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RADIATION TRANSPORT IN A NITROGEN PLASMA

GENERAL FORMALISM AND 1-DIMENSIONAL MODEL

I. INTRODUCTION

An energetic electron beam propagating through air

dissociates and ionizes N2 and 02 leaving behind a hot
plasma composed primarily of N, N+, N++, 0, 0+, and 0++

Emissions from this plasma cool the heated channel as well

as provide diagnostic information. To properly describe the
evolution of the channel under nonequilibrium conditions one

must solve, simultaneously, the time-dependent rate
equations which provide the population densities of all
bound and continuum states involved in the radiative and

collisional processes and the corresponding radiative

transfer equations which account for the effect of the
important emissions on the plasma. In this paper we show

the effect of radiation transport on the cooling of a
nitrogen plasma. The nitrogen plasma consists of N, N+, and
N +, each of which exists in various excited states as well

as ground states. The radiation transport is treated as 1-

dimensional.

Depending on the nature of the specific problem, there

are many approaches to solving the radiative transfer

equation . For example, geometry, time-dependence,

radiation characteristics (line versus continuum radiation,

single lines versus many lines, etc.), optical thickness,

inclusion of scattering, and the thermodynamic state of the

gas all play a role in determining the best approach and
corresponding set of approximations. For instance, rarely

is an exact solution attempted for geometries other than
2planar 2 . In many cases decomposition of the radiative

transfer equation into a set of moment equations with

corresponding restrictions on the angular dependence of the

Manuscript approved September 3. 1986.
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intensity 3 has proven to be a useful procedure. Kulander 4

used such an approach to investigate radiative transfer in a

high-temperature nonequilibrium nitrogen plasma confined to

a planar geometry. For radiative transfer in optically

thick regions, i.e. regions which are large compared to the

optical depth of the radiation, the diffusion approximation
5

S." method, as developed in neutron transport theory , may be

applicable. Comparisons between moment method, diffusion

method, and exact (or nearly exact) results have been made

for model problems6 . Multi-frequency grouping methods are

often applied when it is necessary to transport many
frequencies and possible to define groups of frequencies

within which the absorption coefficients are similiar.
7Average radiative transfer quantities are then calculated

S<Combinations of the above approaches may be undertaken as
well8  One method that has seen extended use is the escape

probability formalism, as based on the approach first
.9introduced by Holstein This method has been used for a

variety of problems1  l

The approach presented in this paper derives from the

escape probability formalism. Spectral line transfer is

emphasized. The basic assumption of the theory, therefore,

is the absence of correlation between the frequencies of
-. emitted and absorbed photons in the sequential process.

This is rigorously satisfied when the line broadening is

determined by impact mechanisms as opposed to the Doppler

effect. Rather than attempting to solve the transfer

-- equation frequency-by-frequency over a line-width, an

effective probability is derived for the propagation of any

photon whose origin is a single transition. This approach

allows for the treatment of many lines and accounts for the

phenomenon that photons emitted from line wings have longer

absorption lengths than those emitted near line center. It

also provides for a description of such well-known radiative

transfer effects as channel cooling due to radiative

emission, diffusion of radiation energy, and photo-pumping,

1 . i.e. photoabsorption leading to an enhanced production of

" electrons, ions, and excited atoms/ions. The method is
valid for nonequilibrium conditions and when expected

reduces to equilibrium results.
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The details of the above approach and its relationship

to solving the chemistry rate equations are discussed in

section II. Specifics of the model, in particular, line

profile, geometry, plasma composition, and temperature and

energy equations are presented in section III. Numerical

results for two models with specific initial conditions

given and discussed in section IV. Concluding remarks are

reserved for section V.

3
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1I. GENERAL FORMALISM

A. Population Dynamics

The coupled rate equations which describe the evolution

of the nitrogen plasma include the following collisional and

radiative processes: electron impact excitation and de-

excitation of N and N+, electron impact ionization of N and

N+, three-body recombination of N+ and N++, radiative

recombination of N+ and N++, spontaneous emission,

stimulated emission, and absorption for N and N+. The rate
Nz-l

equation for Nm (r,t), i.e. the population density of the

(z-l) ion (or neutral if z-l) in the electronic state whose

index is m, is

dNZ
- 1

_m -lZ-1 is 1 z-1
(r,t) - Ne Xz -  -N . mldt l<m- N_ l<m-i

+ Ne Z NZ- 1 Yz-1 -NZ-1 E Xz - 1
n>m+l n nm m n>m+l mn

+ e e za -1l z z Z-l
n n nm n nr,nm

n-r I
- Ne Ne Nz -  E C3 + N EZcr ml[" m 1 3,mlm 1rl

- Ne Nz - 1 Z SZz -  + Ne N z-2 S
M mn ~ 1  lmn 1

+ E N mz Az - Nm Z1 A1

n>m+l m  n l<m-l

+ Z NZ14n B [ J
l<m-l 1 Bmm

Z-1 .z-1 * v Xv dv]
- Nz -  Z 4n Bz-1 J , ~ ~

m <m-l l ml

E .. [ dv

n>in+l in jm
b,.+ E Nz-14n B - m V X V dv i

n>m+l n nm
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In Eq. (1) all atom, ion, and electr oopulation

densities are implicit functions of r and t. The rate

coefficients for excitation, de-excitation, ionization,

three-body recombination, radiative recombination, and

spontaneous emission are designated by X, Y, S, m 3 r' and

A, respPctively. Subscripts refer to the states involved in

the particular transition while superscripts identify the

ion stage. For example, X 1
-  is the rate coefficient for

collisional excitation of ions with net charge z-1 to an

electronic state m from state 1. The effects of radiation

transport on individual species are contained in the last

four terms which account for stimulated emission and

photoabsorption. These terms depend on the normalized

frequency profiles for absorption and emission, * and X ,

the appropriate Einstein B-coefficient, the linewidths AV,

and the mean angle-averaged intensity, JV (r,t). The mean

intensity J is obtained by solving the radiative transfer

equation for frequency v; this is discussed in detail later

below.

The radiation terms in Eq. (1) are simplified by

assuming the emission and absorption profiles are identical.

Using the standard relations between the Einstein

coefficients Eq. (1) becomes

dN Z- 1

-m (r,t) - collisional terms + spontaneous emission

dt

2 r z-1 z- 1
+__ 3 [Z c j dv N z-1 Az- g N1  -1
lm-1 2hml ml J m ml [ z-1 NZ-1

2mgl m m

- f j d Nz -1 A z-I n m -1 (2)

n~m+l 2 hv3 6 V V n nm 9 Z-l z-i jnnmm gmm n

Stimulated emission is now treated as a modification to

absorption.
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If, in Eq. (2), a "gross re-absorption factor" is

defined for each transition line as

A -1 c 2  f J *dvi! ~m i 1  1 (3)
ml 2ml 1 z i

then the rate equation becomes

• .. d z - 1

dNl
_m (r,t) - collisional terms + spontaneous emission

dt

+ Z NmZ- (1 - 1A
l<m-i m ml ml

E N z - 1 (1 Az - 1 A Z - 1  (4)
n>m+1 n nm nm

Optically thick and thin results are frequently obtained by

treating the set of (Al as constants with values ranging

between 0 and 1. In this manner the radiative transfer

equation need not be solved and limiting population

densities are obtained
1 2- 1 6

B. Radiative Transfer Equation

The radiative transfer equation in its simplest form is

- " - K I + j (5)

ds

Here, K' is the absorption coefficient (corrected for

stimulated emission) at frequency v, jV the emission

coefficient for the radiation, I the intensity, and s

defines a ray through the medium. The general non steady-

state solution to Eq. (5) is written in integral form as

F - s, K (S'' t' ) ds''"''I (r,t,9,'Y) - ds' j (s',t') e s' (6)

s0
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In Eq. (6) t' t-(s-s')/c, t''- t-(s-s'')/c, and j ds' is

the amount of radiation born at s',t' on ray ds' in a

direction 8,'. Multiplying by the exponential gives the

fraction of radiation that arrives at s,t. The coordinate

system is shown in Fig. 1. In this study continuum

absorption and emission are neglected. The emission

coefficient for a specific transition line vml is

hvml z-1 z-1

iv -, Am * V N m (7)

The absorption coefficient for the same transition is

r z-l N zl
K' 1F g1  m (8)v - - z-i -il8

gm N 1

where

X2  Z- N

K ml gm z- Az- (9)
-8 g-l 1 ml V

The statistical weights for the upper and lower states are

z and gz-gm1

It is the mean intensity J,(r,t) that enters into Eq.

(2) and determines the effect of radiation transport on the

individual population densities. Letting p - Ir - r',

defining the volume element dV = dr' = p2 sin 8 de d1 dp',

and averaging over 9,'Y the mean intensity is

J (r,t) -

rom z-'

hV z-l Nz-l(r',t') K(r'',t'') dp''
ml dr' 2 e f (10)

0 4nP 2
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where t' - t-p'/c and t'' = t-p''/c. Eq. (10) gives the

angle-averaged solution to the radiative transfer equation

for a specific frequency v.

C. Population Dynamics Plus Radiative Transfer

The rate equations may be rewritten in simpler form as

dNZ - 1

-_m (r,t) = collisional terms + spontaneous emission

dt

+ Rz - 1 A - E Rz - 1 A z - 1 (11)

l<m-i ml ml n>m+l nm nm

where the set {R) is defined by comparison with Eq. (2).

Substituting Eq. (10) into the absorption term, noting that

K1' is given by Eq. (8), and interchanging the v and r'

integrations results in

R z - -l

z-l (r,t) = dr' N Z- (r',t') G (r',t';r,t) (12)
ml Mm

Gml is the probabilty that a photon emitted at r',t' is

absorbed in a volume element dr at r,t and is given as

G ml(r',t',r,t)

1 -p I K ?' r ' ,f t r' ' )

4Ir-r1 2  jdv0 K'(,t) e{ r t (13)
4 n. I r r 2m l

The discretized version of Eqs. (11) - (13) forms the basis

for the "escape-probability formalism" discussed previously.

It is useful to compare Gmi to Tml(P';t), i.e. the

probability a photon travels a distance p' without being

absorbed, defined as

(;) d - O d'' K'(r'',t-p''/c)T ml( p';t) d € e j oV(14)

Aml

" ,'/' .',','-''.'.".'.', "-'., -'.','..." ... .''.-'..-',- ". " .. "..."..............."."."......-..-..."-..........



Specifically, if K',(r,t) =K'(r',t') then the following

relation holds,

G l(r''t';r't) " 2 -- T (P';t) . (15)ml ' 4nr, 2 ap ml

Physically, the requirement is that over the mean free path

of an emitted photon the absorption coefficient does not

change much, i.e. the number of absorbers encountered during

transit remains nearly constant. Tml (p';t) can be written

as

F - K'(r,t) p'

Tml(P',t) - d' *, e (16)m ml

Eq. (16) was initially introduced by Holstein 9 and evaluated

for various line profiles.

The problem is now reduced to the following steps: (1)

For the transitions included in the model choose an

appropriate line shape and evaluate Eq. (16) either exactly

or approximately. (2) For the desired geometry obtain the

set (GI from Eq. (15). (3) Use these to evaluate the

absorption terms in Eq. (12). (4) Solve the rate equations.

The procedure must be done self-consistently since K.'

depends on the solution to the rate equations.
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III. MODEL

A. Nitrogen Plasma

Our interest is in studying radiative transfer in a hot

channel, in particular, for electron temperatures of 1.0 -

3.0 eV. In this temperature range the constituents are

primarily atomic or ionic. We have included in the

calculations the lowest 13 levels of N, the lowest 17 levels

of N+ , and 2 representative levels of N++. Details of the

model have been presented elsewhere 1 3 ,14. All bound-bound

radiative transitions allowed by this energy scheme are
included and form the basis for the line radiation discussed

previously. In this manner the dominant uv and visible

spectral lines are transferred.

B. T(p)

The absorption coefficients, defined in Eqs. (8) and

(9), depend on the line shape, V. We have assumed this

line shape is given by a Lorentzian, i.e.

1 a€2 2l" - (17)

' ml (v - Vml) + (nv)

The line width is Av. In the temperature and electron

density regimes of interest, Ne = ( 1016 - 1019 cm-3  ,

Doppler and Stark broadening are the two dominant

mechanisms. The Lorentz profile, Eq. (17), is

characteristic of the Stark broadening, where isolated

spectral lines of atoms in dense plasmas are broadened by
17electron impact However, in our computations we consider

the effects of both Doppler and Stark broadening whose

actual line shape should be a Voight profile. In the

computations described below, we calculate the line

broadening of both as a function of frequency, electron

temperature, and electron density and choose Av to be the

greater of the two. The Stark effect generally dominates.

Additional details have been presented elsewhere
18
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For the Lorentzian line shape Holstein 9 obtained the

asymptotic functional form of Eq. (16) as

1
Tml(P) = 1/2 Kmlp > > 1 (18)

( ml )

Kml is the absorption coefficient at line center. The exact

integration of T(p) is shown in Fig. 2 along with two

empirical approximations. For x - KmlP the dotted line

corresponds to

T ( e X + [ 1 - e 8x 3 / 2  (19)

MI. (TEX) 1/ 2

while the dashed line corresponds to

Tml(P) - 1 - x/3 x <1
- (2/3) x x > 1 (20)

Eq. (20) is used in this study.

C. Geometry and Gml

The results discussed in section IV are for a geometry

where radiation is assumed to flow in only two directions,

but along one dimension, i.e. r = r. The plasma is

contained within a finite region, -L < r < L, so in addition

to transfer, energy is radiated beyond the boundary. For

this geometry the 4ap' 2 factor in Eq. (15) is excluded.

When evaluating Eq. (12) care must be taken to properly

consider three possible cases which depend on the absorption

length at line center, Kml, and the distance to the boundary

edge, L. The radiation may be thick in both directions,

L-r > 1/Km and L+r > 1/Kml. It may be thin in both

directions, L-r < i/Kml and L+r < 1/K ml, or thick in one

direction and thin in the other, L+x > 1/Kml and

11



L-x > 1/Kml* Symmetry considerations enable us to reduce

computations to the half space r - (0,L]. A typical

absorption term for the case where the line is thick in each

direction is

-1 Kml /Kml Z-Rml (r,t) - dp m (p,t)
6 0

1 N z- 1(Pt)
+ K 1/2 dp N M  p t)

6 ml l/K ml

+ contribution from the left (21)

Note that Kml - Kml (r,t) and pm = L-r. Similiar results are

obtained for the other cases.

D. Temperature Equation

As radiation is transferred from one local region

within the plasma to another, cooling or heating may take

place. As radiation escapes the plasma entirely, a net

cooling occurs. To model this phenomenon the relevant

temperatures, generally, electron and gas, must be

monitored. For hot channels created by intense electron

* beams the plasma electron temperature and the gas kinetic

temperature frequently reach an identical value, afterwhich

the subsequent evolution is well described by a single

temperature. In the present model it is assumed that for a

given set of initial conditions the plasma is characterized

by a single temperature, i.e. T(r,t) - Te(r,t) - Tg(r,t).

The time evolution of T(r,t) is obtained from the energy

- conservation equation,

I¢.

32- T(r,t) Ne(r,t) + Ng(r,t) = E (r,O) + E (r,O) +

E c(rO) - Erad(r,t) - E (rt) . (22)

12
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Here, E p(r,O), E (r,O), and Ec (r,O) are the plasma, gas

kinetic, and chemical energies at t - 0 for point r,

respectively. Ne(r,t) and Ng(r,t) are the electron and

total gas particle densities at time t and point r. Ec (r,t)

is the chemical energy at time t and Erad(r,t) is the amount

of energy radiated from (or to if Erad < 0) point r at time

t. Erad(r,t) is obtained by solving the following equation,

d Erad(r,t) = [ m1 (r,t) - Nml1 (rt) A Al 1 hv

+ continuum radiation . (23)

Continuum radiation results from free-free and free-bound

(radiative recombination) transitions. In this model

radiation from free-free transitions is neglected, uv

radiation from all 2-body recombination events is assumed to

be optically thick while visible radiation from these events

is optically thin. Eqs. (11), (22), and (23) are the

essence of the model. The detailed radiative transfer is

contained in Eqs. (11) and (23). Eq.(22) insures energy

conservation.

13
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IV. NUMERICAL RESULTS

Numerical integration of Eqs. (11) and (23) is

accomplished by using CHEMEQ, a routine designed to solve
19stiff ordinary differential equations . Symmetry enables

us to carry out the integration over half the grid, i.e.

[0,L]. In this section the following initial conditions are

assumed: The size of the region is 1 cm, i.e. L - .5 cm.
Initial population densities are distributed uniformly

across the grid [0,L]. The values are N(1)+N(2)+N(3) -

3.715 x 10 cm, Ne - N+ (l)+N+(2)+N+(3) - 5.0 x 1016 cm -3 ,
4 -3and all others are set to 0.0 ( actually, 1 x 10 cm-).

The specific ground N and N+ states are populated according

to statistical weights. Two initial temperature profiles

are assumed. The first is a uniform distribution; Te - 3.0

eV for 0.0 < r < .5 cm. The second is non-uniform; Te - 3.0

eV for 0.0 < r <..2 cm and decreases linearly to a value of

1.5 eV at r - .5 cm. Setting the initial population

densities and temperatures is equivalent to setting the

initial plasma electron, gas kinetic, and chemical energy

distributions.

Eqs. (11) and (23) are integrated until an equilibrium

is nearly established. During the integration the radiation

terms, for example, Eq. (21), are updated using the

solutions to the rate equations. Initially this is done

every 10-10 sec and relaxed to 10- 7 sec at longer times.

Figs. 3a - 10a correspond to the uniform temperature

distribution results, while Figs. 3b - 10b are for the non-

uniform case.

4.

A. Rate Equation Results

Figs. 3 and 4 show radiative transfer and cooling as

evidenced by the evolution of T(r,t) up to t - 10- 5 sec for

r - 0.0, 0.25, and 0.5 cm. For both cases the species

rapidly approach a local equilibrium while the energy in the

system readjusts. This occurs because the initial

conditions correspond to a nonequilibrium situation. The

initial relaxation takes approximately 10 ns during which

time radiative transfer has not begun to play a significant

role. For the uniform case cooling is nearly constant

14



across the grid for 10 psec. The outer boundary does show a

lower temperature than the interior, particularly for 5 - 8

usec. This is due to more energy loss. The non-uniform case

shows the center cooling more rapidly than the boundary

region. Even at 10 usec a temperature gradient remains.

Fig. 5 shows the time evolution of the electron density

for both cases. While the electron density was initially

constant across the grid for the uniform case the extra

energy lost from the boundary lead to a decrease in

temperature, mentioned above, which in turn lead to a lower

Ne at the edge. By contrast Ne at the boundary for the non-

uniform case decreases only slightly from its maximum while

the interior values decrease more rapidly, reflecting the

behavior of T(r,t).

B. Energy Loss Results

The time histories of the energy profiles for r - 0.0

and 0.5 cm are presented in Figs. 6 and 7. In all cases the

amount of chemical energy exceeds the gas kinetic energy

which is greater than the plasma electron energy. Figs. 6a

and 7a show the extent to which more energy is radiated from

the boundary than from the center. Since there was less

energy at the grid edge than at the center for the non-

uniform case, the opposite situation is seen in Figs. 6b and

7b. In terms of energetics these figures show that the time

scale for radiative transfer to contribute significant

energy loss is on the order of microseconds. The radiative

energy loss values, Erad(r,t), for r - 0.0, 0.25, and 0.5 cm

are show in Fig. 8. By 10 psec these terms have nearly

saturated as have the energy values.

Throughout the integration the photon energy that is

created, re-absorbed, and radiated from the system is

monitored. One quantity of interest is the radiated energy

flux for each line, Qml' given in units of eV-cm-2 -sec -I.

The flux radiating from one side is calculated according to

R (r,t
z-1 dr NZ-l(r t) Az_1 h 1  - (24)Qml drm Ml ml N Z-1 (rt)

0 m
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Table I shows the flux values for the major contributing

lines as a function of time. The surge in emitted radiation

at 1 ns corresponds to the rapid population of exited N and

N + states during the initial energy redistribution period.

Subsequent time behavior shows a slowing down of the cooling

rate as radiation energy is lost from the system.

Generally, the energy loss is dominated by emissions from

the nitrogen uv lines. The N+ uv lines and N optical lines

also contribute to the energy loss, though to a lesser

degree; their contribution is not shown. The effect of the

N~ visible lines is negligible. This is consistent with the

corresponding temperature values.

TABLE 1

- -Radiated Energy Flux (ev-cm -sec

Time Transition Line (A) Total

1493.3 1134.6 1199.9 1743.6 1243.3

171 7 71 18
100 ps 7 .86xl0 l.0x101  2.2x101  3 .9x101  2.3x101  1.9X10

1 ns 8.0X10 23  6.3x10 2 3  5.7xl0 23 4.6x10 2 3  l.7x10 23 2.8x10 2 4

10 ns, 4.4x10 2 3.6x10 2 3  3.4x10 2 3  2.6x10 2 3  2.1x10 2 3  2.0X10 2 4

100 ns 3.9x10 23  3.6xl0 2 3  2.9xI10 2 3  2.3xl0 23 2.0x10 2 3  l.9Xl0 2 4

1 s .4123  29023 25023 200 2 3  *7423 l61 2 4

10 us 9 .2xl10 2 2  6 .7x10 2 2  6 .4x14Q22 6.2xl4022 3. 5x,4Q22 3.9xlO 23

5*'.16



C. Line Results

It is convenient to define a line-integrated mean
z-1

intensity, Jml , as

z-l -

Jml (r,t) - f JS Z- dv (25)m vml

In terms of the appropriate absorption term and population

densities it follows that

z-l 2hv31  R m1  (r,t) [g 1Z N1 (r,t) -1
3ml (r,t) - c2 NZ~l z-l NZl 1 . (26)m (r,t) [l m J

Figs. 9 - 10 show the line integrated mean intensities
o o

for 2 transition lines (1199.9 A, and 8211.8 A) at different

times (10 ns, 100 ns, lps, and 10s). The distribution of

radiation for these lines is, therefore, monitored as a

function of time and space. The results are consistent with

the associated temperature profiles. As expected the line

intensities for the uniform case show much less variation

over the grid than the non-uniform case, particularly at

early times. As radiation transfer occurs energy diffuses

outward. Fig. 9b, in particular, shows the extent to which

the line intensity in the central region decreases compared

to the outer region as a function of time.

D. Discussion

Diffusion and cooling are two aspects of the radiative

transfer process. When energy is distributed uniformly

across a confined region it is seen that the outer boundary

cools more rapidly than the interior, thus establishing a

temperature (or energy) gradient which drives subsequent

transfer and net cooling. Radiative transfer initiated by

the existence of a temperature gradient behaves differently.

17
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In this case energy diffuses outward from the outset and the

hotter inner region cools more rapidly than the cooler outer

region. Using the model descibed previously the above

numerical results for the given set of initial conditions

demonstrate that the radiative transfer time is on the order

of microseconds. This can be understood within the context

of the following simple picture:

- [. If radiative transfer is considered to be a sequence of

photon emissions and absorptions it should be possible to

estimate bounds on the time required for radiation to
4...' diffuse from the center of a region to a boundary. For a

specific transition line, m*l, the diffusion time may be

estimated as

t L 1 (27)m ml A ml

- i/Aml (28)

where L is the distance to the boundary (.5 cm in this

study) and Xml is the "mean free path". This definition

corresponds to the following picture: After photon travels

a distance Xml it is absorbed and re-emitted in I/A

(seconds). It continues on in this manner until reaching

the boundary. In Eq. (28) the effective emission*

coefficient is defined as Aml - Aml/tml where Tml is the

optical depth.
Within the context of our radiative transfer model, the

definition of Xml is not obvious. The simplest choice is to

define Xml as the inverse of the absorption coefficient at

line center, xml I 11Kml* This puts the emphasis for

radiative transfer on photons that are emitted directly at

the center of the frequency profile. The probability that a

photon travels this far without being absorbed, as given by

Eq. (20), is 0.67. In the simple diffusion picture it is

assumed that the photon is then absorbed. This gives an

upper bound on the diffusion time scale. For comparison,

-ml is defined as the distance at which ml(P) - 0.05. In

this manner absorption is guaranteed after the photon has

18



travelled x ml = 17 7 .8/K ml* The later definition places more

emphasis for radiative transfer on photons emitted from the

line wings since these are the photons that contribute to

the asymptotic behavior of T ml (p). This gives a lower bound

for the onset of radiative transfer.

Table 2 shows a comparison of these diffusion times for

the top 12 lines contributing to radiation, as determined by

Q1at t - 10 ns. The diffusion time using x ml / ml i
ml1 wi

denoted as tm and twln is the estimate for the larger

value of x1ml These estimates are in fact consistent with

the results presented in Figs. 3 - 10.

TABLE 2

Diffusion Time Estimates (sec)

r-0 -l1 1 wing
Wavelength (A) Kl1M (cm ) tml t ml

1493.3 7.3xl10 3  6.6xl10 6  3.7xl10 8

1134.6 4.6x10 4  4.3xlO- 2.4xl10 7

1199.9 2.3xl104 4.9x10 5  2.8x10 7

1743.6 2.2xl10 3  5.5x10-6  3.1x10-8

1243.3 7.7xl10 3  8.4xl10 6  4.7xl10 8

1085.1 7.5x103  6.6x106  3.7x108

1411.9 4.9x102  4.9x106  2.7x108

916.3 9.3xl10 3  2.6xl10 6  1.5x10-8

8617.5 1.6x10 1  2.6xl10 7  1.5x10-9

7452.2 1.3xl10I 2.1x10-7  1.2xl10 9

9395.3 2.3xI10 1  5.7x10-7  3.2xl10 9

19
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V. CONCLUDING REMARKS

A radiative tranport model has been developed which

emphasizes the transfer of line radiation in a hot nitrogen

plasma. The radiative transfer equations are solved self-

consistently with the corresponding time-dependent chemistry

equations. This approach allows for the transfer of many

-* lines and does not require a state of LTE to exist.

Numerical results for two simple test cases show the utility

of the model in describing radiative transfer effects. A

following report will present the results of using this

model to account for radiation transport in the realistic

description of a plasma generated by an intense electron

beam.
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E)7,.

p1=S-S' =r-r'I

Fig. 1 Coordinate system.
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