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) This thesis studies a simple strategy for fairly allocating link capacity in a
'-: point-to-point packet network with virtual circuit routing. Each link offers its

packet transmission slots to its user sessions by polling them in round robin
order. In addition, link-by-link window flow control is used to prevent
g excessive packet queues at the network nodes. As the window size increases,
the session throughput rates are shown to approach limits that are perfectly
fair in the max-min sense. That is, the smallest session rate in the network is
i as large as possible and, subject to that constraint, the second-smallest session
rate is as large as possible, etc. If each session has evenly spaced packet
1 arrivals or has such heavy demand that packets are always waiting to enter the
N network, then a finite window size suffices to produce perfectly fair throughput
rates. (These properties do not hold if first-come-first-served scheduling is
used instead of round robin.)
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The round robin method is considerably simpler than other known
strategies for achieving throughput fairness. The fair session rates are not
explicitly computed, and the only overhead communication is that required for
the window acknowledgments. The main drawback is that large windows are
needed to achieve even approximately fair throughputs in some systems, and
large windows permit large cross-network delays. This may be intolerable for
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some users. However, the thesis also shows that if a session elects to use small
windows, its packets are guaranteed to experience small cross-network delays,
and a certain lower bound on its service rate is still guaranteed. (This service
rate determines the maximum session throughput rate that can be supported
and also roughly determines, for a given throughput rate, the delay of packets
waiting to be admitted to the network.) These guarantees for sessions with
small windows apply even if other sessions in the network are using larger
windows. Thus the round robin method seems to be well suited to integrated
services networks. Delay-sensitive sessions can use small windows to meet their
needs, and the remaining transmission capacity can be fairly divided among the
other sessions by assigning them large windows. Moreover, a session with
throughput and/or delay requirements too stringent to be met simply by
proper window sizing could be given priority service by being visited more than
once in each polling cycle. *
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1. INTRODUCTION
1.1 Problem Statement and Background

Consider a data communication network consisting of store-and-forward
switches (nodes) joined by point-to-point communication channels (links).
Each network user (session) is assigned a fixed path (virtual circuit) through
the network, and data for the session are'sent in manageable parcels (packets)
along this path. In such a network, occasional surges in user demand can
overload network links, causing packet queues to build up in network nodes.
These queues may eventually overflow the nodes’ storage space, or the delay of
acknowledgments may cause transmitters to assume that data were lost. These
problems result in wasteful retransmissions that effectively reduce the capacity
of the network. Flow control procedures attempt to prevent or alleviate this
degradation by regulating the appropriate traffic sources. Gerla and I‘\;Ieinrock
[10] discuss many of the flow control techniques that have been proposed in the

literature.

One such scheme is the window method [10]. This technique limits the

LTI J P

number of packets for each session that have been transmitted but for which

acknowledgments have not yet been received. .The maximum permissible
number of outstanding packets is called the window size. In the end-to-cnd
method, a single window is applied to all of a session’s traffic, and the session's
destination node sends an acknowledgment to the origin node whenever a

packet is claimed by the session’s sink. In the link-by-link or node-by-node
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method, the session has a separate window for its traffic over each link, and

whenever a packet is transmitted from a node, that node sends an
acknowledgment to the packet’s preceding node. The link-by-link method is
equivalent to each session having a dedicated storage area (buffer) at each node
in its path; the buffer capacity equals the window size. The window method is
described here because it is 2 component of several more elaborate strategies to

be discussed later.

It would be desirable for flow control procedures to regulate network inputs
so as to grant each session a fair throughput rate. Gerla and Kleinrock [10]
explain that many proposed flow control methods are unfair. Several studies
have addressed the issue of throughput fairness, however, and these will now

be briefly discussed.

The problem of achieving fair throughput rates can bé broken into three
parts. First the fairness objective must be formulated precisely. Then the fair
session rates must be determined. Finally, these rates must be enforced.
Hayden [13: Chapter 3|, Regnier [23], Golestaani and Gallager [12, 8], Gerla and
Staskauskas [11: Section 5.2], Thaker and Cain [26], Ibe [14], Gafni [5: Sections
4 and 6.2], Sauve, Wong and Field [24, 25], and Bharath-Kumar and Jaffe [1.
18] have objectives of roughly the same form. They seek to maximize a sum of
functions, one for each session. For Hayden, each term gives the satisfaction of

a session as a function of its throughput ratc. Regnier considers both the

throughput rate of a session and its average packet delay. Golestaani and

“‘-_“.‘
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Gallager, Gerla and Staskauskas, Thaker and Cain, Ibe, and Gafni express a
session’s happiness as a function of only its throughput rate, but extra terms
are added to penalize high link delays. Sauve, Wong and Field use a
performance measure that depends on the ratio of a session’s throughput rate
to the total network throughput rate. Bharath-Kumar and Jaffe measure a
session’s success by its power (i.e., throughput divided by delay) or the
logarithm of its power. Another fairness approach, called maz-min flow control
or bottleneck flow control, is used in various forms by Bially, Gold, and Seneff
(2], Jaffe [16, 17], Gerla and Staskauskas [11: Section 3], Hayden [13: Chapter
4], Gafni [5: Chapter 3], Gafni and Bertsekas [6], Oshinsky [22], and Mosely
[20]. Only the simplest version of this objective, viz., Hayden's, will be defined
here. To satisfy the max-min flow criterion, the smallest session rate in the
network must be as large as possible. Subject to this constraint, the second-
smallest session rate must be as large as possible, etc. Given a network with its
link capacities and a set of sessions with their routes and their maximum
possible transmission rates, there is a unique set of session rates that satisfies
the bmax—min conditions. The max-min flow criterion will be taken as the
definition of throughput fairness in this thesis. Most of the studies mentioned
in this paragraph also develop algorithms for computing session rates that are
fair according to the various criteria. Many of these algorithms are meant to

be implemented in a distributed manner. (In an interesting twist, Jaffe and

Bharath-Kumar (18, 1] argue that power is not a suitable objective because it is
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neither convex nor decentralizable; algorithms to optimize power would be

::J, impractical.) )
07
':-‘. Beyond the issues of defining and computing fair rates is the problem of
i" enforcing them. Several methods have been suggested in the literature.
l'.

; Golestaani and Gallager [12, 8], Thaker and Cain [26], Ibe [14: Section 4.7],
2
) Gafni [5: Chapter 5], and Gerla and Staskauskas [11: Section 5.2] use window
> $‘
"

';2\ flow control and adjust the sessions’ window sizes to achieve the desired rates.
i

‘u Bially, Gold and Seneff (2], Hayden [13: Chapter 5], Mosely [20], Ibe [14: Section
o 4.2], Gafni [5: Chapter 3|, and Gafni and Bertsekas [6] consider a session input
.\:,
t control that produces packet lengths proportional to the session’s assigned
) rate. The time between packet admissions is constant. This model is
:‘.: particularly meaningful for packetized voice traffic: it represents the output of
"J

~

X a variable rate vocoder [2]. Oshinsky [22] takes the opposite approach, called

metering. Time is divided into control intervals whose length is inversely
proportional to a session’s target rate. The session is permitted to inject some
fixed quantity of data into the network during one control interval. A fourth

approach, taken by Mukherji [21] and Sauve, Wong and Field [24, 25] is to

LA RN NS,

schedule the use of the links among the various sessions. These studies assume

that window flow control is also used, but it is primarily the schedule

.l:l‘ Yy l.‘ ‘

2 e e

parameters rather than the window sizes that are adjusted to achieve the

desired session rates.
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This thesis studies the following new method proposed by Gallager [7, 9] for
max-min fair flow control. Each link offers its packet transmission slots to its
users by polling them in round robin order. If a session is offered a chance to
use a link slot but has no packets ready, then that same slot is offered to the

next session, and perhaps the next, etc., until a ready session is found. In each

pass of a link’s round robin, a session may transmit only one packet. The

round robin schedulers for the various links are uncoordinated. In order to
prevent excessive queues at the network nodes, window flow control is also
employed. The principal contribution of this thesis is a proof that round robin
scheduling with windows can indeed be used to achieve max-min throughput

fairness.

The main advantage of the round robin method is its simplicity. The
desired rates are never explicitly computed, as they are for other fair flow
control schemes. The only overhead communication is that required for the
window acknowledgments. The window sizes need not be adjusted as network
conditions change. An obvious price paid for this simplicity is a lack of
flexibility. The strategy is coupled to the max-min criterion and prcbably
cannot be adapted to fairness objectives substantially different from max-min.
(Session priorities can be implemented, however, by allowing scme sessions to
transmit more than one packet over a link in each polling cycle.) Another

drawback is that large windows are needed to ensure throughput fairness for

some networks, and large windows permit large cross-network delays.
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However, the thesis also proves certain throughput guarantees that apply even

for sessions using small windows.

GO0

s,

-

1.2 Thesis Overview

-

SRS

The system model assumed throughout this thesis is described in Chapter 2.

The network is composed of nodes with ample storage connected by point-to-

i
?. point, error-free links with negligible propagation delays and equal capacities.
‘o0
f Uniform packet lengths are also assumed, so that the time required to transmit
f one packet over one link is the same for all packets and all links. This
AN
:. fundamental time unit is called a slot. The network supports a fixed set of S
| sessions. Virtual circuit routing is used, with no more than H links in the path
N
\, of any session and no more than N sessions sharing any single link. Window
:.- flow control oper‘ates on a link-by-link basis, with window sizes of at most W
j-‘ packets. Several link scheduling disciplines are modeled, including round
, robin, first-come-first-served, and a generalization of these called bounded
<.
. delay scheduling. A link scheduling discipline is said to have bounded delay if
:. any session with an open window is guaranteed at least a certain service
: frequency. A variety of deterministic and random models are considered for
& packet arrivals, but packets are assumed to depart as soon as they reach their
_ . destination nodes.
X
. Chapter 4 studies the session throughputs in systems using round robin link
)
; scheduling and large windows. There are two major results, one assuming
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bursty packet arrivals and one for smooth demand. Theorem 4 asserts that, for
Bernoulli packet arrivals, the session throughput rates approach the max-min
fair rates as the window sizes increase (provided they all increase at the same
rate). If each session has evenly spaced packet arrivals or has such heavy
demand that packets are always waiting to enter the network, then the traffic
admitted to the network will be rather smooth. For this model, Corollary 1
claims that the long-term average throughputs equal the fair rates if the
windows are at least a certain size k;. Chapter 4 includes several other
results for this smooth demand model. In Theorem 2, the throughput of a
session during any finite interval is shown to be within a constant k, of the
max-min fair number of packets (regardless of the length of the interval). This
constant k, is proportional to the window size, because the system cannot
reach a steady state until the buffers upstream of a session’s most congested
link fill up with packets and the downstream buffers drain. According to
Theorem 3, a steady state is eventually reached; thereafter, the unfairness of a
session’s throughput over any interval is less than another constant k; < &, .
This steady-state unfairness bound k; is less than the minimum acceptable
window size k;, but is independent of the actual window sizes. This suggests
that using windows larger than the minimum required value k; may cause a
longer transient, but probably does not affect the throughput performance of
the system in steady state. Corollaries 3 and 4 show that, in steady state,

buffers upstream of a session’s most congested link are never empty, while
g pt)
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buffers downstream are never full, so that the session accepts every chance
offered to it by the round robin scheduler at its most congested link. (Of
course, the term "most congested link" must be precisely defined, and if a
session has more than one such link, the results are more complicated.)
Unfortunately, the minimum window size &, for which Corollary 1 proves
perfect fairness of the long-term average throughputs is absurdly large and
grows exponentially in S. Moreover, recall that for the bursty demand result,
no finite window size was sufficient. One wonders how large the windows must
be to achieve at least approximate fairness in practice. In Example 3, the
session throughput rates are quite unfair unless very large windows are used.
The example, however, is somewhat contrived, leaving open the question of
performance for "typical” systems. Also included are Examples 6 and 7, which
use first-come-first-served link scheduling instead of round robin scheduling.
In these examples, the session throughput rates are unfair even if large
windows are used. The throughput rates are shown to be very sensitive to the
relative window sizes of competing sessions and to the initial conditions of the
system, even if the windows are large. This contrasts sharply with the round

robin results.

Chapter 4 seeks max-min fair throughputs. asking how large the windows
must be. Chapter 5 takes a different approach. It assumes only that the
window sizes are at least two packets and asks how unfair the throughputs can

be. Bounded-delay link scheduling is assumed, and bursty demand is
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permitted.‘ The chapter presents two theorems that differ in their assumptions
about how many packets can be stored at a session’s source. Theorem 6 shows
;o that if round robin scheduling is used, then the throughput rate of a session
with demand rate X\ packets/slot and unlimited source buffering is at least
min(\ , 1/N] packets/slot. This throughput guarantee is within a factor of N
of the max-min fair rate. The analogous bound for first-come-first-served
scheduling is roughly min[\, 1/(N-W)] packets/slot. This throughput

guarantee is worse than the round robin guarantee by roughly a factor of W if

-SRI WY

X is large. Theorem 5 gives other throughput guarantees for sessions whose

source buffers are finite but hold at least two packets. These guarantees are

sA P S

too complicated to describe here, but if the session’s demaand rate A\ > 1
> packet/slot, then the guarantees match those given above for unlimited source
buffering. Round robin Example 1 (Section 3.2) and first-come-first-served
Example 2 (Section 3.3) show a session z with demand rate A = 1 packet/slot
whose throughput rate (for either source buffering assumption) matches the
theoretical lower bound.{ Example 3 (Section 4.4.2) shows that, with round

robin scheduling, the throughput rate of a session with heavy demand and

+ In the first-come-first-served example, however. session £ must have at least
one window of size two packets, while the other sessions may have arbitrarily
large windows. [ suspect that if all sessions are required to have the same~
window size W and IV is arbitrary (except that W > 2 packets). then the

4 worst case throughput for first-come-first-served systems is roughly half that

of round robin systems. Moreover, a different implementation of first-come-

first-served scheduling than that assumed here might perform better.
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small windows really can be unfair by a factor proportional to N. For first-
come-first-served scheduling, Example 7 (Section 4.6.2) shows an unfairness
factor proportional to N and Example 2 (Section 3.3) shows an unfairness

factor roughly equal to W.

While throughput fairness is the primary focus of this study, cross-network
delay is also of interest. Consider a session z whose window size w is at least
two packets. Of course, Little’s formula [19, 4] can take a given lower bound of
R packets/slot for z's throughput rate (such as the bounds given in Chapters 4
and 5) and generate an upper bound of roughly w*H/R slots for the average
cross-network delay of z's packets. Theorem 1 of Chapter 3, however, derives
an upper bound on delay that applies to each packet and is tighter in some
cases than the bound from Little’s formula. The theorem assumes bounded-
delay link scheduling. For round robin scheduling, the upper bound on z’s
cross-network delay is roughly w<H'N slots. The analogous bound for first-
come-first-served scheduling is roughly w*H:N+W slots -- worse by a factor of
W. Round robin Example 1 and first-come-first-served Example 2 show
packets whose cross-network delays come close to the theoretical upper

bounds. t

*In the first-come-first-served example, however, session r must have at least
one window of size two packets, while the other sessions may have arbitrarily
large windows. I suspect that if all sessions are required to have the same
window size W and W is arbitrary (except that W > 2 packets), then the
worst case delay for first-come-first-served systems is roughly twice that of
round robin systems. Moreover, a different implementation of first-come-
first-served scheduling than that assumed here might perform better.
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Chapter 6 discusses the practical implications of this research, more

thoroughly compares the round robin method with the fair flow control

strategies mentioned in Section 1.1, and offers suggestions for future study. A

glossary of notation appears at the end of the document.
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2. SYSTEM MODEL

This chapter presents a system model to be studied in Chapters 3, 4 and 5.
The model features uniform link capacities, uniform packet lengths, a fixed set
of users, virtual circuit routing, and link-by-link window flow control. Several
link scheduling disciplines are modeled, including round robin, first-come-first-
served, and a generalization of these called "bounded delay” scheduling. A
variety of deterministic and random models are considered for packet arrivals,

but packets are assumed to depart as soon as they reach their destination

nodes.

2.1 Nodes, Links, Packets, and Time

The network consists of store-and-forward nodes joined by point-to-point
links. A link allows communication in only one direction. If two nodes are
connected by link(s) in one direction, then they must be connected by at least
one link in the reverse direction so that flow control acknowledgments can be
returned. Except for this restriction, two nodes may have any number of links

connecting them.

Links are perfectly reliable, i.e., they never lose or corrupt data. and they
never fail. Nodes, too, are perfectly reliable, and the storage capacity of each

node is infinite.

Data are transmitted through the network in packets of equal longth. A

e o o e e o e e T T e T L L G e L
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time interval during which one packet is transmitted over a link is called a

time slot for that link. All links have the same capacity; hence all time slots

have the same length. A packet experiences no processing delay at a node,

other than a possible queuing delay as it waits for transmission. A packet

experiences no propagation delay on a link. The transmission time slots of all

links are synchronized; hence the entire network operates with slotted time.

Although the operation of the system during a time slot will occasionally be
discussed, a discrete-time system model will normally be used in which the ¢t
discrete-time instant, called time ¢, refers to the end of the ¢** time slot. The H

model begins at time O.

It is often necessary to refer to intervals longer than one slot. Let [s, ¢]
denote the interval from the beginning of slot s to the end of slot ¢ ; if

s >t ,then [s, t] is null. Define (s, ¢t], [s,t), and (s, t) as follows:

: (1) (s,t] = [s+1,¢]
(2) [s, ) = [s, t=1]
(3) (s, t) = [s+1, t—1]

2.2 Sessions, Routes, Throughputs, and Delays

The network supports one-way communication activities called sessions.
Each session is assigned a path (i.e., a sequence of appropriately directed links)
through the network from its origin node to its destination node: data packets

for the session are transmitted along this path. Several sessions may have the

................
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same origin and destination nodes. The set of sessions using the network is
fixed. Let S denote the number of sessions using the network, and let N'({)

denote the number of sessions using link /.

While all links have global identifiers, it is often convenient to index links
in the order in which some session uses them. Therefore, let H(z) denote the
number of links in the path of session z, and let H be the maximum number of

links in the path of any session:

(4) H = max H(z)

z

For each session z and for A = 1,2, ..., H(z), define hop h as the A®* link
in the path of z, including the related functions in the node at the input end
of that link. To streamline the analysis, packet arrivals and departures are
modeled as transmissions over dummy hops. The session's source is hop O.
The session’s sink is hop H(z)+1. The source and sink are considered to be
hops but not links. For h = 1,2, .., H(z), let N(z, k) denote the number
of sessions using hop A of session z, including z itself. Let .N(zr) be the

maximum number of sessions using any link in the path of z :

5 n% = b
(3) (z) <R

.‘\v"(l‘, h)
Let vV be the maximum number of sessions sharing any link in the nerwork:

(6) N = max N(z) = max N'(1)

z
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Packets waiting to be transmitted over hop h of session =z,
0< h < H(z)+1, are said to be in buffer h. The number of packets in buffer
h of session z at time ¢ is called the buffer level B(z, h, t). For convenience,
packet arrivals for session z are modeled as occasional services at hop 0. Buffer
0 is assumed to contain an infinite number of packets at time 0. In each time
slot, the session’s source (hop 0) transfers either one packet or no packets from

buffer O to buffer 1. Therefore, for all times ¢t > 0,
(7) B(z,0,t) =

The only significance of (7) is that buffer 0 is never empty. The initial levels
B(z, h,0) of the buffers b = 1,2, .., H(z) are assumed to be finite but are
. not necessarily zero.t It is assumed that the initial level B(z, H{z)+1, 0) of
buffer H(z)+1 is at most one, and that the session’s sink is very fast. { That
is, whenever B(z, H(z)+1, t~1) > 0, hop H(z)+1 removes one packet from

buffer H(z)+1 during slot ¢t. Therefore, for all times ¢t > 0,

t Since the initial buffer levels can be positive, the assumption of a fixed set of
sessions is less restrictive than it appears. The approach here is equivalent to
studying a more realistic model, one with a dynamic set of sessions. during
an interval in which no existing sessions are terminated and no new sessions
are initiated.

t Fast session sinks have been assumed for simplicity. This assumption could
be relaxed by wusing a sink model similar to the source medel.
Straightforward modifications would adapt Chapter 4 to such a model. It is
not clear whether Chapters 3 and 5 could also be generalized.

''''' P - . - '-n.‘.‘,"‘ L. N .
. \, ............. .. AT AP I

o, /If{ .

o _’4,.-\\4, ....... S B T
e o) 4\‘4 RO I, R e \..A..x;_\n"_s s T 'L"A_{L{L‘('A:L' 5




(8)  B(z, Hz)+1,t) < 1

The throughput (measured in packets) of session z over hop &,
0< h < H(z)+1, during interval (s, t] is denoted by P(z,h,s,t). For

s>t, P(z,h,s,t) is defined to be zero. Note that,for s < ¢t < u,
(9) P(z, h,s,u) = P(z,h,s,t) + P(z, h,t,u)

If link ! is hop kb for session z, then P'(z,[,s,t) is defined to equal
P(z, h,s,t). There is a simple and obvious relationship between buffer levels
and throughputs. For any session z, any buffer A of z in the range

1< h < H(z)+1, and any times s and ¢ such that 0 < s < t,
(10) B(z, h,t) = B(z, h,s) + P(z,h—1,s,t) — P(z, h,s,t)
The long-term average throughput R,4(z) of a session z is defined as follows:

P(z, H(z), 0, ¢)
t

(1) Ra(e) = lim

This limit may not exist for systems with irregular demand.

Sequence numbers are assigned to the packets of each session z. If buffers
h=1,2,..,H(z) contain any packets at time O, then the one farthest
downstream is éalled packet 1; if these buffers are initially empty. then the
first packet to arrive at buffer 1 after time O is called packet 1. The packet
following packet 1 is called packet 2, etc. (If buffer H(z)+1 initially contains

a packet, that packet gets no sequence number.)
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Let Y(z, h, p) denote the time slot during which packet p > 1 of session

i NCERREF (L2

z crosses hop A, 0< h < H(z)+1. For convenience, let T(z, h,p) be
defined for all integers p, with T(z,k,p)=0 if p <1 or if packet p is

farther downstream than buffer 4 at time 0. If a packet p > 1 gets stuck in

L 4

a buffer &, 0 < h < H(z), and never advances, take T(z, h, p)= oo for

RARARY

h < h < H(z)+1. Consider the following claim:
(12) Y(z, H(z)+1,p) < Y(z, H(z), p+1) for all integers p

For p <1, (12) holds because its left-hand side equals zero. For p > 1, (12)
holds because the assumptions about buffer H(z)+1 and hop H(z)+1 imply

that
Y(z, H(z)+1,p) = T(z,H(z),p) +1 < T(z, H(z), p+1)
For each packet p > 1 of session z that gets beyond buffer 1 (i.e., for
which T(z, 1, p) < o), define the cross-network delay =(z, p) as follows:
(13) 2(z,p) = T(z, H(z), p) — T(z,1,p) +1

This measures the transmission delays across hops 1 through H(z), inclusive,

plus the queuing delays in buffers 2 through H(z), inclusive.
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2.3 Link-by-Link Window Flow Control

The capacity (in packets) of a buffer & of a session z, 0 < h < H(z)+1,

L. |

is called the window size associated with that buffer and is denoted by

OV AR s

e,

?:’»’J
-




| AR

& A

’J

- ,. .‘l Il

SheSShe

. EAAEAENINENS

et

i

e

AP

W(z, k). For each session z, buffer 0 has infinite capacity:

(14) W(z,0) = oo

The capacity W(z, 1) of buffer 1 may be either finite or infinite; this permits
a wider variety of packet arrival models. The buffers 4 in the range
2 < h < H(z) must have finite capacity. The capacity of buffer H(z)+1 is

assumed to be at least two but finite:

(15) 2 < W(z,Hiz)+1) < o©

It follows from (15) and (8) that

(16) B(z, H(z)+1,t) < W(z, H(z)+1)

for all times ¢ > 0. In other words, buffer H(z)+1 is never full. Buffers 2
through H(z)+1 are required to be finite for two reasons -- to bound the
cross-network delay, and to keep individual sessions from consuming grossly
unfair amounts of link capacity. Each result in Chapters 3, 4 and 5 requires its
own additional assumptions about the window sizes. The maximum window
size for any session z at any buffer A in the range 1 < 4 < H(z) is denoted

by W':

17 W = h Wiz, h
( ) z,h:l?%éf-{(z) (I )

The maximum window size for any session z at any buffer A in the range

2< h < H(z)+1 is denoted by W”:
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(18) w" = max W(z, k)
z,h: 2K A< H(z)+1

To keep each buffer 4 in the range 1< & < H(z)+1 from overflowing,
the following restriction is placed on the flow over hop h—1 during every slot
t > 1: if buffer & is full at the end of slot ¢—1, the window is said to be
closed, and session z may not transmit a packet over hop h—1 during slot ¢.

In other words,
(19) B(z, h,t—1) = W(z, k) impliess P(z,h-—1,t—~1,¢t) = 0

This restriction is implemented using logical quantities called permits. Buffer A
has W(z, h) permits permanently associated with it. Every packet waiting in
buffer A holds a permit for buffer k, and any leftover permits for buffer 2 are
stored at hop A—1. A packet being transmitted over hop A~1 must carry
with it a permit for buffer k. (If none are available at hop hA—1, then the
packet may not be transmitted.) Whenever a packet is transmitted over hop &
(i.e., removed from buffer ) during a time slot ¢, the packet relinquishes its
permit for buffer A, and hop h returns this permit upstream to hop h-—1

during that same slot t.t The return of permits is accomplished in the

t+ In this model, link transmission is error-free. Hence, it is possible for hop A
to know, at the beginning of a slot ¢, that a packet p will be successfully
transmitted over hop h during slot ¢. Therefore, hop h can safely send
packet p’s permit for buffer A back to hop A—1 during slot t. In a real
network, with imperfect transmission, the error control process (i.e., link
layer protocol) for hop A could have its own storage area where the packet p
is transferred during the slot ¢ in which its transmission is first attempted.
With this arrangement, hop & could still send packet p’s permit back to hop
h—1 during slot ¢t without risking buffer overflow.
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h~ following way. A permit for buffer 1 is returned by having the session’s origin
:;Z node notify the session’s source (i.e., hop 0). A permit for a buffer £ in the
L,

-
: range 2 < h < H(z)+1 is returned to hop hA—1 by transmitting a notice
al

over some link with direction opposite to hop hA—1. This notice requires few
"-

o bits and can be piggybacked onto a data packet if any are available. Therefore
o the link capacity required to implement permits will be ignored. t

"

o 2.4 Link Scheduling

4 At any link, packets for any particular session are transmitted in the order
*y

}" in which they arrived from their preceding hop. Packets from different
- sessions, however, are not necessarily tranpsmitted in order of arrival. Each link
,5 has a scheduler to decide which session will use the link during each time slot.
v Various scheduling disciplines are possible. This section describes round robin
)_ scheduling, first-come-first-served scheduling, and a generalization of these
. disciplines called bounded delay scheduling.

)

. t Consider a session zr that is the sole user of each link in its path. Suppose z
l has heavy demand; i.e., it inserts a packet into buffer 1 whenever that
X buffer is not full. If z's window sizes are at least two, then its long-term
N average throughput R (z) equals one, the link capacity. However, if
N W(z, h) =1 for some h, then R, (z) can be no more than % . For this
3\ 3

reason, a window size of two seems to be the smallest practical value.

- R I N T T TN SN I ST P R R T S S

se _\'_‘-.';'4'_~";<. RS NN e i o e ML N AT LI
CIUE S RN SRS O Y N R R O Oy |



EV‘W{.W“(WITNNW; LA Vet Sar aC e e A Jaf Bat Bat It b it A O 0 N b el b Sl i S R AS Rte fia ate aly 0 A AL AT Al el SR N Sl iad Sud

- 98-

2.4.1 Round Robin Scheduling

To implement a round robin discipline, the scheduler for link [ consults a
fixed data structure consisting of session identifiers arranged in a directed ring.
Each session using ! appears exactly once on this round robin ring. The link
scheduler also maintains a variable called the ring position that points to some
session on the ring. Whenever a session z transmits a packet over ! in a time

slot, the ring position is updated to z during that slot.

Consider the scheduling of slot ¢ at link [. Let session z be the ring
position at the end-of slot t—1. Let y be the session immediately following z
on the ring. During slot ¢, the link scheduler searches the ring, starting with
y, until it finds the first session z that has both packet(s) and permit(s)

available; i.e., z must satisfy

B(z,h,t—1) > 0
and
B(z, h+1,t—1) < W(z, h+1)

where h is the hop number of link ! for z. A packet for session z is
transmitted over | and the ring position is updated to z during slot ¢. If the
ring is searched through session z without success, then the search stops after
z, the ring position remains at z, and nothing is transmitted over [ during slot

t.

Each session examined in the search described above is said to have been

offered one chance to use link . Let C'(z,!, s, t) denote the number of
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chances offered to session z at link [ during interval (s, ¢t]. If & is the hop
number of link [ for session z, then C(z,h,s,t) is defined to equal

C'(z,l,s,t). For s > t,define C'(z,!,s,t) and C(z, h,s, t) to be zero.

2.4.2 First-Come-First-Served Scheduling

First-come-first-served link scheduling is complicated by the window flow
control mechanism. With this discipline, a packet waiting in buffer A of
session z, 1 < b < H(z), seizes a permit for its next buffer A+1 as early as
possible. Note that the packet may enter buffer 2 before or after the permit
needed for buffer A+1 arrives. Once both the packet and its permit for
buffer A+1 have arrived at hop k, the packet is said to be authorized for
transmission over hop h, and a future transmission slot on that link is reserved

for that session.

First-come-first-served scheduling transmits packets over a link in order of
their authorization times. To this end, the scheduler for each link / maintains
a first-in-first-out transmitter queue. If a packet for session r becomes
authorized to use [ during slot ¢, then a reservation for z is added to the tail of
the transmitter queue during slot t. Associated with link [ is a fixed tie-
breaking list ; each session using [ appears exactly once in this list. If packets
for several sessions become authorized to use ! during slot ¢, then their
reservations are added to the tail of the transmitter queue during slot ¢ in the

order in which the sessions appear in ['s tie-breaking list. At the beginning of
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slot t+1, the link scheduler for [ notes which session holds the reservation at
the head of the transmitter queue. That reservation is removed from the queue

and a packet for that session is transmitted over ! during slot ¢+1.

Consider a session z that uses link [ asits hop &, 1 < A < H(z). Since z
can have at most W{(z, k) packets and W(z, h+1) permits for buffer h+1
waiting at hop h, the number of reservations for z in l's transmitter queue

(i.e., the number of authorized packets) can be no more than

min{W(z, k), W(z,h+1)]; note that t

(20) min [ W(z, &), W(z, h+1)] < W(z, h+1) < W' < o©

2.4.3 Bounded Delay Scheduling

This section describes a family of link scheduling disciplines called bounded
delay disciplines. Consider a link ! used by at least one session. The
scheduling discipline for ! is said to have bounded delay if there exists a
positive integer A'(l) (called a schedule delay bound) such that, for all sessions

z using ! and for all packets p > 1 of z,

* Window size W (z. H(z)+1) was required to be finite so that the number of
packets for session r in the transmitter queue at hop H(r) would be
bounded even in the case where H{z)=1 an.|
Wz, Hz))= W(z,1)=2oc . It will be shown in Section 2.4.3 that
bounded transmitter queues make first-come-first-served a biunded delay
discipline; such disciplines offer delay and throughput guarantees to be
studied in Chapters 3 and 5.




(21)
Y(z, h, p)

< max [ Y(z, k=1, p), T(z, k, p—1), T(z, h+1, p— W(z, h+1))] + A'(l)

where h is the hop number of link [ for session z, 1 < & < H(z). In other
words, once packet p is in buffer 4, and there are no packets older than p in
buffer A, and there is room in buffer A+1, packet p is guaranteed to be
transmitted over hop A within A'(l) time slots. Apart from satisfying (21),
the scheduling decision for a slot ¢t at link | may be any deterministic function
of time ¢ itself, of the initial levels B(z, k, 0) of all buffers 4 of all sessions z,
0< & < H(z)+1, and of the throughputs P(z, h, r—1, 7) of all sessions z

over all hops b, 0 < A < H(z)+1, at all past times7, 1< r<¢t.

Note that round robin is a bounded delay discipline, with A'(l) = N'(!).
To see that first-come-first-served also has bounded delay, consider a session z
that uses link ! as its hop A. Consider a packet p > 1 of z waiting in buffer
h. Suppose there are no packets for z in buffer A that are older than p, and
suppose the window for buffer A+1 of session z is open. Consequently, p is
authorized for transmission over hop h. Consider how many packets could be
ahead of p in link !'s transmitter queue. It was given that there are no packets
for session z ahead of p. There can be at most N({)—1 sessions other than r
using /. It was explained in Section 2.4.2 that a session can have no more than
W" packets in any link transmitter queue. Therefore, the number of packets

ahead of p in ['s transmitter queue is no more than [N/({)—1]-W". In
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addition to the packets ahead of it, packet p itself must be transmitted within

the A’(l) time slots. Hence, first-come-first-served is a bounded delay
discipline, with A'({) = [N'({)=1]*W" + 1. An example of a link scheduling
discipline without bounded delay is a priority scheme where the session with

highest priority could monopolize a link for an indefinite period of time.

In a system where each link ! has a bounded delay scheduler with delay
bound A'(l), define A(z, h) to equal A'(!) if link / is hop k for session z.
Also define A(z) to be the largest schedule delay bound at any link in the

path of session z :

9 =
(22) Afz) = | max Al 4)

2.5 Demand

Recall that packet arrivals for a session z are modeled as occasional services
at hop 0. This section explains the session demand model in more detail.
During random time slots ¢ > 1, the session source (i.e., hop 0) attempts to
place one packet (taken from the infinite supply in buffer 0) into buffer 1. If
the window for buffer 1 is closed, i.e., if B(z, 1, t—1)= W(z, 1), then the
attempt fails and the packet transfer does not take place. The number
of such attempts (called chances at hop 0) during interval (s.t] s

denoted by C(z,0,s,t). For s2>1t, C(z,0,s,t) is defined to be
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zero. t The long-term average number of chances per time slot for session z at
hop O (if this average exists) is called the demand rate X\(z). The results of
Chapters 3 and 5 do not require the existence of this average for every session.

Note that A\Nz)<1.%

The sample space of the demand model is denoted by 2. A single sample
point w in () determines an entire sample path of demand for the whole
network; i.e., w determines C(z,0, t—1,t) for all sessions z and all times
t > 1. Since the demand is the only random element in the system model, a
single sample point w in 2 also determines the evolution of the entire system
after time 0. The o-algebra for the demand model is the one generated by
events of the following type: C(z, 0, t—1, t) is specified for a single session z
and a single time ¢ > 1, while the demand for other sessions and other times

is arbitrary.

Different sections in Chapters 3, 4 and 5 make different assumptions about
the probability measure of the demand model. Some theorems require the

demand of each session to be extremely regular, almost deterministic. Other

+ Although C(z, h, s, t) is defined for A > 0 only in the context of round
robin link scheduling, C(z,0, s, t) is defined here regardless of the link
scheduling discipline.

t A session z whose actual demand rate is greater than one packet per slot can
be modeled with A\(z) = 1, since the network cannot offer z a throughput
rate greater than one packet per slot even if z is the sole user of each link in
its path.
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results permit the demand process C(z,0,t—1,t) of a session z to be
Bernoulli. One section assumes only that the times between chances for a
session at hop O are independent and identically distributed. Some results
require that the demand processes of the various sessions be independent;
others permit dependence. One theorem makes no demand assumptions at all.
The one set of demand assumptions under which all the results of Chapters 3,
4 and 5 hold is the heavy demand assumption, viz., that C(z, 0, t—1, t) = 1

for all sessions z and all times ¢t > 1.

2.6 System Specification

A system is fully sp.cified by describing the following items: the network
topology, the set of sessions using the network, the sessions’ paths, the initial
buffer levels, the window sizes, the scheduling discipline (e.g., round robin or
first-come-first-served), the schedule parameters (e.g., the rings for round robin
scheduling or the tie-breaking lists for first-come-first-served scheduling), the
initial schedule state (e.g., the initial ring positions for round robin scheduling
or the initial transmitter queues for first-come-first-served schedulingj, and the

probability measure of the demand model.

............

...........




ShhaAAS

XS

u, a4,

2.7 Miscellaneous Bounds

Some bounds on quantities defined in this chapter are listed below for easy

reference.
1 £ Hz) L H < for all z

1 < N(l) = N@iz,h) < Nz) £ NL S < o foralll, z,h such
that link { is hop 2
for session z

1 < A'(l) = A(z,h) £ A(z) € for all I, z, A such
that link [ is hop &
for session z

W(z,0) = oc for all z

1 < W(z,1) £ for all z

1 < W(z, h) < o0 for all .z,
for2 < h < H(z)

2 < W(z,H(z)+1) < o© for all z

Wz, h) < W for all z,

for1 < & < H(z)

Wz, h) < W" for all z,
for2 < h < H(z)+1

2 < W' < x

0 < B(z,h,t) < W(z.h) for all z,
foro < A < Hir\
fort >0
0 < B(z,H(z)+1,t) £ 1 < W(z, H(z)+1) forall z, fort > 0
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3 B(z,0,t) = o0 forall z, fort > 0

T B(z,h, t) < o© for all z,
for1 < h < H(z)+1,
fort >0

0 < P(z,h,s,t) = Pllz,l,s,t) < t—s for all z, A, [ such
X that link / is hop A
% for session z, r
fort >s2>0 ‘

for all z,
fort >s>0

for all z,
fort>s>0

for all z, A, [ such
that link [ is hop A
for session z,

fort >s2>0

for all z,
fort >s>0

for all z whose avg.
throughput exists

for all £ whose avg.
demand exists

for all z,
for0 < h < H(z)+1,
for all integers p

for all z,

for all p > 1 such
that T(r. 1. p) <
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3. PACKET DELAY

This chapter studies the cross-network delay of packets for a particular
session z in a system with bounded-delay link scheduling. The window sizes
W(z, k) for buffers b in the range 2 < & < H(z)+1 are assumed to be at
least two but finite. The capacity W(z, 1) of buffer 1 is arbitrary, possibly
even infinite. The window sizes of the other sessions in the network are
arbitrary. The demands of the sessions, including z, are arbitrary; session

demand rates need not exist. Theorem 1 shows that the cross-network delay

H(z)
for each packet of z is at most [ Y Wz, h)[A(z)+ 1.1
he=m?2

It was explained in Section 2.4.3 that round robin scheduling and first-
come-first-served scheduling are bounded delay disciplines, with schedule delay
bounds A'({) of N'(!) and N'({)> W"— W"+1, respectively. Therefore, the

cross-network delay bounds of Theorem 1 for round robin systems

H(z)
and first-come-first-served systems are [E

W(z, h)]’N(x) + 1 and
hem?2

t If the average throughput and the average cross-network delay per packet
exist for session z, then Little’s formula [19, 4] gives the following upper
bound on the average cross-network delay per packet:

H(
1 + i)W(x, h) I 1 . This bound may be tighter than the bound of
he? Ry(z)

Theorem 1. Note, however, that Theorem 1's bound applies to each packet
of session z.

.

.......
------
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H(z)
[i W(z, h)]'[N(z)' W"—W"4+1] + 1, respectively. Example 1 shows a
h=2

o

i round robin system where one packet of session z has a cross-network delay

’ that matches the bound of Theorem 1. Example 2 shows a first-come-first-

L

Pt served system where one packet of session r has a cross-network delay of

")

) H(z)

w [2 W(z, k) — 1]’[N(z)'W"-— W"+1] 4+ 1, which is close to the bound of
h=2 .

>

;'_ Theorem 1.t Clearly, the delay guarantees afforded by this theorem for round

3 robin systems are superior to those for first-come-first-served systems. (It is

= not being claimed that round robin scheduling always offers lower packet

\‘

N

S delays or fairer packet delays than first-come-first-served scheduling.)
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t In Example 2, it is critical that W(z, H(z)) = 2.
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3.1 Theorem 1: Bound on Packet Delay

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses a bounded delay scheduling discipline. Let z be some
session. The capacity W(z, 1) of buffer 1 of z is arbitrary —- it may even be

infinite. Suppose that
(23) 2 < W(z,h) < for 2< b < H(z)+1

The window sizes of the other sessions in the network are arbitrary (i.e., these
window sizes only need to satisfy the basic assumptions of Chapter 2). The
demands of the sessions, including session z, are arbitrary. It follows that, for

each packet p > 1 of session = such that Y(z,0,p) < o0,

(24) Y(z,h,p) < oo for 1< h < H(z)+1
a H(z) '
(25) E(z, p) < LE2 W(z, h)}'A(z) +1

In other words, every packet of z that enters buffer 1 eventually leaves the

network and has bounded cross-network delay.

Proof of Theorem 1

Let us clarify the scheduling assumptions. It follows from (21) that, {or all

packets p > 1 of z and all hops 4 in the range 1 < & < H(z),

.. LA SERERE T 1."‘..\'.:‘._ "n" '_'.',' O T NP S A "- --------- P RICCI
IR A BTN . N A A A OOy SRR JOSERATS LN '\\:I:'.r.f
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T(z,h,p)'

< max [ Y(z, k-1, p), Y(z, h, p—1), T(z, h+1, p—=W(z, h+1))] + A(z, k)

26
(S) max [ T(z, k=1, p), T(z, b, p—1), T(z, h+1, p— W(z, h+1)) | + A(z)

Also recall this assumption about the operation of hop H(z)+1:
(27) T(z, H(z)+1,p) = T(z, H(z),p) +1 for p 21
Now it will be proved by contradiction that (24) holds for each packet

p 2> 1 of session z such that T(z,0, p) < co . If this were not the case, then

there would be some smallest positive integer p such that

(28) Y(z,0,p) < o0
and
(29) T(z, h,p) = for some h, 1 < b < H(z)+1

Since p is the smallest such value,
(30)  Y(z,h,p) < o© for 0 < h < H(z)+1, allintegersp < p

Let & be the smallest integer in the range 1 < k< H(z)+1 for which (29)

holds; i.e.,

(31) T(z, h.7) = 20

and

(32) T(z,h,p) < c0o for 1< h <h

Now it will be shown that
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(33) T(z,h,p) <

i) _
B There are three cases to consider. If & = 1, then (33) follows from (26), (28)
& | _

o and (30). If 2< h < H(z), then (33) follows from (26), (32) and (30). If
s - .

X h = H(z)+1, then (33) follows from (27) and (32). Hence (33) is proved. Note
b

:'; that (33) contradicts (31). This completes the proof of (24).

3 Next (25) will be proved. Let p’ > 1 be any packet of session z such that
3

E; T(z,0, p') < oo ; p' will be fixed for the remainder of this section. By (24),
"i

2 T(z, 1, p') < o0, so the cross-network delay of packet p’ is well-defined. It
ks
s must be shown that

3

¥ _ )

(34) E(z,p)) £ | X Wiz, b)[A(z) + 1

» h=2
-

-
R If H(z)= 1, then (34) follows immediately from definition (13); so assume
Y

‘ that
o

A

N (35) Hz) > 2

4

<

: First, let us justify the following claim for integers & and p.

& b

- (36) T(z,h,p) < T(z,1,p") for 1< h<H(z) p< [p’— 5 W(z, Q)]
-

o Inequality (36) follows from the buffer capacity constraints:

~
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T(z, 1, p') = Y(z, 2, p'— W(z, 2))

> T(z, 3, p'— W(z, 2)— W(z, 3))

= Y(z, k, p)

Note that (36) holds if p < 1 (in which case Y(z, k, p) = 0). Moreover, (36)
holds even if packet p’ is farther downstream than buffer 1 at time O (in which

case every element in the chain of inequalities above equals zero).

Next, let us define ©(h,p) for each hop A of z in the range

1 < h < H(z) and every integer p :

(87) ©(kh,p) = Y(z,1,p") + max [0, p—p'+H(z)-h+ é W(z,ﬁ)]‘A(z)
h=2

Note that L

(38) ©(h, p—1) = O(h+1, p— W(z, h+1)) for 1< h < H(z)-1. allp

and

(39) O(h, p—1) = O(h.p) — A(z) if [p-—p'-i—H(r,)—/H-

Also note that, by (37) and (23),

(40) O(k, p—1) = ©(h—1, p) for 2< A < H(z), allp

.......
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Let us prove the following claim:

(41)
H(
T(z, h,p) < O(h,p) for 1< h < H(z), [p+1-2'% Wiz, b)|< p < p
h=2
The proof is by induction on p. The base cases, viz.,
H(z) H(z)
p'+1-2- % W(z, b,)] < p < |- % Wz, h)]
h=2 h=2

are easy to prove: by (36) and definition (37),
T(z,h,p) £ T(z,1,p") < O(h, p)

for these values of p and for 1 < A < H(z). For the induction step, consider

an integer  in the range

(42)

. H@)
pl+l- Yy Wz, k)l £ 5 < ¢
h=2

The induction hypothesis asserts that

(43)
T(z, b, p) < O(h, p) for 1SH<H(z) >

H(z)
p'+1-2 Y W(z, h)|< p < p—1

(T

-2

[t must be shown that
(44) T(z. k. 5) < O(h p) for 1<k < H(z)
First (44) will be proved for small values of h. Let A’ be the largest hop in

< p'—p . By (36) and

the range 1 < &' < H(z)=1 such that [Z W(z, h)




definition (37),
(45) T(z,h,p) < T(z,1,p") < O(h,p) for 1< h < H

For hops h in the range k' < h < H(z), the proof of (44) will be by
induction on h. The base case h = k' is covered by (45) above. For the

induction step, consider a hop £ (if any) in the range

(46) R+l < b < H(z)-1

(The case h = H(z) will be treated separately.) The induction hypothesis
asserts that

(47) T(z, h~1,5) < ©(h-1, p)

It must be shown that

(48) T(z, 5, 3) < ©(h, 5)

If 5 <1, the proof of (48) is trivial, since Y(z, k, p) = 0 in this case. If
p = 1, first apply (26) and induction hypotheses (47) (for the induction on 4)

and (43) (for the induction on p):

Y(z, &, p)
(49) . . . .

< max [T(z, A—=1,p), T(z, h, p—1). T(z. A+ 1, p—W(z. A+1)) ] + A(z)
(50)

< max| ©(h-1,p), Ok, p—1), OGh+1,p~W(, h+1))] + A(z)

Now apply (40), (38) and (39) to (50) to reach the desired conclusion (48):
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Y(z, h,5) < Ok, p—1) + A(z)

-

The proof for the remaining case, viz.,, h = H(z), is similar, but (23) and (12)
are used to show that the term Y(z, A+1, p— W(z, k+1)) in (49) is not
greater than the term T(z, E,f)—l) . The proof of this case will not be
presented. This completes the proof of (44) by induction on h, thereby

completing the proof of (41) by induction on p.

The desired conclusion (34) follows from definition (13), (41), and definition

(37):

E(z, p') = Y(z,H(z), p') — T(z,1,p') +1

IA

O(H(z), p') — T(z,1,p") +1

H(z)
[z Wiz, b)FA(z) + 1
he=?

This completes the proof of Theorem 1.
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3.2 Example 1: Round Robin Scheduling

Consider a system that satisfies the assumptions of Chapter 2 and has the
layout shown in Figure 1. The system includes a session z for which H(z) > 2
and N(z) > 2. Session z uses links I, Iy, ..., ly), in that order. (For
each of these links, there is another link with opposite direction that is not
shown in Figure 1 and is used only to return flow control permits.) Sessions
Y15 Y25 - YN(z)—1 Use only link lg;). Round robin link scheduling is used.
The ring position for lg(z) at time 0 is z. The window size for buffer 1 of
session z is at least two and may be either finite or infinite. The window sizes
for buffers 2 through H(z) of session z are at least two but finite, and these
buffers are initially full. For each session y;, vy, ..., YN(z)~1 the capacity of
buffer 1 is at least two, and this buffer is initially nonempty. + Every session in

the system has heavy demand; i.e.,

tIn practice, this "“initial" system state could arise if sessions =z, y,.
Yo, s YN(z)-1 sStarted before time O, when there were already many other
sessions using link lz;), and if these extra sessions terminated at time 0.
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(51) C(z,0,t—1,t) = C(y,,0, t—1,t)

= C(y,,0, t—1,t)

= C(yN(z)—l , 0, t—1, t)

= 1
for all times ¢ > 1.

The evolution of this system is simple. Session z transmits packets over
link lg;) during slots N(z), 2N(z), 3N(z), .... Let p’' be the youngest
packet of session z in buffer 2 at time 0; i.e.,

H(z
(52) p' = ) W(z, k)
h=?2

Packet p’ is transmitted over lg(z) during slot p"*N(z). Therefore, by

definition (13),

Z(z, p") = Y(z, H(z),p') — T(z,1,p') + 1

= p"N(z) —0 +1

N(z) + 1

he?

- HE)
(53) = [2 Wiz, h)

This matches the upper bound (25) of Theorem 1.

Things are slightly different for packets p > p’ of session z. Because of




the extreme initial conditions, the system experiences a mild transient. No
permits for buffer 2 of session z are returned to hop 1 until time slot
N(z)+H(z)—2, after which one permit is returned every N(z) slots.

Therefore, for each packet p > p’ of session z,
Y(z,1,p) = [N(z)+ H(z)—=2] +(p — p'— 1)N(z) + 1
(54) = (p = p)N@E=) + H(z) — 1
Link lH(z) , however, functions periodically even from time 0, and
T(z, H(z), p) = p-N(z)
By definition (13), (54), (55), and definition (52),

E(z,p) = T(z,H(z),p) — T(z,1,p) +1

= p"N(z) — H(z) + 2

he=?2

_ H(z)
(56) [2 W(z, h)}'N(x) + 1| — [H(z) — 1]

Comparing (56) with (53) shows that the cross-network delay for each packet

p > p' isslightly less than the delay for packet p'.

For future reference, note that the long-term average throuchput R ir) of

session z is 1/.N(z) .
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3.3 Example 2: First-Come-First-Served Scheduling
Y
o
o Consider a system that satisfies the assumptions of Chapter 2 and has the
)
4 . . . . .
‘ layout shown in Figure 2. The system includes a session z for which H(z) > 3
and N(z)> 2. Session z uses links [;, ly, .., lg;), in that order. (For
_ each of these links, there is another link with opposite direction that is not
» shown in Figure 2 and is used only to return flow control permits.) Sessions
- Y13 Y25 - » YN(z)=1 use only link lg)—; . Sessions z;, 22, ..., zy(z)-; use
. only lg(z). The window size for buffer 1 of session z is at least two and may
v be either finite or infinite. The window sizes for buffers 2 through H(z)—1 of
"
E: session z are at least two but finite, and these buffers are full at time 0. The
Ce
. initial level of buffer H(z) of session z is one, and W(z, H(z)) = 2. Buffers
¥ 1 and 2 of sessions ¥y, Yg, -, YN(z)=15 %1+ 22+ - IN(z)-1 haVe capacity
. W*" > 2 buffer 1 for each of these sessions is initially full, and buffer 2 is
initially empty. First-come-first-served link scheduling is used. Session =z
2 . . . . .
appears last in the tie-breaking lists of links (g, and [g;). The
transmitter queues at links Iy, o, ..., lg(;)-0 are empty at time 0, because of
a lack of permits for session z. Initially, the transmitter queue for Ig..,_,
’ contains 1" reservations for each session y; . ys. .., yy;—1 (inany order)
": fcllowed by one reservation for session z. (Although z has W(r. H{r)—1)
5 packets waiting to be transmitted over hop H(z)—1, only one of these has a
v
permit for buffer H(z). Hence z has only one reservation in the transmitter
[v
'y
4 queue for ly,)—;.) Initially, the transmitter queue for [y, contains e
h
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o
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reservations for each session z;, zg, .., zy(;)-; (in any order) followed by
one reservation for session z. Note that the initial transmitter queue lengths at

lg(z)-1 and gz are N(z)W'"—W"+1 .t Every session in the system has

heavy demand; i.e.,

(57) C(z,0,t—1,t) = C(y,,0, t—1, t)

= C(yn(z)-1,0, t—1, ¢t)

= C(Zl ' 0, t—l, t)

for all times ¢t > 1.

The evolution of this system is simple. Session z transmits packets over

links laz)-1 and lh(z) during  slots [(V(z) W= W"+1],

2 [N(z) W'=W"+1], 3+ [N(z)W'=W"+1], ... Let p’ be the voungest

tIn practice, this "initial" system state could arise if sessions .
Yis e UN(z)=19 21y o5 ZN(z)-1 Started at various times before time O.
when there were already many other sessions using links lg;)-o . g2y
and ly(;), and if these extra sessions terminated at time O.
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4

“

\

\

L packet of session z in buffer 2 at time 0; i.e.,

N , H(z)

he (58) pr= 3, Wz, h) — 1

:. h-2

3

Packet p' is transmitted over [y,) during slot p’[N(z) W'=W"+1].

N

14 "I

o Therefore, by definition (13),

8

' =(z,p") = T(z,H(z), p') -~ T(z,1,p") +1

o = p" [N(z)W'-W'+1] -0 + 1

H(z) ,

% (59) = |'S W(z, h) = 1[[N(z) W= W'+1] + 1

> h=2

<

This is almost equal to the upper bound (25) of Theorem 1.

:

3 Things are slightly different for packets p > p' of session . Because of
3 the extreme initial conditions, the system experiences a mild transient. No
b, permits for buffer 2 of session z are returned to hop 1 until time slot
RS

e [N(z) W"—=W"+1]+ H(z)—3, after which one permit is returned every
A}

"]
, N(z)W"—W"41 slots. Therefore, for each packet p > p' of session z,

< T(z,1,p) = [[N(I)-u"' - W'+ 1) + H(z) - 3}

. +(p=p = 1)[N@E)W' = W'+ 1] +1

)

.4

\ (60) = (p — p')[N@@)W' = W'+ 1] + H(z) — 2

L Links ly;)-1 and Iy, however, function periodically even from time O.
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and
(61) Y(z, H(z), p) = p*[N(z)W'"—= W'+ 1]
By definition (13), (60), (61), and definition (58),

E(z,p) = Y(z,H(z),p) — T(z,1,p) +1

= p[N(z)W"— W'+ 1] — H(z) + 3

(NE)W'—= W'+ 1] +1( — [H(z) = 2]
h=2

[F:
62) = ||y W h) -1

Comparing (62) with (59) shows that the cross-network delay for each packet

p > p' isslightly less than the delay for packet p’.

For future reference, note that the long-term average throughput R, (z) of

session z is 1/[N(z) W"— W"+1] .t

+In this example, it is critical that W(z, H(z)) = 2. The long-term average
throughput and the cross-network delay for session z could be significantly
improved by increasing W(z, H(z)) .

.........

£

Ly



o

Akl iy

s

o)
.}-%l‘.l~ o

gt

>

§ A

v,
L]

|

R ]

IR S oRas
ARV | SRR

NS
A

Ny

hY

rPLL

j ]
L)

fr e
2>

NG S
T A R

PP it
b N
JJ’-}.‘.'.‘

o
o
o
.:..
v
%
a

-55-

4. SESSION THROUGHPUTS IN SYSTEMS WITH LARGE WINDOWS

This chapter studies the fairness of session throughputs in systems where
the window size W(z, k) is finite but very large, for each buffer A of each
session z in the range 1< h < H(z). The exact assumptions about the
window sizes vary from section to section. Round robin link scheduling is
assumed throughout the chapter, except in Section 4.6, where it is shown that
certain round robin results do not hold if first-come-first-served scheduling is
used instead. This chapter assumes that each session z has a well-defined, real
demand rate A(z) in the range 0 < Mz)< 1,1 but the detailed demand

assumptions vary among the sections.

The chapter is ‘organized as follows. The max-min flow criterion, which is
taken as the definition of throughput fairness throughout this chapter, is
described in Section 4.1. According to this criterion, each session has a unique
fair throughput rate. Section 4.2 contains some preliminary results needed in
later secﬁions. Theorem 2 of Section 4.3 analyzes a system during an interval
(T,, Ty) of smooth demand. Specifically, Theorem 2 assumes that there
exists a constant A such that the demand of each session z over each

subinterval (s, t] of (T, T,) is within A packets of the nominal amount

t An example of a session z with demand rate A(z) = 0 is a session that has
only a finite number of chances at hop O after time O and therefore injects
only a finite number of packets into the network.
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] Mz)(t—~s). It is also assumed that most window sizes are at least
§

3-(H+1)5NS5~1-(A+2). Theorem 2 concludes that the throughput of each
bt

: session z  over each  subinterval of (T,, Ty) is  within
I (H+1)5-N*5~1(W'+3A+4) packets of the fair amount, regardless of the
’

f:: length of the subinterval.

. A steady-state analysis is found in Section 4.4. This section assumes that
?-'_ there exists a constant A such that the demand of each session z over each
; interval (s, t] is within A packets of the nominal amount X\(z)(t—s).
-, Again, most window sizes are assumed to be at least 3:(H+1)5-NS~1-(A+2).
'~

- Corollary 1 of Theorem 2 concludes that the long-term average throughput
; Ry(z) of each session z equals its fair rate. Theorem 3, the steady-state
-

< analog of Theorem 2, shows that there exists a time Tgs5 > O such that the
- throughput of each session z over each interval later than Tgg is within
~ (H+1)5-N°"1-(A+2) packets of the fair amount, regardless of the length of
the interval. t Note that this bound on throughput unfairness in steady state
4 is tighter than the transient bound of Theorem 2 and is independent of W".
" Section 4.4 also contains several corollaries of Theorem 3 dealing with steady-
. state buffer levels.

T, t Although no uppér bound is known for the length Tss of the transient
7 period, Theorem 2 shows that the thrﬂoughput of each session z during the
. transient period is within (H+1)5-N*5~1(W'4+3A+4) packets of the fair

amount.
y
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Theorem 4 of Section 4.5 uses a burstier demand model: the sessions are
assumed to have independent Bernoulli demand processes. Most window sizes
are assumed to be at least 12:(H+1)5:N5~! and at least a certain fraction o
of W'. Theorem 4 concludes that (with probability one) the long-term
average throughput R,(z) of each session z differs from its fair rate by no

74S-(H+1)*5-N?5~1
a.( WI)O.S

more than In otker words, the session throughput

rates can be made arbitrarily close to the fair rates by choosing window sizes

that are of the same order of magnitude and are sufficiently large.

Theorems 2, 3 and 4 show that enormous windows (of comparable size) are
sufficient to guarantee fair (or nearly fair) throughput rates. One wonders
whether large windows are actually nécessary. Section 4.4 presents an example
where the throughput rates are quite unfair unless very large windows are used.
Things could be worse, however: Section 4.6 shows that if first-come-first-
served link scheduling is used instead of round robin scheduling, then even
large windows cannot guarantee throughput fairness. Chapter 5 determines

what throughput guarantees are possible in systems with small windows.

s
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4.1 Fairness Criterion

3 This section desc-‘bes the max-min flow criterion, which will be taken as
E the definition of throughput fairness throughout Chapter 4. The version of the
criterion presented here was proposed by Hayden [13]. A similar criterion was
developed independently by Jaffe [16, 17]. Later, Gafni and Bertsekas [6]
phrased the principle more economically and generalized it. The critirion is
described here as it applies to the system model presented in Chapter 2. In
o particular, it is assumed that the sessions and routes have been specified and

that all links have unit capacity. It is also assumed that each session z has a

well-defined, real demand rate A(z) in the range 0 < M(z) < 1.4

First, let us define some terms. An allocation r is a function that assigns

each session z a real rate r(z) in the range 0 < r(z) < A(z) without

FL AN BE UL AN

violating the link capacities. In other words, the sum of the rates for all

sessions sharing a link ! cannot exceed the link’s capacity:

(63) ¥ or(@) 1

z using |

The full rate list of an allocation r is a unique vector consisting of the rates

r(r) assigned to all the sessions z. If the same rate is assigned to & different

+ It is easy to generalize the max-min flow criterion to systems where the link
capacities and the session demand rates are arbitrary nonnegative real
numbers.

CNCNENENG N )
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sessions, then that rate appears k£ times in the full rate list. The components
of the full rate list must appear in nondecreasing order. The reduced rate list

of an allocation is formed by deleting duplicate values from the full rate list.

Now fairness can be defined. An allocation r satisfies the maz-min flow
criterton if no other allocation has a full rate list that is lexicographically
greater than the full rate list of r. Roughly speaking, this means that the
smallest rate assigned to any session by r is as large as possible and, subject to
that constraint, the second-smallest assigned rate is as large as possible, etec.
Each of these nested optimization problems can be formulated as a linear
program [13], and it is not difficult to show that there exists a unique allocation
that solves them all. The rates assigned in this unique max-min allocation will
be called the fair rates. The objective of Chapter 4 is to determine conditions
under which the long-term average throughput R4(z) of each session z equals

its fair rate.

Let I denote the length of the reduc.d rate list for the max-min allocation

h element

(i.e., the number of distinct fair rates), and let Rp(¢) denote the i
of this list. Any session whose max-min faif rate is Rp(:) is sald to have
congestion indez 1. For example, all sessions with the smallest fair rate have
congestion index 1, and all sessions with the largest fair rate have congestion

index I. Let I(z) denote the congestion index of session z. In other words,

the fair rate for session z is Rp(I(z)).

P, T T e e Y LT Y e e e e e Lte e et e e e e - -
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: The max-min flow criterion can also be stated in terms of bottlenecks.
Suppose some allocation is given (not necessarily the max-min allocation). A
link [ is called a bottleneck link for a session z using / if the rate r(z) assigned
to z is at least as large as the assigned rate of any other session using [, and if
the entire capacity of ! is assigned to the sessions using it. The following

E equivalence is not difficult to prove: an allocation satisfies the max-min flow
criterion if and only if, for each session z, either r(z) = \(z) (i.e., the demand '

of z is a bottleneck) or z has at least one bottleneck link.

Wa a A &

v Once the max-min criterion has been stated in terms of bottlenecks, it is
easy to see why round robin link scheduling might be expected to achieve the
max-min fair rates [7, 9]. Consider a session whose demand exceeds its
] throughput. Packets for this session should accumulate at the input to its

. most congested link. Therefore, the session should never have to forfeit its

-
-

turn in that link’s round robin. This ensures that the session’s average

a”.Va"8 4 &

throughput will be at least as large as that of any of its competitors at that
link, and it also ensures that the link will stay busy. Thus the link should be a
bottleneck link for that session in the technical sense defined above. Every
session that is not limited by its own demand should have such a bottleneck ‘
link; hence the resulting average throughputs should equal the max-min fair

rates. Of course, this crude plausibility argument does not constitute a proof.

For the remainder of this thesis, the term "bottleneck"” will be used to mean

" . . . - .
' bottleneck with respect to the max-min allocation." In other words, a link [ is
)
NN S0 B R SR R Ly S Lo P SO LS SN e e T AT AN L T N e T e et
e e Y S LA R T e (T e, ., MR A A T R PO A A S A R A A AP S RIS
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a bottleneck link for a session z using ! if

I(y) < I(z) for all sessions y using [
(64)
Y Rr(y) =1

y using {

If a bottleneck link for session z has hop number A, 1 < b < H(z), then & is

a bottleneck hop for z. Hop 0 is said to be a bottleneck hop for z if
(65) Rp(I(z)) = Maz)

i.e., if session z is bottlenecked by its demand. Every session z has at least one
bottleneck hop 4 in the range 0 < & < H(z). (Hop H(z)+1 is never said to

be a bottleneck hop.)

For future reference, let us define R(z, k) and R'c(z,!) for a session z

that uses a link [ asitshop b, 1 < h < H(z):t

1 — % Re(I(y))

yEY(z. 1)
| Z(z, 1) |

(66) Re(z, b)) = Rz, 1) =

where Y(z,!) is the set of sessions y using ! for which I(y) < I(z), and

Z(z, ) is the set of sessions z using ! for which I(z) > I(z). Note that

+ [t will be shown in Sections 4.3.1 and 4.4.3 that if round robin scheduling is
used, and if the session demands are sufficiently regular, and if the windows
are large enough, then R’;(z, () is a lower bound on the rate at which the
round robin scheduler for link [ offers chances to session z.
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_v)

N

3

AL ,

N ZZ() )Rr(l(z)) ZZ(I )RF(I(I))

€Z(z,! 2€2(z, |

: (67) Rz, h) = 54— 2 = Rp(I(z))
R (20| 2,0 |
0
‘4".
N If A is a bottleneck hop for z, then equality holds throughout (67). If & is not
».
3 a bottleneck hop for z, then one or both of the inequalities of (67) must be
\ .

"

E‘i\' strict. Let us also define Rg(z,0) for each session z:

o

- (68) Re(z,0) = Mz)
=

N Note that

=

o

(69) Re(z,0) 2 Rp(I(z))

:-_ and that hop 0 is a bottleneck for session z if and only if equality holds in (69).
-4 In summary, for any hop & of any session z in the range 0 < & < H(z),
..\ Ro(z, ) = Rp(I(z)) if h is a bottleneck hop for z
,: (70) Re(z, ) > Rp(I(z)) if h is not a bottleneck hop for z

L
.::-.f-’ The concepts of this section will now be illustrated, using the system of
< Figure 3 as an example. The network contains links {;, {5, I3, and /;. (For
":‘
_, each of these links, there is another link with opposite direction that is not
- .

N shown in Figure 3 and is used only to return flow control permits.) Each link
5
! has unit capacity. Session | uses only link {; . Session r, uses /| followed by
_::: lo . Session z; uses all four links. Sessions r; and zj use only [;. Sessions ry
’I

b
;.'-: and z7 use only /4. Every session has a demand rate of 1, except session z,
whose demand rate is 1/6, and session zg, whose demand rate is 1/3 . The
,',_::
t” max-min fair rate for each session is 1/3, except session z,, whose fair rate is
o

v,

fl
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1/6 , and session zg5, whose fair rate is 1/2. The full rate list for the max-min
allocationis (1/6,1/3,1/3,1/3,1/3,1/3,1/2). The reduced rate list for
the max-min allocation is (1/6,1/3,1/2). Session z, has congestion index
1. Session z5 has congestion index 3. The other sessions have congestion index
2. Sessions z; and z, have link [; as a bottleneck. Session z; has two
bottleneck links -- {; and [, . The bottleneck hop for z, is hop 0 -- its demand.
Link I3 is the bottleneck for z;. Session zg has its demand and [, as
bottlenecks. Link {, is also the bottleneck for zy . Link [, is not a bottleneck

for any session, since it has unused capacity.

Note that, in this example, the max-min allocation does not maximize the

: sum of the session rates or minimize idle link capacity. The max-min flow
criterion is certainly not the only reasonable capacity allocation strategy one

could propose. For some applications, one might be willing to tolerate some

unfairness in order to achieve more efficiency.
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9 4.2 Preliminary Results
; This section contains various lemmas needed for Sections 4.3 and 4.4.
4 . .
‘ Lemma 2 (Section 4.2.2) assumes an upper bound on the throughput of sessions
- whose congestion index is less than a particular value ¢; this bound is used to
9’ derive a lower bound on the number of chances offered by a link’s round robin
i scheduler to a session with congestion index ¢. Lemma 6 assumes lower bounds
5 on the demand of a particular session and on the number of chances the
of
- session receives at each link in its path; these bounds and the assumption of
N large windows are used to derive a lower bound on the throughput of the
- session. The proof of Lemma 6 requires Lemmas 3, 4 and 5; all four of these
.

are found in Section 4.2.3. Lemma 7 (Section 4.2.4) assumes an upper bound
v
v on the demand of a particular session z and a lower bound on the throughput
, of sessions whose congestion indices are I(z) or less; these bounds and the
‘ properties of max-min fairness (viz., the existence of bottleneck hops) are used
5 to derive an upper bound on the throughput of session z. Lemma 1 (Section

4.2.1) notes various inequalities relating the functions Eg (A, t), Ep (4, 1),
Epy(A, 1), Fer(B, 1), Fpr(A, 1), Fpy(d. 1), Fpy(A, 1), Der(A.i. K.
Dpr(A. 1, K), and Dpp(A. i, K) defined below. The argument A is a real
number, and ¢ and K are integers. (The subseripts C. P, L, and ( stand {or
“chances,” "packets,” "lower bound,"” and "upper bound," respectively. The

subscripts indicate how the functions will be used.)
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TR W N W

~

H+ 1) =NV = 1) N* "3 (W' + 24 + 2) fori >
for i <

(71) Eqr (A, ¢) =

—

(3]

H+1 (N — 1):N*~ 3(W’+2A+2) for ¢ >

(72) Epr(4, 1)

IA

for 1

H+1 LNETL (W 4 24 + 9) for
fori <

v

I

(73) Epy(A, 1)

o

74) Feor(A, 1) =
(74) Fer(A, 1) for i < 0

H+1)‘N"1(A+‘7)-1 fori > 1
75) Fpr(A, 1) = -
(75) Fer(4, 4) for i < 0
H+1)' =L(A + 2) fori > 1
76) Fpy(A, i) = -
( ) PU( 1) fOl‘iSO
H+1 (W' + 24 + 2) fort > 1

(77) Fey(a, i) =
(77) pu(d, 1) fori <0

{H+1" NTL(A+2) -1 fori>1
(78) DCL(A’ i, K) = ECL(A 1) + K- FCL(A 1)
(79) DPL(A’ t, K) = EPL(Av 1) + K'FPL(A, z)

(80) Dpy(4, i, K) = Epy(a, i) + K-Fpy(A, 1)

o, .

-

---------
........

..................
..................
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T‘j 4.2.1 Lemma 1: Miscellaneous Inequalities

~

'\‘j The following inequalities hold for all positive integers + and K and all
bt nonnegative real numbers A .

.\"

¥ (81) Fpr(A, 1) 20

7y

X (82) Dpy(a,i,K—=1) > 0
_..::
b3 (83) Fpy(A,i—1) >0
o (84) Dpy(a,i—=1,K) 2 0

2
7 (85) Fpr(A,i+1) = Fp(A, i)
0%

'-..“ (86) DFL(A’ 1+ 1, K) Z DPL(A, 1', K)

X (87) Fpy(4,i+1) 2 Fpy(A, 1)

-t

S . (88) DPU(A, i+1, K) 2 DPU(A’ i, K)

2% (89) Fer(a, i) > A
<

o (90) Dgp(A,i,K) 2> K-A

y (01) Fer(a, 1) > (N = 1)Fpy(d, i=1) +1

Y}

::t (92) DCL(A, i, I{) Z (N - 1)’DPU(A, 1.—1, I() + K
;,«.

o (93) Fp(A, i) > (H+1)Fg(a, i) + H

.?: (94) DPL(A, t, 1{) Z (H + 1).DCL(A’ t, 1{) + K°H
(95)  Fpy(A. i) > Fp(a,d) +1

TN

(96)  F'"py(A, 1) > (V= 1)Fp(A.¢) + W'H + A
< (97) Dpy(d, i, K) > (V= 1)Dp (A, i, 1) + Dpp(d. i, K—1)
:j + W-H + A
These inequalities follow directly from definitions (71) - (80); the proofs will

7, not be presented.
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4.2.2 L.emma. 2: Lower Bound on Chances, given Upper Bound on
Throughput

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses round robin scheduling. Suppose each session has a well-
defined demand rate. Let z be some session, and let ! be some link used by =z.
Let K be a positive integer, and let s;, t;, so, ty, ... , sSg, tg be times
satisfying 0 < 6, < 6, < 5 < 6 < o < s <ty . Let
(98) G>0
be a real number such that, for each session y using [ with I(y) < I(z),

K , K
(99) kz P (ya 19 St tk) S RF(I(y)). 2 (tk - sk) + G
- -1 k-l
It follows that
K , , K
(100) YOz, ls, ) 2 Rle(z, 1)y Tt —8) —(N—-1)G — K
k=1 k=1

Proof of Lemma 2

Let Y denote the (possibly empty) set of sessions y on [ for which
I(y) < I(z). Let Z denote the set of sessions z on ! for which [(z) > I{z).
Note that Z includes z. For £ = 1,2, ..., K, let ¢, be the number of slots in
(s » t¢] that are not used by sessions in Y:

VT ‘z.; . : e '-;.-r;-‘.'_:.'_ RO AR /\".'-.:4-;_- O B A A IR _‘_:;:-'_'_-'.'_-'_._-'-..';::—‘:' _-;_._\.’\.:;..\.\_‘.‘--\\_);“1
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(101) 94 = (tk - sk) - E P’(ya lv Sk tlc)
yevyY

Since these g, slots are not used by Y, the round robin scheduler at { will offer

each of these slots to at least one session in Z; hence

G < S0z 1, s, 4)
z€2Z

(102) < |Z]| - max C'(z, {, s , t;)

- 2€2

By the operating rules of the round robin scheduler, session z must receive

almost as many chances as any other session on [ during (s¢,t] ; in
particular,
(103) C'(z, 1,8 , ) 2 max C'z, 1, 5, ) — 1

2€2

Combining (103), (102) and (101) yields:

(104)  Clz, Lisp b)) = ——|(ts = 5) = S Py, Lysp, )] =1
[Z | yEY

Summing over k yields:

(105)
K 1 K K .
EC’(I,[, Sk ?tk) Z -_— E(tk— Sk) bt 2 EP,(y.{. Sk 'tk) - A
k=1 I | kw1 yE VYV k=]

Since I(y) < I(z) for all y in Y, assumption (99) can be substituted above to

P T R N e T e T N A e N T e TN T e 1
GO N OO I S B S T I S T T e T e e e e T e
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K

z

JEY

k=1

K

-1—-zmuwﬂgxa—a)—

-1

Rp(I(y)) X (4 — &) + G

- K

Y. _
Z¢ K

Applying definition (66) and assumption (98) gives the desired result (100):

K K
YC(z, L, s, ) 2 Rlo(z, 1) L (& — &) —

k=1

Yo _ g

1Z]

K
> Riglz, IF T (=) — |Y][G — K

k=1

k=1

> Rigz, Iy $(t — %) — (V= 19G — K

This completes the proof of Lemma 2.
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4.2.3 Tandem Queues with Finite Buffers

This section derives a lower bound on the throughput of a session from
given lower bounds on the session’s demand and on the number of chances the
session receives at each link in its path. The problem is difficult because the
session’s buffers, while large, are finite. The problem is solvable, however,

because the session’s demand and chance processes are fairly smooth.

Let us begin with slightly oversimplified sketches of the results of this
section and their proofs. The key result is Lemma 3. This lemma focuses on a
particular buffer & of the given session z in the range 1< A < H(z). A
lower bound is assumed for the throughput over hop A—1 (i.e., into buffer &)
during ‘any interval when buffer 2 is not full. This bound has a special form.
It is the product of a nominal rate r e_md the length of the interval, minus a
constant error. A similar lower bound, with the same nominal rate r, is
assumed for the throughput over hop h (i.e., out of buffer k) during any
interval when buffer 4 is not empty. In other words, it is known how the
subpaths upstream and downstream of buffer A behave when isolated from
each other. The capacity W(z, #) of buffer h is assumed to be at least
slightly larger than.the sum of the error constants in the throughput bounds
for the two subpaths. Lemma 3 uses the given throughput bounds for the
subpaths in isolation to derive lower bounds of the same form that apply
during any interval, regardless of the level of buffer A. The error constants in

these bounds for the integrated system are only slightly larger than the sum of
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4
v
" the error constants in the bounds for the isolated subpaths.
'5 The proof of Lemma 3 is structured as follows. To bound the throughput
over hop h—1 during an interval (s, t], this interval is divided into various
- subintervals. There is an initial subinterval in which buffer £ moves from its
initial value to nearly empty. There is a final subinterval in which buffer A
.
moves from nearly empty to its final value. Between the initial and final
:::: subintervals are subintervals that alternate between two types. During a type
\. 1 subinterval, buffer 4 is not empty, and its level moves from nearly empty to
;_ nearly full. During a type 2 subinterval, buffer 4 is not full, and its level
:: moves from nearly full to nearly empty. During a type 2 subinterval, the given
“: lower bound applies to the throughput of the isolated upstream subpath.
.r . During a type 1 subinterval, the given lower bound applies to the throughput
' of the isolated downstream subpath. Moreover, the throughput of the
- upstream subpath during a type 1 subinterval must exceed the throughput of
J_ the downstream subpath by approximately W{z, k) packets, since buffer A
&
b, fills during a type 1 subinterval. The window size W(z, k) is large enough
SA that the throughput excess (over the nominal amount) for the upstream
i: subpath during a type 1 subinterval balances the possible throughput deficit
t (from the nominal amount) for the upstream subpath during a type 2
subinterval. Thus the throughput over hop h—1 during a type 1/type 2 cycle
is at least r times the combined length of the two subintervals. Net deficits
; from the nominal throughput can only accrue during the initial and final

4
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subintervals of the interval (s, t]. Hence the net throughput deficit at hop
h—1 over the entire interval (s, t] cannot be too great. Lemma 3 analyzes

the throughput over hop 4 in a similar manner.

Lemma 4 is a simple corollary of Lemma 3. Lemma 4 assumes a lower
bound on the number of chances received by a particular session z at any hop
of its path - including hop 0, the demand hop. This bound is the product of a
nominal rate r and the length of time involved, minus a2 constant error.
Sufficiently large windows are also assumed. For each buffer A of z in the
range 1< h < H(z)+1, Lemma 4 proves the following property: during an
interval when buffer 4 is not full, the throughput into buffer 4 is at least r
times the length of the interval, minus a constant error. This error constant is
only slightly larger than the sum of the error constants in the given chance
bounds for hops O through A—1. The proof of Lemma 4 is by forward
induction on k, using Lemma 3 to add successive hops to a growing upstream

subpath.

Under the same assumptions as Lemma 4, Lemma 5 derives a lower bound
on the throughput out of each buffer A of z during intervals when the buffer is
not empty. The proof of Lemma 5 is by backward induction on h. using

Lemma 3 to add successive hops to a growing downstream subpath.

Lemma 6 makes the same assumptions as Lemmas 4 and 5. Since Lemma 4

analyzes the subpath upstream of any buffer # when that buffer is not full,

and Lemma 5 analyzes the downstream subpath when the buffer is not empty,
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Lemma; 6 can invoke Lemmas 4, 5, and 3 to derive a lower bound on the
throughput of session z at any hop during any interval, regardless of the buffer
levels. As usual, the bound is the procuct of r and the length of the interval,
minus a constant error. This error constant is only slightly larger than the sum
of the error constants in the given chance bounds for hops O through H(z).

Of Lemmas 3, 4, 5, and 6, only Lemma 6 is used in later sections.




4.2.3.1 Lemma 3: Lower Bound on Throughput of Concatenated Subpaths

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses any scheduling discipline. Let z be some session. Let h be
some hop of z in the range 1 < h < H(z). Let K be a positive integer, and
let 81, ti, So, ta, o« , sg, g be times satisfying
058, <58t oo < sg <ty . Assume that the following two
properties hold for some real numbers r, ¢/, e”, f', and f" :

(107) If,for k =1,2, .., K, J(k)is any positive integer, and

ofB) | gJRm1 GJe=1 k-2

y Uk y U , vd , ¢ are any times such that

sp S of) < w1 < QJR-L < g JR=2 s <yl gy

J(k . .
and such that B(z, h, 7) < W(z, k) for all 7in L(J)[vi , ul™1), then
=

K J{k) . K
S TP Lol ) 2 S T ) - o - [zam]’w

k=1 1j=1 =1 =1 k=1

(108) If,for k=1,2,.., K, J(k)is any positive integer, and

u,{(k) , v,;'(k) , u,{(”)"1 , vkj(")_l y eee ukl , vkl are any times such that
s < ufW </ < WIS St <y
Iy ..
and such that B(z, h,7) >0 forall 7in |y {uf. v{), then
J=1

K J(k) , K J&) . K ,
Y L Phiul ) 2y Tle—wd) = = | TN

Also assume that

AT R RFRFA N -('_" P '-"J'.. AR RO AE A
‘afaVa’ i L‘}i\.é‘ .\'4. .A..A\‘( A tA Al "
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(109) [T+ "+ 2 g W(z,h) < oo

It follows that

K K
(110) E P(.‘L‘, h—l, Sk tk) 2 re 2 (tk - Sk) - € - I('f
k=1 k=1
and
K K
(111) SP(z hysp b)) 2 rr (e —s) —e —K+f
k=1 k=1
where
(112) e = e 4+ e
(113) f = ["+f"+1

Proof of Lemma 8

Inequality (110) will be proved first. For each £, 1< k< K, let us
analyze the time interval [s;,t.] separately. The first step is to break
[s¢ s t;] into various subintervals. Determine a positive integer J(k) and

J(k

define times uQ, vd, v}, v2, uv?, ..., v,‘( ), u,{(k) by the procedure specified

below. Examples are shown in Figures 4 and 5.
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J- — 0 ¢
uf -— tk
E: J — J7+1

v{ «— earliest time v in [s; , u/”!] that satisfies
B(z, h,7) < W(z, k) forall rin [v, u{™})

ul < earliest time u in [s; , v{] that satisfies
B(z, h,7) >0 forall rin [u, vf)

if u/ > s, thengoto E

J(k) «— J

It is not difficult to verify that u[ and v/ are well-defined and that this

procedure terminates. Let us make some remarks about uf and vj :

(114) s = "kj(k) < ka(k) < "kj(k)-l Sy v Sl <t <0 = t

(113) B(z, h,7) < Wz, k) forall 7in [vf, «f™%), 1< 7 < J(k)
(116) Blz, h,vj) > W(e,h)= 1 for 1< j < J(k)—1 5

(Note: Strict inequality in (116) occurs only for 7 =1
and only if B(z, h, t; — 1) = B(z, h, t;) = W(z, h).) -

(117) If ukjm < vkjm, then B(z, A. vkj(k)) > Wz, h)—=1

(118) Bz, h,.7) > O for all rin [u] . v{). 1< 7 < Jik)

(119) B(z, h, uf) = 1 for 1 <5< J(k)=1

Now the facts above will be used to analyze the throughput over the

..........................................
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subintervals (uf , vf] . From (116), (119) and (10), it follows that

120
(P(z) h—1,u},vl) > P(z,h, ul,v) + Wz, h)=2 for1 < 5 < J(k)-

To develop 2 similar inequality for 7 = J(k), first let us justify the following

claim:

(121) B(z, b, v/®) < B(z, b, o{*) +1

If o) = v{®) | then (121) is obviously true. If o/ < v/*) | then (121)

follows from (117). From (121) and (10), it follows that
(122) P(z, h—1, v, J*)) > P(z, k, o) /() —1

Next, the throughput over the entire interval (s;, ty] can be studied. By

(114),

P(zv h_lv Sk oy tk) = P(Iv h-lv ukj(k) ’ uko)

J(k) . J(k) o
(123) = | YP(z, h—1, uf, v[)] + | S P(z, h—1, v, u{"l)]
J=1 J=1

Applying (120) and (122) to (123) yields:

(124)
Jiki % |
Pz, h=1.sg . t) 2> | S Pz hougowgl| + | S Prch=1orpougm
v ] Cem |

Finally, the throughput over the collection of intervals oo P i

RN .p> - S T T e e AT ST e e .~ RERE N . UoN -
e o od
B S e T S SR L A SRS, W S AT USSR SRR S LRI TN n R RN



can be examined. Summing (124) over k yields:

k=1 k=l j=1

K K k) .
(125) S P(z, h—1, 5 ,t) = [ Y Y P(z, h, uf, v[)}

[k Jk) .
+ | EP(Z, h—1, v{, u,,”l)]

(k=1 j=1

[ & ]
+ | Sk =1} [W(, h)—2] - K
k=1

The hypotheses of the lemma can now be used to bound the right-hand side of

(125). It follows from (114), (118), and assumption (108) that

J(k) K J(k) . . K
(126) 2 Y P(z, h, uf vg) '[E (v — ug)] — e — [kzlj(k)}-f"

k=1 j=1 k=1 jeml

Similarly, it follows from (114), (115), and assumption (107) that

(127)

K J(k) i K Jk) . K ’

z P(I,h-lv vi,ulT) 2 x E(ui ) Y Jk) S

k=1 j= k=1 j=1 k=1
Substituting (126) and (127) into (125) yields:

RGP ‘-;‘,\ N A aa a P :' ;'.~ "N \' A e A h(; ;‘ ;’:—{L‘;{‘:&- CaSata

sasas




MR baa i e e

(128)

re
« e .

MRS g

__________

(107) and (108 by juzgling the superseripts of v and ug :

K K Jk) . .
S Pz, h—1, 8, ) = r[z Y(uf™t - u[)] —(ef+€¢") = K

k=1

k=1 j=1
K
- [E JE) (S + 1)
k=1
K
+ kZl[J(k) = 1] ["[W(z, h) = 2]
K

= r (v — alF)) = (e'+ €") = K-(f'+ "+ 1)

+

Applying definitions (112) and (113), assumption (109), and (114) yields the

,
desired result:
- K K o o Ik
- - S P h=1,5,4) = ry(w—o/*) —e — K/
: k=1 ka1
K
= rY(t—s) —e —Kf
k=1

This completes the proof of inequality (110).

Now (111) will be proved. For convenience. let us rephrase assumpticns

kf:l[J(k) - 1]]’[W(x, h)y— f'— "= 2]
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(129) If,for k=1,2,.., K, J(k)is any positive integer, and
v,{(k) , ukj(") ) vkj(k)‘l , u,,J(")’1 , e, UL, ug are any times such that
s < B < B < Bt < fBTT < s Sof S S g

O
and such that B(z, &, 7) < W(z, ) forallrin (J[v{, u{), then
J=1

E ZI_“,P(z h—1, v,{,ui) > re 2 Z(uk’— vg) [:Slj(k)].fr

(130) If,for £k =1,2,.., K, J(k)is any positive integer, and
ul(®) | =1 L J)-1 vf(E)=2 ., u}l, v® are any times such that

5 < ufB) S Bt < QJB-T < Qm2 < el <l <X < gy

O
and such that B(z, h,7) >0 forall rin (J[u}, v~1), then

=1
K Jk) . . J(k) . )
2 2P(z,h,u1,vi“) 2 r'E (it — ) — ¢ [ZJ( )]f”
k=1 jml k=l jw=l

The proof of (111) is similar to that of (110). As before, for
k=1,2,..,K, the interval [s;, ¢t] must be broken into subintervals.
Determine a positive integer J(k) and define times v, wl, vl oud.
vf y ey u,{(k) , v,;,("‘) by the procedure specified below. Examples are shown in

Figures 6 and 7.
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J+— 0

'Uk°4—tk
E: j— 1+1

ul +— earliest time u in [s; , vi™Y that satisfies
B(z,h,7) >0 forall 7in [u, v{~})

v + earliest time v in [s; , uf] that satisfies
B(z,h,7) < W(z, k) forall rin [v, uf)

if v/ > s, thengoto E

J(k) ~— 4

The following properties are analogous to (114) - (119):

(131) s = oy < W/ < JmT < J-1 < vl <l < ul S v =g

(132) B(z,h,7) > 0 forall 7in [uf,vf”Y), 1< ;<

J(k)
(133) B(z, k,uf) < 1 for 1 <5< J(k)—1

(Note: Strict inequality in (133) occurs only for 7 =1

and only if B(z, h, t; = 1) = B(z, h, t;) = 0.)

(134) If vJ%*) < /%) then B(z.h.u{"¥)) < 1

(135) B(zr.h,7) < Wiz, h) forall min {vf . uf). 1 <y

LS N

IN

(136) B(z.h.vf) = Wi h)—1 for 1 <5< Jik)—1

The following inequalities can be proved by reasoning similar to that behind

(120) and (122):
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(137) o o
P(z,h,vf,ul) 2 Plz,h—1,v],uf) + W(z,h)—2 for1 < ;< J(k)-

(138) P(z, b, of®), /) > P(z, h—1, of*) , »J¥)) — 1

It follows from (131), (137), and (138) that

K J(k)

§P(z,h,sk,tk) = [E EP(:: h,v{, ug)]

k=1 k=1 j=1

[2 EP(I hyuf, of” ‘)l

(139) >
k=1 j=1

K J(k)
Y EP(Z h—1, v[ u[)]

Kk J
+ {2 EP(I’!“IZ v~ )]

k-IJ-

+ §[J( )-1]][Wz h)—2 — K
Lk—l

Because of (131), (135), and (132), assumptions (129) and (130) can be applied

to (139) to yield:
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K K J(k) . .
S P(z, b, s, ) 2 ""E Y(vi™l - "k’)] —(e'+€") — K
k=1 kel jm1
K
- [Ef(k) ST+
kw1
| K
+ [kzllf(k) - 1]]'[W(z, h) — 2]
(140) = r-kfl(v,?— vlB) — (e"+ e") = K(f'+ "+ 1)
K
+ Ellf(k) - 1]]‘[W(z, h) = f'— "= 2]

Applying definitions (112) and (113), assumption (109), and (131) yields the

desired result:

K K
TP hyse ty) = (v = v]H) —e — Koy
k=1 k=1

K
re Z(tk b Sk) -_€ - If'f
k=1

This completes the proofs of inequality (111) and Lemma 3.
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4.2.3.2 Lemma 4: Lower Bound on Throughput of Upstream Subpath

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses round robin scheduling. Let z be some session. Let T,
and T, be times éatisfying 0L T, <Ty< oo. (Note that T, is permitted
to be infinite.) Suppose there exist real numbers r, G| and G, such that the
following inequality holds for every hop 4 of z in the range 0 < 4 < H(z).
for any positive integer K, and for all times s,, t;, so, to, ..., s, tx
satisfying T < 5, X ) X5 < < o Ssp St < Tyt

K K
(141) CE ks ) = (e — ) = G — KGy
k=1 k=1

Suppose that
(142) HEz)+ 1](Ga+ 1) < W(z,h) < o© for 1< b < H(z)

It follows that property (143) holds for each hop A of z in the range

0< h < H(z):

(143)  If K is any positive integer,
and if s, .,¢;.8a.ta, ..., 55, tg areany times

satisfving T) < 5, < ;< <t < 0 S sp <ty < T

|
and if B(r. h+1.7) < W(z. A+1) forall 7in |y 5. 40 then

Y N
k=]

K
S P(r,h,sp  t,) > re
k=1 k

(fk - Sk) - (h + 106G, — [\.'(h + 16, + /1:
1

V=




g
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Proof of Lemma 4§

The proof is by forward induction on 4. The base case (i.e.,, & = 0) follows
from assumption (141) and the fact that P(z,0, s , )= C(z,0, s , &)
during intervals when B(z,1,7) < W(z,1) (since buffer O is never empty).
For the induction step, fix a hop A of z in the range 1< h < H(z).
Property (143) is assumed to hold for hop hA—1, and it will be shown to hold
for hop h. Let K be any positive integer, and let s;, t;, So, to, ... S . tg

be any times such that

(144) T)E5:S S0t »o- Ssp St < T
and

. K
(145) B(z, h+1,7) < W(z, h+1) forall rin |J [s;, t)

k=1

The goal is to show that

(146)

K
EP(::, h, Sk tk) _>_ re Z(tk -_ Sk) - (h + 1)'01 et [\"[(h <+ 1)'62 -+ hJ
k=1 k=1

To prove (146), Lemma 3 will be used, with:
C, = h 'Gl 8” = Gl

= hG, + h -1 /"= G,

First, note that the induction hypothesis can be rephrased in terms of time

variables v/ and u] as follows:




vi ,ul
Uf_)( ,'U2‘ y Vo y Uo ,...,v:},ug,...,
vK(K) , u;{r(X)_l , v;J((K)"l , u;J((K)_Q y vee s v,ir . u,(}
is any nondecreasing sequence of times in [T, T,),
K J(k) v
and if B(z,h, 1) < W(z, k) forall7in (y (v . u{"!) . then
k=] je=1
K J(k) S K Jk) . :
E ZP(Ivh—l,vivui—)> TZ 2( _L'z)_'h'cl
k=1 ju1 ka1l jml
k=1

Using (147) and (144), it is straightforward to verify condition (107) of Lemma
3. Now condition (108) of Lemma 3 will be verified. As in (108), suppose, for
k=12, .., K, that J(k) is some positive integer. that
u,,l(") , vkj(/‘) , ukj(")’l , v,{(k) y eee s u,‘l , vkl are some times  satisfving

s S o <o/ <IN <GBt < s Sl <l <t and that

VO
B(z,h,7) >0 forall 7in U)[u,{ , v{) . By (145), then, session z will accept
j=1

every chance offered to it by the round robin scheduler at hop 4 during

K J(lr) .
U Ul ol
K] e}
K Ik . K Ik \
(148) Y S Prhoulvl) = S S C(ohug v
k-l]-l k=] jm]

If follows from assumption (141) that




'G:
k=1

o K J(k) . ‘ K
(149) h) EP(I,h.u;',v,{) > ¥ E(vi— ul) - G, — [ZJ(A)

k=] jeu] kw1l jm]

This verifies condition (108). Condition (109) of Lemma 3 is satisfied by
assumption (142). All the conditions of Lemma 3 have been verified.
Conclusion (111) of Lemma 3 gives the desired result (146). This completes the

proof of Lemma 4.
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4.2.3.3 Lemma 5: Lower Bound on Throughput of Downstream Subpath

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses round robin scheduling. Let z be some session. Let T,
and T, be times satisfying 0 < T; < T, < oo . (Note that T, is permitted
to be infinite.) Suppose there exist real sumbers r, G; and G, such that the
following inequality holds for every hop % of z in the range 0 < h < H(z),
for any positive integer K, and for all times s;, t;, So, to, ..., 8¢, g

satisfying T/ S 5, S 4, K 8 1L S sg St < Tyt

K K
(150) LCO@ hysg ) 2 r Xty —s) -G — KG

Suppose that
(151) [H=z)+ 1](G,+ 1) < W(z,h) < oo for 1< h < H(z)

It follows that property (152) holds for each hop A of z in the range

0< h < H(z):

(152)  If K is any positive integer,
and if s;,¢;,89,ta, .., 85, g areany times
satisfying 7, < 5, < ;<0< < o S5 St < Ty

K
and if B(z, h,7) >0 forall 7in (J [s¢, &), then
k=1

K K
NPz, ks, ) = (4 — s¢) — [H(z) = h + 1]"G,
k=1 k=1

- K- [[H(z) — b+ 1]-G, + H(z) - h]
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2,

i

] ‘ Proof of Lemma 5

J'\

o]

o) The proof is by backward induction on k. The base case (i.e., h = H(z))
A :

'S follows from assumption (150) and the fact that
:: P(z, H(z), s¢ , ty) = C(z, H(z), 5¢ , t;) during intervals when

N

: B(z, H(z), r) > 0 (since buffer H(z)+1 is never full). For the induction
[}

o step, fix a hop & of z in the range

o (153) 1<k < H(z)

<

_ Property (152) is assumed to hold for hop A, and it will be shown to hold for
-

2 hop h—1. Let K be any positive integer, and let s;, ¢;, 8o, to, .., Sg , lg
& be any times such that

:‘;5 (154) TS5, St,<5: <1< o+ S < tg < Ty

"y

S‘ and

~ s k

", (155) B(z, h=1,7) >0 forall 7in | [s; , &)
KNy k=1

rY
: The goal is to show that

» ' K

N (156) EP(z: h=1,s¢,t) 2 3 (t — &) — [H(z) = b + 2]-G,

XN k=1 k=1

2

- K- [[H(x) — h+2]*Gy + H(z)— h + 1]

Y

\

2

ﬂ: To prove (156), Lemma 3 will be used, with:

o

\-‘

-.)

.'
®)

A5 S A AR S S T e B A O Bt A N N NI R o N NN AP BN ST
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N

N

ot

h e/ = G, e = [H(z)— h + 1]°G,

T /=6 " = [H(z)~ b+ 1]'G; + H(z) = h

% ,

b First, condition (107) of Lemma 3 will be verified. As in (107), suppose, for
")

. 13 k=1,2 .., K, that J(k) is some positive integer, that
E‘} of(B) | g JB)-1 =1 JR=2 b, u®  are some  times satisfying
l. L]

- s S 0P < ol < Tl <2 < e Sl S ul < g, and
E-f that B(z, h, 1) < W(z, k) for all rin U [v{ «{~'). By (155), then, session
D =1

=X

z will accept every chance offered to it by the round robin scheduler at hop

K Jk) ..
h—1 during |y (v, ul”Y

k=1 j=1

ORISR 1
SRR

-

(157) 2 EP(zh L, vl ,uf™)) = E EC(z h=1, vf , u{~?)

k=1 j=1 k=l je=l

p Aadaruinl

R If follows from assumption (150) that

(158)
- K
\,« 2 ZP(::: h=1,vf,uf"Y) > ¢ 2 2(1&;{_ - -G, — [kzl.f(k) -G

2

o, l'. .
a

)
FAA UL

This verifies condition (107). Next, note that the induction hypothesis can be

-

rephrased in terms of time variables v/ and v{ as follows:

v -iﬁ’o-— Ag 4, 4,
LA AL ~af

(ARRE

"J AL P

.’$.

1Y
LJ
»?

‘.s g x\-s\’ﬂ.\-‘-

. L J‘Q’J'w'd‘

N . ISR ATy



(159) If J(1), J(2), ... , J(K) are any positive integers, and if

J(1 J(1)=-1 J(1)=1 1 1
u{(l) s vl( ) y ul(l) N Ul( ) g eoe gy ul ,vl ’

J(2 J(2)- J(2)-1 1 5l
‘ué’(Q),‘U2()au2()l’v2() yoee s U2 5y Vg y eeey

u,J{(K) , v,‘é(K) , u;‘é(K)'l R v,J((K)"’ y eee s u}{ , v;%

is any nondecreasing sequence of times in [T, T,),

K JE) ..
and if B(z, h,7) >0 forallrin |y (y[uf, v{), then
k=1 j=1

K J(k) S K I . . '
Y S P, hyul,vf) 2 Y Y(vi—uf) — [H(z) — & + 1]°G,

k=1 j=1 k=1 jel

K
- [2 J(k)]' [[H(z) —h+1'G, + H(z) — h]
k=1

Using (159) and (154), it is straightforward to verify condition (108) of Lemma
3. Condition (109) of Lemma 3 is satisfied by assumptions (151) and (153). All
the conditions of Lemma 3 have been verified. Conclusion (110) of Lemma 3

gives the desired result (156). This completes the proof of Lemma 5.

AR AT .- - PP AR A A e e e LA I e L O e T T T
P ) - lh  % \ LN LSRR \\ . -‘ A . DR A R PR L S
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4.2.3.4 Lemma 6: Lower Bound on Throughpﬁt, given Lower Bound on

Chances

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses round robin scheduling. Let z be some session. Let T,
and T, be times satisfying 0 < T| < Ty, < oo . (Note that T, is permitted
to be infinite.) Suppose there exist real numbers.r, G; and G, such that the
following inequality holds for every hop & of z in the range 0 < & < H(z),
for any positive integer K, and for all times s,, ¢;, s3, ty, ..., 5, tg

satisfying T/ < §; < 4, <5< th < *** Ssp S g < Ty:

K K
(160) YOz b5 ) 2 rr Bk —s) — G — KGy
k=1 k=1 .

Suppose that

(161) H(z)+ 1](Gy+ 1) < W(z,h) < o0 for 1 < h < H(z)
It follows that, for each hop & of z in the range 0< & < H(z), for any
positive integer K, and for any times s;, ¢;, so, ty, ..., Sk, tg satisfying
TSt <sStHh < - S St < Ty

K
(162) z P(I, h, Sk tk)
k=1

K
EAEADY

(tk -_ 'Sk) - [H(I) + II'GX ot [\." ["H(I) + l‘}'G: + }[(I)]
k

1

L e T P e T N N A N N R
\.’. I, i "-"-s.‘b"n"'-”-"-" o Si‘: :3-.". A-: a\..\_#-__h(,_.f_‘. AR
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Proof of Lemma 6
» Let b be any hop of z in the range 0 < h < H(z). Let K be any positive
‘.
‘f “integer, and let 1,8 ,52,8,..,8¢, ty beany times satisfying
N
N (163) 'S S H S S 6 o SsgStg < T
~
~
“ If A =0, then (162) follows directly from Lemma 5, since B(z,0,7) > 0 for
N all times 72> 0; so assume that & > 1. To prove (162), Lemma 3 will be
» used, with: :
N‘ |
' I
. e/ = kG, e’ = [H(z)—h + 1]°G, |
ol
2 ' = hGy +h—1 f" = [H(z)= h + 1]-G; + H(z) — h
. First, note that Lemma 4 can be applied to hop A—1 and rephrased in terms
1 of time variables v{ and u{ to vield the following property:
%
o
(164) If J(1), J(2), ... , J(K) are any positive integers, and if
> vlj(l) R u‘l’(l)-l 1"(1)—1 , u{(l)_2 y soe s vll , “? ,
s v{( 2) , ug( -1 021(2)—1 ’ uj("’)'2 y oee s vzl ) ug y ooy
< ) uK(K' vK(K J(K ey v;l( , u,%
& is any nondecreasing sequence of times in [T, T,),
. K Jky ..
: and if B(z, h,7) < W(z, h) forallvin |y Y [v . w1, then
k=1 j=1
K J(k) K Jk . .
s EP(I h=1, v, ul™h) 2 8 STt = w)) - G
o k=1 j=1 k=1 je=1
K
~ | Sk fhay + h = 1)
k=1
N




e
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N

L ]
s

Ll
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Using (164) and (163), it is straightforward to verify condition (107) of Lemma
3. Next, note that Lemma 5 can rephrased in terms of time variables u{ and v/
to yield the following property:

(165) If J(1), J(2), ... , J(K) are any positive integers, and if
W IO QJ) -1 - T 1

ey Uy, 'vl y
IO R S 1o,

y Ug ,....,Ur_;,vg,...,
J(K) K J(K J(K)-1 1 1
‘UK( ,v,é),u,(() ,‘UK() g oo g U, Vg
is any nondecreasing sequence of times in [Ty, Ts),

K
and if B(z, h,7) >0 foralrin U [ug v}) , then
kml jm=1

2 EP(z hyuf, vf) 2 f'E E(vx-’-wl — [H(z) = k + 1]-G,

k=1 je=1 k=1 j=1

’ |
- {2 J(Ic)]- [[H(z) —h+11G, + H(z) - h]
k=1

Using (165) and (163), it is straightforward to verify condition (108) of Lemma
3. Condition (109) of Lemma 3 is satisfied by assumption (161). All the
conditions of Lemma 3 have been verified. Conclusion (111) of Lemma 3 gives

the desired result (162). This completes the proof of Lemma 6.
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4.2.4 Lemma 7: Upper Bound on Throughput, given Lower Bound on

Throughput

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses any scheduling discipline. Suppose each session has a

well-defined demand rate Suppose that
(167) W < oo

Let z be some session. Let & be some hop of z in the range 0 < h < H(z).
Let K be a positive integer, and let s,, ¢, 55, t5, ... , Sx, tg be times
satisfying 0< §; < ¢, <8< 1< - <sg S tg. Let G, be a real

number satisfying

K-1 K-1
(168) kE P(z, by b, sp41) 2 RF(I(z))'kz (k41— &) — G,
-] -]

Let A be a non-negative real number such that

(169) C(z,0,s,,tk) < NMz)(ty — 51) + A
Let
(170) Gy, >0

be a real number such that, for every session y with I{y) < [(r) and for

every link [ used by y,

(171) Py, L, sy, tg) 2 Re(I(y))(tx — 51) — G2

It follows that
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K
(172) 2 P(I, hy Sk » tl:)
k=1

< Rpu(x))-ﬁl(tk — o) # (N=19G, + Gy + WHH + A

Proof of Lemma 7

From assumption (168), it follows that

K K-1
I:Z P(z,h,s ,t) = P{z,h,s,,tg) — S Pz, h, ty, 5p41)
-1 k=1

(173) < P(o, b, sy, t) — RF(I(x))-':i?sm - 4) + G,
-]

Now the term P(z, k, s;, tx) will be bounded. Recall that, by the properties

of the max-min flow criterion (Section 4.1), every session has at least one
bottleneck hop. Let hA* be any bottleneck hop of z, 0< h* < H(z), and

consider the following claim:
(174) Pz, b, sy, tg) < Pz, h* sy,tx) + W'H

If h=h*, then (174) is obviously true. If h > h*, then (174) is true
because P(z.h,s,, tg) can be no more than P(z, A%, s; . ty) plus the total
number of packets present at time s, in all the buffers between hops #” and
h ; there are at most H such buffers, each of capacity at most W'. If
h < h*, then (174) is true because P(z, h, s, tx) can be no more than

P(z, h*, sy, tg) plus the total amount of spare capacity at time s, in all the




vww

buffers between hops h and hA*; there are at most H such buffers, each of
capacity at most W’'. This proves (174). Inequalities (173) and (174) show

that

v T

K
(175) E P(I, h, S tk)
k=1
K-1
S P(:L‘, h*v S1» tl\’) - RF(I(I)). 2 (3k+1 - tk) + Gl + W-H
k=1

Now P(z, h*, sy, tg) will be analyzed, using the properties of bottleneck
hops. There are two cases to consider. If A* = 0, it follows from assumption

(169) and definition (65) that

TE WERCYYW DAY R R TV YV Y e e

P(z, h*,s,,tg) = P(z,0,s;, tg)

.S 0(27 Ov Sy tK)

S M)ty —s1) + 4

) (176) = Rp(I(z))(tk — s1) + 4

If 1< h*< H(z), let | denote the link corresponding to hop A*, and let Y

denote the set of sessions y # z that use [. Note that, by definition (64).

I(y) < I(z) for all sessions y in Y. Obviously. r can only use slotsin (s, . ¢t

Ran A 4 o i a o s o o

that are not used by sessions in Y:

e e L _:_\..
v ‘.‘..‘.h“.L'lC:..':..).. :.LAP.A‘ _l [ W,
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P(z, h*,s,,tg) = P'(z, 1, s, tg)

(177) < (tk = s1) — TPy, L, 51, tg)
yEY

Applying assumptions (171) and (170) and definition (64) yields:

Pla, h* o1 te) < (= ) = 5 [ReUI0)(tx = 91) ~ 6o
yeyY

= (1— ERF(I(y))T'(tK— s)) + | Y[Gy
L yeY

[ B
1= Y Re(I(y)) It = s1) + (V= 1)G,
yeEY

IA

r

(178)

Rp(I(z))(tg — ) + (N = 1)G,

Since A and G, are non-negative, inequalities (176) (for the case where
h* = 0) and (178) (for the case where A* > 0) may be combined into a

single inequality:

(179) P(z,h*, s;,tg) < Re(I(z))(tg — s1) + A + (VN —1)G,

Substituting (179) into (175) gives the desired result (172):

e



TSI EET S

a

K
2P(l‘,h,8k , tlc) S
k=1

Re(I(z))(tg — 51) — Re(I(2)) ¥ (Sk41 — &)

+(N=1)Gy + G, + W'H + A

K
RF(I(x))'kEl(tk — 5)

+(N=1)G, + G, + W'H + A

This completes the proof of Lemma 7.
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4.3 Transient Analysis of Smooth Demand Case

: This section contains a single result, Theorem 2. The theorem analyzes a
system during an interval (T,, T,) of smooth demand. Specifically, it is
. assumed that there exists a constant A such that the demand of each session z
- over each subinterval (s, t] of (T,, T,) is within A packets of the nominal
amount A(z)(t—s). Most window sizes are assumed to be at least i
3(H+1)5N5~1-(A+2). Theorem 2 concludes that the throughput of each
session z at each hop over each subinterval (s, t] of (T,, T,) is within
(H+1)5-N*5~1(W'4+3A+4) packets of the fair amount Rp(I(z))(t—s). .
Note that this unfairness bound increases with the maximum window size W'.
This is not surprising, since the system should go through a transient period

during which buffers upstream of bottleneck hops fill and buffers downstream

.
]
PP S S .

of bottleneck hops drain. One would not expect to see fair flows until the
buffers levels stabilize. Obviously, the transient can be more pronounced if the

windows are larger.

o

Let us outline the proof of Theorem 2. The proof is by induction on the
congestion index ¢ of a session. The induction hypothesis gives upper and
lower bounds on the throughput of each session with congestion index less than
i. Recall that the theorem assumes upper and lower bounds on the deman.d of
each session. The proof of the induction step has three parts. First, Lemma 2
uses the upper bound on throughput from the induction hypothesis plus the

properties of round robin scheduling to deduce a lower bound on the number
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of chances offered to each session with congestion index ¢ at each link. Then,

Lemma 6 uses this derived lower bound on chances, the given lower bound on

N

T

demand, and the assumption of large windows to deduce a lower bound on the

3

throughput of each session with congestion index :. Finally, Lemma 7 uses this
derived lower bound on throughput, the lower bound on throughput from the
induction hypothesis, the given upper bound on demand, and the properties of
max-min fairness (viz., the existence of bottleneck hops) to deduce an upper

bound on the throughput of each session with congestion index :. This

preview should make the proof a little easier to follow.
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4.3.1 Theorem 2: Throughput Bounds

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses round robin scheduling. Suppose each session z has a
well-defined, real demand rate A z), 0< Mz)< 1. Let T, and T, be
times satisfying 0 < T, < T, < oo . (Note that T, is permitted to be
infinite.) Suppose there exists a nonnegative real number A such that, for each

session z and for all times s and ¢ satisfying T\ < s <t < T,,

(180) [ C(z,0,s8,t) = NMz)(t—-5)| < A

Suppose that, for each session z,

(181)  3-«(H+1)°-N5"1(A+2) < W(z,h) < oo for 1< h < H(z)

It follows that, for each session z, for each hop A of z in the range

0< h < H(z), and for all times s and ¢ satisfying T, < s <t < T,,

(182) | P(z, h, s, t) — Rp(I(z))(t — s) | < (H+1)5-N*5—1(W' + 34 + 4)

Proof of Theorem 2

In order to show (182), properties (183) - (185) will be proved.

(183) For each session z, for each hop & of z in the range 0 < & < H(z).

for any positive integer /A, and for any times s;, £, .82, ta. e Sy .ty

satisfying T/ < 6, S 4, <59 < 0K v S sp St < Ty

£ Cle b t) 2 Role b T (6 = %) = Dau(a, T(2) K)
-l -
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(184) For each session z, for each hop & of z in the range 0 < h < H(z),
for any positive integer K, and for any times s;, t;, Sg, Lo, ..y S 4 tg

satisfying T)1 < ;< 1 < 5K 8, < o S sp St < Ty

kf:lP(x, B s ) > RFU(z))-kf:l(tk — 5) = Dpy(, I(z), K)

(185) For each session z, for each hop & of z in the range 0 < A < H(z),
for any positive integer K, and for any times s;, ¢, , 80, to, .y Sk, tg

satisfying T) < §; S 6, K 0S8 o< o S sg S tg < Tyt

kﬁ{P(z, byseots) < Rp(f(z))-ﬁl(tk — 5) + Dpy(A, I(z), K)

The proof is by induction on the congestion index I(z) of the session z.
Contrary to custom, the induction step will be proved before the base case is
addressed. Fix a congestion index ¢+ > 1. The induction hypothesis asserts
that (183), (184), and (185) hold for all sessions £ with I(z) < 1. It must be

shown that (183), (184), and (185) hold for all sessions z with I(z) = 1 .

b

i

, First consider (183). Let z be any session with I(z) = ¢ . Let h be any

y hop of z in the range 0< h < H(z). Let K be any positive integer,

E and let s;, ;. sa. ta. ..., sg, txp be any times satisfying

, T <5< ;LS8 ta< + Csp S tg <Ts. Ifhop h = 0. it follows

b from assumption (180). definition (68). and conclusion (90) of Lemma 1 that

O RN A R s -‘.-,;'.*{:- e e N RN N e TN I TN TR
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K K
Y C(z,0,5., ) 2 Mz) ¥ (4 — ) — KA
k=1 k=1

= Rc(x, 0)'k§ (tk - Sk) - K-A
-]

(186) > Re(z. o>-k§1(tk — 5) = Dy(A i, K)

If 1< h < H(z), Lemma 2 will be used, with G = Dpy(A, i—1, K). By
conclusion (84) of Lemma 1, condition (98) of Lemma 2 holds. By the induction
hypothesis, (185) holds for all sessions with congestion index less than . This
fact, along with conclusion (88) of Lemma 1, verifies condition (99) of Lemma 2.
From conclusion (100) of Lemma 2 and conclusion (92) of Lemma 1, it follows

that

K K
2 C(Z‘, h, Sk tl:) Z Rc(.’L', h)' E (tk - Sk) - (IV'—].)'DPU(A, ‘i—l, K) - K
k=1 k=1

(187) > Ros, h)-ﬁlm — &) = Doy i, K)

This completes the proof of (183) for the induction step.

Now (184) will be proved. Let r be any session with I{r)= /. Lemma 6
will be used. with r = Rp(1)., G, = E~(A.1) and G, = F (A 1), To

verify condition (160) of Lemma 6, let A be any hop of z in the range

0L h< H(z), let¢ K be any positive integer, and let

A

th be any times satisfving
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TISsIStISsQStf_,ﬁ »o+ < sg<tg <Ty. Recall that (183) was

;: just proved for all sessions with congestion index ¢. Applying (183), (70), and
v definition (78) verifies condition (160):
». K K .
) Y C(z b, s, 1) 2 Re(z, h) T (& — s) — Der(4, 1, K)
\
] . K .
= RF(‘)'I‘Z (% — s) = Der(A, 4, K)
o -1
-
! K
2 (188) = RF(Z)'kZ (e — s¢) — Ec (A, 4) — K-Fer(4, 1)
-1
Condition (161) of Lemma 6 holds because of assumption (181) and definition
(74). Now conclusion (162) of Lemma 8, definition (78), and conclusion (94) of
.Y
N Lemma 1 can be applied to show that, for each hop A of =z
'i .
N in the range 0< A< H(z), for any  positive integer K,
) and for any times s,, ¢, So, to, ..., Sg, g satisfying
: T/ 51 S 411 0S8t 20 < sg S tg <Ty:
.
.
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K
S P(z, b, s, t)
k=1

> Rpm-kf:l(tk — 5) = (H + 1Egy(A, i) — K-(H + 1)Fo (A, i) + H]
= By Sla - ) = (€ + UDa(a, i, K) - KF

> Rp(z')-f:l(tk — 5) = Dp (A, i, K)

This completes the proof of (184) for the induction step.

Next (185) will be proved. Let z be any session with I(z) = 7. Let k be
any hop of z in the range 0 < A < H(z). Let K be any positive integer,
and let s;, ¢, s, to, ..., Sg¢, g Dbe any times satisfying
T/ S8 41 <58 t, < o+ < sKS.tK < T,. Lemma 7 will be used,
with G; = Dp; (A, 4, K—1) and G, = Dp;(A,+,1). Condition (167) of
Lemma 7 follows from assumption (181). If K = 1, condition (168) of Lemma
7 holds because of conclusion (82) of Lemma 1. If K > 1, condition (168)
holds because (184) was just proved for all sessions with congestion index 1.
Condition (169) of Lemma 7 holds because of assumption (180). Condition
(170) of Lemma 7 holds because of conclusion (82) of Lemma 1. By the
induction hypothesis, (134) holds for all sessions with congestion index less
than ¢. This fact, along with conclusion (86) of Lemma 1, verifies condition
(171) of Lemma 7 for those sessions y with I(y) <t . For those sessions y

with I(y) = ¢, condition (171) holds because (184) was just proved for all




sessions with congestion index ¢. From conclusion (172) of Lemma 7 and

conclusion (97) of Lemma 1, it follows that

ﬁlP(I, hysy o ) S RF(i)‘kfll(tk —5) + (N=1)Dp(4,1,1)

+ Dpy(A, i, K—1) + W-H + A

(189) < Rp(i)-kf:l(tk — 5) + Doy(A, i, K)

This proves (185), completing the induction step.

The proof for the base case (i.e., ¢ = 1) is identical to the induction step,
considering the following point. In the induction step, the induction
hypothesis was invoked to verify the assumptions of Lemmas 2 and 7 for
sessions y with I(y) < ¢ . For the base case, there are no such sessions y, so

verifying these assumptions is trivial.

This completes the proofs of (183), (184), and (185). Conclusion (182)
follows from results (184)- (185), definitions (71)- (80), and the fact that

I(z) £ S for all sessions z.

This completes the proof of Theorem 2.

------
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4.4 Steady-State Analysis of Smooth Demand Case

This section examines the steady-state behavior of systems with smooth
demand. Specifically, it is assumed that there exists a constant A such that
the demand of each session z over each interval (s, t] is within A packets of
the nominal amount X\(z)/(t—s). Most window sizes are assumed to be at
least 3:(H+1)-N°~!-(A+2). Corollary 1 of Theorem 2 concludes that the
long-term average throughput R4(z) of each session z equals its fair rate
Rp(I(z)) . In other words, smooth demand and large windows are sufficient for
throughput fairness. Example 3 shows that large windows are sometimes
necessary as well, and that throughputs can be very unfair if the windows are
too small. This example consists of eight links and 2/N+1 sessions, where NV
can be any even integer greater than four. The demand is perfectly smooth
(A = 0), but the window size W(z, 2) for buffer 2 of a particular session z is
less than %NV . Because of this inadequate window size and an unfortunate

choice of round robin rings and initial ring positions, the long-term average

throughput of z is unfair by a factor of 2_W-(;:_,T.2-)— .

This section also presents a steady-state analog of Theorem 2. Theorem 3
states that there exists a time Tgg > 0 such that the throughput of each
session z at each hop over each interval (s, t] later than Tgs is within
(H+1)%-N5-1-(A+2) packets of the fair amount Rp(I(z))(t—s) and such

that a similar lower bound applies to chances. (For concreteness, Tgs is
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defined to be the earliest such time.) Note that the bound on throughput
unfairness in steady state is tighter than the transient bound of Theorem 2.
Moreover, the steady-state bound does not depend on the window sizes (except

for the assumption that the windows are large enough).

The proof of Theorem 3 is similar to that of Theorem 2: the proof of
Theorem 3 is also by induction on the congestion index, and the proof of the
induction step also invokes Lemmas 2, 6 and 7 to generate, respectively, a
lower bound on chances, a lower bound on throughput, and an upper bound on
throughput for all sessions with a particular congestion index. The derived

throughput bounds are of the form
(190) -/ < Plz,h,s,t) — Re(I{z))(t —s) < f"

where f" is a function of the maximum window size W' (and also of A, I(z),
H, and N), while f’ does not depend on W', and 0< f'< f". At this
point Theorem 3 invokes Lemma 8 of Appendix A.1 to conclude that in steady

state, i.e., for sufficiently large s and ¢,
(191) — /" < Plzg,hos,t) = Re(I(z))(t —s) < f' +1

In this way Theorem 3 derives bounds on the throughput unfairness in steady
state that are tighter than the transient bounds of Theorem 2 and are

independent of W',

Included in this section are four corollaries of Theorem 3 about the steady-

state buffer levels. In terms of the time Tg¢ (when the steady-state

WURY” |
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throughput bounds take effect), let us define m(z, &) and M(z, k) for each

buffer A of each session z such that 1 < & < H(z)+1:

o 3 h
(192) m(z, h) = trzmﬁs B(z, k, t)
3 ,h) = k,
(193) M(z, k) gz})scs B(z, h, t)

Since B(z,0, t) = oo for all times ¢t > 0, we also define
(194) m(z,0) = M(z,0) = oo

Corollary 2 gives an upper bound on the range M(z, h) — m(z, ) of a buffer
level after time Tgg ; the bound does not depend on the window sizes (except
for the assumption that the windows are large enough). Corollary 3 proves
that, after time Tgg , buffers that are slightly upstream of bottleneck hops are
sometimes full and are never empty, while buffers that are slightly downstream
of bottleneck hops are sometimes empty and are never full. A bottleneck hop
h* of a session z in the range 0 < h* < H(z) is called a pure bottleneck for =
if there exists a time T > 0 such that all session z's chances at hop A* after

time T are successful:
(195) C(z, h*, t—1.t) = P(z.h*, t=1.t) foralltimes ¢t > T

In other words, the window mechanism does not impede the flow for a session
at a pure bottleneck hop; packets and permits are always available whenever a
chance for transmission arises. Corollary 4 concludes that every session has at

least one pure bottleneck hop. Example 4 shows that impure bottlenecks do
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exist. Corollary 5 asserts that a link at which sessions are bottlenecked is 2

pure bottleneck for all these sessions or for none of them.
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4.4.1 Corollary 1: Fairness of Average Throughputs

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses round robin scheduling. Suppose each session z has a
well-defined, real demand rate X\(z), 0 < A(z) < 1. Suppose there exists a
nonnegative real number A such that, for each session z and for all times s

and ¢ satisfying 0 < s < ¢,

(196) | C(z,0,s,t) = Xz)(t—3s)] < A

Suppose that, for each session z,

(197)  3-(H+1)°-N°"1(a+2) < W(z,h) < oo for 1< h < H(z)

It follows that, for each session z, the long-term average throughput R,(z)

exists and equals the fair rate Rp(I(z)).

Proof of Corollary 1

Note that the assumptions of Theorem 2 are satisfied, with T, = 0 and

T, = oo . Let z be any session. It follows from conclusion (182) of Theorem 2

that for all times ¢t > 0,

| P(z. H(z).0.t) _ p (I(2) | = | P(z. H(2).0.t) — Rp{Ilz))t |
t LF» \-‘/ t
(198) < (H+ 1% N5-1(W" 4 38 + 4)
= t
B N O R O N R RN
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It follows from definition (11) and (198) that R,(z) exists and that

(199) Ry(z) = lim D2z H(z)0¢)

t—+ 00 t

Rp(I(z))

This completes the proof of Corollary 1.




4.4.2 Example 3: Unfairness with Small Windows

Consider a system that satisfies the assumptions of Chapter 2 and has the
layout shown in Figure 8. The network contains links [;;, l;,, lp,, and
ly5 . (For each of these links, there is another link with opposite direction that
is not shown in Figure 8 and is used only to return flow control permits.) For
7 = 1,2, there are five sessions Yj1s Yj2s e, Y;5 that use l; 1 followed by
lj 2 , and there are five sessions y;¢, 97, .-, ¥j10 that use only l;1. There

is also a session z that uses !, followed by I, . Every session in the system

has heavy demand; i.e.,
(200) C(z,0,t—1,¢t) = C(y;%,0,t=1,¢) = 1

for 7=1,2, for k=1,2,..,10, and for all times ¢ > 1. The max-min
fair rate for session z is 1/2, while the other sessions deserve rates of 1/10

each. The window size for each buffer A > 1 of each session is at least two

~
,:w'.' but finite. In particular, W(z, 2) = 2, which is smaller than Theorem 3
Te

';:_?. requires. Table 1 shows the buffer levels at time 0. Round robin link

scheduling is used. For j = 1,2, the ring at ;) is Yj1s Yjae s Yj10-
The ring position of [;; at time O is y,,, while the initial ring position of
a1 is yag. For 7 =1,2, theringat ;o is y;;.¥;0....¥;5. 1. The
ring position of [, , at time O is z, while the initial ring position of (. is

Yos -

’

This system is periodic, with a period of ten slots. Table 2 shows which
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session uses each slot at each lir _.uring the interval (0, 10] . During the first
half of this interval, session z “nsmits no packets over link [, , (because the
link is busy serving other sessions) and only W(z, 2) = 2 packets over [y,
(because z rums out of packets in buffer 2). During the second half of the
interval, z transmits no packets over [,, (because the link is busy serving
other sessions) and only W(z, 2) = 2 packets over [,, (because r runs out
of permits for buffer 2). The long-term average throughput of session z is
2/10 , well below its fair rate of 1/2. The long-term average throughputs of
the other sessions are fair. Three tenths of the capacities of !, , and [,, are

wasted.

Using the same network, similar examples can be constructed that have
different numbers of sessions and different window sizes. Let NV be an even
integer greater than four. For j = 1,2, there are %.V sessions using [,
and [;, and %N sessions using only [;, . As before, session z uses !;, and
lg o . Every session has heavy demand, so z has a fair rate of 1/2, and the fair
rate for every other session is 1/N . The window size for each buffer of each
session is at least two, and 2 < W(z,2) < %.V. The round robin rings and
the initial conditions are such that the system has a period of .V slots, z is
served at [,, during the first half of each period, and z is served at [,
during the second half of each period. Consequently, z transmits only W(z. 2)

packets over each hop every NV slots. In other words, the long-term average

N

—————— . Moreover, the capacity z
21 (z, 2) P

throughput of z is unfair by a factor of

-------
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S

loses at [, and I,,, viz,, % - 1%-21 , is not used by the other sessions

-- it is wasted.
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4.4.3 Theorem 3: Throughput Bounds in Steady State

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses round ‘robin scheduling. Suppose each session z has a
well-defined, real demand rate A(z), 0 < A\(z) < 1. Suppose there exists a
nonnegative real number A such that, for each session z and for all times s

and ¢ satisfying 0< s < ¢,

(201) | C(z,0,s,t) = XNz)»(t=5)] < A

Suppose that, for each session z,

(202) 3(H+1)°-N°"(Aa+2) < W(z,h) < o for 1< h < H(z)

It follows that there exists a time Tgsg 2> O such that, for each session z, for

each hop & of z in the range 0< & < H(z), and for all times s and ¢

satisfying Tgs < s < t,

(203)  C(z, h,s,t) > Reo(z, h)(t —s) — (H+ 1)5"LNS—1(A + 2)

(204) | P(z, h,s,t) — Re(I(z))(t = s) | < (H+ 1)°N5~1-(A +2)

For concreteness, define Tgs to be the smallest nonnegative time with this

property.

Proof of Theorem 3

In order to prove (203) and (204), it will be shown that there exist times

.......
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Ts(0) , Tss(1) s Tss(1) such that
0= T55(0) < Tg5(1) < -+ < Tgs(I) and such that properties (205) - (208)

hold.

(205)  For each session z, for each hop 4 of z in the range 0 < A < H(z),
and for all times s and ¢ satisfying Tgs(l(z)=1) < s < t:
C(z, hys,t) 2 Relz, h)(t = s) = Fer (4, I(z))

(206)  For each session z, for each hop & of z in the range 0 < & < H(z),
and for all times s and ¢t satisfying Tgs(I(z)—-1)< s < t:
P(z, hys,t) 2 Rp(I(z))(¢t = s) = Fp (4, I(z))

(207)  For each session z, for each hop 4 of z in the range 0 < & < H(z),
and for all times s and t satisfying Tgs(I(z)—1) < s < t:
P(z, h,s,t) < Rp(I(z))(t = s) + F'py(A, I(z))

(208)  For each session z, for each hop & of z in the range 0 < b < H(z),
and for all times s and ¢ satisfying Tgs(I(z)) < s < t:
P(z, k,s,t) < Rp(I(z))(t — 5) + Fpy(A, I(z))

The proof is by induction on the congestion index [I(r) of the session r.
Contrary to custom, the induction step will be proved before the buse cuse is
addressed. Fix a congestion index ¢ > 1. The induction hypothesis asserts
that there exist times Tss(0), Tss(1) oy Tss(t—1)  such  that

0= Ts5(0) < Ts5(1) < -+ < Tss(i—1) and such that properties (205) -

(208) hold for all sessions z with I(z) < ¢+ . It must be shown that, for such a




time Tgs(t—1), properties (205), (206), and (207) also hold for all sessions z
with I(z)=1+¢. It must also be shown that there exists a time
Tgs(i) = Tsg(i—1) such that property (208) holds for all sessions z with

I(z)=1.

First consider (205). Let z be any session with I{z) = :. Let A be any
hop of z in the range 0 < h < H(z). Let s and t be any times satisfying
Tss(i—1)< s<t. If hop h =0, it follows from assumption (201),

definition (68), and conclusion (89) of Lemma 1 that

C(z,0,s,t) 2 Nz)(t—3s5) — A

Ro(z,0)0(t —s) — A

(209) 2 Re(z,0)(t —s) = Fer(A. 1)

If 1< k< H(z),Lemma 2 will be used, with K =1,s, =s,¢t;, =1¢t, and
G = Fpy(A, i—1). By conclusion (83) of Lemma 1, condition (98) of Lemma 2

holds. By the induction hypothesis, (208) holds for all sessions with congestion

index less than ¢. This fact, along with conclusion (87) of Lemma 1, verifies
condition (99) of Lemma 2. From conclusion (100) of Lemma 2 and conclusion

(91) of Lemma 1, it follows that

C(I, h, S, t) _>_ Rc(l', h)‘(t - S) - (.\“ - 1)'FPU(A‘ l—l) -1

(210) 2 Re(z, h)(t = s) = Fer(4,4)

............



This completes the proof of (205) for the induction step.

Now (206) will be proved. Let z be any session with I(z)= 1. Lemma 6
will be used, with T, = Tge(i=1), To=o00, r= Rp(t), G,=0, and
Gy = Fcr(A, 1) . To verify condition (160) of Lemma 6, let 2 be any hop of z
in the range 0< h < H(z), let K be any positive integer, and
let s;, t;, Sa2, to, ..., 5g, tg be: any times  satisfying
Tss(i-1)< 5, < 4, <558 85 <+ < s < tg. Recall that (205) was

just proved for all sessions with congestion index ¢. It follows from (205) and

(70) that

C(z, h, s, ) = Relz, h)(t — s¢) — Fer(4, ¢)

(211) ' > Rp(i) (& — se) — Fer(4, 9)

Summing (211) over k verifies condition (160). Condition (161) of Lemma 6
holds because of assumption (202) and definition (74). Now conclusion (162) of
Lemma 6 and conclusion (93) of Lemma 1 can be applied to show that, for each
hop & of z in the range 0 < h < H(z) and for all times s and ¢ satisfying

Tss(i-1) S s S F e

P(z,h,s,t) > Rp(i)(t —s) — [(H+ 1)Fer (A1) + H]

(212) 2 Re(i)(t —s) = Fpr(a, 1)

This completes the proof of (206) for the induction step.
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Next (207) will be proved. Let z be any session with I(z) = 7. Let & be
any hop of z in the range 0 < h < H{z). Let s and ¢t be any times satisfying
Tss(i—1) < s < t. Lemma 7 will be used, with K =1, s;=35, t;=1,
G, =0, and G,= Fpy (A, ). Condition (167) of Lemma 7 follows from
assumption (202). Condition (168) of Lemma 7 is obviously true, since K = 1.
Condition (169) of Lemma 7 holds because of assumption (201). Condition
(170) of Lemma 7 holds because of conclusion (81) of Lemma 1. By the
induction hypothesis, (206) holds for all sessions with congestion index less
than i. This fact, along with conclusion (85) of Lemma 1, verifies condition
(171) of Lemma 7 for those sessions y with I(y) < i . For those sessions y
with I(y) = ¢, condition (171) holds because (206) was just proved for all
sessions with congestion index i. From conclusion (172) of Lemma 7 and

" conclusion (96) of Lemma 1, it follows that

P(z,h,s,t) < Rp(i)(t = s) + (N — 1)Fp (A, i) + WHH + A

(213) < Rp(i)(t — s) + Flpy(A, 1)
This completes the proof of (207) for the induction step.

Now (208) will be proved. Let z be any session with I(z) = ¢ . Let 4 be

any hop of z in the range 0 < h < H(z). Lemma 8 of Appendix A.l wiil be

used, with:
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P(z,h,u—1, u)

Q
—_
e
~—
]

G(s,t) = P(z,h,s,t)

T = Tgs(i—1)
r = Rp(1)

/" = Fp(4,1)
/" = F'"py(a, 1)

c =1

Condition (335) of Lemma 8 holds for all times s and ¢ satisfying
Tss(t—1) < s <t because (206) and (207) were just proved for all sessions
with congestion index :. By Lemma 8, then, there exists a time
Tz, k) > Tgg(t+—1) such that, for all times s and ¢ satisfying
T(z,h)< s t,

(214) Pz, h,s,t) < Rp(i)(t —s) + Fpp (A, i) +1

Applying conclusion (95) of Lemma 1 yields:

(215) P(z,h,s,t) < Rp(i)(t —s) + Fpp(4, 1)

Define Tss5(i) as follows:

(216) Tss(i) = n;l(a; - T(z.h)
P PAL N1
h:0< A< H(z)

This proves (208), completing the induction step.

Next the base case (i.e., i =1) will be considered. Note that

=

'.-".._'_- e
-y
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Tss(i—1) = Ts5(0) = O by definition. The proof for the base case is identical
to the induction step, considering the following point. In the induction step,
the induction hypothesis was invoked to verify the assumptions of Lemmas 2
and 7 for sessions y with I(y) < :. For the base case, there are no such

sessions ¥, so verifying these assumptions is trivial.

This completes the proofs of (205) - (208). From (205) - (208), definitions
(74) - (76), and the fact that I(z) < S for all sessions z, it follows that (203)
and (204) hold for each session z, for each hop A of z in the range

0 < k < H(z), and for all times s and ¢ satisfying Tgs(I) < s < t.

This completes the proof of Theorem 3.
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4.4.4 Corollary 2: Bound on Buffer Level Range
- It follows from the assumptions of Theorem 3 that, for each session z,
T
Y
(217)  M(z, h) — m(z, h) < 2(H+1)-N5~1-(A42) for 1 < h < H(z)
Proof of Corollary 2
Choose any times s > Tgg and t > Tgg such that
(218) B(z, h,s) = m(z, k)
(219) B(z, h,t) = M(z,h)
‘- Suppose that s < t. (The proof for s >t 1is similar and will not be
. presented.) Applying (10) and conclusion (204) of Theorem 3 gives the desired
\ result:
-
:,': M(z, k) — m(z, h) = B(z, h,t) — B(z, k, s)
.3_':? = P(z,h=1,s,t) — P(z, h, s, t)
< [Rp(l(x))'(t — o) + (H+ 1)5NSl(a 4 2)]
: = [Rett@r = ) = 5+ )5S+ 2]
.
2 = 2(H + 1) N5~ L(y + 2)
f,', This completes the proof of Corollary 2.
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4.4.5 Corollary 3: Effect of Bottleneck Locations on Buffer Levels

Suppose that the assumptions of Theorem 3 hold. Let z be some session.
Let J be the number of bottleneck hops for z, and let A* , k%, ..., 2%

denote the hop numbers of the bottlenecks of z, with
OS h*l <h*2< A <h*JSH(I)

Under the assumptions above, properties (220) and (221) hold.

(220) For each hop & of z in the range 0 < & < H(z),
at least one of the following statements is true:
(a) 4 is a bottleneck hop for z
(b) m(z,h) = O
(¢) M(z, h+1) = W(z, h+1)

(221) For each buffer h of z, 0 < & < H(z)+1,
at least one of the following statements is true:
(a) m(z,h) > 0O
(b) M(z,h) < W(z,h)

Furthermore, there exist buffers Ay, h';, .., k'; of z (called crossover

buffers) with

22

=ho S k¥ <A SR <A S

—r

—
[
)

S h*l—l <vh’_,_l S h*J < h,j = H(I)+1

such that properties (223) and (224) hold.
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v (223) If A'; <h < h*y, forsomej, 0< j< J—1, then
; (a) M(z, k) = W(z, k)
b (b) m(z,h) > 0
ho -
[
. (224) If A*; <h < h'; forsome j, 1 < j< J,then
5 (a) m(z,h) = O
) (b} M(z,h) < W(z,h)
3
o For the crossover buffers 4';, 0< j < J, no claim stronger than (221) is

made. J
.‘ |
h A combination of bottleneck locations and buffer levels that is consistent
J'\' |
- with properties (220) - (224) is shown in Figure 9. The figure shows the buffers
-, - and hops of a session z with a 16-link path and five bottleneck hops. Each
-
.‘:j buffer A is depicted as a square whose shading gives information about
.
v
_ m(z, h) and M(z, k). The crossover buffers h'; are also indicated. Hops
x are shown as lines between buffers. The heavier lines are the bottleneck hops. |
- \
-~ \
7e Examine the buffers between two successive bottleneck hops; note that the !
) buffers upstream of the crossover buffer are sometimes empty and are never
full (for times t > Tgg), while the buffers downstream of the crossover buffer
3

are sometimes full and are never empty (for times ¢ > Tgg).
3
N
’
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Proof of Corollary 8

Property (220) will be proved by contradiction. Suppose that there is some

non-bottleneck hop 4 of z in the range 0 < & < H(z) such that
m(z, h) > 0
M(z, h+1) < W(z, h+1)
This means that, for all times ¢t > Tgs ,

B(z, h,t) > 0

B(z, h+1,t) < W(z, h+1)

Therefore, session z will accept every chance offered to it by the round robin

scheduler at hop & after time Tgg ; i.e., for all times ¢t > Tgg ,

(225) P(z,h, Tgs,t) = C(z, b, Tsg , t)

It follows from conclusion (203) of Theorem 3 that, for all times ¢ > Tgg ,
(226) P(z, h, Tgs , t) = Reolz, h)(t — Tgg) — (H + 1)5"LN~1(A + 2)

Since h is not a bottleneck, (70) says that Rq(z, A) > Rp(I(z)) . Therefore,
(226) will violate conclusion (204) of Theorem 3 if ¢ is large enough. This
proves (220).

Next, property (221) will be proved. For h = 0. (G02a) is true. For
h = H(z)+1, (G02b) is true. For the remaining buffers h =1, 2, ..., H(r),

property (221) will be proved by contradiction. Suppose there is some buffer A

of z in the range 1 < h < H(z) such that
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(227) m(z,h) = O

(228) M(z, k) = W(z,h)
It follows from assumption (202) of Theorem 3 that

M(z, k) — m(z, k) = W(z, i)

(229) > 3(H + 1)5-N5"1(a + 2)
This contradicts conclusion (217) of Corollary 2, proving (221).

It was given that A'y=0 and &'y = H(z)+1. Let us now define
crossover buffer h'; for 1 < 7 < J—1. If there is any buffer A in the range
h*; < h < h*jyy such that M(z, h) < W(z, k), then let h'; equal the

largest such & ; otherwise, let A'; = A% + 1.

Now, (223) will be proved. For 1< j < J—1, property (G03a) follows
from the definition of 4’;, and (GO3b) follows from (G03a) and (221). For

7 =0,ie., for

(230) 0= hly < h < h¥%

property (223) will be proved by forward induction on A. First consider the
base case, A = 1. By (230), hop O is not a bottleneck hop, and since

m(z,0) = oc , (220) implies that

(231)- M(z, 1) = W(z, 1)

Together, (231) and (221) imply that
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(232) m(z,1) > 0

This proves the base case. The induction step is also proved by applying (220)

followed by (221). This proves (223).

Next, (224) will be proved by backward induction on A. First consider the

base case, viz.,

(233) BY < h = h';

j—1

For j=1,2,..,J—1, the definition of h'; and (233) imply that
(234) M(z, b'j) < W(z, h';)

Note that (234) also holds for j = J,since h'; = H(z)+1. Together, (220),

(233) and (234) imply that

(235) m(z, h'; = 1) = 0
Together, (221) and (235) imply that

(236) M(.’L‘, h,] - 1) < W(I, h,] - 1)

This proves the base case. The induction step is also proved by applying (220)

followed by (221). This proves (224) and completes the proof of Corollary 3.
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4.4.6 Corollary 4: Existence of Pure Bottlenecks

It follows from the assumptions of Theorem 3 that every session z has at

\ least one pure bottleneck hop A * in the range 0 < h* < H(z).

Proof of Corollary 4

Let z be some session. It will be shown that z has at least one bottleneck

hop A* in the range 0 < h* < H(z) with the following properties:

m(z, h*) > O

M(z, h*+1) < W(z, h*+1)

This means that session z will use all its chances at this hop A* after time

Tss . In other words, this hop is a pure bottleneck for z.

The proof will be by contradiction. Suppose that, for each bottleneck hop

Lae a0 gnan an ab

h* of z in the range 0 < h* < H(z), at least one of the following statements

is true:

m(z, h*) = 0

o e G a4 - e g

Mz, h*+1) = Wz, h*+1)

This assumption., combined with conclusion (220) of Corollary 3. yields the

following property.
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1§
LY
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\
(237) For each hop 4 of z in the range 0 < & < H(z),
~
N at least one of the following statements is true:
.
2 (a) m(z,h) = 0
e (b) M(z, h+1) = W(z, h+1)
’- Now the following claim will be proved.
'
i (238) For each buffer & of z in the range 0 < h < H(z),
‘:'. m(z,h) > O
- The proof of (238) is by induction on A. The base case is true because
_. m(z,0) = co . The induction step is proved by applying (237) followed by
conclusion (221) of Corollary 3.
M
Yy For h = H(z), (238) and (237) imply that
(239) M(z, H(z)+1) = W(z, H(z)+1)
This gives a contradiction, since buffer H(z)+1 is never full.
. This completes the proof of Corollary 4.
.-'
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4.4.7 Example 4: Existence of Impure Bottlenecks

Consider a system that satisfies the assumptions of Chapter 2 and has the
laycut shown in Figure 10. The network contains links {;,, {12, loy, lsa,
and I3 . (For each of these links, there is another link with opposite direction
that is not shown in Figure 10 and is used only to return flow control permits.)
For j = 1,2, there are two sessions y;; and y,;, that use only link I;,,
there are two sessions y;3; and y;, that use links [;; and [;,, and thereis
a session z; that uses links I;, and l3. Every session in the system has

heavy demand; i.e.,
(240) C(Z'J y 0, t—1, t) = C(yj,k ’ 0, t—l, t) = 1

for y=1,2, for £k =1,2,3,4, and for all times ¢ > 1. The max-min fair
rates for z; and z, are % each, while the other sessions deserve rates of %4

each. Notice that, for 7 = 1,2, z. is bottlenecked at both its links. The

J
window size for each buffer A > 1 of each session is at least two but finite.
Table 3 shows the buffer levels at time 0. Round robin link scheduling is used.
For j=1,2,theringat {;, is y;,, ¥j2, Yj3, ¥j4- Lhe ring position of
[;, at time 0 is y,4. while the initial ring position of [lo; is ys.. For
J = 1.2, the ring at [;, is Yize Yj4. Ij- The ring position of [, ., at

S time 0 is y,;3, while the initial ring position of l55 is ;. The initial ring

position of I3 is z| .
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This system is .eriodic, with a period of four slots. Table 4 shows which
; session uses each slot at each link during the interval (0, 4]. While the
e average session throughputs over every system period are max-min fair, sessions

z, and z, each decline one chance to use link /3 in every system period,
3 because of a lack of packets. In other words, [3 is an impure bottleneck for
» z; and z,. This does not violate Corollary 4, however, because r; and =z,

N have pure bottlenecks /,, and [;,, respectively.
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4.4.8 Corollary 5: A Property of Pure Bottlenecks

Given the assumptions of Theorem 3, any link that is a pure bottleneck for

some session must be a pure bottleneck for every session bottlenecked there.

Proof of Corollary 5
Let K be any integer satisfying
(241) K > 22(H+ 15N (a+2) +2

The proof of Corollary 5 will be by contradiction. Let [ be a bottleneck link
for sessions r and y. Suppose that [ is a pure bottleneck for z but not for y.
In other words, there is a time after which ses§ion z accepts every chance
offered to it by the round robin scheduler at link /; session y, on the other
hand, declines infinitely many chances to use link {. Therefore, there exist
times s and ¢ such that Tgs < s < t and such that z accepts every chance

at [ during (s, t] :

(242) Pz, l,s,t) = C'(z,1,s,t)
and such that y declines A chances at [ during (s. ¢]:
(243) Plly. los.t)y = C'ly. lis.t) — K

By the operating rules of the round robin scheduler at [, r must receive almost

as many chances as y during (s, t]; specifically:

.........
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(244) Oz, 1,5, t) = Cly, 1,5, t) —1
Combine (242), (244), (243), and (241):

P'(z,!l,s,t) = C'(z,!,s,t)

> C'ly,l,s,t) -1

Py, l,s,t) + K — 1

(245) > Py, l,s,t) + 2(H+ 1)5N"Aa+2) +1

Applying conclusion (204) of Theorem 3 to (245) yields:
(246)  P'(z,l,s,t) > Rp(I(y))(t —s) + (H+ 1)°N"Aa+2) +1

Since z and y are bottlenecked at the same link, it follows from definition (64)

that I(z) = I(y). Substitute this into (246):
(247)  P'(z,l,s,t) > Rp(I(z))(t —s) + (H+ 1)°N"{a+2) +1

This contradicts conclusion (204) of Theorem 3, completing the prcof of

Corollary 5.
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4.5 Steady-State Analysis of Bursty Demand Case

This section studies the long-term average session throughputs when the
sessions have independent Bernoulli demand processes. Suppose such a system

has been fully specified, including its initial state. For future reference, define

min W(z,h)
a= Zoh:lS hs H(z) . For each buffer A of each session z such that

max W(z,h)
z,h:1< h< H(z)

1< h < H(z), suppose that the window size W(z,h) 1is at least
12«(H+ I)S'NS‘l but finite. Such a system can be modeled as a finite Markov
chain [15] in which each state represents one combination of buffer levels and
round robin ring positions. If the demand rate X\(z) of each session z is
strictly less than one, then the Markov chain has a single closed,
communicating class of states. t However, if A\(z) = 1 for even one session z,
then multiple classes are possible. Even from the given initial state, it may be
possible to reach more than one of these classes. With probability one, the

system will eventually enter one of these classes, after which, of course, it

t Suppose that every session’s demand rate is strictly less than one. Number
the sessions z,,z,,..,Z5, put the system in an arbitrary state, and
consider the following sequence of events. First, every session's demand is
zero for long enough that every buffer A > 1 of every session empties.
Then session z; transmits a single packet thrcugh the network, thereby
setting the round robin ring positions to z; at each link of its path. After
this packet has left buffer H(z,)+1, session z, transmits one packet over its
entire path, then session z; has its turn, etc. Since the resulting state is
reachable from all states, the Markov chain has a single closed,
communicating class of states.
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cannot leave that class. For each session z and each closed, communicating
class £, there exists a real number r(z, §) with the following property: given
that the system eventually ends up in class £, the long-term average
throughput R,(z) of session z equals r{z, §) with probability one.+ This
means that, given the initial state n, R4(z) is a random variable; R,(z)
takes on value r(z, £) according to the probability that the system enters
class € from state n . With probability one, R4(z) = r(z, §) for some class £ .

Theorem 4 concludes that, for each session z and each class £, r(z, £) differs

74S-(H+1)*5-N*5!

. In other
a.( W/)O.S

from the fair rate Rg(I(z)) by no more than

745-(H+1)*-N?5-1
Ot'( WI)O.S

words, R,(z) is within of Rg(I(z)) for each session

z, with probability one. This means that the session throughput rates can be
made arbitrarily close to the fair rates by choosing window sizes that are of the

same order of magnitude and are sufficiently large. (Example 5 demonstrates

t Let § be some state in some closed, communicating class £ of the Markov
chain defined above, and let A(f) denote its mean recurrence time. (Note
that 1 < f(f) < oo, since § is recurrent and the Markov chain is finite
[15].) By applying the strong law of large numbers to the recurrence times of
g, it is easy to prove the following claim: given that the system enters class
€, the long-term average number of visits to state § per unit time is 1/3(6)
with probability one. For each session z, let ©(z, §) denote the set of
states of £ in which z has just transmitted a packet over hop H(z) (i.e., in
which buffer H(z)+1 contains a packet), and let r(z, &)= 3 1/3(4).

e 8(z,
Given that the system enters class £, the long-term average éhri))ughput
R,(z) of session z equals r(z, §) with probability one.
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why perfectly fair rates cannot be achieved, in general, with finite window

sizes. 1)

The proof of Theorem 4 is structured as follows. Time is divided into
intervals of fixed length. Theorem 2 is used to bound the session throughputs
during those intervals in which the demands of the sessions are fairly smooth.
Lemma 9 of Appendix A.2 is used to bound the frequency of such intervals.
Together, these results show that the session throughputs are nearly fair most

of the time.

+ Of course, infinite windows are not the solution: if unbounded queues build
up in some buffers, then cross-network delay is also unbounded; moreover, a
session’s throughput can be (wastefully) higher on hops upstream of such
buffers than on hops downstream.

B . T e e e e L T L T e Y LT L et e et
¢ ~- J-._. RS -$_~ '_-‘ & e 4‘# ‘.n"‘».:'- ".\, :. ‘_.. & _.-‘.. '..'.. oo, .-\ .



- 151 -

4.5.1 Theorem 4: Approximate Fairness of Average Throughputs

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses round robin scheduling. Suppose that the demands of the
sessions are independent. For each session z, suppose chances at hop O form a
Bernoulli process with rate X(z), 0< X(z)< 1. Suppose that, for each

session z,
(248) 12:(H+1)°N5"1 < W(z,h) < oo for 1 < h < H(z)
Define a real number o as follows:

min W(z, k) min W(z, k)
z,h: 1S A< H(2) - Dh:1Sh< H(z)

max W(z, k) w!
z,h: 1S A< H(z)

(249) a

It follows that, with probability one, the long-term average throughput R,4(z)

exists for each session z and

74S-(H + 1)*S-N?5-1
a.( WI)O.S

(250) | Ry(z) — Re(I(z)) | <

Proof of Theorem 4§

Define a real number A as follows.

a W'
6+(H + 1)5-N5~!

(251) A =

Since « is at most one and H, S and NV are at least one, it follows from (251)

and (248) that




! (4
(252) W4 3A +4 < w'+—vii+%5 oW

It also follows from (251), (249) and (248) that A > 2 and hence

3 (H+1)5-N5"1(a+2) < 6(H+1)5-N5~LA

a W'

(253) = W(z, k)

Z,h: 121;;115 H(z)
Therefore, for each session z,
(254) 3-(H+1)°-N°~!(A+2) < W(z,kh) < oo for 1< h < H(z)
These inequalities will prove useful later.

Now we proceed with the proof. Let 7 be some integer in the range
(255) a(WHS < ¢ < 2a(W)S

Divide the time interval (0, c0) into non-overlapping subintervals of length 7
slots: (0, 7], (r, 27], .... Label each subinterval "good" or "bad" according to

the smoothness of the sessions’ demands during that subinterval; a subinterval

((k—1)'r, k-] is "good for session z " if
(256) | C(z,0,s,t) = XNz)(t—-5)] < A |

for all times s and ¢ satisfying (k—1)7 < s <t < k°r. A subinterval is
"bad for session z " if it is not good for z. Let m(z) be the probability that a

given subinterval is bad for session z. Lemma 9 of Appendix A.2 can be

.......
ERNC
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applied, with G(s, t)= C(z,0,5,t), p=X(z), and T = (k—=1)7, to

conclude that
(257) n(e) < <

for all sessions z. A subinterval that is good for all sessions is simply called
“good," while a subinterval that is bad for at least one session is called "bad.”

Let 7 be the probability that a given subinterval is bad. By (257),

r < En(e)
- My

(258) - 2T

For every positive integer K, let gx denote the number of bad subintervals
among (0, 7], (r,27], ... , (K—1)r, K*r]. Since demands during different
subintervals are independent and identically distributed, the strong law of
large numbers [3] can be applied to conclude that, with probability one,

(259) & —> .

K K— o0

Let Q' be the set of sample paths for which (259) holds. As just mentioned,

(260) PROB{Q'} =1

b AN 'F
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Py

Let Q" be the set of sample paths for which the long-term average throughput
R4(z) of every session z exists. As explained in the introduction to Section

4.5,
; (261) PROB {Q"} = 1
It follows from (260) and (261) that
(262) PROB{Q'NQ"} =1
It suffices to prove (250) for all sample paths in Q/(1Q"” and all sessions z.

Let us restrict our attention toc a particular sample path win Q'M1Q". Let
z be any session. Let k£ be any positive integer. The throughput of z during

subinterval ((k—1)'7, k*r] will now be analyzed. Since

(263) 0 < P(z,H(z),(k=1)1 k1) < 7
and

. (264) 0 £ Rp(I(z)) £ 1

it follows that
(265) | P(z, H(z), (k=1)7, k*7) — Rp(I(z))7]| £ 7

Bound (265) will be used only for the bad subintervals. If ((k—1)7 k*7] isa
good subinterval, nicer throughput bounds can be obtained by using Theorem
2, with T; = (k—1)r and T, = k*r+ 1. Conditions (180) and (181) of the

theorem are satisfied by (256) and (254). Applying conclusion (182) of Theorem

2 and (252) yields:




| P(z, H(z), (k=1)7, k1) — Rp(I(z))r| < (H+1)5-N**~1(W' + 34 + 4)

(266) < 2w (H+1)° NP1

Now, the throughput bounds (265) and (266) for the bad and good subintervals
can be added together in the correct proportions in order to bound the

vhroughput of z over longer intervals. For any positive integer K,
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| P(z, H(z), 0, K*7)
K-r

— Bp(I(z)) |

, | P(z, H(z), 0, K*7) — Rp(I{z)) K" |
- - K-r
K )
; I Z [P(z, H(z), (k=1)1, k1) — Rp(I(z))7] | ;
. B K-
. K
. Y | Pz, H(z), (k=1)7, k*7) — Rp(I(z)) |
) k=1
<
- K-r
’ < ST+ (K = aePWHH + 1N
- K-r
< T+ KPWhH 4+ 1)5-N25-1]
- K-
: (267) _ q;{( + 2WHH +11)~""N25-l

Since the sample path w belongs to Q" . the long-term average throughput
R (z) exists, and since « belongs to . (259) applies. Therefore. by :

definition (11), (267), and (259),
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| Ra(z) — Rp(I(2)) |

(268)

Applying (258), (255), and (251) to (268) gives the desired result (250):

| Ra(z) — Rp(I(z)) |

This completes the proof of Theorem 4.
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P(z, H(z), 0, t)

— Rp(I(z)) |

P(z, H(z), 0, K-7)

— Rp(I(z)) |

W (H + 1)°-N?51

lim — +

2W'(H + 1)5-N*5~!

2W'(H + 1)5-N*571

72S(H + 1)*5-N*¥"% 2-(H + 1)°-N*7!

74S-(H + 1)*5-N*571
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4.5.2 Example 5: Unfairness with Finite Windows

Consider a system that satisfies the assumptions of Chapter 2 and has the
layout shown in Figure 11. The network contains links !, and [, . (For each
of these links, there is another link with opposite direction that is not shown in
Figure 11 and is used only to return flow control permits.) Session z uses [,
followed by [, . Session y uses only [, . Sessions 2z, and 2z, use only /[,.

Sessions z and y have heavy demand; i.e.,
(269) C(z,0,t—1,¢t) = C(y,0,t—1,¢t) = 1

for all times ¢t > 1. (Note that these demand processes are Bernoulli, with
rate one.) Sessions z; and 2, have independent Bernoulli demand processes

with rate % ; i.e.,

(270)
PROB { C(z,,0,t=1,t)=1} = PROB{C(z,0,t—1,¢)=1} = %

for all times ¢ > 1. The max-min fair rates for sessions z, y, 2z, , and 2z, are
Y2, %2, %, and %4, respectively. The window size for each buffer of each

session is at least two. Round robin link scheduling is used.

Divide the time interval (0, oc) into subintervals of length 12-117(r. 2)
slots. viz.. (0. 12-W(z, 2)]. (12:W(z, 2), 24 W (z. 2)]. .... Since session y will
‘ accept every chance offered to it by the round robin scheduler at link [,
(except possibly during slot 1), session z can transmit at most 6°1V(z, 2)

packets over [, during any of these subintervals. In other words, the average
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throughput of z over [; during any of these subintervals is at most % .

Things can be worse, however. Consider a particular subinterval

(12+(t—1)-W(z, 2), 12:k-W(z, 2)] . Suppose that
(271) C(z,,0,t=1,t) = C(z5,0,t—1,¢t) = 1

for all slots ¢t in this subinterval. (The probability of this event is
(%%)12 (22 = (1) W(2.2) ) Since sessions z; and 2z, will accept every
chance offered to them by the round robin scheduler at link [, during the
subinterval (except possibly during the first slot of the subinterval), session z
can transmit no more than 4-W(z, 2) packets over [/, during the subinterval.
Window flow control will permit session z to transmit at most W(z, 2) more
packets over link !, than z transmits over [, during the subinterval; this
limits z to a total of 5-W(z,2) packets over [;. Therefore, the average

throughput of z over [; during the subinterval is at most 5/12.

In summary, during a fraction (%)*® "(#:2) of the subintervals, the average
throughput of session z over link {; is at most 5/12, and during the other

subintervals, the average throughput of z over [, is at most %2 . Therefore.
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R4(z) = lim P(z,2,0,t)

t—» 00 t
= lim P(z,1,0, ¢
t—s 00 t

_-iﬂ l-ﬂﬂﬂaﬂ
12 (2

]48'PV(:,2)

I
0D =

(272)

R(l(s)) = 25 [-;—

For no finite value of W(z, 2) does the long-term average throughput R, (z)
of session z equal its fair rate Rg(I(z)). This is due to the burstiness of the

demands of sessions 2, and z,.




4.6 Unfairness with First-Come-First-Served Scheduling

The examples in this section demonstrate that if first-come-first-served link
scheduling is used instead of round robin scheduling, then max-min throughput
fairness is not guaranteed even if the windows are large and of comparable
magnitude. In other words, Corollary 1 and Theorem 4 do not hold. These

examples show that with first-come-first-served scheduling, the long-term

5 N

average throughputs are strongly affected by the relative window sizes of

‘l
]

competing sessions and by the initial conditions -- even if the windows are

By e

PN

large. In Example 6, the capacity of a link shared by two sessions is divided

v

NN

between the sessions in proportion to their window sizes. Unfair average

. Y

pl

throughputs result if the sessions have unequal window sizes, no matter how

>

large the windows are. Example 7 shows a complex system with 4.N+4 links

"o
-

&
A
s a s,

24 . .
and N°+1 sessions, where /N can be any even integer greater than ten. In

this example, the sessions have equal window sizes. Some initial conditions

s

result in fair average throughputs. For other initial conditions, however, the

W, ‘\ .‘v A

long-term average throughput of one session is unfair by a factor of more than

WwE..

N/10, no matter how large the window size. It seems that the problem of

.l
Al

selecting window sizes to achieve throughput fairness, for general networks and

-y .
, ;‘n'&“l.‘

general initial conditions, is difficult and perhaps impessible if first-come-first-
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served link scheduling is used.
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4.6.1 Example 6: Unfairness with Unequal Windows

Consider a system that satisfies the assumptions of Chapter 2. The
network consists of two nodes joined by links [, and !, of opposite direction.
Link [, is used only by sessions z and y. Both sessions have heavy demand;

i.e.,
(273) C(z,0,t—1,¢t) = C(y,0,t—1,¢t) = 1

for all times ¢ > 1. Obviously, the max-min fair rate for each session is %.
Suppose that the window sizes W(z, 1) and W(z, 2) for session z equal w, ,
the window sizes W(y,1) and W(y,2) for session y equal w,, and

w; ¥ wy . The initial buffer levels are as follows:

B(z, 0, 0) B(z,1,0) = w, — 1 B(z,2,0) =1

I
8

B(y,0,0) = o© B(y,1,0) = w

First-come-first-served link scheduling is used. The tie-breaking list for link /]
is arbitrary. The transmitter queue for /| initially contains w,—1 reservations

for r and w, reservations for y, in arbitrary order.

y

The evolution of this system is very simple. During slot 1. session r
transmits a packet over hop 2 (i.e., the packet is retrieved by the sessicn’s
sink), the corresponding permit for buffer 2 is returned upstream to hop 1, and

a new reservation for r is added to the tail of the transmitter queue at link /, .

Similarly, during the slot immediately following the transmission of a packet

el e




"

o

‘

-

‘ ‘ . 3 -
A over [, , that packet is transmitted over hop 2, its permit for buffer 2 is
T returned upstream to hop 1, and a new reservation for that packet’s session is
v : : : . :
< added to [;’s transmitter queue. Hence link [/, operates periodically, with
" period w,+w, . In each period, sessions z and y transmit w, and w,
-‘l
7 packets, respectively, over [;. Therefore, the long-term average session
-

d

g2 throughputs are w,/(w,+w,) and w,/(w,+w,), respectively. Since
.‘;'. w, ¥ w, , these average throughputs are unfair. {
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. + It may seem that the conclusion of this example depends on the somewhat
- arbitrary way that session sources and sinks were modeled in Chapter 2.
However, it is easy to embed this example in one with longer session paths. so
‘ that the interesting features occur at intermediate hops.
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4.6.2 Example 7: Unfairness with Equal Windows

Let IV be an even integer greater than ten. Consider a system that satisfies
the assumptions of Chapter 2 and has the layout shown in Figure 12. For
i=12 and j=1,2, .., %N, the network contains links /o, {;,, and
ijo- (For each of these links, there is another link with opposite direction
that is not shown in Figure 12 and is used only to return flow control permits.)
For + =1,2 and j=1,2,.., %N, thereis a session y,;;; that uses links
lijis lijo, and lg, and there are N—1 sessions y; 0, ¥ij3s s ¥i N

that use only [ ;. There is also a session z that uses [y followed by Iy, .

Every session in the system has heavy demand; i.e.,
(274) O(.’L, O, t—1, t) = C(y,-,j,k s 0, t—l, t) = 1

for 1 =1,2, for 7=1,2,...,%N, for k=1,2,..,N, and for all times
t > 1. The max-min fair rate for session z is 1/2, while the other sessions
deserve rates of 1/ each. The windows for all buffers A > 1 of all sessions
have the same size w > 2. Table 5 shows the buffer levels at time 0. First-

come-first-served link scheduling is used. The tie-breaking lists are arbitrary.

“At time O, the transmitter queue for link [, contains exactly one reservation

each for sessions v, ;;, 7 =1,2, .., 2N, and possibly some reservations for
session r. The transmittrr queue for (,, may initially contain any number of
reservations for sessions z and y,;,, 7 =12, .., %N, as long as all

reservations for sessions y.;; are in the first 2w queue positions. Let us
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Session Buffer Number
0 1 2 3 4
z 00 w or between Oorl -
w—1 0 and w
Y141 1< ;< %N | o w—1 1 1 0
Y1k 1< < %N 00 w 0 - _
2< k<N
Yo,i1 1< 7 < BN oo w 0 note Oorl
below
yg’j‘k 1 S ]. S LN oo w 0 - -
2< k<N
k# %N+1
Yo j wN+1 1< 7 <%BN oo w—1 1 - N
BN
Note: ¥ B(y,,1,3,0) < 2w
J=1
TABLE 5. Initial Buffer Levels
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now describe the initial transmitter queues at links ¢, ;,, {; o, lo;, 2nd

12‘]-'2 , for y=1,2,..,%N . The transmitter queue for [, ;1 contains w—2
reservations for y,,,, followed by w reservations for y,;,, then w
reservations for y;;3, .. , then w reservations for y, ;y, and finally one
reservation for y,,,. The transmitter queue for [, ;, contains one
reservation for y,;,. The transmitter queue for [,;, contains w—2
reservations for yo ; yn+ , followed by w reservations for y, ;i un42, ... , then
w reservgtions for yo;n, then w reservations for y,;;, ... , then w
reservations for ¥, ;un , 2nd finally one reservation for y,;un4;. The

transmitter queue for [, ;- is initially empty. {

This system will be analyzed over successive time intervals of length N-w
slots. It will be shown that the throughput of session z during [1, N w] is less
than Sw packets. It will also be shown that the buffer levels and transmitter
queues at time N-w satisfy the same assumptions that were made for their
initial values, so that z's throughput bound during [1, N'w] also applies

during [NV-w+1,2N-w], 2N-w+1,3N w], ... Table 6 shows whicl session

+ In practice, this "initial” system state could arise if sessions y,; ;; started af
various times before time 0, when there were already many other sessions
using links [, ;, and [s;;, and if these extra sessions terminated before

time O.
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uses each slot at each link during [1, N'w], for the case where N = 12

and w=3.

Let us examine the operation of links [, 4 and l;, during the first haif of
the study interval [1, N*w]. At time O, the transmitter queue for Lo
contains at most w packets for session z and exactly one packet for each
session y,;;, 7=1,2,..,%N . During (I, w—1], fewer than w packets
for z and exactly w—1 packets for each session y;;; are added to this
queue. In other words, the total number of packets to enter this queue by time
w—1 is at least %2N-w but fewer than (%N+2):w . These packets will be
transmitted over [}, before any later arrivals for session z are served.
Consequently, the packets for sessions y;;; are guaranteed to be transmitted
over l1o by time (%N+42)w, well before the end N-w of the study
interval. Furthermore, the throughput for z over [, during [1, %N-w] is
limited to the (fewer than 2w) packets joining /, o's transmitter queue by time
w—1 . Therefore, the buffer capacity constraint will restrict z's transmission

over lyo during [1, %2N-w] to fewer than 2w + w = 3w packets.

A similar analysis is possible for the second half of the study interval
[1, New]. It will be shown that intense competition from other sessions
impedes session z's flow on its second link, while the window mechanisin
impedes the flow on its first link. During [%NV-w—1, (2V+1)w—2], link
ly ;1 transmits w packets for session yq;,, J =1,2,.., %N . The initial

conditions guarantee that by time 2w link [, finishes transmitting any
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| l
| I
| |
| |
| |
| l |
7 | |
8 | |
9 | Y14 | | idle Y2510
0 | l
11 | <2w <3w | O
12 | Y155 pkts | pkts pkts | pkts Yoin
13 for | for for | for
14 Y141 I z z I Y21
15 Y16 l | Y2512
16 | |
17 | |
18 Y57 l l Yas1
19 idle | | Va1
20 7 |
21 Y18 pkts | | Vo2
22 for | |
23 Yis1 l |
24 Y150 | l Y243
25 | |
26 | |
27 Y1510 | | Yoi4
28 | | idle
2 0 | <3w <2w | ?
30 Yijn pkts | pkts pkts | pkts Yois
31 for | for for | for
32 Y151 | z I | yaja
33 Yijie l | Yo s
34 | |
35 Y141 | | Vot
36 Y141 | |
TABLE 8. Link Users over One Period (.V = 12, w = 3)
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packets for session yg'j,i that were waiting initially. Therefore, a full supply
of w permits for buffer 3 is available at hop 2 when the w new packets arrive
over ly;,, and these packets immediately join [p;,'s transmitter queue.
During [%Nw , (%N+1)w-—1], these packets are transmitted over [,
and join the transmitter queue at l;,. At time %N-w , there at most w
packets for session z in ly,’s  transmitter  queue. During
[eN-w+1, (N+1)w—1], fewer than w packets for £ are added to the
queue. These packets for sessions y,;, and z - totalling at least %“2N-w
packets but fewer than (%2NN+2)-w -- will be transmitted over [y, starting at
slot %N-w+1, and they will all be transmitted before any later arrivals for
session r are served. Consequently, the packets for sessions y,;, are
guaranteed to be transmitted over Iy, by time (N+2)w . (In other words,
any reservations for sessions yo;; in lyo's transmitter queue at the end .V-w
of the study interval must be in the first 2w queue positions.) Furthermore,
the throughput for z over ly, during [%N'w+1, N-w] is limited to the
(fewer than 2w) packets that were present in l's transmitter queue at time
%“N-w or joined it during [%.V-w+1, (%N+1)w—1]. Therefore. the buffer
capacity- constraint restricts r's transmission over [} 4  during

[eN-w+1, Nw] tofewer than 3w packets.

This completes the analysis of links /;, and l,,. The operation of links
Ly and Lo, t=1,2, j=12, ..,%N, during (1, N'w] is simpler.

Link {4 ;, transmits a block of w packets for each session y,;;, in turn.

’
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» During the slot immediately following a packet’s transmission over li j 1, that
packet is transmitted over hop 2, its permit for buffer 2 is returned upstream ‘
to hop 1, and a new reservation is added to [ ;,’s transmitter queue. (For
session y; ;1, hop 2 is link [ ;j,. For each session y;;,, k# 1, hop 2 is !
the session’s sink.) Recall that y; ;,’s packets are transmitted over [, in
plenty of time to get their permits for buffer 3 back to hop 2 before the next
batch of packets for y, ;, arrive over [; ;. Hence the transmitter queues for ‘

links /; ;, and [ ;. are periodic, with period N-w .

o In summary, over the entire study interval [1, N*w] each session v, ;,
n':"'
E{.‘ 1=1,2 =12 ..,%N, k=1,2,..,N, transmits exactly w packets

over link [ ;,, while session z transmits fewer than 2w + 3w = 5w packets
over each of its links. Since the system satisfies the initial condition
assumptions again at time N-w , these throughput claims also hold for time
intervals [N-w+1,2N-w]|, [2N°w+1,3N-w], ... Therefore, the long-term

average throughputs of sessions Yijk are max-min fair, but the long-term

average throughput of z is less than 5/N, which is significantly lower than its

¥

- w
»

fair rate of 1/2.* In other words, z's average throughput is unfair by a factor

.;‘:
'e
[ I
N of more than N/10, regardless of the window size w. Moreover. the capacity
-
i, ' . . .
¢ The long-term average session throughputs must exist because this system
i\, has a finite number of states and is deterministic. Eventually the system wiil
N . .« . . .
enter some state it has already visited, after which the system will be
N periodic.
r.‘,‘
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lost by z (viz., more than 1/2 — 5/N at each of its links) is not used by the

other sessions -- it is wasted. t

The unfairness in this example depends critically on the unfortunate initial
conditions. Other initial conditions for this same network can result in fair
average throughputs. For example, suppose that the transmitter queue for link
[0 at time O contains w reservations for session z alternating with w—1
reservations for session y;yn;. The transmitter queue for Iy, initially
contains one reservation for y,,n ;. The initial transmitter queues for the
other links are arranged so that packets for session Yij1. t=12

J=12,..,%N, are transmitted over link [ during slots

7.2
(142w j—2w), (i+2w-j—2w+2), (i+2w'j—2w+4), .., (i+2w-j—2). In
other words, packets competing with session z arrive in smooth streams, during
the odd-numbered time slots at link {,o and during the even-numbered slots
at lyo. Therefore, during the interval [1, N-w], session z transmits one
packet across [, o during each odd-numbered slot and one packet across ls,
during each even-numbered slot. By correctly setting the initial conditions, the

entire system can be made periodic with period N:w , so that these smooth

flows continue forever and the long-term average throughputs are fair.

* [t may seem that the conclusion of this example depends on the somewhat
arbitrary way that session sources and sinks were modeled in Chapter 2.
However, it is easy to embed this example in one with longer session paths, so

that the interesting features occur at intermediate hops.
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5. SESSION THROUGHPUTS IN SYSTEMS WITH SMALL WINDOWS

This chapter studies the throughput of a particular session z in a system
with bounded-delay link scheduling. The window sizes for session z are
assumed to be at least two. Except for W(z,0) and possibly W(z, 1), the
windows for session z are assumed to be finite. The window sizes of the other
sessions in the network are arbitrary. Session z is assumed to have a well-
defined, real demand rate X(z) in the range 0 < X\(z) < 1. The detailed
demand assumptions for z vary from section to section. The demands of the
other sessions are arbitrary, except for the possible restriction that these
demands be independent of the demand of session z. These other sessions
need not have well-defined demand rates. Clearly, the assumptions of this
chapter are much less restrictive than those of Chapter 4. The results of this

chapter, therefore, are of greater practical value.

Theorem 5 assumes that W(z, 1) is at least two but finite. The demand
of session z is modeled as a Bernoulll process that is independent of the other
sessions’ demands. The theorem concludes that the throughput

P(z, H(r). 0. t) of r is hounded below by a function &t} whose long-term

| . Nir)
average rate equals cwith probabiiity onej - T : . Az one
A=Nir 77+ Airenr)

would expect, this guarnnteed rate tonds 1o zers as the Jdemand rate NI

tends to zero or as the schedule delay bound A{z) tends to infinity. As X\(r)

tends to one, the guaranteed rate tends to 1/4(r), and as A(z) tends to
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~ one, the guaranteed rate tends to A(z); these limits are also intuitive.
.7 . .
158 Theorem 6 shows that the guaranteed rate can be increased by allowing
w
;‘. \ session z to buffer more of its demand: this theorem assumes W({(z,1) to be
4 infinite. The demand assumptions are a little weaker than before: the times
>
'.;f between chances for session z at hop O are only assumed to be independent
\-
= and identically distributed, and the demand of session £ may be dependent on
\ the demands of the other sessions. Theorem 6 concludes that the throughput
o : :
o P(z,H(z), 0, t) of z is bounded below by a function &(¢) whose long-term
»‘
~ average rate equals (with probability one) min[1/A(z), N(z)]. This is
-;'.: obviously the largest rate guarantee possible if nothing else is known about the
-
. scheduling discipline; a better guarantee cannot be achieved in general by
- assuming window sizes larger than two.
s
o It was explained in Section 2.4.3 that round robin scheduling and first-
come-{irst-served scheduling are bounded delay disciplines, with schedule delay
fi'.: bounds A’(l) of N'(!) and N'(l)» W"— W"4+1, respectively. Therefore, the
rate guarantees of Theorem 5 for round robin systems and
3 \
: first-come-first-served  systems are \'r—n(r) - . aid
3 @)Y+ N ()
~
, TN W = 21 /\(lj_ - . respectively. The rate
L=N{py + [N(z) W= W+ 1N\(r)
- Juarantees of Theorem 6 are min{1/N(z) . Nz)] and

min 1/(N(z) W= W"+1), X(z)], respectively. Example 1 of Section 3.2

w+ 4 round robin system with a session z whose demand rate X(r) =1 and
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whose long-term average throughput is 1/N(z). Example 2 of Section 3.3
shows a first-come-first-served system with a session z whose demand rate
Az) =1 and whose long-term average throughput is 1/[V(z) W"—W"+1].
The average throughputs in these examples match the bounds of Theorems 5
and 6. Note that the throughput guarantees of Theorems 5 and 6 for round
robin systems are superior to those for first-come-first-served svstems. (It is
not being claimed that round robin scheduling always offers larger throughputs

or fairer throughputs than first-come-first-served scheduling.)

Let us compare the throughput guarantees of Theorem 6 to the max-min
fair rates defined in Section 4.1. Consider a system that satisfies the

assumptions of Theorem 6 and has a demand process so regular that the long-

max-min fair rates Rg([(z)} exist for all sessions r. Obviousiv. for each

session z, R, (r) < XNz) < 1 and Rpillzj) < Xiz) < 1. Reeall from
Section 4.1 that every session r has at least one bettieneck hop. By o8l o
(64) and (85). this means that either Ry lizr o= vr oror hoe b 2 lenees

Nink sl that

term average throughputs R, (z), the demand rates X (r}. and hence the




y using {
Yy sz

- ¥ Rp(I(z))
y using {
y¥z

[N'({) = 1]Rp(I(2))

(275) N(z) = 1]Re(I(z))

and hence Rg(I(z)) 2 1/N(z). If the system uses round robin link
scheduling, Theorem 6 guarantees that R,(z) > min[l/N(z), \(z)].

Combining these various results shows that if X(z) < 1/N(z), then

Re(I(z)) = Xz) = R,(z1), and if XNz) = 1/N(z), then

1/N(z) € Re(I(z)) €1 and 1/V¥(z) < Ry(z) < 1 and hence

In either case, the long-term average throughput

of £ is within a factor of Nir) of its fair rate. The analogous guarantee for
~eheduiing involves a factor of N )UW"=1"+1
et bk2 shows dhat, with ronnd sobin sehedling unlirness

v -"n ‘- i . . . H
sy possiboes B Srsreromesfirstoserve d

schiedaling, Example T 0 Seeticon 4.6.2 shows an unfairness factor proportional
- ¥ t
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to N(z) and Example 2 of Section 3.3 shows an unfairness factor roughly
- equal to W” . ¢
. * For ease of exposition, it was assumed in Examples 3 and 7 that Wir.l; is
. finite. However, the long-term average session throughputs for these

examples are the same whether W/(z, 1) is finite or infinite.

e 0 ¢ & a. a
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5.1 Theorem 5: Throughput Bound, given Finite Demand Buffer

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses a bounded delay scheduling discipline. Let z be some

session. Suppose that
(276) 2 < W(z,h) < for 1 < h X H(z)+1

The window sizes of the other sessions in the network are arbitrary (i.e., these
window sizes only need to satisfy the basic assumptions of Chapter 2).
Suppose that chances for session z at hop O form a Bernoulli process with rate
Mz), and O < X(z)< 1. Suppose that the demand of session z is
independent of the demands of the other sessions in the network; except for
this restriction, the demands of the other sessions are arbitrary. It follows that

there exist random variables ®(1), $(2), ... such that, for all times ¢t > 1.
(277) P(z, H(z), 0, t) = ®(t)

and such that, with probability one,

(273) ¢t) —» {/\'(I) :
t t— x 1 — NirVY S 4+ 4irieN(r)
In other words, the avernge theenzhpns Poe 0 s o000/ Wi session oo e
- X v
made artirearily olo<e v — ___,__(--.,‘,7,,,,-, - = e op ogreater .- by
1 - \l-‘” ‘ + .“4"',\‘1)

taking t sufficiently large. (This cannot b phrased in terms of the long-term

average throughput of r; i.e., we cannot say:

._ .....

L RIS 8y
APAIRIEPS -‘.L.A .:':.el'.‘m L-(LL;..‘.M

5!
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7) = fim Fle H(2),0,t) \z)
RA( ) tl_.n:o t Z [1 _ )\(I)]A(z) + A(I)'X(.’L‘)

since the limit above may not exist.)

Proof of Theorem 5

First let us clarify the scheduling assumptions. It follows from (21) and
(276) that, for all packets p>1 of z and all hops £ in the range

1< b < Hs),

Y(z, k, p)

< max [Y(z, k=1, p), T(z, h, p—1), T(z, h+1, p— W(z, h+1))] + A(z. k)

< max [Y(z, h=1, p), T(z, h, p—1), T(z, h+1, p— W(z, h+1))] + A(z)

(279)
< max [ T(z, k=1, p), T(z, h, p—~1), T(z, h+1, p—2)] + A(z)
Next the demand assumptions will be clarified. Let p’ be the first packet of
session r to be transmitted over hop 0 after time 0. For all packets p > 1.

define T as follows.

(280) 7, = Y(z.0.p) —max [ T{r.0.p—1.Yir. l.p=1t r. 1

Note that 7, =0 for 1 < p <p'. For p 2> p'. fp o the Delny fromothe
time the network is prepared to accept packet p (i.e., when all packets older

than p have been transmitted over hop 0 and there is room in buffer 10 until
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packet p is actually transmitted over hop 0. Since the demand of session z is
Bernoulli with rate A(z) and is independent of the other sessions’ demands, it
follows that 7, , 7., .. are independent and identically distributed

according to a geometric distribution with mean 1/X\(z):

(281) PROB {r, =k} = Mz)[1-Xz)}!"! for p>p' k>1

For each hop k& of z in the range 0 < A < H(z) and every integer p,

define ©(h, p) as follows.

P .
Y maxr, , A(z)] + k-A(z)  for p > 1
q=1
2 =
(282) (4, ») 0 for p <O
Note that
(283) ©(h—1,p) + A(z) = O©(h, p) for 1< A< H(z), p21
and
(284) 6(0,p—1) + 7, < ©(0,p) for p > 1
and
(287} Oh—1,p) 2 Blh.p—=1) for 1< h < Hiro p 20

[t follows from (281) that

(236
- : . 11— T e :
EXPECTATION { max -, . Lo | = =~ - S

AT

It follows from {282), the strong law of large numbers 30 and 286 rht o winn
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probability one, lim ©(H(z), p)/p exists and
p—s 0
?
3 maxr, , A(z)]
lim S(H(z). p) = lim !
p— p p—+oco p
P
N max[rq , Az)]
= lim &F
p—+00 p
> max(r, , A(z)]
= lim t=p -
(p~p'+1)= o0 p —p +1
L= 2@ + A(2) M=)
(287) =
Xz)
Let us prove the following claim:
(288)  T(z,h,p) < O(h,p) for 0< h < H(z) p > —1
The proof is by induction on p. The base cases p = —1 and p = 0 are
trivial:
I Trh.o—1 = 0 = Ok, —1 fer 0 < A < 1)
i Yr b =0 = @0 Pro<s e < Ihr
. nolber oy L S ‘ ; -
assert that
B B O O R S N SR L NS
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o (291) Y(z,h, p—2) < O(h,p—2) for 0< h < H(z)
2 and
F (292) T(z, b, p—1) < O(h, p—1) for 0< b < H(z)
. It must be shown that
; (203) - (e, h,5) < O(h, ) for 0< h < H(z)

The proof of the induction step will itself be an induction, this time over 4.
: For the base case (i.e., h = 0), first apply (280) and (276):

T(z,0,5) = max [T(z,0,p—1), T(z, 1, s—W(z,1))] + 74

: (294) < max [Y(z,0,p-1), T(z, L, $=2)] + 7,
L4
‘. N

Now apply (292), (291), (285), and (284) to (294) to reach the desired -
. conclusion:
: :

T(z,0,5) < max[ 6(0,5—1), ©6(1,5~-2) | + 17
= 6(0,—1) + )

y (295) < 6(0. 5) P
) For the induction step. consider a hop & of r in the range 1 < h < H{r).

(The case A = H(r) will be treated separately.) The induction hypothesis
;- asserts that

(296) T(z,h—1,p) < O(h—1, p) _

‘

G 4
J:’:'.: """""" }”:';—' "I .r"f': """"""""" -, .f.:r:r:'.r"r.- A e S e e _ ____; e ‘;;’..“'_.'LA'__"




It must be shown that

(297) Y(z, h, 5) < O(%, p)

From (279), induction hypothesis (296) (for the induction on %), and induction

hypotheses (292) and (291) (for the induction on p), it follows that

(298) . . . .
Y(z,h,p) < max[Y(z, h=1,p), T(z, b, p—1), T(z, h+1, p—2)] + A(z)

(299) < max| 6(h—-1,5), O(,p-1), O(h+1,5—-2) | + A(z)
Applying (285) and (283) to (299) gives the desired result (297):

Y(z, b, ) < O(h—1,5) + A(z)

o(k, )

e e "8 " o -
A R

-

The proof for the remaining case, viz., h = H(z), is similar, but inequality
(12) must be used to handle the term Y(z, A+1, p—2) in (298) above. The

proof of this case will not be presented. This completes the proof of (293) by

P . -
LI LL’L’AN-'

induction on Ak, thereby completing the proof of (288) by induction on p.

For all times ¢t > 1, define ®(¢) as follows:
(300) d(t) = max{p: O(H(z).p) < t}
Note that (277) follows from (300), (283) and the fact that
(301) P(z, H(z),0,t) = max { p: YT(r, H(z). p) < t}

Also note that, for all times ¢ 2> 1,

TN e N TN
R Y T T P Y s T N N A R TP A

. ‘. - . . . - . . ‘.‘\. . . . RN . . . . L -. Te cL [N .
. . RN A e et e .t .t (S T . < T,
35 ACGRATTS, Wy VA, I, FWVY y l‘h.,&:‘).a.l,‘.ua.g:»x‘-'z-'h PRI WA, D5, Y D PO DI VAPRRL UG DLV TR 1, DG DR i, WA DRIy



(302) O(H(z), ®(t)+1) = ¢t > O(H(z), ¥(1))

and hence

@)+ 1] —1 &(t) o(¢)
(303) D), o(0+1) = “t = B@HE), %)

Since &(t) t—> oo and O(H(z), p) —> o, it follows from (303) and
—+ 00

p— 0

(287) that, with probability one, tlim ®(t)/t exists and
— 00

lim 2(t) = 1
t—woo ¢ im O(H(z), p)
p=—® 4
- Az)

[1 = X=)4E) + A(z)N\(2)

This is the desired result (278), completing the proof of Theorem 5.

..................
............
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5.2 Theorem 6: Throughput Bound, given Infinite Demand Buffer

Suppose a system has been specified that satisfies the assumptions of
Chapter 2 and uses a bounded delay scheduling discipline. Let z be some

session. Suppose that buffer 1 of z has infinite capacity:

(304) Wiz, 1) = oo
but that
(305) 2 < W(,h) < for 2< h < H(z)+1

The window sizes of the other sessions in the network are arbitrary (i.e.. these
window sizes only need to satisfy the basic assumptions of Chapter 2).
Suppose that the times between chances for session z at hop O are independent
and identically distributed, with mean 1/\(z), and 0 < Xz) < 1. (Because
of (304), each such chance will result in a packet transmission.) The demands
of the other sessions in the network are arbitrary. It follows that there exist

random variables &(1), ®(2), ... such that, for all times ¢ > 1,
(306) P(z, H(z),0,t) > &(¢)

and such that, with probability one,

/ (t —_ .
(307) 2;—1 min [ {1

In other words, the average throughput P(r. H(z). 0, ¢)/t of session r can be

made arbitrarily close to min'1/A4{z) M) - or greater -- by taking ¢

1

|
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sufficiently large. (This cannot be phrased in terms of the long-term average

throughput of z; i.e., we cannot say:

{— 00 ¢

RA(I) = lim P(I,H(I)v 0, t) Z min [ 4(11) ./\(I)‘]

since the limit ahove may not exist.)

Proof of Theorem 6

First let us clarify the scheduling assumptions. It follows from (21; and
(305) that, for all packets p>1 of z and all hops & in the range

1< b < H(z),

Y(z, k, p)

< max [Y(z, h—=1,p), T(z, b, p—1), T(z, h+1, p—W(z. h+1)) + A(z. %
< max [ Y(z, k=1, p), T(z, h, p—1), T(z, h+1, p— W(z, h+1))] + A(z)

(308)
< max [ T(z, h=1,p), T(z, h, p—1), T(z, h+1,p—-2)] + A(z)

Next the demand assumptions will be clarified. Let p’ be the first packer of
session r to be transmitted over hop O after time 0: i.e.,

(309) T(z.0.p) =0 for 1< p <p’

(310) T(z.0,p) > 0 for p > p'

For p 2 p'+1, let 7, be the delay between the transiaission times at hop 0




of packets p—1 and p for session z :

(3111 7, = Y(z.0.p) — Y(z,0,p—1) for p 2> p'+1

It is given that T(z.0,p’), 741+ Tprya, ... are independent and that 7,..,.

7y 42+ - are identically distributed, with mean 1/X\(z). (Note that the time

Y(z.0.p') wuntil the first transmission over hop O may have a different

distribution and a different mean than the intertransmission times 7, .

RAEAr AN

) Also define

TP’*I‘ Dy eees

312) 7, = A(z) for 1< p < p’

It follows from (311) and (312) that, for all packets p > 1,

(313) T(I! Ov p) S T(I, Oy P’) + T <+ To 4+ e 4 TP

For each hop A of z in the range 0 < A < H(z) and every integer p.

define ©(h, p) as follows.

(314)
Y ' B d
0 + + h)Ad + x N - = -

(z.0.p") + (p + h)A(z) s, =
: Oth.p) = |,
; Note that
]
Kl
b 50 Odi—1. 0 o~ 1 =

S D PR SN L S T L PR PR W ial -~
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It follows from definitions (314) and (312) that, for all p > p',

> - J
'E::' ©(H(z), p) = T(z,0,p") + [p + H(z)]A(z) + 121?%{? j-§+1 by =4 @)

:<-
' 4

)
s

= T(z,0,p') + [p + H(z)]'A(z) + It<n'(}.§ . é] 1 [r; —A(z)]
j=p'+

SRR

| L

(317) = T(z,0,p") + [p + H(z)]'A(z) + o B2X_, E [rprs e —A(2)]

ey

A

Ay
-

From (317) and Lemma 10 of Appendix A.3 it follows that, with probability

PERAY

[{ 14

one, lim ©(H(z), p)/p exists and
p— o0

.

:ﬁ.l 4:’:"‘5 .
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' K
max Y (rpex — A(2)]

0<K<Lp-19p'
- im 2HELP) _ 45 4 him P k=l

pes 00 P p— oo P
' K p
max .k =
. B, B e = 4G |
3 = A(z) + lim ,
. (p=p)—> o0 p =7

K
2 [Tp’+k "’A(I)J
k=1

!

= A(z) + lim max
(p=p')—o00 O0SK<p-p' p —p

) 1
; = A O’ -—
3 (z) + max [ [)\(z) A(z)
M
3 (318) - Az),
: k( ) ]
N
v Let us prove the following claim:
v (319) T(z, k,p) < ©(h,p) for 0S h < H(z), p 2 ~1
y;
The proof is by induction on p. The base cases p = —1 and p =0 are
' trivial:
(320) Y(z,h,—=1) = 0 = O(h.—-1) for 0< h < H(1)
‘
! _ (321) Y(z, h,0) = 0 = ©6(h,0) for 0 < A < H(z)
;
For the induction step, consider a packet $# 2> 1. The induction hypotheses
N assert that
N
3.
T e A A NN LN e S N N NN
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(322) Y(z, b, —2) < O(h, p—2) for 0< h < H(z)
:*: and |
w
"w (323) Y(z, h,p—1) < O(h,p—1) for 0< h < H(z)
.3;-.. It must be shown that
¥
>
o (324) Y(z,h,5) < O(k,$)  for 0< h < H(z)

The proof of the induction step will itself be an induction, this time over A.

The base case (i.e., # = 0) follows from (313) and definition (314):

T(z709ﬁ)5‘r(2101p’)+7'1 +72+"' +Tﬁ

et BRI A A
IABILAS | R RRAINS

= Y(z,0,p") + p-A(z) + é [r; — A(z)]

J=1

2%
N

A

< < Y(z,0,p") + p°A(z) + max 2 [r; — A(z)]
A 1IJL$ j=1
29 (325) = 00, 5)
o':
™ For the induction step, consider a hop % of z in the range 1< h < H(z).
’\- )
Sl

‘;:'-' (The case h = H(z) will be treated separately.) The induction hypothesis
o
asserts that

-~

X (326) Y(z,h-1,5) < 6(h-1,5)

&
* It must be shown that
:'
'~

&

"\
%

2 | o
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(327) T(z, k,5) < O(%, 5)

From (308), induction hypothesis (326) (for the induction on 4), and induction

hypotheses (323) and (322) (for the induction on p), it follows that

Applying (316) and (315) to (329) gives the desired result (327):

T(z, k,5) < O(h—1,5) + A(z)

o(k, p)

The proof for the remaining case, viz., £ = H(z), is similar, but inequality
(12) must be used to handle the term Y(z, A+1, $—2) in (328) above. The
proof of this case will not be presented. This completes the proof of (324) by

induction on A, thereby completing the proof of (319) by induction on p.
For all times ¢ > 1, define &(¢) as follows:

(330) o(t) = max {p: O(H(z), p)< t}

Note that (306) follows from (330), (319) and the fact that

(331) P(z, H(z),0,t) = max { p: T(z. H(z),p)< t}

Also note that, for all times ¢t > 1,

(332) . O(H(z), ®(t)+1) 2 t 2 ©O(H(z), &(t))
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and hence
| [B(t) + 1] ~ 1 () (t)
(333) o), 8% = “t = BH@) o)

Since &(t) t—> oo and O(H(z), p) —> 0, it follows from (333) and
—+ 00 p—+ 0o

(318) that, with probability one, tlim ®(t)/t exists and
— 00

lim (¢) = 1
p—+o0 /4
- 1

A(z), ()]
[A() *(’)]

This is the desired result (307), completing the proof of Theorem 8.
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6. CONCLUSIONS

Round robin sckeduling with windows is a simple technique for allocating
link capacity among competing sessions in a packet network. If a sufficiently
large window size is used throughout the network, the session throughput rates
can be made arbitrarily close to the ideal max-min fair rates. (A session
requiring a very large throughput rate could be visited more than once in each
polling cycle, effectively treating it like several standard sessions.) This
performance is suited to file transfers and other applications where throughput
, rate is of greater concern than packet delay. For a session using small
A windows, however, the round robin method guarantees a small cross-network
delay for each packet while still guaranteeing a certain minimum service
rate. f This service rate determines the maximum séssion throughput rate that
can be supported and also roughly determines, for a given throughput rate, the
delay of packets waiting to be admitted to the network. (A session requiring a
larger guaranteed service rate and/or a smaller guaranteed cross-network delay

could be visited more than once in each polling cycle.) } This performance is

t In order for these guarantees to be meaningful, the routing algorithm should
limit the number of sessions sharing any link and the number of hops in any
session’s path.

s am w4

+ While reducing a session’'s window size should decrease the cross-network
delay of that session's packets, it might also increase the time the packets
spend waiting to enter the network. Thus the total delay (i.e., pre-network
plus cross-network) could actually increase as the window size decreases.
(Mukherji [21] shows this for a different flow control scheme.) Small
windows do offer certain advantages to the session, however. The session

L becomes aware of congestion problems earlier and can respond to large pre-
network queues by compressing its data, prioritizing its data (and deferring
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suited to interactive data,.packet voice, and other applications requiring low
packet delays. These guarantees for sessions with small windows apply even if
other sessions in the network are using larger windows. Henc‘:e this scheme
should be well suited to integrated services networks, i.e., those supporting a
variety of applications. Delay-sensitive sessions can use small windows to meet
their needs, and the remaining transmission capacity can be fairly divided

among the other sessions by assigning them large windows.

It should be mentioned that the performance of the round robin method
improves as the packet size (used by all sessions) is decreased. If the window
sizes — measured in packets — are fixed, then the cross-network delay
(measulfed in seconds per packet) drops as the packet size is reduced. If the
window sizes -- measured in bits — are fixed, then the throughput fairness
improves as the packet size is reduced. Of course, these beneficial effects are
balanced by the fact that packet overhead is more significant for small packet

sizes.

This thesis shows that round robin scheduling with windows compares

favorably to first-come-first-served scheduling with windows. ¥ This finding is

or discarding the low priority items), or requesting a higher service rate from
the network. Moreover, the component of total delay that cannot be directly
observed or controlled by the session, viz., the cross-network component, is
guaranteed to be small if small windows are used.

t+ In modeling first-come-f{irst-served scheduling, this thesis assumes that link-
by-link windows are used and that a packet may not join a link transmitter
queue until it obtains a window permit for its next buffer. Perhaps a
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N - A

X of practical interest, since window flow control is commonly used. The max-
S min fairness results for round robin scheduling with large windows do not
Q)

Xs apply for first-come-first-served scheduling. Even when large windows are
LN

" used, the session throughput rates in a first-come-first-served system depend
¥ strongly on the relative window sizes of competing sessions and the initial
o

' conditions of the - Nhen small windows are used, the throughput and
N delay guarante’ . for round robin systems are also better than those for first-
[~

N come-first-served systems. (This is not to say that round robin scheduling
“

- performs better in every case. I have seen systems where first-come-first-served
v,

> scheduling produces slightly fairer throughputs.) Moreover, these first-come-
* .

N

~ first-served guarantees for a session z depend on the window sizes of the other
3 sessions, whereas the round robin guarantees depend only on z's window size.
$l

~C

N Hence round robin scheduling simplifies the problem of selecting window sizes..
)

; A simplistic description of the capacity allocation mechanisms of these two
Pl

\' disciplines may help explain why their throughput performance is so different.
s.

» First-come-first-served scheduling allocates link capacity to sessions according
¥

4

- to the average number of packets each session has waiting. Round robin
. scheduling, on the other hand, considers the fraction of time each session has

at least one packet waiting.

v,

’,

PP,

- different implementation of first-come-first-served scheduling would perform

better.
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This thesis assumed that the propagation delays of the network links were
negligible. The difference in worst-case throughput performance for round-
X robin and first-come-first-served scheduling should be even more pronounced if
I propagation delays are significant. Consider a system that uses first-come-
E first-served scheduling and has the layout shown in Figure 13. Session z uses
E links !; and [l,. Sessions y,, ¥3,..,Yn—1 also use [,. Flow control
) permits for the sessions are returned <;ver links I3 and [, whose directions

are opposite to [, and [,, respectively. Suppose that the round trip

propagation delay over links [, and I3 is d times the length of a packet
transmission slot, while the propagation delay over the other links is negligible.
Suppose that the window size for every session except z is w packets. If

sessions Z, ¥, , ..., Yp—; have very high demand and sessions y;, ..., ynv—)

L an aa o om e o e agae g

have very low demand, and if each active session is to receive its fair o

' throughput of % packets per slot, then W{(z,2) should be roughly % + w

) packets. The fair window size for one value of k is unfair for other values, and
the inequity worsens as the propagation delay grows. I conjecture that this
problem is much less severe if round robin scheduling is used instead of first-

come-first-served scheduling.

PP

A similar difficulty arises if end-to-end windows are used instead of link-
by-link windows. Consider a system that wuses first-come-first-served

scheduling with end-to-end windows and has the layout shown in Figure 14.

Session z uses links [, , l, and I3 and shares each link {; with single-hop
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sessions Y; 1, Yo, - Y; N=1 - (For each of these links, there is another link
with opposite direction that is not shown in Figure 14 and is used only to

return flow control permits. The propagation delays of all links are negligible.)

Suppose that IV is very large and that the window size for every session except
; z is w packets. If all sessions have heavy demand, then session z's window size
should be approximately 3w packets in order to achieve its fair throughput
rate of‘ 1/N packets per slot. If sessions Y19 - s YILN=15 Y219 -1 Yo N1
have very low demand, however, and sessions z, Y31+ - s Y3 N—1 have high
demand, then z's window size should only be about w packets. Window sizes
that are fair for one scenario are unfair for the other, and the inequity worsens
as the path length grows. I conjecture that this problem with end-to-end
windows is much less severe if round robin scheduling is used instead of first-

come-first-served scheduling.

For a final comparison of these two disciplines, consider a system with link-
by-link windows. Suppose one session adjusts its window size to optimize its
own throughput and delay. Suppose that this session has a great many
competitors with large windows. I conjecture that the network appears very
dilferent to such a session when round robin scheduling is used than when
first-come-first-served scheduling is used. I suspect that with round robin
scheduling the session can vary its delay over a very wide range and can vary
its throughput between zero and the max-min fair rate. With first-come-first-

served scheduling, however, I suspect that the session can vary its throughput
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over a very wide range, even taking unfair fractions of link capacity, but can

hardly control its delay at all. The round robin scenario seems preferable to

ﬂ me. These first-come-first-served problems are compounded if all the sessions

are adjusting their window sizes. A session primarily interested in maximizing

its throughput will increase its window size. If its competitors follow suit, no

- one will get any more throughput and everyone’s cross-network delay will

increase. Eventually the delay increases may halt this game, but I believe that

round robin scheduling would produce an earlier truce.

Y

The costs and benefits of the round robin strategy can also be compared

- with the other fair flow control schemes mentioned in Section 1.1. Bially,

Gold, and Seneff [2], Jaffe [16, 17], Gerla and Staskauskas [11: Section 3],

Hayden [13: Chapters 4-5|, Gafni [5: Chapter 3], Gafni and Bertsekas [6],

Oshinsky [22], and Mosely [20] propose algorithms and session source controls

to achieve max-min fair rates. Since these schemes accually compute the max-

min fair rates, they can accomodate more variations in the objective function

than are possible with the round robin strategy. For one thing, link delays can

A be considered in the optimization. The round robin method’s provisions for
N

i delay -management, viz.,, window size adjustment and polling frequency
adjustment, are less systematic but are more suitable when different sessions
have different delay requirements. To compare the costs of round robin and
the other approaches, the computation and communication overhead of the

max-min algorithms plus the difficulty of source rate control (i.e., variable rate
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vocoding or variable packet sizing or packet metex;ing) must be weighed against
the accounting burden of managing round robin schedules and windows plus
the cost of the link capacity needed to transmit window permits. The round
robin method compares more favorably if session demands change frequently or
if session lifetimes are short, since the max-min algorithms must be executed

often under those circumstances.

The round robin strategy should also be compared with the approaches of
Golestaani and Gallager (12, 8], Gerla and Staskauskas [11: Section 5.2],
Thaker and Cain [26], Ibe [14], Gafni [5: Chapters 4-6], and Sauve, Wong and
Field [24, 25]. The round robin method has less overhead, because neither the
target session rates nor the window sizes nor the schedule parameters need to
be computed, but round robin is limited to a smaller variety of throughput
objectives. While Golestaani and Gallager, Gerla and Staskauskas, and Thaker
and Cain also include in their objectives the cross-network delay averaged over
all sessions, they cannot easily accomodate individual sessions with stringent
delay requirements. The round robin scheme is better at this. Sauve, Wong
and Field (in a related paper [27]), Ibe, and Gafni solve this problem by using
various forms of priority queuing. The overhead costs of window flow control
apply to all the strategies of this paragraph. A round robin schedule itself may
be slightly harder to execute than the first-come-first-served schedules
apparently assumed by Golestaani and Gallager, Gerla and Staskauskas, and

Thaker and Cain, but it is no more difficult than the priority scheduling of Ibe
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and Gafni, and it is much easier than the schedules of Sauve, Wong and Field,

which depend on each packet’s real-time delay.

Mukherji's flow control strategy [21] is extremely flexible. By correctly
setting periodic link schedules, virtually any feasible set of session throughput
rates can be enforced, with very small cross-network delays. The difficulty, of
course, is in determining the desired set of throughputs. Optimizing the
fairness of the target throughputs or minimizing the delay built into the link
schedules could incur overhead penalties the round robin method does not
have. However, with almost no effort Mukherji can offer throughput and delay
guarantees comparable to the small-window guarantees of the round robin
method. In fact, since Mukherji recommends round robin re-scheduling of
transmission slots not claimed by their rightful owners, the performance of the
two strategies should be similar in many applications. The overhead for
executing the schedules and enforcing the windows in the two schemes should
be comparable as well. Mukherji's method also has the property (described
earlier for round robin) that an individual session can choose its window size to

suit its cross-network delay requirements.

This thesis, in its examples as well as its analysis, focused on the worst-case
performance of round robin scheduling with windows. An important area for
future study is the typical performance of the scheme. Of interest are the

following items, as functions of the window size: the fairness of the session

throughput rates, the burstiness of the session flows, the severity of transients




é likely require the simulation of a great many sample networks of at least
™ moderate size. It would also be interesting to see whether the use of end-to-
.

E end windows instead of link-by-link windows significantly changes the
; ﬁerformance of the strategy. Link models with propagation delays and unequal
capacities could also be considered. Finally, it would be worthwhile to examine
:_i variations of this method to see if max-min fair throughput rates can be
# achieved without computing the rates but without incurring large cross-
‘. ' network delays. One approach is to dynamically adjust the window sizes so
¢ that they are no larger than necessary. Another possibility is to change the
;, round robin discipline slightly, e.g., by randomly rearranging the polling order
. 1 of the sessions from time to time. This might ensure that the system enters
3

': very unfair configurations only rarely and only for brief periods.
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arising from the initiation and termination of sessions and from changes in

session demands, and the cross-network delay. Unfortunately, since many of
these performance measures are very sensitive to the network topology, the

session routes and demand rates, and the initial conditions, such a study would
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APPENDICES

This section contains three lemmas. Lemma 8 shows that if a certain type
of function G(s,t) is linear in ¢—s to within given error bounds, then
tighter error bounds apply for sufficiently large s and ¢t. Lemma 9 bounds the
probability that a Bernoulli process segment of a given length will have a given
degree of smoothness. Lemma 10 uses the strong law of large numbers to

compute the following limit:

. 91 91+ 92 g1+ 92+ *° + g
lim max |0, —, —m, ...,
g—> q q q

for independent, identically distributed random variables g¢,, g5, ...

o
)
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A.l1 Lemma 8: Symmetry of Upper and Lower Bounds in Steady State

Let g(*) be a real function of an integer argument. Define a real function

G(*,*) with integer arguments as follows:

(334) s t) = B olv)

yms+1

(Note that G(s,t)=0 for s > t.) Let T be some integer, and let r, f/,

and f” be some real numbers. Suppose that, for all integers s and ¢ satisfying

T<s<t,
(335) - < G(s, t) - ,..(t - s) < g

It follows that, for every positive real number e, there exists an integer

T, > T such that, for all integers s and ¢ satisfying T, < s < t,

(338) — min[j’, (" + e)] < G(s,t) —r(t—=s) < min [f", (f’+ve)]

Proof of Lemma 8
Assume that
(337) TR

(The proof for f’ > f" is similar and will not be presented.) Because of
assumptions (337) and (335), most of (336) is trivially true. All that must be
proved is this: for every positive real number ¢, there exists an integer

T, > T such that, for all integers s and ¢ satisfying T, < s < ¢,
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'!

i (338) G(s,t) < re(t—35s) + f' + ¢

: . The proof will be by contradiction. Suppose that there exists a positive real
number ¢ such that, for all integers T > T, there exist integers s and ¢ such
that 7 < s <t and such that

‘.l

4 (339) G(s, t) > r(t—s) + [ + ¢

) For any positive integer K, this supposition can be applied repeatedly to

",

:r:: construct a sequence of integers s,, ¢;, so, t3, ... , Sg, txy such that

<

e, T< 5 <t <55 t, < *°° < sg < ty and such that

3 (340)  G(sg,t) > r(ty — &) + f' + ¢ for k=1,2,..,K

Summing (340) over k yields:

- K K
v (341) kZlG(sk v b)) > "kEl(tk —-5) + K[ + K-
\
. Now apply assumption (335) to G(¢,, sa), G(ty, $3), - » G(tg~1, 5x) and
N
N sum over k.
¥ K-1 K-1
Y Gt see1) 2 8 [T‘(Sk+x - 4) - f']

. k=1 k=1
Al
]
[- K-1
N (342) = 1Y (Spe1 = b)) — (K = 1)/’

k=1
: (Note that (342) holds even if A = 1.) Definition (334) can be used to add
> (341) and (342) together.

---------



-

¥s s s 8 2 2 A

% ]

P

»

by

?,'."n'." ;: "

A 1Y

tx
G(slvtK) = 2 g(u)

=5+ 1

[ K t;
= |y ¥ gu)| +

I_I:-l gm g+ 1

K-1 St+1
)IDY 9(u)]

k=1 yumt,+1

s K-1
= kZ G(se» te)| + /:E G(te » Sk+1)
=1 -1

[ K
> T'E(tk—sk) +K'f' + K-¢
k=1

K-1
+ [r°k¥1(sk+l - t) — (K- 1)'f']

(343) = re(tg —8) + Ke + [

For sufficiently large K, viz.:

(344) K > -f"—:/—'

relation (343) contradicts assumption (335). This completes the proof of

Lemma 8.
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3
'\\ A.2 Lemma 9: Smoothness of a Bernoulli Process
™ Let g(t) be a Bernoulli process withrate u, 0 < u < 1. Let G(s, t) be
‘

N
¥ the number of successes among g(s+1), g(s+2), ... , g(¢); note that
. G(s,t)=0 if s > t. For any positive real number A, any integer T, and
™ any positive integer 7, it follows that

2

' 1G(s, 1) = p(t — )] < & ,
- (345)  PROB {for all s, t suchthat T< s <t < T+r7 2 1- A2
N
- Proof of Lemma 9
::-j Let s and ¢ be any integers such that T < s <t < T+7. Note that
]

] (346) G(s,t) = G(T,t) - G(T, s)

"

. Consequently, if
[
0 A

i G(T,s) —w(s—T)| £ =

}c
e and

-

. A
4 1G(T, ¢) —w(t-T)| € =

v 2

N

.'

N then

: 1Gls. ) —w(t—s)] < A

:

" Therefore, to prove (345) it suffices to show that

\E

\'

\.
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A
\ 6(T,0) —ww=T) £ =
- T
) (347) PROB | for all u such that T < v < T+4r 2 1- A2
(
9 This is the same as proving that
4
) K A
| $© G(T+k—=1, T+k) — pK| < >
k=1 r
A (348) PROB for all K such that 1< K< 7 Z1- A2
Inequality (348) follows from Kolmogorov's inequality [3] and the fact that
VARIANCE { G(T, T+7)} = p(1—p)r
T .
: (349) < 1
. This completes the proof of Lemma 9.
2
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) A.3 Lemma 10: A Corollary of the Strong Law of Large Numbers
.

A Suppose that g¢;. g, ... are independent, identically distributed random
0 variables with mean p. For all integers K and ¢ such that 0L K<g,
L,
:Q define GqK and G, as follows:

)8

+ ) K

- 1

« (350) GF = =. vy

, 9 k=1
Y

>

“~
[

N 351 G, = Gk

;- (s3) T o TRE,
[ It follows that, with probability one,

S

N

.

: (352) G, % max0, 4

- =+

- Proof of Lemma 10
. It follows from (350) and the strong law of large numbers [3] that, with
S
7 probability one,

-
r (353) GE —> 4

- K—+ 00

S; This means that there exists a subset T of the sample space such that
o,

4
- and such that, for every sample point ~ in " and every positive real number ¢ ,
& there exists a positive integer Q(v, €) such that

.3
.
‘~
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(355) | GE(v) —u| < ¢ for all K > Q(v, ¢)

To prove (352), it will be shown that for every ~ in ' and every positive real

number ¢ , there exists a positive integer Q'(v, €) such that
| Gy(v) — max[0, ] | £ ¢ forall ¢ > Q'(v, €)

Let v be any sample point in " and let ¢ be any positive real number. Define

Q'(7, €) as follows.

Q(, €)

(356) Q'(v, €) = max [Q(’r, €), [-i— )y ng('y)IH
k=1

Let ¢ be any integer such that

(357) 7 2 Qe

The goal is to show that

(358) | Gj(7) — max{0, u] | < ¢

First, let us find 2 lower bound for G,(7). It follows from (351) and (350)

that
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0<K<g¢

(359) > —¢

Using (351), (353), (357), and (356), a different lower bound can be found:

G,(7) = max GqK('y)

0SK<q¢
2 G{(v)
(360) 2 b
Combining (359) and (360) yields:
(361) G,(v) 2 max[0, u] — ¢

This is half of the desired result (358).

Now an upper bound can be found for G,(~) by proving the fcilowing

bound for Gf(v) .

(362) th(“{) < max[0, u] + ¢ for K=0.1,...¢q

The small and large values of K must be treated separately. For

0< K < Q. ¢), apply (350}, (357), and (356):




s
. l“l" I.l'l

Pk 0t

CRAS o o 4

< max[0, 4] + €

For Q(v,¢) < K < ¢, apply (350) and (353):




------
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GHq) = %' 5_}1 gx(7)

K 1 K
——— @ —— g 7
q K kz_:1 k( )

K
r GE)

IA

‘Iqi'(#+e)

IA

-%— * (max(0, u] + €)

< max[0, u] + ¢

This completes the proof of (362). From (351) and (362), it follows that

m ck
Osf?éq ! ™)

Gy(7)
(363) < max[0, u] + ¢

This is the second half of the desired result (358), completing the proof of

Lemma 10.
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N'(l)

N(z, k)

N(z)

N
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GLOSSARY OF NOTATION

MEANING

Time interval from beginning of slot s
to end of slot ¢; nullif s > ¢

Same as [s+1, ¢]
Same as s, t—1]

Same as [s+1, t—1]

Number of sessions in network

Number of sessions using link {

Number of sessions using hop A of
session z

Maximum number of sessions using any
link in path of session z

Maximum number of sessions sharing
any link in network

Number of links in path of session z

Maximum number of links in path of
any session in network
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m(z, k)
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P(z, h,s,t)

P'(z, !, s,t)

WA
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Window size (capacity) for buffer & of
session z

Maximum window size for any session z

at any buffer A in the range
1< k < H(z)

Maximum window size for any session z

at any buffer A in the range
2< h < H(z)+1

Level of buffer k of session z at time ¢

Time when throughputs and buffer
levels stabilize

Minimum level of buffer A of session z
after time Tss

Maximum level of buffer 2 of session z
after time TSS

Throughput (number of transmitted
packets) for session z over hop & during
interval (s, ¢]

Throughput (number of transmitted

packets) for session z over link [ during
interval (s, ¢t
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Ry(z)

T(z, k, p)

(z, p)

Clz, h, s, t)

C'(z, 1, s, t)

A'(l)

A(z, k)
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Long-term average throughput of
session z

Time slot during which session =z
transmits packet p over hop 4

Cross-network delay for packet p of
session T

Number of chances for session z to
transmit over hop & during interval
(s, t]; C(z,0,s,t) is number of
attempts by z to insert packets into
buffer 1 during (s, ¢

Number of chances for session z to
transmit over link ! during interval

(s, ¢]

Schedule delay bound for link {

Schedule delay bound for hop A& of
session I

Maximum schedule delay bound for any
link in path of session z

Sample space consisting of all possible
sample paths of system demand

Demand rate of session z

wn
o
(3]




Rp(?) i®* smallest distinct fair rate; fair rate § 4.1
for any session with congestion index ¢

I(z) Congestion index of session z § 4.1
I Number of distinct fair rates; §4.1
maximum congestion index of any
session
R (z, k) Lower bound on fair rate of chances for § 4.1

session z at hop A

R'c(z, 1) Lower bound on fair rate of chances for §4.1
session z at link {

Dep, Egp, Fer Functions used as lower bounds on §4.2 >
numbers of chances received by sessions

Dpy, Epr, Fpr, Functions used as lower bounds on § 4.2
numbers of packets transmitted by
sessions
Dpy, Epy, Fpy, F"py Functions used as upper bounds on §4.2
numbers of packets transmitted by
sessions
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