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Abstract

Oja (1983) introduced an affine invariant multivariate median. Brown
and Hettmansperger (1987) developed affine invariant rank methods in the
bivariate location model based on Oja's measure of scatter. Analogs of the
Wilcoxon signed rank and the Mann-Whitney-Wilcoxon rank sum tests were

presented. In this paper ‘we discussn§cale, rotation and affine invariance.

--We—then-discuss tests in the blvarlate linear model for an overall regression

TR 7 £y o e S s A ..
effects In partlcular we” present tests in the one- and two-way layouts that

are analogs of the Kruskal-Wallis and Friedman tests.

I

Key words: Affine invariance, AOV, Kruskall-Wallis, Friedman, linear models,

spatial ranks.
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1. Introd *ion and Summary

In this paper we present affine invariant rank~like tests and estimates
in the bivariate linear model. We describe a general test for an overall
regression effect and then specialize the test to the one- and two-way
layouts. The tests are affine invariant analogs of the Kruskal-Wallis (1952}
test and the Friedman (1937) test. These tests are based on a notion of an
affine invariant rank vector that can be developed from Oja's (1983) work on
an affine invariant median. The analogs of the Wilcoxon signed rank test and
the Mann-Whitney-Wilcoxon rank sum test are developed by the authors (1987}.

Along the way, we describe three possible extensions of the Ll notion to
the bivariate setting. The three types of bivariate medians that result are:
the scale invariant vector of component medians, the rotation invariant

spatial median, and the affine invariant Oja generalized median. These form

the basis for the extension to three types of rank vectors in the linear

v

model. The main emphasis will be on the affine invariant version which is : }t‘
s
illustrated on a data set in Section 3. -:::

i

Y.

We indicate 1n Section 2 that the Oja generalized median has better

v
v
.

“' N

efficiency than the other two medians for an underlying normal distribution.
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Although we do not have asymptotic efficiency results on the affine i1nvariant

tests in the linear model, we illustrate their robustness to outliers in the
example. In addition, affine invariance may be an important consideration in
a particular application and the tests presented here provide natural

alternatives to the traditional tests based on means.
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2. Bivariate Medians and Invariance o0
"'1.

K [}

)
We first consider the development of rank based methods in the . f'
univariate linear model froam the L1 norm operating on a single sample. For a ‘&h
given set of numbers Yy» +«+++ ¥, define their center by 6 such that N
R
n e

D(@) = £ |y.-0| (1) A

=1 ! i

L 4

o

- AR
is a minimum. It is well known that 6 is the median of the set lyl,...,ynl. RN
RS

- :\f

denoted 6 = med Y The derivative with respect to € exists almost e
everywhere and is given by N
o

s
) 2%
Q(e) = T sgn(0-y,). (2) 4.4

1=l 1

\::\

N
) ~ ) ) - ALY

The estimnte 6 = med y; can be considered the solution of Q(6) = 0 where "= S
A

l' -.\

is interpreted as a sign change for n odd. N
Next, Let ri(g) Ty, - §i'€. i = 1,...n represent residuals in a linear ’:
R

model, where §i’ z (xil""’xip) and E’ = (pk""'ﬁp)' Then an estimate of g A
.

18 determined by minimizing ! 3
) n “
D () :lglb(ri(g)) £3) S
.l _ DA
=3 ?(f lri(g) PJ(E)l {Ci
a N+ 1 s

- - e

z ? {Rank(r, (8)) - ir (B) ey

1=1 S
R
e
* \'. -
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3 z Q(ritg))ri(gi- =
i=1
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:
The second equality relates the estimate of p to the Ll norm and the third :
o,
equality, achieved after a bit of algebra, relates the estimate of g to the =
. ' ’
ranks of the residuals. Jaeckel (1972) proposed the rank version of D (B) as :
',
a criterion for estimating e. McKean and Hettmansperger (1976) proposed '$
using the reduction in D‘(E) when passing from a reduced to full model as a o
criterion for testing hypotheses in the linear model. The fourth equality .
‘.
“
results from Q(r;(f)) = Tsan(r;(#) - r;(g)) = Z(Rank(r;(f)) - (N+1)/2}. We >
consider Q(ri(g)) to be a centered rank or quantile of ri(e) in the sample. 1
Note that the dispersion measure D‘(g) is a linear function of the residuals by
with weights determined by the quantiles. .
Y
b
Our goal is to carry an Ll notion over to the bivariate setting. We :
~
then will have a bivariate sample median with efficiency and robustness :A
properties related to the univariate median. Then we extend, via the ideas
KS
in (3), to the linear model. The gradient Q(8) acts as a bivariate quantile ﬁ
.
S
and the result 1s rank-like tests and estimates in the bivariite linear ~
model. The bivariate case is more complex than the univariate case and we
will consider three different L, notions. .
lLet ZT = (yil'yiz)' 1 =2 1,...,n be a set of bivariate observations, and ::
RY
define QT z ('in'yil)' 1 = 1,...,n. We now present three bivariate .
dispersion measures each of which entails different invariance properties for -
the resulting estimates and tests. Let ?T z (6],92). then -
-
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The respective gradient vectors are given by :1
L1
AN
T R
- - - ‘(_
(8} = E ((y:r-012 4 (508021 P (mye) (8)
¥2 : Yi17%1 Yi2™%2 °-¥i L
N
L 4
Yir Y1 4 _ £
B8 = EZsanldet | vip Yy G | ML) (9) i
11 1 L
i
The dispersion DI(Q) in (4) with 91(9) in (7) defines componentwise L1 f:i
-
methods. The estimate éT = (med Yi1 med yiz), is scale invariant but not ,j;;
.':J'
rotation invariant; see Bickel (1364). The dispersion D,(¢) in (5} with :;a
92(9) in (8) defines the spatial median which is rotation invariant but not ;f;'
¥
scale or affine invariant; see Brown (1883). Finally, the dispersion D4(6) :%:
o
in {(6) with Q3(9) in (9) is the sum of areas of triangles formed by taking 6 :3;‘
¥,
and pairs of observations as the vertices. Minimizing the sum of areas T-
results in the generalized median é proposed by Oja (1983). The 0Oja ;ﬁf:
2
generalized median is affine invariant. \:\
Both Dl(g) and DZ(Q} reduce to the Ll norm in one dimension. This is Ry
o
.2:
o

e et T YT
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not the case, however, with D3(g). It seems that D3(§) is more intrinsically

bivariate than the others. The three bivariate medians: componentwise
medians, spatial median, and Oja generalized median, have somewhat different
efficiency properties, but all are related to the efficiency of the
univariate median. The univariate mnedian has efficiency .637 relative to the
mean when the underlying distribution is normal.

Following Bickel (1964, p.1083), we define the efficiency of the
bivariate median relative to the bivariate mean to be [g-var(mean)/
]1/2 2

g-var(median) ozz(l-pz) and the parameters

, where g-variance is o)
are taken from the asymptotic covariance matrix. Bickel's Theorem 5.1
provides a formula for the efficiency of the componentwise medians when

the underlying distribution is bivariate normal. The efficiency, independent
of the variances, declines as a function of the correlation coefficient p from
.637 when p = 0. Some values of {p, efficiency) are (0, .637), (.2, .629},
(.4, .605), (.6, .558), (.8, .473) and (.9, .396). The spatial median, on the
other hand, has efficiency that does depend upon the variances but not on p.
Using Table 1 of Brown (1983) and Bickel’s definition of efficiency, it is
easy to see that the spatial median is generally more efficient relative to
the mean for an underlying bivariate normal distribution than the vector of
componentwise medians. The efficiency depends upon the ratio of standard
deviations of the two components. If X is that ratio, then some values of (\,
efficiency) are: (1, .785), (.8, .783), (.6, .773), (.4, .747), (.2, .678),
(.05, .593) and (.01, .321). The efficiency deteriorates as the contour
ellipses of the bivariate normal distribution become very narrow. Oja and
Niinimaa (1985) show that the affine invariant Oja generalized median has

efficiency relative to the mean equal to .785, independent of the variances



and correlation. [t 1s strictlr better than the spatial med:ian unless the
bivariate normal distribution is circular in which case the efficiency 1s the
same. Hence, the Uja generalized median has superior efficiency properties as

well as enjoying affine invariance.

3. Tests in the Linear Model

The next step 1s to extend these Ll notions for a single sample to
different types of quantiles in the linear model. Using (7) - (9] we arr:ve
at the vector of component ranks, the spatial ranks and the atfine invariant
ranks, respectively. These ranks then provide the basis for tests.

We first introduce the notation of the bivariate linear model. Let vobe

an nxZ2 observation matrix in which the n rows are independent random vectors

such that

-
-3
-

E E - E ! H Z E' EVN

where 7 1s an nx(p+l) matrix of known regression constants and # 1s a ‘proo-

matrix of unknown parameters. Let rllﬁ) = Xx - ﬂrzl denote the 1th x|

residual vector where ZT 1s the 1th row of

~

In each of the three cases (3 - (61, 1t can be =hown that, oo
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To test HO: A& = O we must assess the size of L. The statistic we will

e s 'he Hotelling-Lawley trace statistic given by

-1

-1
S = {n-I)Trace[ET(gzgc) L(Q

Tq) ) (16)

-1 -1
: in-liTrace(L(@TQ) LT(x )

TqQ and XX

anere L 15 the mean centered design matrix and we assume that Q X Xo

L are ronsingular. The trace form of S is not immediately intuitive and we
S

3 ... provide two motivations for S,

. ‘1 the first motivation, we roll out the px2 matrix L by columns into

AR Lill...Lgl)L{Z)...Léz)). (17)

crst haif of the vector consists in the statistics relevant to

Torst mponent and similarly for the second half.

~en., *nat the di1rect or Kkronecker product of two matrices is defined

DI I O e T
L)

VR WY

; R P T o R I L U REARII
PPV A DTG . V. VW YT DY VEVW TR T DUDR Y TN TY DY I PU VR PLPG TSIV T LY JW ]
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Now, it is straightforward to verify that, under HO: a=0, the permutation

covariance matrix of g ol is

Cov“‘col) - _%T (QTQ’*‘¥z§c)'

Then the first form of S given in (16) reduces easily to

s = (n-DL el o) T L (18)
. - <col''T % ~C-~C ~col’

This is a natural quadratic form for assessing the size of L. Let q!Y denote

-1 T o) T
the (i,j) element of (Q7Q) and let LY , = (L{}) " ,L{2)") from (17), then

(18) becomes

2 2 -1,
Sz (n-1) £ & qlJL‘l’ (xXx) L),
i=1l j=1 ¥

-1

Since (QTQ) is a 2x2 matrix it is easy to find the inverse and get

~xplic1t values of qij. If we let qj = kzl qﬁl)q(J) be the (i,j) element of

.@rg) and let ryp = qlz/(qllqzz)1 2, the correlation between the columns of

W, then

<

LR P ~
RN _‘_.r.r.-r.-:\

.r_.\( / \ 2K .' a‘-"\ \J,'.r,-

NN LS
- RN LS
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s = in=ll, (L L(I)T(XTX ARTETRR 2518 — L“’T(xTx i)
1-r Q * ~csC Q1922 * -
12
-1
s L L‘Z) (xTx y L'y, 119)
qzz - -~

This shows that the multivariate test statistic is composed of the
corresponding componentwise test statistics along with a cross comaponent
statistic. The combining weights depend on the variances and covariances of
the quantiles.

For the second motivation, we roll out L by rows 1nto

LEow - (Lil)L{Z)Lél)LQZ)...Lél)Ltzﬁ
Under Ho: 4= Q, the permutation covariance msatrix of Erow 18
Covil vl = sy (XT¥.1t1QTQ).
Then the second form of S in (16) reduces to
T Te  yiaToy ! ’
S = (n-1) L [(X X, 80@°Q) L. ., el

another natural representation of S as a quadratic form for assessing the s.ze

of L.
Let xéj denote the (i,j) element of (Szgc)-i then S 1n '20. can be
written
$ = (n-1) i%l j%l éJEII) QTQ’-lE(J) -
where E(i) z (Lgl)LgZ)). This provides a nice interpretation because *ne

square of the univariate statistic 1s replaced by a quadrati- form .n *he

components of the bivariate statistic,.

Y ,, , RO N Ny (‘4-_4-‘ \ \.f < "h X \I\.\. \J\ ‘ \ \ \ : .-'_.'..‘\'-,'.-'..7u.\-'._.-__,“;.-__ N ...-\'._.f“.'...._. iR . N
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i)
AN We finally note that to test Hy: 4 = 0 vs H,: 4 # 0, that is, test for
o an overall regression effect, we reject H, if
.
o’y
Lo
N2 S > v2(2p) (22)
AW ‘a P
9
where x;(Zp) 1s a chi-square critical value. This test has approximate
significance level a. The limiting chi-square distribution follows from
” standard persutation arguments; see, for example, Puri and Sen (1985},
v .
O We next speclalize the statistic S to the one- »-d two-way layouts. In
-
:; the one-way layout, we suppose that we have k samples of size LTINS (P
-, from continuous, bivariate distributions with location vectors 91""'9k' and
.j; we wish to test HO: 91 T ... 0= gk' The design matrix X consists of columns
of zeros and ones. In the regression setting one column can be dropped to
N insure full rank. If we drop the first column, then the matrix L, rolled out
-~ -~
e T N (1, (21 (2) (11
:: DY TOlumns 1S Ecox H <L2 ...Lk L2 ...Lk ) and, for exampie, L2 1s the
sum of the first components of the combined sample quantiies corresponding to
P
. T -1
. *he second sampie. The matrix SP along with (§P§P> 1s given by
- , . - ; - -
;: Het**mangperger (384, p.<2581. The e(ement x;J z nl‘ + nll 1f 1+ = ) and xﬁJ =
v n ot .Y . ® .. we -an now describe the two versions of S, (19 and i21:., for
,. '
.
- ‘he ne-way .av .ut From i34 owe £ ood
'.\
’\
LY .
~ - H‘ ;qis "i - . H - {
= - - ~ - N + DU -
L, -r . " i AA 4:- l....
,, -
rR
,.
. n _ N - . .3 -
. where M = Z - " - Tt 0% ant 4 'Y o Tt L. Niete
o Lo R s iz L
: nA* P-. 3T T s 4 RrLSKAL-®A, .. 4R 0 0 Cape stat sty WPt el ot he
..
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; first component of the quantiles, similarly for (n-l)qéé H(Z), while H(IZ)

is a cross component statistic.
‘§ From (21) we find
\ g - K o1 (D (20 oTay " (1) (2),T
: z (n-l)iflni (Ly7°Li"7h Q) (Li Li®"h". (24)
f This corresponds to a Kruskal-Wallis calculation using the k quadratic forms.
‘; If qgi) S Rgi) - (n+1)/2, 1 = 1,2, j = 1l,...,n are the centered
v componentwise ranks in the combined sample, then S is the test discussed by
§ Puri and Sen (1971, p.186) and is a direct generalization of the univariate
3 Kruskal-Wallis test. If q; is taken to be a bivariate spatial quantile, then
S a8 rotation invariant test results. Our primary interest is in describing the
;E affine invariant version and to that purpose we now present an example.
t Example:
N In Table 1 we present data on tail length and wing length for 4
; subspecies of btirds, and we wish to carry out a test to see if the location
3 vectors differ among the subspecies.
-~
; - Table 1 about here -
E Since the data is arrayed in a one-way layout, we will use the

affine i1nvariant test based on S in (22). We find S = 36.5, and 1f « = .01,
g the approximate critical value is ‘%01(6) = 16.8. Hence, the null hypothesis
; of no difference among the 1 population location vectors 1s easlly rejected.

In Figure la, we present plots of the data and the corresponding
quantiles. To 1llustrate the effects of an outlier, we changed the first
component of the first observation i1n Table 1 from 207 to 2.7. The resulting

value of S 1s 33.0, at1ll highly significant. [n Figure lb, we present the

e, e e T e e T e T T e et T -, o
ULy lecenioamdd 2 a2 a2 o a s s Py A.u-_..‘A.AL;A_A_A_A.h
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new plots of data and quantiles.

- Figure 1 about here -

Generally, the statistic S will be less effected by outlying data than
the normal theory based Hotelling-Lawley test. The authors (1987) provide a
two-sample example in which the introduction of an outlier has little effect
on the quantile test but switches the traditional test from significance to
nonsignificance.

We now turn to the two-way layout. We consider a randomized block
design and describe an analog to the Friedman (1937) test. Suppose we have k
treatments and n blocks. In the univariate two-way layout the observations
are replaced by their ranks within blocks. Then these ranks are combined
into a quadratic form based on the k treatment rank sums. In the bivariate
two-way layout we replace the observation vectors by the bivariate quantiles

computed within blocks.

T . (1) (2] . - oo
Let gij : (qij ' qij } denote the quantile in the (1,j) cell,
corresponding to block i and treatment ). Then g} = (le)ng)) =
S n o2y .
(z qij b qij ) 18 the sum of quantiles for the )th treatment, ) = [,... k.
izl i=1

It remains to determine the permutation covariance matrix of the
quantiles. This 18 done by estimating within each hlock separately then

averaging over blocks. We define

[

The natural analog of Friedman's statistic 1.
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S = (k-1) igl(L§1)L§2’)(QTQ)'I(L§1>L§2’)T (26)
Skl Logh o 2z opa2), 1 g2
l-r ¢ 911 911922 922
where F(J) :i%1<L§J’)2, j=1, 2, ri12) :iglLil’L§2), and q;; is the (i,J)

element of QTQ in (24), and Tyg = qlz/(qllqzz)l/z-

If qgj), s = 1, 2, are the componentwise centered ranks in cell (i,Jj),
then we get the scale invariant test described by Puri and Sen (1971, p.279).
[f we use gpatial quantiles, we get a rotation invariant test and if we use

the affine invariant quantiles, we get an affine invariant test. Standard

permutation theory shows that an approximate size « test rejects the null

hypothesis of no treatment effect if S > xﬁ(k-l).




I - - h-’. - a ¥ \J . cl "" . -

-16-
References

Bickel, P. J. (1964). On some alternative estimates of shift in the
P-variate one sample problem, Ann. Math. Statist., 35, 1079-1090.

Brown, B. M. (1983). Statistical uses of the spatial median. J. Roy.
Statist. Soc. B, 45, 25-30.

Brown, B. M. and Hettmansperger, T. P. (1987). Affine invariant rank methods
in the bivariate location model. J. Roy. Statist. Soc. B, to appear.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675-701.

Hettmansperger, T. P. (198%). Statistical Inference Based on Ranks.

New York: Wiley.

Jaeckel, L. (1972). Estimating regression coefficients by minimizing the
dispersion of the residuals. Ann. Math. Statist., 13, 1349-1458.

Kruskal, W. H. and Wallis, W, A. (1952). VUse of ranks 1n one criteriun
variance analysis. J. Am. Stat. Assoc. 57, 583-621.

McKean, J. W. and Hettmansperger, T. P. (1976). Tests of hyvpotheses based un
runks 1n the general linear model. Comm. Stat.-Theory and Methods
A5.8), 693-709.

Nja, H. (:983). Desgcriptive statistics for multivariate distributions.
Stat. and Prob. Letters, |, 327-332.

ja, H. and Niinimas, A. (1985). Asvmptotic properties of the generalized
median 1n the case of multivariate normality.  J. Roy. Statist. sSoc. b,
T S I

Purt, M. [, and Sen, P. k. t1971)1. Nonparametric _Methods 1n Muitivariate
nalysis. New York: wWijeyv.

Puri. M. 1. and Sen, P. K. 1485, Nonparametric Methods 1n teneras ihedr
Models Johu wWiley, New York.



o LT

ARSI

Subspecies

-
=
3

W T

207 254 192
200 -7 154
19 7S 21
192 —a< 201
183 270 199
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197 279 194
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Table 1. Tail and wing

length data.
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