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for achieving throughput fairness. The fair session rates are not explicitly
computed, and the only overhead communication is that required for the window
acknowledgements. The main drawback is that large windows are needed to
achieve even approximately fair throughputs in some systems, and large windows
permit large cross-network delays. This may be intolerable for some users.However, the thesis also shows that if a session elects to use small windows,
its packets are guaranteed to experience small cross-network delays, and acertain lowerbound on its service rate is still guaranteed. (This service

rate determines the maximum session throughput rate that can be supported and
also roughly determines, for a given throughput rate, the delay of packets
waiting to be admitted to the network.) These guarantees for sessions with
small windows apply even if other sessions in the network are using larger
windows. Thus the round robin method seems to be well suited to integrated
services networks. Delay-sensitive sessions can use small windows to meet

their needs, and the-remaining transmission capacity can be fairly divided
among the other sessions by assigning them large windows. Moreover, a session
with throughput and/or delay requirements too stringent to be met simply by
proper window sizing could be given priority service by being visited more than
once in each polling cycle.
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ABSTRACT

This thesis studies a simple strategy for fairly allocating link capacity in a
point-to-point packet network with virtual circuit routing. Each link offers its
packet transmission slots to its user sessions by polling them in round robin

* order. In addition, link-by-link window flow control is used to prevent

excessive packet queues at the network nodes. As the window size increases,
the session throughput rates are shown to approach limits that are perfectly
fair in the max-mmn sense. That is, the smallest session rate in the network is
as large as possible and, subject to that constraint, the second-smallest session
rate is as large as possible, etc. If each session has evenly spaced packet
arrivals or has such heavy demand that packets are always waiting to enter the
network, then a finite window size suffices to produce perfectly fair throughput
rates. (These properties do not hold if f1irst- come- first-se rved scheduling is
used instead of round robin.)

The round robin method is considerably simpler than other known
strategies for achieving throughput fairness. The fair session rates are not
explicitly computed, and the only overhead communication is that required for

the window acknowledgments. The main drawback is that large windowvs are
needed to achieve even approximately fair throughputs in some systems, and
large windows permit large cross-network delays. This may be intolerable for
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some users. However, the thesis also shows that if a session elects to use small
windows, its packets are guaranteed to experience small cross-network delays,
and a certain lower bound on its service rate is still guaranteed. (This service

rate determines the maximum session throughput rate that can be supported
and also roughly determines, for a given throughput rate, the delay of packets
waiting to be admitted to the network.) These guarantees for sessions with

small windows apply even if other sessions in the network are using larger
windows. Thus the round robin method seems to be well suited to integrated

services networks. Delay-sensitive sessions can use small windows to meet their
needs, and the remaining transmission capacity can be fairly divided among the
other sessions by assigning them large windows. Moreover, a session with
throughput and/or delay requirements too stringent to be met simply by
proper window sizing could be given priority service by being visited more than
once in each polling cycle.

Keywords: round robin, cyclic service, polling, window, flow control, fairness,
throughput, delay, integrated services, data communication,
computer communication, packet switching, network, queuing,
traffic, scheduling, optimization.

Thesis Supervisor: Robert G. Gallager
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1. INTRODUCTION

1.1 Problem Statement and Background

Consider a data communication network consisting of store-and-forward

switches (nodes) joined by point-to-point communication channels (links).

Each network user (session) is assigned a fixed path (virtual circuit) through

the network, and data for the session are'sent in manageable parcels (packets)

along this path. In such a network, occasional surges in user demand can

overload network links, causing packet queues to build up in network nodes.

These queues may eventually overflow the nodes' storage space, or the delay of

acknowledgments may cause transmitters to assume that data were lost. These

problems result in wasteful retransmissions that effectively reduce the capacity

of the network. Flow control procedures attempt to prevent or alleviate this

degradation by regulating the appropriate traffic sources. Gerla and Kleinrock

[101 discuss many of the flow control techniques that have been proposed in the

literature.

One such scheme is the window method [101. This technique limits the

number of packets for each session that have been transmitted but for which

acknowledgments have not yet been received. The maximum permissible

number of outstanding packets is called the window size. In the ed-to-t;,

method, a single window is applied to all of a session's traffic, and the session's

destination node sends an acknowledgment to the origin node whenever a

packet is claimed by the session's sink. In the link-by-link or node-by-?ode

:p



method, the session has a separate window for its traffic over each link, and

whenever a packet is transmitted from a node, that node sends an

acknowledgment to the packet's preceding node. The link-by-link method is

equivalent to each session having a dedicated storage area (buffer) at each node
4'

in its path; the buffer capacity equals the window size. The window method is

described here because it is a component of several more elaborate strategies to

be discussed later.

It would be desirable for flow control procedures to regulate network inputs

so as to grant each session a fair throughput rate. Gerla and Kleinrock [10]

explain that many proposed flow control methods are unfair. Several studies

have addressed the issue of throughput fairness, however, and these will now

be briefly discussed.

The problem of achieving fair throughput rates can be broken into three

parts. First the fairness objective must be formulated precisely. Then the fair

session rates must be determined. Finally, these rates must be enforced.

Hayden [13: Chapter 3], Regnier [23], Golestaani and Gallager [12, 8], Gerla and

Staskauskas [11: Section 5.2], Thaker and Cain [26], Ibe [14], Gafni [5: Sections

4 and 6.2], Sauve, Wong and Field [24, 25], and Bharath-Iumar and Jaffe [1.

1S] have objectives of roughly the same form. They seek to maximize a sum of

functions, one for each session. For Hayden, each term gives the satisfaction of

a session as a function of its throughput ratc. Regnier considers both the

throughput rate of a session and its average packet delay. Golestaani and

...

' . % • - - % ~~~''. * • , % \% ' . . 'a -. * - . • • • ',% .%"
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Gallager, Gerla and Staskauskas, Thaker and Cain, Ibe, and Gafni express a

session's happiness as a function of only its throughput rate, but extra terms

are added to penalize high link delays. Sauve, Wong and Field use a

performance measure that depends on the ratio of a session's throughput rate

to the total network throughput rate. Bharath-Kumar and Jaffe measure a

session's success by its power (i.e., throughput divided by delay) or the

logarithm of its power. Another fairness approach, called max-min flow control

or bottleneck flow control, is used in various forms by Bially, Gold, and Seneff

[21, Jaffe [18, 17], Gerla and Staskauskas [11: Section 3], Hayden [13: Chapter

4], Gafni [5: Chapter 31, Gafni and Bertsekas [6], Oshinsky [221, and Mosely

[20]. Only the simplest version of this objective, viz., Hayden's, will be defined

here. To satisfy the max-min flow criterion, the smallest session rate in the

network must be as large as possible. Subject to this constraint, the second-

smallest session rate must be as large as possible, etc. Given a network with its

link capacities and a set of sessions with their routes and their maximum

possible transmission rates, there is a unique set of session rates that satisfies

the max-min conditions. The max-min flow criterion will be taken as the

definition of throughput fairness in this thesis. Most of the studies mentioned

in this paragraph also develop algorithms for computing session rates that are

fair according to the various criteria. Many of these algorithms are meant to

be implemented in a distributed manner. (In an interesting twist, Jaffe and

Bharath-Kumar [18, 1] argue that power is not a suitable objective because it is
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neither convex nor decentralizable; algorithms to optimize power would be

impractical.)

Beyond the issues of defining and computing fair rates is the problem of

enforcing them. Several methods have been suggested in the literature.

Golestaani and Gallager 12, 8], Thaker and Cain [261, Ibe [14: Section 4.71,

Gafni [5: Chapter 5], and Gerla and Staskauskas [11: Section 5.21 use window

flow control and adjust the sessions' window sizes to achieve the desired rates.

Bially, Gold and Seneff [21, Hayden [13: Chapter 5], Mosely [20], Ibe [14: Section

4.2], Gafni [5: Chapter 31, and Gafni and Bertsekas [6] consider a session input

control that produces packet lengths proportional to the session's assigned

rate. The time between packet admissions is constant. This model is

particularly meaningful for packetized voice traffic: it represents the output of

a variable rate vocoder [2]. Oshinsky [22] takes the opposite approach, called

metering. Time is divided into control intervals whose length is inversely

proportional to a session's target rate. The session is permitted to inject some

fixed quantity of data into the network during one control interval. A fourth

approach, taken by Mukherji [21] and Sauve, Wong and Field [24, 25] is to

schedule the use of the links among the various sessions. These studies assume

that window flow control is also used, but it is primarily the schedule

parameters rather than the window sizes that are adjusted to achieve the

desired session rates.

'.

_ . . * . *..
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This thesis studies the following new method proposed by Gallager [7, 9] for

max-min fair flow control. Each link offers its packet transmission slots to its

users by polling them in round robin order. If a session is offered a chance to

use a link slot but has no packets ready, then that same slot is offered to the

next session, and perhaps the next, etc., until a ready session is found. In each

pass of a link's round robin, a session may transmit only one packet. The

round robin schedulers for the various links are uncoordinated. In order to

prevent excessive queues at the network nodes, window flow control is also

employed. The principal contribution of this thesis is a proof that round robin
t

scheduling with windows can indeed be used to achieve max-min throughput

fairness.

The main advantage of the round robin method is its simplicity. The

desired rates are never explicitly computed, as they are for other fair flow

control schemes. The only overhead communication is that required for the

window acknowledgments. The window sizes need not be adjusted as network

conditions change. An obvious price paid for this simplicity is a lack of

flexibility. The strategy is coupled to the max-min criterion and probably

cannot be adapted to fairness objectives substantially different from max-min.

(Session priorities can be implemented, however, by allowing some sessions to

transmit more than one packet over a link in each polling cycle.) Another

drawback is that large windows are needed to ensure throughput fairness for

some networks, and large windows permit large cross-network delays.

.-e. . . . , . . . - - , . .
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However, the thesis also proves certain throughput guarantees that apply even

for sessions using small windows.

.7 1.2 Thesis Overview

The system model assumed throughout this thesis is described in Chapter 2.

The network is composed of nodes with ample storage connected by point-to-

point, error-free links with negligible propagation delays and equal capacities.

Uniform packet lengths are also assumed, so that the time required to transmit

one packet over one link is, the same for all packets and all links. This

fundamental time unit is called a slot. The network supports a fixed set of S

sessions. Virtual circuit routing is used, with no more than H links in the path

of any session and no more than N sessions sharing any single link. Window

flow control operates on a link-by-link basis, with window sizes of at most W

packets. Several link scheduling disciplines are modeled, including round

1 robin, first- come-first-se rved, and a generalization of these called bounded

delay scheduling. A link scheduling discipline is said to have bounded delay if

any session with an open window is guaranteed at least a certain service

frequency. A variety of deterministic and random models are considered for

packet arrivals, but packets are assumed to depart as soon as they reach their

destination nodes.

Chapter 4 studies the session throughputs in systems using round robin link

scheduling and large windows. There are two major results, one assuming
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bursty packet arrivals and one for smooth demand. Theorem 4 asserts that, for

Bernoulli packet arrivals, the session throughput rates approach the max-min

fair rates as the window sizes increase (provided they all increase at the same

rate). If each session has evenly spaced packet arrivals or has such heavy

demand that packets are always waiting to enter the network, then the traffic

admitted to the network will be rather smooth. For this model, Corollary 1

claims that the long-term average throughputs equal the fair rates if the

windows are at least a certain size k, . Chapter 4 includes several other

results for this smooth demand model. In Theorem 2, the throughput of a

U... session during any finite interval is shown to be within a constant k2 of the

max-min fair number of packets (regardless of the length of the interval). This

constant k 2 is proportional to the window size, because the system cannot

reach a steady state until the buffers upstream of a session's most congested

link fill up with packets and the downstream buffers drain. According to

Theorem 3, a steady state is eventually reached; thereafter, the unfairness of a

- session's throughput over any interval is less than another constant k3 < k.

This steady-state unfairness bound k3 is less than the minimum acceptable

window size k, , but is independent of the actual window sizes. This suggests

that using windows larger than the minimum required value k, may cause a

longer transient, but probably does not affect the throughput performance of

the system in steady state. Corollaries 3 and 4 show that, in steady state,

buffers upstream of a session's most congested link are never empty, while

[°5
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buffers downstream are never full, so that the session accepts every chance

offered to it by the round robin scheduler at its most congested link. (Of

course, the term "most congested link" must be precisely defined, and if a

session has more than one such link, the results are more complicated.)

Unfortunately, the minimum window size k1 for which Corollary 1 proves

perfect fairness of the long-term average throughputs is absurdly large and

grows exponentially in S. Moreover, recall that for the bursty demand result,

no finite window size was sufficient. One wonders how large the windows must

be to achieve at least approximate fairness in practice. In Example 3, the

session throughput rates are quite unfair unless very large windows are used.

The example, however, is somewhat contrived, leaving open the question of

performance for "typical" systems. Also included are Examples 6 and 7, which

use first-come-first-served link scheduling instead of round robin scheduling.

In these examples, the session throughput rates are unfair even if large

windows are used. The throughput rates are shown to be very sensitive to the

relative window sizes of competing sessions and to the initial conditions of the

system, even if the windows are large. This contrasts sharply with the round

robin results.

Chapter 4 seeks max-min fair throughputs. asking how large the windows

must be. Chapter 5 takes a different approach. It assumes only that the

window sizes are at least two packets and asks how unfair the throughputs can

be. Bounded-delay link scheduling is assumed, and bursty demand is
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permitted. The chapter presents two theorems that differ in their assumptions

about how many packets can be stored at a session's source. Theorem 6 shows

that if round robin scheduling is used, then the throughput rate of a session

with demand rate X packets/slot and unlimited source buffering is at least

min(X , 1/N] packets/slot. This throughput guarantee is within a factor of N

of the max-min fair rate. The analogous bound for first-come-first-served

scheduling is roughly min(X , 1/(N W)] packets/slot. This throughput

guarantee is worse than the round robin guarantee by roughly a factor of W if

X is large. Theorem 5 gives other throughput guarantees for sessions whose

source buffers are finite but hold at least two packets. These guarantees are

too complicated to describe here, but if the session's demand rate X > 1

packet/slot, then the guarantees match those given above for unlimited source

buffering. Round robin Example 1 (Section 3.2) and first-come-first-served

Example 2 (Section 3.3) show a session x with demand rate X = 1 packet/slot

whose throughput rate (for either source buffering assumption) matches the

theoretical lower bound. t Example 3 (Section 4.4.2) shows that, with round

robin scheduling, the throughput rate of a session with heavy demand and

In the first-come-first-served example, however, session x must have at least
one window of size two packets, while the other sessions may have arbitrarily
large windows. I suspect that if all sessions are required to have the sam-t
window size IV and IV is arbitrary (except that W 2 packets), then th,!
worst case throughput for first-come-first-served systems is roughly half that
of round robin systems. Moreover, a different implementation of first-come-
first-served scheduling than that assumed here might perform better.
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small windows really can be unfair by a factor proportional to N. For first-

come-first-served scheduling, Example 7 (Section 4.6.2) shows an unfairness

factor proportional to N and Example 2 (Section 3.3) shows an unfairness

factor roughly equal to W.

While throughput fairness is the primary focus of this study, cross-network

delay is also of interest. Consider a session x whose window size w is at least

two packets. Of course, Little's formula [19, 41 can take a given lower bound of

R packets/slot for x's throughput rate (such as the bounds given in Chapters 4

and 5) and generate an upper bound of roughly w'H/R slots for the average

cross-network delay of x's packets. Theorem 1 of Chapter 3, however, derives

an upper bound on delay that applies to each packet and is tighter in some

cases than the bound from Little's formula. The theorem assumes bounded-

delay link scheduling. For round robin scheduling, the upper bound on x's

cross-network delay is roughly w'H-N slots. The analogous bound for first-

come-first-served scheduling is roughly w-H'N- W slots - worse by a factor of

W. Round robin Example 1 and first-come-first-served Example 2 show

packets whose cross-network delays come close to the theoretical upper

bounds. t

, In the first-come-first-served example, however, session x must have at least
one window of size two packets, while the other sessions may have arbitrarily
large windows. I suspect that if all sessions are required to have the same
window size W and V is arbitrary (except that W > 2 packets), then the
worst case delay for first-come-first-served systems is roughly twice that of
round robin systems. Moreover, a different implementation of first-come-
first-served scheduling than that assumed here might perform better.
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2. SYSTEM MODEL

This chapter presents a system model to be studied in Chapters 3, 4 and 5.

The model features uniform link capacities, uniform packet lengths, a fixed set

of users, virtual circuit routing, and link-by-link window flow control. Several

link scheduling disciplines are modeled, including round robin, first-come-first-

served, and a generalization of these called "bounded delay" scheduling. A

variety of deterministic and random models are considered for packet arrivals,

but packets are assumed to depart as soon as they reach their destination

nodes.

2.1 Nodes, Links, Packets, and Time

The network consists of store-and-forward nodes joined by point-to-point

links. A link allows communication in only one direction. If two nodes are

connected by link(s) in one direction, then they must be connected by at least

one link in the reverse direction so that flow control acknowledgments can be

returned. Except for this restriction, two nodes may have any number of links

connecting them.

Links are perfectly reliable, i.e., they never lose or corrupt data. and they

never fail. Nodes, too, are perfectly reliable, and the storage capacity of each

node is infinite.

Data are transmitted through the network in packets of equal length. A

A
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I
time interval during which one packet is transmitted over a link is called a

time slot for that link. All links have the same capacity; hence all time slots

have the same length. A packet experiences no processing delay at a node,

other than a possible queuing delay as it waits for transmission. A packet

experiences no propagation delay on a link. The transmission time slots of all

links are synchronized; hence the entire network operates with slotted time.

Although the operation of the system during a time slot will occasionally be

discussed, a discrete-time system model will normally be used in which the tth

discrete-time instant, called time t, refers to the end of the tth time slot. The

model begins at time 0.

It is often necessary to refer to intervals longer than one slot. Let Is, t]

denote the interval from the beginning of slot s to the end of slot t ; if

s > t ,then [s, t] is null. Define (s, t], [s, t) , and (s, t) as follows:

(1) (s, t] = [s+l, t]

(2) [, t) = [s, t-1]

(3) (s, t) = [s+I, t-1J

2.2 Sessions, Routes, Throughputs, and Delays

The network supports one-way communication activities called se..s:u.<.

Each session is assigned a path (i.e., a sequence of appropriately directed links)

through the network from its origin node to its destination node: data packets

for the session are transmitted along this path. Several sessions may have the

- * . . .



-21-

same origin and destination nodes. The set of sessions using the network is

fixed. Let S denote the number of sessions using the network, and let N'(1)

denote the number of sessions using link 1.

While all links have global identifiers, it is often convenient to index links

in the order in which some session uses them. Therefore, let H(x) denote the

number of links in the path of session x, and let H be the maximum number of

links in'the path of any session:

(4) H = maxH(x)
z

For each session z and for h = 1, 2, ... , H(x) , define hop h as the hth link

in the path of x, including the related functions in the node at the input end

of that link. To streamline the analysis, packet arrivals and departures are
.4.

modeled as transmissions over dummy hops. The session's source is hop 0.

The session's sink is hop H(x)+l . The source and sink are considered to be

hops but not links. For h = 1, 2, ... , H(x) , let N(x, h) denote the number

of sessions using hop h of session x, including x itself. Let .\(x) be the

maximum number of sessions using any link in the path of x

(5) N()= max N(x, h)
1< h< H(z)

Let N be the maximum number of sessions sharing any link in :he , ,-r :

(6) N = max N(x) = max N'(1)
z

%,

'S
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Packets waiting to be transmitted over hop h of session x,

0 < h < H(x)-±1 , are said to be in buffer h. The number of packets in buffer

h of session x at time t is called the buffer level B(x, h, t) . For convenience,

packet arrivals for session x are modeled as occasional services at hop 0. Buffer

0 is assumed to contain an infinite number of packets at time 0. In each time

slot, the session's source (hop 0) transfers either one packet or no packets from

buffer 0 to buffer 1. Therefore, for all times t > 0,

(7) B(X,0, t) = 00

The only significance of (7) is that buffer 0 is never empty. The initial levels

B(x, h, 0) of the buffers h = 1, 2, ... , H(x) are assumed to be finite but are

not necessarily zero.t It is assumed that the initial level B(x, H(x)+l, 0) of

buffer H(x)+1 is at most one, and that the session's sink is very fast. t That

is, whenever B(x, H(x)+l, t-1) > 0 , hop H(z)+1 removes one packet from

buffer H(x)+i during slot t. Therefore, for all times t > 0,

f Since the initial buffer levels can be positive, the assumption of a fixed set of
sessions is less restrictive than it appears. The approach here is equivalent to
studying a more realistic model, one with a dynamic set of sessions. during
an interval in which no existing sessions are terminated and no new sessions
are initiated.

Fast session sinks have been assumed for simplicity. This assumption could
be relaxed by using a sink model similar to the source model.
Straightforward modifications would adapt Chapter 4 to such a model. It is
not clear whether Chapters 3 and 5 could also be generalized.
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(8) B(x, H(x)+1, t) < 1

The throughput (measured in packets) of session x over hop h,

0 < h < H(x)+1 , during interval (s, t] is denoted by P(x, h, s, t). For

s > t, P(x,h,s, t) is defined to be zero. Note that, for s < t < u,

(9) P(x, h, s, u) = P(x, h, s, t) + P(x, h, t, u)

If link I is hop h for session x, then P'(x, 1, s, t) is defined to equal

P(x, h, s, t) . There is a simple and obvious relationship between buffer levels

and throughputs. For any session z, any buffer h of x in the range

1 < h H(x)+1,and any timess and t such that 0 s < t

(10) B(x, h, t) = B(x, h, s) + P(x, h-, s, t) - P (, h, s, t)

The long-term average throughput RA (x) of a session x is defined as follows:

(11) RA(x) liM P(x, H(x), 0, t)
t- CO t

This limit may not exist for systems with irregular demand.

Sequence numbers are assigned to the packets of each session x. If buffers

h = 1, 2, ... , H(x) contain any packets at time 0, then the one farthest

downstream is called packet 1; if these buffers are initially empty, then the

first packet to arrive at buffer 1 after time 0 is called packet 1. The packet

following packet 1 is called packet 2, etc. (If buffer H(x)-I-1 initially contains

a packet, that packet gets no sequence number.)

. -4. , ' ' ,. "., .. . . . , ', .- ,. ,. " ' . . , . - . - . - - ." - .' - . . ' " .' . ' . . . - . . .'p ; :':- ' , :: ' ' ,.o,.., ,' . •',. , .,-.. ..:- :: .....-. . . -/ - ..,. . .... ...
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Let T(x, h, p) denote the time slot during which packet p _ 1 of session

x crosses hop h, 0< h H(x)+I . For convenience, let T(x, h, p) be

defined for all integers p, with T(x, h, p) = 0 if p < 1 or if packet p is

farther downstream than buffer h at time 0. If a packet p _ ! I gets stuck in

a buffer ', 0 < < H( ), and never advances, take T(z, h, p) = oo for

h" h _ H(x)+1 Consider the following claim:

(12) T(x, H(x)+, p) :_ T(x, H(z), p+1) for all integers p

For p < 1 , (12) holds because its left-hand side equals zero. For p '_ 1, (12)

holds because the assumptions about buffer H(x)+1 and hop H(z)+i imply

that

T(x, H(x)+1, p) = T(z, H(x), p) + 1 < T(x, H(x), p+1)

For each packet p > 1 of session x that gets beyond buffer 1 (i.e., for

which T(x, 1, p) <c c), define the cross-network delay 2(z, p) as follows:

(13) ':(x, p) = T(x, H(x), p) - T(x, 1, p) + 1

This measures the transmission delays across hops 1 through H(x), inclusive,

plus the queuing delays in buffers 2 through H(x) ,inclusive.

2.3 Link-by-Link Window Flow Control

The capacity (in packets) of a buffer h of a session x, 0 < h H g(x)+ I

is called the window size associated with that buffer and is denoted by

6 .- . .. .. . -. . . -. .. .. . . .. . . . .- . .. . . : .- . . . . : . : . . ;.. .: ::- -; . . . . . . -: . .
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W(x, h). For each session x, buffer 0 has infinite capacity:

(14) W(x,0) = oo

The capacity W(x, 1) of buffer 1 may be either finite or infinite; this permits

a wider variety of packet arrival models. The buffers h in the range

2 < h < H(x) must have finite capacity. The capacity of buffer H(x)+1 is

assumed to be at least two but finite:

(15) 2 < W(x,H(x)+1) < oo

It follows from (15) and (8) that
m0

(16) B(x, H(x)+1, t) < W(x, H(z)+ 1)

for all times t > 0 . In other words, buffer H(x)+I is never full. Buffers 2

through H(x)+1 are required to be finite for two reasons -- to bound the

cross-network delay, and to keep individual sessions from consuming grossly

unfair amounts of link capacity. Each result in Chapters 3, 4 and 5 requires its

own additional assumptions about the window sizes. The maximum window

size for any session x at any buffer h in the range 1 < h < H(x) is denoted

by W:

(1) I, = max IV(z, h)
z,h: 1< h< H(x)

The maximum window size for any session x at any buffer h in the range

2< h < H(x)+ 1 is denoted by W":

' 4.
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(18) W max W(x, h)
z,h: 2< h< H(z)+ 1

To keep each buffer h in the range 1 < h < H(x)+l from overflowing,

the following restriction is placed on the flow over hop h-1 during every slot

t > 1: if buffer h is full at the end of slot t-1, the window is said to be

closed, and session z may not transmit a packet over hop h-1 during slot t.

In other words,

(19) B(x, h, t-1) z= W(x, h) implies P(x, h-1, t-1, t) = 0

This restriction is implemented using logical quantities called permits. Buffer h

has W(x, h) permits permanently associated with it. Every packet waiting in

buffer h holds a permit for buffer h, and any leftover permits for buffer h are

stored at hop h-1 . A packet being transmitted over hop h-1 must carry

with it a permit for buffer h. (If none are available at hop h-1 , then the

packet may not be transmitted.) Whenever a packet is transmitted over hop h

(i.e., removed from buffer h) during a time slot t, the packet relinquishes its

permit for buffer h, and hop h returns this permit upstream to hop h-i

during that same slot t. t The return of permits is accomplished in the

tIn this model, link transmission is error-free. Hence, it is possible for hop h

to know, at the beginning of a slot t, that a packet p will be successfully
transmitted over hop h during slot t. Therefore, hop h can safely send
packet p's permit for buffer h back to hop h-1 during slot t. In a real
network, with imperfect transmission, the error control process (i.e., link
layer protocol) for hop h could have its own storage area where the packet p
is transferred during the slot t in which its transmission is first attempted.
With this arrangement, hop h could still send packet p's permit back to hop
h-1 during slot t without risking buffer overflow.

4
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following way. A permit for buffer 1 is returned by having the session's origin

node notify the session's source (i.e., hop 0). A permit for a buffer h in the

range 2 < h < H(x)+1 is returned to hop h-1 by transmitting a notice

over some link with direction opposite to hop h-1 . This notice requires few

bits and can be piggybacked onto a data packet if any are available. Therefore

the link capacity required to implement permits will be ignored. t

2.4 Link Scheduling

At any link, packets for any particular session are transmitted in the order

in which they arrived from their preceding hop. Packets from different

sessions, however, are not necessarily transmitted in order of arrival. Each link

has a scheduler to decide which session will use the link during each time slot.

Various scheduling disciplines are possible. This section describes round robin

scheduling, first-come-first-served scheduling, and a generalization of these

disciplines called bounded delay scheduling.

t Consider a session x that is the sole user of each link in its path. Suppose x
has heavy demand; i.e., it inserts a packet into buffer 1 whenever that
buffer is not full. If x's window sizes are at least two, then its long-term
average throughput RA(x) equals one, the link capacity. However, if
W(x, h) = 1 for some h, then RA(x) can be no more than Y2 . For this
reason, a window size of two seems to be the smallest practical value.

" --. - a-. . . . . . . . . .
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2.4.1 Round Robin Scheduling

To implement a round robin discipline, the scheduler for link I consults a

fixed data structure consisting of session identifiers arranged in a directed ring.

Each session using I appears exactly once on this round robin ring. The link

scheduler also maintains a variable called the ring position that points to some

session on the ring. Whenever a session x transmits a packet over I in a time

slot, the ring position is updated to x during that slot.

Consider the scheduling of slot t at link 1. Let session x be the ring

position at the end'of slot t-1 . Let y be the session immediately following z

on the ring. During slot t, the link scheduler searches the ring, starting with

y, until it finds the first session z that has both packet(s) and permit(s)

available; i.e., z must satisfy

B(z, h, t-1) > 0

and
B(z, h+1, t-1) < W(z, h+1)

where h is the hop number of link I for z. A packet for session z is

transmitted over I and the ring position is updated to z during slot t. If the

ring is searched through session x without success, then the searca stops after

z, the ring position remains at x, and nothing is transmitted over I during slot

t.

Each session examined in the search described above is said to have been

offered one chance to use link 1. Let C'(z, , s, t) denote the number of

4'.
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chances offered to session x at link I during interval (s, t] . If h is the hop

number of link I for session x, then C(z, h, s, t) is defined to equal

C'(x, 1, s, t) . For s > t , define C'(x, 1, s, t) and C(x, h, s, t) to be zero.

2.4.2 First-Come-First-Served Scheduling

First-come-first-served link scheduling is complicated by the window flow

control mechanism. With this discipline, a packet waiting in buffer h of

session x, 1 < h < H(x) , seizes a permit for its next buffer h+1 as early as

possible. Note that the packet may enter buffer h before or after the permit

needed for buffer h+1 arrives. Once both the packet and its permit for

buffer h+1 have arrived at hop h, the packet is said to be authorized for

transmission over hop h, and a future transmission slot on that link is reserved

for that session.

First-come-first-served scheduling transmits packets over a link in order of

their authorization times. To this end, the scheduler for each link I maintains

a first-in-first-out transmitter queue. If a packet for session x becomes

authorized to use I during slot t, then a reservation for x is added to the tail or

the transmitter queue during slot t. Associated with link I is a fixed tie-

breaking list ; each session using I appears exactly once in this list. If packets

for several sessions become authorized to use I during slot t, then their

reservations are added to the tail of the transmitter queue during slot t in the

order in which the sessions appear in I's tie-breaking list. At the beginning or
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slot t+1 , the link scheduler for I notes which session holds the reservation at

the head of the transmitter queue. That reservation is removed from the queue

and a packet for that session is transmitted over I during slot t+l

Consider a session z that uses link Ias its hop h, 1< h < H(x). Since x

can have at most W(x, h) packets and W(x, h+1) permits for buffer h+I

waiting at hop h, the number of reservations for x in I's transmitter queue

(i.e., the number of authorized packets) can be no more than

min[W(x, h), W(x,h+1)] ; note that t

(20) min [ (x, ), W(x, h+l) W(x, +) < W" < oo

2.4.3 Bounded Delay Scheduling

This section describes a family of link scheduling disciplines called bounded

delay disciplines. Consider a link I used by at least one session. The

scheduling discipline for I is said to have bounded delay if there exists a

positive integer A'(1) (called a schedule delay bound) such that, for all sessions

x using I and for all packets p > 1 of x,

t Window size 11'(x. H(z)+1) was required to be finite so that the number (X
packets for session x in the transmitter queue at hop H(r) woukfI bo
bounded even in the case where H(z) = 1 anI
1'(x, H(x)) = W(x, 1) = . It will be shown in Section 2.A.3 that

bounded transmitter queues make first-come-first-served a b uunded delay
discipline; such disciplines offer delay and throughput guarantees to be
studied in Chapters 3 and 5.
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(21)
T(x, h, p)

max [T(x, h-1, p), T(x, h, p-1), T(x, h+i, p- W(x, h+i)) + A'(1)

where h is the hop number of link I for session x, 1 < h < H(x). In other

words, once packet p is in buffer h, and there are no packets older than p in

buffer h, and there is room in buffer h+i, packet p is guaranteed to be

transmitted over hop h within A'(1) time slots. Apart from satisfying (21),

the scheduling decision for a slot t at link I may be any deterministic function

of time t itself, of the initial levels B(x, h, 0) of all buffers h of all sessions x,

0 < h < H(x)+i , and of the throughputs P(:, h, r-1, r) of all sessions x

over all hops h, 0< h < H(x)+1,atallpasttimesr, 1 < r <t.

Note that round robin is a bounded delay discipline, with A'(1) = N'(1)

To see that first-come-first-served also has bounded delay, consider a session x

that uses link l as its hop h. Consider a packet p > 1 of x waiting in buffer

h. Suppose there are no packets for x in buffer h that are older than p, and

suppose the window for buffer h+1 of session x is open. Consequently, p is

authorized for transmission over hop h. Consider how many packets could be

ahead of p in link I's transmitter queue. It was given that there are no packets

for session x ahead of p. There can be at most N'(l)- I sessions other than x

using I. It was explained in Section 2.4.2 that a session can have no more than

IV" packets in any link transmitter queue. Therefore, the number of packets

ahead of p in l's transmitter queue is no more than [N'(/)-l]. IV" . In

'%
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addition to the packets ahead of it, packet p itself must be transmitted within

the A'(1) time slots. Hence, first-come-first-served is a bounded delay

discipline, with A'(1) - [N'(I)- 1- W" + 1. An example of a link scheduling

discipline without bounded delay is a priority scheme where the session with

highest priority could monopolize a link for an indefinite period of time.

In a system where each link I has a bounded delay scheduler with delay

bound A'(1) , define A(x, h) to equal A'(1) if link I is hop h for session x.

Also define A(x) to be the largest schedule delay bound at any link in the

path of session x

(22) A(x)= max A(x, h)
i< h< H(z)

2.5 Demand

Recall that packet arrivals for a session x are modeled as occasional services

at hop 0. This section explains the session demand model in more detail.

During random time slots t > 1 , the session source (i.e., hop 0) attempts to

place one packet (taken from the infinite supply in buffer 0) into buffer 1. If

the window for buffer 1 is closed, i.e., if B(x, 1, t-1) = V(z, 1) , then the

attempt fails and the packet transfer does not take place. The number

of such attempts (called chances at hop 0) during interval (s. t] is

denoted by C(x, 0, s, t). For s > t, C(x, 0, s, t) is defined to be

6-
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zero. t The long-term average number of chances per time slot foi .ession x at

hop 0 (if this average exists) is called the demand rate X(x) . The results of

Chapters 3 and 5 do not require the existence of this average for every session.

Note that X(x) < 1 .t

The sample space of the demand model is denoted by 2. A single sample

point w in 2 determines an entire sample path of demand for the whole

network; i.e., w determines C(x, 0, t-1, t) for all sessions x and all times

t > 1 . Since the demand is the only random element in the system model, a

single sample point w in Q2 also determines the evolution of the entire system

after time 0. The a-algebra for the demand model is the one generated by

events of the following type: C(x, 0, t-1, t) is specified for a single session x

and a single time t > 1 , while the demand for other sessions and other times

is arbitrary.

Different sections in Chapters 3, 4 and 5 make different assumptions about

the probability measure of the demand model. Some theorems require the

demand of each session to be extremely regular, almost deterministic. Other

4

-Although C(x, h, s, t) is defined for h > 0 only in the context of round
robin link scheduling, C(x, 0, s, t) is defined here regardless of the link
scheduling discipline.

t A session x whose actual demand rate is greater than one packet per slot can
be modeled with X(x) = 1 , since the network cannot offer x a throughput

rate greater than one packet per slot even if x is the sole user of each link in
its path.

7i
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results permit the demand process C(x, 0, t-1, t) of a session x to be

Bernoulli. One section assumes only that the times between chances for a

session at hop 0 are independent and identically distributed. Some results

require that the demand processes of the various sessions be independent;

others permit dependence. One theorem makes no demand assumptions at all.

The one set of demand assumptions under which all the results of Chapters 3,

4 and 5 hold is the heavy demand assumption, viz., that C(x, 0, t-1, t) = 1

for all sessions x and all times t > 1

2.8 System Specification

A system is fully specified by describing the following items: the net vork

topology, the set of sessions using the network, the sessions' paths, the initial

buffer levels, the window sizes, the scheduling discipline (e.g., round robin or

first-come-first-served), the schedule parameters (e.g., the rings for round robin

scheduling or the tie-breaking lists for first-come-first-served scheduling), the

initial schedule state (e.g., the initial ring positions for round robin scheduling

or the initial transmitter queues for first-come-first-served scheduling), and the

probability measure of the demand model.

.....................
% ** -J'..*.*~- -. . .
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2.7 Miscellaneous Bounds

Some bounds on quantities defined in this chapter are listed below for easy

reference.

1 < H(x) < H <cco for all x

1 < N'(1) = N(x, h) < N(z) < N < S < c for all 1, x, h such
that link I is hop h
for session z

1 < A'(1) = A(x,h) <__ A(x) < cc for alll, x,h such
that link I is hop h
for session x

W(x, 0) = cc for all x

1 < W(x, 1) < c forallx

1 < W(x,h) < oo forall.x,
for 2< h < H(x)

2 < W(x, H(x)+1) < cc for all x

W(x, h) W' for allx,
for 1 < h < H(x)

1< W'<c

IV(x, h) < I W" for all x,
for2 < h < H(x)+ I

2 < I V" < c

0 < B(x, h, t) < l1"(x. h) for all x,
for0 < h < I(f.
for t > 0

0 < B(x, H(z)+1 , t) < 1 < W(z, H(x)+ 1) for all x, for t > 0
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B(xO, t) = o forallx, for t > 0

B(x, h, t) < oo for allx,
for 1 < h < H(x)+ 1,
for t > 0

0 < P(x,h,s,t) = P'(x,1,s,t) < t-s forallx, h, lsuch
that link I is hop h
for session x,
for t > s > 0

0 < P(X, 0, S, t) < t - $ for all x,
for t > s > 0

0 < P(x, H(x)+i, s, t) < t - s for allx,
for t > s > 0

0 < C(x, h, s, t) = C'(x, 1, s, t) < t- s for all x, h, such
that link I is hop h
for session x,
for t > s > 0

0 < C(,0,S,t) < t - forallx,
fort> s >0

0 RA(X) < 1 for all x whose avg.
throughput exists

0 < X(x) < 1 for all x whose avg.
demand exists

0 < T(x,h,p) < cc for allx,
for 0< h < H(x)+i.
for all integers p

1 < -(x~p) < c for allx,
for all p _ 1 such
that T(x, 1. p) < -c

-S

a.

-' A
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3. PACKET DELAY

This chapter studies the cross-network delay of packets for a particular

session x in a system with bounded-delay link scheduling. The window sizes

W(x, h) for buffers h in the range 2 < h < H(x)+i are assumed to be at

least two but finite. The capacity W(x, 1) of buffer 1 is arbitrary, possibly

even infinite. The window sizes of the other sessions in the network are

arbitrary. The demands of the sessions, including x, are arbitrary; session

demand rates need not exist. Theorem 1 shows that the cross-network delay

for each packet of x is at most [ W(x, h) }A(x) + 1. t

It was explained in Section 2.4.3 that round robin scheduling and first-

come-first-served scheduling are bounded delay disciplines, with schedule delay

bounds A'(1) of N'(1) and N'(1)'"- W"+1 , respectively. Therefore, the

cross-network delay bounds of Theorem 1 for round robin systems

and first- come- first-se rve d systems are [~x) W(x, h)].N(x) + 1 and

t If the average throughput and the average cross-network delay per packet
exist for session x, then Little's formula [19, 4] gives the following upper
bound on the average cross-network delay per packet:

1+ W(x, h) This bound may be tighter than the bound of
1 2 hJ RA(X)

Theorem 1. Note, however, that Theorem l's bound applies to each packet
of session x.
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[~)W(x, h)].[N(x). Wit"- Wit+ 1] + 1 , respectively. Example 1 shows a

round robin system where one packet of session x has a cross-network delay

that matches the bound of Theorem 1. Example 2 shows a first-come-first-

served system where one packet of session x has a cross-network delay of

IH(z)
[ W(x, h) - 1]j[N(x) ' Wi- W"+ 1I1 + 1, which is close to the bound of

Theorem 1. t Clearly, the delay guarantees afforded by this theorem for round

robin systems are superior to those for first-come-first-served systems. (It is

not being claimed that round robin scheduling always offers lower packet

delays or fairer packet delays than first-come-first-served scheduling.)

t In Example 2, it is critical that W(x, H(x)) 2 2.

' U .
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3.1 Theorem 1: Bound on Packet Delay

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses a bounded delay scheduling discipline. Let x be some

session. The capacity W(x, 1) of buffer 1 of x is arbitrary - it may even be

infinite. Suppose that

(23) 2 < W(x, h) < cc for 2< h< H(x)+l

The window sizes of the other sessions in the network are arbitrary (i.e., these

window sizes only need to satisfy the basic assumptions of Chapter 2). The

demands of the sessions, including session x, are arbitrary. It follows that, for

each packet p > 1 of session x such that T(X, 0, p) <c ,

(24) T(x, h, p) < cc for 1< h < H(x)+l

(25) < H(z) W(x, h)].~)+

Ih-2I

In other words, every packet of x that enters buffer 1 eventually leaves the

network and has bounded cross-network delay.

Proof of Theorem 1

. Let us clarify the scheduling assumptions. It follows from (21) that, for all

packets p > 1 of x and all hops h in the range 1 < h < H(x)

-U

- - -. '.' , " ,', , -°"-', - " , '",5*. , ; . 5"'- '.'- '"", " ",", , . ,. o",,"":" ,2 '
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T(x, h, p)

< max [T(x, h-l,p),T(x, h,p-1),T(x, h+l, p-W(x, h+l))] + A(x, h)

(26)
< max[T(x,h-1,p),T(x,h,p-1),T(x,h+l,p-W(x,h+1))] + A(x)

Also recall this assumption about the operation of hop H(x)+1

(27) T(x, H(x)+l, p) = T(x, H(x), p) + 1 for p > 1

Now it will be proved by contradiction that (24) holds for each packet

p > 1 of session x such that T(x, 0, p) <00 . If this were not the case, then

there would be some smallest positive inteer " such that

(28) T(X, 0, < oo

and

(29) T(x, h, 00 for some h 1 < h < H(x)+1

Since " is the smallest such value,

(30) T(x, h, p) < oo for 0 < h < H(x)+I, all integers p <p

Let h" be the smallest integer in the range 1 < < < H(x)+I for which (29)

holds; i.e.,

(31) T(X, c=

and

(32) T(x,h, -) < cc for 1 < h <"

Now it will be shown that

"I " , . ,* , * d " . " o * . " . . € * . ' . ° ° " . ° , ° *"•". -"
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(33) T(x, < o) o

There are three cases to consider. If h---1 , then (33) follows from (26), (28)

and (30). If 2 < h < H(x), then (33) follows from (26), (32) and (30). If

. - H(x)+ 1 , then (33) follows from (27) and (32). Hence (33) is proved. Note

that (33) contradicts (31). This completes the proof of (24).

Next (25) will be proved. Let p' > 1 be any packet of session x such that

T(x, 0, p') <00 ; p' will be fixed for the remainder of this section. By (24),

T(z, 1, p') <00 , so the cross-network delay of packet p' is well-defined. It

must be shown that
4..

(34) H(x z) W(z, h) A (x) + 1

If H(z)-- 1 , then (34) follows immediately from definition (13); so assume

that

(35) H(x) 2

First, let us justify the following claim for integers h and p.

(36) T(x, h, p) :5 T(x, 1, p') for 1< h <H(x), p< p-E1(xh)j

Inequality (36) follows from the buffer capacity constraints:

' 0" .. - - . - .-€- ' . - " , . . . , . - . , - . . ' - . . , . . . . . . , . . . . .. .

0', . ,;, ' .-' '.', .< , ' .. S , e . - . _ . . . . -.-. -, . - - ... .- , : - , . . . . . ,
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T(x, 1, p') T(X, 2, p'- W(x, 2))

> T(X, 3, p'- W(x, 2)- W(x, 3))

"i >_ (x, h, p'- Ew(x, h))
h-2

If (x, h, p)

Note that (36) holds if p < 1 (in which case T(x, h, p) - 0). Moreover, (36)

holds even if packet p' is farther downstream than buffer 1 at time 0 (in which

case every element in the chain of inequalities above equals zero).

Next, let us define ((h, p) for each hop h of x in the range

1 < h < H(x) and every integer p

(37) ((h, p) - T(x, 1, p') + max 0 p-p'+H(x)-h+ , W(x, h) -A(x)
S1 A-2

Note that

(38) 0(h, p-1) - e(h+1, p- W(x, h+)) for 1 < h < H(x)-. all p

and

(39) e(h, p-1) = E(h. p) .- A() if p-p'+H(x)-h+ > I17:

Also note that, by (37) and (23),

(40) e(h, p-1) e e(h-,p) for 2 < h < I(x), all p

• ', ,, ''.,' , .. .'..' ., . . . .-. . . . ..
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Let us prove the following claim:

(41)
H( z)]

T(x, h, p) < 8(h, p) for 1 < h < H(x), P'+1-2" E w(x,h) W< p < P
A-2

The proof is by induction on p. The base cases, viz.,

p '+1-2" Z W(x, h) p [p'-Z W(x, h)

are easy to prove: by (38) and definition (37),

T(x, h, p) < T(x, 1, p') ( e(h, p)

for these values of p and for 1 < h < H(x) . For the induction step, consider

an integer in the range

1+ H(z)(42) P' -E w(x, h) <5 < P'
(-2

The induction hypothesis asserts that

(43)

T(x, h, p) < e(h, p) for 1< h< H(x), p'+1-2- E (x,h) < P
h-2

It must be shown that

(44) T(x. h, h ) e(h, j) for 1 < h < H(-)

First (44) will be proved for small values of h. Let h' be the largest hop in

the range 1 < h' < I(x)-I such that E IV(z, h)j p'-/ . By (36) and
-2

S.
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definition (37),

(45) T(x,h,2) K T(x, 1, p') E(h,/) for I < h < h'

For hops h in the range h' < h < H(z) , the proof of (44) will be by

induction on h. The base case h - h' is covered by (45) above. For the

induction step, consider a hop h (if any) in the range

(46) h'+1 < < H(x)-I

(The case h = H(x) will be treated separately.) The induction hypothesis

asserts that

(47) T(x,h-, ) K e(S-l, )

It must be shown that

(48) T(Xh, ) < e(h, )

If ^ < 1 , the proof of (48) is trivial, since T(z, 5, $)= 0 in this case. If

* > 1 , first apply (26) and induction hypotheses (47) (for the induction on h)

and (43) (for the induction on p):

T(x, h, 2)

(49)
< max [T(x, -- l,,T(x, P,- -). T(x, +1, P-I1'(x., +l)) + A(x)

(50)

< max[ e(h - ,), e(5, -), e( +1, -V(x, +1)) 1 + A(x)

Now apply (40), (38) and (39) to (50) to reach the desired conclusion (48):
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The proof for the remaining case, viz., h - H(x), is similar, but (23) and (12)

are used to show that the term T(x, h +1, i-W(x, h+1)) in (49) is not

greater than the term T(x, h, -1). The proof of this case will not be

presented. This completes the proof of (44) by induction on h, thereby

completing the proof of (41) by induction on p.

The desired conclusion (34) follows from definition (13), (41), and definition

(37):

E(x, p') - T(x, H(x), p') - T(x, 1, p') + 1

_< e(H(x), p') - T(x, 1, p') + 1

H [) W(x, h)]A (x) + 1

This completes the proof of Theorem 1.

:. ;-. . . '-.".v "-' .. ,. - *'' * P ' ..-.- '-' . ." .,". ,"X , .", .' . """"".; '' ... ''" " "" -"."V .. " ''' '
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3.2 Example 1: Round Robin Scheduling

Consider a system that satisfies the assumptions of Chapter 2 and has the

layout shown in Figure 1. The system includes a session x for which H(x) > 2

and N(x) > 2. Session x uses links 11 , 12',--, iH(z),In that order. (For

each of these links, there is another link with opposite direction that is not

shown in Figure 1 and is used only to return flow control permits.) Sessions

Yl , Y , YN(z)-I use only link /H(z). Round robin link scheduling is used.

The ring position for / r(,) at time 0 is x. The window size for buffer 1 of

session x is at least two and may be either finite or infinite. The window sizes

for buffers 2 through H(x) of session x are at least two but finite, and these

buffers are initially full. For each session Y I , Y2 y(z)-I, the capacity of

buffer 1 is at least two, and this buffer is initially nonempty. t Every session in

the system has heavy demand; i.e.,

tIn practice, this "initial" system state could arise if sessions x, y,
Y2,.-- YN()-i started before time 0, when there were already many other
sessions using link lH(Z) , and if these extra sessions terminated at time 0.
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i(51) C(x, 0, t- 1, t) --- C(Yj, 0, t-1, t)

C(y 2 , 0, t-1, t)

==C(yNC )_ 10,O t-1, t)

for all times t > 1.

The evolution of this system is simple. Session x transmits packets over

link IH(z) during slots N(x), 2N(x), 3N(x), .... Let p' be the youngest

* packet of session x in buffer 2 at time 0; i.e.,

=H(z)

(52) p W(x, h)
h-2

Packet p' is transmitted over 1H(z) during slot p'N(x) Therefore, by

definition (13),

E(x, p') = T(x, H(x), p') - T(z, 1, p') + 1

= p'.N(z) - 0 + 1

_H( z)
(53) 1', h)].(X) + 1

(33) h- z 2
h-2 hjN

This matches the upper bound (25) of Theorem 1.

Things are slightly different for packets p > p' of session z. Because of

'='' . ',_ '',: . :' .'%''. _t 4 * .. '4 * . C' '.-, "4 r . ' .. . ' * 4. I*,. ",, 4 . ", , "" '.
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the extreme initial conditions, the system experiences a mild transient. No

permits for buffer 2 of session x are returned to hop 1 until time slot

N(x)+H(x)-2, after which one permit is returned every N(x) slots.

Therefore, for each packet p > p' of session x,

T(x, 1, p) = [N(x) + 1(x) - 2] + (p - p' - 1)-N(x) + 1

(54) = (p - p').N(x) + H(x) -

Link 1H(z) , however, functions periodically even from time 0, and

(55) T(x, H(x), p) = p'N(x)

By definition (13), (54), (55), and definition (52),

-(x, p) = T(x, g(x), p) - T(x, 1, p) + 1

= p'-g(x) - H(x) + 2

(56) =W(x, h) ]1 (x) + 1] [1(x) - 1]

Comparing (56) with (53) shows that the cross-network delay for each packet

p > p' is slightly less than the delay for packet p'.

For future reference. note that the long-term average throughput R 4 I!

session x is 1/.N(X)
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3.3 Example 2: First-Come-First-Served Scheduling

Consider a system that satisfies the assumptions of Chapter 2 and has the

layout shown in Figure 2. The system includes a session x for which H(z) 3

and N(x) > 2. Session x uses links 11 , 12,..., lH(z) , in that order. (For

each of these links, there is another link with opposite direction that is not

shown in Figure 2 and is used only to return flow control permits.) Sessions

yI ,Y2 ,... , YN(Z)-I use only link IH(,)-i • Sessions z1 , Z2 , ... , ZI(Z)_ use

only I11(z) . The window size for buffer 1 of session x is at least two and may

w. be either finite or infinite. The window sizes for buffers 2 through H(x)- 1 of

session x are at least two but finite, and these buffers are full at time 0. The

initial level of buffer H(x) of session x is one, and W(x, H(x)) = 2 . Buffers

1 and 2 of sessions Yi , Y2 , I.. , YN(z)-i i Z1 , Z ... , zy() have capacity

U"' > 2 ; buffer 1 for each of these sessions is initially full, and buffer 2 is

initially empty. First-come-first-served link scheduling is used. Session x

appears last in the tie-breaking lists of links IH()- and IH(z) . The

transmitter queues at links 11 , 12 , H(z)-2 are empty at time 0, because of

a lack of permits for session x. Initially, the transmitter queue for 'H,:)_1

contains 11" reservations for each session yj . y2 ....... I (in any orler)

fcllowed by one reservation for session x. (Although x has IV(x. ff x-1)

packets waiting to be transmitted over hop H(x)-I , only one of these has a

permit for buffer H(x) . Hence x has only one reservation in the transmitter

queue for _ .) Initially, the transmitter queue for l1j(,) contains I "
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reservations for each session z , Z2, ... , ZN(z)_ 1 (in any order) followed by

one reservation for session x. Note that the initial transmitter queue lengths at

IH .1(z)-i and I'1(z) are N(x) W"- W"+I 1 . t Every session in the system has

heavy demand; i.e.,

(57) C(x, 0, t-i, t) C(y 1 , 0, t-1, t)

= C(YN(Z)-i , 0, t-l, t)

= C(z1 , 0, t-1, t)

- C(ZN(Z) - I, 0, t-l, t)

-"1

for all times t > 1

The evolution of this system is simple. Session z transmits packets over

links 'H(z)- I and IH(z) during slots [.V(x) 1"- "VI"+ I],

2"[.()" "- W"+ 1], 3"[N(x) IV"- W"+I], .... Let p' be the youngest

t In practice, this "initial" system state could arise if sessions x.
Y1 ,.. I YN()-I, Z ,... , ZN(Z)-t started at various times before time 0.
when there were already many other sessions using links 'H(z)_. " . l1(z)-I

and /1(z) , and if these extra sessions terminated at time 0.

.NI-
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packet of session x in buffer 2 at time 0; i.e.,

(58) H (z)

(58) P W(x, h) -
I, h-2

Packet p' is transmitted over 1H(.) during slot p'[N(x)'IW"-W'+ I]
.%4

Therefore, by definition (13),

':(x, p') = T(x, H(x), p') - T(x, 1, p') + 1

Sp'-[N(x)-w"- w"1] - 0 + 1

H1(z)

(59) = , W(x, h) -j[N(x)- W'- TV"+i1 + 1
h-2

This is almost equal to the upper bound (25) of Theorem 1.

Things are slightly different for packets p > p' of session x. Because of

the extreme initial conditions, the system experiences a mild transient. No

permits for buffer 2 of session x are returned to hop 1 until time slot

[N(x).W"- W"+I]+ H(x)-3 , after which one permit is returned every

N(x)" W"- W"+ 1 slots. Therefore, for each packet p > p' of session x,

T(x, 1, p) = [[V(x)- V" - tV" + 1] + H(x) - 3]

+ (p - p' - 1)'A(.)" IV" - W" + 1] + 1

(0) = (p - p').[V(x)- W" - W" + 1 + H(z) - 2

Links III(,)- and 111(.c , however, function periodically even from time 0.

4. " - " , , ,-,, - ' " , - " - "-" -," , -. 7 ' . " ' - - " . " ., -,' ",' ,-,. ",' , ,': ': , ",
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and

(61) T(x,H(x), p) = p-[N(x)W"- W"+ 11

By definition (13), (60), (61), and definition (58),

'(x, p) = T(x, H(x), p) - T(x, 1, p) + 1

= p'[N(x) W" - W" + 1] - H(x) + 3,H°z)
(62) = , ([) (x, A) - ][N(x)- Wi' - Wi' + 11 + 1)I [H~x) - 21

Comparing (62) with (59) shows that the cross-network delay for each packet

p > p' is slightly less than the delay for packet p'.

For future reference, note that the long-term average throughput RA() of

session x is 1/[N(x)" W"- W"+ 11 t

T In this example, it is critical that V(x, H(z)) = 2. The long-term average
throughput and the cross-network delay for session x could be significantly
improved by increasing W(x, H(x))

...............

/ *~** * ** *~ * *? **~ ~ S 4. '..~. *.. ' 0-.
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4. SESSION THROUGHPUTS IN SYSTEMS WITH LARGE WINDOWS

This chapter studies the fairness of session throughputs in systems where

the window size W(x, h) is finite but very large, for each buffer h of each

*.* session z in the range 1 < h < H(x). The exact assumptions about the.4.

window sizes vary from section to section. Round robin link scheduling is

assumed throughout the chapter, except in Section 4.6, where it is shown that

certain round robin results do not hold if first-come-first-served scheduling is

' used instead. This chapter assumes that each session x has a well-defined, real

demand rate X(x) in the range 0 < X(x) :1, t but the detailed demand

assumptions vary among the sections.

The chapter is organized as follows. The max-min flow criterion, which is

taken as the definition of throughput fairness throughout this chapter, is

described in Section 4.1. According to this criterion, each session has a unique

fair throughput rate. Section 4.2 contains some preliminary results needed in

later sections. Theorem 2 of Section 4.3 analyzes a system during an interval

(TI , T,,) of smooth demand. Specifically, Theorem 2 assumes that there

* exists a constant A such that the demand of each session x over each

subinterval (s, t] of (T 1 , T2 ) is within A packets of the nominal amount

t An example of a session x with demand rate X(z) = 0 is a session that has
only a finite number of chances at hop 0 after time 0 and therefore injects
only a finite number of packets into the network.

". % •
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X(x)'(t-s) It is also assumed that most window sizes are at least

3"(H+1)S'NS-l'(A+2). Theorem 2 concludes that the throughput of each

session x over each subinterval of (TI , T 2) is within

(H+I)S'N'S-I'(W'+3±A+4) packets of the fair amount, regardless of the

length of the subinterval.

A steady-state analysis is found in Section 4.4. This section assumes that

there exists a constant A such that the demand of each session x over each

interval (s, t] is within A packets of the nominal amount X(x)'(t-s).

Again, most window sizes are assumed to be at least 3"(H+l)S'N-'lV(A+ 2 ) .

Corollary 1 of Theorem 2 concludes that the long-term average throughput

RA(z) of each session x equals its fair rate. Theorem 3, the steady-state

analog of Theorem 2, shows that there exists a time TsS > 0 such that the

throughput of each session x over each interval later than Tss is within

(H+l)S'NS-'(A+2 ) packets of the fair amount, regardless of the length of

the interval. t Note that this bound on throughput unfairness in steady state

is tighter than the transient bound of Theorem 2 and is independent of WT'.

Section 4.4 also contains several corollaries of Theorem 3 dealing ith steady-

state buffer levels.

tAlthough no upper bound is known for the length Tss of the transient
period, Theorem 2 shows that the throughput of each session r during the
transient period is within (H+I)N 2 S -1 (W+3A+4) packets of the fair

amount.

. .. e--..
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Theorem 4 of Section 4.5 uses a burstier demand model: the sessions are

assumed to have independent Bernoulli demand processes. Most window sizes
'I.

are assumed to be at least 12"(H+1)S.N s - l and at least a certain fraction a

of W'. Theorem 4 concludes that (with probability one) the long-term

average throughput RA (x) of each session x differs from its fair rate by no

more than 74S.(H+1) 2 s.N 2 s . In other words, the session throughput

rates can be made arbitrarily close to the fair rates by choosing window sizes

that are of the same order of magnitude and are sufficiently large.

Theorems 2, 3 and 4 show that enormous windows (of comparable size) are

sufficient to guarantee fair (or nearly fair) throughput rates. One wonders

whether large windows are actually necessary. Section 4.4 presents an example

where the throughput rates are quite unfair unless very large windows are used.

Things could be worse, however: Section 4.6 shows that if first-come-first-

served link scheduling is used instead of round robin scheduling, then even

large windows cannot guarantee throughput fairness. Chapter 5 determines

what throughput guarantees are possible in systems with small windows.

5
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4.1 Fairness Criterion

This section desc-*bes the max-min flow criterion, which will be taken as

the definition of throughput fairness throughout Chapter 4. The version of the

criterion presented here was proposed by Hayden [13]. A similar criterion was

developed independently by Jaffe [16, 17]. Later, Gafni and Bertsekas [6]

phrased the principle more economically and generalized it. The criturion is

described here as it applies to the system model presented in Chapter 2. In

particular, it is assumed that the sessions and routes have been specified and

that all links have unit capacity. It is also assumed that each session x has a

well-defined, real demand rate X(x) in the range 0 < X(z) 1 . t

First, let us define some terms. An allocation r is a function that assigns

each session x a real rate r(x) in the range 0 < r(z) : X(x) without

violating the link capacities. In other words, the sum of the rates for all

sessions sharing a link I cannot exceed the link's capacity:

(63) Z r(x)< 1
z using I

The full rate list of an allocation r is a unique vector consisting of the rates

r(:) assigned to all the sessions x. If the same rate is assigned to k liffer-ent

f It is easy to generalize the max-min flow criterion to systems where the link
capacities and the session demand rates are arbitrary nonnegative real
numbers.

' " ° ° ' ° • ° ° . A .. . . .. .
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sessions, then that rate appears k times in the full rate list. The components

of the full rate list must appear in nondecreasing order. The reduced rate list

of an allocation is formed by deleting duplicate values from the full rate list.

Now fairness can be defined. An allocation r satisfies the max-min flow

criterion if no other allocation has a full rate list that is lexicographically

greater than the full rate list of r. Roughly speaking, this means that the

smallest rate assigned to any session by r is as large as possible and, subject to

that constraint, the second-smallest assigned rate is as large as possible, etc.

Each of these nested optimization problems can be formulated as a linear

program [13], and it is not difficult to show that there exists a unique allocation

that solves them all. The rates assigned in this unique max-min allocation will

be called the fair rates. The objective of Chapter 4 is to determine conditions

under which the long-term average throughput RA(x) of each session x equals

its fair rate.

Let I denote the length of the reduced rate list for the max-min allocation

(i.e., the number of distinct fair rates), and let RF(i) denote the ItA element

of this list. Any session whose max-min fair rate is RF(i) is said to have

congestion index i. For example, all sessions with the smallest fair rate have

congestion index 1, and all sessions with the largest fair rate have congestion

index I. Let I(x) denote the congestion index of session x. In other words,

the fair rate for session x is RF(I(x))
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The max-min flow criterion can also be stated in terms of bottlenecks.

Suppose some allocation is given (not necessarily the max-min allocation). A

link I is called a bottleneck link for a session x using I if the rate r(x) assigned

to x is at least as large as the assigned rate of any other session using 1, and if

the entire capacity of I is assigned to the sessions using it. The following

equivalence is not difficult to prove: an allocation satisfies the max-min flow

criterion if and only if, for each session x, either r(x) = X(x) (i.e., the demand

of x is a bottleneck) or x has at least one bottleneck link.

Once the max-min criterion has been stated in terms of bottlenecks, it is

easy to see why round robin link scheduling might be expected to achieve the

max-min fair rates [7, 9]. Consider a session whose demand exceeds its

throughput. Packets for this session should accumulate at the input to its

most congested link. Therefore, the session should never have to forfeit its

turn in that link's round robin. This ensures that the session's average

throughput will be at least as large as that of any of its competitors at that

link, and it also ensures that the link will stay busy. Thus the link should be a

bottleneck link for that session in the technical sense defined above. Every

session that is not limited by its own demand should have such a bottleneck

link; hence the resulting average throughputs should equal the max-min fair

rates. Of course, this crude plausibility argument does not constitute a proof.

For the remainder of this thesis, the term "bottleneck" will be used to mean

"bottleneck with respect to the max-min allocation." In other words, a link I is

,r P"P
-[. p ~ ~ ~ : ~: 4'Z~ :-.>-K~K. >::~.-< .e~
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a bottleneck link for a session x using I if

(64) I( y ) < I(x) for all sessions y using I

y using I

If a bottleneck link for session x has hop number h, 1 < h < H(x) , then h is

a bottleneck hop for x. Hop 0 is said to be a bottleneck hop for x if

(65) RF(Ix)) = X(x)

i.e., if session x is bottlenecked by its demand. Every session x has at least one

bottleneck hop h in the range 0 < h < H(x) . (Hop H(x)+1 is never said to

be a bottleneck hop.)

For future reference, let us define RC(x, h) and R'c(x, 1) for a session x

that usesalinklasitshop h, 1 < h < H(x) :t

1 - E RF(I(y))
yE Y(z, 1)

(66) Rc(x, h) = R'c(x, 1) -
I Z(x,l)

where Y(x, 1) is the set of sessions y using I for which 1(y) < I(x), and

Z(x, 1) is the set of sessions z using I for which 1(z) > I(x) . Note that

t It will be shown in Sections 4.3.1 and 4.4.3 that if round robin scheduling is
used, and if the session demands are sufficiently regular, and if the windows

are large enough, then R'C(x, 1) is a lower bound on the rate at which the

round robin scheduler for link I offers chances to session x.

.9
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11E RF(I(z)) E RF( Wx))

(67) Rc(x, h) > zEz(z, 1) > zE(z, 1)(67 R z (x) - = RF(X))

If h is a bottleneck hop for x, then equality holds throughout (67). If h is not

a bottleneck hop for x, then one or both of the inequalities of (67) must be

strict. Let us also define Rc(x, 0) for each session x:

(68) Rc(x, 0) = X(x)

Note that

(69) Rc(x, 0) _ RF(I(x))

and that hop 0 is a bottleneck for session x if and only if equality holds in (69).

In summary, for any hop h of any session z in the range 0 < h < H(x),

0R(x, h) - RF(()) if h is a bottleneck hop for x

(70) Rc(x, h) > RF(I(x)) if h is not a bottleneck hop for x

The concepts of this section will now be illustrated, using the system of

Figure 3 as an example. The network contains links 11 , 1, , 13 , and1 4 . (For

each of these links, there is another link with opposite direction that is not

shown in Figure 3 and is used only to return flow control permits.) Each link

d has unit capacity. Session x, uses only link 11 . Session z, uses 11 followed by

12. Session x3 uses all four links. Sessions X4 and X5 use only 13. Sessions x,

and X7 use only 14 . Every session has a demand rate of 1, except session X4

whose demand rate is 1/6 , and session X6 , whose demand rate is 1/3 . The

max-min fair rate for each session is 1/3 , except session X4 , whose fair rate is

* . - . * ~ * -° . o . . . . . . . . . . . . .
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1/6 ,and session x5 , whose fair rate is 1/2 .The full rate list for the max-min

allocation is ( 1/6 ,1/3 ,1/3 ,1/3 ,1/3 ,1/3,1/2 ). The reduced rate list for

the max-mmn allocation is ( 1/6 ,1/3 ,1/2) Session X4 has congestion index

1. Session x5 has congestion index 3. The other sessions have congestion index

2. Sessions x, and x, have link 11 as a bottleneck. Session X3 has two

bottleneck links -- 11 and 14 . The bottleneck hop for X4 is hop 0 -- its demand.

Link 13 is the bottleneck for x5 . Session xr, has its demand and 14 as

bottlenecks. Link 14 is also the bottleneck for X7 . Link 12 is not a bottleneck

for any session, since it has unused capacity.

Note that, in this example, the max-min allocation does not maximize the

sum of the session rates or minimize idle link capacity. The max-mmn flow

criterion is certainly not the only reasonable capacity allocation strategy one

could propose. For some applications, one might be willing to tolerate some

unfairness in order to achieve more efficiency.
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4.2 Preliminary Results

This section contains various lemmas needed for Sections 4.3 and 4.4.

Lemma 2 (Section 4.2.2) assumes an upper bound on the throughput of sessions

whose congestion index is less than a particular value i; this bound is used to

derive a lower bound on the number of chances offered by a link's round robin

scheduler to a session with congestion index i. Lemma 6 assumes lower bounds

on the demand of a particular session and on the number of chances the

session receives at each link in its path; these bounds and the assumption of

large windows are used to derive a lower bound on the throughput of the

session. The proof of Lemma 6 requires Lemmas 3, 4 and 5; all four of these

are found in Section 4.2.3. Lemma 7 (Section 4.2.4) assumes an upper bound

on the demand of a particular session z and a lower bound on the throughput

of sessions whose congestion indices are I(x) or less; these bounds and the

properties of max-min fairness (viz., the existence of bottleneck hops) are used

to derive an upper bound on the throughput of session x. Lemma 1 (Section

4.2.1) notes various inequalities relating the functions ECL(A, i), EPL(A, i)

E ( i), FcL(A, i) FL(A, i), Fpu(A, *F"p(A), DCL(A. i. K).

DpL(A. i, K) . and Dp.(A. i. K) defined below. The argument % is a real

number, and i and K are integers. (The subscripts C. P, L, and U stand for

"chances," "packets," "lower bound," and "upper bound," respectively. The

subscripts indicate how the functions will be used.)

,. -, . ..'.'.' ',v .'. .:...-::',: : . -. ,,.- :. :., - \:,:,-,:, - -..- '.. :.'-., - J.-. "-.P-',::--
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(H+ )'-l(N- 1)'e'-Z(w '  2A 2)for i > 2

(71) EL(A, i) - {(H + 1 1 (N-1)N-- 3 (W+2 +2) for i < 1

(72) EpL(A, i) { (H + 1)-(N - )N2'-Z 3 (W' + z2A + 2) for i > 2
(7) pLAi)= 0 fo r i < 1

(g + 1) i)-= (H + + 2A + 2) for i > 1
(73) Ep(, i) ---- 0 for i <0

((H + 1)*-'"N'-'(A + 2) - 1 for i > 1
(74) FCL(A,) = 0 for i < 0

() ( =((HA+ 1)"N'-'(- +2) - fort 1
50 i) 1 for i < 0

(76) Fpu(A, i) (H + 1)'° N- 1 -(,A + 2) for i > I

10 for I < 0(7.) F ,v( , i) -= ( 0 T~1'fr i < 0

(H + 1)"N(w ' + 2Ax + 2) for i > 1

(78) FGLC,) 0 for i < 0

(78) DcL(A, i, K) = ECL(A, i) + K'FcL(A, i)

(79) DtI,(A, i, K) -- EpL (A, i) + K'-FIp, (A, i)

(80) Dpu(A, i, K) = Epu(A, i) + K'Fpu(A, i)

..- - * * ~. .
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4.2.1 Lemma 1: Miscellaneous Inequalities

The following inequalities hold for all positive integers / and K and all

nonnegative real numbers A .

(81) FpL((A, i) > 0

(82) DpL(A, i, K-1) > 0

(83) Fpu(A, i-1) > 0

(84) Dpu(A, i- 1, K) > 0

":"(815) FpL (A, i + 1) >FpL (A, i)

(86) DPL (A, i+ 1, K) DpL(A, i, K)

:(87) FpG(A , i+ 1) > pu,(A , i)

(88) Dpu(A, i+1, K) > Dpu(A, i, K)

(89) FCL(A, i) >_ A

(0) DcL(A, i, K) > K'A

(91) FCL(A, i) _ (N - 1)'Fpu-(A, i-1) + 1

(92) DCL(A, i, K) _ (N - 1)'Dpu(A, i--1, K) + K

(93) FpL(A, i) _ (H + 1)'FcL(A, i) + H

(94) DPL(A, i, K) _ (H + 1)'DcL(A, i, K) + K'H

(95) Fp-. i) _> FPL (A, i) + 1

(96) F"p(A, i) (N - 1)FpL(A. i) + 11-1'H + A

(97) Dpu(_, i, K) > (.V - 1)'DpL(A, , 1) + DPL(A, i, K-)

+ W"H + A

These inequalities follow directly from definitions (71) - (80); the proofs will
not be presented.

"",,
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4.2.2 Lemma 2: Lower Bound on Chances, given Upper Bound on

Throughput

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses round robin scheduling. Suppose each session has a well-

defined demand rate. Let x be some session, and let I be some link used by x.

Let K be a positive integer, and let s1, t, 2, t2 Y , SK, tK be times

satisfying 0< s 1 < t 1 i s 2 < t 2 < ... < sK< tK. Let

(98) G > 0

be a real number such that, for each session y using I with I(y) < I(x),

K K
(n9) E P'(y, 1, Sk, tk) < RF(I(y))- E (tk - Sk) + C

k- I k-I

It follows that

K K
(100) E C'(x, 1, sk , tk) > R'C(x, I)- (tk - sk) - (N - 1)-G - K

k-I k-I

Proof of Lemma 2

Let Y denote the (possibly empty) set of sessions y on I for which

1(y) < I(x) . Let Z denote the set of sessions z on I for which I(z) > I(x).

Note that Z includes x. For k = 1, 2, ... A, ,let qk be the number of slots in

(sk , tk] that are not used by sessions in Y:

-pA

-p

C.

- - - - ~ -!
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(101) qk - (tk- sk) - P'(Y, 1, sk , tk)
yEY

Since these qk slots are not used by Y, the round robin scheduler at I will offer

each of these slots to at least one session in Z; hence

* qk EC'(z,1,sk , t)
a zEZ

(102) _< IZ• max C'(z, 1, Sk I tk)

By the operating rules of the round robin scheduler, session x must receive

almost as many chances as any other session on I during (sk , t ; in

particular,

(103) C'(X, l, sk , tk) max C'(z, 1, sk , tk) - 1zE g

Combining (103), (102) and (101) yields:

(104) C'(, 1, sk , tkS 
k>Z-k 

(t k S P'(j, , S , tk -

Summing over k yields:

(105)
K 1 K K
, , C'(X, 1 Sk t,) > Izk) IE, P'(y 1 / tK
k-I z k-1 yE Yktl

Since I(y) < I(x) for all y in Y, assumption (99) can be substituted above to

yield:
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KFC'(X, 1, Sk ,tk)
k-i

K K
E __ - k- Z(RF(I(Y)). , (t - 5k) + - K

ZyEY k-1

dK

(106) - 1[ - ERF (I(Y)) (tks) - Y'G - K
I ZI YEY Jk-1 zI

Applying definition (66) and assumption (98) gives the desired result (100):
-1

K K
dC'(x, l,s k t) R'c(x, ) E (tk - s) - I-Y' -G -K
k-1 k-i Z

K
_ R'c(, I)- , (tk - sk) - I YIG -K

k-i

K
R'¢(x, 1). (tk- s) - (N- 1)G - K

k-I

This completes the proof of Lemma 2.

"U. '* ., , 2 " , "' ," ''* ,,' .', ." ' . .". ,,,,. '.," ' # " "'""'', .""% .,. ""'



-71-

4.2.3 Tandem Queues with Finite Buffers

This section derives a lower bound on the throughput of a session from

given lower bounds on the session's demand and on the number of chances the

session receives at each link in its path. The problem is difficult because the

session's buffers, while large, are finite. The problem is solvable, however,

because the session's demand and chance processes are fairly smooth.

Let us begin with slightly oversimplified sketches of the results of this

section and their proofs. The key result is Lemma 3. This lemma focuses on a

particular buffer h of the given session x in the range 1 < h < H(x). A

lower bound is assumed for the throughput over hop h-1 (i.e., into buffer h)

during any interval when buffer h is not full. This bound has a special form.

It is the product of a nominal rate r and the length of the interval, minus a

constant error. A similar lower bound, with the same nominal rate r, is

assumed for the throughput over hop h (i.e., out of buffer h) during any

interval when buffer h is not empty. In other words, it is known how the

subpaths upstream and downstream of buffer h behave when isolated from

each other. The capacity IV(x, h) of buffer h is assumed to be at least

slightly larger than the sum of the error constants in the throughput boin,ls

for the two subpaths. Lemma 3 uses the given throughput bounis for the

subpaths in isolation to derive lower bounds of the same form that apply

during any interval, regardless of the level of buffer h. The error constants in

these bounds for the integrated system are only slightly larger than the sum of

- 4. . . . . . . . .%-. , .~. -I . . . . . .° • . . . . . -o • •°••.•.• ° • • o. . . , ° .
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the error constants in the bounds for the isolated subpaths.

The proof of Lemma 3 is structured as follows. To bound the throughput

over hop h-1 during an interval (s, t] , this interval is divided into various

subintervals. There is an initial subinterval in which buffer h moves from its

initial value to nearly empty. There is a final subinterval in which buffer h

moves from nearly empty to its final value. Between the initial and final

subintervals are subintervals that alternate between two types. During a type

1 subinterval, buffer h is not empty, and its level moves from nearly empty to

nearly full. During a type 2 subinterval, buffer h is not full, and its level

moves from nearly full to nearly empty. During a type 2 subinterval, the given

lower bound applies to the throughput of the isolated upstream subpath.

During a type 1 subinterval, the given lower bound applies to the throughput

of the isolated downstream subpath. Moreover, the throughput of the

upstream subpath during a type 1 subinterval must exceed the throughput of

the downstream subpath by approximately W(x, h) packets, since buffer h

fills during a type 1 subinterval. The window size W(x, h) is large enough

that the throughput excess (over the nominal amount) for the upstream

subpath during a type 1 subinterval balances the possible throughput deficit

(from the nominal amount) for the upstream subpath during a type 2

subinterval. Thus the throughput over hop h-I during a type I/type 2 cycle

is at least r times the combined length of the two subintervals. Net deficits

from the nominal throughput can only accrue during the initial and final

o2 *



- 73-

subintervals of the interval (s, t] . Hence the net throughput deficit at hop

h-1 over the entire interval (s, t] cannot be too great. Lemma 3 analyzes

the throughput over hop h in a similar manner.

Lemma 4 is a simple corollary of Lemma 3. Lemma 4 assumes a lower

bound on the number of chances received by a particular session x at any hop

of its path - including hop 0, the demand hop. This bound is the product of a

nominal rate r and the length of time involved, minus a constant error.

Sufficiently large windows are also assumed. For each buffer h of x in the

range 1 < h < H(x)+ 1 , Lemma 4 proves the following property: during an

interval when buffer h is not full, the throughput into buffer h is at least r

times the length of the interval, minus a constant error. This error constant is

only slightly larger than the sum of the error constants in the given chance

bounds for hops 0 through h-1. The proof of Lemma 4 is by forward

induction on h, using Lemma 3 to add successive hops to a growing upstream

subpath.

Under the same assumptions as Lemma 4, Lemma 5 derives a lower bound

on the throughput out of each buffer h of x during intervals when the buffer is

not empty. The proof of Lemma 5 is by backward induction on h. using

Lemma 3 to add successive hops to a growing downstream subpath.

Lemma 6 makes the same assumptions as Lemmas 4 and 5. Since Lemma 4

analyzes the subpath upstream of any buffer h when that buffer is not full,

and Lemma 5 analyzes the downstream subpath when the buffer is not empty,

.



- 74 -

Lemma 6 can invoke Lemmas 4, 5, and 3 to derive a lower bound on the

throughput of session x at any hop during any interval, regardless of the buffer

levels. As usual, the bound is the procuct of r and the length of the interval,

minus a constant error. This error constant is only slightly larger than the sum

of the error constants in the given chance bounds for hops 0 through H(x).

Of Lemmas 3, 4, 5, and 6, only Lemma 6 is used in later sections.

S°
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4.2.3.1 Lemma 3: Lower Bound on Throughput of Concatenated Subpaths

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses any scheduling discipline. Let x be some session. Let h be

some hop of x in the range 1 < h < H(x) . Let K be a positive integer, and

let S1 , t 8 2  , , ... 8 K, tK be times satisfying

< 8r sK . Assume that the following two

properties hold for some real numbers r, e', e", f', and f"

(107) If, for k = 1, 2, ... , K , J(k) is any positive integer, and

V k , u k - , v k - , Uk-,, v, u are any times such that
s J<_v( k) < u (k)- 1< v (k)- I< u (k)- 2< . .. < vk1 < u° < t

J~k)
and such that B(x, h, r) < W(x, h) for all rin J [vj, u'- 1), then

j-1

.. K J(k) K sck) .K
K 1( K - , -- - - (k).f

k-i j-L k-I j-1 k-1

(108) If, for k = 1, 2, ... , K , J(k) is any positive integer, and

uk, V ) , U , v , ... , ,v are any times such that

Sk < ,J(k) < VJ(k) < U J(k' 1 v(k)-1 < .. . < < tU<

Jfk)
and such that B(z, h, 7) > 0 for all -,in U [ui.. vi), then

j-I

-~~ K 1(k) K J( K -E E P(r. h. uJ , V';) r-"  (c;: -e' " !/
k-I j-1 k-I -I

Also assume that
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(109) f' + f" + 2 W(x, h) < oo

It follows that

K K(110) F, P (x, h --l, sk , tk) r_ -r" (t k -  SO) - e -- f

n k-1 k-1

. and

K K
(i) E P(x, h, sk ,tk) > rE (tk - sk) - e - Kf

k-I k-i

where

(112) e = e' + e"

(113) f = fl+ f"+

Proof of Lemma $

Inequality (110) will be proved first. For each k, 1 < k < K , let us

analyze the time interval [sk , tk] separately. The first step is to break

[sk , tk) into various subintervals. Determine a positive integer J(k) and
' define times uO , v1 I4, U I , 2 , ., , (k) by the procedure specified

below. Examples are shown in Figures 4 and 5.

' ,..
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j--0

0Uk 4- tk

E: j4-- j+1

v 4-- earliest time v in [sk , ut-] that satisfies
B(x, h, r) < W(x, h) for all in [v, u -)

u" 4- earliest time u in [sk , v' that satisfies
B(x, h, 7) > o for all in [u, v )

if u1 > sk then go to E

J(k) +- j

It is not difficult to verify that u" and vi are well-defined and that this

procedure terminates. Let us make some remarks about u" and vi

)0
(114) sk = uJk U Ig' < t,) 1 <k~) . k t Uk = tk

(115) B(x, h, r) < W(x, h) for all 7in [v , u'), 1 < J J(k)

(116) B(x, h, v ) W(x, h) - 1 for 1 j < J(k)-1

(Note: Strict inequality in (116) occurs only for j = 1
and only if B(x, h, tk - 1) = B(x, h, tk) = W(x, h).)

(117) If A;(k) < , then B(z, h. v (k)) > IV(, h)-1

(118) B (x, h, 7) > 0 for all -in [,, t,) 1< _ Jtk)

(119) B(x, h, uj) = 1 for 1 < J < J(k)-I

Now the facts above will be used to analyze the throughput over the

. . -o..
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subintervals (u, vJ] . From (116), (119) and (10), it follows that

(120)
P(x, h-1, uJ , v,) 2_ P(z, h, ul , v) + W(x, h) - 2 for 1 < < _ J(k)-1

To develop a similar inequality for j = J(k), first let us justify the following

claim:

(121) B(x, h, ujJ(k)) _< B(x, h, Vk + 1J~k) V 1(k)' J(k)Jk

If u 1(k ) - , then (121) is obviously true. If ukl() < V, then (121)

follows from (117). From (121) and (10), it follows that

(122) P(x, h-1, u() , v J(k)) 2_ P(x, h, uf ( ), vT(k)) - 1

Next, the throughput over the entire interval (Sk, tk1 can be studied. By

(114),

P(x, h-1, k tk) = P(x, h-i, U-1,

7(123) J [J P(x, h-1, ulvD + l~kP(X h -i1, v

Applying (120) and (122) to (123) yields:

(124) _] K
P (x, h -1. s k t) > P(. Ii. u: ) -.

+ -J (k) - I ) 2.

Finally, the throughput over the cr-lI otiori , Mtr'v: - 1 '. .

-, -, , -~~~~~~~~~~~~~~~. ..-..-- ..-..-. <.......... ..-:.:-....... .............-.-. ..... , f.
-. ." -. -. "w5 "."" . ". • " . " w , .'"" ', """"" ' " "" "," ' " '''a ' ,:,''
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can be examined. Summing (124) over k yields:

KKJ(k) h, v)
(125) - P(x, h-1, sk tk) > [ P(x, h, ui , v

SJ( k)
+ P X h-i1, vj, 41 1)]

k-1

+ [k EJ(k) - 11 [w(x, h) - 21 - K

The hypotheses of the lemma can now be used to bound the right-hand side of

(125). It follows from (114), (118), and assumption (108) that

K J(k) KJ(k) K

k-1 j-1 k-1 j-1 ]k-1J "

Similarly, it follows from (114), (115), and assumption (107) that

K J(k) KJk
~ P(x, h-1, v , ul1) > r.k- X~~ , ~ W- -h [kekj

k-1j-1

Substituting (126) and (127) into (125) yields:

m * .% " . . . . " -. .. .. . - ..- '. - ." . - -. .- , -: .



- 82 -

P(x, h[-, s k tk) r( - - al) - (e' + e") - K

k - 1 I k 1 " - I

+ [ . k)- i]].[w(x, h) - 21
ki

K

(128) - ,'" E(u '° - (k)) - ( ' + e") - K(f + f" + 1)

k-I

k-

+ [i(Ak) - 1Jja W(x, h) - f' f 1 21

Applying definitions (112) and (113), assumption (109), and (114) yields the

desired result:

K K
E P(x, h-1, k , tk) > t- E (uo _ lFk)) _ - K f
k-I k-I

K
- E (tk- sk) - e - K'f

k-I

This completes the proof of inequality (110).

Now (111) will be proved. For convenience, let us rephrase assumIticn,

(10) an 'JOS) b v jui ;lin- the super c ipts of t' and u

... ',".e ,." .'. .. . , .% -.. ' ,. .. . - . • - . .'% '...... .. % .',- ... .-. ".. ,.'..- .-.. ,. ....- .--.. .. a ..- ar,,

• ,, ,,, a ' a .I I - * a a .. Im
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(129) If, for k = 1, 2, , K, f(k) is any positive integer, and
v(k) , UJ(k) , VJ(k)- 1, UJ(k)- I ... ,1 , u 1are any times such that

Jk 7 (k) < U J(k) < V J(k)- I < J(k)-I < . .. < vk I Uk 1 </
J(k)

and such that B(x, h, r) < W(x, h) for all 7in U [v , uj) , then
j- I

K J(k) K 1(k) I [K ]E P (x, h- 1, v , ,) >_ r- FF,( vj) - e' E J (k)"f
k-I j-i k-I j-1 k-1

(130) If, for k = 1, 2, ... , K , J(k) is any positive integer, and

Ui(k) vJ(k) - , ul(k) - I V(k)-2 U , are any times such that

J(k)

and such that B(x, h, r) >0 for all rin U [uj, v'-1) ,then
j-1

K J(k) K 1(k) K1 , [,,F, E P (x, h, ul , v!- 1) > r -E E(W- - Uh) - P- - ~ -
k-l j-1 k-1 j-i k

The proof of (111) is similar to that of (110). As before, for

k = 1, 2, , K , the interval [sk , tkl must be broken into subintervals.

Determine a positive integer J(k) and define times v , uk, Vk, uk,

vt,...,J(k) U V ) ) by the procedure specified below. Examples are shlwn in

Figures 6 an(l 7.

' % %.1'
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j4--0

Vk t

I j4-- j+1

4u .-- earliest time u in [sk, v'] that satisfies
B(x, h, r) >0 for all rin [u, Vj'-)

v" 4-- earliest time v in [sk, u1] that satisfies
B(x, h, 7) < W(x, h) for all in [v, uj)

if vj > sk then go to E

J(k) *-- j

The following properties are analogous to (114) - (119):

(131) Sk = .ki(k) < U "J(k) < i.(k)- 1 < U J(k)- I < . .. < I < Uk V = tk

(132) B(x, h, r) > 0 for all rin [uj , vj-) , 1 < < J(k)

(133) B(x, h, uj) < 1 for 1 < j J(k)-1

(Note: Strict inequality in (133) occurs only for j = 1
and only if B(x, h, tk - 1) = B(z, h, tk) = 0.)

(134) If vk() < uJ(k), then B(x, h. u(k)) 1

(135) B(x, h, 7) < I1(x, h) for all [ .7, 1< < .,

(136) B(x. . t,') = I x. h)- 1 for I < j _ J(k)-

The following inequalities can be proved by reasoning similar to) that behin

(120) andt (122):

. . . . . . . .. .:.
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(137)
P(x, h, vj, uj) _ P(x, h-i, v , u?) + W(x, h)- 2 for 1 _ I _ J(k)-l

(138) P(x, h, V,(k), u/(k)) P(x, h-i, v,(k), u,(k)) - 1

It follows from (131), (137), and (138) that

K K1(k) . .
E P(x, h, Sk tk) = E P(x, h, vj, u )
k-1 I P-1 j- ,

+ [ P(X, h, ,i -)
k- I j-1

K .1(k)P .1(139) > E P(x, h-i, v ,

+ J:P(X A, ul , vj- 1)
k- j1-1

+ 1- 1] . A(x, h) - 2- K

Because of (131), (135), and (132), assumptions (129) and (130) can be applied

to (139) to yield:

.4 : * -: - - - - -: -x -: -: :, -, - --- -. - - - -- : -, - --- - .: -. - . z ( "- -- - " " -: " - " - "
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K [K 'J(k). 1
E P(x, h, sk tk) > , E E (vt - v41 - (e' + ") - K

k-I [k-1 j-1

- KFJ(k) (f + f")

+ [,[J(k) - 1] ][W(x, h) - 2]
Ik-I1I

(140) - ' (v0- vl(k)) -(e'+ e") - K'('+ f"+ I)

k-1

+ [ -J(k)- 1] [W(x, h)- f'- f"- 21

Applying definitions (112) and (113), assumption (109), and (131) yields the

desired result:

K K
P(x, h, Sk, tk) r- E ( -v/(k)) - - .f

k-1 k-I

K
- 'E(tk- sk) - e - If

k-I

This completes the proofs of inequality (111) and Lemma 3.

* 2dz~:~2:~r~t~?"

:.: ., - ; . .. ., .. .: ... •, .. -. .. -.. -.. . .. -. .. . ., .. : . .- ., -. . . . . • . * . *.. . .•
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4..,

4.2.3.2 Lemma 4: Lower Bound on Throughput of Upstream Subpath

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses round robin scheduling. Let x be some session. Let T1

and T2 be times satisfying 0 < T 1 < T 2 < cc . (Note that T, is permitted

to be infinite.) Suppose there exist real numbers r, G, and G2 such that the

following inequality holds for every hop h of x in the range 0 < h < H(x)

for any positive integer K, and for all times s,, t1 , s2 , t2,...,SK, tK

satisfying Tl s, l tI : s 2 5 t2  < ' sK : tK < T,:

K K
(141) E C(x, h, k tk) r- E(tk- Sk) - G1 - G

k-I k-1

Suppose that

(142) [H(x) + 11J(G 2 + 1) < W(x, h) < oc for 1 < h < H(x)

It follows that property (143) holds for each hop h of x in the range

0 < h < H(x):

'Z

(143) If K is any positive integer,

and if s1 , t . s. t.... SK  t K are anv times

satisfying T,: 5 s, t I  < ._ t,. < ... < [ - l < T,.

K

and if B(x. h+1. 7) < 1i'(z. h+1) for all 7in u 7.

K K
ZP(x, h, s. tk) > r' (N - sk) - (h + 1)G - h + I'.. + h

k-I k-I

'p..- 2 - * . - , -- , - . , _ .. "
. ' ' . " ' - ' ' . . . " • • " , % • " °
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Proof of Lemma 4

The proof is by forward induction on h. The base case (i.e., h = 0) follows

from assumption (141) and the fact that P(x, 0, sk , tk) = C(z, 0, sk , tik)

during intervals when B(x, 1, -") < W(x, 1) (since buffer 0 is never empty).

For the induction step, fix a hop h of x in the range 1 < h < H(x)

Property (143) is assumed to hold for hop h-1 , and it will be shown to hold

for hop h. Let K be any positive integer, and let s , t t , so, t, . sK t

be any times such that

(144) T s_ t s, < t < ... sK_ tK < T,

and

K
(145) B(x, h+1, r) < W(x, h+1) for allI rn U [Sk tk)

k-I

The goal is to show that

(146)
KK
y P(x, h, Sk tk) _ r y (tk - sk) - (h + 1)G1 - 1'[(h + 1)G 2 + h

k-I k-I

To prove (146), Lemma 3 will be used, with:

e= h'G1 e = G

= h'G, + h - =

First, note that the induction hypothesis can be rephrased in terms o" timc,

variables vt and u as follows:

-"Iw.. .- .... . . ' - . . - - - .. .
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(147) If J(1), J), , ... , J(K) are any positive integers, and if

1 1 1 1 1 1 . d ,
J(2 J(2-)- 1 ,J(.2)_- 1 J(2-)- 2 . 1 0°v2 U ' 2 V 2 U 2 ' 2 U2 '..

J(K) , -(K), vI J(K)- , uk(K)- 2. . . UK

is any nondecreasing sequence of times in [T, , T.)
K J(k) .and if B(x, h, r) < W(x, h) for all 7in U U u)-1).then

k-1 .- 1

K J(k) K J(k)
E P(x, h-1, vj, /-') > r. E E(u-- vt) - h,

k-i j- - k-1 j- I

- J(k) +(h.G,, + h - 11~k-1

Using (147) and (144), it is straightforward to verify condition (107) of Lemma

3. Now condition (108) of Lemma 3 will be verified. As in (108), suppose, for

k = 1. 2, ... , K, that J(k) is some positive integer. t!,at

J(k) , VJ(k) , U J ( k ) - I , J (k ) - 1 ,..., U1 , V I are some times satisf'ing

8k < uI(k)< ) v(k) < u (k)-1 < V,(k)-I < ... < u,1 < v1< t, , and that

J(k)
B(x, h, 7) > 0 for all r in U [uk , v ). By (145), then, session x will accept

i-1

every chance offered to it by the round robin scheduler at hop h during

K 1(k)

* U U ( i
k-1 j-1

K J(k; " J(':)
(14S) V E 1(. :  h, uK. c') = E E C(z. h. .

- k-I 1j1 k-I j-1

If follows from :resumption (1.1) that

JJ
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(149) N'K J(x, h. u , vj t-; rK 1( - u ) G, C -[J(k).G

k -I j-1 k-I j-1 k-1

This verifies condition (108). Condition (109) of Lemma 3 is satisfied by

assumption (142). All the conditions of Lemma 3 have been verified.

Conclusion (111) of Lemma 3 gives the desired result (146). This completes the

proof of Lemma 4.

S .

.5P
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4.2.3.3 Lemma 5: Lower Bound on Throughput of Downstream Subpath

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses round robin scheduling. Let x be some session. Let T2

and T. be times satisfying 0 < T 1 < T 2 < 00 . (Note that T2 is permitted

to be infinite.) Suppose there exist real uumbers r, G, and G2 such that the

following inequality holds for every hop h of x in the range 0 < h < H(x)

for any positive integer K, and for all times S1, t1 , s2 , t 2  SK  tK

satisfying T, s, : t l js 2 :5 t2  "'" < sK< tK < T 2 :

K K
(150) E C(x, h, sk, tk) r " E(tk -sk) - G - K'G

k-1 k-I

Suppose that

(151) [H(x) + 1](G 2 + 1) < W(x, ) < oc for 1 < h < H(x)

It follows that property (152) holds for each hop h of x in the range

0< h < H(x):

(152) If K is any positive integer,

and if s1 , , so , o... S, tK are any times
satisfying T s 1  t 1 _8o_ to-< 2_ sK tK < T.,

K
and if B(x, h, r) > 0 for all 7in U [sk , tk) ,then

k-1

K K
SP(X' h, s k ,tk) r" E (tk - sk) - [H(x) - h +] 11-G,

- k-I k-I

%_K> [[H(x) - h + 11G, + H(.) - h

,%%
4".

4 ",' -% ' Y: L . ' 4, . " 4 "- ,"._ '- '. ' ( , "# ' ' ,' " , "," ,
"

, ' ,4_'€ " " ' - "" * " - "
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Proof of Lemma 5

The proof is by backward induction on h. The base case (i.e., h - H(x))

follows from assumption (150) and the fact that

P(x, H(x), sk , tk) == C(x, H(x), sk , tk) during intervals when

B(z, H(x), r) > 0 (since buffer H(x)+1 is never full). For the induction

step, fix a hop h of x in the range

(153) 1 < h < H(x)

Property (152) is assumed to hold for hop h, and it will be shown to hold for

hop h-1. Let K be any positive integer, and let s tI , S, , ... , S t

be any times such that

(154) T, s, < t 1 1 s, < t2 < S sK  tK <'T 2

and

(155) B (x, h -1, r) > 0 for all Tin U [Sk tk)

k-I

The goal is to show that

K K
(156) E P(x, h-i, sk , tk) r r"E (tk - sk) - [H(x) - h + 2 1'

k-I k-I

K- [[H(x) - h + 2]-G + H(x) - h +]

To prove (156), Lemma 3 will be used, with:

6 ":€. ;- , , ,.¢- . .. .% : . .- ., :..,' , <*.- .:.-, ' , . ,,.,' '--.- ,
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e? = [H(x) - h + 1-G

f I'= G 2  f" [H(x)- h -+ 11G 2 + H(x)- h

First, condition (107) of Lemma 3 will be verified. As in (107), suppose* for

k = 1, 2, , K , that J(k) is some positive integer, that

1(k) UJk-IVJk-1,UJ(k)- 2 1 0V k , k - , k, -,•, Vk, U are some times satisfying
Sk < v )(k) < ) - (k)- I VI (k)I U (k)- 2 < ... < V u tk, and

-~~~ that 1~~(k)By(5)thnseio
that B(x, h, r) < W(x, h) for all rin U [vj ' u j - 1)  By (155), then, session

j-i

x will accept every chance offered to it by the round robin scheduler at hop

"h-• K J(k)
h -1 during U U (v, u -1]

k-1 l-i

K 1(k) K 1(k)
(157) EP(x, h-1, vi ,U I 1) = E C(x, h-1, vj , u j - 1

k- jII k. -II

If follows from assumption (150) that

(158)
K 1(k) K 1(k) *- -[K ]i'"EPC=, h-1, vi, I- 1) r__ , E (,uj- VO ,J) - 2

k-I j-I k-I j-I

This verifies condition (107). Next, note that the induction hypothesis can be

rephrased in terms of time variables u" and v" as follows:

_p.
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(159) If J(1), J(2), ... , J(K) are any positive integers, and if

UJ2 VJ()UJ-I V J(2- 1 V1
2(-1 ,..., 2, 2 ,...,

is any nondecreasing sequence of times in [T, T2) ,

K J(k)
and if B(x, h,r) >0 for allrin U U [ut, v'),then

k-i j-i

K J(k) K J(k)E EP~x hul, v) :: r E E (v! - uj) - [H(-) - h + 11'G,
k-1 j-1 k-1 j-l

k) + H m - hsm

- ~i ) [[H(x) - h + 1]. H(x) -G]

Using (159) and (154), it is straightforward to verify condition (108) of Lemma

3. Condition (109) of Lemma 3 is satisfied by assumptions (151) and (153). All

the conditions of Lemma 3 have been verified. Conclusion (110) of Lemma 3

gives the desired result (156). This completes the proof of Lemma 5.
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4.2.3.4 Lemma 6: Lower Bound on Throughput, given Lower Bound on

Chances

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses round robin scheduling. Let z be some session. Let T 1

and T2 be times satisfying 0 < T, < T 2 < 00 . (Note that T2 is permitted

to be infinite.) Suppose there exist real numbers, r, G1 and G2 such that the

following inequality holds for every hop h of x in the range 0 < h < H(x),

for any positive integer K, and for all times Si, t I , S2, t2 SK tK

satisfying T,< s ti< so< to< "." < SK tK < T,:

K K
(160) E C(x, h, sk , tk) r- (tk -s) - G, - KG 2

k-1 k-i

Suppose that

(161) [H(x) + 11-(G 2 + 1) < W(x, h) < oo for 1 < h < H(x)

It follows that, for each hop h of x in the range 0< h < H(x), for any

positive integer K, and for any times S1 , tl, S2 t2 , SK  tg satisfying

T 1 < s 1< tl < S< t, 2 " SK _ :tK < T2:

K
(162) E P(x, h, sk ,tk)

k-i

Kr
> - (tk Sk) -[H(x) + 1-G 1  - [ VH(x) + 1k-G, + 1(r

k-1
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Proof of Lemma 6

Let h be any hop of x in the range 0< h < H(x). Let K be any positive

integer, and let s , , , S2s , t K be any times satisfying

(163) T, i s1 1 ti 1 s 2  t2 : "'" S SK : tK < T2

If h = 0, then (162) follows directly from Lemma 5, since B(x, 0, r) > 0 for

all times r> 0; so assume that h > 1. To prove (162), Lemma 3 will be

used, with:

C' - ha, el = [H(x)- h + ]'G,

P - h-G 2 + -1 f" = [H(x)- h + 11-G 2 + H(x)-h

First, note that Lemma 4 can be applied to hop h-1 and rephrased in terms

of time variables v" and u" to yield the following property:

(164) If J(1), J(2), , J(K) are any positive integers, and if
J;(1),U J;()- I J(1)- 1 J(1)- , ... 1 0,
.o- , . o-- , .g:- , (-) . .., . , ,..

V (2) U (2)-l J(2)- I J(2)-2 V1 U0
2V 2  ,. 2 ~2

is any nondecreasing sequence of times in [Tj , T,.)

K 1(k)
and if B(x, h, 7) < W(z, h) for all in U U [v ., u.-1) ,then

k-1 j-1

K J(k) K 1(k) .
S P(x, h-1, vj., u -1 > r1 - v,) A G

_ r- E('a Eh1- - - 1)k-1 j-1 k-1 j-1

E- ~ )- h-G + h-i

%

, -u . . _ , % % % ' '% .% ' °% -." *"% , ' . . - " '. "% . - ., . - . . ",. . . . . .€, . - • .".. . .". '.., ---- -- -,, - - -, - , .. . . - .. .., -- .. =-. _ _ • . . . P i .-. ~ . .
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Using (164) and (163), it is straightforward to verify condition (107) of Lemma

3. Next, note that Lemma 5 can rephrased in terms of time variables u" and vj

to yield the following property:

(165) If J(1), J(2), ... , J(K) are any positive integers, and if

is any nondecreasing sequence of times in [T1 , T0) ,
K 1(k)

and if B(x, h, r) >0 for all rin U U [U, ' ) ,then
k-i j-1

K J(k) K (k)E~~~ ~ ~ E Eh iV !r (,4- ,,j) - [H(x) - h + 11-G,
k-1 j-1 k-l j-I

- J(k)- [H() - h + 1]a-2 + H(x) - h

Using (165) and (163), it is straightforward to verify condition (108) of Lemma

3. Condition (109) of Lemma 3 is satisfied by assumption (161). All the

conditions of Lemma 3 have been verified. Conclusion (111) of Lemma 3 gives

the desired result (162). This completes the proof of Lemma 6.

4'



-100-

4.2.4 Lemma 7: Upper Bound on Throughput, given Lower Bound on

Throughput

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses any scheduling discipline. Suppose each session has a

well-defined demand rate Suppose that

(167) W' < oo

Let x be some session. Let h be some hop of x in the range 0 < h < H(x).

Let K be a positive integer, and let s1, tl, s2, t2  SK, tK be times

satisfying 0 s< SI tI :s 2 :5 t2 :5 <. SK < tK. Let G, be a real

number satisfying

K-i K-i
(168) E P(x, h, tk I Sk+1) RF(I(x))" E (sk+ - tk) G- ,

k-1 k-1

Let A be a non-negative real number such that

(169) C(x, 0, S1 , tK) < X(x)'(tK - s) + A

Let

(170) G 2 > 0

be a real number such that, for every session y with I(y) I(y) and t'cr

every link I used by y,

(171) P'(y, 1, 1, tK) RF(I(y))-(tK - s) -

It follows that

.'p.-
V o % ° • * , o , . * ° % ° . % - o ° . ° . % ° , • . o - . - o • . - , - . -.
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K
(172) F, P(x, h, sk, tk)

k-i

K
< Rr( Z))Z E (tk - Sk) + (N - 1)-G 2 + G, + W"H + A

k-1

Proof of Lemma 7

From assumption (168), it follows that

K K-i
E P(x, h, sk tk) = P(x, h, sI, tK) - F, P(X, h, tk ,sk +1)
k-1 k-1

K-i
(173) .P(x, h , 81 tK) - RF(I(X))° E (sk+1 - tk) + G,

k-1

Now the term P(x, hs,s , tK) will be bounded. Recall that, by the properties

of the max-min flow criterion (Section 4.1), every session has at least one

bottleneck hop. Let h* be any bottleneck hop of x, 0 < h* < H(x) , and

consider the following claim:

(174) P(z, h, sI , tK) _ P(z, h*, s , tK) + W"H

If h = h*, then (174) is obviously true. If h > h* , then (174) is true

because P(x. h, si , tK) can be no more than P(x, h*, si . tK) plus the total

number of packets present at time s1 in all the buffers between hops h and

h ; there are at most H such buffers, each of capacity at most It" . If

h < h* , then (174) is true because P(x, h, s , , tK) can be no more than

P(x, h*, s 1 , tK) plus the total amount of spare capacity at time s, in all the

".

~% -,-. , . -. . .
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buffers between hops h and h* ; there are at most H such buffers, each of

capacity at most W'. This proves (174). Inequalities (173) and (174) show

that

K(175) E P(x, h, Sk, t)
k-1

K-1
< P(x, h*, s, , tK) - RF(I(x))- E (Sk - tk) + C1 + W'H-

k-i

Now P(x, h*, s , tK) will be analyzed, using the properties of bottleneck

hops. There are two cases to consider. If h* = 0 , it follows from assumption

(169) and definition (65) that

P(x, h*, s, , tK) = P(x, 0, s1 , tK)

< C(X, 0, S1, tK)

< X(x)'(tK - si) + A

(176) = RF(I(x)).(tK - S) + A

If 1 < h* < H(x), let I denote the link corresponding to hop h*, and let Y

denote the set of sessions y =# x that use 1. Note that, by definition (64).

1(y) < I(x) for all sessions y in Y. Obviously. z can only use slots in (. .

that are not used by sessions in Y:

I, ' '' '' .S -..... ."" " "" "" " ' " " .---....€ ' ' '. " " " " " -" ""' ." -." ' .." -.' ' ' " -" ." -. - ' ' '

• -, .. - ,. . .. - .. .-. ". -. .- ,- . . x . . ,
- . - - .. ,- - . ,. . , ,, .,. . .- ., -. *. " ,. . .-
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P(x, h*, s , tK) = P'(X, 1, Sj , tK)

(177) <- (tK - S 1) -- E P'(Y, 1' 81' tK)

YEY

Applying assumptions .(171) and (170) and definition (64) yields:

P(x,-*,-stK) (tK - SO - E [RF(I(Y))'(tK - SO - G,]

< 1- E RFIY))].(tK - SO) + (N - I)>G.2

(178) - RF(I(X))'(tK - s1) + (N- 1)-G 2

Since A and G, are non-negative, inequalities (176) (for the case where

h*= 0) and (178) (for the case where h* > 0) may be combined into a

single inequality:

(179) P(x, h*, s, , tK) RF(I(X))'(tK - S) + -I + (N- )-G.

Substituting (179) into (175) gives the desired result (172):

. . - . , . . . . . - . - - .° -. ,
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K K- i
E P(z, h, sk tk) 5 RF(I(X))'(tK - SO) - RF(I(X))- E -S+ tk)

k-I k-1

+ (N-i)-G2 + G, + W'-H + A

K
=RF(Ir(z)) E (tk - Sk)

k-I

+ (N - I)>G 2 + G, + W'H +A

This completes the proof of Lemma 7.

ep*"*,-.ll
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4.3 Transient Analysis of Smooth Demand Case

This section contains a single result, Theorem 2. The theorem analyzes a

system during an interval (TI , T 2) of smooth demand. Specifically, it is

assumed that there exists a constant A such that the demand of each session x

over each subinterval (s, t] of (Tj , T2) is within A packets of the nominal

amount (x)'(t-s) . Most window sizes are assumed to be at least

3"(H+l)S'NS-"(-A+2) . Theorem 2 concludes that the throughput of each

session x at each hop over each subinterval (s, t] of (T I , T 2) is within

(H+I)S'N2S-"(VV'+3A+4) packets of the fair amount RF(I(x))'(t-s).

Note that this unfairness bound increases with the maximum window size W' .

This is not surprising, since the system should go through a transient period

during which buffers upstream of bottleneck hops fill and buffers downstream

of bottleneck hops drain. One would not expect to see fair flows until the

buffers levels stabilize. Obviously, the transient can be more pronounced if the

windows are larger.

Let us outline the proof of Theorem 2. The proof is by induction on the

congestion index i of a session. The induction hypothesis gives upper and

lower bounds on the throughput of each session with congestion index less tnhin

i. Recall that the theorem assumes upper and lower bounds on the demand of

each session. The proof of the induction step has three parts. First, Lemma 2

uses the upper bound on throughput from the induction hypothesis plus the

properties of round robin scheduling to deduce a lower bound on the number

.-.. - ... ,- ,,".
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of chances offered to each session with congestion index iat each link. Then,

Lemma 6 uses this derived lower bound on chances, the given lower bound on

demand, and the assumption of large windows to deduce a lower bound on the

~ throughput of each session with congestion index i. Finally, Lemma 7 uses this

derived lower bound on throughput, the lower bound on throughput from the

p induction hypothesis, the given upper bound on demand, and the properties of

max-min fairness (viz., the existence of bottleneck hops) to deduce an upper

bound on the throughput of each session with congestion index Z*. This

preview should make the proof a little easier to follow.

P.
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4.3.1 Theorem 2: Throughput Bounds

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses round robin scheduling. Suppose each session x has a

well-defined, real demand rate X(x), 0 < X(x) < 1 . Let T1 and T, be

times satisfying 0 < T 1 < T2 < c0 . (Note that T 2 is permitted to be

infinite.) Suppose there exists a nonnegative real number A such that, for each

session x and for all timess and t satisfying T 1 s< < T 2 ,

(180) C(x, 0,S, t) - X(X)-(t - s) < A

Suppose that, for each session x,

(181) 3"(H+I)S.NS-'(A+2) W(x, h) < oc for 1 < h < H(x)

It follows that, for each session x, for each hop h of x in the range

0 < h < H(z) ,and forall timess and tsatisfying T1  s < t < T ,

(182) 1 P(x, h, s, t) - RF(I(x)).(t - s) I < (H+1)S.N2 '-.(W' + 3A + 4)

Proof of Theorem 2

In order to show (182), properties (183) - (185) will be proved.

(183) For each session x, for each hop h of x in the range 0< h < H(x)

for any positive integer K, and for any times stj . , t....s .

satisfying T 1  s,< t 1j s,< t,,< .- . SK_ !tK < T,:

K K
E C(x, h, sk tk) Rc(x, h) (- Sk) - DcL(L, I(x), K)

k-i k-i

.,e-p . . ,; ' . ' " " - ' " , ¢ " " " , " - . e 
- "
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(184) For each session x, for each hop h of x in the range 0 < h < H(x),

for any positive integer K, and for any times S1 , , S2 ,, SK  tK

satisfying T, i s,. tl < s 2  t2  ' < SK < tK < T2:

K K
E P(x, h, Sk ,tk) RF(I(X))' E (tk -SO) - DpL( ., 1(x), K)

k-i k-i

(185) For each session x, for each hop h of x in the range 0 < h < H(x)

for any positive integer K, and for any times s1 , ts, t2.SK, t,

satisfying T,: s, tl < s,< t2  " SK< tK < T2 :
K K
E P(x, h, sk , tk) < RF(I(x))" E (tk - 8k) + Dpu(A, I(x), K)

k-I k-1

The proof is by induction on the congestion index I(x) of the session x.

Contrary to custom, the induction step will be proved before the base case is

addressed. Fix a congestion index i > 1 . The induction hypothesis asserts

that (183), (184), and (185) hold for all sessions x with I(x) < i . It must be

shown that (183), (184), and (185) hold for all sessions x with I(x) - i

First consider (183). Let x be any session with I(x) = i . Let h be any

hop of x in the range 0 < h < H(x) . Let K be any positive integer,

and let s , t, s,, t sK , tK  be any times satisfying

T, < .51< tj < s., < t- < < s K  tK < T,. If hop h = 0.it l',lIVws

from assumption (iSO). definition (68). and conclusion (900) of Lemma I that

% " -" -- % % ' - - - - " *,", " -""""-'- ..............................................%......... ........ ...
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K1 K
E ( 0 sk, tk) _> (X)" E (tk -- - K.A
k-I k-i

K
= RC(x, 0). (tk -Sk) -

k-I

K
(186) > Rc(x, 0)" E (tk - k) - DCL(A, i, K)

k-I

If 1 < h < H(x), Lemma 2 will be used, with G- Dpu(A, i1, K). By

conclusion (84) of Lemma 1, condition (98) of Lemma 2 holds. By the induction

hypothesis, (185) holds for all sessions with congestion index less than i. This

fact, along with conclusion (88) of Lemma 1, verifies condition (99) of Lemma 2.

From conclusion (100) of Lemma 2 and conclusion (92) of Lemma 1, it follows

that

K K
C(x, h, sk tk) > RC(x, h)" E (tk - S) - (N-1)'Dpu(A, i-1, K) - K

k-i k-i

K
(187) > RC(x, h)" E (tk - S) - DCL(A, i, K)

k-I

This completes the proof of (183) for the induction step.

Now (IS-I) will be proved. Let x be any session with I(x) = i. Lemma 6

w'ill be used. with r = RF(i) = Ecr(.. i) and G2 = FCL(,. i). To

verify condition (160) of Lemma 6, let h be any hop of x in the range

0 < h < H(x) , let K be any positive integer, and let

st t , t ....... , th. be any times satisfying

, .. . . . .
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T 1  < 8< t, < ... 8K 5 tK < T 2 . Recall that (183) was

just proved for all sessions with congestion index i. Applying (183), (70), and

definition (78) verifies condition (160):

K K
E C(x, h, sk ,tk) Rc(x, h)* (tk - sk) - DCL(A, i, K)
k-I k-i

K
> RF(i)" y] (tk - Sk) - DCL(A, i, K)

k-I

K
(188) -RF()- F, (tk - 'Sk) - ECL(A, -FCL(A, t

k-i

Condition (161) of Lemma 6 holds because of assumption (181) and definition

(74). Now conclusion (162) of Lemma 6, definition (78), and conclusion (94) of

Lemma 1 can be applied to show that, for each hop h of x

in the range 0 < h < H(x) , for any positive integer K,

and for any times s, , , 2, t.2 ,K  tK satisfying

T, < s, < s, < t < SK ""_tK < T2

-o

4"
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KEP(z, h, ,k tk)
k-1

K
RF(i)" (tk - k) - (H + 1)'ECL(A, i) - K[(H + 1)'FcL(A, i) + H]

k-1

K
= RF(i)" E (tk - Sk) - (H + 1)DcL(A, i, K) - KH

k-1

K
> RF(i) E (t - 8k) - DPL(A, i, K)

k-1
.'

This completes the proof of (184) for the induction step.

Next (185) will be proved. Let x be any session with I(x) = i . Let h be

any hop of x in the range 0 < h < H(x). Let K be any positive integer,

and let S1 , tl , S2 , t. SK , tK be any times satisfying

T < s, < t, < s, < t, •••< SK <tK < T2 . Lemma 7 will be used,

with G1 = DpL.(A, i, K-i1) and G2 = DpL(A, i, 1) . Condition (167) of

Lemma 7 follows from assumption (181). If K = 1 , condition (168) of Lemma

7 holds because of conclusion (82) of Lemma 1. If K > 1 , condition (168)

holds because (184) was just proved for all sessions with congestion index i.

Condition (169) of Lemma 7 holds because of assumption (1SO). Condition

(170) of Lemma 7 holds because of conclusion (S2) of Lemma 1. By the

induction hypothesis. (i.S4) holds for all sessions with congestion index less

than i. This fact, along with conclusion (86) of Lemma 1, verifies condition

(171) of Lemma 7 for those sessions y with I(y) < i . For those sessions y

with I(y) = i , condition (171) holds because (18-i) wa s just proved for all

i1

a-° ". -4* "° " o - """' """""" 4 . ** "" .°"""° o . """°. - * 
°

4"• •"•
°
. --

°
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sessions with congestion index i. From conclusion (172) of Lemma 7 and

conclusion (97) of Lemma 1, it follows that

K K
E P(x, h, sk , tk) < RF(i) E (tk - Sk) + (N - 1)'DpL(A, i, 1)

k-I k-i

+ DPL(A, i, K- 1) + W"H + A

K
(189 R R(i). E (tk - SO) + Dpu(A , 1, K)

k-i

This proves (185), completing the induction step.

The proof for the base case (i.e., i = 1) is identical to the induction step,

considering the following point. In the induction step, the induction

hypothesis was invoked to verify the assumptions of Lemmas 2 and 7 for

sessions y with 1(y) < i . For the base case, there are no such sessions y, so

verifying these assumptions is trivial.

This completes the proofs of (183), (184), and (185). Conclusion (182)

follows from results (184) - (185), definitions (71) - (80), and the fact that

I(x) < S for all sessions x.

This completes the proof of Theorem 2.

WI" , . . .

4.. , ° . % ° . - . • . % . , . - % " % . - . . . - ° . . . . . . . - . • • . • . • . . . . , - - ,- - - . .. .
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4.4 Steady-State Analysis of Smooth Demand Case

This section examines the steady-state behavior of systems with smooth

demand. Specifically, it is assumed that there exists a constant A such that

the demand of each session x over each interval (s, t] is within A packets of

the nominal amount (x)'(t-s) . Most window sizes are assumed to be at

least 3"(H+)S'NS-'(A+2). Corollary 1 of Theorem 2 concludes that the

long-term average throughput RA(X) of each session x equals its fair rate

RF(I(x)) • In other words, smooth demand and large windows are sufficient for

throughput fairness. Example 3 shows that large windows are sometimes

necessary as well, and that throughputs can be very unfair if the windows are

too small. This example consists of eight links and 2N+ 1 sessions, where N

can be any even integer greater than four. The demand is perfectly smooth

(A = 0), but the window size W(x, 2) for buffer 2 of a particular session x is

less than Y2N. Because of this inadequate window size and an unfortunate

choice of round robin rings and initial ring positions, the long-term average

throughput of x is unfair by a factor of N

-2 2W(x, 2)

This section also presents a steady-state analog of Theorem 2. Theorem 3

states that there exists a time Tss 0 such that the throughput of each

session x at each hop over each interval (s, tI later than Tss is within

(H+1)SiVs-I'(A+2) packets of the fair amount RF(I(x))'(t-s) and such

that a similar lower bound applies to chances. (For concreteness, Tss is

i%
."*• , .. .' ,• - • .' •° , -' * °•"• . . " ," o •° . d ' " *•. . - * - * •- • > • - . - * ° 1
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defined to be the earliest such time.) Note that the bound on throughput

unfairness in steady state is tighter than the transient bound of Theorem 2.

Moreover, the steady-state bound does not depend on the window sizes (except

for the assumption that the windows are large enough).

The proof of Theorem 3 is similar to that of Theorem 2: the proof of

Theorem 3 is also by induction on the congestion index, and the proof of the

induction step also invokes Lemmas 2, 6 and 7 to generate, respectively, a

lower bound on chances, a lower bound on throughput, and an upper bound on

throughput for all sessions with a particular congestion index. The derived

throughput bounds are of the form

(190) - ' < P(z, h, s, t) - RF(I(x))-(t - s) < f"

where f" is a function of the maximum window size 'V (and also of A. I(z),

H, and N), while f' does not depend on W', and 0 < f' < f". At this

point Theorem 3 invokes Lemma 8 of Appendix A.1 to conclude that in steady

state, i.e., for sufficiently large s and t,

(191) <- f' P(x, h, s, t) - RF(I(z))'(t - s) 5 f' + 1

In this war Theorem 3 derives bounds on the throughput unfairness in steady

state that are tighter than the transient bounds of Tleorem 2 and ar

independent of 4' .

Included in this section are four corollaries of Theorem 3 about the steady-

state buffer levels. In terms of the time Tss (when the steadty-state

J .................................................................................
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throughput bounds take effect), let us define m(x, h) and M(x, h) for each

buffer h of each session x such that 1 < h < H(x)+ :

(102) m(x, h) min B(x, h, t)
t> Tss

(193) M(x, h) max B(x, h, t)
. t> J

Since B(x, 0, t) co for all times t > 0 , we also define

(194) m(x, 0) - M(x, 0) = 00

Corollary 2 gives an upper bound on the range M(x, h) - m(x, h) of a buffer

level after time Tss ; the bound does not depend on the window sizes (except

for the assumption that the windows are large enough). Corollary 3 proves

•. that, after time Tss , buffers that are slightly upstream of bottleneck hops are

sometimes full and are never empty, while buffers that are slightly downstream

of bottleneck hops are sometimes empty and are never full. A bottleneck hop

h * of a session x in the range 0 < h* < H(x) is called a pure bottleneck for x

if there exists a time T > 0 such that all session x's chances at hop h* after

time T are successful:

(105) C(x, hz*, t- 1. t) = P(x. h *, t- 1. t) for all times t > T

In other words, the window mechanism does not impede the flow for a session

*, at a pure bottleneck hop; packets and permits are always available whenever a

chance for transmission arises. Corollary 4 concludes that every session has at

least one pure bottleneck hop. Example 4 shows that impure bottlcnecks do

- - - -
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exist. Corollary 5 asserts that a link at which sessions are bottlenecked is a

pure bottleneck for all these sessions or for none of them.
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4i 4.4.1 Corollary 1: Fairness of Average Throughputs

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses round robin scheduling. Suppose each session x has a

well-defined, real demand rate X(x), 0 < X(x) _ 1. Suppose there exists a

nonnegative real number A such that, for each session x and for all times s

and t satisfying 0 < s < t

(196) l C(x, 0, s, t) - X(x)-(t- s) -

Suppose that, for each session x,

(197) 3"(H+1)S-NS-(A+2) < W(x, h) < cc for 1 < h < H(z)

It follows that, for each session x, the long-term average throughput RA(X)

exists and equals the fair rate RF(I(z)).

Proof of Corollary 1

Note that the assumptions of Theorem 2 are satisfied, with T 1 - 0 and

T., = c . Let x be any session. It follows from conclusion (182) of Theorem 2

that for all times t > 0,

] P(x. HLE). 0. t) _ R(I() = I P(x. H(.). 0. t) - RF(I(lx))'t

t t

(198) < (H + 1)S',V2S-1-(1 ' + 3_ + 4)
t

C-l
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It follows from definition (11) and (198) that RA(z) exists and that

(199) RA(X) = ir P(x, H(x), 0, t) _ RF(I(x))
t.. o t

This completes the proof of Corollary 1.

I"

.
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4.4.2 Example 3: Unfairness with Small Windows

Consider a system that satisfies the assumptions of Chapter 2 and has the

layout shown in Figure 8. The network contains links I,1 , '1 2 , 12,1 , and

12,2 . (For each of these links, there is another link with opposite direction that

is not shown in Figure 8 and is used only to return flow control permits.) For

I -= 1, 2 , there are five sessions Y],1I, Yj,2 , ..- , , that use lj0l followed by

j'.2 , and there are five sessions Yj,6, Yj,7 Yj,10 that use only 1jj . There

is also a session x that uses 11,2 followed by [2,2 . Every session in the system

has heavy demand; i.e.,

(200) C(x, 0, t-1, ) = C(yj,k, 0, t-1, t) = 1

for j---1,2, for k-- 1,2, ... ,10, and for all times t > 1. The max-min

fair rate for session x is 1/2 , while the other sessions deserve rates of 1/10

each. The window size for each buffer h > 1 of each session is at least two

but finite. In particular, W(x, 2) = 2 , which is smaller than Theorem 3

requires. Table 1 shows the buffer levels at time 0. Round robin link

scheduling is used. For j = 1, 2 , the ring at 1j,1 is YjI, ... Yj10

The ring position of I,, at time 0 is y1,1, while the initial ring position of

Iw, is Y'2,6. For j-1, 2, the ring at 1j'2 is yj,, y. . . . . . . yj,5. x. The

ring position of 11,2 at time 0 is x, while the initial ring position of 1.,. 2 is

This system is periodic, with a period of ten slots. Table 2 shows which

3,w ,. . ' '',, .% " ," *" ''" '' ) ' -. .',,' '" "' # ., . , 4 .. .,• .. ," "" ". ","- . "* ". w , ." "u -,' "" " -"."",.,'.. . .w', , " " "" " , " ' '"" ' '
'
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Session Buffer Number

0 1 2 3

xc W(x, 1) W(x, 2) 2 0

Y1,1 cc V(y11,1)- 1 1 0

yl,, 2 < c < 5 00 W(Yk , 1) 0 0

Yl,k, 6 < k< 10 c W(YI,k , 1) 0

1 < k < 4 00 W(y 2 ,1) 0 0

Y2,5 0 W(Y2,5 , 1) 0 1

Y2,6 0c W(2, 6 , 1) - 1 1

Y2,k, 7 < k < 10 c W(y2,k , 1) 0

TABLE 1. Initial Buffer Levels
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Link Slot Number

1 2 3 4 5 6 7 8 9 10

ll,1 Y1,2 Y1,3 Y1,4 Y1,5 Yl,6 Y1,7 Y1,8 Y1,9 YI,10 Y1,I

11,2 YI,I Y1,2 Y1,3 Y1, 4  Y,5 s

12,2 Z X - I2,1 Y2,2 Y2,3 Y2,4 Y2,5

12,1 Y2,7 Y2,8 Y2,9 Y2,10 Y2,1 Y2,2 Y2,3 y32,4 Y2,5 Y 2,6

TABLE 2. Link Users over One Period

'i

d°
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session uses each slot at each hir .aring the interval (0, 10] . During the first

half of this interval, session x -ismits no packets over link 11,2 (because the

link is busy serving other sessions) and only W(x, 2) = 2 packets over 12o

(because x runs out of packets in buffer 2). During the second half of the

interval, x transmits no packets over 12,2 (because the link is busy serving

other sessions) and only W(z, 2) = 2 packets over 112 (because x runs out

of permits for buffer 2). The long-term average throughput of session z is

2/10, well below its fair rate of 1/2. The long-term average throughputs of

the other sessions are fair. Three tenths of the capacities of 112 and 1,,2 are

wasted.

Using the same network, similar examples can be constructed that have

different numbers of sessions and different window sizes. Let N be an even

integer greater than four. For j = 1, 2 , there are N sessions using l1J

and 1j'2 and ViN sessions using only 1j,1 . As before, session x uses 11,2 and

12,2 . Every session has heavy demand, so x has a fair rate of 1/2 , and the fair

rate for every other session is 1IN. The window size for each buffer of each

session is at least two, and 2 < IV(x, 2) < 1/2N . The round robin rings and

the initial conditions are such that the system has a period of A' slots, x is

served at '2 during the irst half of each period, and x is served at I12

during the second half of each period. Consequently, x transmits only IV(. 2)

packets over each hop every N slots. In other words, the long-term average

N
throughput of x is unfair by a factor of N Noreover, the capacity x

2" IV(, 2)

,.'. '.- ,-.,.'. .," ", .. .-'-', .." ... .,. ,.-. ..- '.- ' . .',.,-. ,.. ..., -., .,-,-, ,.-. -.' -., ,-,, ..,,,, .,.. ,; . ,,,.u-
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loses at 11,2 and 12,2 VIZ., -x 2)i-o sdb teohrssin
2 N ,isntue byteohrssis

-it is wasted.
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4.4.3 Theorem 3: Throughput Bounds in Steady State

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses round 'robin scheduling. Suppose each session x has a

well-defined, real demand rate X(x) , 0 < X(x) : 1 . Suppose there exists a

nonnegative real number A such that, for each session x and for all times s

and t satisfying 0< . < t

(201) I C(x, 0, s, t) - X(X)-(t- s) A < A

Suppose that, for each session z,

(202) 3-(H+l)SVS-'(A+2) W(x, ) < oo for 1 < h < H(x)

It follows that there exists a time Tss 0 such that, for each session x, for

each hop h of x in the range 0 < h < H(x)', and for all times s and t

satisfying Tss < s < t

(203) C(x, h, s, t) >_ Rc(x, h)(t - s) -(H + 1)s-.NS-'(.I + 2)

(204) I P(x, h, s, t) - RF(I(x)).(t - s) I < (H + 1)S.Vs-l'-(A + 2)

For concreteness, define Tss to be the smallest nonnegative time with this

property.

Proof of Theorem 3

In order to prove (203) and (204), it will be shown that there exist times

* ,- . " ." , . . -'.p - - *. , ", "," ,- .* " ," "d _ ,' , . " ° " . . " . " , . - . - .
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Tss(0) , TSS(1) , ... , TSS(I) such that

0 = Tss(0) _ Tss(1) _ "" _ Tss(I) and such that properties (205) - (208)

hold.

(205) For each session x, for each hop h of x in the range 0 < h -< H(x)

and for all times s and t satisfying Tss(I(x)-1) _ s < t

C(x, h, s, t) > Rc(x, h)'(t - s) - FCL(A, I(x))

(206) For each session x, for each hop h of z in the range 0 < h < H(x)

and for all times s and t satisfying Tss(I(x)-1) _5 s < t

P(x, h, s, t) > RF(I(x))'(t - s) - FpL(A, I(x))

(207) For each session z, for each hop h of x in the range 0 < h < H(x) ,

and for all times s and t satisfying Tss(I(x)- 1) _ s < t

P(x, h, s, t) :_ RF(I(x))'(t - s) + F"pu(A, I(x))

(208) For each session x, for each hop h of x in the range 0 < h < H(x)

and for all times s and t satisfying Tss(I(x)) _ s < t

P(x, h, s, t) < RF(I(x))'(t - 8) + Fpu(A, I(x))

The proof is by induction on the congestion index I(x) of the session x.

Contrary to custom, the induction step will be proved before the base case is

addressed. Fix a congestion index i > 1 . The induction hypothesis nsserts

that there exist times Tss(O) , Tss(1) ... 5 Ts(i-1) such that

0 = Tss(O) _ Tss(1) "'" < Tss(i-1) and such that properties (205) -

(208) hold for all sessions x with I(x) < i . It must be shown that, for such a
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time Tss(i-1), properties (205), (206), and (207) also hold for all sessions x

with I(x) = i. It must also be shown that there exists a time

Tss(i) Tss(i-1) such that property (208) holds for all sessions x with

I(x) = i.

First consider (205). Let z be any session with I(x) = i . Let h be any

hop of x in the range 0 < h < H(x). Let s and t be any times satisfying

Tss(i1) _ s < t If hop h - 0, it follows from assumption (201),

definition (68), and conclusion (89) of Lemma 1 that

C(X, 0, s, t) > \(x)-(t - s) -
.%

- Rc(x,O0)(t- s) - A

(209) > RC(x, 0)(t - s) - FCL(A. i)

If 1< h < H(x) , Lemma2 will be used, with K= 1,sl= s , tj= t , and

G = Fpu(A, i- 1). By conclusion (83) of Lemma 1, condition (98) of Lemma 2

holds. By the induction hypothesis, (208) holds for all sessions with congestion

index less than i. This fact, along with conclusion (87) of Lemma 1, verifies

condition (99) of Lemma 2. From conclusion (100) of Lemma 2 and conclusion

(91) of Lemma 1, it follows that

C(x, h, s, t) > RC(x, h)(t- s) -(A' - 1)'FpU(A.i-1) - 1

(210) > Rc(x, h)'(t - s) - FCL(A, i)

S.-k..S S " .A S
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This completes the proof of (205) for the induction step.

Now (206) will be proved. Let x be any session with I(z) = i . Lemma 6

will be used, with T 1 = Tss(i-1) , T 2 = 00 , r = RF(i), G, - 0, and

G 2 = FCL(A, i). To verify condition (160) of Lemma 6, let h be any hop of x

in the range 0 < h < H(x) , let K be any positive integer, and

let s, ,  ti s - .. , S, tK be any times satisfying

Tss(i-1) _ 81 _ t 1 _ S2_ t 2 S _K 5 tK . Recall that (205) was

just proved for all sessions with congestion index i. It follows from (205) and

(70) that

C(z, h, sk , tk) _ Rc(x, h)-(tk - sk) - rct(,, i)

(211) > RF(i)'(tk - Sk) - FCL(A, i)

Summing (211) over k verifies condition (160). Condition (161) of Lemma 6

holds because of assumption (202) and definition (74). Now conclusion (162) of

Lemma 6 and conclusion (93) of Lemma 1 can be applied to show that, for each

hop h of z in the range 0 < h < H(z) and for all times s and t satisfying

Ts (I-1 < 5 <

P(x, h, s, t) _ RF(i)'(t - s) - [(H + I)'FcL(,. i) + H]

(212) > RF(i)'(t- s) - FPL(-, i)

This completes the proof of (206) for the induction step.

Z:
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Next (207) will be proved. Let z be any session with I(z) = i . Let h be

any hop of x in the range 0 < h < H(x). Let s and t be any times satisfying

Tss(i-1)< s< t. Lemma. 7 will be used, with K- 1, s 1 = s, t 1 - t

G, = 0, and G2 = FpL(A, i). Condition (167) of Lemma 7 follows from

assumption (202). Condition (168) of Lemma 7 is obviously true, since K = 1

Condition (169) of Lemma 7 holds because of assumption (201). Condition

(170) of Lemma 7 holds because of conclusion (81) of Lemma 1. By the

induction hypothesis, (206) holds for all sessions with congestion index less

than i. This fact, along with conclusion (85) of Lemma 1, verifies condition

(171) of Lemma 7 for those sessions y with 1(y) < i . For those sessions y

with 1(y) = i , condition (171) holds because (206) was just proved for all

sessions with congestion index i. From conclusion (172) of Lemma 7 and

conclusion (96) of Lemma 1, it follows that

P(z, h, s, t) < RF(i)'(t - s) + (N - 1)'FpL(A, i) + WH + A

(213) K RF(i)'(t - s) + F"pu(A, i)

This completes the proof of (207) for the induction step.

Now (208) will be proved. Let z be any session with I(x) = . Let h be

any hop of x in the range 0 < h < H(z). Lemma S of Appendix A.. w'll be

used, with:

'

S. -. . . ° -. ., °. .- a. - % . . % . % % % % . - . . . -. - . . . . .* . . . ..*. . -
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g(u) = P(x, h, u-1, u)

G(s, t) = P(x, h, s, t)

T = Tss(i-1)

r = RF(i)

f= FL (A, i)

f = F"pu(A, )

E=1

Condition (335) of Lemma 8 holds for all times s and t satisfying

Tss(i-1) s < t because (206) and (207) were just proved for all sessions

4. with congestion index i. By Lemma 8, then, there exists a time

Te(z, h) Tss(i-1) such that, for all times s and t satisfying

T(x, h) <S < t

(214) P(z, h, s, t) < RF(i)'(t - s) + FPL(A, i) + 1

Applying conclusion (95) of Lemma 1 yields:

(215) P(x, h, s, t) < RF(i)'(t - s) + Fpu(A, i)

Define TS5 (i) as follows:

(216) Tss(i) = max T,(z. h)
z: [(z).

A: o< A< Yz:)

This proves (208), completing the induction step.

Next the base case (i.e., i 1) will be considered. Note that

". J........
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Tss(i-1) = Tss(O) = 0 by definition. The proof for the base case is identical

to the induction step, considering the following point. In the induction step.

the induction hypothesis was invoked to verify the assumptions of Lemmas 2

and 7 for sessions y with 1(y) < i. For the base case, there are no such

sessions y, so verifying these assumptions is trivial.

This completes the proofs of (205) - (208). From (205) - (208), definitions

(74) - (76), and the fact that I(x) < S for all sessions x, it follows that (203)

and (204) hold for each session x, for each hop h of x in the range

0 < h < H(x) , and for all times s and t satisfying Tss(I) s < t

This completes the proof of Theorem 3.

[Aq

[.1
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4.4.4 Corollary 2: Bound on Buffer Level Range

It follows from the assumptions of Theorem 3 that, for each session x,

(217) M(x, h) - m(x, h) _ 2"(H+1)S'NS-l'(A+2) for 1 < h < H(x)

Proof of Corollary 2

Choose any times s > Tss and t > Tss such that

(218) B(x, h, s) = m(x, h)

(219) B(x, h, t) = M(x, h)

Suppose that s < t. (The proof for s > t is similar and will not be

presented.) Applying (10) and conclusion (204) of Theorem 3 gives the desired

result:

M(x, h) - m(x, h) = B(x, h, t) - B(x, h, s)

- P(x, h-l, s, t) - P(x, h, s, t)

< [RFV((x)),(t- S) + (H + )VS- .(, + 2)]

- [RF(I(x))'(t s)  (H + 1 )s.\- + 2)]

- 2(H + 1)"y
S-N 1'(. + 2)

This completes the proof of Corollary 2.
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4.4.5 Corollary 3: Effect of Bottleneck Locations on Buffer Levels

Suppose that the assumptions of Theorem 3 hold. Let x be some session.

Let J be the number of bottleneck hops for x, and let h* 1 h* h

denote the hop numbers of the bottlenecks of z, with

0 < h* < ha* 2 < ... < h*: < H(x)

Under the assumptions above, properties (220) and (221) hold.

(220) For each hop h of x in the range 0 < h < H(x),

at least one of the following statements is true:

(a) h is a bottleneck hop for x

(b) m(x, h) = 0

(c) M(z, h+1) = W(x, h+1)

(221) For each buffer h of x, 0 < h < H(x)+ I

at least one of the following statements is true:

(a) m(x, h) > 0

(b) M(x, h) < W(x, h)

Furthermore, there exist buffers hl , h' , ... , hj of x (called crossover

buffers) with

(222)
(O= h2 o < h*1 < h 1 < h*2 < h',.< "'"

Sh 1*j- < h'j_ 1 < h*j < h'j - H(x)+1

such that properties (223) and (224) hold.

-.
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(223) If h'y <k < k*.+l forsomej, O< j:5 J-1 then
(a) M(x,) W(, h)

(b) m(x, h) > 0

(224) If h*1 <h < h'j for some j, I < j_ J,then

(a) m (x, h) = 0

(b) M(x, h) < W(x, h)

For the crossover buffers htj , 0 < j : J , no claim stronger than (221) is

made.

A combination of bottleneck locations and buffer levels that is consistent

with properties (220) - (224) is shown in Figure 9. The figure shows the buffers

• '. and hops of a session x with a 16-link path and five bottleneck hops. Each

buffer h is depicted as a square whose shading gives information about

m(x, h) and M(x, h) . The crossover buffers htj are also indicated. Hops

are shown as lines between buffers. The heavier lines are the bottleneck hops.

Examine the buffers between two successive bottleneck hops; note that the

buffers upstream of the crossover buffer are sometimes empty and are never

full (for times t > Tss), while the buffers downstream of the crossover buffer

are sometimes full and are never empty (for times t > Tss ).

%?

[4.

[ 'p
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Proof of Corollary 3

Property (220) will be proved by contradiction. Suppose that there is some

non-bottleneck hop h of x in the range 0 < h < H(x) such that

m(x, h) > 0

M(x, h+ 1) < W(x, h+ 1)

This means that, for all times t > T S ,

B(x, h, t) > 0

B(x, h+1, t) < W(x, h+i)

Therefore, session x will accept every chance offered to it by the round robin

scheduler at hop h after time Tss ; i.e., for all times t > TSS

(225) P(x, h, Tss , t) = C(x, h, Tss , t)

It follows from conclusion (203) of Theorem 3 that, for all times t > Tss

(226) P(x, h, Tss , t) >_ Rc(x, h)'(t - Tss) - (H + 1)s-I.NS-.'(A + 2)

Since h is not a bottleneck, (70) says that Rc(x, h) > RF(I(x)) . Therefore.

(226) will violate conclusion (204) of Theorem 3 if t is large enough. This

proves (220).

Next, property (221) will be proved. For h 0. (G02a) is true. For

h = H(z)+ 1 , .(G02b) is true. For the remaining buffers h = 1, 2, ... , H(x)

property (221) will be proved by contradiction. Suppose there is some buffer h

of x in the range 1 < h < H(x) such that
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(227) m(x, h) = 0

(228) M(x, h) = W(x, h)

It follows from assumption (202) of Theorem 3 that

M(x, h) - m(x, h) = W(x, h)

(229) _ 3(H + 1)S'NS-1'(A + 2)

This contradicts conclusion (217) of Corollary 2, proving (221).

It was given that h'0 = 0 and h'j = H(x)+I . Let us now define

crossover buffer h' for 1 j< J-1 . If there is any buffer h in the range

h*j <h < h*,.+ such that M(x, h) < W(x, h), then let h'* equal the

largest such h ; otherwise, let h' = h*j. + 1

Now, (223) will be proved. For 1 < j < J-1 , property (G03a) follows

from the definition of hj , and (G03b) follows from (G03a) and (221). For

j = 0, i.e., for

(230) 0-- h 0 < h < h*

property (223) will be proved by forward induction on h. First consider the

base case, h = 1 . By (230), hop 0 is not a bottleneck hop, and since

m(x, 0) = Sc , (220) implies that

(231)- M(x, 1) = W(x, 1)

Together, (231) and (221) imply that

., . -. .4 : ; , . .. - , . ,. . . ,. , .. ., . .. , . . . . .. . . .. . . . .. . . .. .. . . . . . :. ..
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(232) m(x, 1) > 0

This proves the base case. The induction step is also proved by applying (220)

followed by (221). This proves (223).

Next, (224) will be proved by backward induction on h. First consider the

base case, viz.,

(233) h *. < h = h-1

For j - 1, 2, ... , J-1 , the definition of h' and (233) imply that

(234) M(x, h') < W(x, h',)

Note that (234) also holds for j = J , since h'. = H(x)+l . Together, (220),

(233) and (234) imply that

(235) m(x, h' -1) = 0

Together, (221) and (235) imply that

(236) M(x, h' i - 1) < W(x, h'j - 1)

This proves the base case. The induction step is also proved by applying (220)

followed by (221). This proves (224) and completes the proof of Corollary 3.
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4.4.6 Corollary 4: Existence of Pure Bottlenecks

It follows from the assumptions of Theorem 3 that every session z has at

least one pure bottleneck hop h* in the range 0 < h* < H(x) .

Proof of Corollary 4

Let z be some session. It will be shown that z has at least one bottleneck

hop h* in the range 0 < h* < H(x) with the following properties:

m(x, h*) > 0

M(x, h*+1) < W(x, h*+1)

This means that session x will use all its chances at this hop h* after time

Tss . In other words, this hop is a pure bottleneck for x.

The proof will be by contradiction. Suppose that, for each bottleneck hop

h* of x in the range 0 < h* < H(x) , at least one of the following statements

is true:

m(xh*) ( 0

.1(x. h*+ 1) = tV(x, h*+ 1)

This assumption, combined with conclusion (220) of Corollarv 3. v',ll ,e

following property.

O.q

I.
I>
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(237) For each hop h of x in the range 0< h < H(x)

at least one of the following statements is true:

(a) m(x, h) = 0

(b) M(x, h+1) - w(x, h+i)

Now the following claim will be proved.

(238) For each buffer h of x in the range 0 < h < H(x)

m(x, h) > 0

The proof of (238) is by induction on h. The base case is true because

m(x, 0) = cc . The induction step is proved by applying (237) followed by

conclusion (221) of Corollary 3.

For h = H(x), (238) and (237) imply that

(239) M(x, H(x)+1) = W(x, H(x)+1)

This gives a contradiction, since buffer H(x)+ 1 is never full.

This completes the proof of Corollary 4.

|.5

%6 + i 4
"

"P"P d - ' + t - i"" ' l*" ' " "l '"" " " " " " 4" " • " - + " - " " " . .



- 7- -. _ b; ,

-141-

4.4.7 Example 4: Existence of Impure Bottlenecks

Consider a system that satisfies the assumptions of Chapter 2 and has the

layout shown in Figure 10. The network contains links I , 1 2,1 1

and 13 . (For each of these links, there is another link with opposite direction

that is not shown in Figure 10 and is used only to return flow control permits.)

For j = 1, 2, there are two sessions yjI and Yj,2 that use only link lJ

there are two sessions yj,3 and yj,4 that use links ll and 1j,2 , and there is

a session xj that uses links 1j,2 and 13 . Every session in the system has

heavy demand; i.e.,

(240) C(x1 , 0, t-1, t) = C(yjyk , 0, t-1, t) = 1

for j= 1,2, for k = 1,2,3,4, and for all times t > 1. The max-min fair

rates for x and X2 are each, while the other sessions deserve rates of 1/4

each. Notice that, for j-=1, 2 , xi is bottlenecked at both its links. The

window size for each buffer h > 1 of each session is at least two but finite.

Table 3 shows the buffer levels at time 0. Round robin link scheduling is used.

For j = 1, 2 , the ring at l,l is Y, 1  Y],2 Yj,3 , Yj,4 The ring position of

at time 0 is Y1,4. while the initial ring position of lo,1 is y .. For

j= 1. 2 , the ring at l.2 is Yj,3, Yj,4 I. The ring position of 11 .2 at

time 0 is Y1,3 , while the initial ring position of I ,, is x,, . The initial ring

position of 13 is XI

• " 1:,: '" '''' .,,. 2""""'' .:z ... ".". ... .".. .,..,. :. ".:- '. . c .. .. - . ".'.-''5'*.€"* ", "..-,"., - ..- "..-"
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Session Buffer Number

0 1 3

Y1,i c 1,1  1) 0

Y1,2 00 W(Y 1,2 ,1) 0

y 1,3 c MY 1,3 1) 0 1

cc,4 c W(y, 4 ,1)-i 1 0

c W(, 1) 0 1

Y2,1 c W(y 2 ,1) 0 --

y 2,2 00 W(y 2 ,2 ,1-11-

y 2,3 00cM ~ 2 3 ,1) 0 0

Y2,4 cc 1'(y 2 ,4 , 1) 0 0

xcco 1l'(x2 , 1)- 1 1(

TABLE 3. Initial Buffer Levels

4"
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This system is eriodic, with a period of four slots. Table 4 shows which

session uses each slot at each link during the interval (0, 4J . While the

average session throughputs over every system period are max-min fair, sessions

x, and X2 each decline one chance to use link 13 in every system period,

because of a lack of packets. In other words, 13 is an impure bottleneck for

xl and x2 . This does not violate Corollary 4, however, because x1 and x,

have pure bottlenecks 11,2 and 1 ,, respectively.

.'

4.
4.
4.°

4,.
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Link Slot Number

1 2 3 4

11,1 Yii Y1,2 Y1,3 Y1,4

11,2 y 1,4 Y1 X Yl,3

13 X2  X2  XI x

12,2 X2 Y2,3 Y2,4 X2

12,1 Y2,3 Y2,4 Y2,1 Y2,2

TABLE 4. Link Users over One Period

.. ' , .-. ' '-.:.--.-.., .,I.'.,'-.-.-'---'...,, -,..'.,:.,-- ', ,.- ',.', -;-'-','< , .,.... ..- '
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4.4.8 Corollary 5: A Property of Pure Bottlenecks

Given the assumptions of Theorem 3, any link that is a pure bottleneck for

some session must be a pure bottleneck for every session bottlenecked there.

Proof of Corollary 5

Let K be any integer satisfying

(241) K > 2(H + 1)S'NS-'(A + 2) + 2

The proof of Corollary 5 will be by contradiction. Let I be a bottleneck link

for sessions x and y. Suppose that I is a pure bottleneck for x but not for y.

In other words, there is a time after which session x accepts every chance

offered to it by the round robin scheduler at link 1; session y, on the other

hand, declines infinitely many chances to use link 1. Therefore, there exist

times s and t such that Tss < s < t and such that x accepts every chance

at I during (s, t]

(242) P'(x, 1, 5, t) = C'(x, 1, s, t)

and such that y declines K chances at I during (.s. tj

(243) P'(y. 1. s, t) = C'(y. 1. s. t) - 1

By the operating rules of the round robin scheduler at 1, 1 must receive almost

as many chances as y during (s, tl ; specifically:

°P
_'IA..
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(244) C'(x, 1, s, t) _ C'(y, 1, s, t) - 1

Combine (242), (244), (243), and (241):

',

P'(x, 1, s, t) = C'(x, 1, s, t)

> -Iy 1,S

= P'(y, 1, s, t) + K.- 1

-S.

(245) > P'(y, 1, s, t) + 2"(H + 1)S'NS-'-(A + 2) + 1

Applying conclusion (204) of Theorem 3 to (245) yields:

(246) P'(x, 1, s, t) _ RF(I(y))'(t - s) + (H + 1)S'NS-.(A + 2) + 1

Since x and y are bottlenecked at the same link, it follows from definition (64)

- that I(x) = I(y) . Substitute this into (246):

(247) P'(x, 1, s, t) _ RF(I(x))'(t - s) + (H + 1)S-NS-"(A + 2) + 1

This contradicts conclusion (204) of Theorem 3, completing the proof of

Corollary 5.

.-:

5,

5,*
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4.5 Steady-State Analysis of Bursty Demand Case

This section studies the long-term average session throughputs when the

sessions have independent Bernoulli demand processes. Suppose such a system

Vhas been fully specified, including its initial state. For future reference, define

min W(x,h)z,h:1< A< H(z )

amax W . For each buffer h of each session x such thatmax Wxh
z,hI:1< h< Z)

1< h < H(x) , suppose that the window size W(x, h) is at least

12-(H+1)S-N s - 1 but finite. Such a system can be modeled as a finite Markov

chain [151 in which each state represents one combination of buffer levels and

round robin ring positions. If the demand rate X(x) of each session x is

strictly less than one, then the Markov chain has a single closed,

communicating class of states. t However, if X(x) - 1 for even one session x,

then multiple classes are possible. Even from the given initial state, it may be

possible to reach more than one of these classes. With probability one, the

system will eventually enter one of these classes, after which, of course, it

t Suppose that every session's demand rate is strictly less than one. Number
the sessions x,, x , .5 , put the system in an arbitrary state, and
consider the following sequence of events. First, every session's demand is
zero for long enough that every buffer h > 1 of every session empties.
Then session x, transmits a single packet through the network, thereby
setting the round robin ring positions to x, at each link of its path. After
this packet has left buffer H(xz1)+ 1 , session X2 transmits one packet over its
entire path, then session X3 has its turn, etc. Since the resulting state is
reachable from all states, the Markov chain has a single closed,
communicating class of states.

'I
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cannot leave that class. For each session x and each closed, communicating

class , there exists a real number r(x, ) with the following property: given

that the system eventually ends up in class , the long-term average

throughput RA(X) of session x equals r(x, ) with probability one. t This

means that, given the initial state r/, RA(x) is a random variable; RA(X)

takes on value r(x, ) according to the probability that the system enters

class from state 1r . With probability one, RA(X) = r(x, ) for some class '.

Theorem 4 concludes that, for each session z and each class , r(x, ) differs

from the fair rate RF(I(x)) by no more than 74S-(H+l)2 S.N2S- I In other
a(W')n s

745S(H+ 1 )2S-Ap2S-.1
words, RA() is within ( )S - of RF(I(x)) for each session

x, with probability one. This means that the session throughput rates can be

made arbitrarily close to the fair rates by choosing window sizes that are of the

same order of magnitude and are sufficiently large. (Example 5 demonstrates

t Let 0 be some state in some closed, communicating class of the Markov
chain defined above, and let 3(0) denote its mean recurrence time. (Note
that 1 < /3(9) < oo , since 0 is recurrent and the Markov chain is finite
[151.) By applying the strong law of large numbers to the recurrence times of
9, it is easy to prove the following claim: given that the system enters class

,the long-term average number of visits to state 9 per unit time is 1/(9)
with probability one. For each session x, let O(x, ) denote the set of
states of in which x has just transmitted a packet over hop H(x) (i.e., in
which buffer H(x)+ 1 contains a packet), and let r(x, ) = E 1/3(9).

OEe8(z, )
Given that the system enters class , the long-term average throughput
RA() of session x equals r(x, ) with probability one.

SI



-150 -

why perfectly fair rates cannot be achieved, in general, with finite window

sizes. t

The proof of Theorem 4 is structured as follows. Time is divided into

intervals of fixed length. Theorem 2 is used to bound the session throughputs

during those intervals in which the demands of the sessions are fairly smooth.

Lemma 9 of Appendix A.2 is used to bound the frequency of such intervals.

Together, these results show that the session throughputs are nearly fair most

* of the time.

lap

fOf course, infinite windows are not the solution: if unbounded queues build
d up in some buffers, then cross-network delay is also unbounded; moreover, a

session's throughput can be (wastefully) higher on hops upstream of such
buffers than on hops downstream.
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4.5.1 Theorem 4: Approximate Fairness of Average Throughputs

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses round robin scheduling. Suppose that the demands of the

sessions are independent. For each session x, suppose chances at hop 0 form a

Bernoulli process with rate X(x), 0 < X(x) 1 . Suppose that, for each

session x,

(248) 12"(H+I)S'N s - i < W(x, h) < cc for 1 < h < H(x)

Define a real number a as follows:

min W(x, h) min W(x, h)
z,h: 1h< H(z) z,h: 1<h< H(z)

(249) o=t
max W(x, h) W'z,h. i< h< Hf(z)

It follows that, with probability one, the long-term average throughput RA(x)

exists for each session x and

(250) j RA(x) - R(I(x)) I _74S(H + 1)2S.N2S - ISa'( w')°'5

Proof of Theorem 4

Define a real number A as follows.

a. IV'
* (251) =

6-(H + l)S'NSI

Since a is at most one and H, S and N are at least one, it follows from (251)

and (248) that

I.
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(252) W' + 3A + 4 < W' +-I- + - < 2W'
4

Jb.

It also follows from (251), (249) and (248) that A > 2 and hence

3"(H+I)S'NS- '(A+2) 6"(H+I)S.N s - 'A

(253) = min W(x, h)Z,h: l< h< H(r)

Therefore, for each session x,

(254) 3"(H+1)S'NS-l'(A+2) _ W(x, h) < oo for 1 < h < H(x)

These inequalities will prove useful later.

Now we proceed with the proof. Let r be some integer in the range

(255) .(W')1"  < r < 2a.( W')' 5

Divide the time interval (0, oo) into non-overlapping subintervals of length r

slots: (0, r ], (r, 2r . Label each subinterval "good" or "bad" according to

the smoothness of the sessions' demands during that subinterval; a subinterval

((k- 1)-r, kr] is "good for session x " if

(256) I C(x, 0, S, t) - X(x).(t - S) _< A

for all times s and t satisfying (k-1)'r < s < t < k'r. A subinterval is

"bad for session x " if it is not good for x. Let ir(x) be the probability that a

given subinterval is bad for session x. Lemma 9 of Appendix A.2 can be

-

% %°%
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applied, with G(s, t) = C(x, 0, s, t), / = X(x), and T = (k-1)'r, to

conclude that

(257) ir(i) T
a

2

for all sessions z. A subinterval that is good for all sessions is simply called

good," while a subinterval that is bad for at least one session is called "bad."

Let ir be the probability that a given subinterval is bad. By (257),

5, z

< E

(258) S
'a2

For every positive integer K, let qK denote the number of bad subintervals

among (0, r], (r, 2r], ... , ((K- 1)'r, Kr]. Since demands during different

subintervals are independent and identically distributed, the strong law of

large numbers [3] can be applied to conclude that, with probability one,

(29)qK
K K-c T

Let 2' be the set of sample paths for which (259) holds. As just mentioned.

(260) PROB (£2'} = 1

....,.,.,, .,,, ,. ., ,,.,,...,,..- .-.,......,,e .. ,' :4"...,, .., - ..- '- ..- . . ... . ,.-. .". -'. -.'....,. • ."_, •
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Let £2" be the set of sample paths for which the long-term average throughput

RA(X) of every session x exists. As explained in the introduction to Section

4.5,

(261) PROB{£f"} = 1

It follows from (260) and (261) that

(262) PROB{ f'fl2"} = 1

It suffices to prove (250) for all sample paths in frnfl £2" and all sessions x.

Let us restrict our attention to a particular sample path w in n f£". Let

z be any session. Let k be any positive integer. The throughput of x during

subinterval ((k-1)r, k-r] will now be analyzed. Since

(263) 0 < P(x, H(x), (k-1)',, k-r) < r

and

(264) 0 < RF(I(z)) < 1

it follows that

(265) 1 P(x, H(x), (k-1)-7, k'r) - RF(I(X))'r r <

Bound (265) wvill be used only for the bad subintervals. If ((k-1)'7. k'7] is a

good subinterval, nicer throughput bounds can be obtained by using Theorem

2, with T, = (k-1)'r and To = k'r+ 1 . Conditions (180) and (181) of the

theorem are satisfied by (256) and (254). Applying conclusion (182) of Theorem

2 and (252) yields:

% %
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[ P(x, H(x), (k-1)'r, k'r) - RF(I(x))'r I (H+I)S'Ns-i(W'+ 3A + 4)

(266) < 2W"(H+I)S'N 2s - 1

Now, the throughput bounds (265) and (266) for the bad and good subintervals

can be added together in the correct proportions in order to bound the

hroughput of x over longer intervals. For any positive integer K,

'S,

-.',5-- .......:,, . , .,.-.. - . :. . , . : .-.-.-. :-:., . , -,-: - . .-.-. . - ...- '..- . -.-. .-. . ... .- - - --.
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P~x H(x), 0, K1(T) -RF(IWx)) IK-r

P(x, H(x), 0, K-7) -RF(I(X))K-r

K
E [P(s, H(x), (k-1)-r, k-7) -RF(I(X))r]1

_ k-1

K-r

K

E I P(z, H(x), (k-1i)-r, k-r) -RF(I(X))r7

K-r

qKc, + (K - qK)-[2W(H + 1 )S.N2s1 I
K-r

< q'lK' + K-[2 W"*(H + l)S.No-S- 1 J
K-r

(267)qK +2W'-(H+ 1)S.N-S-1
(27)K 7

Since the sample path w' belongs to £2" . the long-term average throlughpuit

R4I(x) exists, and since belongs to £2' (259) applies. Thererore. by

a definition (11), (267), and (250),

47.
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RA(X) -RF(I(X)) I'Mur P(x, H(x), 0, t) RF(I(X))
t -.oo t

= im P(x, H(x), 0, Ii-r) - RF(I(X))
K-.*oo K-T

qK + 2 WN*H + 1)s .N 2 S- 1

-K-oo KT

(268) = n + 2 Wh(H + ISNS

Applying (258), (255), and (251) to (268) gives the desired result (250):

RA R(X) - RF (I(X)) I < 2 'H+lSNS

72S-(H + 1 )2 S.N'.S 2  2-(H + 1SNs
-c( WI) 0.5  -( W')0.5

< 74S-(H + 1)2 S -N 2 S-

a-(W W)0.5

This completes the proof of Theorem 4.
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4.5.2 Example 5: Unfairness with Finite Windows

Consider a system that satisfies the assumptions of Chapter 2 and has the

layout shown in Figure 11. The network contains links 11 and 12 . (For each

of these links, there is another link with opposite direction that is not shown in
'S'

Figure 11 and is used only to return flow control permits.) Session x uses 11

followed by 12 . Session y uses only 11 . Sessions z1 and z, use only 1,,

Sessions x and y have heavy demand; i.e.,

(269) C(x, 0, t-i, t) = C(y, 0, t-i, t) = 1

for all times t > 1 . (Note that these demand processes are Bernoulli, with

rate one.) Sessions z, and z2 have independent Bernoulli demand processes

with rate 1/ ; i.e.,

(270)
PROB { C(z1 , 0, t-I, t) = 1 } = PROB { C(z2 , 0, t-. t) = 1 } = '4

for all times t > 1 . The max-min fair rates for sessions x, y, z1 , and zo are

V2 , V2 , 1/4 , and A , respectively. The window size for each buffer of each

session is at least two. Round robin link scheduling is used.

Divide the time interval (0, cc) into subintervals of length 12" 11(x. 2)

slots, viz.. (0. 12 11"(x, 2)]. (12- IV(x, 2) , 24- 11'(x. 2)] ..... Since session y wi

accept every chance offered to it by the round robin scheduler at link 11

(except possibly during slot 1), session x can transmit at most 6"IV(x. 2)

packets over 11 during any of these subintervals. In other words; the average

."'p . .. . ,

. p .. . -. .% . . • -.. % °% - • % "% . ,
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throughput of z over 11 during any of these subintervals is at most V2

Things can be worse, however. Consider a particular subinterval

(12(-)'W(, 2), 12"k'W(z, 2)] . Suppose that

(271) C(z1 , 0, t-1, t) = C(z2 , 0, t-1, t) - 1

for all slots t in this subinterval. (The probability of this event is

(j4./4)12 ' W(z 2)- (2)48'w(z2) .) Since sessions z1 and z" will accept every

chance offered to them by the round robin scheduler at link 1, during the

subinterval (except possibly during the first slot of the subinterval), session x

can transmit no more than 4- W(z, 2) packets over 1, during the subinterval.

Window flow control will permit session x to transmit at most W(x, 2) more

packets over link 11 than x transmits over 12 during the subinterval; this

limits x to a total of 5 IV(x, 2) packets over 11 . Therefore, the average

throughput of x over 11 during the subinterval is at most 5/12 .

In summary, during a fraction (V) 48 W(z,2) of the subintervals, the average

throughput of session x over link 11 is at most 5/12 , and during the other

subintervals, the average throughput of x over 11 is at most , . Therefore.

2I

d
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RA(x) -- rn P(x, 2, 0, t)
t--.oo

= r P(x, 1, 0, t)

t-- t

< 5 
. _

1 ) 148- W(Z,2)
'4~2 12 2

(272) RF(I(X)) -

For no finite value of W(x, 2) does the long-term average throughput RA(x)

of session x equal its fair rate RF(I(x)). This is due to the burstiness of the

demands of sessions z, and z2 .

* . o- .. - -° . -o. . ..... . .. .*'.... ....... * .
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4.8 Unfairness with First-Come-First-Served Scheduling

The examples in this section demonstrate that if first-come-first-served link

scheduling is used instead of round robin scheduling, then max-min throughput

fairness is not guaranteed even if the windows are large and of comparable

magnitude. In other words, Corollary 1 and Theorem 4 do not hold. These

examples show that with first-come-first-served scheduling, the long-term

average throughputs are strongly affected by the relative window sizes of

competing sessions and by the initial conditions -- even if the windows are

large. In Example 6, the capacity of a link shared by two sessions is divided

between the sessions in proportion to their window sizes. Unfair average

throughputs result if the sessions have unequal window sizes, no matter how

large the windows are. Example 7 shows a complex system with 4N+4 links

and N 2+1 sessions, where N can be any even integer greater than ten. In

this example, the sessions have equal window sizes. Some initial conditions

result in fair average throughputs. For other initial conditions, however, the

long-term average throughput of one session is unfair by a factor of more than

N/10 , no matter how large the window size. It seems that the problem of

selecting window sizes to achieve throughput fairness, for general networks and

general initial conditions, is difficult and perhaps impossible if first-come-first-

served link scheduling is used.

%"%

"4 ""4 % " "% ', """ ' . . " ' . ' . . ' . . -,
"  

" " * - j ". . " . '" ," . " . . . - . - . ,- ",. ,
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4.5.1 Example 5: Unfairness with Unequal Windows

Consider a system that satisfies the assumptions of Chapter 2. The

network consists of two nodes joined by links 11 and 12 of opposite direction.

Link 11 is used only by sessions x and y. Both sessions have heavy demand;

i.e.,

(273) C(x, 0, t-i, t) = C(y, 0, t-i, t) = 1

for all times t > 1 . Obviously, the max-min fair rate for each session is / .

Suppose that the window sizes W(x, 1) and V(x, 2) for session x equal w. ,

the window sizes W(y, 1) and W(y, 2) for session y equal w., and

w *, w. . The initial buffer levels are as follows:

B(x, O, O) = oo B(x, 1, 0) = w, - 1 B(x, 2, O) = 1

B(y, 0, o) = oo B(y, 1, o) = w. B(y, 2, 0) = 0

First-come-first-served link scheduling is used. The tie-breaking list for link 11

is arbitrary. The transmitter queue for 11 initially contains w.-I reservations

for x and w reservations for y, in arbitrary order.

The evolution of this system is very simple. During slot 1. session x"

transmits a packet over hop 2 (i.e., the packet is retrieved by the sessicn's

sink), the corresponding permit for buffer 2 is returned upstream to hop 1, and

a new reservation for x is added to the tail of the transmitter queue at link 11

Similarly, during the slot immediately following the transmission of a packet

- "" ' , "-"o o-........................................"......,."...."... ,. # " ,-'.* " ° " - v
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over 11, that packet is transmitted over hop 2, its permit for buffer 2 is

returned upstream to hop 1, and a new reservation for that packet's session is

added to 11's transmitter queue. Hence link 11 operates periodically, with

period w.+wy . In each period, sessions x and y transmit w. and w.

packets, respectively, over 1 . Therefore, the long-term average session
throughputs are w /(wx+wy) and w/(w +w ), respectively. Since

Wz # wy ,these average throughputs are unfair. t

.°

5%

SIt may seem that the conclusion of this example depends on the som2what
arbitrary way that session sources and sinks were modeled in Chapter 2.
However, it is easy to embed this example in one with longer session paths. so
that the interesting features occur at intermediate hops.

A .

* "S"- *
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4.6.2 Example 7: Unfairness with Equal Windows

Let N be an even integer greater than ten. Consider a system that satisfies

the assumptions of Chapter 2 and has the layout shown in Figure 12. For

i = 1, 2 and j = 1, 2,..., N, the network contains links lIoj , lj, 1 , and

li,2 . (For each of these links, there is another link with opposite direction

that is not shown in Figure 12 and is used only to return flow control permits.)

For i-=1, 2 and j= 1, 2, ... %, N, there is a session yj that uses links

li,j,1 I lij, 2 , and lijO , and there are N-1 sessions Yi,j,2, Yij,3, ... ? Yi,j,N

that use only 'i,j, . There is also a session x that uses 11,0 followed by 120 .

Every session in the system has heavy demand; i.e.,

(274) C(r, 0, t-1, t) = C(yi,jk , 0, t-1, t) = 1

for i= 1, 2, for j- 1, 2, ... , N, for k= 1, 2,..., N, and for all times

t > 1 . The max-min fair rate for session x is 1/2 , while the other sessions

deserve rates of 1/N each. The windows for all buffers h > 1 of all sessions

have the same size w > 2 . Table 5 shows the buffer levels at time 0. First-

come-first-served link scheduling is used. The tie-breaking lists are arbitrary.

.At time 0, the transmitter queue for link 11, 0 contains exactly one reservation

each for sessions yl , = 1, 2. .. , V2N. and possibly some reservations for

session x. The transmittor queue for 1,-. may initially contain any number of

reservations for sessions x and Y2,j,1, j -1, 2, ... , N, as long as all

reservations for sessions Y2.,l are in the first 2w queue positions. Let us
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Session Buffer Number

0 1 2 3 4

x 00 w or between 0 or 1
w-1 0 and w

y,Yi < < 2N oo t-i 1 1 0

Y< I 1 j < VN 00 W 0 -

2< k <N

Y2,jl 1 < j V2N c w 0 note 0 or 1
below

Y2,j,k 1 < j < VN oo w 0 -

2< k <N
k# N+

Y2,jVN+ 1 1< j < N 00 w-1 1 --

Note: , B(y 2,j,1 , 3, 0) < 2w

TABLE 5. Initial Buffer Levels

.3,
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now describe the initial transmitter queues at links l1,j ,1,j,2 ,12,1I , and

2,j,2 , for j = 1, 2, ... . The transmitter queue for 11,, contains w-2

reservations for Yi,ji, followed by w reservations for Yl,j,2 then w

reservations for Yl,j,3 , "'" , then w reservations for Y,j,N , and finally one

reservation for yl,j," The transmitter queue for 11J,2 contains one

reservation for ylj,I The transmitter queue for 12,I contains w-2

reservations for Y2,j,'lN+ , followed by w reservations for Y2,j,'kN+2 , .-- , then

w reservations for Y2,j,N , then w reservations for Y2,j,1 then w

reservations for Y2j',N , and finally one reservation for Y2,j,'kN+l . The

transmitter queue for 122,j, is initially empty. t

This system will be analyzed over successive time intervals of length N-w

slots. It will be shown that the throughput of session x during [1, N'w] is less

than 5w packets. It will also be shown that the buffer levels and transmitter

queues at time N-w satisfy the same assumptions that were made for their

initial values, so that x's throughput bound during [1, N-w] also applies

during [N'w+ 1, 2N'w], [2N-w+ 1 , 3N'w], . Table 6 shows which session

tIn practice, this "initial" system state could arise if sessions ! , . start-ll at
various times before time 0, when there were already many other .ession.

% using links 11,., and 1,,1 , and if these extra sessions terminated before
time 0.

.. . . . . . . ... . . . . . .."..... .
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uses each slot at each link during [1, N'w], for the case where N 12

and w- 3.

Let us examine the operation of links 11,0 and 12o0 during the first half of

the study interval [1, Nw] . At time 0, the transmitter queue for 11,0

contains at most w packets for session x and exactly one packet for each

session yj, , j = 1, 2, ... , N. During [1, w-1] , fewer than w packets

for x and exactly w-1 packets for each session ylj,1 are added to this

queue. In other words, the total number of packets to enter this queue by time

w-1 is at least V2N'w but fewer than (/2N+2)-w . These packets will be

transmitted over 11, o before any later arrivals for session x are served.

Consequently, the packets for sessions y 3,1 are guaranteed to be transmitted

over 1,0 by time (Y2N+2)-w , well before the end N'w of the study

interval. Furthermore, the throughput for x over 1,0 during [1, VN-wJ is

limited to the (fewer than 2w) packets joining 1,0's transmitter queue by time

w-1 . Therefore, the buffer capacity constraint will restrict x's transmission

over 12,0 during [1, Y2N'w] to fewer than 2w + w = 3w packets.

A similar analysis is possible for the second half of the study interval

[1, ANw] . It will be shown that intense competition from other sessions

impedes session z's flow on its second link, while the window mechanismn

impedes the flow on its first link. During [1/2N-w-1 , ('/2N+1)'w-2] , link
12.1, l transmits w packets for session y2,l, j = 1 , ., The initial

conditions guarantee that by time 2w link 12,o finishes transmitting any

- . ."
'S . 4 . . # d . . "~% ." . " - "..' % " % %. / .'" .' '' . -. - . - .. . . . .. . . . ". . .
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Slot Link

I'1,1 1i.J.2 11,0 2,0 12J.2 12,",
1< J< 6 1< < 6 1< 1<6 1< ___ 6

I YI1 , I I Y2.j,7

3 Y I I pkts Y2,j,8
4 I I for

5 I I
6 I ,.3 I Ij~

8 I I
9I I idle Y2..10

10 _____

11 ? <2w <3w 0
12 pkts,5 pkts pkts pkts pkts , 1 ,y1

13 for [ for fori for
14 y1j,, Z YI

15 y1,ie [ I Y ,j,12

16I

17 I I
18 YI,7 I I 3-,,

19 idle I IY ,,
20 ? l
21 Y ijs pkts [ Y2,j,2

22 for j I
23 Y
24 3Y1j,q I Ii,
25
26
27 Y1,j.10 2.

28 idle

29 0 <3w <2w I
30 Y pkts I pkts pkts pkts

31 for [ for for I for

32 Y x l
33 Y 1i,12 '34
35 yIj, Iy.j,

36 _ _._ ., I l

TABLE S. Link Users over One Period (V 12, w = 3)

N
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packets for session Y2,J,1 that were waiting initially. Therefore, a full supply

of w permits for buffer 3 is available at hop 2 when the w new packets arrive

over 12,1 , and these packets immediately join /2J,2's transmitter queue.

During [N'w , ( N+1)'w-1] , these packets are transmitted over 12J,2

and join the transmitter queue at 120. At time 2N'w , there at most w

packets for session x in 1205 transmitter queue. During

[2N-w+l, ( N+)'w-1], fewer than w packets for x are added to the

queue. These packets for sessions Y2J,1 and x - totalling at least 2N'w

packets but fewer than (V2N+2)'w - will be transmitted over 120, starting at

slot N'w+l , and they will all be transmitted before any later arrivals for

session x are served. Consequently, the packets for sessions Y2,j,1 are

guaranteed to be transmitted over 1,),o by time (N+2)'w . (In other words,

any reservations for sessions Y2,,l in 12,0'S transmitter queue at the end N*w

of the study interval must be in the first 2w queue positions.) Furthermore,

the throughput for x over 1,0 during [ N-w+1 , N'w] is limited to the

(fewer than 2w) packets that were present in 1,0's transmitter queue at time

l/2N'w or joined it during [/2N'w+1 , (1/2N+1)'w-1] . Therefore. the buffer

capacity- constraint restricts X's transmission over l1 0  d Irin-

[11/2Nw-1 , N'aw] to fewer than 3w' packets.

This completes the analysis of links l1, 0 and 1 , 0 . The operation of links

lij, and lIj,2 , i - 1, 2, j- 1, 2, ... , YN, during [1, N'w] is simpler.

Link li,j, l transmits a block of w packets for each session y in turn.

A
• ,'.>,:.,:.,. .,,., .... .. ....:, :..,............:..... .-.... ... .... ., ... ... :...... .- .: .-. .:..:.-:,< :. -. :. ...
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During the slot immediately following a packet's transmission over .,j , that

packet is transmitted over hop 2, its permit for buffer 2 is returned upstream

to hop 1, and a new reservation is added to lij's transmitter queue. (For

session y, , hop 2 is link l,j,2 . For each session Yj,,k , k = 1, hop 2 is

the session's sink.) Recall that y;,j,l'S packets are transmitted over Ij,0 in

plenty of time to get their permits for buffer 3 back to hop 2 before the next

batch of packets for yoj,1 arrive over li,j . Hence the transmitter queues for

links lij and lij,2 are periodic, with period N'w

In summary, over the entire study interval [1, N'w] each session Yij,k

i---1,2, j = 1, 2, ... Y, N, k = 1,2,..., N, transmits exactly w packets

over link li,j , while session x transmits fewer than 2w + 3w = 5w packets

over each of its links. Since the system satisfies the initial condition

assumptions again at time N'w , these throughput claims also hold for time

intervals [Nw±1 , 2N'w], [2N'w+l , 3N'w]. .... Therefore, the long-term

average throughputs of sessions Yi, 1 ,k are max-min fair, but the long-term

average throughput of x is less than 5/N , which is significantly lower than its

fair rate of 1/2 . In other words, x's average throughput is unfair by a factor

of more than N/1 , regardless of the window size iv. Moreover, the capacity

I The long-term average session throughputs must exist because this system
has a finite number of states and is deterministic. Eventually the system wlil
enter some state it has already visited, after which the system will be
periodic.

%:
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lost by x (viz., more than 1/2 - 5/N at each of its links) is not used by the

other sessions - it is wasted. t

The unfairness in this example depends critically on the unfortunate initial

conditions. Other initial conditions for this same network can result in fair

average throughputs. For example, suppose that the transmitter queue for link

11,0 at time 0 contains w reservations for session x alternating with w-1

reservations for session Yl, N,1 . The transmitter queue for 1,0 initially

contains one reservation for Y2,%N,1. The initial transmitter queues for the

other links are arranged so that packets for session Yi,jl, i--1. 2,

j = 1, 2, ... , 'N, are transmitted over link li,j2 during slots

(i+2w'j-2w), (i+2w'-2w+2), (i+2w'j-2w+4), ... , (i+2wj-2) . In

other words, packets competing with session x arrive in smooth streams, during

the odd-numbered time slots at link 11,0 and during the even-numbered slots

at 12,o . Therefore, during the interval [1, N'w], session x transmits one

packet across 11,0 during each odd-numbered slot and one packet across 20 .

during each even-numbered slot. By correctly setting the initial conditions, the

entire system can be made periodic with period N'w , so that these smooth

flows continue forever and the long-term average throughputs are fair.

U
"It may seem that the conclusion of this example depends on the somewh 1,.at,

arbitrary way that session sources and sinks were modeled in Chapter 2.
However, it is easy to embed this example in one with longer session paths, so
that the interesting features occur at intermediate hops.

I

.. . . .. . . . ..

-o.
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5. SESSION THROUGHPUTS IN SYSTEMS WITH SMALL WINDOWS

This chapter studies the throughput of a particular session x in a system

" with bounded-delay link scheduling. The window sizes for session x are

assumed to be at least two. Except for W(x, 0) and possibly VV(X, 1) , the

windows for session x are assumed to be finite. The window sizes of the other

sessions in the network are arbitrary. Session x is assumed to have a well-

defined, real demand rate X(x) in the range 0 <X (x) : 1 . The detailed

demand assumptions for x vary from section to section. The demands of the

other sessions are arbitrary, except for the possible restriction that these

, demands be independent of the demand of session x. These other sessions

need not have well-defined demand rates. Clearly, the assumptions of this

chapter are much less restrictive than those of Chapter 4. The results of this

chapter, therefore, are of greater practical value.

Theorem 5 assumes that W(x, 1) is at least two but finite. The demand

of session x is modeled as a Bernoulli process that is independent of the other

sessions' demands. The theorem concludes that the throughput

P(x. H(x). 0. t) of x is boundled b(,ow by a function wh(os1, se !1 nq-terni

aver:i e rate equjas I;\it Ii r. t :.iit V ne) .\As one

w: i,! '.xp.'t. this Z'I:L:' ... ] :t, t. r, s to, z'7r; as- tae ,de:nd~ rat!' ,k

tends to zero or as the schedule delay bound Ax) tends to inflinity.A-s X(x)

tends to one, the guaranteed rate tends to i/A (x), and as A(x) tends to

. . • -, . * . . ' . " ." * *' . . . - .. . - .. ' ' . -. , . . - . " " " .,." - .. - '4 , ,- '. - -
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one, the guaranteed rate tends to Xx) ; these limits are also intuitive.

Theorem 6 shows that the guaranteed rate can be increased by allowing

session x to buffer more of its demand: this theorem assumes W(x,1) to be

infinite. The demand assumptions are a little weaker than before: the times

between chances for session x at hop 0 are only assumed to be independent

and identically distributed, and the demand of session x may be dependent on

the demands of the other sessions. Theorem 6 concludes that the throughput

P(x, H(x), 0, t) of x is bounded below by a function (P(t) whose long-term

average rate equals (with probability one) min[1/A(x), X(x)]. This is

obviously the largest rate guarantee possible if nothing else is known about the

scheduling discipline; a better guarantee cannot be achieved in general by

assuming window sizes larger than two.

It was explained in Section 2.4.3 that round robin scheduling and first-

come-first-served scheduling are bounded delay disciplines, with schedule delay

bounds A'(1) of N'(1) and N'(I) W"- IV"+1, respectively. Therefore, the

rate guarantees of Theorem 5 for round robin systems and

first-come-first-se rved systems are ['+)[1-X(s)1N Z + NV(x.r) X

X (X) respectively. The rmt-?

;liarantees of Theorem 6 are min[1/.(x) X()j an.

:Iln'I/(.V(x) Ii'- IV"+1) , X(x)], respectively. Example 1 of Section 3.2

'" .Mdn robin system with a session x whose demand rate N(x) = 1 ant
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whose long-term average throughput is I/N(x). Example 2 of Section 3.3

shows a first-come-first-served system with a session x whose demand rate

X(x) = and whose long-term average throughput is 1/[V(z)'V","- I"+ I] .

The average throughputs in these examples match the bounds of Theorems 5

and 6. Note that the throughput guarantees of Theorems 5 and 6 for round

robin systems are superior to those for first-come-first-served systems. (It is

not being claimed that round robin scheduling always offers larger throughputs

or fairer throughputs than first-come-first-served scheduling.)

Let us compare the throughput guarantees of Theorem 6 to the max-min

fair rates defined in Section 4.1. Consider a system that satisfies the

assumptions of Theorem 6 and has a demand process so regular that -he long-

term average throughputs RA(x), the demand rates (z) and hence the

max-min fair rates RF(I(z)) exist for all setzsions z. Ovii',. fr ,a'h

session z, R.4 (x) < X(x) < I and RF(I(z)) < Xlz I . R,.-! f' n!

Section 4.1 that every session z has at least ne b,,tti,-...k h, p. By

(64) anl (65). this means that elthler RE,'/ ' :r I ¢ L- i

g- ' t

-o

".4 . . % - . - ...



- 177-

RF(I(x)) = 1 - RF(I(Y))
y using I

> 1 - E RF(I(x))
y using I

= 1 - [N'(1) - 1]'RF(I(x))

(275) > 1 - [N(x) - I]'RF(I(x))

and hence RF(I(X)) >_ l/.V(X) If the system uses round robin link

scheduling, Theorem 6 guarantees that RA(x) min[l/N(x) , X(x)].

Combining these various results shows that if X(x) < 1/N(z) , then

RF(!(z)) - X(x) - R 4.(x) , and if X(X) 1/NV(x) , then

1/.(x) < RF(I(zr)) < 1 and 1/.V(x) _ RA(Z) I< and hence

< _))< N( ) In either case, the long-term average throughput

N(z) R 4 (X)

zF x is within a factor of N(z) of its fair rate. The analogous guarantee for

.. Ii-,,r-'--,r:' ' ,"',iu i g invokles a fac :. ) f .\ofr It'" "-- .

,h.,i~li n E, xan:npIe 7 -f .'. ;n .4.65.2 Thows an infairness factor pr(,porti: nal

A
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to N(x) and Example 2 of Section 3.3 shows an unfairness factor roughly

* equal to W'" . t

For ease of expositicn. it was assumedl in Examrples 3 andI that K.1 i

* finite. However, the long-term average session throtighputs for these
examples are the same whether 11U(x, 1) is finite or infinite.
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5.1 Theorem 5: Throughput Bound, given Finite Demand Buffer

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses a bounded delay scheduling discipline. Let x be some

session. Suppose that

(276) 2 < W(x, h) < oo for 1< h < H(x)+l

The window sizes of the other sessions in the network are arbitrary (i.e., these

window sizes only need to satisfy the basic assumptions of Chapter 2).

Suppose that chances for session z at hop 0 form a Bernoulli process with rate

X(x), and 0 <X(x) 1. Suppose that the demand of session x is

independent of the demands of the other sessions in the network; except for

this restriction, the demands of the other sessions are arbitrary. It follows that

there exist random variables ¢(1), (2), ... such that, for all times t > I

(277) P(x, H(x), 0, t) > P(t)

and such that, with probability one,

(27S ) .-t ) _ X ( x)
t , + :1 it \(")

r, ::,' .  ari : K -!, . . -.. . . .. . .. . rv~r,:t . --

,"- -+ .I.-., .:

taking t suffliciently largf. (Tis cannot b. phr-ed ii terms of the long-term

average throlhput oi" x; .w carit:iot say:

% : ¢,:::: . : : ; :::: -:; -: : :I, ::..: :::- --.-- 4 --.- - - :. .:.: : -,- ,: ::::::-- :::.:--: :.:'-::-4
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RA(X) = lir P(X, H(x), O, t) > X(X)
t-.o t - [1- X(x)]A(z) + A(x)'X(x)

since the limit above may not exist.)

Proof of Theorem 5

First let us clarify the scheduling assumptions. It follows from (21) and

(276) that, for all packets p > 1 of x and all hops h in the range

1 < (),

T(x, h, p)

<_ max [T(x, h-i,p),T(x, h,p-1),T(z, h+1, p-W(x, h+l))] + A(x. h)

<_ max [T(x, h-1, p), T(x, h, p-1), T(x, h+1, p-W(x, h+l))] + A(z)

(279)
< max[T(x,h-1,p),T(z,h,p-1),T(x,h+1,p-2)] +A(x)

Next the demand assumptions will be clarified. Let p' be the first packet of

session z to be transmitted over hop 0 after time 0. For all packets p _ 1

define rp as follows.

(2S0) 7 p T(1. 0. p, - max r T (z. 0, 1 . 1...

Note that P=0 for I<p <p'. For p>p'. - :,- . :,:::,:.

time the network is prepared to accept packet p (i.e., when all pakets older

than p have been transmitted over hop 0 and there is r()n in ibiffr I i1 it

S •-. . .. . .-, . . -. -, , .-.-.. .. . . .
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packet p is actually transmitted over hop 0. Since the demand of session x is

Bernoulli with rate X(x) and is independent of the other sessions' demands, it

follows that rp , r+, ... are independent and identically distributed

according to a geometric distribution with mean 1/X(X)

(281) PROB { rp = k } ,(x)'[1--(x)]k1 for p > p', k > 1

For each hop h of x in the range 0 < h < H(z) and every integer p,

define E(h, p) as follows.

max [r, ,A(x)] + h.A(x) for p > 1

(282) e(h, p) o for p <0

Note that

(283) ((h-1, p) + A(x) = e(h, p) for 1 < h < H(z), p > I

and

(284) e(o. p-l) + < e(o, p) for p>

and

(2Sc) e(h-1, p) > eh. p-1) for 1 < h < IIl'. p > (>

It ,,lh w frtws (2 I) that

EXIPECTA TIO. 1 r max I 2 -

it oiio- )s from k(2s2), th,., ,tr ing law 4 it r, nun .... 3 . .:1
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probability one, lin E(H(x), p)/p exists and
P -OO 0

P

L rnax[7~,Ax)

lim~ ~ Eurn) p. 1 q-1'
-- pp-.oo p

"" EL max[r7, A (x)]

," ---- 0ir P'

m max[rq , A(x)]

lir q-p'
(P-p'+)-o0 p - p' + 1

(287) = X(_)IA(z) + A(x)-X(x)

Let us prove the following claim:

(2ss) T(x, h, p) < e(h, p) for 0< h < H(x), p >-1

The proof is by induction on p. The base cases p = -I and p - 0 are

trivial:

T .r. . - ) = = (-) ; . -1 r () < h 'K I!.r

ILs.erl that
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(291) T(x, h, P-2) < e(h, P-2) for 0 < h < H(x)

and

(292) T(x, h, P--1) < e(h, P-1) for 0 < h < H(x)

It must be shown that

(293) T(x,h, ) < e(h,) for 0< h<H(x)

The proof of the induction step will itself be an induction, this time over h.

For the base case (i.e., h = 0), first apply (280) and (276):

T(x, 0, fl max [T(x,O, P-1), T(x, 1, P--W(x, 1))] + 7P

(294) < max [T(x, 0, -1), T(x, 1, P-2) ] + r,

Now apply (292), (291), (285), and (284) to (294) to reach the desired

conclusion:

T(x, 0, P) < max[ e(OP -i), e(, P-2) 1 + 5

- e(o, P-1) + 5

(2o.) < e(0, ,)

For the induction step. consider a hop /h of x in the range 1 < h < H(x)

(The c:Le = 1(x) will be treated separately.) The induction hypothesis

asserts that

(296) T(z,h-, ) _ e(h-ip)

/,

:....:.: .:,. ,.:... . , . - . .- .. ... :.. .. . :... . . . . . .. , . ... .,-.: . .. ,, ... : .. ,. . ... . : :
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It must be shown that

(297) T(x,. ) )( )

From (279), induction hypothesis (296) (for the induction on h), and induction

hypotheses (292) and (291) (for the induction on p), it follows that

(298)
T(x,h, ) K max[T(xh-1,P),T(x, , P-1),T(x, hjr, -21 +A(x) p

(299) < ma [ P(-1, ), e( , -1), e( +i, P-2) I + A(x)

Applying (285) and (283) to (299) gives the desired result (297):

T(x, h,) K e(h-1, P) + A(x)

e(,,) h

The proof for the remaining case, viz., h - H(x) , is similar, but inequality

(12) must be used tc( handle the term T(z, h+1, -2) in (298) above. The

proof of this case will not be presented. This completes the proof of (293) by

induction on h, thereby completing the proof of (288) by induction on p.

For all times t > 1, define ,P(t) as follows:

(300) 4D(t) = max { p: e(H(x). p) <_ t }

Note that (277) follows from (300), (2SS) and the fact that

(301) P(z, H(x), 0, t) = max { p: T(., H(x), p) < t }

Also note that, for all times t > 1

. '.



(302) O(H(x), (t)+1) t > O (H(.), -.(t))

and hence

(303) [*Ct + 11 - 1 < ¢to < 4>(t)
e(H(x), 4(t)+ 1) - t e(H(x), 4(t))

Since 4(t) - oc and e(H(x), p) o c , it follows from (303) and
t --* 00 p -. 0

(287) that, with probability one, lir D(t)/t exists and
t--*oo

lir - = 1
t-00 t lir E(H(x), p)

p---boo

- -*0-- X(X)
[1- X()IA(z) + A(x)X(x)

This is the desired result (278), completing the proof of Theorem 5.

i5%°%
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5.2 Theorem 6: Throughput Bound, given Infinite Demand Buffer

Suppose a system has been specified that satisfies the assumptions of

Chapter 2 and uses a bounded delay scheduling discipline. Let z be some

session. Suppose that buffer 1 of x has infinite capacity:

(304) W(X, 1) i 00

but that

(305) 2 < W(x, h) < o for 2< h < H(z)+I

The window sizes of the other sessions in the network are arbitrary (i.e.. these

window sizes only need to satisfy the basic assumptions of Chapter 2). .

Suppose that the times between chances for session x at hop 0 are independent

and identically distributed, with mean 1/X(x) , and 0 < (x) < 1 . (Because

of (304), each such chance will result in a packet transmission.) The demands

of the other sessions in the network are arbitrary. It follows that there exist

random variables P(1), P(2), ... such that, for all times t > 1

(306) P(x, H(x), 0, t) 4 4(t)

and such that, with probability one,

(K07) tnun [-! A:) z

tt

In other words, the average throughput P(x. 11(z), 0, t)/t of session r can he

madl, arlitrmrily cse to minrl/.A( ) , -- or gr-ater -- y tAkin: t

Nd

I
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sufficiently large. (This cannot be phrased in terms of the long-term average

throughput of x; i.e., we cannot say:

RA(X) =t--lnP(z, H(x), 0, t) > mn 1 X(z)

t-.00 t A (x)

since the limit above may not exist.)

Proof of Theorem 6

First let us clarify the scheduling assumptions. It follows from (21) and

(305) that, for all packets p > 1 of x and all hops h in the range

1 < h < H(x),

T(x, h, p)

< max [ T(x, h-1, p), T(x, h, p-1), T(x, h+i, p- W(x. h+i)) + .4:.

K max [T(x, h-1, p), T(x, h, p-1), T(x, h+i, p- W(xh +i)) + A(z)

(308)
< max [T(x, h-i. p), T(x, h, p-i), T(x, h+i, p-2)] + A(X)

Next the demand assumptions will be clarified. Let p' be the first pali'i, Ki

session x to be transmitted over hop 0 after time 0: i.e.,

(309) T(., 0, p) = 0 for 1 < p < p'

(310) T(x,O,p) > 0 for p > p'

For p > p'+ 1 let be the delay between the transi~iission times at hop 0
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of packets p-I and p for session x

(311 7P = T(x.0.p) - T(x, 0, p-1) for p > p'+l

It is given that T(z. 0, p'), p,+1' , ... are independent and that rP+

S-rP. ... are identically distributed, with mean 1/X(x) . (Note that the time

T(z. 0. p') until the first transmission over hop 0 may have a different

distribution and a different mean than the intertransmission times rp,+,

........ .... .....) Also define

312) = A(x) for 1 < p p'

It follows from (311) and (312) that, for all packets p > 1

(313) T(x,0,p) < T(x,0,p') + rl +r 2 + + 7

For each hop h of x in the range 0< h < H(x) and every integer :1.

define e(h, p) as follows.

(314)

T(x,0. p') + (p + h).,A(x) + max \" -

e(h. p) =

I A

i(31- ,

ps..
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It follows from definitions (314) and (312) that, for all p : p' ,

e(H(x), p) - T(x, 0, p') + [p + H(x)]-A(x) + max I [7j -A(x)]I< I<p j-P'+ l

w$

- T(x, 0, p') + [p + H()- -A(x) + max [ri -A(x)]
P,:J~p j-p1+1

K
(317) T(z, 0, p') + [p + H(x)]-A(x) + max :, [rp'+k -A()]

O<K<p-p k-

From (317) and Lemma 10 of Appendix A.3 it follows that, with probability

one, lim e(H(x), p)/p exists and
P-* 0
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K

_max E [(,+ k -A (x)]
lir B(g(x), p)- A(x) + 1r O<K<P-P k-I

P- oo p p.-p oo p

K
ma E [rp' k - A(x)]

O1K*p- k-i
A(X ) + li rafl

(p-p')--.o p - p

K
E ['-p'+k A(z)J

- A(x) + lim max k-1

(p-p')-.oo O<K<p-p' p - p

= A(x) +max 0, 1 ) -A(x)

(318) = max 1 x

Let us prove the following claim:

(319) T(x, h, p) < e(h, p) for 0< <h H(x), p > -1

The proof is by induction on p. The base cases p - -1 and p = 0 are

trivial:

(320) T(x, h, -1) = 0 = e(h. -1) for 0< h < H(x)

(321) T(z, h,0) = 0 = E(h,0) for 0< h < H(z)

For the induction step, consider a packet 1 1 The induction hypotheses

assert that

"i : i '- "--" " iI 
"

" t ' % - " " ' ' " ' r " r * r * "" ' = "g
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(322) T(x, h, P-2) < e(h, -- 2) for 0< h < H(x)

and

(323) T(z, h, -1) < 9(h, P-1) for 0 < h < 11(x)

It must be shown that

(324) T(x, h, P) :_ E(h, ) for 0 < h < H(x)

The proof of the induction step will itself be an induction, this time over h.

The base case (i.e., h - 0) follows from (313) and definition (314):

T(x, 0, ) < T(x, 0,p') +7 +2 + ""

Vp

= (, p,) + -A(x) + I [r" -A(x)]
j'- 1

J

:< T(x, 0, p') + P-A(x) + max P [Ti - A(x)]
<I<P -

(325) = e(o, P)

For the induction step, consider a hop t of x in the range 1 < h < H(x).

(The case = H(x) will be treated separately.) The induction hypothesis

asserts that

(326) T(x, -1,P ) < e(h- 1, P)

It must be shown that

U.

'.'
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(327) Tr(x, ?,p <o ,p

From (308), induction hypothesis (326) (for the induction on h), and induction

hypotheses (323) and (322) (for the induction on p), it follows that

(328)
T(x,h p) < max [T(x, h-, ), T(x,h p-1), T(x, h+1, -2)] + A(x)

(329) _ max [ (h-1, ), e(,, P-1), e(h+1, P-2) ] + A(x)

Applying (316) and (315) to (329) gives the desired result (327):

(,.X T h ) _ E)--,^) + A(T)
4,

.4. = e~n, p)

The proof for the remaining case, viz., = H(x) , is similar, but inequality

(12) must be used to handle the term T(x, h+1, - -2) in (328) above. The

proof of this case will not be presented. This completes the proof of (324) by

induction on h, thereby completing the proof of (319) by induction on p.

For all times t > 1 , define 4 (t) as follows:

(330) 4D(t) = max { p: e(H(x), p) t }

Note that (305) follows from (330), (319) and the fact that

(331) P(x, H(x), 0, t) =f max { p: T(x. H(x), p) < t }

Also note that, for all times t > 1 ,

(332) O9(H(x), (D(t)+ 1) > t > O(H(x), -4(t))

. a Ih A
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and hence

(333) ['I (t) + i-1 < to 4 *(t)
e(H(x), 4(t)+i) - t - e(H(x), 4,(t))

Since 4 (t) -- oc and e)(H(x), p) --+ oo , it follows from (333) and
t-.oo ccp-.oo0

(318) that, with probability one, tim 4 (t)/t exists and

t0.~ 00 t im E)(H(x), p)

1

-max [A(x) X)

=min X(z)]
L A(x)

This is the desired result (307), completing the proof of Theorem 8.
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6. CONCLUSIONS

Round robin sclheduling with windows is a simple technique for allocating

link capacity among competing sessions in a packet network. If a sufficiently

large window size is used throughout the network, the session throughput rates

can be made arbitrarily close to the ideal max-min fair rates. (A session

requiring a very large throughput rate could be visited more than once in each

polling cycle, effectively treating it like several standard sessions.) This

performance is suited to file transfers and other applications where throughput

rate is of greater concern than packet delay. For a session using small

windows, however, the round robin method guarantees a small cross-network

delay for each packet while still guaranteeing a certain minimum service

rate. t This service rate determines the maximum session throughput rate that

can be supported and also roughly determines, for a given throughput rate, the

delay of packets waiting to be admitted to the network. (A session requiring a

larger guaranteed service rate and/or a smaller guaranteed cross-network delay

could be visited more than once in each polling cycle.) t This performance is

In order for these guarantees to be meaningful, the routing algorithm should
limit the number of sessions sharing any link and the number of hops in any
session's path.

t While reducing a session's window size should decrease the cross-network
delay of that session's packets. it might also increase the time the packets
spend waiting to enter the network. Thus the total delay (i.e., pre-network
plus cross-network) could actually increase as the window size decreases.
(Mukherji [211 shows this for a different flow control scheme.) Small
windows do offer certain advantages to the session, however. The session
becomes aware of congestion problems earlier and can respond to large pre-
network queues by compressing its data, prioritizing its data (and deferring



suited to interactive data, packet voice, and other applications requiring low

packet delays. These guarantees for sessions with small windows apply even if

other sessions in the network are using larger windows. Hence this scheme

should be well suited to integrated services networks, i.e., those supporting a

variety of applications. Delay-sensitive sessions can use small windows to meet

their needs, and the remaining transmission capacity can be fairly divided

among the other sessions by assigning them large windows.

It should be mentioned that the performance of the round robin method

improves as the packet size (used by all sessions) is decreased. If the window

sizes - measured in packets - are fixed, then the cross-network delay

(measured in seconds per packet) drops as the packet size is reduced. If the

window sizes - measured in bits - are fixed, then the throughput fairness

improves as the packet size is reduced. Of course, these beneficial effects are

balanced by the fact that packet overhead is more significant for small packet

sizes.

This thesis shows that roun d robin scheduling with windows compares

favorably to first- come-first-se rve d scheduling with windows. t This finding is

or discarding the low priority items), or requesting a higher service rate from
the network. Moreover, the component of total delay that cannot be directly
observed or controlled by the session, viz., the cross-network component, is
guaranteed to be small if small windows are used.

t In modeling first-come-first-served scheduling, this thesis assumes that link-
by-link windows are used and that a packet may not join a link transmitter
queue until it obtains a window permit for its next buffer. Perhaps a

. . . . . .

KV
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of practical interest, since window flow control is commonly used. The max-

min fairness results for round robin scheduling with large windows do not

apply for first-come-first-served scheduling. Even when large windows are

used, the session throughput rates in a first-come-first-served system depend

strongly on the relative window sizes of competing sessions and the initial

conditions of the A Mhen small windows are used, the throughput and

delay guarante, for round robin systems are also better than those for first-

come-first-served systems. (This is not to say that round robin scheduling

performs better in every case. I have seen systems where first-come-first-served

scheduling produces slightly fairer throughputs.) Moreover, these first-come-

first-served guarantees for a session x depend on the window sizes of the other

sessions, whereas the round robin guarantees depend only on x's window size.

Hence round robin scheduling simplifies the problem of selecting window sizes. -

A simplistic description of the capacity allocation mechanisms of these two

disciplines may help explain why their throughput performance is so different.

First-come-first-served scheduling allocates link capacity to sessions according

to the average number of packets each session has waiting. Round robin

scheduling, on the other hand, considers the fraction of time each session has

at least one packet waiting.

different implementation of first-come-first-served scheduling would perform
better.
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This thesis assumed that the propagation delays of the network links were

negligible. The difference in worst-case throughput performance for round-

robin and first-come-first-served scheduling should be even more pronounced if

propagation delays are significant. Consider a system that uses first-come-

first-served scheduling and has the layout shown in Figure 13. Session x uses

links 11 and 12 . Sessions Y1, Y2 YN-1 also use 12 . Flow control

permits for the sessions are returned over links 13 and 14 , whose directions

are opposite to 11 and 12, respectively. Suppose that the round trip

propagation delay over links I and 13 is d times the length of a packet

transmission slot, while the propagation delay over the other links is negligible.

Suppose that the window size for every session except x is w packets. If

sessions x, y i, .--, Yk-1 have very high demand and sessions Yk , ..., YN-I

have very low demand, and if each active session is to receive its fair
1 d

throughput of I packets per slot, then W(x,2) should be roughly - + w
k k

packets. The fair window size for one value of k is unfair for other values, and

the inequity worsens as the propagation delay grows. I conjecture that this

problem is much less severe if round robin scheduling is used instead of first-

come-first-served scheduling.

A similar difficulty arises if end-to-end windows are used instead of link-

by-link windows. Consider a system that uses first-come-first-served

scheduling with end-to-end windows and has the layout shown in Figure 14.

Session x uses links 11 , 12 and 13 and shares each link 1i with single-hop

U;
-4
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sessions YO ,y,2 YiN-• (For each of these links, there is another link

with opposite direction that is not shown in Figure 14 and is used only to

- return flow control permits. The propagation delays of all links are negligible.)

Suppose that N is very large and that the window size for every session except

x is w packets. If all sessions have heavy demand, then session x's window size

should be approximately 3w packets in order to achieve its fair throughput

rate of I/N packets per slot. If sessions Y1,1 Y1,N-i Y2,1 - , Y2N-I

have very low demand, however, and sessions z, Y3,1 ,'", '3,N- 1 have high

demand, then x's window size should only be about w packets. Window sizes

that are fair for one scenario are unfair for the other, and the inequity worsens

as the path length grows. I conjecture that this problem with end-to-end

windows is much less severe if round robin scheduling is used instead of first-

come-first-served scheduling.

For a final comparison of these two disciplines, consider a system with link-

by-link windows. Suppose one session adjusts its window size to optimize its

own throughput and delay. Suppose that this session has a great many

competitors with large windows. I conjecture that the network appears very

diferent to such a session when round robin scheduling is used than when

First-come-First-served scheduling is used. I suspect that with round r lin

scheduling the session can vary its delay over a very wide range and can vary

its throughput between zero and the max-min fair rate. With first-come-first-

served scheduling, however, I suspect that the session can vary its throughput
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over a very wide range, even taking unfair fractions of link capacity, but can

hardly control its delay at all. The round robin scenario seems preferable to

me. These first-come-first-served problems are compounded if all the sessions

are adjusting their window sizes. A session primarily interested in maximizing

its throughput will increase its window size. If its competitors follow suit, no

one will get any more throughput and everyone's cross-network delay will

increase. Eventually the delay increases may halt this game, but I believe that

round robin scheduling would produce an earlier truce.

The costs and benefits of the round robin strategy can also be compared

with the other fair flow control schemes mentioned in Section 1.1. Bially,

Gold, and Seneff [2], Jaffe [16, 17J, Gerla and Staskauskas [11: Section 3],

Hayden [13: Chapters 4-5], Gafni [5: Chapter 3], Gafni and Bertsekas [6],

Oshinsky [22], and Mosely [20] propose algorithms and session source controls

to achieve max-min fair rates. Since these schemes ac~ually compute the max-

min fair rates, they can accomodate more variations in the objective function

than are possible with the round robin strategy. For one thing, link delays can

be considered in the optimization. The round robin method's provisions for

delay -management, viz., window size adjustment and polling frequency

adjustment, are less systematic but are more suitable when different sessions

have different delay requirements. To compare the costs of round robin and

the other approaches, the computation and communication overhead of the

max-min algorithms plus the difficulty of source rate control (i.e., variable rate

V
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vocoding or variable packet sizing or packet metering) must be weighed against

the accounting burden of managing round robin schedules and windows plus

the cost of the link capacity needed to transmit window permits. The round

robin method compares more favorably if session demands change frequently or

if session lifetimes are short, since the max-min algorithms must be executed

often under those circumstances.

The round robin strategy should also be compared with the approaches of

Golestaani and Gallager [12, 8], Gerla and Staskauskas [11: Section 5.2],

Thaker and Cain [26], Ibe [14], Gafni [5: Chapters 4-61, and Sauve, Wong and

Field [24, 25]. The round robin method has less overhead, because neither the

target session rates nor the window sizes nor the schedule parameters need to

be computed, but round robin is limited to a smaller variety of throughput

objectives. While Golestaani and Gallager, Gerla and Staskauskas, and Thaker

and Cain also include in their objectives the cross-network delay averaged over

all sessions, they cannot easily accomodate individual sessions with stringent

delay requirements. The round robin scheme is better at this. Sauve, Wong

and Field (in a related paper [27]), Ibe, and Gafni solve this problem by using

various forms of priority queuing. The overhead costs of window flow control

apply to all the strategies of this paragraph. A round robin schedule itself may

be slightly harder to execute than the first-come-first-served schedules

apparently assumed by Golestaani and Gallager, Gerla and Staskauskas, and

Thaker and Cain, but it is no more difficult than the priority scheduling or Ibe

U!
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and Gafni, and it is much easier than the schedules of Sauve, Wong and Field,

which depend on each packet's real-time delay.

Mukherji's flow control strategy [21] is extremely flexible. By correctly

setting periodic link schedules, virtually any feasible set of session throughput

rates can be enforced, with very small cross-network delays. The difficulty, of

course, is in determining the desired set of throughputs. Optimizing the

fairness of the target throughputs or minimizing the delay built into the link

schedules could incur overhead penalties the round robin method does not

have. However, with almost no effort Mukherji can offer throughput and delay

guarantees comparable to the small-window guarantees of the round robin

method. In fact, since Mukherji recommends round robin re-scheduling of

transmission slots not claimed by their rightful owners, the performance of the

two strategies should be similar in many applications. The overhead for

executing the schedules and enforcing the windows in the two schemes should

be comparable as well. Mukherji's method also has the property (described

earlier for round robin) that an individual session can choose its window size to

suit its cross-network delay requirements.

This thesis, in its examples as well as its analysis, focused on the worst-case

performance of round robin scheduling with windows. An important area for

future study is the typical performance of the scheme. Of interest are the

following items, as functions of the window size: the fairness of the session

throughput rates, the burstiness of the session flows, the severity of transients
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arising from the initiation and termination of sessions and from changes in

session demands, and the cross-network delay. Unfortunately, since many of

these performance measures are very sensitive to the network topology, the

session routes and demand rates, and the initial conditions, such a study would

likely require the simulation of a great many sample networks of at least

moderate size. It would also be interesting to see whether the use of end-to-

end windows instead of link-by-link windows significantly changes the

performance of the strategy. Link models with propagation delays and unequal

capacities could also be considered. Finally, it would be worthwhile to examine

variations of this method to see if max-min fair throughput rates can be

achieved without computing the rates but without incurring large cross-

network delays. One approach is to dynamically adjust the window sizes so

that they are no larger than necessary. Another possibility is to change the

round robin discipline slightly, e.g., by randomly rearranging the polling order

of the sessions from time to time. This might ensure that the system enters

very unfair configurations only rarely and only for brief periods.

4%
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APPENDICES

This section contains three lemmas. Lemma 8 shows that if a certain type

of function G(s, t) is linear in t-s to within given error bounds, then

tighter error bounds apply for sufficiently large s and t. Lemma 9 bounds the

probability that a Bernoulli process segment of a given length will have a given

degree of smoothness. Lemma 10 uses the strong law of large numbers to

compute the following limit:

lim max 0,q--* q q q

for independent, identically distributed ranlom variables g1 ,2

4.-
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A.1 Lemma 8: Symmetry of Upper and Lower Bounds in Steady State

Let g(') be a real function of an integer argument. Define a real function

G(',-) with integer arguments as follows:

t
(334) G(s, - . g(u)

(Note that G(s, t) = 0 for s > t.) Let T be some integer, and let r, f',

and f" be some real numbers. Suppose that, for all integers s and t satisfying

(335) - ' < G(s, t) - r-(t - 8) < f"

It follows that, for every positive real number e , there exists an integer

T1 > T such that, for all integers s and t satisfying T, s < t ,

(336) - min If',(f"It+ C)] C5 (s, t) - r-(t - s) 5 minIf, (f'I+0

Proof of Lemma 8

Assume that

(337) f'< f"

(The proof for f' > f" is similar and will not be presented.) Because of

assumptions (337) and (335), most of (336) is trivially true. All that must be

proved is this: for every positive real number E, there exists an integer

T, > T such that, for all integerss and t satisfying T, : s < t

' ,-. ..4.' ' .- '' -...- -.-.-.- - -.-. '''''''""":""""""' '- '. ':'''';- "-' '.-: ''.- , ., .. ,-," '- " - , 
"

. .
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(338) G(s, t) < r'(t - s) + f' +

The proof will be by contradiction. Suppose that there exists a positive real

number e such that, for all integers 1 > T , there exist integers s and t such

that t < s < t and such that

(339) G(s, t) > r'(t-s)+ f' +f

For any positive integer K, this supposition can be applied repeatedly to

construct a sequence of integers SI, , 82, I, S2, SK, tK such that

OP" T < sI <_ ti :_ sII - t2 -< " " " -< SK :_ tK and such that

(340) G(sk tk) > r'(tk - S) + f' + C for k - 1,2,...,K

Summing (340) over k yields:

K K(341) E a(Sk I tk ) > r- E (tk - sk) + K'f' + K'e
k-I k-I

Now apply assumption (335) to G(t1 , sn) , G(t 2 , S3) , ... , G(tK_- , SK) and

sum over k.

K- ,sK-i ['(s - t) - f'
E G(tk ,Sk+ I) ! k- . k l

k-I k-1

K-1
(342) - r" (sk+- tk) - (K -

k-I

(Note that (342) holds even if K-- 1 .) Definition (334) can be used to add

(341) and (342) together.

--. i-P kV
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ticG (s I tK) E 9 (,,)
U-s 1 + I

E E g(u) + g(u)
k-1 u-s+ J [k-i u-t&+l

= G(sk tk)] + K (t , sk+1)

> E -kS) + K '+ K'

+ [r.Ki (Sk+1 - tk) -(K- 1)./'

(343) - ,(tK - s) + K-c +/'

For sufficiently large K, viz.:

(344) K > f f

relation (343) contradicts assumption (335). This completes the proof of

Lemma 8.
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A.2 Lemma 9: Smoothness of a Bernoulli Process

Let g(t) be a Bernoulli process with rate M , 0 < t 1 . Let G(s, t) be

the number of successes among g(s+l), g(s+2), ... , g(t) ; note that

G(s, t) - 0 if s > t . For any positive real number A, any integer T, and

any positive integer T, it follows that

( CG(s,t) -/p'(t-s) < A>

(345) PROB for all s, t such that T < s < t < T+r A 2

Proof of Lemma 9

Let s and t be any integers such that T< s < t < T+r. Note that

(346) G(s, t) = G(T, t) - G(T, s)

Consequently, if

A

IG(T,s) - (s- T)I < 2

and

A
JG(T, t) - .(t - T)I < A

then

G(s, t) - MW(t - s)I < A

Therefore, to prove (345) it suffices to show that

4d

.

U.,
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iG(T, u) - .(u- T)I

(347) PROB for allu such that T <u < T+r 1

This is the same as proving that

K A
I E G(T+k-1, T+k) - p-KI - -

(38 RB k-I 2 >
(348) PROBfor all K such that 1 < K < A2- -

Inequality (348) follows from Kolmogorov's inequality [3] and the fact that

VARIANCE { G(T, T+r) } -

(349) < L
4

This completes the proof of Lemma 9.
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A.3 Lemma 10: A Corollary of the Strong Law of Large Numbers

Suppose that g 1. g2, . are independent, identically distributed random

variables with mean q. For all integers K and q such that 0 < K < q

define GK and Gq as follows:

- K = K(350) Gq E gk
q k_1

(351) G = maxCG
O< K<q q

It follows that, with probability one,

(352) Gq maxjO, q]

Proof of Lemma 10

It follows from (350) and the strong law of large numbers [3] that, with

probability one,

(353) G K
K--. oo

This means that there exists a subset F of the sample space such that

(3s4) PROD { rP} =

and such that, for every sample point -1 in r and every positive real number f

there exists a positive integer Q(-, e) such that

* . ... P . d . p - d ~ * * -. *** ,, - *- * *. . . +- + . .- , . - . - .. - . , .- . , .. . . . .
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4

(355) I Gk(I/) -is I - for all K > Q(-y, e)

To prove (352), it will be shown that for every -1 in r and every positive real

number e , there exists a positive integer Q'(-y, e) such that

I q-y) - max[0, p K e for all q Q'(y, e)

Let -y be any sample point in r and let e be any positive real number. Define

Q'(-y, e) as follows.

i k-IIgyI

(356) Q'(-Y, ) - max [Q(-Y ) QQ('Y 9k ) Y

Let q be any integer such that

(357) q _ Q'(-, e)

The goal is to show that

(358) I Gq(Y) -max[O, p] < e

First, let us find a lower bound for Gq(-). It follows from (351) and (350)

that

.- .' . . ' - ' . ' . ' .. , .' - - . . . , . , :
. % -'.,,. .' ", ',',% % . ' -',% ,% % % %' '% ,'.' ,' ' ',, _, , ,, , - , - . '.,',A.,'

'
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0< K<q

> Go(y)

=0

(359) > -

Using (351), (355), (357), and (356), a different lower bound can be found:

C,() -O< K<q

> Gl(-y)

(360) >

Combining (359) and (360) yields:

(361) G,(-) > max[0, V1 -

This is half of the desired result (358).

Now an upper bound can be found for G(-,) by proving the fcilowing

bound for GK)

(3 2) < max[O. p] + f for K = 0. 1,.q

The small and large values of K must be treated separately. For

0 < K < 0('7, E) , apply (350), (357), and (356):

% ,, ,I -.. , ,.* , .'.-, ", ' ', "  -.. *.- . .. - . .. . . - . . ....-. -. - .- . . -.. . . .... . . . . ..p . %% * . -. -. -% -.- o., ' . ' . "
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' K

G(,) . g(y)q k-I

1 K
< - E E Ik()I

q k-i1

v-. - I gk(y)2
q k-i

*:- Q'( , e) k-i

< max[0, uI + 6

For Q(r e) K q , apply (350) and (355):

____ 4o -, %€ 4 . , . * ,•%- -o% . . . . . . . , . - • ,-.- . , . . . - -. . . ..-. . . . - , - -.
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q k-i

K 1 K

q K k_1 (Y)

q

< -i+)q

< (max[O, ] + E)
q

<maXIO, ;j + C

This completes the proof of (362). From (351) and (362), it follows that

Z. Gqmax G,(

(363) < max[o, jul + e

This is the second half of the desired result (358). completing the prdof of

Lemma 10.

.'
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GLOSSARY OF NOTATION

SYMBOL MEANING DEFINED IN

[s, ti Time interval from beginning of slot s § 2.1
to end of slot t; null if s .> t

(s, tj Same as [s+l, t] § 2.1

[s, t) Same as [s, t-11 § 2.1

(3, t) Same as [s+1, t-1] § 2.1

S Number of sessions in network § 2.2

N'(1) Number of sessions using link 1 2.2

N(z, h) Number of sessions using hop h of § 2.2
session x

N(x) Maximum number of sessions using any §2.2
* link in path of session x

N Maximumn number of sessions sharing § 2.2
any link in network

H(x) Number of links in path of session x §2.2

H Mfaximum number of links in path of §2.2
any session in network
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W(x, h) Window size (capacity) for buffer h of § 2.3
session x

W1 Maximum window size for any session x § 2.3
at any buffer h in the range
1< h < H(z)

Wi' Maximum window size for any session x § 2.3
* at any buffer h in the range

2 < h < H(x)+1

B(x, h, t) Level of buffer h of session x at time t § 2.2

Tss Time when throughputs and buffer § 4.4
levels stabilize

m(x, h) Minimum level of buffer h of session x § 4.4
after time Tss

M(x, h) Maximum level of buffer h of session x § 4.4
after time Tss

P(x, h, s, t) Throughput (number of transmitted § 2.2
packets) for session x over hop h during
interval (s, t]

P'(x, 1, s, t) Throughput (number of transmitted § 2.2
packets) for session x over link 1 during
interval (s, t]
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RA(X) Long-term average throughput of § 2.2
session x

T(x, h, p) Time slot during which session x § 2.2

transmits packet p over hop h

:--(x, p) Cross-network delay for packet p of § 2.2
session z

'.

C(x, h, s, t) Number of chances for session z to § 2.4.1; § 2.5
transmit over hop h during interval
(s, t1; C(x, 0, s, t) is number of
attempts by x to insert packets into
buffer 1 during (s, t]

Cr(x, 1, s, t) Number of chances for session x to § 2.4.1
transmit over link I during- interval

- (8, t]

A'(1) Schedule delay bound for link I § 2.4.3

A(x, h) Schedule delay bound for hop h of § 2.4.3
session x

A(X) Maximum schedule delay bound for any § 2.4.3
link in path of session x

11 Sample space consisting of all possible § 2.5
sample paths of system demand

X(x) Demand rate of session x § 2.5
"Po

-Po
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RF(i) ith smallest distinct fair rate; fair rate § 4.1
for any session with congestion index i

I(x) Congestion index of session x § 4.1

Number of distinct fair rates; § 4.1
maximum congestion index of any
session

Rc(x, h) Lower bound on fair rate of chances for § 4.1
session x at hop h

R'c(X, 1) Lower bound on fair rate of chances for § 4.1
session x at link I

DCL, ECL, FCL Functions used as lower bounds on § 4.2

numbers of'chances received by sessions

DpL, EpL, FpL Functions used as lower bounds on § 4.2

numbers of packets transmitted by
sessions

DpU, Epu, FpU, F"pu Functions used as upper bounds on § 4.2
numbers of packets transmitted by
sessions
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