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THE CANTED SPECTRAL TRANSFORM 
AND ITS PROPERTIES 

INTRODUCTION 

Spectral transforms play a major role in modern signal processing and analysis    This role will 
undoubtedly be expanded in the future as a consequence of advances in microelectronics and computer 
technologies    The most common spectral transform used in practice is the discrete sectionalized 
Courier transform (SFT) which evolved with the advent of the fast Fourier transform (FFT) algorithm 
of Cooley and Tukey [12].  The FFT algorithm opened the door to high-speed coherence estimation in 
ow-frequency (acoustic) applications through its use as an SFT [3-6].  In application, the SFT accumu- 
ates a signal energy along narrow spectrally invariant channels (or frequency bins) over the temporal 
imits of the transform integration interval.   This restriction on signal-spectral dynamics is imposed by 

the Fourier kernel, exp [-il-^ft].   One may therefore surmise that this restriction is rather arbitrary 
and that one may accumulate signal energy along any dynamic spectral path by choosing a suitable ker- 
nel function to use m the transform.   Suppose, for example, that one chooses a kernel, exp [-i^{t)] where .     F i        v</j, 

n=0 ^ J 

The transform of a signal using ^^(f) as a kernel will accumulate energy over dynamic spectral path 

277 

s 

/(r)=^>i'(f)= £'(„ + l),,„r''. (lb) 
n-O 

Here >?(?) is the time derivative of the generalized phase function ^{t).  It should be evident  there- 
fore, that for a narrowband signal s{t) = A sin 9 it) whose instantaneous frequency satisfies 

1       . N-\      fin) (n\ 
J-,(,)=2>    /^   ,«, (2a) 
277 n-0 

over 0 < ? < r, the magnitude square of its spectral transform reduces to 

l\fjs(t)e~^^^'^dt '^^CsHOdt, (2b) T 

for 

Vn-f^"UO)/{n + l)\ (2c) 

With foreknowledge of the spectral dynamics of a given signal, the kernel parameters r,„ of the general- 
ized transform may be chosen to provide an effective matched filter for the signal. Without this fore- 
knowledge, the kernel parameters may be varied to search for the set that maximizes the "transform 
output; thus providing an estimate of the detected signal spectral dynamics 

Manuscript approved July 14, 1986. 
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Although sound in principle, the generalized spectral transform becomes increasingly computa- 
tionally intensive as the order of the phase polynomial becomes large. However, extending the phase 
kernel from linear to quadratic is a reasonable step to further the cause of the generalized concept in 
spectral transforms. 

The utility of the quadratic phase kernel has recently received some degree of recognition. Wol- 
cin [7] has demonstrated that when the spectral trajectory of a signal can be adequately modeled by a 
continuous, piecewise linear function of time, the maximum a posteriori estimate of the narrowband 
signal (not surprisingly) results in exponential quadratic phase functions. George Rogers, at TRW, 
Inc., subsequently determined that the use of the quadratic phase kernel in place of the conventional 
linear Fourier kernel could significantly improve the detection of particular classes of spectral dynamic 
signals propagating in the ocean medium [8]. The objective of this report is to study the properties of 
the spectral transform that employs the quadratic phase kernel, in a preliminary effort to determine its 
utility in practical applications. This form of the spectral transform will be called the canted spectral 
transform (CST); in that it accumulates signal energy along spectral paths that may be canted (or 
linearly sloping) with respect to time. The discrete form of the transform using the combined Fourier- 
Fresnel kernel is also referred to (by Rogers) as the slide-fast Fourier transform or S-FFT. 

FORMULATION OF THE CST 

The discrete form of the CST to be studied in this report is* 

Fik,^.) = j^ 
N-l -'2T ^N       2 hv 

2 1 

/. = 0 

(3) 

where 
Sj are the signal samples over the interval UQ^ J < no + N—l, 
k = 0,1,2,3,... ,A^- 1 is the frequency index, 
V = 0,±1, ±2, ±3, ...,±j/max is the cant (or frequency-slide) index, 
n is the time index (or sample number) relative to n^, 
KQ is the initial time index, 
M)„ = w^_„ is the window function over 0 < n < A'^-l, 

and 

A'-l 

W =  T w„ is the windowed signal-averaging factor. 

The signal s{t) is assumed to be uniformly sampled over time increments At. The transform- 
integration time T is therefore A^Af. The bin width of the spectral channels is l/T, centered at 
f = k/T. The frequency slide, / = Af/T = Ak/T^, of the spectral channels is v/T^. The cant v is the 
integer number A A: of frequency bins shifted over the transform-integration time T. The factor W is 
equal to N for the conventional rectangular window and equals N/2 for the Manning window. The 
spectral channel width l/T is generally chosen to encompass the short-term bandwidth of the nar- 
rowband signal components of interest. And the range of the cant variable is chosen to encompass the 
anticipated frequency shift of the signal components over the transform-integration time. As a conse- 
quence, the class of narrowband signals most suitable for analysis by the CST is that whose member's 
instantaneous frequency deviates from linear over time T no greater than approximately 1/ T. 

•Although the discrete CST would be complex and not include the absolute value signs, it is convenient to consider only the 
magnitude of the transform in this early study of its general properties. 
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THE CHARACTERISTIC FUNCTION Z(x,y) 

Since the GST is structured to accumulate signal energy along canted or sloping channels in the 
frequency-time plane, let s(t) be a signal whose instantaneous frequency varies linearly with time. 
That is, let 

■s«o+„ = e 
^^''o-^ + -^''o 

(4) 

where 

and 

^0 = foT ■     ■'■■ 

/o is the instantaneous frequency of 5 it) at IQ = noAt 

v,=hT^ - 
/o is the time derivative of the instantaneous frequency at  t^ 

9Q is a constant phase term. 

In this event, from Eqs. (3) and (4), the CST becomes 

F^k,.)=j^ 
N-\ -IT 

n=0 

T~HN^V~'^] 
(5) 

Letting x = k- ko and y =^-1^0 defines the characteristic function of the CST as 

21 
A'-l 1 

^(^'>')=-^ 
^'77 + ^ 

n=0 
(6) 

The CST characteristic function Z{x,y) is a quasi-continuous function of the variables x and y (since 
ko and i^o need not be integers), and it serves to demonstrate some of the properties of the CST. 

Symmetry Relations 

Replacing x by -x and y by -y in Eq. (6) gives the symmetrical relationship 

Z(-x,-y) = Z{x,y). (7a) 

The above symmetry implies that paired values k, k'andv, 1^' (corresponding to pairs x,-x and j^,-j' 
respectively) must satisfy the relations 

A: = {k + k')/2 = ko. (7b) 

and 

v= iv + v')/2 = 1^0 • (7c) 

Consequently, ko and vo must be integer multiples of 1/2 since A:, k', v, and j/'are integers.   The 
geometric interpretation is that k and k' are spectral bins symmetrically located about A:o with cants v 
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and j/'such that the resulting spectral trajectories intersect the spectral trajectory of the signal ka i^n at a 
common point. 

Note from Eq. (5) that the CST is dependent on only the differences A: - A:o and i^ - VQ. Thus one 
can determine the canted transform of any linear frequency-slide signal (including the cw signal) by 
computing the conventional Fourier transform of a canted signal whose parameters are ATQ and i^^ - j. 
This is apparent from the form of the CST in Eq. (3), which can be interpreted as the conventional 
Fourier transform of a signal modified by the phase kernel, exp {-iirvnyN^}. 

Letting n goto N-n in Eq. (6), and using the identity Wf,^„ = w„, the CST characteristic func- 
tion becomes 

Z(x,y) = 
W 

-  H-o     l-e'>(2*+>') (8a) 

For typically large values of N, the second term is insignificant in comparison to the summed term and 
can be ignored.  Therefore, 

Z{-x-y,y) = Z{x,y) = Z{x+y-y) = Z{-x-y). (8b) 

Thus, the two values k and k'=2ko + Po-v-k (corresponding to x and -x-y) will give the same 
value for the characteristic function. In geometric terms, given the values ATQ, V^, and v, any two 
values of k whose arithmetic mean is 

k = (k + k')/2 = ko+{vQ-v)/2 (8c) 

will give the same value for the characteristic function. Writing the above equation as 

k + W2=ko + vo/2 (8d) 

reveals that the spectral trajectory originating at k with cant i> intersects the trajectory originating at ATQ 

with cant VQ at its midpoint. Consequently, the trajectories originating at k and A:'will intersect the tra- 
jectory of the relevant signal s (?) at points symmetrically distributed about its midpoint. Since k and r 
are integers, it is necessary that 2A:o + i^o be an integer. 

Translation of the Temporal Index 

that 
Translating the temporal index of the CST characteristic function by a gives the interesting result 

Z'(x,y-a) 

(9a) 

1 
w 

N-\                   -ITT 

n=0 

2x --a    +y 
2 1 

n 

r                  (   i2, 1 

1 
w 

N-\            -in  2(x-ay)-^+y 
^r                                          N 

«=0 

n 
N     \ 

= Z(x -ay,y). 

Thus, translating the time index n by aA^ is equivalent to translating the x variable by ay.  In particu- 
lar, 
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Z'iO,y-x/y) = Z(x,y) 

J_ 
W n=0 

N     y 

(9b) 

Thus, one can compute the characteristic function using only the quadratic phase term by appropriate 
translation of the time index. ;. 

A study of Eq.  (9b)  reveals that the range of phase excursion over n  is minimized when 
X =-y/2.  The characteristic function for minimum phase excursion may be written as 

2 

N/2 -iny  j^ ( , 
- 11 + woe-'^'y'n Z(-y/2,y) = 

W 

2_ 
W 

2   £  ^Nll + n  e 
n-0 

Nil -iiry 

E  ^NI2 + n  e 
n-0 

(9c) 

Topology of Z(x,y) 

To map the topology of the CST characteristic function over the x, >' plane, the functional form 
given in Eq. (9b) may be used to give 

where   . 

Z{x,y) = \\z^{x,y) + 2,{x,y) 
21 1/2 

J     A^-l 
ZR{x,y)= -7^   £ H'„ COS 

n=0 
try 

n      X 

N     y 

^^X'-(^) COS Try 
y 

d^. 

(10a) 

(10b) 

and 

J     N-\ 

^/^^'>'^ = li7  L ^« sin 
"    /i=0 

Try 
n_,x_ 
N     y 

2 1 

Try 
y 

d^. (lOc) 

Although the above functions are undefined for y=0, the singularity is removable, resulting in the 
form of the conventional Fourier transform of the window function. 

Rectangular Window 

For a rectangular window function, a closed form of the solution is obtained involving the Fresnel 
sine and cosine integrals 5'( • • •) and C( • • ■) as follows: 

2R^x,y) = 
C (/32 + /3i)-C (/3,) 

(11a) 
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-7 (      ^      ^ iPi + HO-S (j3i) 
Z,{x,y) =  , (lib) 

where 

Ul and /32= V2T7T, (lie) 

and where the sign of j8] is positive when x and y have the same sign and negative when their signs 
differ. This result for a linear slide frequency was demonstrated in Ref. 6 and has also been derived 
and demonstrated by Rogers [8] in his unpublished work on the slide-FFT. For x=0 or x=->', the 
characteristic function reduces to 

Z(0,y) = Z{-y,y) = , (i2a) 
P2 

and for x=—y/2. 

Zi-y/2,y) =  -—  . (12b) 

Figure 1 shows graphical plots of the CST characteristic function for the rectangular window. To 
achieve the realism of the CST, the topology is mapped over integer increments of x and y about initial 
offsets of either 0 or 1/2. As a visual aid, the discrete values along the x axis are connected by straight 
lines. The offsets of 1/2 in either or both the x and y axis are intended to depict the effect of nonin- 
teger values for the signal parameters ^o ^nd PQ on the resulting topology. In the upper left-hand 
diagram, the parameters ko and VQ are both integers. Consequently, a peak value of 1 is achieved for 
x=y=0. In the upper right-hand diagram, the parameter k^ is depicted to be an odd multiple of 1/2. 
That is, the initial frequency is depicted to start at the edge of a CST bin, while the cant VQ remains an 
integer. In the lower left-hand diagram, the parameter /CQ is an integer while the cant parameter VQ is 
depicted to be an odd multiple of 1/2. In this situation, the cant can never be fully compensated by the 
integer variable v. The lower right-hand diagram depicts the situation where both ATQ and VQ are odd 
multiples of 1/2. In reality, the two scale offsets can fall anywhere between ± 1/2. In Fig. 1 only the 
extreme offsets are depicted. The illustrations demonstrate the functional symmetry derived in the ear- 
lier analysis. 

Manning Window 

To study the effect of a shading window function on the CST, the popular Manning window is 
used. In this case the window function w„ is sin^ {nn/N) and N/W = 2. Unfortunately, a closed- 
form solution is not available; however, by using Eq. (10), graphical plots of the characteristic function 
were computed and are displayed in Fig. 2. The rationale for the four diagrams is identical to that 
described for the case of the rectangular window function. 

Cant Selectivity 

A study of the characteristic function topology for the two window functions (Figs. 1 and 2) 
reveals marked differences in the cant selectivity. In the case of the rectangular window (commonly 
called the no window case since w„ = 1 over the integration interval), the peak of the contour is more 
sharply defined. The variation of the contour over the x,y plane is, however, more erratic. At the 
larger values of >', the spread of the peak along the x axis is relatively broad. On the other hand, the 
topology of the characteristic function for the Manning window is relatively smooth, and it displays a 
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Fig. 1 - Topology of the CST characteristic function Z{x,y) for a rectangular window. The upper left-hand diagram 
illustrates the case when k^ and I^Q are integers. In the upper right-hand diagram, J/Q is an integer but ATQ is an odd multiple 
of 1/2; that is, kg occurs at a bin edge. The two peaks occur (or y = i,-I,Q= ±\. In the lower left-hand diagram, ATQ is an 
integer but „o is an odd multiple of 1/2; that is, vo is midway between two cant values of „. The two central peaks are equal 
and occur for >< = r- ^o = ± 1/2.   In the lower right-hand diagram, both kg and VQ are odd multiples of 1/2. 
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Fig. 2 - Topology of the CST characteristic function Z{x,y) for a Manning window. The rationale and pealc characteristics of 
the four diagrams are the same as described in Fig. 1. The topology for the shaded window is, however, more smooth. And, 
the peak of the topology decays less rapidly (along the line of minimum phase excursion x^-yll) as the absolute value of y 

increases. 
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more gradual falloff along the line y =-2x. For the purpose of estimating the cant of a linear 
frequency-slide signal, the rectangular window would prove superior; particularly, in a noisy environ- 
ment. 

To obtain a quantitative measure of the cant selectivity, the peak value of the characteristic func- 
tion over X was computed as a function of y for the two window functions. These values involve 
offsets withm ±1/2 about integer values of x and y. The results are plotted in Fig. 3 as a function of 
mteger values of the cant variable. The diagrams display the expected value (small circle) and the 
range of variation of Z{x,y) due to the random offsets. The value of Z{x,y) at each y in Fig 3 are 
uniquely dependent on the specific offsets. Thus, the indicated variations along the abscissa are not 
mdependent but are highly correlated. The results demonstrate the superiority of the rectangular win- 
dow in resolving the cant of a narrowband signal in a noisy background environment. 
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integers.   The speciric values at points along the abscissa are not independent but perfectly correlated.   That is, given 
the values for kn and "0- 
within ;hc range indicated in the figure 

the CST outputs are uniquely determined at the points along the abscissa and w ill fall 

CST STATISTICS FOR A RANDOM NOISE SIGNAL 

Let Fi(k,v) be the CST, given in Eq. (3), of a sample signal randomly selected from an ensemble 
of zero-mean Gaussian functions with standard deviation <T. Define v as the specific value of v 
whereby F,(^,^-) < F^ik,^) for a given value of k. Therefore, Fi(k,v) and F^ik,^) are samples of a 
random function whose statistics are studied in the following paragraphs. For purposes of the study, 
the CST size is assumed to be very large, much larger than the range over which the cant v is varied. 

Distribution of/", (A;, I/) 

For a Gaussian signal, it is known that /;(/c,o) is a Rayleigh-distributed random variable with 
mean proportional to V TT/IO- and variance equal to 4/n-l times the square of the mean. Computer 
runs over a large set of Gaussian inputs have verified that Fi(k,i>) is Rayleigh distributed and identical 
for each k and v (as expected). 
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Distribution of/*, (A:, v) 

To study the distribution of the peak CST for a Gaussian noise input let 

Xy = ^/ (k,^^), (13a) 

where vj is selected from the set [v]. Consider the set xi,X2,---,Xn and denote x = Fiik,i>) as a 
member of the set; such that, X; < x for 7 = 1,2,...,«. Now, it has been shown that when the distri- 
bution functions for the set of Xj are identical and independent, the distribution function for x is sim- 
ply [9] 

F^ (z) = [F^ (z) ]" , 

where F-Cz) is the probability that x is less than z and F^(z) is the probability that Xj is less than z for 
a given Vj.  Since x is Rayleigh distributed, 

/'-(z) = (1-/7)", 

= ti-lV„Cjp', (14a) 
./=o 

where „Cj is the binomial coefficient and p is the complement Rayleigh distribution, exp {-zV2o-^}, 
or the probability that z ^ x- The complement distribution function for x as a function of p is there- 
fore 

^i(^) = i(-i)'-'«c,/7\ 
7=1 

= np 1--^/^ + j, P' (14b) 

Thus when p is less than 0.2/(n-1), the complement distribution function for x approximates np. 

Curves of the idealized complement distribution function are shown in Fig. 4 for several values of 
«. Since these curves are based on independent distribution functions for the set Xj > computer runs 
were made to determine the difference between the actual and idealized complement distribution func- 
tion for the same values of n. This proved to be a rather formidable task due to the large sample size 
required to achieve accurate measures of the function. However, sufficient data were achieved to show 
that the difference is quite small. In every case, the actual probability proved to be slightly less than 
the data given in Fig. 4; particularly in the range of p between 10~^ and 10""*. The results for «=41 
(where the accuracy is higher than for the lower values of n) are shown in Fig. 5. The results for lower 
values of n are comparable to those shown in the figure for values of p less than about 10~^. The 
difference is that as n becomes smaller, the curves descend to about the same minimum values for 
slightly higher values of p before merging in close proximity with the curves shown. As a conse- 
quence, one will not err greatly in using the curves shown in Fig.  4. 

Mean and Standard Deviation of f,(A:,!/) 

The probability density of x is simply the derivative of the distribution function (14a) or 

f.{z)^-^pil-p)"'' (15a) 

where ;; is the complement Rayleigh distribution function.   The various moments may be computed 
from the probability density function.  Carrying out the indicated operations gives 

.'     (-!)> 
jh ij + D' x/x = « E 7—TTTW "-1^/' ■• '   ^^^^^ 

10 
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and 

(T^la^ = 
«-i    (—1)J _ _ 1/2 

(15c) 

where x  and o-^  are the mean and standard deviation of the Rayleigh distributed CST statistic 
Xj=Fi(k,vj). 

Figure 6 is a plot of the above functions along with experimental measures obtained from the 
CST by using a Gaussian noise signal. The experimental data reflect the dependence or covariance 
between the xj sample increments. 

Ilx 

5       10      )S      20      25      30     35      40 

NUMBER OF CONTIGUOUS CANT VALUES IN CST, n 

Fig. 6 — Mean and standard deviation of the peak CST 
output for a random Gaussian signal as a function of n, 
relative to the values for n=l. The theoretical curves 
assume independence between the cant values, while the 
dashed curves were obtained experimentally by averaging 
about 250,000 samples per point. Deviation from the 
theoretical curves is attributable to the dependence 
between cant values. 

Characteristics of the Variable v 

Experimental measures were made to determine the distribution of the statistic j) for a random 
Gaussian signal. This variable is the member of the set {v} that maximizes the CST for a given input 
signal sample. The observed distribution of v is uniform over the range of cants except at the two end 
points where the probability is higher than the mean. This implies that the covariance between the cant 
parameters are nonzero. In this event, maximum CST values, which would occur for v values outside 
of the range of cants employed in the CST, will increase the probability that the maximum will occur at 
the nearest end point. 

12 
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To verify the above hypothesis, the normalized covariance between v, and v • /   from Ea   (13a) 
was computed experimentally.   Figure 7 shows the results for both the rectangular" LndTheHanninK 

dow aTd fn " '' ' "f ^''""^ '^""'f ^" ^^'^^^ '^'"^^" ^^^'^^"^ -1"- °f '^ f- the'ectangut Z' 
fr;. t .H ''''''/T"' f P^^^t-°" «f " ^^1"^^ in the case of the Manning window. This further ver"- 
nmin^ h "'' " r^"" ?'" ''' rectangular window is disadvantageous in the case of the CST Com- 
putmg he mean value and standard deviation of the CST, using a sequence of cant values separated 4 
or greater apart, resulted in values that approached the theoretical curve shown in Fig 6 
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Fig. 7 - Normalized covariance between cant values as a 
function of the cant separation Ar for rectangular and 
Manning windows. 

in ihe CST Is „   the omhahi i,v T.h.     . ' ' """'''" "' '""'ieuois cams employed 

values.  An^LprotabT, t'4    .LpoTr,ri7(V:;rT:'d^'''"""^ 
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sin„sl°r;„rX„t,?nrHr;ir^"e,^'"'' '°-'"'' °^ - ''-- f«y.modu,a.ed 

o sm '^f^O + VQ — + Vn (16) 
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Experimental Parameters 

The desired distributions were measured experimentally by using Eq. (16) in Eq. (3), for both a 
rectangular and a Manning window. The CST parameters were; A'^ = 1024, k = 200, and v = -20, 
•••, 0, •••, 20. The signal parameters included: /CQ = 200 and 200.5, v^ = -0.5, 0, 9.5, and 10; and 
inband signal-to-noise ratio r = 20, 10, 6, 3, 0, -3, and -6 dB. Using Gaussian noise statistics, more 
than 20,000 samples of the CST statistic were obtained for each set of parameters in measuring the v 
distributions.  The v distributions for Gaussian noise only were determined earlier. 

Distributions of the Peak Cant v 

As expected, the distributions of v are independent of the parameter i^o as long as i^o is an interior 
cant within the range of the cants Vj, and is not close to an end value. The distributions are dependent 
on the offsets of both k^ and i^o from their nearest integer values. Figure 8 shows the distributions of v 
as a function of the inband signal-to-noise ratio r, for a rectangular window and for fractional offsets of 
the parameters ATQ and i^o- The upper left-hand diagram shows the distributions when both /CQ and VQ 

are integers. The upper right-hand diagram illustrates the effect of ATQ being offset by 1/2; that is to the 
edge of the k bin. The lower left-hand diagram illustrates the case where VQ is midway between two 
integer cants. And the lower right-hand diagram illustrates the case where both /CQ and VQ are offset by 
1/2. From the figure, one can readily see that a cant shift of one nearly compensates for the degrada- 
tion induced by the signal frequency occurring at the edge of the spectral bin. Further, the degradation 
resulting from the signal cant being midway between two integer cant values is partially compensated 
when the signal frequency is offset from the bin center. In practice, the values of /CQ and i^o can be 
expected to be uniformly distributed over ±1/2 from an integer value. 

Figure 9 displays the distributions of i> as a function of the inband signal-to-noise ratio r, for a 
Manning window and for fractional offsets of the two signal parameters. The rationale of the four 
diagrams is identical to that given for the case of the rectangular window. The distributions in the k 
bin do not differ greatly from those realized with the rectangular window. The peak values are approxi- 
mately the same, although the distributions about the peak values are somewhat broader. This 
broadening effect about the peaks can be attributed to the broader bandwidth of the CST for a Manning 
window. As evidenced from Figs. 1 and 2, the v distributions for values of k remote from k^ can be 
significantly different for the two window functions. 

Cumulative Distributions of the Peak Cant v 

The cumulative distribution of the peak cant is defined as the sum of the probabilities at 0 and 
about either side of zero on the abscissa scale in the diagrams in Figs. 8 and 9. That is, the cumulative 
distribution at a scale value of m is simply the probability at the scale value 0 plus the sum of the 
probabilities at both positive and negative scale values up to and including m. Using this definition, the 
cumulative distributions of the peak cant for the rectangular window are shown in Fig. 10. The 
rationale of the four diagrams is the same as that described for the earlier distributions. In the upper 
left-hand diagram, the cumulative distribution for r equal to 20 dB coincides with the vertical ordinate 
axis, and consequently is not perceived. It is, however, visible on the remaining three diagrams as 
illustrated in the upper right-hand diagram. As may be seen, the probability rises rapidly at a scale of 
one, after which it riseS' less rapidly with increased values of the abscissa scale. The cumulative distri- 
bution for a noise-only signal (r^-oodB) is simply a straight line as expected. These curves, as well as 
the earlier distributions represent the results for 41 contiguous values of the cant variable. 

The cumulative distributions of the peak cant for the Manning window are displayed in Fig. 11, 
with the same format as employed in Fig. 10. The curves for the Manning window closely approximate 
those for the rectangular window. They generally rise more steeply at an abscissa value of one; after 
which they ascend more gradually. This behavior is attributed to the broader peaks of their distribu- 
tions. 
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Fig. 8 — Distributions of the peak cant J for a ramp-frequency signal in random noise, a rectangular window, and 
selected values of inband signal-to-noise ratio r. The upper left-hand diagram illustrates the case when the signal 
parameters kg and I/Q are integers. In the upper right-hand diagram, VQ is an integer but k^ is an odd multiple of 1/2; 
that is, ko is at the bin edge. In the lower left-hand diagram, ko is in the center of the k bin but VQ is an odd multiple 
of 1/2; that is, VQ is midway between two cant values. In the lower right-hand diagram, both kg and I/Q are odd 
multiples of 1/2.  The number of contiguous cant values, in all cases, is 41. 
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It is well to remember that all of the distributions shown in Figs. 8 through 11 are truly discrete 
values and not continuous. Straight lines between the discrete values of probability have been drawn 
for convenience in displaying the results. 

SUMMARY AND CONCLUSIONS . 

The conventional sectionalized Fourier transform (SFT) accumulates signal energy in narrow 
spectral channels or frequency bins that are constant over the integration time of the transform It has 
been shown that by extending the phase kernel of the SFT, signal energy over narrow spectral channels 
that vary dynamically over the integration period can be accumulated to achieve optimum detection 
sensitivity for a narrowband signal whose instantaneous-frequency dynamics are known When the 
spectral dynamics of the signal are unknown, the parameters of the generalized kernel may be varied to 
obtain estimates of the input signal-frequency dynamics. The canted spectral transform (GST) which 
employs a quadratic phase kernel (or Fourier-Fresnel kernel), is an initial step toward achieving a gen- 
eralized spectral transform. 

The statistical properties of the CST reveal that shaded window functions are generally inferior to 
the rectangular window (commonly referred to as no window) in discriminating the cant of signals 
whose instantaneous frequency varies linearly with time. Although the primary utility of the CST is in 
detecting signals with linearly varying frequency characteristics, it also has merit as a conventional spec- 
trum analyzer by appropriately exploiting the distribution characteristics of the peak cant variable The 
statistical properties of the CST for both signal and noise provide a basis for determining the perfor- 
mance of the transform in practical applications. 
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