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Abstract

Oja (1983) introduced an affine invariant multivariate median. Brown

and Hettmansperger (1987) developed affine invariant rank methods in the

bivariate location model based on Oja's measure of scatter. Analogs of the

Wilcoxon signed rank and the Mann-Whitney-Wilcoxon rank sum tests were

presented. In Ahis paper we discuss-scale, rotation and affine invariance.
As

We-tien-discuss testsjin the bivariate linear model for an overall regression

effect.' In particular we"present tests in the one- and two-way layouts that

are analogs of the Kruskal-Wallis and Friedman tests.

Key words: Affine invariance, AOV, Kruskall-Wallis, Friedman, linear models,

spatial ranks.
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1. Introd' *ion and Summary

In this paper we present affine invariant rank-like tests and estimates

in the bivariate linear model. We describe a general test for an overall *#"

regression effect and then specialize the test to the one- and two-way

layouts. The tests are affine invariant analogs of the Kruskal-Wallis (1952)

test and the Friedman (1937) test. These tests are based on a notion of an

affine invariant rank vector that can be developed from Oja's (1983) work on

an affine invariant median. The analogs of the Wilcoxon signed rank test and

the Mann-Whitney-Wilcoxon rank sum test are developed by the authors (1987).

Along the way, we describe three possible extensions of the L, notion to

the bivariate setting. The three types of bivariate medians that result are:

the scale invariant vector of component medians, the rotation invariant

spatial median, and the affine invariant Oja generalized median. These form

the basis for the extension to three types of rank vectors in the linear

model. The main emphasis will be on the affine invariant version which is

illustrated on a data set in Section 3.. -6

We indicate in Section 2 that the Oja generalized median has better

efficiency than the other two medians for an underlying normal distribution.

Although we do not have asymptotic efficiency results on the affine invariant

tests in the linear model, we illustrate their robustness to outliers in the

example. In addition, affine invariance may be an important oonsideration i ,

a particular application and the tests presented here provide natural

alternatives to the traditional tests based on means. -
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2. Bivariate Medians and Invariance

We first consider the development of rank based methods in the

univariate linear model from the LI norm operating on a single sample. For a

given set of numbers yI, .... Yn define their center by e such that

n -,

D(O) Z (1) .-
i:1

i==%

is a minimum. It is well known that 9 is the median of the set (lyr. y

denoted 0 med yn' The derivative with respect to e exists almost N.

everywhere and is given by

Q(G) Z sgn( -y1). (2)

The estimrite 0 med Yi can be considered the solution of Q(G) 0 where

is interpreted as a sign change for n odd.

Next, Let r (f) yi - , 1,...n represent residuals in a linear

model, where x i' = (Xil ... ,Xip) and fl' : P ... . Then an estimate of -

is determined by minimizing

n ~1 .

n :''"
Z IRank r (P) .(

izi

* . ° .-
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Z Qlri(l )llri(#).

The second equality relates the estimate of P to the L, norm and the third

equality, achieved after a bit of algebra, relates the estimate of f to the

ranks of the residuals. Jaeckel (1972) proposed the rank version of D (P) as

a criterion for estimating P. McKean and Hettmansperger (1976) proposed

using the reduction in DS (P) when passing from a reduced to full model as a

criterion for testing hypotheses in the linear model. The fourth equality
results from Q(r i(P)) = Zjsgn(ri(P) - r.(fl)) = 2(Rank(rif)) - (N+I)/2). We

consider Q(ri( )(to be a centered rank or quantile of ri(P) in the sample.

Note that the dispersion measure Dt(P) is a linear function of the residuals

with weights determined by the quantiles.

Our goal is to carry an L, notion over to the bivariate setting. We

then will have a bivariate sample median with efficiency and robustness

properties related to the univariate median. Then we extend, via the ideas

in (3), to the linear model. The gradient Q({) acts as a bivariate quantile

and the result is rank-like tests and estimates in the bivarlite linear

model. The bivariate case is more complex than the univariate case and we

will consider three different L, notions.

vT
Let VT (Y1lY.2), 1,...,n be a set of bivariate observations, and

definE T = - Y 1i 1, ... ,n. We now present three bivariate

dispersion measures each of which entails different invariance properties for

the resulting estimates and tests. Let 0T 1i, then

then.

2-
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n
DI(O) : (1Yil-y-e + lyi 2-921}

2 ( 2 1/2

D2 (O) E + (52 i=I( i -Gl+ (Y 26

yil Yjl 91
D3 (() Z E I Idet Yi2 Yj2 02 I (6)

i(j .,.

The respective gradient vectors are given by

: sgn(O-Yi1i z gl2-yi2,
2 2 -1/2

Q2 E0) {(yil- 1 ) + (Yi2-02) (8)

93(e)= E Z sgnidet 0 (9)
i<j 

2

The dispersion DI(0) in (4) with Qlie) in (7) defines componentwise L,

methods. The estimate ;T (med yil' med yi2), is scale invariant but not

rotation invariant; see Bickel (1964). The dispersion D2 (e) in (5) with

92(o) in (8) defines the spatial median which is rotation invariant but not

scale or affine invariant; see Brown (1983). Finally, the dispersion D3(0)

in (6) with Q3 (0)~ in (9) is the sum of areas of triangles formed by taking 0

and pairs of observations as the vertices. Minimizing the sum of areas

results in the generalized median 0 proposed by Oja (1983). The Oja

generalized median is affine invariant.

Both DI(O) and D2(O) reduce to the L, norm in one dimension. This is

1 24

e-.5. , 5** *...-. 5~ p~.*.. ~ ~"-. °5

~~.- S-P
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not the case, however, with D3(0.. It seems that D3 (9) is more intrinsically

bivariate than the others. The three bivariate medians: componentwise

medians, spatial median, and Oja generalized median, have somewhat different

efficiency properties, but all are related to the efficiency of the

univariate median. The univariate median has efficiency .637 relative to the

mean when the underlying distribution is normal.

Following Bickel (1964, p.10 8 3 ), we define the efficiency of the

bivariate median relative to the bivariate mean to be (g-var(mean)/

g-var(median) 11 2 , where g-variance is a12022(l-p 2 ) and the parameters

are taken from the asymptotic covariance matrix. Bickel's Theorem 5.1

provides a formula for the efficiency of the componentwise medians when

the underlying distribution is bivariate normal. The efficiency, independent

of the variances, declines as a function of the correlation coefficient p from

.637 when p = 0. Some values of (p, efficiency) are (0, .637), (.2, .629),

(.4, .605), (.6, .558), (.8, .473) and (.9, .396). The spatial median, on the

other hand, has efficiency that does depend upon the variances but not on p.

Using Table 1 of Brown (1983) and Bickel's definition of efficiency, it is

easy to see that the spatial median is generally more efficient relative to

the mean for an underlying bivariate normal distribution than the vector of

componentwise medians. The efficiency depends upon the ratio of standard

deviations of the two components. If X is that ratio, then some values of (\,

efficiency) are: (1, .785), (.8, .783), (.6, .773), (.4, .747), (.2, .678),

(.05, .593) and (.01, .321). The efficiency deteriorates as the contour

ellipses of the bivariate normal distribution become very narrow. Oja and

Niinimaa (1985) show that the affine invariant Oja generalized median has

efficiency relative to the mean equal to .785, independent of the variances



and correlation. It is strictic" better than the spat ial median unless the

bivariate normal distribution is circular in which case the efficien y is the

same. Hence, the Oja generalized median has superior efficiency properties A

well as enjoying affine in, driance.

3. Tests in the Linear Model

The next step is to extend these LI notions for a single sample tu

different types of quantiles in the linear model. [sing (7) - (9) we arr:,<-

at the vector of component ranks, the spatial ranks and the affin- invarianr

ranks, respectively. These ranks then provide the basis for tests.

We first introduce the notation of the bivariate linear model. Let 'i b

an nx2 observation matrix in which the n rows are independent random veetur,

such that

E Y : E " : Z l,

n

where Z is an nx(p+l) matrix of known regression constants and i' is a p,-

matrix of unknown parameters. Let- t r Yi0) : Z . deriote t e i th .

residual ector where z T is the ith row A'-i

In each () f the three ,as es h it an bfe .,howr , , tt. .

2, Z,

-)< I , 2 U .r ( P' >
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LstD(A) ))(15)

st

XTQ

where

(1) (2)

qn n

T, test H A = 0 we must assess the size of L. The statistic we will

. be Hotelling-Lawley trace statistic given by

n-ITrace[LT(XXc) -L(QQ 1  (16)

n-I Trace[L(TQ)L (XTc)

-rier- , is the mean centered design matrix and we assume that QTQ and XTX

r isrigular, The trace form of S is not immediately intuitive and we

.r - i.e two motiatlons for S.

he firs, motivation, we roll out the px2 matrix L by columns into

It-

*L ' . . L ... L 17)
p p

: r .aif ,)f the vertor consists in the statistics relevant to

S mp,,nent and similarly for the second half.

-. nhal 'he lireet )r Kronecker product of two matrices is defined

................................. ..... . .. .. .. . . .

-" ' " '" - -, . . t . . 7 , . ,_ • . ; • ,. -. . ,, . .,_ , . , ",
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A xsB ~uarB arsB rtxsu

No", it is straightforward to verify that, under H0: A 0, the permutation

covariance matrix of L 0 is

Cov(L00 )~ (Q TQ):(X TX

Then the first form of S given in (16) reduces easily to

T T -1 T -1
S =(n-l)L001 [(Q Q) *(X X9 'IL (18)

This is a natural quadratic form for assessing the size of L. Let q13 denote

the (i,,j) element of (Q Q) and let L = (L~l ,L() from (17), then

18) becomes

2 2 )T T 1(j
S = (n-1) Z E q'jL 1' (X X )L.

Since (QTQ) -1is a 2x2 matrix it is easy to find the inverse and get

-xpllicit values of qlJ* If we let ( qi)q U)bete(j) lmnto

k:1

r1/.4 Q) and let r2 ql2/(qllq 2 2)', the correlation between the columns of

~,then
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S =(n1)L~) (TX) 1 ~ +2 q12 L() T (T -1L2)

Ir22ql1I "C qll 122 -. .. .

+ L L(2 )T(XTx )-lL( 2 )1 119)q; 22 " c .

This shows that the multivariate test statistic is composed of the

corresponding componentwise test statistics along with a cross component

statistic. The combining weights depend on the variances and covariances of

the quantiles.

For the second motivation, we roll out L by rows into

L T , ' l L ( ) ( 1 L ..• •L(2
.row 1 1 2 2 p

Under HO: a = 0, the permutation covariance matrix of Lrow is

Cov(Lr 3 1 (Xx *)- T

.row *c-c ftf

Then the second form of S in (16) reduces to

S: (n-1) LT [X o X), *,Q , Q IL-row ftcc f9 'row

another natural representation of S as a quadratic form for assessing the s.ze

of L.

Let xcJ denote the (i,j) element of (XCXc then S in '20 can bec

written

p p . T. T -
S (n-i) Z Z X'JL: WT -1 L

i:l j: c - - (j)

where L (L 1 )L(2)). This provides a nice interpretation be aos, 'n-
whreLi) : L i

square of the univariate statistic is replaced by a quadrati.- f!rm ."

components of the bivariate statistic.

2I --
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We finally note that to test HOvs that test for

an overall regression effect, we reject H0 if

S > ~(2p) (22)

where x"(2p) is a chi-square critical value. This test has approximate

significance level a. The limiting chi-square distribution follows from

standard permutation arguments; see, for exampl,, Puri and Sen (1985).

We next specialize the statistic S to the one- --d two-way layouts. In
N,

the one-way layout, we suppose that we have k samples of size n1 , ... nk,

from continuous, bivariate distributions with location vectors 01 ... 'k' and

we wish to test H0: -k " . The design matrix X consists of columns

of zeros and ones. In the regression setting one column can be dropped to

insure full rank. If we drop the first column, then the matrix L, rolled out

o;- y ?oiumns is LJ : UL . . . .IIL2 2 (is h
-o. -, ...L ) and, for example, L is the

sum ,f the first components of the combined sample quantiles corresponding to
T

ne se,,ona sampie. The matrix X along with AXx is gi-en by-IC-

ie-mansperger .184. p. 58. The eiement x n + n if i and xi0 ~l ~!

;X " %P an now Jescr ibe he wo 'ers ions of S, 119 and '21, for

J.

' -- ne-wa. .av . rim >. w ! .d

. - ...I .b.

-r, _
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first component of the quantiles, similarly for (n-l)q H(2), whileH(12

is a cross component statistic.

From (21) we find

k _ L2))(QTQ)(L((2) T

* (n- Z nil (L1  1 1 (24)

This corresponds to a Kruskal-Wallis calculation using the k quadratic forms.

If : R i) - (n+l)/2, i = 1,2, j = 1,...,n are the centered

componentwise ranks in the combined sample, then S is the test discussed by

Pur and Sen (1971, p.186) and is a direct generalization of the univariate

Kruskal-Wallis test. If ii is taken to be a bivariate spatial quantile, then

a rotation invariant test results. Our primary interest is in describing the

affine invariant version and to that purpose we now present an example.

Example:

In Table 1 we present data on tail length and wing length for 4

subspecies of birds, and we wish to carry out a test to see if the location

vectors differ among the subspecies.

- Table I about here -

Since the data is arrayed in a one-way layout, we will use the

affine invariant test based on S in (22). We find S = 36.5, and if a .01,

the approximate critical value is xl(6} = 16.8. Hence, the null hyothesis

')f no difference among the 4 population location vectors is easily reje-cted.

In Figure la, we present plots of the data and the corresponding

quantiles. To illustrate the effects of an outlier, we changed the first

cmponent of the first obser,'ation in Table 1 from 207 to 2.7. The resulting

\alue of S is 33.0, still highly significant. In Figure Ib, we present the

. " . . ".. " . " . . ". " "." " - , " " .- - "
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new plots of data and quantiles.

-Figure 1 about here -

Generally, the statistic S will be less effected by outlying data than

the normal theory based Hotelling-Lawley test. The authors (1987) provide a

two-sample example in which the introduction of an outlier has little effect

on the quantile test but switches the traditional test from significance to

nonsignificance.

We now turn to the two-way layout. We consider a randomized block

design and describe an analog to the Friedman (1937) test. Suppose we have k

treatments and n blocks. In the univariate two-way layout the observations

are replaced by their ranks within blocks. Then these ranks are combined

into a quadratic form based on the k treatment rank sums. In the bivariate

two-way layout we replace the observation vectors by the bivariate quantiles

computed within blocks.

Let (qu') q(2)) denote the quantile in the (i,j) cell,

corresponding to block i and treatment j. Then LT (LM L12)

n (l) ( 2)
Z qij Z qij) is the sum of quantiles for the jth treatment, ,j I. .

i:l 1:1

It remains to determine the permutation covariance matrix of the

quantiles. This is done by estimating within each block separately then

averaging over blocks. We define

I TI r :
n *- TF 7 I j 1,')1 1 )

The natural analog of Friedman's stat st it, i,

7 r-"

""'"S , t ' " " " " "" " 'l ' d d 'L :
" ' '

" " * ' ' " "" " " ' ' " 
"
" " "
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n (' L(2) (QT Q)" 1 ( L I 2 )T
S (k-1) Z (LiL i i (26

k-i ( F 1l - 2q1 2  F(12 ) + _i__ F(2)1

1-r12 2 q F qllq 2 2  q22

where F Z (L[J))2, J 1, 2, F1 12 ) = Z L(IIL'2), and qij is the (i,j)

izI izi 1 1

element of QTQ in (24), and r12 = q1 2 /(qllq 22 )
/2

(8)

If , s 1, 2, are the componentwise centered ranks in cell (i,j),

then we get the scale invariant test described by Puri and Sen (1971, p.279).

If we use spatial quantiles, we get a rotation invariant test and if we use

the affine invariant quantiles, we get an affine invariant test. Standard

permutation theory shows that an approximate size a test rejects the null

hypothesis of no treatment effect if S > (k-1).

f'
a
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Subspecies
1 2 3 4

T W T W T W T W

_q. 197 282) '7~ 2$ 875
* 20K' 2~ 290 17352t 18.6 7.

1.3 -8 -. 1 8 : 71

1.q_ 22 2 5794 i8 256 I'll25
j7 194 6 294 122 257 17K 2 577

.Qt.

2u2 77 C -99 19!5 27--,1 1 -9 2S

13= 271 175' 27 174 25

Table 1. Tail and wing length data.
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