that (a(7) ,VCA a.s., so q(j)=f (,)= a.s. 13

... .............-
" _' - ' ' _ ' . _ ' ' ' ' ' . .. . . .... . . . . .." ' " " ¢ " " " , ' ' "." . . . .." ' , ,. , r . .' , " , , " . " . . . . . . . . . -. . .
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We need to make some further remarks on the application of

the above results. First recall that the separate or joint

exchangeability of a process on a continuous parameter space was

defined in terms of transformations of the associated increment

arrays rather than of the process itself. However, there exists in

each case a countable aroup 0 of measurable transformations of the

process, such that exchanaeability is eauivalent to invariance in

distribution under G.

To see this, let us e.g. consider the case of joint

2
exchangeability for continuous processes X on R+, the other cases

being similar. We then define for fixed h>0 the processes

h
Y..(s,t) = X((ih,ih+s)A(jh,jh+t)), s,te(0,h), i,jEN.J-j

't is easily seen that the joint exchangeability of X carries over

h hto the array Y =(Yh.). Moreover, there exists some measurable

mapping f such that X=f (V h). Writing T v h=(V ) and Th X=f (T Yh

h h p Ppj p h p
for finite permutations p of N, it follows that T X 9 X for all p.

p

Conversely, this property implies that T Xhd Xh, where Xh

denotes the array of increments with respect to the h-grid. Thus

X is jointly exchangeable iff it is invariant in distribution under

h nthe transformations T with h=2 -n  nEN, and with p a finitep'.

permutation of N. These transformations clearly form a countable

group.

A second remark concerns the ergodicity of the measures mt ,

required in Lemma 2.2. In our applications below, the arrays or

processes Xt corresponding to mt will have representations with

constant coefficients, and so will be dissociated, when defined on

2 2N or R . (In case of processes, this means that the associated

arrays of increments are dissociated.) The desired ergodicity then

follows as in the usual proof of the Hewitt-Savage 0-1 law (cf. £8]).

# 4°
z

... . .. . . ° '- -° . . o ." ... .... . . . , % ". .. . . -.. ." - - - - .-



O.v -I -P #777- - % 7-7

11

For processes on [0,132 or R+X[0,1], the conclusions of the lemma

may instead be obtained via the transformations in Lemma 2.7 below.

We turn to the characterization of continuous and exchangeable

proc-sses on R or [0,1]. Recall that a one-parameter process X is

exchangeable, if X0 =0 and if the increments of X over an arbitrary

set of disjoint intervals of equal length form an exchangeable

sequence. For continuous processes, it is clearly enough to consider

intervals with dyadic endpoints. Say that an Rd valued process B

is a Brownian motion or bridge, if the component processes are

independent Brownian motions or bridges respectively in R. The

following result extends the one-dimensional version in [12]. Here

and below, we shall use a self-explanatory matrix notation.

Lemma 2.4. An .d-valued process X on R+ or [0,1] is continuous

and exchangeable, iff a.s.

Xt = at + OBt ,  tER+ or [0,,1] (4)

dfor some random vector * in R d , some random cdd-matrix a, and some

Rd-valued Brownian motion or bridqe, respectively, B. Here a and o T

are a.s. uniaue and X-measurable, and their joint distribution

determines that of X.

The representation (4) can be established in the same way as

in the one-dimensional case, i.e. via weak convergence as in [12],

or by the martingale argument in [2]. The last statement is an

easy exercise in the use of Lemmas 2.2 and 2.3 above, given the

fact that, in the two cases,

E exp(io<T fa f a T f l 2
E exp(if Tdx) Texp (icK f U T f - ) 2),

where f is an arbitrary Rd -valued and measurable function with

JfJELI'L 2. (It is of course enough to consider simple step functions

2 2'.'%
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of this type.) Alternatively, we may obtain ac and oa directly as

< = 1ir t x or o(= X1, CaT = IXX] 1  a.s.,t

where IX,X] denotes the d~d-matrix of mixed quadratic variations

for the components of X.

Using characteristic functions as in Theorem 5.3 of [12J , we

may easily deduce the uniqueness of extensions (which incidentally

remains true in the presence of jumps):

Corollary 2.5. Let X be an Rd -valued continuous and exchangeable

Frocess on R or [0,1], and let Y denote the restriction of X to

-1 -
some subinterval [O,IJ with E>0. Then PY determines PX-

We shall also need the following multi-dimensional version of

' Schoenberg's theorem (cf. [2,51). Say that an R d-valued random

sequence X=(X. , icd, jEN) is rotatable, if XU = X for every rotation
1J -

U. For a process X on R+ or [0,1] to be rotatable, we require that

X be continuous in probability, and that the above property should

-. hold for the increments over an arbitrary set of disjoint intervals

of equal length.

I 

dLemma 2.6. An R-valued random sequence X=(Xij, i-d, j N) is

rotatable iff a.s.

d
Xij = ,ik kj, i=l,...,d, jrN, (5)

for some random dxd-matrix a=(rik) and some i.i.d. N(0,1) random

variables ,kj' kd, jeN. Similarly, an R d-valued random process X

on R+ or [0,1] is rotatable iff

Xt = dB a.s., tEP+ or [0,I1 , (6)
t t + _Fl

for some random matrix a as above and some d-dimensional Brownian

motion B. In both cases, dco is a.s. unique and X-measurable, anc

its distribution determines that of X.

%
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We conclude this section with an elementary discussion of some
.

processes related to Brownian motion. First recall that a Brownian

sheet is a centered Gaussian process X on R+ with covariance function

F X stX = (ss') (tAt'), s,s',t,t'rR+

Starting from X, we may construct the further processes

Y X - sXlt' sE[0,1J, teR+,

Zs= Xst-tXsX+St Xl =Ys-tY stl0,i,

with covariance functions

E YstYs~t = (sAs'-ss')(tAt'), s,s'E[O,l], tt'ER+

E stZ s t= (sAs'-ss')(tAt'-tt'), s,s',t,t'ef0,l.

All these processes will be referred to as Brownian sails. (The

process Y above is also known as the Kiefer process.)

In the next result, we list some simple relationships

which will be needed below. For their proofs, it suffices to compute

the covariances.

Lemma 2.7. Starting from a Brownian motion W and a Brownian
.4.

sheet X, we may construct a Brownian bridge B and Brownian sails

Y and Z through the formulas
s

1s(s) = ss) tEr[0 1
Y(S,,t) = (I-s)X( 1- st), se[(0,11, tCR +,._

1-t s t 2---

Conversely, W and X may be obtained from B, Y and Z through

W(s) = (I+s)B( -s) sER+
l+s '+

s s t
X(s,t) = (l+s)Y(- ., t) = (1+s) (l+t)Z(l-- ,-t s,teR

We finally state a simple consequence of Lemmas 2.4, 2.6 and

2.7, which will play in important role in Section 6.
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Corolary2.8.. Let X be an Rd -valued, continuous and

exchangeable process on [0,1] with X1=0. Then the process

t +Y(t) = (I+t)X(i-), tR +,

is rotatable.

5.

.

v

°e

.... ... .... - .- ..... ...... ....... ...

55 - . .. "*. ~ % ' '
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3. Jointly exchaneable arras

The purpose of this section is to give a proof, in the spirit of

Aldous (1981, 1985), of the representation forrmula (1.2) (equation

(2) of Fection 1) for jointly exchangeable arrays of random variables.

Theorem 3.1. An array X=(Xi., i,jECN) of random variables is

jointly exchangeable iff

Xi = f( , i, tji j , i j N (i)E T'

holds a.s. with Aii=0 and A. -=Ai', for some easurable function

f: [o, 1]4__ P and some i.i.d. U(0,1) random variables ,

and Jij' i<j.

It is clearly equivalent to write instead of (1)

xj = i iJ'

1JJ

- ( , i)' i=j,

for some measurable functions f: [0,114-- R and g: [0,11 2_. R,

and some i.i.d. U(0,1) random variables o<, . and A. as above.
1 1D

For the proof, we shall need a couple of simple exercises on

conditional probabilities, stated here for random variables but

applied below to infinite arrays.

Lemma 3.2. Let the random variables , be such that

and ( ' ,i') are conditionally independent, given . Then is

conditionally independent of ', given (1,1',) and also

conditionally independent of given (1,;).

Lemma 3.3. Let fl, 52,'12 be random variables with ( iid

Then there exists a transition kernel m on R, such that

PE e./?jJ = m(j,-) a.s., j=1,2.

... ;

. .. . - , . . . . € . . . . . . . . . . . .* . . . . " .. '

: ::2 ::22 1 :< , .. i 2i< i> T~ 1"- --. L ; <212 ;; ."::22 >< .: d, ? i? ]i : 1: 2 i-1 .~ 1: :221 2 i i
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Proof of Theorem 3.1. Define Y. .(X..,X..), i,jEN, and note that
1] 1. 131

the joint exchangeability of X carries over to Y=(Y..). By

Kolmogorov's consistency theorem, we may extend Y to a jointly

exchangeable array indexed by Z 2.Write A=(Y.., iA<O) , Bi=(Y.,

j=i,O,-l,-2 .... ), iEZ, and B=(BI,B 2 . ..)

Our first aim is to prove that BI,B 2 ... are conditionally

i.i.d., civen A. It is clearly enough to prove this for the
n

truncated arrays En= (Y *, j=i,O,-l ..... -n), for fixed neN. Now
n n

the secuence (B1,B2. is exchangeable over A and hence

conditionally i.i.d. and independent of A, given its directing"

random measure, so we need only show that the latter is A-measurable.

But this is true since the extended sequence (..B n  n
-n-2' -n-l'n n

BIB 2 P .... ) is exchangeable.

nLet us now fix nEN, and define Y =( , i,j=l,...,n) and C.=
i "

(Yl...Y), i>n. It may then be seen as above that the pairs
li, ni

(CiBi, i>n, are conditionally independent and independent of yn,

given (A,BI,...,B n). By Lemma 3.2 it follows that C n+ is

nconditionally independent of Yn, given (A,B), and further that

Cn+ 1 is conditionally independent of B, given (A,BI...,Bn+I)

From the latter statement for n=l it is seen that YI2 is

conditionally independent of B, given (A,B1 ,B2 ), and by the

exchangeability of Y it then follows that, more generally, Y.. is

conditionally independent of B, given (A,Bi,Bj), for all distinct

i,jEN.

On the other hand, it follows by induction from the first

statement above that the rows of Y below the diagonal are

conditionally independent, given (A,B), and in particular that Y

is conditionally independent of Y, given (A,B). Again this

generalizes by the exchangeability of Y to arbitrary distinct

indices, so the v. with k-i~j are in fact conditionally independent,
•... .... .- f. t. ... . . .* * • !

'>.' . -"-".v .".".."-2.? ? "'°'). ,-'. * .-"'- . .. / . € , .i-i€ - . - . .. 2"-'.-.' .-
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given (A,B).

As seen above, the conditional distribution of Yi, given (A,B),

is a function of (A,BiB). From the exchangeability of Y it is

further seen that the array (A,Bi,P.j,Y ij) has the same distribution

for all ijEN with i j. Hence there exists by Lemma 3.3 a transition

kernel m, such that a.s.

P 7YEEi-A, B-' :m(A.B.,B..), i,jCN, idj. (2)

Letting C and C be arbitrary ?orel sets, it is further seen from n
1 2

the definition of Y.. that

P[Yij.CIXC2 IA,BJ = PLYjieC2 XClIA,BJ a.s.

so we get a.s. the symmetry property

m(A,Bi,BCC = m(A,Bj,Bi;C2 (C I ). (3)

Replacing m by a suitable average, we may assume that (3) holds

identically.

We may now follow the "coding" argument in Aldous (19SI,1985),

in introducing i.i.d. U(0,1) random variables o( and i, 2 .... by

suitable randomization, such that

= p(e), Bi=q(w. ,i ) , ieN, a.s. (4)

for some measurable functions p and q. Since X is a component

in Ri , we get in particular

X = g(0,i a.s., iEN, (5)

2for some measurable function g: [0,iJ2-- R. We may further choose
4%

two measurable functions fl'f 2 : [0,IJ]- - R, such that

P(fl(a,x,y,A),f2(a,xy,A))'1 = m'(ax.y;-), a,x,y fO,lJ,

for a U(0,1) random variable A, where

m' (a,x,y; .) = m(p(a) ,q(ax) ,q(a,y) ;.) , a,x,yeE[0,lJ. (6)

From (3) it is seen that also

P(f (ay,x,) f (a,y,x,))- = '(a,x,v;), a,x,yE[0,1..

Now define

N - N...- -.- . . . . . . . . . .



18

f 1 (a,x,y,z), XCy,

f(axyz) = f2 (a,Y, X, x>y.

Then S(fl1 (a,x,y,z) , f2 (a~x,yz) ), x< y,"

(f(a,x.y,z),f(av,x,z)) =
L(f2 (a,y,x,z),f 1 (a,y,x,z)), x>y,

so with A as above,

= (f(axym),f(a"vXA)) 1 (a,x,y;-), a,x,yEL0,li, x#y. (7)

Letting i, icj, be i.i.d. U(0,1) independently of c<,i,212'

and putting Aii =0 and ij=Aji, we may easily conclude from formulas

(2) and (4)-(7) and from the conditional independence of Y i4j,

that X has the same distribution as the array
X! = f( *, 9j 4 i  ) i.,jrcN,

i j j,

We may finally use Lemma 1.1 in [14] to show that X has an a.s.

representation of the same form.

a-

I
a

.m

,.3

.-.-.---.-...-. . . . .,

. . . . . . u. ' a .~.~
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4. Separately rotatable arrays.

The main purpose of this section is to remove the second moment

condition, imnosed bv Aldous (1981), to crolve that separately

rotatable arrays of randor variables have the form (1.3), as

conjectured by Dawid (1978). 17e shall also solve the associated

uniqueness and continuity problems.

Theore 4.1. An array X=(Xi., i,jEN) of random variables is

separately rotatable, iff a.s.

X Ai + 6 kEikljk' i,j N, (1)
k=l "

-or some random variables C>O and o (• with o<o a.s.

and some indenendent set of i.i.d. N(0,1) random variables A

ik'1jk' i,j,kEN. Here a and the 9 are a.s. unique and X-rreasurable,

and they are a.s. non-randorr iff X is dissociated. N

Proof. As before, we may extend X to a separately rotatable

2 +=array indexed by Z . Write A=(Xij, ivj<O), and note that X -(X
-j i j

i'-j>O) remains separately rotatable under conditioninq by A.

Moreover,' it is clear from the proof of Theorem 1.4 in Aldous

(1981) that X+ is conditionally dissociated, given A. Finally, we

shall prove below that E[X 1I}A]<*o a.s. We may then conclude from

Theorem 4.3 in Aldous (1981) that X has conditionally the form (])

with constant coefficients, and the unconditional result will

follow by Lemma 2.1 above.

To show that E[X 1lA1Aoo a.s., let us first conclude from

Lemma 2.6 above that Xij=ciij for some random variables (D .>O and

ij' where the latter are i.i.d. N(0,1) for fixed i and independent

of . . Since :. is clearly A-measurable when ie0, and since1 1

Eti j  0 , it follows that

E[X jjA] = o1E[ ij1ft a.s., i<O.

"' " .' - " %.'" ' " " .'","-"." ," ,' ."-" .''."" "' ", " ". " ".".."......."..--.."....."..".""..'.."......"...-. -'.. -'i. ,
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The symmetric argument shows that also

E[X4ijIA < o a.s., j<0. (2)

Let us now fix i=l, and put lj= j and Xj=cI j=lj. FV the

conditional fcrm of Schwarz' inequality, we get

_ "_"_"_ -_ -2 2
2

Here the second factor on the riqht is a.s. finite by (2) , while

the first one is a.s. finite since

E [-12 A] E -E(121+ .. +12)2_ -er22jr ,

2 +....4

2 2

E[ )A) E E(7 2 2 ..-+r 24 A) ~ .(2~+.+5 5)r r r5 o

where xthy means that x=O(y) . Thus EA o a.s. which completes

the proof of the first assertion.

In order to prove that the coefficients in (1) are a.s. unique

and X-measurable, it suffices by Lemmas 2.2 and 2.3 above to assume

that they are non-random. But in that case it is easily verified that

t t2 20 2 lo.t), tR

2 expit11 = exp(- 2 t) , 2 2)

j=l1 R 3

from which the uniqueness follows by the theory of analytic functions,

or directly by differentiation.

Here we have already used the obvious fact that arrays X with

constant coefficients are dissociated. Pssumning conversely that X

is dissociated, it is seen as in Section 2 that X must be eroodic.

Moreover, the sequence of coefficients is clearly invariant under

separate rotations of X, and hence measurable with respect to the

invariant a-field for X. Hence the coefficients are a.s. non-random

in this case.

a

2 2 2 '2
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For every separately rotatable array X as in (1), we shall
define an associated directing random measure p on R by

+

+= 2s 2s (4)

I 0

where S denotes the measure with a unit mass at x. Recall that

w 

'

mn Rm (mn tends weakly to m) for bounded measures mn and m on R+,

iff mnf--;mf for every bounded continuous function f on R+. Here mf

denotes the integral Ifdm. The corresponding notion of convercence

in distribution for a.s. bounded random measures un and p on R isn+

wd
denoted by n-- 1  It is known that this convergence is ecuivalent

d
to nf - ,uf for every bounded and continuous function f. Moreover,

a secuence (Pn) is known to be weakly tight, and hence relatively

comzact with respect to the above notion of convergence, iff (1 nR+) [

is tight and moreover

un' li suo -r,(r~ao)>Ej 0, E, (
r- n-

Analogous results hold for random measures on R and more general

spaces. (For a complete discussion, see Chapter 4 in L13] .)

For arrays of random variables, convergence in distribution is

defined with respect to the usual product topology in R". Here we

shall solve the continuity problem for the representations in (1),

by characterizing convergence in distribution of separately rotatable

arrays in terms of their directing random measures.

Theorem 4.2. Let the arrays Xl,X 2 ,... be separately rotatable
d wd

and directed by '2' . Then X n  X iff w some P and in
d ]

that case X is separately rotatable and directed by some '

Proof. If X is separately rotatable and directed by p, then

(3) and (4) yield 22log (l+xt 2 ..,

E exp(itXll) = E exp{- (dx) teR, (6)

where the inner integrand on the right is defined by continuity to

41':
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be ecual to t at x=O. Pssume first that the are non-random withw .
,Pn---; some , and note that even p must be of the form (4). From (6)

it is seen that the one-dimensional distributions of X converge
n

as n-'oo, with limits qiven by (6). This shows in particular that

(X d) is tiaht. If Xn X alona some subseauence, then even X will

be separately rotatable and dissociated, so X must be directed by

some non-random measure P'. But then (6) holds for both P and u',

and it follows as before that v'=u. Thus X n--X along the original

sequence, with X directed by p. Py Lemma 1.1 in '1 2 , the conclusion

extends immediately to the case of random directing measures p

wd
such that u --* some u.nI

dAssume conversely that X - X, and suppose we can show that
n

wd
( ln) is weakly tight. If np along some subsequence, it follows

d 

"'a

as before that X - some X' along the same subsequence, with X'
n dcf d

directed by some u' =,u. Thus X is directed by some u" = , so the

wddistribution of w is unique, and the convergence Pn- u holds along

the original sequence.

To seT that (jn) is tight, conclude from the subadditivity

of log(l+x) for x>O that

a2t2+ ' log(l+.2 t ) > log(l+Crt 2 ) + log(l+ 2t2

J=1 j=l

> log(l+t 2 (a 2 + Mo2)) = log(l+t 2 PR+).

j 1

Using this, we get from (3) for any r,t>O
cos(tXl) _ E exp(- loa(1+t 2 (+t R+-

11 I +

< P{ R+<r + (1+t 2 r) - PR+>r

=1- (l-(l+t 2r)- )PiuR+>rI.

Substituting Xn and 1n for X and ,, and letting n-,-P, r--o and -. .4

t- 0 in this order, w.e obtain

lir' limsup P{.nR+>rj = 0. (7)
r-P no - P 

I.

L--" .'-" -'-".,v~ ",.-: - ,v v ,-,.v --V ." .. ",. -. (,- v . -" - " " .- --- '-- --. - -' .. ' '.-', ',- ,-,i -.
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2
Since u (r,%o)>0 ir-lies that u F >r (7) yields in turn

nl n +

lir limsun P{ n(r, o)>CiC = 0. (8)
r- ~ n- p

The desired tightness follows from (7) and (8).

-,e shall next prove a rather straiahtforward extension of

Theore 4.1, which will be needed in Section 6.

Lemma 4.3. Let X, Y, Z and 7 be arrays of random variables

X. , Yi' Z. and T, i,jEN, such that

(UXV, YU, Z T) = (X, Y, Z: T) (9)

for all rotations U and V. Then we may write T=v and a.s.

*i ? *-j k ikljk' Y= Z. = Z k(
k=l k=l k '

for some (X,Y,Z,T)-measurable random variables -cand (kPk'k,
2 2 2

kEN, with (ak+k+k)c a.s., and some independent set of i.i.d.

N(0,1) random variables Aijikj k i,j,kN. If we assume that

('f,iI>0 and cK2>3' ..>0=C, and that ck= 0 implies Pk=rk=o for k>2,

thien the coefficients in (10) will be a.s. unique, apart from

rotations of the sequence ( k,[k , keN, within index sets where the

Ok assume a common value.

Proof. The array (X,Y,Z,T) is separately exchangeable, so

by (1,1) it has a representation

(X ijYifZjfT) = (< i,1j, ij) i, jeN, i

for some function f and some i.i.d. U(0,1) random variables o(,9.,

131

1and 1., jN.The proof in 71] shows that 0< may be chosen as

a "coding" of A, a stationary extension of (X,Y,Z,T) into the

index domain {(i,j): ivj<)0. Since (9) remains conditionally valid,

civen A, it suffices by Lemma 2.1 above to establish the reoresentation

(10) with non-random coefficients, in the case when o is constant.

in that case, (11) reduces to
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X ij= f I (iI j , . )J ( i) Z =f i jCN

for some measurable functions fl: Li- P and f2,f3: [0,i] R.

Since EXI by Theorem 4.1 above, we may henceforth proceed

as in the proof of Theorem 4.3 in Aldous (1981). Thus we may first

subtract from X a component a-A., such that the A.. are i.i.d.i3 ii, 13

N(01) and independent of the i and , while the remainder

Xi -aij is of the form h( i, J). As in [1], we may further write

1t i: 1- N,

=~j k~ iiE

for some constants k 0 and some orthonormal sequences c(k and

in L20,1k 2L.

The argument in [1], p. 597, next shows that the random variables

f2( ) and ) are jointly centered Gaussian for

every nEN and a.e. (yl ..... yn)e[0,1] n . whenever 1 is U(0,1). Again
n2

we may change the definition of h on a null-set in r0,12 2, to make

this statement hold everywhere. By the Hilbert space argument in

rI], p. 596, we may then conclude that f2 (t) and q 2 (g),g 3 ([),...

are jointly centered Gaussian. Adding another Gaussian function q1

to the orthonormal system g2 'g3 ''''' we get an expansion f2 (9)
=

for suitable constants Pk" Applying the same argument

to f3 and the g , and putting gk(i)='i k and gk( j)=%k' i,j,kEcT,

we finally obtain the representation (10).

To prove the uniqueness assertion, it is enough by Lemmas 2.2

and 2.3 to consider the case of non-random coefficients. A simple

computation then shows that, for any t,u,vQR.

E exp(itXl +iuY +iVZ

jl 0 2" +V + ituv) 2 2.
1 7 2l t t 2 a 2 1 2 -j it2 2 lk6 .: : (l+t2 )- exp (- 2 - J :i 1 t

j=l 1 + to1c0. F

From this expression, we may obtain d and the kas before by putting

N
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u=v0O. Next we may divide by (3) to identify the sums

22'2 222

j= 1l+ t oe j=l 1 + t 0(,.= +t ~

.ere we may differentiate at the origin, to construct allsuso

the form

p2 2k, 2 k 22~, kEZ (12)
- j-TO j~ =0 i i

If~'>0, e my fia lv diide 2k
2 e>0 emy nlydvd byoc2  and let k--,.oo to obtain the

sun's

02, 2' p r.(13)
jej jl(J ij

where J-= jEN: ocj=o i. Subtracting the corresponding sums from (12)

and continuing recursively, we may construct all sums as in (13)

with J={jEN.: o=x ., x>sO, and finally also 23 2n a',
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5. Jointly rotatable arrays

The aim of this section is to characterize the class of jointly

rotatable arrays of random variables, and to solve the corresponding

uniqueness and continuity problems in the special case of symmetric

arrays, for which the explicit representation was given in (1.4).

Theorem 5.1. An array X=(X , i,jEI) of random variables is
--1

jcintly rotatable, iff a.s.

Xi= o. i+('l3 + Z I °<kl ( ik~jl - ij Sk l ) , i,,)
jT .+"j+ k=1 1=1

for some random variables , , cr' and kl, k,leN, with a(+k
f? kl+l nl=

2 <oo a.s., and some independent set of i.i.d. N(0,1)
frndom variab~c~leA..ad.__________
random variables A ij and ik' i,j,keN. The random variables

2 2*(a+d') 2 and 2 [kl are a.s. unique, as are the ckk apart from order.

Moreover, the coefficients in (1) can be chosen to be X-measurable,

and they may further be taken to be non-random iff X is dissociated.

Note that the double sum in (1) converges in probability,

and that the limit is a.s. indeoendent of the order of summation.

To see this, reduce by conditioning to the case of constant

coefficients. In this case the series converges in L2, since the

products gik~jl are orthonormal for ki1eN when i~j, and for kcl
2

when i=!. Furthermore, the variables Eik-1 are i.i.d. with zero

mean and finite variance. Note also that the double sum reduces

to kk(kl) when i=j and to 2 ~k~ik~jI when i~j.
toI
When X is symmetric, we may write X. = (X. +X ) to see that

Sj. lj+ ji 5

(1) holds with o -' and with .l=0 for k#l. Thus (1.4) holds in

this case with ='
k lkk

. . . . .. . . .
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Proof. To prove that arrays as in (1) are jointly rotatable,

we may clearly assume that the coefficients are non-random. By

independence, we may then treat the arrays and A..+A.. and the
ij 13- DI

double sum separately. For S. the result is well-known from linear
1J

algebra, and for the double su' it follows easily from Lemma 2.6

when the summation is finite, and then in general by approximation

in L In case of 2ij+ Ai, notice that the arrays 2( - ) and
12j ,

have mean zero and the same covariances, when the i and

are i.i.d. N(0,1). By the multivariate central limit theorem,

it follows that A.j+).. can be approximated in distribution by

jointly rotatable arrays of the form

X.. 2 ( ik~ -6 i,jEN,
13k=l i i'

and

X. = n (ij i,jEN,
k=l _kjkjkik

respectively, where the Eik and ik are i.i.d. N(0,1). This shows

that the arrays A+ are jointly rotatable, and hence completes

the proof of the sufficiency part.

Our next aim is to establish the representation (1) for an

arbitrary jointly rotatable array X. Since rotatability is stronger

than exchangeability, we get by Theorem 3.1 a representation of

the form

Xi. f(a<,ti, jij), i,jrN, (2)

with and Jii=0, for some measurable function f: [0,13-R

and some i.i.d. U(0,1) random variables -,i ... and J'j i-j.

Rotatina by U, we qet an array UXUT with the same distribution,

and hence with a representation

T c'
(UXUT  'C, ) i-ir. (3)(UU )ij = f ( ' ' l ' j'*ij ' ' '

for some &', (g) and (1 j) as above. Here we may assume that c '=o,

and that = for those indices j which are not affected bv U.
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Indeed, we get these relations automatically, if we use the coding

construction of Section 3, based on a stationary extension X' of X,

T T
and on the corresponding extension UX'U of UXU

Under these conditions, X remains jointly rotatable,

conditionally on o. By Lemma 2.1, it is enough to prove that almost

every conditional distribution agrees with the distribution of (1),

for some non-random choice of coefficients. Now (2) shows that X

is conditionally of the form
Xij = f( I E ,I7ij), i.jiN, (4)

for some measurable function f: F0,1 3-1j R, with the same i and

as before. Aaain, the representation of a rotated array

UXU T may be assumed to use the same variables j, for indices

which are not affected by U. To simplify the writing, we shall

henceforth consider a fixed conditional distribution satisfvinc

these assumptions, and suppress the conditioning from our language

and notation.

Next we note that the restriction of X to the index set I=

(2N) x(2N-l) is separately rotatable and dissociated. Hence Theorem

2j
4.1 shows that EX 2. for i~j, so the arguments in Section 4 of1J

Aldous (1981) apply, and we get for (i,j)6I a decomposition

Xi = C(gi, jij) + h(gi, ) a.s., (5)

where the variables g(4igj, ij), (i,j)EI, are i.i.d. centered

Gaussian, while

0
h(x,y) = Z kgk (x)g (Y) in L2 ([O.l ] 2 ) (6)

k=l

for some constants , .. with .2 and some orthonorral

sequences g 1 ° 29 "... and q', .... in L2 LO,1J. Moreover,

h(C. F[) = i i,(j a.s. (7)

for all (i,j)UI, and hence by symmetry whenever i~j. Comparina (4)

and (5), it is clear that we can choose

%U,-,,,. -.. . - . - ," .- .-.- - ." ._," ,,- " , -..-..- ,,,, v , . , , - , . . - . . , ... .. '-*.-C%. .
L,.. .. . .. . C C", ", *............", "",' - , . ....- ,-.... . ....... ,.,
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f(x,y,z)=g(x,y,z)+h(x,y), x,y,z[L0,1] with z#0, (S)

so even (5) extends to arbitrary iej.

To analyze g, we note that the array Y=aX+bXT=(aX. .+bX..) is

7ointly rotatable for fixed a,bER, since for any rotation U,

T T T T dTUYU U(aX+bXT)uT aUXU + b(UXU ) d aX+bX T = Y.

Moreover, even Y has a representation (4) in terms of the sarre -|

random variables i and -., since in fact

Y.. = aX. .+bX = a , ) + bf( ,? i j N.13 1D i' j ij j, i i ..j",

Thus the above arguments aoply to Y as well, and show that the

v ariables

a ; g( E E ri +bg.) = a (X. -Ei- J1 1 +b (]X ) !Xj

= Yij -FLYij i ,j]

are i.i.d. centered Gaussian for (i,j)eT. By Corollary 3.13 of

Aldous (191), they must then be independent of l,2. .... Since a

and b were arbitrary, it follows that each of the pairs

(g ( i, j, j ) g ,iij)j) , i4j, (9) "'

is bivariate centered Gaussian and independent of ..2 But t

then it must also be independent of the other pairs in (9), which

means that all these pairs are i.i.d. centered Gaussian and

indenendent of 1,2, ... We now put

s E(g( ig j,7ij))2 rs=I ,_,ij g ,ii)I

and define

o, ).' =j:((l+r) +(lr)

Letting A.., i3j, be i.i.d. N(0,1) and independent of the i it

is easy to check that the array icr'a.. i~j) has the same

distribution as ((i,,i), i#j). Dy Lemma 1.1 in 7141, we may

then redefine the A. such that

g i, i) = i + ,'A.. a.s., ii.; (10)
j~ij, C' 13
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We shall next exami.ne the functions a and cO occurrina in (6).

TLet us then fix a rotation U=(uik), write X'=(X' )=UXU , and note
1] 

L uthat X' has a representation (4) with i replaced by k!. Let us

further denote the shell-a-field (cf. £1,2]) of X by f, and note

that f is also the shell-a-field of X'. Fix indices i.j such that

U only affects components number 1, ... ,j-l. Combining (7) with

Le-ira -.7 of Pldous (1981), we get

h( i j) :r[Xll~ i  j] =F[X'

jj 1 jxjik%]k
k

= ikr[x jjl k, i k uk k' " :
k k "

Assumino th-at ''=-,, and using (6), we hence obtain

Z °<nn(j)n -  U nk)) = 0 a.-.
nn k

By Fubini's theorem, the same relation holds a.s. for almost every

realization (xl,"x...x ' ..x_) of ) Since a ,a ....

are orthogonal, it follows that

an( ) = _ uikgn(k) a.s., i~nEN. (1i)-n 1 kikn(kk

Interchanging the roles of rows and columns, we get in the same way

n( !) = j uikgn( ) a.s., i,nQN. (12)
fl 1 iknkk

The next step is to replace the sequences (gk) and (g) by

a single orthonormal sequence. Let us then introduce the Hilbert

space H in L2 0ol 3 spanned by gl,g 2 ,... and g{,g .... and note that

h u(x) = f(h(x,y)+h(y,x))u(y)dy, ueH,

defines a compact and self-adjoint operator on H. Thus h+ has a

comFlete orthonormal sequence of eigenfunctions hlh 2 ,.. .H. In

particular, we get an expansion

h(x.y) = 9 [i.ihi(x)hj(v) in L2 (0,]] 2 ), (13)

where 2 2 . Moreover,

h(x,y) + h(y,x) i + ' hi(x)h (Y)

.. . .. . .
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so +. .+ =0 for i#j. From (11) and (12) it is further seen that

hn(Ei) = uikhn(k a.s., i,nEN. (14)

It follows in particular that the array (h( k)) is rotatable in k,

and since the k are further independent, we may conclude from
k J

Leirma 2.6 that h1 (9),h 2 () .... are i.i.d. N(0,1). This proves the

rerpresentation (1) for i#j, with ikhk( i)

To extend (1) to the diagonal, we put

S =(kkl (1 ik Ej - i kl Z =X 3.]-Y , i jeN'ij k 1 11 j ' i 3

and conclude fro. (14) that (Y,Z) is jointly rotatable. To determine

the distribution of 1'i we put Z'=UZU where the rotation U=(u ik"

is such that u u 2 1 =u -u1=2 -  and compute
1 2122 12 n opt

Zi2 = ('1]-Z22+'12-'21
) f z12' (15)

Here the variables Zll, Z2 2 and Z1 2 Z2 1 are independent, while Z 12

and Z1 2 -Z2 1 are Gaussian, so it follows from Cramer's theorem (cf.

[8j) that Z is N(,s 2 ) for some and s. Computing the variances

in (15) yields bv (10)

2 2 2 2(2s +2(c-a')2) = a2+I-C,-

2 2
So s =(a+a) Thus we may extend (10) by writing

Z'- + oXA. + 'A, ij eN,

where the ... are i.i.d. N(0,1).

It remains to prove that Y and Z are independent. To see this,

choose for each nEN a rotation U=(u ik) with ull= ... n=n Writing

T TZ'=UZU , so that Z=UTZ'U, we get

1n n 1n n n
=- 1. 3Z. z (1~.Z+' (Z!-o +p

i j= ii i=1 j= ni

S n + T n
2= 1~ 2"

n Tn+ .

Here ET+ 2I , 0, o5 )0 Z Writing =(ik) , it is
n (+' n? 11' ik

Lurther seen from (14) that Sn is independent of -'=U-- and hence
Tn

of UT £ 1K eHence Z is independent of -, and the same thinq is

. . . . . • . . . -', " , ' - " .' " ," '- -'." ." k \ " ' " " -" " " . " " '- " '" - - . .-- . .
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true for each Z... Since the sequences (Zi i 2  . ie, are
11 ii il'1i2'

mutually independent, it follows that the whole diagonal (Z]i,Z 2 2 ....)

is independent of ', and hence of Y. The independence of Y and Z now

follows, since the non-diaaonal oart of Z was shown before to be

independent of (E1i, 2 ,...), and hence of the diagonal plus Y. This

completes the proof of the representation (]).

If the coefficients in (1) are non-random, then X is clearly

dissociated. Conversely, a dissociated array X is not affected by

conditioning on A, and as the above proof shows, a representation

exists in the conditional situation where the coefficients are

non-random. In the general case, it is seen from Lemma 2.2 that the

coefficients can be chosen to be X-measurable. It remains to 7rove

that (0+5,) 2, ' 2 and the o( are a.s. unique, and b;' LemTras
kl1 kk

2.2 and 2.3 it is then enough to consider the dissociated case.

The uniaueness of ?, ((5+(5) and the 'k is then obtained fror -he

formula

E exp(tX) = 22t+ (C+(')2t (1-2tokk)- exp(-tok,

k=l ~2
valid for small t, while the uniqueness of and ki

follows by applying Theorem 4.1 to the restriction of X-X or c

respectively to I=(2N)X(2N-l).

In the syrmmetric case, i.e. when

X = '+.. + +( (A k+A j +, i,jeN, (17)
ij jij ji Ok(i jk

k=1

we may associate with X the directing random elements nd where

2S~ + "O(18
2c 0 k_ k1k=l k"

Note that . is a random measure on R in this case, since the 0ck

may be both positive and neqative. In the space A4(R) of bounded
w

measures on R, we define weak convergence -- as before, and write
wd for the corresponding notion of convergence in distribution.
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Tho same notation will be used for converqence with respect to the d-

associated product topology on Rxkl(R).

Theorem 5.2. Let X1 ,X2 .... be symmetric and jointly rotatable
n )d Xif wd '

.r.a's =4rected by , nEI . Then X n- some X d,

loe ,, and in that case X is symmetric, jointly rotatable,

I d
... ': cirected bv some ' (p,.1).

>r,'of. in the synretric dissociated case, formula (16) becomes

e .×[ tX =ex,. t + 2ca2 t 2  o (l-2t-.) +2t-] }
j=l 

(19)

l- og(-2tx) + 2tx
expt (dx)

it is assumed that It< (!maxo(jl). I Here the integrand on

thte rIc-ht is defined by continuity to be -2t 2 at x=0. 'ote also

that the restriction of X to I=(2N)^(2N-I) is separately rotatable

an- directed by the measure

20~' + Q(&(20)

Let us first assume that the directing pairs (fnIn) are non-

random, and that n- whilern- , where P must again be of the

form (18). Then the measures P' in (20) will converge along with

so Theorem 4.2 shows that the non-diaconal elements of X form
n

tight secuences. As for the diagonal elements, we get even convergence

in distribution, with the limits satisfyzing (19). This is because

,maxJ cjl stays bounded by the weak convergence of Pn" We may thus

conclude that (Xn) is tight, with every limiting array X satisfying

(19). Since even the limits are dissociated, symmetric and jointly

rotatable, p and u must be the directing elements of X, so the

limitina law is unique, and we have in fact convergence X d -* X. As

before, the result in this direction extends imrmediatelv to the

non-dissociated case.

For the result in the opposite direction, it is enough as before

"" " " " - - -.-.- .- " - - -"-- "." " - . " - " " % A' ' . ' . - . . .-',
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to show that X".,X implies tightness of the sequences .and

Considering the restrictions to the index set I and using Theorem

4.2, it is seen that the associated sequence (rn) is tight, which

clearly implies tichtness of (u ). From the first part of the

proof we may then conclude that the reduced arrays X form

a ticht seauence, and since X converges by assumption, the desired

tiahtness of (n) follows by subtraction.
I-.)

a.
a.

A-
A.

A-,

I. . . . . . . . - . . . . . • . . . . . . + . . • + • . , . . . . • • . -. . . . ' -
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6. Seoaratelv exchanqeable _rocesses

In this section, we shall prove the representation (1.6) of

separately exchangeable and continuous processes X on R2 R+0,1]+,+

or i0,1K 2 , and we shall further solve the corresponding uniqueness

and continuity problems. Recall from Section 2 the definition and

elementary properties of Frownian sails. Say that a process X is

dissociated, if its increment arrays have this property.
Theorem 6.1. A process X on I=R+, R+X0,11 oLUr [0,1] is

continuous and separately exchangeable, iff a.s.

Xst=st+At+ (jBj(s)Cj(t)+fj Bj(s)t+ej sCj (t)), (s,t)EI, (I)
jl

for some random variables , and ojfj, j, jEN, with f(oc-4+j)

a.s., some independent Brownian sail A, and some independent

sequences (B) and (C.) of i.i.d. Prownian motions or bridges. The

coefficients in (1) may be chosen to be X-measurable, and if I=1,

they may further be taken to be non-random iff X is dissociated.

First of all we need to show that the right-hand side of (1)

defines a continuous process:

Lemma 6.2. The series in (1) converges a.s. uniformly on

bounded sets.

Proof. By Fubini's theorem, we nray take the oG., J and . to3 J J
2be non-random. By Lemma 2.7 we may further assume that I=R+, so

that the E. and C. are Brownian mrotions. By an obvious scalinc
J 3

argument, it is enough to prove a.s. uniform converaence within

the unit square.

For this purpose, put .=B (1) and 1 j=Cj(i), j4N, and decompose

the sumr S in (1) into three parts T+U-V, corresponding to the

decomoosition of each term. Let us first assume that these sums
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are f3nite. By Doob's ineaualitv, we obtain for U

Esup /U(s,t)J 2  IE p3%(2 = 2
s,t<il

and similarly for V. (Here x-ey means x=O(y), as before.) In case

of T . we ma' use Doob's and Schwarz' inequalities, as well as the

scalinc and syminetry properties of Brownian motion, to obtain for

fixed s<1

E: S , I IT(s,t) 4  s EEI~~Pt - s2Io pI

2. ~ ~ 2 ,7
4 = s (E~ 2 4  2 C2

Thus

r;f t4 n

so by ' inkovwsk±-'s inenuit" an6 a.s. continuitv,

b _.% i-

suk up 2tst)l sup supIT(klng- T _(k-1)2nt
i nEn t< ) 4 -

2 2 2-n14 ,.
S nE:N J .

Sumnarizing these results, we get

E sup I _ e M + 2 2 (2)

st'dnt the

Returnina to the case of infinite sums, let S denote the
n

n-th oartial sur, and conclude :romr (2) that, for T-n,

Esup S (s,t)-S (s't)I 2  n 22

s, tln j=m+J
B-, a standard araument, there must then exist some continuous

2
process S on [0,1] , such that

SU- I S n(s t) -S (s ,t)I -- 0 a.s., (3)

S,tl

as n-- along some suitable subsequence. Hence (2) extends to

infinite sums by Fatou's lemma, and we get in particular

'. ' " . • " ' .- . " - " " ." ,M 4" ,1" " • " ." "." ". " -" " - " " " " " " " " " " ," ." ." ." ." " " " " " ." ." ." -" , " ". "." ". ". " - - ." ." - " " " " ." " " " . "-" " _ - "" "- -' -

-- - - - - -- - -- - -- - -- - - - - - - - -- - -- - . .
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I.

!ra E sup :S (s,t)-S(s,t) 2 0.n

n-vp s ;t.1l
Since the terms of S are independent, we may finally invoke a result

in Ito and Nisio (1968), to conclude that (3) remains true along

the original sequence. 0

To prove the necessity of (1) , we shall need two further

lemmas, both exhibiting exchangeability preserving transformations.

Lemima 6.3. Let the real ,walued process X on [O,i] be separately

exchanaeable. Then so is the P 4-valued nrocess

Proof. By the definition of exchangeability for continuous

parameter processes, it is enough to Prove the corresponding

statement in the discrete case. Let us thus assume that X=(X..,

i,jel ,...,n ) is a separately exchangeable array of random variables,

and write

3= Xij, X.j 1  Xi . , X.. ),

where the dots indicate summation over the corresponding indices.

It is then'required to show that (Y ) (Y for arbitrary
piqj (ij

permutations (P.) and (q.) of (1,...,n). But this follows immediately

from the fact that

Y =(X ,X ,X ,X
Piqj Piqj "c. pi.

= (Xij, X j., Xi. , X ), i,jE{1,...,n,

where X=(Xi) qi

Lemma 6.4. Fix I=F or FOi], and let X be a continuous and

separately exchangeable process on Ix+ Then the process

tY(s,t) = (l-t)X(S, _ ) , sEI, tc[O'l) ,".

has a continuous and separately exchangeable extension to Ix[O,J.°

"'.'-. ............- . .. " ..- -.""...'........-.-.-...
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Proof. From Lemmas 2.4 and 2.6 it is seen that Y is separately

exchangeable on Ix[0,1), and this property is clearly shared by a

possible continuous extension of Y to Ix[0,1]. It is thus enough

to show that such an extension exists. By scaling, we may then

assume that I=fo,1J, in which case it is equivalent to show that

v is a.s. uniformly continuous.

To see this, let W and WA, h>0, denote the moduli of continuity
h

of Y on [0,ij][0,i) and j0,1JxL0, 1, respectively, and let W", h,0

be the corresponding modulus for the restriction of Y(st)-Y(s, )

to o, l ,1) . Then WW'+W", and from the exchangeability of Y it

is further seen that W" W'. Since Y is a.s. uniformly continuous

on [0,lJO ,,, it follows that W-0 a.s. as h- 30, which means

that Y is a.s. uniformly continuous even on [0,1:X[0,.).

Proof of Theorem 6.1. Let X be given by (1). Then X is

continuous by Lemma 6.2. To see that X is also separately exchangeable,

we may clearly take the coefficients in (1) to be non-random, and

by independence it is then enough to consider separately the

individual terms of the form ?st, Ast oreKBsCt+oBst+XsCt . For the

first and last of these the result is obvious, and for the second

one it follows easily by Lemmas 2.4 and 2.7.
2

Suppose conversely that the process X on I=R+, R + x[,11 or
j4

E0,1] 2 is continuous and separately exchangeable. In order to prove

the representation in (1), it suffices by Lemmas 2.7 and 6.4 to

take I=[0,1] 2  In this case we may define

Xsl slX 1 l , = Xlt-tX1' (4)

s . X -sX tX stX (
st st it- sl+S ll

and conclude from Lemma 6.3 that the R -valued process

(X"t sX tXss1 t[0,1,
St it, 11'' txl)

,, " - - "" -2" '''-,. ' -."''-: " +.." + "."+" + . -". -.- "+. v +. ... "-""" . '",-.-.'''V ,. ., ,' ' '-; -- '+, "+?,,U"
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is separately exchangeable as well. Equivalently, the process ,.

(X"t,Xt' ) is conditionally exchangeable in t, given (X,X),

while (X" ,X' ) is conditionally exchangeable in s, given (Xit1XI)

Note also that X"s t=1 =X .=0.

Let us next define the processes

Y' =(l+s)X' ( 1), Y't=(l+t)X' 1
S. l+s' t l-

(5)
v" =(l+s) (l+t)X"( - t-- t

and conclude fro Corollary 2.8 that the cair (Y" ,Y't) is
St .t

conditionally exchanqeable in t, aiven (Ys ,Xl1 ), while (v", y.,'
.st' s.

is conditionally exchangeable in s, given (Y'tXll) . In terms of

the increments of the process

(Y", sY' , tY' , stX ), stER (6)
st .t s. 11 +

this is precisely the hypothesis of Lemma 4.3, so on every fixed

square lattice, we get a representation of the form

j=l
(7)

Y' =B' (s), Y' C (t), s,tkR+,
slj=l t j=l

4
for some X-measurable random variablesf 7 a and ej,, as in (1),

some independent Brownian sheet A', and some independent set of

i.i.d. Brownian motions B! and C!, je%
3

Halving the grid size yields a similar representation (7), and

by the uniqueness part of Lemma 4.3, we may take the coefficients

to be the same. Continuing recursively, it follows that the finite-

dimensional distributions of (6) for dyadic s and t are the same

as for the processes in (7). This result extends by continuity to

arbitrary s,tcR+. By Lemma 1.1 in [14], we may then assume that (7)

holds a.s. for all s and t.

From (7) it is seen that the process

P . . . ' ',"* .,'' ' ." 4 " "-, " ." . . J , .' v 4 ' . . ., ' ." , . ?," - 2."". "" .' " . . " ,- . . ' . " . "
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Y Y1 +SY, +tY .+StXll, s,teR+,
st St .t . 11+

can be represented by the right-hand side of (1), but with A, (D)

and (Cj) replaced by A', (B') and (C!). Moreover, we get from (4)

and (5)

(l-s) (l-t)Y(-s, )= st 'ttsill s,tS[0,l).

Hence (1) holds with

st = (l-s) (-t)A't

B(s) = i-s B (-N, s,tEO,1),• 3 ( i-S), Cj (t) = (1-t) C!. ( _),jTst-0 1

which have the desired distributions by Lemma 2.7.

It remains to show that the coefficients in (1) can be taken

to be non-random, whenever X is dissociated. One way of seeing this

is to extend a fixed increment array for X to the index set Z2

N2  2and notice that the subarrays indexed by N and (-N) are independent.

As seen above, both determine measurably the coefficients in (1),

to the extent described by Lemma 4.3. Indeed, under the stated

conventions, the coefficients ?, o and the o., as well as theJ

rotational invariants in (4.13) are all uniquely determined. Thus all

these parameters are independent of themselves and hence a.s. non-

random. In this case, there is clearly even a non-random choice of

the f j and YjQ

To every process X as in (1), we shall associate the directino

random elements and --=l'''' where the Pk are a.s. bounded

random measures on R+, given under the normalizing condition aj>_0,

jeN, by

Cj j 0 j j 1 o.3

w
As before, --> denotes weak convergence in the space A4(R ) of bounded

wd
measures on R+, while -. denotes convergence in distribution with

respect to the associated weak topology. The same notation will be
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44used for convergence in the oroduct spaces VJ(R+)) or R(M(R +))4

when endowed with the corresponding product topologies.

On the other hand, the processes X in (1) will be considered

as random elements in the space C(I) of continuous functions on

I=R 2 R 0,11 or [0,2 , and here the associated topology is taken

to be that of uniform convergence on bounded sets. Convergence in

ddistribution with respect to this topology will be denoted by -- ,

fdand we shall write - for convergence of the finite-dimensional

distributions. Note in particular that X n-i-X for random elements
n

in C(R2) or C(R + 0,1), iff convergence holds for the restrictions

to an arbitrary rectangle E0,a]KJ0,b . Thus the theory reduces in

both cases to that of CC [0,1]2) , for which most results in Chapter

2 of Billingsley (1968) remain valid with obvious changes. In

2particular, a sequence (X ) of random elements in C([0,1] ) is
n

tight, iff (Xn (0)) is tight and moreover

lim sup P W(Xn,h)> E = 0, E>0 (8)
h .0 n

where w(f,-) denotes the modulus of continuity of the function f.

The following theorem justifies the above terminology for

and F, and solves the uniqueness and continuity problems for the

representation in (1).

Theorem 6.5, The directing random elements and p of a

continuous and separately exchangeable process X on R2 , R+Y,[0,1]

2or [0,13 are a.s. unique measurable functions of X, and the

distributions of (p,I) and X determine each other uniquely. If

Xlx2.... are processes as above and directed by (fn'n), nEN, then

the statements

d fd wd
(i) X n - some X, Cii) X -w some X, (iii) (n )- somen n nP

are equivalent and imply that X is separately exchangeable and

directed by (?,P).
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In order to apply the tightness criterion (8) to the processes

in (1), we shall need a bound for the modulus of continuity in a "

special case. Recall that f- g means f=O(g),

Lemma 6.6. Let X be given by (1) with vanishing p, a and

jiEN, and let X' denote the restriction of X to oI32  Then7 "L
El l , , l 2 2, h 0 1 . 9."

j=l - O"..h

Proof. By Fubini's theorem, it is enough to consider the case

of non-random .. Let us first assume that X is defined on R 2

J +

Proceeding as in the proof of Lerma 6.2, we aet with s,s',t

restricted to [0,13

I sup~ sup JX(stt) -X(s' it)I/

f ' sup sup !X(k2 nt)-X((k-1) 2
- n,t)f

n>m k_2n t ' 4
C2) 2-n/4 2-m/4 2 .'.

n>m j [

The symmetric argument yields the same estimate with s and t

interchanged, and (9) follows by combination.

If X is instead defined on R+x[0,1], the transformations in

Lemma 2.7 yield the above estimates for the restrictions of X to

[0,13[O, ] and [O,lJx[ ,l, from which (9) is obtained by

2combination. Similarly, (9) follows for processes on [o,l from

the estimates obtained via Lemmna 2.7 for the restrictions to the

squares IxJ with I,J=10, 3 or 1 ,l3.

We shall also need the following simple result about convergence

of measures. Recall that a sequence of Radon measures Fn on some

topological space converges vaguely to P (written FnV vP), if

nf- f for every continuous function f with compact support.

n. •
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Lemma 6.7. Let (in) be a weakly tight sequence of bounded
in

measures on R+, and assume that pn> p on (0,o) . Then n uf

for every bounded continuous function f: R R with f(0)=0.

Proof. The tightness implies that (n) is weakly relatively

compact, so it is enough to consider weakly convergent subsequences.

But if pn, w , then p'=F on (0,oo), and therefore G f=if.

Proof of Theorem 6.5. To prove the first assertion, it suffices

by Lemmas 2.2 and 2.3 to consider the case of non-random coefficients.

The unicueness of and p then follows as in the proof of Theorem 6.1

from the uniqueness part of Lemma 4.3. Conversely, p. determ.ines the

coefficients in (1) to the extent described by that lemma. Thus it

remains to show that rotations of the tvpe mentioned there do not

affect the distribution of X. Let us then assume that

n
X = jI(-Bj(s)C.(t)+jB. (s)t+YjsC.(t)), (10)
st A- Jj~ J iJ

and that, in matrix notation, ['=Up and 1'=Ue for some rotation

(orthogonal matrix) U. Then

T T T
X =o'BC +tfB +Sacst S ti s

= OCB U UC + tRTUB Ct s U t

T T T= t + t B+ B r -

with B'=UB and C'=UC . Since clearly (B',C') (B,C), this shows
' 5 t

that X has a second representation as in (10) with (f', ') in place

of (,). Thus both pairs yield the same distribution, as asserted.

Let us next consider sequences of processes X directed by
n

(TnPn) .and show that (iii) implies (i). By the continuity of the

mappings in Lemma 2.7, it is then enough to consider processes on

[0,1 2 , and by Lemma 1.1 in [12] we may further take the n and

m~~~~~ n il m mmmmmm ,
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to be non-random. If (onUn) 1--- some (;',i) then the sequences of
)n I n

parameters p, -, 2, 2 and j for these processes are clearly

bounded, so it is seen from (1) and Lemma 6.6 that (X ) is tight.pn

d
If X ---p X' along some subsequence, then X' will also be separatelyn

exchangeable, say with directing pair (p',u') . Here p and must

also be non-random. In fact, this would be obvious for processes

2
on since X' would then be dissociated like all the X . For+, n

2
processes on O,l2 it then follows bv the mappings in Lemma 2.7.

It remains to prove that ( ',u')=(pU), since (i) will then

hold by the uniqueness result above, with X as a process directed

by ('.,L). To identify (c',u'), let us drop the subscripts of X
n

n ,n'" for convenience, and write~n Pn

U = 2X( ,1) - X(l,l), V = 2X(I, ) - X(1,1),

T = 4X( , ) - 2X( ,l) - 2X(1, ) + X(l,l).

Using the transformations in Lemma 2.7, it is seen as in case of

Lemma 4.3 that

E exp (ir?+itT+iuU+ivV)

2_2 2 26~u .+v .+ tu . . .
= expir- t22- Cy loa(l+t 0(j=l j=l i+t 2 .

log(l+t2 x) (u 2 2+v2 3)(dx)
= exp'i (dx) - u+ a)(x2 I 2L x l+t x

ituv x )(x22 +x2 3-4)(dx)

.)~ ~ 2
x(l+tx)

Here the exponent on the left is continuous in X, while the one on

the right is continuous in (Fu) by Lemma 6.7. The same relation

must then hold in the limit as n--P, i.e. for the process X' and

the pair (0,0). Since this relation is also true with ( ',.') in

place of (9,P), it follows as in case of Lemma 4.3 that indeed

S.--. ..
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Since (i) trivially implies (ii), it remains to show that (ii)

implies (iii). By Lemma 2.7, we may then restrict our attention to

processes on R 2. Assuming (ii), it is enough, as in case of Theorem

4.2, to show that the sequence of pairs (On un) is weakly tight. To

see this, drop the subscript n as before, and write XlI=o+T+U+V,

where U and V denote the sums in (1) with coefficient arrays (/3)

and (ij) respectively. Proceeding as in (11), we get

2 2l og(l+t x 2 ".4

E exp(itXll E exD[it? 2 F1 ( d x )
x 9

_____3S_(x_2 Cx14)(d ")

t (2+3) Cdx) it 3  2+x 4 dx)
-- +t 2x2  + J- 2x2 9' '"

+t2x4x(l+t 2 x-"

- • -log (l+t x)-"
IF= exp(itXl) 4 E expl- 2i ( d x ) '

x i -- jX

and it follows as in case of Theorem 4.2 that the secuence of

random measures u, is weakly tight.

This implies in particular tightness of the variables T

above, so even the sequence of variables +U+V must be tight. Now
t2 0o

E exp it(o+U+V)] = E expit - -- (2+3)R "

so for any c>O we get

E exp [it(P+U+V)] _ exp- (2+P3) R.

< P{( 2 +u 3 )Rc} + e-t2c/ 2 {( 2 + 3 )R>c}(-t1c/2 p{(Y2+P3

1 - (I - e ) )R>c}

which shows as before that the sequence of random variables

2+F)R is tight. Thus the random measures p2+3 form a vaguely

2tight secuence, and since clearly C4 (dx)-2x2(?2+F3) (dx), the same

thina must be true for the measures p4" Since p2' p3 and are........ F4



p 46

all zero outside the support of pthe above conclusions extend

immediately to weak tightness. This proves the desired tightness

of the sequence ( rn'n

F.rom this it follows in particular that the sequence of

random variables T+U+V is tight, so the same thing must be true

for ?.Thus even is tight, as well as the seauence of%

pairs ~n~n
?nC.-.

?7C

%C
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7. Jointly exchangeable processes

Here we shall characterize the class of jointly exchangeable and

2
continuous processes X on R+, and we shall further solve the

corresponding uniqueness and continuity problems, in the special
J.

case of symmetric processes X, for which the representation reduces

to (1.7).

2Theorem 7.1. A process X on R+ is continuous and jointly

exchangeable, iff

Xst = Ost+OAst+c'Ats+-,(s~t) +i 1. iJ3 ( s i ( s ) B j (t)- ij (s-t))(i
St st tsJ . 1

+ ( jtB (s)+P! sB (t)+ jB (sAt)), s,tER+
J

for some random variables an',1 and jj , i,j'', with

iji+(i=0 for i~j, and such that Z2i . and 7(p 2+P! +4..

some independent Brownian sheet A, and some independent sequence

(B.) of i.i.d. Brownian motions. The random variables , _') 2

<2 r 2  2 22 2jp!' 2 and p]'j are a.s. unique,

as are the j. apart from order. Moreover, the coefficients in (l)

can be chosen to be X-measurable, and they may further be taken to

be non-random iff X is dissociated.

First we need to examine the convergence of the series in (1).

Lemma 7.2. The series in (1) converge in probability with

respect to the uniform metric on every compact set, and the limit

is a.s. independent of the order of summation. If *<..=0 for i~j,

then the convergence is even a.s.

Proof. It is clearly enough to consider the case of non-random

coefficients. The last term in (1) can be treated as in case of

Lemma 6.2, so we need only consider the double sum, S say. By a

scaling argument, it is further enough to consider convergerce within
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the unit square. We shall prove below that
E sup S2 2-c (2)

s,t<l i j

provided the summation is finite. In the general case, we may then

obtain the desired convergence and uniqueness of the limit by

applying (2) to differences between partial sums. Note that (2)

extends to the limit in this case. If a..*=0 for i~j, then the termsiJ

will be independent, so we may use '1i] as before to strengthen

the conclusion to a.s. convergence.

To prove (2), take s<t, and note that

Ss <ii (s)s) + ti . B (s) (E.(t)-B.(s)) = T + U

since c .=for i Write 0.=( o<2 a and i be

i.i.d. b(0,1) random variables. Fy Doob's inequality, we get

sup T 2 2 2 2 2
S s e I E T 1

s<l

Usina Doob's and Fch,iarz' inecTualities trlus the symmetry of 7(0,l) ,

we further obtain for a fixed sE[0,1]

Etsup U4  EU 2 .U si 4 4 S2 E 2  Ki ij j) 212
te Is lJ s t si SE it'i

1 - 1 3
i i j iE i j

The proof may now be completed as in case of Lemma 6.2.

Proof of Theorem 7.1. A process X as in (1) is a.s. continuous

by Lemma 7.2. To see that X is also jointly exchangeable, it suffices

by the same lemma to consider the case of finite sums. We may further

take the coefficients in (1) to be non-random, and consider

separately the three terms st, CAt+d'Ats , i(sAt), and the remainder

" " "" " " " " " "" .. " .. " .-" -.- ".. ".-. .-... .." -: .':.i.: :-" -- -. "".V V"":-.-:V".. ",'- :.,:'-.".-'.", ""-", ,
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of X. For the first and third of these, the joint exchangeability

is obvious, and for the second it follows from the joint rotatability '

of the corresponding terms in Theorem 5.1. Finally, the result for

the remaining expression in (l) follows easily by the exchangeability
.

of Brownian motion. This establishes the sufficiency of the .%

representation (1)

Suppose conversely that X is continuous and jointly

exchangeable. Our first aim is to reduce the discussion to the case

when X is dissociated. Let us then denote by X the array ofn"

increments of X with respect to the square grid of size 2-n
. Note

that the sequence of arrays X is consistent, in the sense that an
n A4

element in X is the sum of the corresponding elements in X nm n

whenever m<n. By Kolmogorov's theorem, we may extend each X to
2n

the index set Z2 , in such a way that the consistency and the joint

exchangeability are both preserved. Let A1 ,A2, ... be the

2restrictions to (-Z of these extended arrays. From the discussion

in Section 3 it is clear that Xn is conditionally jointly

exchangeable and dissociated, given A . The same thing is then

true for all Xm with m-n. Fixing m and letting n--v, it follows

by martingale theory that X is conditionally jointly exchangeablem.'

and dissociated, given all the A . Since m was arbitrary, we get
n

the same property for X. By Lemma 2.1, it is then enough to show,

in the dissociated case, that X has a representation as in (1) with

constant coefficients. We may thus assume from now on that X is

dissociated.

In that case, it is seen from Theorem 3.1 that any fixed

increment array (X ij) as above has a representation

Xj. = f(ki, jI a.s., i,jeN, (3)

for some measurable function f, where the variables 1, 2,... and

... *
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ij' i.:.j, are i.i.d. U(0,1), and moreover /_=0 while Xij=X . OniJ-

the other hand, the increments of X within squares indexed by

I=(2N) ((2N-1) combine in an obvious way to form a continuous,

2separately exchangeable and dissociated process on R+ so by

Theorem 6.1 we have on I another representation

xi = + cAi. + (k ijk+kik+ kjk ) a.s., (ij)EI, (4)
k=l

where o, 0 and the k X are constants, while the ).. k and
-k A I K' ik

k are i.i.d. N(0,1) . We need to show that we can choose
j k

" j = g ' "ik = gk(£ i ) ' I jk = 9 (5)

for some functions g, g and gk. In that case, (4) determines the

functional dependence in (3) for i~j, so (4) remains valid with

theik and Vjk given by (5), for all pairs (i,j) with i#j.

To prove (5) , we shall need some relations between (3) and (4).

First note that

X= Ef i --

where the dots on the right indicate integration with respect to

the corresponding variables. Applying the law of large numbers to

both (3) and (4), it is further seen that a.s.

lim 1 n P-i i21,i,2j-1 + f '2n,w ' k=l k ki ' ''"-<.
j=l

1 n
rn x2i + 'kjk j ' 'N-

n- il k'

Combining these relations with (3) and (4), we get for (ij)I

0013j k kikjk =  i' j'xij)-f(q ' ' 'i -  ".j" f' ")

k=l

k=lk~ik f(,,)

The set of arrays on the left (together with ) is clearly

. . *S. . . *. . *J. . . . . .- .- . . .* S .*



separately rotatable in the sense of Lemma 4.3, so from the proof

of that result it is seen that .

A~ ~~k ik.jk ' ' + o kgk( .)g j)-1 k=l k ikj Ej-"-k

. kik = 2- r.
k=l k=l k=l k=l

for some constants '' , kk' and functions g, gk' gk, where

the latter are such that the random variables on the left and right

have the same distributional properties. This shows that (4) and

(5) are simultaneously true, but possibly with some new set of

coefficients , cr, k' Pk' k and random variables Aij, Eik' %k'

all with the same properties as before. As already pointed out, .',-..-.'-

the result extends immediately to arbitrary (i,j) with i3j.

Applying the same argument to the array (aX. .+bX..) for "-.

arbitrary a and b, and proceeding as in the proof of Theorem 5.1,

it may next be seen that

ri -= a'Aj + a"i' i#j,

for some constants a', a" and some i.i.d. N(0,1) random variables

A!., ij independent of (a.) Moreover, the k and are seen13jk are see

as before to be jointly Gaussian for fixed j, so we may again use

the spectral theorem, to obtain a representation for i~j of the form

k J(kik~jk+('kik+ k~jk) "L J llkj + (''+,k, " "
k k=l 1=1 k=l i

where the coefficients on the right satisfy l+k 0 for k~l,

while the variables-'k are i.i.d. and N(0,1). For convenience,

we may change the notation and assume from now on that ..

Xi= +a+Ai*+afAji+ kl ik jl + 7 kik + 1 'jj.
k 1 k 1

where the Xi and are i.i.d. N(0,1) random variables, while
ij ik

, a+, or_ and the kl' 1 k and l are constants satisfying kl+1k

for k~l, and moreover %
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k=l 1 1"

Note that this agrees with (1) if we put o+=, a =C' and I =j.

Halving the grid size, we get a similar representation for

the corresponding increments X! , say with coefficients p', a+,ij

'-t O1t k . Hence the original increments have another

representation of the. form
• : , _ 3/2 gel il

Xi3 = 4P+ 2crA'j+ 2c'A'.+2  2l 1'+2 "k~
k 1 k

where the random variables on the right are again i.i.d. N(0,1).

Equating the expectations yields ?=4?', and by applying the law of

large numbers as before, we further obtain a.s.

a --.+ ~ ~ i 2,';! +2arl!+2 k'+Aij+-DAji+ k klik jl +"ij - i
k 1 k 1 i

2 23/2 Z(/3'4

Thus the X! have the same joint distribution for i#j as the variables
13

+ 3I. + o' - + 2 - =klqik l + +

+ (+Aj. .+crA. .+ T xkliktl ) + 2- 3/2 (

4k 1 k

in full agreement with (1). Continuing recursively, and using the

fact that both X and the process in (1) are continuous, it follows

that the entire set of increments outside the diagonal is distributed

as in (1). By Lemma 1.1 in [14], we may thus construct a Brownian

sheet A and an independent sequence of i.i.d. Brownian motions B.,
j

such that the increments of the two processes in (1) agree a.s.

outside the diagonal.

To extend this result to the diagonal, we write

Y (' t Fs~c~ t+a'Ats +  09 1 (B i (s )B ji (t) - (st)ij)Y(s,t) = 2st+aAs  . S.sijA %
i J (6)

+ (j t j()+ s j(t ), s t_0

3U

i °-4)
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L e t u s u r t h e r w r i t e ( n ) x n ).
Let us further write X j= (X() for the increment array of X with

ij
-n,

respect to a grid of size 2- , and put

Yn('t ~i -n < s ,  -n (n),
Y (st) 5lki2",s, j2-nct, i XiJ s,t>O, neN.
ni j

For fixed dyadic s and t and for large enough n, we get with 4 N(0,1)

E(Y(s,t)-Y (st)) 2 t) 2 -
2 n2 +2 -n(,+,,

)2 2 -n 2 2 2i 2

jl

n i ij

+ 2 2 n  ( j+ )2.  - 0

P

so Yn (st) - Y(s,t) for dyadic s and t. Note in particular that

Y is measurably determined by X and independent of the choice of

representation.

Let us next define Z=X-Y and Zn=X-Yn , and note that Zn-.-Z

at dyadic points. Since moreover

-n -n -n -nZ (i2 ,j2-) = Z ((i~j)2 (iAj)2 -
) ijN,n n

we get the same relation for Z, so there must exist some continuous

process U with U0 =0, and such that

Z(s,t) = Z(sAt,sAt) = U(sAt), s,t O. (7)

From the joint exchangeability of X(n), it is further seen that

(XYn) is jointly exchangeable for m=n, and hence also for m~n.

Letting n--p for fixed m, we may conclude that (X,Y) (m) is jointly

exchangeable. The same thing will then be true for the R -valued
2

process (YZ) on R.

writing u n ) = U (i 2 -n ) -U ( (i - 1 )2 -n ) ,we get from (7)

-(n) = (n)5 ijN,Zij i ij' 7

which shows that even the process (Y(s,t),sU(t)), s,t>Q, is jointly

exchangeable. Proceeding as for X above, we may then obtain a

representation as in (6) for each component, in terms of a common

sequence of Brownian motions B.. Using the law of large numbers
j J

7

~~~..., .. .. .. .. . . ... . , , . . . , . .. . . - .' -. ."" "' .> "." -." - < - ,'1-
• -* /+P ." . 5 " -. - .- .- , - " .-. . . . .- . .
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as before, it is seen that the constants or, (' and all the ij and (j

must vanish in the formula for sU(t). Thus we get, jointly with

(6), a representation of the form

sU(t) = st + J '.sB.(t), s,t>O
j=l 3  3-

where %9 and the " are constants with I2 <P. By (7) it follows

that

Z(s,t) = 1 (sAt) + Y ) B (sAt), st>O, (8)j=l 33

and adding this to (6) yields (1).

In view of the results in Section 2, it remains only to prove

the uniqueness assertions. Then recall that the diagonal process

(8) is measurably determined by X, and that the processes 2j3.Bj(s)

and 2 (&Bj (t) can be measurably recovered through the law of large

numbers. All these processes form together a mixed Brownian motion

in R with drift (9,0,0) and mixed quadratic variations j

j' ' jj j j and J jP3' so these quantities are a.s.

unique. Subtracting the corresponding terms from (1), we end up

with a jointly rotatable process, for which the a.s. uniqueness

2 2
of the parameters (a+,)2 and as well as of the sequence

(*j j) follows by Theorem 5.1.

When X is symmetric, the representation (1) simplifies to

(1.7), i.e. we have d'=d, P!j= and *ij-%xi. In this case, we

may introduce the directing random elements ?,& and

where the Pj are a.s. bounded random measures on R, given by

2a + 1: 'X 2 I = u(4=2, (A3.+l.) 2 (9)43 3

The uniqueness and continuity problems for the representation

(1.7) have the following solutions in terms of the triple (p,#,j)

-~
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Theorem 7.3. The directing random elements ,9. and p of a

symmetric, continuous and jointly exchangeable process X on R+
+

are a.s. unique and X-measurable, and the distributions of (?'19'p'
and X determine each other uniquely. If Xl,X2 ,... are processes as

.-,4-

above directed by nN, then the statements

(i) Xn-- some X, (ii) Xn some X, (iii) some (wdP)
.. .. -

are equivalent and imply that even X is such as above and directed

by i05'

For the proof, we shall need a tightness criterion for the

processes X in (1.7), regarded as random elements in C(R+).

Lemma 7.4. Let BI ,B2 , .. be independent Brownian motions,

and put * . 4 .

X (s,t) = l.n.(Bj(s)Bj(t)-st), s,teR+, neN,
n "nj +

where the o< are non-random. Then (Xn) is tight if

2

n j=l n-

Proof. For s,t>_ we write ..

Y (s, t) X (s, s+t) = 0 (B (s)-s) + O .. (s) (B.s+t)-B (s))

n n nj i j=l nj -

- T (s) + U (s,t).
n n

Proceeding as in the proofs of Lemmas 7. 2 and 6. 6, we get

w(Un h) 2  h 2

which shows that (U n ) is tight. t+i

2
As for (T ), we write M (t)=B (t)-t, and note that dM.=2B.dB.

by Ito's formula. Since the martingales M. are further orthogonal, 4..

we obtain for Tn the quadratic variation process %

it0 2 j t j__ 2Jy
[ T nj TMj] = B (s)ds."
n' n t =.

jj=j
Hence -. //

- . 0*
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Etl~pT 'ntth j l~ 2  B2 2

E sup Tn T~th 4h .E sup (s) < h
t< j=l s_1 j=l

which shows that the sequence (ETnTn) is tight. Since Tn=Wn[ITn ,Tr

for some Brownian motions Wn , it follows that even (T n ) is tight.

The above results combine to show that (Y n) is tight. The

tightness of (Xn) then follows from the fact that Xn=Yn"T, where

T denotes the continuous mapping

9(s,t) = (sAt, svt - sAt), s,t>0.

Proof of Theorem 7.3. Let X be directed by (?,.,), and note

that p and 5- are a.s. unique and X-measurable by Theorem 7.1. To

prove the same thing for u, it suffices as before to con" ier

processes (1.7) with constant coefficients. By the proof of

Theorem 7.1, we can construct the processes p

T(s,t) = cr(ASt +Ats + =X (Bj (s)B (t)-st),
j=1 (10)

U(t) =jBj(t), V(t) B (t), s't>0,
j=l j=1

as measurable functions of X. A simple computation further shows

that, for It) sufficiently small,

E exp (tTll+iUUl+iVV)

1 1

j= l-2tc (11)

I_ lo g (l- 2 t x )+ 2 tx  (u 2 2 3+v4-23))(dx)}

exp 2 ,i(dx)- P2v F3 +uv(F 2 I3 )d
x 2 -2tx

2
where the first integrand is defined by continuity to be-2t at

x=0. Putting u=v=0 yields the uniqueness of i"l Using a recursive

argument as in the proof of Lemma 4.3, it may next shown that the

sums 22 I

jeJ jeJ jJ j

'.,',., , ,g .'.... .' .. '. '..% '.,°. .. < .. " . ".'. "....'." '. .. " " . .. .-' ...'... .. .. .. ." "..-
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are unique for all index sets J of the form {jEN: CWj=xj. From these

we may easily construct the measures I2' J3 and

Conversely, these four measures determine the parameters 2 a

and c. , Pj,,_ apart from order and from rotations of the sequence

of pairs (fjYj) within groups of indices where the o assume a

common value. As in case of Theorem 6.5, it is clear that such
e•,. eI

rotations do not affect the distribution of X. Thus (T,OP) and

PX determine each other uniquely. The uniqueness part of the

theorem now follows by Lemmas 2.2 and 2.3.

Let us next consider a sequence of processes Xn directed by

(Pn, P ,),*- neN. To prove that (iii) implies (i), we may assume

as before that the ?n ,n and Fn are non-random. From (iii) it

then follows by Lemma 7.4 that the corresponding sequence of triples

(Tn U nV n ), as defined by (10), is tight. Moreover, these triples

are clearly jointly rotatable and dissociated in the obvious sense,

so the same thing must be true for any limiting triple (T,U,V).

The proof of Theorem 7.1 then shows that even the latter must be

of the form (10), say with coefficients a' and (,, , so (11)
4 J ,J J

must hold for (T,U,V) with the associated measure u'. But (11) is

also true with the limiting measure as may be seen by proceeding

to the limit in formula (11) for (Tn Un Vn). As above, we may then

conclude that -'=,p' so (T,U,V) is uniquely distributed, and we have

din fact convergence (Tn,Un,V) -p (T,U,V). Thus (i) holds by

continuity with X directed by (9,$,p).

To complete the proof, it remains to show, as in case of

Theorem 6.5, that (ii) implies tightness of the sequence of

directing triples (For this purpose, consider first the

increments of X over a square grid outside the diagonal, and conclude

as in case of Theorem 6.5 that the sequence of triples (

.. ..... $
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is tight. Using the implication (iii)=(i), we may next conclude

that the sequence of processes

~st + 1 ..~o (B (s) B (t) -SAt) + p(sB (t)+tB (s))J s,t>Q,j=l Pj -

is tight, and by subtraction from X we get tightness of the

variables Zst in (8) for fixed s and t. Taking c),O and writing

tE exp(itZ11 )I = fE exp(it- t2Z)_21 I< "

- t2 c 2- .

4 1 - (1 - e cil a -c ,

it follows easily that the sequence of sums is tight. The

same thing must then be true for the measures 3' since their

supports are contained in those for pl. The formula Y42 (Y2+)3)

shows that even the measures are tight. From the result for

22 it is further seen that the processes 'jB (sAt) form a tight

sequence, and subtracting these from (8), we get the same result

for 15(s't) at every fixed (s,t), and hence also for the variables VA. 1

4V
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