NO-A17	76 857 ISIFIE	SIN (CO CA) TR-	IGLE EN INPLEME SPACE 0086((VENT U ENTARY Scien 5940-0	PSET R METAL CES LA 5)-10	ATE ES OX B J S SD-TR-	STINAT (U) AE 5 BROW -86-89	ES FOR Rospac NING E	A 16- E cori T AL.	-K CHO EL SI 30 SEI F/G	5 EGUNDO 96 29/12	1. HL	1	
	÷													
														_
	_						_						_	

シャンドレー

122222226

Recessory 3

CALSTRAND AND AND

MICROCOPY RESOLUTION TEST CHART

Single Event Upset Rate Estimates for a 16-K CMOS SRAM

J. S. BROWNING Sandia National Laboratories Albuquerque, NM 87185

and

R. KOGA and W. A. KOLASINSKI Space Sciences Laboratory Laboratory Operations The Aerospace Corporation El Segundo, CA 90245

30 September 1986

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Prepared for

SPACE DIVISION AIR FORCE SYSTEMS COMMAND Los Angeles Air Force Station P.O. Box 92960, Worldway Postal Center Los Angeles, CA 90009-2960

19

63

37

955

Adû0

m

AD-A176 857

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, under Contract No. F04701-85-C-0086 with the Space Division, P.O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace Corporation by H. R. Rugge, Director, Space Sciences Laboratory.

Capt Douglas R. Case/YCM was the project officer for the Mission-Oriented Investigation and Experimentation (MOIE) Program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

nglades

DOUGLAS R. CASE, Capt, USAF MOIE Project Officer SD/YCM

OSEPH HESS, GM-15 Director, AFSTC West Coast Office AFSTC/WCO OL-AB

	SSIFIED	ON OF THE	SPAGE	• • • • • • • • •		A N_ A	17/	15	11	
				REPORT DOCUM	ENTATION PAG	E				
1. REPORT	T SECURITY O	LASSIFICA	TION		16. RESTRICTIVE N	ARKINGS			·····	
Uncla	assified									
2. SECURITY CLASSIFICATION AUTHORITY				3. DISTRIBUTION/A	VAILABILITY	OF REP	PORT			
26. DECLAS	SIFICATION/	DOWNGRA	DING SCHEI	DULE	Approved for unlimited.	r public re	leas	e; dist	ribution	
4. PERFOR	MING ORGAN	IZATION P	EPORT NUN	IBER(S)	5. MONITORING OF	GANIZATION F	EPOR	TNUMBER	S)	
TR-0086	6(6940-05)-10			SD-TR-86-89)				
6. NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL					7a. NAME OF MONI	TORING ORGAN	IZATI	ON		
The Aerospace Corporation (If applicable)										
Laborat	tory Oper	ations	de :		75 ADDRESS (City	State and ZIP Co	dei			
	33 . ly, 3 late		14 2)		70. ADDRESS (City,	State and ZIF Ca				
El Segu	undo, CA	90245								
B. NAME (F FUNDING	SPONSORI	NG	8b. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT	DENTIF	ICATION N	IUMBER	
Space I	livision				F04701-85-0	-0086				
C. ADDRE:	SS (City, State	and ZIP Co	de)		10. SOURCE OF FUI	NDING NOS.				
	••••				PROGRAM	PROJECT	T	TASK	WORK UNIT	
Los Ang	geles, CA	90009	-2960		ELEMENT NO.	NO.		NO.	NO.	
11. TITLE (Include Securi	y Classifical	lion)	· _ · · · · · · · · · · · · · · · · · ·	-					
Single	Event Up	<u>set Rat</u>	<u>e Estima</u>	tes		<u> </u>				
12. PERSON	NAL AUTHOR	(S)								
BTOWNII	DE REPORT	Sandi	A NAT100	<u>al Laboratories</u> Covered	14. DATE OF REPO	I KOLASINSK RT (Yr., Mo., Dey	1 <u>. W</u>	15. PAGE	COUNT	
			FROM	то	- 30 September 1986 28					
16. SUPPLE	MENTARY NO	OTATION								
17	COSATI	CODES	· 	18 SUBJECT TERMS	Continue on muene if n		rida, has			
FIELD	GROUP	sui	B. GR.	Single Event U	pset	ecessary and laen	u, y U y	MOCK NEMO		
				Radiation Hard	dened Microcircuits					
				16K x 1 CMOS R	andom Access N	lemory				
NABSTRA	ACT (Continue	on reverse i	f necessary an	d identify by block numbe	27)					
A radia	ation-har	dened 1	6K CMOS	SRAM has been d	eveloped for s	satellite a	ind d	eep spa	ce appli-	
single	-particle	upset.	as a fu	was modeled to notion of tempe	rature, total	dose, and	hard	ening f	eedback	
resista	ance. La	borator	y measur	ements of the s	ingle event cr	coss sectio	n an	d effec	tive	
funnel	length w	ere mad	e using	the Lawrence Be	rkeley Laborat	ory's 88-i	nch	cyclotr	on to	
genera	te high e	nergy k	rypton i	ons. The combi	nation of mode	eled and me	asur	ed para	meters	
permit	ted estim	ation o	f the up	set rate for th	e RAM cell, ar	nd the mear	-tim	e-to-fa	ilure for	
a 512-1	K word, 2	2-bit m	emory sy	stem employing	error detectio	on and corr	ecti	on circ	uits while	
functio	oning in	the Ada	mis ₹90%	worst case" co	smic ray envir	conment. 1	his.	report	is pre-	
resear	th the fort	orm or e withi	a worst	ngle event comm	, summarizing	the result	.5 01	substa	ntiai	
resear		S WILHL	נווב 21	ingre event commi	unity · 4					
			0							
20. DISTRI	BUTION/AVA		UP ABSTRA		21. ABSTRACT SEC	URITY CLASSIF	CATIC	N		
228. NAME	OF RESPONS	BLE INDIV			22b TELEPHONE N		220 1	OFFICESY		
			=		(Include Area Co	ode)				

1

1

.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

تو

<u>`</u>

s

Ņ

PREFACE

The authors gratefully acknowledge the contributions of R. V. Jones and R. K. Treece of Sandia National Laboratories, Albuquerque, New Mexico.

CONTENTS

PREFA	CE	1
I.	INTRODUCTION	9
II.	INTEGRATED CIRCUIT DESCRIPTION	11
III.	RAM CELL CRITICAL CHARGE ESTIMATE	13
IV.	FUNNELING CONSIDERATIONS	15
۷.	COSMIC RAY INDUCED ERROR RATE CALCULATION	21
VI.	ERROR DETECTION AND CORRECTION LOGIC CONSIDERATIONS	25
VII.	DEVELOPMENT OF STATISTICAL RELIABILITY MODEL	29
VIII.	MEAN TIME BEFORE FAILURE ESTIMATES	31
IX.	CONCLUSIONS	33
REFER	ENCES	35

į

FIGURES

.KA

ŝ

1.	Critical Charge, SA3240 RAM Cell	14
2.	Sensitive Volumes for 16 K by 1 bit CMOS SRAM Memory Cell	17
3.	Cross Section, SA3240 RAM Cell	19
4.	Error Rate, SA3240 RAM Cell	24
5.	General Error Detection and Correction Time	26

TABLES

I.	SA3240 Single Event Upset Test, 140-MeV Krypton, 9/18/84	16
II.	CRUP Simulation, Adam's 90% Worst Case, 16 K RAM Cell	23
III.	MTBF (Day) for a 52488 Work Memory System, Adam's 90% "Worst Case" Cosmic Ray Environment	32

I. INTRODUCTION

At the present time, it is generally accepted that single-particle upset is a potential threat to the reliable operation of memory systems.¹ The resistive decoupling in RAM cells, while ultimately limited to applications where the current pulse corresponding to a legitimate RAM cell state change is longer than current pulse widths from cosmic ray interactions, remains a useful hardening technique at current levels of integration for memory circuits used in satellite and deep space applications. The work described here is a combination of experimental and analytical techniques used to evaluate the reliability of an idealized 512-K word memory system composed of 16 K by 1-bit static radiation hardened RAMs, functioning in the Adam's "90% worst case" cosmic ray environment.

II. INTEGRATED CIRCUIT DESCRIPTION

The single event upset (SEU) data presented in this report was measured for the SA3240 complementary metal oxide semiconductor (CMOS) integrated circuit. The SA3240 is a 16-K static random access memory (RAM) organized as 16 K by 1 bit. The memory is fabricated in hardened, bulk on epitaxial substrate, silicon gate technology, 2-micron 5-V process. The standard six transistor RAM cell is utilized. The resistive decoupling method is used to achieve SEU hardness. The SA3240 has demonstrated latch-up immunity, totaldose hardness to a level of 10^6 rad(Si), and dose rate hardness to a level in excess of 5×10^8 rad(Si)/s.

III. RAM CELL CRITICAL CHARGE ESTIMATE

Transient circuit analysis was performed to determine the critical charge required to upset the RAM cell as a function of feedback resistance.^{*} The devices and RAM cell circuit were simulated using the SPICE computer program. The cosmic ray interaction was simulated by applying a current pulse from generators placed in parallel with the sensitive device junctions. The current pulse amplitude was varied to find the threshold for memory changes. The critical charge was then determined by calculating the time integral of the minimum current pulse that caused upset. A plot of critical charge (Q_c) versus feedback resistance (R_F) under normal and worse-case operating conditions is shown in Fig. 1. The percent change in critical charge due to biasing (V ~ 16%), temperature (T ~ 7%) and radiation (R ~ 3%) is also shown. The critical charge is assumed equal for either p-channel or n-channel transistor drain hits. The critical charge estimates are provided courtesy of the Center for Radiation Hardened Microelectronics, Sandia National Laboratories.

[#]T. M. Mnich, B. D. Shafer, and S. E. Diehl, "Comparison of Analytical Models and Experimental Results for Single Event Upset in CMOS SRAMS," unpublished manuscript, 1984.

Kike

Fig. 1. Critical Charge, SA3240 RAM Cell

IV. FUNNELING CONSIDERATIONS

Seven de-lidded SA3240 SRAMS were tested for latch-up and SEU in a 140-MeV krypton beam, at the Lawrence Berkeley Laboratory's 88-inch cyclotron facility. The test hardware is documented in Reference 2. These tests were designed to simulate a worse-case cosmic ray environment encountered by memory system on space vehicles. All seven devices were found to be immune to heavy ion induced latch-up. The test data and the SEU cross section are shown in Table I. The cross section was calculated using the expression

$$\sigma = AE/[N \cos(\theta)]$$
(1)

where A is the area of the beam monitor, E is the number of errors detected, N is the number of monitor counts, and θ is the angle between the beam direction and the normal to the integrated circuit die. The monitor area was 1.8 cm². The cross section increased sharply with beam angle, reaching a peak value around 60°. The peak value is in fair agreement with the sum of the p-channel drain areas, shown in Fig. 2.

An estimate for the effective funnel length was obtained by interpreting the experimental results. It was assumed that the krypton ion penetrated the p-channel drain junction at the angle θ with respect to the normal to the surface, resulting in a path length through the p-channel depletion region of 1.27 µm/cos θ . The linear energy transfer (LET) of the ion was assumed to be constant over the region of interest. The deposited charge is then

$$Q_{\rm D} = \frac{(1.27 \times 10^{-4} \text{cm})(\text{LET})(\rho)}{(22.5)(\cos\theta)}$$
(2)

Serial No.	Bias V	Beam Angle (°)	Counts (per 1.8 cm ²)	Errors 1-0 0-1	Cross Section (cm ²)
200 (83 κΩ) 197 (83 κΩ)	5	70 70 45 30 0 0 70 60 45 30 30	1,010,674 493,793 502,782 1,002,256 569,997 2,997,563 672,122 503,024 499,309 1,002,428 500,977	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.39×10^{-3} 2.56×10^{-3} 1.08×10^{-3} 1.37×10^{-4} 3.16×10^{-6} 1.20×10^{-6} 1.97×10^{-3} 2.73×10^{-3} 1.58×10^{-3} 2.38×10^{-4} 2.90×10^{-6}
155 (160 kΩ) 4.5 157 (160 kΩ)	5 4.5 5	0 60 45 70 60 45 30 0 70	1,000,831 1,000,638 501,594 501,843 502,459 503,054 501,156 501,649 501,626 1,002,918	$\begin{array}{cccc} 0 & 0 \\ 4 & 4 \\ 6 & 10 \\ 0 & 0 \\ 56 & 46 \\ 112 & 103 \\ 121 & 134 \\ 25 & 33 \\ 1 & 1 \\ 18 & 16 \\ \end{array}$	$<1.80 \times 10^{-0}$ 4.21×10^{-5} 1.15×10^{-4} $<5.07 \times 10^{-6}$ 1.07×10^{-3} 1.54×10^{-3} 1.40×10^{-3} 2.40×10^{-4} 7.18×10^{-6} 1.78×10^{-4}
126 (250 kΩ) 127 (250 kΩ) 128 (220 kΩ)	5 4.5 5 4.5 4.5	70 70 70 70 70	3,000,727 4,999,323 5,030,437 5,002,373 1,009,036	0 0 0 0 1 2 0 0	<1.05 × 10 ⁻⁶ <1.05 × 10 ⁻⁶ <1.05 × 10 ⁻⁶ 3.16 × 10 ⁻⁶ <5.22 × 10 ⁻⁶

Table I. SA3240 Single Event Upset Test, 140-MeV Krypton, 9/18/84

N.C. C. C. C. C. C.

where Q_D is in pC, LET - 4 x 10⁴ is in MeV-cm²/g, and ρ is the density of silicon in g/cm³. The cross section versus charge deposited in the p-channel transistor drain is shown in Fig. 3. To take into consideration the observed variation in sensitivity to SEU of the RAM cells, a conservative estimate of 0.56 pC for the upset threshold was selected. At this value, 90% of the RAM cells do not upset.

The charge collected due to the funneling mechanism was obtained by subtracting 0.56 pC from the critical charge required to upset the RAM cell with a decoupling resistance of 83 KQ. From the charge collected due to funneling, an effective funnel length of 1.46 μ m was obtained. This estimate for the funnel length depends upon the experimentation cross section and the validity of the SPICE simulation of the critical charge.

Fig. 3. Cross Section, SA3240 RAM Cell

V. COSMIC RAY INDUCED ERROR RATE CALCULATION

The error rates used in the cosmic ray interaction analysis described in the remainder of this report were calculated using the CRUP computer $code^3$ modified for funneling. The CRUP code requires, as inputs, the size of a depletion region specified as a retangular parallel piped with dimensions a \leq b \leq c, the effective funnel length, the critical charge, and the cosmic ray environment specified as a different LET spectra. The Adam's 90% "worst case" spectra were used for the calculations.⁴

In the CRUP code, the error rate is calculated as

$$\lambda = \frac{A}{4} \int_{\text{LET}_{\min}}^{\text{LET}} \phi(\text{LET})C(S_{\min}) d(\text{LET})$$
(3)

where A = 2 (ab + ac + bc) is the total surface area of the depletion region, ϕ (LET) is the differential LET spectrum with a maximum LET of LET_{max}, C(S_{min}) is the probability of a particle traversing the sensitive volume with a chord length greater than S_{min}, and S_{min} is derived from the critical charge as

$$S_{\min} = \frac{22.5_{Qc}}{\rho LET}$$
(4)

The minimum value of LET that will produce an upset, LET min, is given by

$$LET_{min} = \frac{22.5_{QC}}{\rho S_{max}}$$
(5)

where $S_{max} = (a^2 + b^2 + c^2)^{1/2}$.

To accommodate funneling the chord length distribution, $C(S_{\min})$, is shifted by the funnel length where appropriate. A constant funnel length is assumed. Based upon the analytical model of McLean and Oldham,⁵ which predicts that the funnel length continuously increases with LET, the use of the effective funnel length for krypton ions should overestimate the charge collected for lower LET ions. Therefore, the error rate calculations presented below are conservative.

È

Table II shows the p- and n-channel error rates calculated for several values of decoupling resistance. The overall error rate is obtained by summing the error rates for all sensitive devices in the RAM cell. The error rate versus feedback resistance is shown in Fig. 4.

a to take the second second

FEEDBACK RESISTANCE	Q	P-CHANNEL	N-CHANNEL
(kΩ)	(BBJT	ERRORS/BIT-DAY	ERRORS/BIT-DAY
50	0.73**	4.25 x 10 ⁻⁸	8.72 x 10 ⁻⁹
	1.00*	1.19 x 10 ⁻⁸	3.03 x 10 ⁻⁹
100	1.34 1.83	3.26×10^{-9} 4.9 × 10 ⁻¹⁰	$\frac{1.6 \times 10^{-9}}{3.34 \times 10^{-10}}$
200	2.56	2.66 x 10 ⁻¹³	8.44 x 10 ⁻¹¹
	3.50	-0-	1.39 x 10 ⁻¹²
300	3.78	-0-	-0-
	5.17	-0-	-0-
350	4.39	-0-	-0-
	6.00	-0-	-0-
400	5.00	-0-	-0-
	6.83	-0-	-0-
[*] 5 V, 27 ⁰ , PRERAD. ^{**} 4.5 V, 60 ⁰ , 1E5 RAD	S.	L	•

Table II. Crup Simulation, Adam's 90% Worst Case, 16 K RAM Cell

RADOSSELLE

and a

£,

Fig. 4. Ermor Rate, SA3240 RAM Cell

is sister

VI. ERROR DETECTION AND CORRECTION LOGIC CONSIDERATIONS

In order to guard against errors caused by single event upsets, one may attempt to use an information code that facilitates error detection and correction by special logic circuits.⁶ The general approach is to append parity bits to each word which are used to locate errors in the word. Figure 5 shows the structure of a general EDAC scheme.

If an information code possesses the property that the occurrence of 1, 2, 3, ..., or d errors transforms a valid code word into an invalid code word, it is said to be a d-error-detecting code. The minimum distance, M, of a code is the smallest number of bits in which any two code words, $A = \{a_k | k = 1, ..., n\}$ and $B = \{b_k | k = 1, ..., n\}$, differ:

$$M = \sum_{i=0}^{n} (a \bigoplus_{i=0}^{n} b_{i}) A, B$$
(6)

where the symbol \bigoplus represents sum mod 2, and the summation is an arithmetic sum. A code is a d-error-correcting code if and only if M - 1 = d.

The d-error-detecting code is a special case of the d-error-detecting and c-error-correcting code which obeys the general relation

$$M - 1 = c + d \qquad c \leq d \tag{7}$$

where c is the number of errors which can always be corrected, and d is the number of errors which can always be detected. The condition $c \leq d$ is imposed because it is not possible to correct more errors than can be detected. Note that for a specified M, various combinations of c and d will satisfy the general relation. Note also that if more errors occur than the code is capable of detecting, an invalid code word may result if correction is performed.

Either error-detection or error-correction may be used for protection against soft errors. Error detection requires retransmission of information or redundant information storage, while error correction permits restoration of invalid code words.

Fig. 5. General Error Detection and Correction Time

,

Constant of the second

Any desired level of protection against soft errors can be obtained by satisfying two separate conditions: the code must have the minimum distance specified by inequality, and sufficient parity bits must be appended to encode all error conditions and the error-free condition. An error can occur in any of the n = i + p bits (information plus parity bits). The parity bits must then either specify that no error has occurred or locate the 1,2,3,..., or d errors. The p parity bits can represent 2^p different conditions. Therefore, a necessary condition for EDAC to succeed is that the following inequality be satisfied.

$$2^{p} \ge \sum_{k=0}^{d} {n \choose k}$$
(8)

where $\binom{n}{k}$ denotes the number of combinations of k errors in bits.

VII. DEVELOPMENT OF STATISTICAL RELIABILITY MODEL

From the upset rate described above, a probability of upset of a single bit may be obtained, and can then be used to estimate the reliability of a digital memory system⁷ with error detection and correction (EDAC) circuits. If λ is a constant error rate, then the probability of upset after time Δt is

$$P_{1,1} = 1 - e^{-\lambda \Delta t}$$
 (9)

Assuming that the probability $P_{1,1}$ is the same for each bit, and the occurrence of an error in a bit is independent of the occurrence of errors in any of the other bits, the probability of r errors in n bits is given by the binomial distribution

$$P_{r,n} = {\binom{n}{r}} P_{1,1} {\binom{r}{1-P_{1,1}}}^{n-r}$$
(10)

Initially, the code word is error free. After time Δt , the probability that the code word is correct is approximately

$$R_{1}(\Delta t) = 1 - P_{r_{1}r_{2}} r = d + 1$$
 (11)

In this approximation higher order terms, which are usually insignificant, have been neglected. After N intervals of Δt , the probability that the code word is correct is

$$R_{1}(N\Delta t) = [1 - P_{r,n}]^{N}$$
 (12)

Assuming independence of code words, the reliability of a system of W code words after time N Δ t is

$$R_{w}(N\Delta t) = [1 - P_{r,n}]^{NW}$$
(13)

The expected life of a system is referred to as a mean time before failure (MTBF), defined by the equation

$$MTBF = \int_{O}^{\infty} - t dR$$
(14)

where R is the reliability of the system. Noting that $t = N\Delta t$, then

$$R_{W}(N\Delta t) = \{ [1 - P_{r,n}]^{\Delta t} \}^{t}$$
(15)

which when substituted into equation 14 yields the solution

$$MTBF = \frac{-\Delta t}{W \ln[1 - P_{r,n}]}$$
(16)

VIII. MEAN TIME BEFORE FAILURE ESTIMATES

Using the statistical mode developed above, a set of MTBF calculations was performed for an idealized memory system of 524288 words of 16 information bits with and without error detection or correction, and up to protection against 3 errors per word. The worst-case operating conditions were assumed. The results of these calculations are shown in Table III.

If a system lifetime of 15 years is desired, then it is probably reasonable to require a MTBF of 150 years, or 5.5×10^4 days. For each assumed error rate, the table entries that satisfy the 150-year requirement are separated from those that do not by a line drawn between the table entries.

As can be seen from Table III, the 300-k Ω decoupling resistance without error detection and correction will probably provide adequate SEU hardness for the memory system. However, 100-k Ω decoupling resistance with either singleerror-detection or single-error detection and single error-correction will satisfy the 150-year MTBF requirement.

					∆t (Day	•)		
کر (Errors/Bit-day)	n (Bits)	d/c (Errors)	2.6×10^3	3.7×10^2	30.0	1.00	0.42	6.9 = 10 ⁻³
10-4	16	070	0.12	0.12	0.12	0.12	0.12	0.12
(20-)	17	1/0	5.7	39.0	$4.7 = 10^2$	1.4×10^4	3.4 = 10 ⁵	1.9 + 107
	21	171	3.7	25.0	3.0×10^2	$9.1 = 10^2$	2.2×10^{5}	1.4×10^{7}
	21	2/0	2.3×10^2	1.1 × 10 ⁴	1.6×10^{6}	1.4×10^9		
	22	2/1	2.0×10^2	9.4×10^{3}	1.4×10^{6}	1.2 ± 10^9		
	22	3/0	1.6×10^{4}	5.4 $\times 10^{7}$	9.7×10^9			
10-7	16	0/0	1.2	1.2	1.2	1.2	1.2	1.2
(-50 kg)	17	170	5.5×10^2	3.8 × 10	4.7 = 10 ⁶	1.4 × 10 ⁶	3.4 + 107	
	21	171	3.6×10^2	2.5×10^3	3.0×10^{4}	9.1 × 10 ⁵	2.2×10^{7}	
	21	2/0	2.2×10^{5}	1.1×10^{7}	1.6×10^9			
	22	2/1	1.9 × 10 ⁵	9.3×10^{7}	1.4×10^9			
	22	3/0	1.6×10^9	5.4 \times 10 ¹¹				
10 ⁻⁸	16	0/0	12.0	12.0	12.0	12.0	12.0	12.0
(~100 kg)	17	170	5.5 × 10 ⁴	3.8 × 10 ⁵	4.7 × 10 ⁶	1.4 × 10 ⁸	2.9×10^{9}	
	21	1/1	3.6 × 10 ⁴	2.5×10^{5}	3.0 × 10 ⁶	9.1 × 10 ⁷	1.9×10^{9}	
	21	2/0	2.2×10^8	1.1×10^{10}	$1.4 = 10^{12}$			
	22	2/1	1.9×10^{8}	9.3 × 10 ⁹	1.4×10^{12}			
	22	3/0	1.6×10^{12}					
10 ⁻⁹	16	0/0	$1.2 = 10^2$	1.2×10^2	1.2×10^2	1.2×10^2	1.2×10^2	1.2 ± 10^2
(-150 kg)	17	1/0	5.5 × 10 ⁶	3.8×10^7	4.7×10^{8}	$1.4 = 10^{10}$		
	21	171	3.6 × 10 ⁶	2.5×10^7	3.0×10^8	9.2×10^9		
	21	2/0	2.2 × 10 ¹¹	1.0×10^{13}				
	22	2/1	1.9×10^{11}	1.0×10^{13}				
10-10	16	0/0	1.2 * 103	1.2×10^{3}	1.2×10^{3}	1.2 + 103	1.2 = 10 ³	1.2×10^{3}
(~200 kg)	17	1/0	5.5 × 10 ⁸	3.8×10^9	4.7×10^{10}			
	21	171	3.6×10^8	$2.5 = 10^9$	3.0×10^{10}			
	21	2/0	1.8×10^{14}					
	22	2/1	1.8×10^{14}					
10-11	16	0/0	1.2 = 10 ⁴	$1.2 = 10^4$	1.2×10^{4}	1.2×10^{4}	1.2 × 10 ⁴	1.2 = 10 ⁴
(< 300 Kg)	17	170	5.5 + 1010	3.8×10^{11}				
	21	171	3.6×10^{10}	2.5×10^{11}	4.1 × 10 ¹²			•••

Table III. MTBF (Day) for a 52488 Work Memory System, Adam's 90% "Worst Case" Cosmic Ray Environment

IX. CONCLUSIONS

In this report, a combination of experimental and analytical techniques was used to estimate the upset rate for a 16-K by 1-bit CMOS SRAM memory cell, and the MTBF for a 512-K word, 16-information bit memory system functioning in the Adam's "90% worst case" cosmic ray environment. Although the MTBF was estimated for an idealized memory system, the engineer will recognize the trade-off between employing the resistive decoupling technique in the ramcells or EDAC logic circuits to achieve the required MTBF.

The SEU susceptibility of the unhardened 16-K SRAM may be such that EDAC alone cannot provide an adequate MTBF. The required MTBF can be obtained by combining EDAC with the resistive decoupling technique, or by selecting a sufficiently large feedback resistance.

REFERENCES

- S. E. Diehl, A. Ochoa, Jr., P. V. Dressendorfer, R. Koga, and W. A. Kolasinski, "Error Analysis and Prevention of Cosmic Ion-Induced Soft Errors in Static CMOS RAMs," <u>IEEE Trans. Nuc. Sci.</u>, Vol. NS-29, pp. 2032-2039, December 1982.
- R. Koga and W. A. Kolasinski, "Heavy Ion Induced Single Event Upsets of Microcircuits, "<u>IEEE Trans. Nuc. Sci.</u>, Vol. NS-31, pp. 1190-1195, December 1984.
- P. Shapiro, "Calculation of Cosmic Ray Induced Single Event Upsets," NRL Memorandum Report 5171, Naval Research Laboratory, Washington, D.C., September 1983.
- 4. P. Shapiro, E. L. Peterson, and J. H. Adams, Jr., "Calculation of Cosmic-Ray Induced Soft Upsets and Scaling in VLSI Devices," NRL Memorandum Report 4864, Naval Research Laboratory, Washington, D.C., August 1982.
- F. B. McLean and T. R. Oldham, "Charge Funneling in N- and P-Type Si Substrates," <u>IEEE Trans. Nuc. Sci.</u>, Vol. NS-29, pp. 2018-2023, December 1982.
- 6. Z. Kohavi, <u>Switching and Finite Automata Theory</u>, 2nd ed., McGraw-Hill Book Company, 1978, pp. 15-20, 253-263.
- C. N. Dorny, K. A. Fegley, and E. S. Krendel, "Section 5, Systems Engineering," pp. 5-15, in D. G. Fink, ed., <u>Electronics Engineers'</u> <u>Handbook</u>, McGraw Hill Book Company, 1975.

LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security projects, specializing in advanced military space systems. Providing research support, the corporation's Laboratory Operations conducts experimental and theoretical investigations that focus on the application of scientific and technical advances to such systems. Vital to the success of these investigations is the technical staff's wide-ranging expertise and its ability to stay current with new developments. This expertise is enhanced by a research program aimed at dealing with the many problems associated with rapidly evolving space systems. Contributing their capabilities to the research effort are these individual laboratories:

<u>Aerophysics Laboratory</u>: Launch vehicle and reentry fluid mechanics, heat transfer and flight dynamics; chemical and electric propulsion, propellant chemistry, chemical dynamics, environmental chemistry, trace detection; spacecraft structural mechanics, contamination, thermal and structural control; high temperature thermomechanics, gas kinetics and radiation; cw and pulsed chemical and excimer laser development including chemical kinetics, spectroscopy, optical resonators, beam control, atmospheric propagation, laser effects and countermeasures.

<u>Chemistry and Physics Laboratory</u>: Atmospheric chemical reactions, atmospheric optics, light scattering, state-specific chemical reactions and radiative signatures of missile plumes, sensor out-of-field-of-view rejection, applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell physics, battery electrochemistry, space vacuum and radiation effects on materials, lubrication and surface phenomena, thermionic emission, photosensitive materials and detectors, atomic frequency standards, and environmental chemistry.

<u>Computer Science Laboratory</u>: Program verification, program translation, performance-sensitive system design, distributed architectures for spaceborne computers, fault-tolerant computer systems, artificial intelligence, microelectronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device physics, compound semiconductors, radiation hardening; electro-optics, quantum electronics, solid-state laser°, optical propagation and communications; microwave semiconductor devices, microwave/millimeter wave measurements, diagnostics and radiometry, microwave/millimeter wave thermionic devices; atomic time and frequency standárds; antennas, rf systems, electromagnetic propagation phenomena, space communication systems.

<u>Materials Sciences Laboratory</u>: Development of new materials: metals, alloys, ceramics, polymers and their composites, and new forms of carbon; nondestructive evaluation, component failure analysis and reliability; fracture mechanics and stress corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures as well as in space and enemy-induced environments.

<u>Space Sciences Laboratory</u>: Magnetospheric, auroral and cosmic ray physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric physics, density and composition of the upper atmosphere, remote sensing using atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis; effects of solar activity, magnetic storms and nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate radiations on space systems; space instrumentation.

