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FOREWORD 

A multiple zone computational method applicable to finned bodies in 
supersonic flight 1s described. At each cross-section, the computational 
domain is broken into a number of zones, each of which can be described usiny 
a simple mapping. The zones are chosen to insure that the bow shock, fm and 
body surfaces coincide with zone edges. At zone Interfaces, the mesh may be 
discontinuous in a direction normal to the edge. Along zone edges.surfaces 
are allowed to form or disappear during the computation. The surface edges 
which form at points where surfaces appear or disappear are treated using a 
local analysis. The resulting algorithm is applicable to a wide range of 
configurations including interior as well as exterior supersonic flow fields. 
Calculations are compared to experiment for several different missile shapes. 
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1.     INTRODUCTION 

A practical  means of predicting the  inviscid  flow field about a 
supersonic missile  is  to numerically  solve  the  steady,  three dimensional   Euler 
equations.    As   is shown  in Figure 1,  such an approach  is started at  a cross- 
sectional   plane  near the missile nose  tip,  using a  known  flow field  which can 
be obtained either from a conical   or blunt body  solution.    The hyperbolic 
nature of  Euler equations  in  supersonic  flow allows  this  flow field to be 
marched in the axial  direction as  long as the flow  remains  supersonic 
everywhere. 

A major problem encountered in steady,  supersonic calculations  is the 
treatment  of  complex  cross-sectional   geometries  which  arise  in  conjunction 
with configurations  featuring  fins,  inlets  and tails.    Most  inviscid 
treatments^"'   for arbitrary  bodies  employ a  wrap-around transformation which 
maps both the body  and fin surfaces onto the edge of the computational   regions 
as  is  shown  in  Figure 2.    Mapping methods   have been developed  for  relatively 
arbitrary configurations,^   including bodies with wings.    However,   for missiles 
with multiple wings  and  fins which  are  thin  and  have  sharp  edges,  this type  of 
approach has  several   drawbacks.    Solutions may be sensitive to small   changes 
in  the transformation  and  it  is  often difficult to control   mesh  spacing 
throughout the flow field.    Also,  a significant  portion of the computation may 
be  associated  with  constructing the  computational   mesh. 

An  alternative approach for treating complex missile and aircraft 
configurations  is a multiple  zone  strategy.    Here,  the  computational   domain  in 
each cross-section is divided  into several   zones,  each of which can be treated 
using  a  simple mapping.    A  sample  zone  structure  for a  body-wing-tail 
configuration  is shown  in Figure 3.    This avoids many of the mapping 
complexities  associated with wrap-around meshes;   however,   it  introduces 
additional   program complexity associated with interconnecting adjacent 
zones.     Despite  these difficulties,  the described multiple  zone method   is 
capable of treating a wider variety of configurations than a wrap-around mesh 
method.    Furthermore,  use  of a  separate mesh   in  each  zone allows   selected 
portions  of the  flow  field to be  resolved  in much  greater detail. 

Multiple  zone  methods  have  been  used  in   applications  of  the  unsteady 
Euler equations to a  number of complex configurations   including  inlets  with 
blunt  lips,° airfoils with  flaps,^  and  body-wing  combinations.^'^    In  these 
studies,  two  basic multiple zone structures  have  been  used;   overlapping  zones, 
and  abutting  zone,  which only  interface along a  common  boundary.    Regardless 
of the type of zone interface employed,   information  is transmitted between 
zones  by  interpolation.     If  shocks  are  to  be captured,  this  interpolation 
procedure  should preserve the global   conservation  property of the scheme.^■'- 
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This  paper  focuses  on the application  of a multiple  zone  approach to 
missiles  and aircraft with thin,   sharp fins or wings.     Such  shapes  are 
conveniently treated  using  abutting  zones with  portions  of  the  boundaries 
taken to coincide with segments of the body,  fin or tail   surface,  and the bow 
shock.     Since the cross-sectional   geometry  and   bow  shock  location   vary along 
the missile axis, the transformation  in each zone must be recomputed at every 
step  in the  calculation.    To  promote efficiency,   simple analytic mappings  are 
used.    The complexity of the interfacing algorithm  is  reduced by  requiring 
that  points  along  adjacent  zone  boundaries  be  coincident.    This  allows a 
conservative edge point treatment to be applied which does not  require 
interpolation.    The  mesh may  be discontinuous  normal   to  the  zone  edge, 
however,   this may reduce the local   solution accuracy.    Each zone is  integrated 
using  the  explicit  MacCormack  scheme with wall   and  shock  points  being  treated 
by  characteristic analysis.    Special   computational  methods  are used at 
corners,   body-fin junctures,   surface edges  and  surface  slope discontinuities. 

A Multi-zone,   Supersonic Euler code  (MUSE)   has  been developed which 
implements the multiple  zone procedure.    The  computational   approach  is  similar 
to that of the SWINT code reported on  in References  12-14.    However,   Euler 
equations  dre solved  in cartesian  rather than  cylindrical   coordinates.    This 
simplifies the analysis of points  lying on the zone edges  and  results  in  a 
system of  equations  which  is  in  strong  conservation   form.     In  principal,   this 
method can be applied to any  internal   or external   supersonic flow whose cross- 
section  can  be described by a  number of quadrilateral   zones.    The MUSE  code 
can be applied to more general   configurations than the  SWINT code and can 
account  for  fin thickness.    However,  the MUSE  code  also   requires  3U% to 60% 
longer to  run  per mesh point,  per time step and uses a similar increase in 
storage  for  fine mesh  runs.    On configurations  which  can  be  handled  by  both 
SWINT and MUSE,   similar results are obtained. 

2.     MULTIPLE   ZONE  METHODOLOGY 

The multiple zone procedure is  implemented by  dividing the shock  layer 
into  non-overlapping,  quadrilateral   zones.    Zone  edges   are  taken to  coincide 
with walls and the bow shock,  if one exists.    Here,  a wall   refers  to any 
surface  at which a tangent  flow boundary  condition   is  applied,  such  as body, 
fin or tail   surfaces.    Points  interior to the shock layer may also  lie on  zone 
edges.    Juncture points,  which  are the  intersection  of  two wall   surfaces,  must 
occur at zone corners.    Points lying on  zone edges may change their type at 
different  axial   stations  from  interior,  to wall,   and  vice  versa.    A similar 
transition  between  interior,  wall   and juncture points  can  also occur  at  a  zone 
corner.    This  allows  the  simulation  of  inlet   lips  and  wing  leading  or trailing 
edges.     In the present procedure,   the intent  is  to fit the bow shock to 
provide a  boundary  for the  computational   domain  and  to  let  the conservative 
properties  of the different scheme capture  imbedded  shocks.     Figure 3 
illustrates  an  example of a  four zone model   at  a  cross-section  featuring  a 
body,  wi ng  and tai1. 

All   interior points are governed by the  steady  Euler equations,  which are 
cast   in  the  cartesian  coordinates  (x,y,z)   defined  in  Figure  1.     In  each  zone, 
these equations are transformed to computational   space  {g ,T) ,t,)   using the 
procedure  outlined  below.    The transformed  equations  are  in  conservation   form 
and are written as: 



M + 1^1 + i^ 
8?   9C   3n 

where 
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U = (U/J); F = (C^U + ?/ + C^G)/J; 

G = (n^U + n/ + n^G)/J; J = ^^n^ - C^n^ (1) 

pw 2 
p+pw 
puw 

-pu 

; F = 
puw 
p+pu 

pvw pvu 

rpv " 
pvw 
pvu 
_p+pv 

2 

and p, p, u, V, w are the pressure, density and cartesian velocity components, 
respectively. These equations are closed using the constant total entropy 
constraint and the perfect gas equation of state: 

PY  ^ 1 ^ 2^ 2^ 2^ 
-t^,-- + 75- (u +v +w j H (constant, 

0 ^ 
Poo^   ^ 1 , 2 ^ 2 ^ 2> 

7 T-T— + 9  u  + V  + w 
(Y-1)P ■ 2 

A different set of computational coordinates is used in each zone 

(2) 

a. Zone Descnpfion 

In the crossflow pi 
quadrilaterals as shown 
(s,T,v) coordinates, whi 
(x,y,z) coordinates. Cy 
body configurations, whi 
cases. The numbering sy 
are indicated in Figure 
functions b{T,v) and C(T 
defined by "flSiv) and a( 
cylindrical coordinates, 
on edge 3. 

anes z = constant, zones are generalized 
in Figure 4. Each zone is described with respect to 
ch either represent cylindrical {r,^,z)   or  cartesian 
lindrical coordinates facilitate treatment of wing- 
le cartesian coordinates can be applied to winy alone 
stem used to designate the edges and corners of a zone 
4. The locations of edges 1 and 3 are defined by the 
,v), while the coordinates of edges 2 and 4 are 
s.v), respectively. When (S,T,V) represent 
the bow shock may be fitted, but it must be located 

The mesh in each zone is defined by the transformation 
T^-T2, where J^:     (5,n,c) +  (S,T,V) and J„   (S,T,V) *  (x,y,z). T2 is given by: 

X = s cos (T) 

y = s sin (T) 

z = V 

X = s 
y = T 
z = V 

cylindrical coordinates 

cartesian coordinates 

(3) 

while J-^  is defined as. 

C = b(T',?) + [C(T",?) 
T = a(s',?) + [f(s",?) 
V = C 

- b(T',?)]f(?) 
- a(s' 0]g(n) (4) 
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where; 

T'   =T,(C)  + (T.(?) - T,(?))g(n) 
T"  ^Ak)  + (TJ(?) - T^(?))g(n) 
s'   = s^(c)  + (s^(c) -  s^(c))f(?) 
s"  = sj(?) + (s^(c) -  sj(c))f{?) s 

and  (s-,T-),   i  = 1,2,3,4  are the coordinates of the corners.     Here f and  g are 
mesh clustering  functions with f(0)   = g(0)   = 0 and f(l)   = g(l)   = 1.    The 
computational   domain  for each  zone  is   bounded  by 0 <  j; <   1,  0 < ri  <   1,  and 

?  >  0. 

The metric quantities E,,F,   ,E,,T],T],T],  appearing  in Equation  (1) 
must  be evaluated  at  every  point^in the calctilation.    In  addition,   at  wall 
points  on edges  1  or 3,  the quantities ?„   , 5     , ^-,  ,   ai"e  required. 
Similarly, n     , ri     , ri     , must be calculated a^ waT^   points  on  edges 2  and 
4.     Analytic^xpr«sion^  for these terms  are  provided  in Appendix A. 

Alternatively, ^   , c   , E,   , T]   , n   , n     can  be  evaluated  numerically.    This 
is  accomplished by determining T   , x   , t,   , Zr  using central  differences and 
then  computing  the metric  quantifies  froffi: 

where:       j   = s^x     -  s T 

Here X     and  s    are evaluated analytically, 

b.     Zone Linking , 

Information must be passed between zones connected by  abutting edges. 
Two  edges   are  abutting  if they  possess  segments  which  are  coincident   in 
cartesian  space  and  not  separated by  a zero thickness  surface.     To  simplify 
the  interfacing  scheme,   the zones  are defined  to  ensure  that  abutting  edges 
satisfy the following  rules: 

1. The two  sets of points on each of the abutting edge segments must be 
coincident  in  cartesian  space. 

2. Odd numbered edges must abut to odd numbered edges and even to even. 
Also,  edges  with  the  same  number  cannot  abut. 

3. A zone corner which  is on  an abutting edge segment can only be 
coincident  in  cartesian  space  with  other  zone  corners. 

Rule one  requires that meshes  in zones which abut,  produce coincident grid 
points  in  cartesian  space  along  abutting  edge  segments.    Restrictions  are  not 
imposed on the mesh spacing normal   to abutting edges  and abrupt changes  in 
mesh  size  can  occur. 
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The computational algorithm treats each zone separately, except along 
abutting edges. Here,'property and metric information from the abutting zones 
must be passed. Generation of the appropriate metrics is accomplished by 
viewing the mesh in the abutting zones as a single, extended computational 
space. For example, consider the case of two abutting zones, I and II, with 
computational spaces of (5 ' ,n ' ,? ') and (C",TI",C") respectively. Apply the 
discontinuous transformation: 

£,   = {c ' in zone I; 'a? " + c„ in zone II} 

n = {n ' in zone I; '&n " + c, in zone II} 

I,   = {?' in zone I; ^" in zone II} 

where a =A5'/AC",'& =ATi'/An". The constants CQ and c-^  can be chosen so that 
the two zones correspond in (c,ri,c) to a square and a rectangle joined along 
the abutting edge. Rule 1 implies that the combined mesh is continuous in 
cartesian space along the abutting edge and has a uniform spacing A? ,An in 
computational spaces (c ,n ,? ). Although analytic values of x and v are 
continuous along the abutting edge, those of T ,T ,CJ-.? may^be discontinuous. 
These discontinuities are removed in the present ^aper By defining single 
values for these derivatives using standard centered differences in 5 ,n 
variables. Then along the abutting edges, 

where the overbar denotes values from centered differences. The required metric 
quantities, ^   ,  5 , ? , T\   ,  n , n,, are then calculated using Equation (3). 
As will be shown in the next -sectfon, the above modifications to the metrics 
at abutting edges permits the application of the MacCormack scheme with only 
slight modification.' Interpolation is not required and the scheme satisfies a 
global conservation property. 

The use of central differences to calculate metrics along abutting edges 
is consistent with a second order accurate scheme when the mesh variation 
across the abutting edge is smooth in cartesian space. In other cases, a 
degeneration in accuracy can be expected. In Figure 5, results obtained for 
flow over a cone is shown using a two zone model which features a 5:1 jump in 
mesh spacing across the abutting edge. The abutting zone edges are located in 
the region of smooth flow and good agreement is obtained with a uniform mesh 
calculation. When the abutting edge is in a region of flow featuring a shock, 
the shock trajectory is accurately captured in both zones, but additional 
noise is introduced on the downstream side of the shock. Figure 6 illustrates 
such a case using a biconic configuration. 

3. NUMERICAL PROCEDURE 

The solution in each zone is advanced in its own computational space. A 
common marching step size is employed in all zones, which is determined by 
applying the CFL condition to all points in the calculation. 
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a. Interior Points 

Interior points are advanced using the explicit MacCormack scheme applied 
to Equation (1). This is a predictor-corrector scheme which can be written as 
follows: 

^i,j " ^i,J    ■  ^""i + k.j " ^+k-l,j) A^ "  ^^i,j+£ " ^i,j+£-l^ A^ 

(7) 

where:       k = 1 forwards-backwards differencing  in the E, direction 
0 backwards-forwards differencing   in the 5 direction 

£  =  1 forwards-backwards differencing   in  the n direction 
0 backwards-forwards differencing   in  the n direction 

Here  the bar  superscript  indicates  fluxes  evaluated  using  predictor values. 
The same varient of this scheme  (i.e.,  forwards-backwards or backwards- 
forwards)   is  applied  to each  zone. 

The step size A^   is chosen  using the CFL  condition,  which  requires  that 
the  following condition be satisfied at every point: 

A^   <    if-^^hr,       , ^ (8) 

where: 

^^  = 5| |wA-a2?J  + a V(A - w?^)^ +  (w^ -  a^)[E^^ + ^^^] 

M^  =   |wB -  a^nj  + ay(B - wn^)^ +  (w^  -  a^)   [n/ + n^^J 

v^=   |wB -   a^n^ +   (-1)-^6(WA -  a^c   ) | 

+ay[B-v*i^+(-l)J6(A-w?^)]2+(w2-a^)[(n^+(-l)J6?^)^(ny+(-l)^6?^)2] 

6   =  An/AC 

j = MOD^kH ,2) 
A = VC   q 
B = Vn   q 
q = (u,v,w) 

At  the completion of every  step,   it  is  necessary  to decode the 
conservation  quantities  to determine  p,p,u,v,w.    This   is  accomplished  as 
follows: 
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"F^r: 

P 

P 

1   + 

(U^  - wU^)J 

U^J/w 

y( (.2-1: [2H 

(9) 

^1 

^2 

2 
U3 

^2 

2 U4 

U2 

At inte 
be modified 
accoinpl ished 
as was done 
the edges of 
continuous d 
neighborhood 
applied to E 
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efi ned as follows: 

lAC 
An 
U' 
G' 
F' 

1 n 

in 
in 
in 
i n 

zone 
zone 
zone 
zone 
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I, 
I, 
I, 
I, 
I, 

aA?" in zone II 
aAn" in zone 11 
U'Vab in zone 11} 
G"/a in zone iT 
F"/b in zone 11^ 

10) 

Here ' and " denote quantities evaluated in zone I and zone II computational 
spaces respectively. An analogous procedure is used to advance an edge point 
in zone II. The above methodology for edge points ensures that the decoded 
flow variables at abutting points in cartesian space are identical at the end 
of both the predictor and corrector steps. Interior points lying at zone 
corners are treated in an analagous fashion. Here the extended space spans 
the four zones adjacent to the corner. 

b. Wall Points 

The governing equations are cast in characteristic form and differenced 
in the manner proposed by Kentzer.^^ One of these characteristic equations is 
inadmissable since it carries information from outside the computational 
domain, and it is replaced by the tangent flow boundary conditions. The 
remaining set of equations are written in terms of (a,3,Y) coordinates which 
feature the surface located along an a = constant surface. The appropriate 
transformation T3:  (a ,3 ,Y ) ^ (c ,n ,?) as a function of edge number is: 

:ii; 

edge 1 a = ? B = n Y = ? 
edge 2 a = -n 3 = ? Y = ? 
edge 3 a - -? 8 = -n Y = C 
edge 4 a = n 6 = -? Y = ? 
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At surface points the quantities are P = £n(p), V 
(entropy) are advanced using the relations: 

8Jin(p) _ar      X    + A        hi 

a V - a u and s 

(12) 

where 

B = 6 w + B u + 6 V 
z    A    y 

y7^ ^2 + a/  + ay2)^2 _ (e.^2 ^ ^^2)^2 

AQ = (w^a^ + ag)/(w - a ) 

^1 " ^^^"z ^  ^^)/(w^ " ^^) 

^1 = pw [w ^ 

9a 9a 

^'^ '^w^ 

Form 1 

«  r  9w ^   9u ,   9v -, 
«2 ^ P^h ^"z 9-ct ^ "x 9^ ^ "y 9a ^ 

«3= (V0"%^"^^)9a 
9a     9a^ 

^4 = -^ 9y " ^ 9F 

u    1 r T 9P   D/   3lJ     3V^ -| 
^ = pw ^ J 93  P^^^y 3"3 " "'x 9-3^ J 

^2  ^0 93 
M +, I s^ 1^ + s. i:: + s, 4^} 

'0    2 
a 

P t s^ Ig ^ ^2 TB ^3 TB 

BAr,-aB -aB 
z 0   XX   y y 

^1 = ^^h - '^x^ 

$2 =  WB^A^ - a^E 

(13a) 

S3 = wB^A^ - BAQ 
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Form  2 1 ^h 9 Qo 8 9/1 
ex     —- - + a    —      }   +   p 16 

9a  > 
y 36 

9a 

X 9f 

^     t^3   -n   P%f  (^z/J)   ^P%f  (^/J)^P^9-3   (%/J 

;i3b) 

where 

P {   0, 

J {    (2 

9-3 (^/J: 

^1 2^      „ — q   jWA 

3f(3,/J),   3-^(3/0)}    J 

2 
w k, uwk. vwk A, 

e   = {    l,w,u,v  } 9^ 
9h = ^^-^~ (perfect yas) 

As   indicated  above,   two  different  forms  are available for evaluating  h-^  and 
ho.     Both  forms  are  algebraically  equivalent;   however,   form 1  differences 
p,u,v,w in the a  direction while form 2 differences  conservative groupings  of 
these quantities.    Fonii 1  is  found to be more robust  in expansion  regions  and 
form 2  produces  superior  results  near shocks. 

The derivatives which appear  in  Equations   (12)   and  (13)   are evaluated 
using  the  MacCormack method.     In the a direction,   first order  accuracy can be 
obtained  using  one-sided  differencing  in  both  the  predictor and   corrector 
step: 

predictor:     f ;f.. 
i+l,j 

f.    .)/^a 

corrector:     f    =   (f-^^.    •  -  f^   .)/Aa 
-l,j T,J 

Here the overbar indicates predicted values.     If  second order accuracy is 
required,  the  corrector  step  is  modified  as  follows: 

f„  = (fHl,j-"fij)/'»*(fi,j-2^.1,j*'i*2,j'/»° (14) 

At the end of each computational step, it is necessary to decode the 
advanced quantities to determine p,p,u,v,w, consistent with the total enthalpy 
constraint. Equation (2), and tangent flow boundary condition. The required 
relations are given by: 

P = exp(P) 

p = {exp[P-s(Y-l)]} 1/Y 

'2(H, - YP/[(T-l)p])(a/ + «y^)-V^ 

La   + a   + a  J 
X    y    z -' 

(«/ 
2    2 

a..a^w)/(a^  + a  ) 
X z 

(15) 
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+ a 
y 

At edge points lying on an abutting edge, the numerical scheme must be 
modified to allow access to the information in the adjacent zone. This is 
accomplished using the same extended computational space method applied at 
Interior points lying on abutting edges. 

c. Juncture Points 

At a juncture point two surfaces Intersect, 
junctures are considered; the former has an Includ 
while the latter has an Included angle greater tha 
strategy for treating corner points is to define a 
(C,ri,?), the inverse of which transforms the come 
characteristic relations developed for surface poi 
the corner. In order for the transformation to be 
it is necessary to envision the corner as slightly 
scale. Since the transformation needed only be ev 
points, the actual corner geometry need not be pro 
orientation of the a = 0 surface at the corner its 
it is required that the direction Va bisect the co 
plane. 

Both internal and external 
ed angle of less than 180° 
n 180°. The general 
mapping:  T3: {a,Q,y)   ^ 

r surface to a = 0. The 
nts can then be applied to 
non-sinyular at the corner, 
rounded on a sub-grid 

aluated at discrete grid 
vided and only the 
elf need be specified. Here 
rner angle in the crossflow 

To demonstrate construction of To, consider-the corner 1 coordinate 3 
system which is illustrated in Figure 7. 
point a,  3, y,   are described by: 

In the neighborhood of the corner 

= ± [ 
C + (1- n)b 
Anb 

signs apply to 

] AC Y :i6) 

Here the + 
value of b is determined by 
(x,y,z) space. Noting that 
space is given by: 

Vn 

interior and exterior corners respectively. The 
requiring that Va bisect the corner angle in 
a vector bisecting the corner angle in (x,y,z) 

17' 

and that 

where: 

i'Va = (Cf^x "*" %^x^' ^*'^°' "" ^°'?S ^ %\^ 

a = l/(bAn + A5) 

a.    =  -b/{bAn + AC) , 
Tl 

leads to: 

^x - ^\  ?x l^^l - \   \'^\ 
or b = V? 

vn (18) 

Evaluating at corner 1 yields 

10 
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a^   =  ni/(A?   +  bAn)   , 3.  =  -n/A? 

a    =  nb/(AC  +  bAn)   , 6    = m/An 
(19) 

where:      m =  n  =  1 

In  general  iTi,n  take on the values  of: 

!+l     corners  1  and 4 ("'"■'■     corners  3  and  4 
n =   I 

-1     corners 2   and  3 V     -1       corners  1   and  2 

To  apply the MacCormack  scheme,   it  is  also necessary to determine T3 at  points 
adjacent  to the corner  (e.g.,   A,B in  Figure 7).    Here a  and 6   are  assumed 
parallel   to ^   or n   and  T3  is   easily  determined.    For  example,   at  corner 1  the 
metrics   are: 

A:     a      =  ±   1/A5 ,  B      =  l/Ar, ,  a     =  a     =  (3^   =  B      =  0 

3: a^ = + 1/An , B^ = 1/A? , a^ = a^ = B^ = 3  = 0, 

where the top sign applies to interior corners. 

;2o) 

In applying the characteristic relations to corner points, it is possible 
to choose from forms 1 or 2, and first or second order differencing. Also, 
corner points can be modeled as sharp or rounded. At a sharp corner, the 
velocity vector is aligned with the corner direction, while at a rounded 
corner, arbitrary flow direction is permitted. Application of the surface 
characteristic relations simulates a rounded corner. Sharp corner modeling 
can be achieved by neglecting the calculated V and substituting the constraint 
that the final velocity vector be parallel with the corner direction. This 
implies that the entropy along the corner is constant. Experience suggests 
that the most robust corner treatment can be achieved using form 1, first 
order differencing, and the rounded corner model. 

d. Shock Points 

The  shock  fitting  procedure  is  only  applicable  in  cylindrical 
coordinates.     It  is  designed  to  provide  an  outer  boundary  for  the 
computational   domain,   not to  fit  imbedded  shocks.     Accordingly,  shock  points 
are  limited  to  edge 3  and  uniform  free  stream  properties  are  required  upstream 
of the shock.    At  the shock,  flow field properties as well   as the shock 
location  and  slope  are  unknown.    The  correct   boundary conditions   are  provided 
by the Rankine-Hugoniot  conditions which  relate the  free-stream  properties, 
the  shock   slopes,   and  the  properties  behind  the  shock.     An  analysis  of  the 
characteristics  associated with  Equation  (1)   indicates  that  there  is  one 
admissable characteristic   relation  at  the  shock."    This   relation,  when 
combined with the Rankine-Hugoniot  relations,   results  in  a  system  of  equations 
to  advance c  and  c^: 

^ =  c ^     + c 

11 
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9?^  c C^ I  c 3c " 8?  J c,\ (21) 

Evaluation of the terms appearing on the rlyht-hand-side of this equation 
proceeds as follows: 

By ==  (coS(j) + '"^ sin({))/v 

By =  (sin(i COS(|))/v 

(22; 

^1 = Y  ■ P   "      2 

U =  e^u +  eyV +  e^w 

U =  eu    +ev    +ew    U 
CO X   CO y   00 Z    °° 

V(U-we )  +  (1-e ^)(w^-a^) 

4/(Y + 1; p/p^ <   1.02 

Z        K Z 

C- -  1)   [1  + ^ + --^ (p -   P-)   ]/{l  -  \) P/P^ >  1.02 

^,. = p  [  {   (e^ -  8*)U -  w}  A. 
'0 

SQ = w^TT +  (p-p^)   + pw'^ 

Si =   U  IT   +   puw 
i 00 

So =    V    7T    +    pVW 
c 00 , 

w -   3*  {— -  1)   U] 
u 

A 
0 

■yiw + g*a 
2 2 

w    -  a 

U -  we. 

*■      _ 

A^   =   WAQ  +   y 

X- jJC-ij     ■^o»     ^O 9 A i 

12 



NSWC TR 85-484 

.^ = A^  (2  --^) 

wkiAi        * 

2 p 0 
* 

uk,A, 

* 
vk^ A, 

^4 -   -^ -  ^y 

r> 1 r   t     r    /   8F    ,    9G   N R      =    _J{    ,.    [    (   _-   +   --   ) U    ( 
3(a  /J) 8(6^/J) 

' ■ ' )   ] 9a 96 

7 1 
p- = -p^    C  Cg(e  cos(f)  -  e^  sin(|))  +  s^  sine}, -  s^ coscj)] 

^3 _  ^x^2" ^y^l 

^ j-  ?^(s1n<j) n    + coS()) n^)  - ny{sin<}, c^ + coS()> c^)  ] 

The shock calculation procedure provides c.c^, and c , while.the user 
m 
de 
fol 1ows 

ust provide (j)^, ^^  ,  isf^ and (j)^  .    To calculate metric  quantities,  the 
er1vat1ves  c,,  c, ,^c^_,,  c,, anH c.^ are necessary.    These are determin ed as 

9C 1   J^i. j+i    j-i'  1 
'6        9n   ^ 2Ari (f> 

n n ■ 

(c - c        ) 
,      _ 1      ^"^z _      ^j+l^j-1    1 

3n 2An 
^■ 

^(j)(t)      f     9n     '(|) 2An<l)      ^U    J+1      ^>    J-1^ (23; 

where, 

c      —c      -c,,ao"C.  a^ 
zz        z?        (()(})  2        (}>z 3 

i^*,;  a3 = *^ + ^^; c^ = c^ + c^$^ 

13 
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(J)^ - (<}>2 - <)>3)G (n) 

At zone boundaries, the mesh may be discontinuous and the above 
expressions could yield different c derivative values at abuttiny shock 
points. At such locations, the procedure for the calculatiny c and c  is 
modified. To illustrate the method, consider the followiny fout'^ succe^iive 
shock points; j'-l,j', j", j"-l where j' and j" abut. The ' points are 
located in zone I and " points m zone II. c^ and c, are  calculated as 
follows: *    *^ 

■^A  = ^^  = c^ + (c^ - c^ )f^ 
*J"   *j'   *R    *L   *R ^ (24) 

L      K 

where:  c  = (c , - c., J/An^ I , c, = (c ,,,, - C,„)/ATI^^ ^ II 
<Pl_ J    J --L     ^ j '   *R    -^ ^ ^i" 

c,  = (c   - c    )/An^, T , c   = (c    - c^ )/An^S II 

f^ = An (t)^IIj„ /(An (f)j   + An^% jj ) 
n J,       n y. 

On the leeside of a body, the shock becomes a Mach line and tne shock 
tracking procedure is replaced by a Mach line tracking algorithm. Mach line 
tracking is accomplished by requiring that the free-stream Mach Number normal 
to the shock be unity, or: 

^cohl ■ •      (2b) 

_  _  c _    _ 
where:  n = e - ^e -c'e r   c d)   z z 

Using known values of c, c^ and solving for c^ produces: 
(p z   '^ 

w  (^/j vj  .  aVu -  l± Vj2 .  (w 2 _  a 2)(i , c  ^/c^; 
_ooooCco' oo'cwQ 

(w  - a ) 

e.  Symmetry Plane 

A symmetry plane is any plane about which the dependent variables are  odd 
or even functions. This allows properties to be constructed on a fringe 
plane, located outside of the computational domain, and thus permits symmetry 
plane points to be advanced using the standard MacCormack algorithm. To 
simplify the computational scheme, the symmetry plane is required to satisfy 
the following constraints: 

14 
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1. The symmetry plane normal, n, must have a null z component. 

2. On the symmetry plane Va-Vg = 0. 

3. Either Va or V3 must be parallel to "n. 

These restrictions allow metric values to be determined on the fringe plane 
using odd or even constructions. 

To construct fringe plan_e values of th_e dependent variables, two cases 
must be considered: (1) Va«n = 0, (2) ve«n = 0. Here, F is a vector normal 
to the symmetry plane. In the first case, the symmetry plane is parallel to 
a 6 = constant plane while m the second, it is parallel to an a = constant 
plane. To illustrate the procedure for constructing fringe plane properties, 
let point 1 be on the symmetry plane, 2 be the adjacent point inside the 
computational domain, and 0 be the fringe plane point. In either case, p and 
p are even functions leading to: 

PO = P2 
:27) 

The velocity, q, follows by noting that q and q are odd and even functions, 
where the subscript n or t refers to the vector component n_ormal and tangent 
to the symmetry plane. If the symmetry plane satisfies Vaj_n = 0, then (Vcx) 
and (V3) are odd while (Va) and (V3)^ are even*. For V3*n = 0, the odd ana 
even behavior of the metric normal and tangential components is reversed. 
These considerations lead to the following scheme for constructmy fringe 
plane velocity and metric values: 

Case (1):  6 = constant parallel to the symmetry plane, (i.e., sja-'n =  0) 

. 2(Va„.V3,) 
VttQ = Vap - [ — 2  ^^^1 

V3^ 

2(73^- V3J 
V3Q = [  ^2  ^^^1 ' ^^2 ^^^^ 

V3i 

->■   4- 
!v3;^-q2) 

q. = q^ - [ 2  ^-- ]V3. 
V3^^ 

Case (2): a = constant parallel to the symmetry plane, (i.e., V3'7i'= 0) 

2(Va2*VctJ 
VKQ = [  2  ] Aa, - Va^ 

2(VBf.-VaJ 
V6o = V32 - [   o    ] Va (29) 

Va, 

15 
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% " ^2 '  ^   2 ^1 

The MacConnack scheme 1s not symmetric and direct application of this 
algorithm to symmetry points can lead to an unstable calculation. On the 
symmetry plane, the algorithm is altered at both the end of the predictor and 
correct step to ensure that the decoded velocity component normal to the 
symmetry plane is zero. This is accomplished by redefining the third and 
fourth components of the U vector, U3 and U4, as follows: 

where:  V = { ^S^x  ^4"y if symmetry plane is parallel to Va 
a 

V 

0        if symmetry plane is parallel to V6 

0        if symmetry plane is parallel to V3 
(30) 

p  ^ u^B + U.3 if symmetry plane is parallel to Va 

here (U3', u^') and (U3, u^) are  new and old values respectively. 

When treating axisymmetric problems, it is desirable that in cylindrical 
coordinates, all of the dependent variables be identical on each constant (|) 
surface. To accomplish this, a different procedure for determining fringe 
plane circumferential and radial velocity components is needed: 

■(,2- -qi)- 
2   [Ve^.(q2 - qi)]V6^  +  q 

"0 '4 
1 

,31) 

Application of the above removes the necessity of setting the symmetry plane 
velocities to zero. 

4. SPECIAL PROCEDURES 

In order to complete calculations on complicated configurations, it is 
necessary to introduce a number of special procedures. These deal with the 
treatment of surface edges and application of artificial viscosity. Surface 
edges can occur at a cowl lip, wing edge, or as a result of a surface slope 
discontinuity. The properties downstream of an edge are estimated using a 
local analysis, and special differencing is applied to promote robustness. 

a. Surface Edge Analysis 

As a calculation is marched down the axis of a missile, new wing or cowl 
surfaces may be encountered. The computational zones must be chosen to ensure 
that these surfaces lie along zone boundaries. Along edge boundaries, two 
points are associated with each point in computational space, one with each 
zone. These two sets of points are  used to describe the two sides of 
surfaces. New surfaces can be encountered anywhere during a calculation, and 

16 
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points which at one step are interior points, may in the next step become 
surface points and vTce-versa, A leading edge point is a surface point which 
in the previous step, was an interior point while a trailing edge point is an 
interior point which in the preceding step was a surface point. In addition, 
surface slope discontinuities can be encountered during the course of a 
cdlculation. 

A local analysis is generally applied at surface edges which models the 
flow in the vincinity of the edge. When the flow normal to the wing edge is 
sufficiently supersonic, this analysis is based on the oblique shock or 
Prandtly-Meyer expansion relations. In other cases, an empirical treatment is 
used. Application of the local analysis improves robustness and accuracy near 
surface edges. The computational algorithm proceeds by completing the step in 
which the surface edge is encountered without taking the edge into account. 
During this step, old values of the edge derivatives are used in conjunction 
with the updated edge locations. The computed flowfield properties at the end 
of the step are taken as the conditions immediately upstream of the surface 
edge and the local analysis is applied to turn the velocity vector parallel to 
the downstream surface slope. 

The first step of the edge analysis is to caRula^te vectors normal to the 
surface upstream and downstream of the edge (i.e. n+,n- in Figure 8). At the 
leading edge, n+,7i"- are constructed from: 

7i- = + (TxT?-) / (32) 

n'+ = (Va)_|_ 

The sign associated with Ti"- is chosen to insure n+,n- > 0, where x is a vector 
tangent to the edg^. Here (Va) is evaluated downstream of the edge. At the 
trailing edge, n+,n- are evaluated using the values of Vex upstream and 
downstream of the surface edge respectively. n+ is perpendicular to the 
downstream zone edge which approximately bisects the trailing edge angle. At 
surface discontinuities, n+,n- are evaluated using upstream and downstream 
values of Va. 

After determining n+ and n-, the turn angle, G, and the velocity 
components normal (q,^) and tangent (q^) to the edge are calculated from: 

-1 r(n+ • n-)n 
0 = cos l^^^ --" J 

|n+|In-| 

qn- = (^- • ^)/ l^-l •   ^33) 

q^ = C^ ' ^)/|~i 
where, x = (n+)x(n-) 

s -  TxrT- 

17 



NSWC TR 85-484 

Using the known upstream values of p, q^, and p, the local analysis procedure 
of Refs. 9, 11 provides downstream values of these quantities. The final 
downstream velocity vector is constructed from; 

where:  s = Txn+ 

At the trailing edge, the above procedure is applied only if the flow 
normal to the trailing edge on both surfaces is supersonic. Otherwise, 
properties downstream from the trailing edge are determined by averaging 
adjacent interior point properties. When both surfaces associated with a 
trailing edge feature supersonic flow normal to the edge, the shock or 
expansion turning procedure is applied to each surface and results are 
averaged to determine final properties downstream of the trailing edge. 

A different procedure is required to turn the flow at a corner leading 
edge point.  In the case of an external corner, a method similar to that 
applied at a regular surface edge point is used, but the normal vector is 
taken in a direction bisecting the corner angle. At an internal corner, a two 
step procedure is used first to turn the flow into a plane perpendicular 
to V5, and then to rotate it in this plane until it is also normal to Vn. The 
required turn angle for aligning the velocity perpendicular to v? is given by; 

Q = t sin-1 (1^^ (35) 

Here the plus sign applies at corners 1,4 while the minus sign is used 
elsewhere. This initial turn produces a final flow direction of: 

S. = q - ^)- n (36) 
|VC I 

The necessary turn required to align the velocity vectory with the corner 
direction is given by : 

0 = cos' [s, . !„/( |"s-, I |"s„|)] ,.  (37) 
1 -^2'M-^iM-^2 

Here S2 = -(VTIXV?) and is the final flow direction. At junctions located on 
corners 1 and 2, Vn • s,> 0 corresponds to a compression and Vn • S, <U 
implies an expansion. The sign convention is reversed on corners 3 and 4. 

At a corner trailing edge point either one or two surfaces may 
disappear. If one surface disappears, the velocity vectors on each side of 
the vanishing surface are alligned with the downstream zone corner direction, 
given by Vrixvc This is accomplished using the two step leading edge turn 
procedure described above. The trailing edge downstream conditions are 
obtained by averaging the flow properties occuring on each side of the 
vanishing surface. When two surfaces disappear simultaneously, the standard 
trailing edge point procedure described above is applied. However, the 
surface normal vector is taken in the direction bisecting the corner angle. 

18 
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b. Surface Edge Differencing 

The presence of surface edges requires the Introduction of special 
differencing procedures for advancing points labeled T and I in Figure 9. In 
all cases, modified procedures must be applied at points labeled I, which have 
two neighboring T points on the upper and lower surfaces of the wing. I 
points are advanced twice using each of the neighboring points, and following 
the corrector step the two resulting sets of property values are averaged. In 
situations where strong shocks or expansions are  attached to surface edges, 
differencing Is modified In the following fashion: 

(1) Alteration of differences along zone boundaries. Both T and I points 
are of concern here. At the surface edge, a strong shock or Prandtl-Meyer 
expansion may occur. Under these conditions, T points are not effected by I 
points and vice-versa. This correct domain of dependence can be Imposed at 
point I by applying a one-sided difference along the zone boundary directed 
away from the surface edge. At point T, this procedure leads to an 
Instability and differences calculated using points T and I are set to zero. 

(2) Normal surface derivative damping at leading edges. Large property 
jumps can occur at the leading edge due to the existence of a shock or 
expansion. The surface normal derivatives at T type points are 
unreallstically large, reflecting the fact that the difference Is being taken 
across a discontinuity. Use of calculated normal derivative values In the 
vicinity of the leading edge leads to an Inaccurate solution. More realistic 
values can be obtained by damping the normal derivatives near the leading edge 
(I.e., reducing the derivative by an empirically determined corrective 
factor). The effect of normal derivative damping Is Illustrated m Reference 
12. The user is required to select the number of step, K, for which the 
derivatives will be altered. The damping factor Is calculated from: 

F^ = [ MAXjl - (^4^), 0}]2 (3y) 

where k is the number of step following the occurrence of the jump. 

c. Artificial   Viscosity 

In computations featuring separation or highly swept wings, large vortex 
structures developed In the flow field. In such circumstances, it is often 
necessary to introduce an artificial viscosity Into the calculation. This 
smooths the gradients surrounding such phenomena and leads to a more robust 
computational procedure. Smoothing can be applied to all points except shock 
points. In each case, the advanced quantities are smoothed following the 
corrector step. At interior point, a Schuman filter with a density switch is 
Implemented as follows: 

J. , . 
t\ ^ t\^      +  [tl^ T + l'J  iic  ip 

' jj 

- [0^ . - t}^       ^^l^i ]c 1 
^ T,J   1-1,J J.,^j  ^ -i^/2,j 
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, j-r^c     i ,j+l  rtC  np ^  ■ 

' 9 J 

^ - 1,J-1 J. .   1 ,J-^/2 i,J 
1 ,J 

where: t) is the advanced flux vector following the corrector step 

,       (40) 

and Cy, Cw are smoothing factors specified by the user. 

Wall points are smoothed using a weighted average of neighboring wall 
points: 

S.   =  A3    +  Bt}\,   +  CU    , (41) 
3 J J+1 J-1 

where:       A =  1-B-C 

S+i ^'j+1" ^j^/^pj+1" pj^l 
(42) 

^- K^_^ (Pj - pj-i)/(pj ^ pj-i)l 

In the above, C^^ is a user specified constant. At juncture points, the 
j-1,j+1 points are depicted in Figure 10a and 10b. At a surface edge point, 
the neighboring points are not both wall points and the above procedure is 
altered. Figure 10c-and lOd indicate the points used in applying smoothing 
which is implimented by: 

j J 
5. RESULTS 

This chapter presents cases which have been run with tne multizone code 
(MUSE). All computations were performed on a cyber 170/720 and required 
approximately 5(10-3) seconds per point per step. The initial data plane is 
generated using the approximate conical solver of Reference 16. The actual 
body geometry used as well as the input data list are provided in Reference 
13. The mesh size employed for each zone is indicated by (NXM) where N and M 
are the number of points in the radial and circumferential directions 
respectively. Unless otherwise indicated, smoothing was not applied, and one- 
sided differencing was used at all fin tips. 

The normal force and center of pressure computations for an airplane type 
configuration at Mach 2, are compared to the experimental data of Reterence 17 
in Figure 11. This case features attached shocks on the wing and tail 
surfaces. The calculation was carried out using a single (15x15) zone 
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forwards of the w1ng and two (29x20) zones over the remainder of the 
configuration. To prevent the flow from becoming subsonic at the body-winy 
junction, the leading edge turning angle at this location was damped. The 
computed and measured normal force coefficient and center of pressure for the 
body-wing and body-wing-tail configurations at an incidences of 5°, 10° and 
15° are in good agreement. The computed crossflow velocities and pressures at 
the wing and tail trailing edges at an incidence of 10° are shown in Figure 
12. 

In Reference 18, a tangent ogive body with cruciform delta fins was 
tested at Mach 3.7. This configuration, which is shown in Figure 13, features 
attached shocks at the wing leading edges. Numerical results are compared to 
experiment in Figure 13 for the case of the model m a plus roll orientation 
and an incidence of 7.8°. A single (15x15) zone was applied forward of the 
wing and two (40x19) zones were employed over the remainder of the body. All 
fin surfaces show reasonable agreement between calculation and experiment, 
although problem areas occur near the body-tail juncture. This area is 
strongly influenced by viscous effects and lack of close agreement is not 
surprising. The computed flow field at an axial station near the center of 
the wing is shown in Figure 14. Clearly evident is the interaction between 
the shocks generated by the horizontal and windward fin. 

Reference 19 provides body and wing pressure data on a cruciform delta 
wing configuration at Mach 2.7. Calculations were performed on this geometry, 
which IS illustrated m Figure 15, at an incidence of 10°, with the model in 
the plus roll orientation. Under these conditions, shocks at the wing leading 
edges were slightly detached. A uniform (15x15) zone was used forward of the 
wing and two (40x19) zones were applied for the remainder of the 
calculation. Comparison of fin and body surface pressures are shown in 
Figures 15 and 16 respectively. Both body and wing surface pressures are in 
reasonable agreement with experiment. However, the body surface pressure 
results in under-predicting the rate at which fin disturbances propagates over 
the body. The crossflow velocity and pressures near the winy-center are 
exhibited in Figure 17. 

Calculations have been performed for the two swept wing configurations, 
tested in Reference 20 and shown m Figure 18. These models were run at an 
incidence of 6°, Mach numbers of 2.5 and 4.5, and feature the same planform 
but different fin thickness. Such conditions result m detached leading edye 
shocks m all cases. A (25x25) mesh was applied forwards of the winy and two 
(29x20) zones were used for the remainder of the body. Calculated and 
measured wing surface pressures are shown m Figure 18 and agree reasonably 
well with experiment. However, near the wing leading edge, computed values 
are larger than measured ones. Figure 19 provides measured and calculated 
surface pressure on the windward and leeward side of the body. Upstream of 
the wing, calculation and experiment are  in good agreement, but the calculated 
jump in body pressure on the windward side caused by the presence of the wing 
occurs further aft than the measured one, particularly at Mach 4.5. 

The crossflow velocity and pressure field is illustrated in Figures 20 
and 21 at several axial stations along the wing section for thick fin models 
at Mach numbers of 4.5 and 2.5, respectively. At the axial station, z = 56, 
in each figure, the formation of a detached wing shock is visible below the 
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wing. Axial locations z = 62 and z = 65 illustrate the forinatTon of an 
expansion associated with the wing surface slope discontinuity. A decaying 
shock wave is visible in the flow field at a station near the wing trailing 
edge, at z = 75.  In the higher Mach number case the shock is positioned 
nearer to the wing surface. This produces the strong wing surface pressure 
gradients which are visible at this Mach number m Figure 18. 

Figure 22 Illustrates a swept wing configuration with a vertical tail 
located on the wing. Calculations were carried out at Mach 2.86 at incidences 
of 4.05° and 8.47°. Under these conditions, the wing leading edge shock was 
detached. This calculation was carried out using a single (18x19) zone up to 
the wing. Two (40x19) zones were applied over the forward section of the wing 
and four zones, two (30x19) and two (15x19) zones were employed over the 
vertical tail section. The tail thickness was neglected in order to simplify 
the geometry description. The calculated normal force coefficient and center 
of the pressure are shown in Figure 22 and agree well with experiment. 
Crossflow velocities and pressures at an axial station slightly forward of the 
tail are  shown in Figure 23 along with those for a similar configuration 
without vertical tail. The presence of the tail is seen to produce large 
changes in the leeward flow field. A detached shock can be seen lying below 
the outboard wing section and a crossflow shock occurs on the leeside of the 
wing in both cases. 

Results for a missile with wrap-around fins at Mach 2.5 and 3 are 
presented in Figure 24 to 26. The missile geometry is shown in Figure 24 
along with the measured normal force coefficient on the spinning model of 
Reference 22. A single (15x25) zone was employed forward of the wing while 
four (40x10) zones were applied over the fins. Mesh clustering was used in 
the radial direction to increase the number of points in the vicinity of the 
fins. As IS indicated in Figure 24, good agreement is obtained between the 
computed and measured normal force. A discrepancy between calculated and 
measured center of pressure is possibly attributable to the fact that the 
experimental model was spinning. The rolling moment, which was measured m 
Reference 23 is exhibited in Figure 25 and does not agree quantitatively with 
calculation. However, results correctly predict trends with Mach number and 
incidence. Crossflow velocities and pressures m the vicinity of the wrap- 
around fin trailing edge are shown in Figure 26 at a Mach number of 3 and an 
incidence of 8 degrees. 

6. CONCLUDING COMMENTS 

The MUSE code described m this report is applicable to missile shapes in 
supersonic flight. The explicit MacCormack scheme is used to advance interior 
points while a characteristic boundary condition treatment is applied at 
surfaces and the shock. A local analysis is invoked at wing edges and at 
surface slope discontinuities, which leads to accurate surface pressure values 
near these locations and adds to the robustness of the procedure. Meshes are 
generated algebraically and complex shapes are handled by dividing the 
computational domain into a number of simple zones. MUSE differs from SWINT-*-^ 
by allowing the zone shape to be completely specified and by permitting zones 
to be connected In a relatively arbitrary manner. The MUSE code removes the 
thin fin assumption present m SWINT and is capable of treating a broad range 
of configurations, many of which are beyond the scope of SWINT. Examples of 
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such shapes are illustrated 1n Figures 22 through 26 and  include a wrap-around 
fin missile,  and airplane type configurations with  vertical   tails  on the winy. 
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FIGURE 4.  GENERALIZED QUADRILATERAL ZONE STRUCTURE 
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FIGURE 5.  COMPUTED PRESSURE DISTRIBUTION ON A CONE USING BOTH A CONTINOUS 
AND DISCONTINUOUS MESH   (MACH = 3, CONE ANGLE   =7°,a=8°) 
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FIGURE 6.  CALCULATED PRESSURE ON A BICONIC WITH A UNIFORM AND A DISCONTINUOUS 

MESH   (MACH  = 3, CONE ANGLE  =7.5°,  20°,a=0° ) 
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FIGURE 9.  SPECIAL POINTS ADJACENT TO EDGE SURFACES 
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APPENDIX A 

ANALYTIC DERIVATION OF METRICS 

The metric quantities r      ?      r      n^ - TI   , n   ,   appearing  in  Equation  (1) 
X      y       z       X       y       z 

must  be evaluated  at  every point  in  the calculation.     In  addition,   at wall 
points  on edges  1  or 3,  the quantities F,        F     , K        are  required. 

Similarly, n     , n     > n 7^ > ^^^st  be calculated  at wall   points  on  edges 2  and 

4.     All   of these quantities  can be  related  to the derivatives of T^  and T2 
given  in  Eqs.   (3)   and  (4).    The following  expressions  result: 

?x    =  ^\\ - % ^x^/J   ' '\ '- ^'W h'x^^'' ^x = ^x 

?z    =  ^\\  -\\^^^   ' ^z=  ^h\ -  '? ^^/J' ^z =^z 

^x,  =   Kc'x'^^x?   -  \,'K-  VX?)/J   -   ^5xJ,)/J 

5      =   (T     s    + T   s      -  s    T    -   s T    )/j  -   UJ   )/j (A-lb) 
^K n?  y       n  y?       n? y       n y?' y c 

where:       j       =  S^T^   -  s^x^ 

? 5? n        ?  nc        nc  ?        n  ?? 

s^    = COS(T )>  S    = sin(T),  s^ = 0 

T^,    = COS(T)/S, T^  = -sin(T)/s, T    = 0 
y X z 

u=o=0-u=l ) cylindrical   coordinates 
X y z /    -^ 

s      = -sin(T)T   ,  s      = COS{T)T   ,  S      =0 
m ?     yc '  ' r '   z^ 

T^^  =  -[COS(T)S  /s +  sin(T)T^]/s 

T      =  [sin(T)s  /s + COS(T)T   ]/S    T      =0 
yc C C z^ 
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\    -'''y-  'z-' 

V    =l-x = ^z = 0 
u       =l,u    =u    =0 z                 X        y 

^x?  "  ^y?  ' ^y?  ~  ^x? " =  0 

cartesian coordinates 

Except at points which link adjacent zones, the derivatives of x, s, with 
respect to E,,  n, c,,  are evaluated analytically. The expressions for these 
quantities Involve corner values of these parameters, which can be computed 
using the formulas given below, for corner 1: 

^K = (%' Vv)/(1 - Vs) 

S,       ={q      +q0+0q+s(q0+qe     )1/(1   -  q 0   ) 1??        ^^v?       ^x?  V v?^x C   T^Q^       ^x   S?^J'^ ^x   s^ 

T,       ={0      +q0^+q0      +x(q0+q0     )|/(1   -  q 0   ) IC?        ^   V?       ^vc   s       ^v  S? ?   ^^xc   S       ^x   s?'^^ ^x   s' 

s.       =q(T-x„)g'(ri) In ^x      m        i'^  ^   ' 

^1,     =^s(^k  -  ^j)f'(^) 

(A-2) 

where: 

i=l=>q=b,0  =  '{',j  =  l,k =  2,£ =  4,  m=l 

1   =  2  =>  q =  c,  9 =  "i-,  j  =  1,   k =  2,  £ -  3,  m =  2 

1=3=>q=c    0=a,j=4,k=3     £=3,m=2 

1   =4=>q=b,0  =  a,j   =  4,   k  =   3,   £  =  4,in=l 

In the above equations, q, 0 and their der-ivatives are evaluated at the corner 
under consideration. 

Expressions for the first derivatives of s,x with respect to E, ,  n, ? ^re 
as follows: 
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(A-8) 

T-(?.ri,?) = f (?) {as[s(?,0,?),v](s3 - S4rg(n) + -^sCsl? ,1,?) ,v]y(n)} 

T^U  n,?) = g'(n) {^[s(?,l,d,v] - a[s(?,0 d v]} 

T^(C,n,?) = g(Ti) {a5[s(?,0,?) v] ls^l{F,)  +  S3 f(?)] + a^[s(?,0.d,vj} 

+ g(n){-i'5[s(?,l,?) v] [s^Tu) + S2 f(?)] + %[s(c,l ?),vJ} 

s.(? n c) = f'(c) {C[T(?,1,?),V] - b[T(c,Q ?) v]} 

s^(C.n ?) = y'(ri){b^[T(?,0,?),v][Ti-T4]f(i) + (c^LT(?,0,?),v][T2-T3Jt(?)} 

sJ? n^c) =T(0{b rT(?,0 ?)-V][T4 g(n)+T, y(Ti) J+D^[T(? ,U,d ,vj} 

+  f(C){c_[T(CJ,?),v][T3lJ(n)  +  Tn  g(^)]  +  C [T(?,1,C),V]} . 

where: 

f'(?) = ^^-pl  g'(5) = ^^-^-^ , T(c) = l-t(5), g(c) = l-g(?) 

On edges 1 and 3, required second derivatives or S,T with respect to ^,r],z, 
are computed from: 

T,^ = T      gin)  + T      g^n. 

s       =(qT+2q)T+q      +qT 
(A-4) 

s       =(q    T    +q     Ix^+qx 

where: on edge 1, then £=4, k=l,q=b 
on edge 3, then £=3,k=2,q=c 

Here q and its derivatives are evaluated at the point under considerations. 
Similarly, required second derivatives on edges 2 or 4 are: 

s  = s^ f(?) + s^ fU) 

s., = (s. - s )f'(5) (A-b) 

A-3 
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E,z ss ^   sv' 5   S 55 

%c ^ {"^st^^Z^^^) ^ s^f(c)] - o^{s^f{^)  + s^flc)] + {^^ - a^)}y'(n) 
;A-6) 

T  = (e^^s + 20^ )s + e  + 0 s CC    SS (^    sv' ?   vv   s cc 

where: on edge 2 use i =  I,   k = 2    0=¥ 
on edge 4 use £=4,k=3, 0=CT 

Here 0 and its derivatives are evaluated at the point under consideration. 
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