
D-A175 988 DYNAMIC SHARING OF THE SYSTEM RESOURCES IN MULTILEVEL i/2
SECURE SYSTEM(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
N M A REYES 26 SEP 86

UNCLSSIFIE /G 9/2L

EhlhhhhhhhhhhE
EhhhhhhlhhhhhE
EhhhhlhhhhlhhE
EIIIIIIEEIIIIE
Ehhh/hhhhEEEEE
L___.//II7IIH

IIHI...J..Q. 328

IIHI~ 2

mli

1_5 111.6

O NAVAL POSTGIRADUATE SCHOOL
00 Monterey, California
Ln

>N4 DTIC
IIELECTE 1

JAN 1419810

THESIS
DYNAMIC SHARING OF THE SYSTEM RESOURCES IN

MULTILEVEL SECURE SYSTEM

by

Miguel Angel Reyes

September 1986

Thesis Advisor: Gary S. Baker
-Jn

Approved for public release; distribution is unlimited

87 1 13 04 ,

SECURITY CLASSIFICATION OF THIS PAGE

REP(%QT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSunclassified

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONI AVAILABILITY OF REPORT
__ Approved for public release;

2b DECLASSIFICATION /DOWNGRADING SCHEDULE distr ibut ion is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

ba NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate Schooll Naval Postgraduate School

6C ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Sa NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

ic ADDOESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK 2NIT
ELEMENT NO NO NO ACCESSION NO

'I TTLE (Include Security Classification)

•.. DYN.MIC SHARING OF THE SYSTEM RESOURCES IN MULTILEVEL SECURE SYSTEM

ERSONAL AUTHOR(S) Reyes, Miguel Angel

. TypOr REPORT 13 b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 115 PAGj COUNT
:Master's Thesis FROM TO 6 September 26 lT

'6 SLPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
;ELD GROUP SUB-GROUP sharing system resources; Gemini Trusted Multi-

ple Microcomputer Base machine; Janus/Ada

IBS7RACT (Continue on reverse if necessary and identify by block number)

This research represents a preliminary step in the development of a
reliable application program simulating an operating system which handles
several multi-security-level users dynamically sharing system resources

-. in the Gemini Trusted Multiple Microcomputer Base machine.

The proposed design presents the necessary steps to follow when working
in a multilevel configuration. The use of primitives that support the

S application design are explained along with a description of the imple-
mentation of this application using Janus/Ada language. In addition,
security constraints are identified and system test results are described

.,

,-

S 'P.3 TION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

").CLASSIFIEO/JNLIMITED C0 SAME AS RPT 0 DTIC USERS unclassified
, a.J .AME OF RESPONSIBLE I!.DIVIOUAL 22b TELEPHONE (Include Area Code) 22c OFI C.E SYMBOL

CDR Gary S. Baker (408)646-2073 52Bj
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF ',4iS PAGE

All other edit,ons are obsolete

_ .- .".

Approved for public release, distribution is unlimited

Dynamic Sharing of

The System Resources In
Multilevel Secure System

by

Miguel A. Reyes

Major, Peruvian Air Force
B. S., Peruvian Air Force Academy, 1973

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCI-ENCE

from the

NAVAL POSTGRADUATE SCHOOL

Author:

Se

Approved by:
Gary .4aker, Thesis Advisor

Uno R. Kodres, Second Reader

Kneale T. Marshall, -
Dean of Information and Policy Sciences --

5%

(ABSTRACT

This nm -- represents a preliminary step in the development of a reliable

application program simulating an operating system which handles several multi-

security-level users dynamically sharing system resources in the Gemini Trusted

Multiple Microcomputer Base machine.

The proposed design presents the necessary steps to follow when working in a

multilevel configuration. The use of primitives that support the application design

are explained along with a description of the implementation of this application

using Janus/Ada language. In addition. security constraints are identified and

system test results are described. -
I Vj

Accesion For

NTIS CRAM
OrlC TAB 1

U.,annou,;jced El

L ik!-.tficaoll
By
Di ib-_tion I

. Availabdity Code$

D3andIo

I~

DISCLAIMER-

The reader is cautioned that computer programs developed in the research

may not have been validated. However every effort has been made to ensure that

the programs are free of computational and logical errors. The nature of this

research and the time available were not sufficient to validate completely all the

software developed.

Many terms used in this thesis are registered trademarks of commercial

products. Rather than attempt to cite each individual occurrence of a trademark.

all registered trademarks appearing in this thesis will be listed below

1) Gemini Computers Inc., Monterey California

Gemini Trusted Multiple Computer Base
GEMSOS

2) RR Software Inc.. Madison, Wisconsin

Janus/Ada Development Package

3) Digital Research. Pacific Grove., California

Pascal MT+
CP/M-86

4) Intel Corporation. Santa Clara. California

INTEL
MULTIBUS
APX-286

5) Xerox Corporation. Stamford. Conneticut

ETHERNET. Local Area Network

6) Digital Equipment Corporation, Maynard, 'Massachusetts

Vax 11/780 Minicomputer
Unix Operating System

4

- J~

TABLE OF CONTENTS

I. IN T R O D U CT IO N .. 9

A. GENERAL DISCUSSION .. 9

B . T H ESIS FO R M A T .. 11

II. B A C K G R O U N D ... 13

A. TRUSTED COMPUTER SYSTEM .. .13

B. GEMINI TRUSTED MULTIPLE MICROCOMPUTER
B A S E 15

1. G eneral Inform ation ... 15

2. Resources M anagem ent .. 16

a. Segm ent M anagem ent .. 17

b. Process M anagem ent ... 17

c. D evice M anagem ent ... 17

3. Gem ini Security Architecture ... 18

4. Naval Postgraduate Scholl Version of Gemini 19

III. SOFTWARE DEVELOPMENT OVERVIEW 20

A. GENERAL DESCRIPTION ... 20

B. HIERARCHICAL STORAGE STRUCTURE 21

C. I/O DEVICE ASSIGNM ENT ... 24

D . PR O CESS CR EA T ION ... 24

1. Create / Makeknown Segments Module 26

2. Address Space Specification M odule .. 27

3. Register R ecord M odule ... 28

4. Resource R ecord M odule .. 28

5. C reate P rocess M odule .. 29

E. LOCAL DESCRIPTION TABLE (LDT) 29

F. CREATE/DELETE SEGMENT 30

G. MAKEKNOWN/TERMINATE SEGMENT 30

H. SWAPIN/SWAPOUT SEGMENT ... 31

I. SY N C H R O N IZA T IO N ... 31

IV . SY ST E M D E SIG N 32

A . IN IT IA L D E SIG N .. 32

9 1. O bjectiv e .. 32
2. Initial D esign C onstraints ... 32

B. C O M PR O M ISE D ESIG N .. 34
1 . O b je c tiv e 3 4

S5

1IO

Bk

2. Actual Design Constraints ... 34

3. Hierarchical Structure Design .. 36
C. SYSTEM SOFTW ARE DESIGN ... 39

1. Application Programs Design ... 39
a. Load Parameters Module ... 40

b. Create Segments Module ... 40
c. Create Process Module ... 42

d. Synchronization Module .. 42

e. Delete Processes Module ... 44
f. Terminate Segments Module .. 44

g. Delete Segments Module ... 45
2. User Handler Application Program .. 45

a. Load Parameter module ... 45

b. Create Segments Module ... 45

c. Create Process Module .. 46

d. Synchronization Module ... 46
3. Active User Application Program ... 48

a. Attach_ terminal ... 48

b. Loop Module .. 48
c. Detach terminal Module ... 49

d. Self delete Module ... 49

V. IM PLEMENTATION ... 50

A. GENERAL DISCUSSION .. 50

1. Primitive Calls ... 0
2. Auxiliar" Functions .. 51

B. IM PLEM ENTATION CONSTRAINTS ... 53

C. IM PLEM ENTATION STEPS .. 54
1. Single User, Single Security Access Level 54

2. Several Users, Sigle Security Access Level 55

3. Several Users. Multilevel Security Access 55

D. SYSGEN SUBM IT FILE ... 57

VI. CONCLUSIONS AND RECOMM ENDATIONS 58

A. CONCLUSIONS ... 58

1. S O 3 8

2. System Performance.. 39

B. RECOMM ENDATIONS ... 59

1. Hardware Improvements ... 59

46

- V

2. Softw are Im provem ents ... 59

3. F uture R esearch .. 60

a. Directly Related to this Research .. 60

b. Related to Secure Mass Storage System 60

APPENDIX A - MAIN APPLICATION PROGRAM (CCP) 61

APPENDIX B - USER HANDLER APPLICATION PROGRAM 73

APPENDIX C - ACTIVE USER APPLICATION PROGRAM 81

APPENDIX D - PRBDOS APPLICATION PROGRAM 86

APPENDIX E - COMMON PROCEDURES UTILITY 90

APPENDIX F - SERVICE ROUTINES AND ADDITIONAL
D A T A STR U CT URE .. 105

APPENDIX G - SYSGEN SUBMIT FILE (SSB) .. 122

LIST O F R E F E R E N C E S .. 123
IN IT IAL D IST RIBU TIO N LIST ... 124

-.?

El t

I,,

LIST OF FIGURES

1.1 M icrocomputer System Organization .. 11

3.1 H ierarchical Structure ... 22

3.2 Hierarchical Structure including an application 23

3.3 Process Creation M ain M odules .. 27
4.1 In itial D esign 33

4.2 Actual Design.. 35
4.3 System : H ierarchical Structure ... 37

4.4 Address Space Specification for each user process 38

4.5 Hierarchical Structure : User Processes .. 38
4.6 M ain A pplication Program .. 40

4.7 System P aram eters .. 41

4.8 User Active Application Program Modules 47

5.1 M ain Application Program LDT ... 56

Ui

• ° 8

. R R ' -P. . -
__ V l t RU. " . % " . " "i'" - " '

I. INTRODUCTION

A. GENERAL DISCUSSION

This thesis presents the design and part of the implementation of software for

the Gemini Computer, under CP/M-86 and GEMSOS Operating Systems, to

allow the dynamic sharing of system resources in a multilevel secure computer

system, using Janus/Ada language as a host language.

Security has traditionally been provided by physical measures (fences. police.

dogs. alarms, etc.) to prevent unauthorized access to computers. But today this is

no longer sufficient. The extensive use of networks brings the possibility of

uncontrolled access to the resources of any installation from r'_-mote sites.

Discretionary security measures. i.e.. "password" types. alone are not totally

adequate where security of information is paramount [Ref. I!. Steps must be

taken to strictly reinforce a non-discretionary policy as well. This situation

provides enough motivation to look for more reliable methods to control and limit

the access.

This necessity of Trusted Computers is even more critical and compulsory in

military organizations, where many delicate decisions depend on the quality of the

information, which if known or modifiable by unauthorized users. creates a risk to

the country's security.

L L,

The Naval Postgraduate School is involved in the use of microcomputers in

its Microcomputer Laboratory in which several of them are networked together

through a concentrator for information sharing. These systems are to be used by

people with different levels of security clearance who handle information with

multiple security classifications. This application necessitates the use of a mass

storage system with the ability to limit access to. classified programs and data.

The only effective way to insure multi-level internal security is by employing a

Trusted Computer Base [Ref. 21 such as provided by the Gemini computer.

Figure 1.1 shows the proposed configuration of a microcomputer system

having the Gemini computer at its base. The Gemini System provides the base

layer of an operating system which implements internal information security

through a "security kernel" design Ref. 3:pp. 1-21. To construct the

architecture proposed in Figure 1.1 requires implementing the top layer of the

operating system for handling the Input/Output operations. Three design

elements can be identified

1) The Concentrator. The concentrator will contain a software "crossbar
switch" which allows dynamic switching for I/O interconnection between
attached systems.

2) The Dynamic Assignment of Security Access L- vels to I/O devices. In this
aspect. the main idea is to manage the access level of the terminal without
relating it to an specific connection. The access level should be dynamically
recognized by the characteristics of the user. rather than be limited to a
secondary issues such as location or terminal number. This is the main topic
addressed by the current research.

~A-

10

;,,,, - ; < .. :,..... ,: - ,% 4:

Concentrator a4

Z- 100
Microcomputers

Figure 1.1 Microcomputer System Organization

3) A Segmented "File" System for Mass Storage. The purpose of this system
would be to provide a one-level segmented storage system for mass secondary
storage (hard disk) within a secure environment.

B. THESIS FORMAT

This thesis is composed of six chapters organized in such a way as to provide

the reader with Lhe background necessary to understand internal multilevel

computer security concepts. in particular dynamic sharing of system resources.

Simpie guidelines in software development are introduced and a design is

presented for the implementation of a prototype system which allows several users

with different clearance levels to share system resources.

Chapter I provides general information focusing on reasons why Multilevel

Zecure Systems are important.

11

~I IL

Chapter II addresses the background necessary to understand Multilevel

Security concepts and explains the Gemini System Architecture and possibilities.

Chapter III provides specific information related to the steps necessary to

produce basic application programs in the Gemini System.

Chapter IV describes the design of a small "Operating System" application

program that will handle dynamic sharing of resources, in particular I/O.

Chapter V presents the description of the support modules used to develop

application programs. and describes the implementation constraints and the steps

performed to complete an application.

Chapter VI discusses the results obtained from this research effort. It also

suggests future investigations in this field as a continuation of the work performed

in this thesis.

12

II. BACKGROUND

A. TRUSTED COMPUTER SYSTEM

Most of the basic concepts and definitions mentioned in this section are

referenced to the standardization performed by the Department of Defense (DoD)

related to Trusted Computer Systems. These standards are contained in "DoD

Trusted Computer System Evaluation Criteria" [Ref. 2] published in 1983: it lists

definitions and concepts. and provides detailed criteria pertaining to the test and

evaluation of trusted computers.

The security policies considered are mandatory (non-discretionary) security

and discretionary security.

Mandatory Security is defined as

Security Policies defined for systems that are used to process classified or
other specifically categorized sensitive information must include provisions
for the enforcement of mandatory access control rules. That is. they must
include a set of rules for controlling access based directly on a comparison of
the individual's clearance or authorization for the information and the
classification or sensitivity designation of physical and other environmental
factors of control. The mandatory access control rules must accurately reflect
the laws. regulations. and general policies from which they are derived. Ref.
2:p. 721

Discretionary Security is defined as

Security Policies that are defined for systems that are used to proces-s
classified or other sensitive information must include provisions for the
enforcement of the discretionary access control rule!s. That is. they must
include a consistent set of rules for controlling and limiting access based oii

13

NK & '

identified individuals who have been determined to have a Need-to-Know for
the information. [Ref. 2:p. 73]

As the names imply. mandatory policy contains a set of rules " at are

imposed on all users in the organization. and discretionary policy is a specific set

of rules further limiting access on a "need-to-known" basis.

A multilevel secure system in a conventional computer system is impossible to

attain without a way to enforce the policies previously indicated. Security can be

broken without knowledge of the user because intentionally or not, there are

possible unsecure points that will allow access to the system. A typical example of

this problem is a "Trojan Horse" program [Ref. 4:p. 66] provided by a third

source which may have code intentionally "hidden" with the purpose of copying

the user's access control code [Ref. 5:pp. 55-56] when the user executes the

program. This represents an illegal condition.

The mandatory (non-discretionary) and discretionary policies are
V.

implemented in a "security kernel" which provides mechanisms for limiting the

access to the information. Security Kernel is defined as the hardware and

software that realizes the "reference monitor" abstraction (i.e.. the realization of

these limiting policies), and in turn provides the idea of protection in which the

active entities (subjects), such as people or computer programs. make reference to

passive entities (objects). such as documents or segments of memory. using a set

of current access authorizations [Ref. 6:p. 14]. The access class is divided into

[Ref. 6:p. 16]

% 14

a) Compromise (observe) which states that a subject can not "observe" the
contents of an object unless the access class of the subject is greater than or
equal to the access class of the object.

b) Integrity (modify) which stipulates that a subject may not "modify" an
object unless the object's access class is greater than or equal to the access
class of the subject.

The multilevel secure system considered in this research is focused on the

access of many users to common system resources without restriction of a

designated resource to a specific kind of user. Specifically, any user can utilize any

terminal, and the access class in not limited to physical terminals with fixed

access levels. The user priviledges. will be determined during a logon process when

the user provides his username and password.

Additional explanations and details concerning secure communication

methods and possible threats involved are described in [Ref. 7:pp. 15-28) and [Ref.

S:pp. 19-211.

B. GEMINI TRUSTED MULTIPLE MICROCOMPUTER BASE

1. General Information

Gemini Trusted Multiple Microcomputer Base was the computer used in

the research of this thesis. It represents an advance in technology combining

several concepts, Multilevel Security, Multiprocessing and Multiprogramming. to

provide an important Trusted Base Machine that can be considered for a wide

range of computer applications where security is a fundamental consideration.

Actually, it has been evaluated by the U.S. Department of Defense for

15

/ 4

certification to meet the B3 class [Ref. 3:pp. 1-21. and is currently undergoing

evaluation in a specialized application for Al class.

The major features of this system are [Ref. 3]

1) Up to 8 Intel iAPX286-Base microcomputers are connected on the same
Multibus.

2) Minimization of bus contention by locating data and code segments in the
-J local memory of each microcomputer, whenever possible.

3) Capability of multiprocessing and multiprogramming. The Gemini Secure
Operating System (GEMSOS) can multiplex many virtual processors onto a
single physical processor. and support combinations of parallel and pipelined
processing.

4) Connection of different storage and I/O devices using an RS-232 Interface
Board which can handle up to 8 ports.

5) The system includes a Bus Controller. a Real-Time Clock. a Data Encryption
Device (NBD-DES. Algorithm). a Non-volatile Memory for storing system
passwords and encryption keys. It also provides a System-Unique Identifier.

6) Each iAPX286 microprocessor supports 4 hierarchical privilege levels.

7) CP/M-86 Operating System is used for software development and several
-* different programming languages are available to develop application

software.

8) Modular Expansion and Configuration Independence.

2. Resources Management

At the heart of the Gemini computer system is the GEMSOS operating

system as previously mentioned.

GEMSOS resource management services are invoked by an application

program through a set of calls to a collection of subrcutines which represent an

16

interface between GEMSOS and the application. Each language compiler has a

unique interface library [Ref. 3:p. 4]. GEMSOS manages three classes of entities

segments, processes. and devices.

a. Segment Management

All the information is stored in logical objects called segments which

) are handled by the application programmer using segment management calls.

These operating system calls are described in detail in [Ref. 9:p. 10].

b. Process Management

A process can be viewed as an application program that runs under

the control of GEMSOS to perform some specific activity. The process is created

by the application program using service calls related to the process management

described in [Ref. 3:pp. 5-8[and [Ref. 9:p. 23[. In addition to Process

Management. there are additional concepts related to process synchronization in

which the application programmer has tools to sequence processes that

communicate with each other. Synchronization is obtained utilizing eventcounts

and sequencers [Ref. 10:pp. 115-1241 associated with processes. A working

explanation will be provided in Chapter IN'. Process Synchronization calls are

described in detail in :Ref. 3:pp. 6-V and [Ref. 9:p. 33].

c. Device .Management

The dce;ign of the I/O management functions of the Kernel are novel.

The basic idea consists of reducing the code needed in the Kernel to control I/O

functions. by incorporating many of the details within the application program.

17

.%

The result is a reduction of the Kernel's size and the verification is easier.

Security checks are performed only when the device is attached to a process [Ref.

3:pp. 8-9]. I/O management service calls are described in [Ref. ll:p. 381.

3. Gemini Security Architecture

Since the iAPX286 Microcomputer supports 4 protection levels. GEMSOS

uses these levels to enforce the security critical layering of the system. Protection

levels are called Ring 0 thru Ring 3. with Ring 0 the most privileged ring [Ref. 3"

p.101. Ring 0 supports the Mandatory (non-discretionary) Policy and Ring 1

contain; the Discretionary Policy. the combination of which comprising the

Security Per:-neter and the greater portion of GEMSOS.

Ring 1 also :,.,: functions such as user authentication. system security

officer functions and audit functions. Ring 2 is used for common services utilized

by many users. e.g.. Database Management System: Ring 3 is used as application

layers for programs and data: both are outside of the Security Perimeter and can

be used during the system development process (i.e.. as in developing the upper

laver of an application system as is the focus of this research). and for the

execution environment for user's programs.

Process management in the GEMSOS architecture is through the use of a

" two level traffic controller design (inner traffic controller or bottom level. and

upper traffic controller).

The inner traffic controller binds a physical processor with a fixed number

of "virtual processors". Two of these are used to support system services (an idle

18

l"'V

virtual processor and a manager virtual processor) and the others are available to

the upper level traffic controller. The inner traffic controller also provides the

primitives for synchronization between virtual processors emulating a

multiprogramming configuration.

The upper level traffic controller multiplexes a number of processes onto

the virtual processors defined by the inner traffic controller. These functions are

performed in each of the physical processors comprising the Gemini computer (up

to 8) Ref. 7:pp. 14-15]. through a distributed operating system.

4. Naval Postgraduate School Version of Gemini

a. One APX286 Microcomputer
b. Two 1.2 Mbyte floppy disk drives
c. One RS-232 Interface Board (max 8 ports)

With this configuration. GEMSOS must multiplex the processes created

onto virtual processor- and then onto a single physical processor. The

synchronization primitives support the communication among processes. It is

important to note that in this configuration. a multiprocessing environment does

not exist. The potential for exploiting processor parallelism does not exist.

I%

19

III. SOFTWARE DEVELOPMENT OVERVIEW

- A. GENERAL DESCRIPTION

This chapter provides the foundation for the necessary steps to develop

software in Gemini machines. It is important because it provides the basic

components that are needed. Considering that Gemini is a new concept in

Multijevel Secure machines. it is still not user friendiv. A bridge between the

application programmer and the operating system service primitives had to be

createi it. order to develop reliable software.

The ka vemini operating ,vstem is limited and only supports those

operating ,.wtelil functions which are concerned with system security. Thus. only

* an operating "-teI base is provided upon which an upper level i.e.. I/O handler.

efie manaler. etc. must 'W provided to support specific user requirements.

11hbroutirres or modules were prepared to perform the interface between the

programer arid t he operating system primitives. A complete explanation of

these irieMle- is provided in the design and implementation chapter..

Th objective of thik chapter is to present an ordered method of developing

a ppicat ilr: ,ftware. within the, ervironnient. It -hould be considered as a guide

Sand :' a- a fi:X',,t vt irl, The fact, consilered here are taken from the user's

20)

""N.
- I ~ . * *.~ 4. *~ 4. -. . ~ * * * * * ~ . %

*B. HIERARCHICAL STORAGE STRUCTURE

The Gemini System provides a one-levei secondary storage system for

information (In the NPS configuration. secondary storage refers to floppy disks).

File concepts are not supported by Gemini. but instead segments are used which

are considered as objects having logical attributes related to them (i.e.. security)

and being of a maximum 64 K bytes size. Segmentation is extended to secondary

storage, providing the one-level storage system.

The segments are handled by the system as a hierarchy. where each segment

is identified by a unique path name. This segment's "handle" corresponds to the

index of an entry in the Local Description Table (LDT) of the process that creates

and/or uses the segment. As such. a single segment can have many different

handles depending on where and how many processes enter it into their respective

LDT tables. But it has only one unique path name in the hierarchy.

The representation of segments follow a hierarchical structure in which the

root is the System Root (transparent to the user) and the whole collection of

segments is assembled as an inverted tree. Each user's program is part of the

hierarchical structure and it is declared as a segment that is statically created at

system generation time using the Svsgen Submit file explained in IRef. ll:pp. 12-

Sstem generation consists of creating a hierarchical structure of all segments

known to the system at system runtime. in particular at system "Bootload". It

basicallv is the inclusion of the segment hierarchy comprising the upper levels of

21

A %
.oi

% ,.• . .. - . * - • • , . " . " . " - " . - . " .,' . " , . " . " . " . " . " , .

the application target system, into the provided base level hierarchy that is known

as GEMSOS. This is accomplished by utilizing segments declared in the submit

file. i.e.. the sysgening process creates a hierarchy using the segments indicated in

the submit file.

Figure 3.1 shows a typical hierarchical structure representing the entries that

GEMSOS requires to run programs. This structure is fixed and must be

considered in the development of any application program. Figure 3.2 shows the

addition of segments necessary to execute a specific application. Entry 5 in the

hierarchical structure is always dedicated as the "root" of user applications. This

entry is the root or mentor of all the segments that are needed to implement the

upper levels of the system application program. Under the Gemini concept. a

segment can support up to 12 descendants (entries) numbered from 0 thru 11. To

XV. DS

0 1 2 3 4 5(applic a

SSAT Viloader V1loal r ltrap

code stack code

NV.DS Vilogin applic
code COde

Figure 3.1 Hierarchical Structure

22

,,,V. , , ' ',. .,'V ''-,.... ''' J "" ':'

support this concept there is an "aliasing" table that relates the segments to their

mentors: a segment can only have one mentor (Ref. ll:p. 1.

When an entry is used. it cannot be assigned again until a delete segment call

marks this segment as available. The numbers indicated in both figures

correspond to entry numbers of segments associated with a mentor (from 0 thru

11): segment numbers have a different enumeration. which correspond to their

entries in the LDT.

Each segment in the system has a unique pathname that identifies it. but this

identifier is not used by the application processes. Instead a process-local segment

number is used. When two processes share the same segment. each one recognizes

the segment by the number assigned in its own LDT.

System Mentor

NV.DS

SSAT V1loader Viloaler Ritrap
code stack code

NY.DS V1login applic cd

code code

chid chld

stack data

':1 Figure 3.2 Hierarchical Structure including an application

'R

V -

W fi-, m . r w rrr w rrrr. W - W*W - W - 7 . _ aS fl- . .-W _ . - . - P .r T.r .

In Figure 3.2 the path 5.7 corresponds to a segment that holds the code of a

child application program and must be declared in the Submit file. Entry 5 is the

mentor of Entry 7. This creation is static and the path indicated must be known

in the application program. On the other hand. the path 5.5.7 is used to hold data

and will be created dynamically during execution of the application program. A

more complete explanation is presented later in this chapter and in Chapter IV.

C. I/O DEVICE ASSIGNMENT

The process of "Attaching Devices" must be accomplished before an I/O

device becomes "known" to the system. It involves assigning a logical process to

the IO device so that the device then is known by its process. The process then

contains the device drivers. This step is necessary before any I/O operation. A

device can be declared either as a Read (input) or Write (output) device, as part

of the information provided to the Attach primitive call into GEMSOS Ref.

9 :pp. 39-41]. A device can be attached to only one process at a time. an error will

occur if an attempt is made to attach a device more than one time.

The inverse step is called Detach devices, in which the associated process is

eliminated and the device becomes available for further assignments [Ref. 9:p. 42}.

D, PRO(E. REATION

This section describes the steps that should be considered when creating a

proce",. Onrc prorc, is created from another. The "creator" process is known as

wth parent arid(th(createt proces, is known a, the child. also having its own

24

%N

1

•-0

unique identifier. The child proccss receives its fixed amount of resources from the

parent. subtracting from the parent's overall resources. A process is a collection

of segments known to the process. The segments are managed using a set of

primitive functions or "calls" provided by the system. An address space is created

to hold a segment. The application programmer must make use of GEMSOS

primitives in creating and using this address space.

The sequence of steps that must be followed in order to create a process.

starts with the creation of a segment in the address space using the resources

available on secondarv storage. The primitive create is called, resulting in the

creation of the address space for this segment. The next step links the space

created with a specific process that will use it. In other words. a recognition of this

segment is performed in which the process makes the segment known to itself by

entering it in the next available entry in its local description table (LDT). The

result is the identification of this address space by a number that is called

segment number which will be used when the segment is referenced. The

prinlitive used i makeknown. The result is the identification of this segment for

the proce~s and to the system.

The last step is related to the utilization of this segment: a segment must be

in tiait, rxipmory in order to be used. This function is performed using the

prititive swap-in, which produces the loading of the segment from s-econdar"

storage into main ieniory.

25

4.

When the segment is no longer needed by the process. i.e.. process completed

execution. an inverse action must be performed in order to release the space used

by the segment. As in the steps declared above, a logical sequencing must be

followed, starting with the release of the memory used by the segment. This is

performed by the swap-out primitive in which the segment is written back out

to secondary storage. The next step is the elimination of the association

segment-process. Elimination of a segment from a process* address space is

performed by the terminate primitive: the association is broken. and the entry

number used in the LDT of that process is available again.

The total removal of a segment from the system address space is

accomplished by using the delete primitive: the result is the removal of the

segment from the system and process local name space. and the returning of its

address space back to the system resources. The steps necessary to create a

process are indicated in the Figure 3.3.

1. Create / Makeknown Segments Module

A process needs a minimum of two segments. a code segment and a stack

segment. in order to be created. The code segment for a process is declared in the

Sysgening Submit file and is created automatically by the system during the

system generation (statically).

The stack segment, as well as any additional segments. are created in the

user's program (dynamically) by making the appropiate operating system calls for

Create and Makeknown. These calls will be explained later in this chapter.

26

crat.'fill the jialz fill the cl
aakknwn address reitr resource cet

segments space record rcr rc.

otac Fode workc

Figure 3.3 Process Creation Main Modules

2. Address Space Specification Module

The address space specification contains a list of the segments that will be

passed by the parent process to the new process (child). In addition. the attributes

of each segment to be passed are loaded into this module. The address space

specification of a process is composed of 5 segments : a stack segment. a code

segment (both are compulsory). 2 free segments (can be used as application

mentor and for holding data) and a trap segment that is automatically created (it

is declared in the submit file) and handled by the system. It holds information for

GEMSOS that will be used when a user trap fault is detected. These segments

correspond to entries 20 thru 24 of the Local Description Table to be associated

with each process.

27

.-- "~.V

3. Register Record Module

This module performs the initialization of the register record which

defines the state in which the program will begin its execution. The register

record contains the following fields [Ref. 9:p. 27,

1) Instruction pointer (ip) .- Specifies the code offset address.
2) Stack pointers :

- SP .- The initial stack pointer for the new process.
- SPI .- Points to the base of the ring 1 stack segment.
- SP2 .- Points to the base of the ring 2 stack segment

(if oneis used).

4. Resource Record Module

In this module the new process (child) attributes are declared, and the

amount of resources that the parent process will have to provide to the new

process are defined [Ref. 9:pp. 27-28[. The resources received by the child process

A are subtracted from those of the parent. The amount of resources needed by a

child will depend of the kind of application that a child will perform. The

resources involved are [Ref. 9:pp. 27-28[

- Amount of memory (blocks) that the child is allowed to swapin.
- Maximum number of processes that the child is allowed to create.
- Total number of segments that the child will have.

In addition to the resources. a child process number must be declared that

uniquely indentifies this child. Also the child's access class must be specified which

must be within the parent's range. The resources passed to the child process are

recovered by the parent when the child finishes its execution and self deletes.

28

'p.

5. Create Process Module

The primitive Create Process is called, resulting in a new process being

created. A success code is returned by the operating system to indicate success or
..

*. failure for this operation. The parameters passed by this module are the record

description of the process to be created (rl cp-struct) and a variable called

"success" that will hold the execution's result of this primitive. The application

programmer must fill all the fields related to the characteristics, attributes and

resources that the new process will have. A description of the record

"ri cp struct" is given in the library AGATE.LIB provided by Gemini

Computers Inc.. and in Ref. 9:pp. 24-28]. Error codes are explained in [Ref. 9:pp.

84-931. All the modules described above can be executed in any order before the

execution of this module.

E. LOCAL DESCRIPTION TABLE (LDT)

Since the actual use of the GEMSOS primitives requires interfacing to the

upper level of the application system under development, special interface

routines had to be implemented. The next three sections describe these interface

routines. A process has a fixed collection of segments which comprisess its address

space: these are known by the process as entries in its Local Description Table

(LDT). Each process can have up to 52 segments (from 0 thru 51) known to it at

one time. Segments 0 to 19 are used by the Kernel, segments 20-24 correspond to

segments pre-defined in the address space definition of the new process [Ref. 9:pp.

29

IIF

4,

26-27]. and segments 25 through 51 are available to the application programmer.

This segment distribution is fixed in the LDT and can not be modified. A fatal

error will result if a system segment is used for other purposes (segments 0 thru

24).

F. CREATE/DELETE SEGMENT

Because a process is a collection of segments. segment creation is an

important step that should be considered during process creation. Each segment

has its own attributes which are specified in a Create seg struc record: this

record must be declared before calling the primitive Create segment. The

segment is created with the specified attibutes. and the addition of a new branch

in the hierarchical structure is made [Ref. 9:pp. 14-15]. The inverse action is the

Delete_segment call. where a segment created previously is removed from the

hierarchical structure. this call should be performed when the specified segment is

no longer needed Ref. 9:pp. 16-171. This call must be used when a process

finishes its execution because the applicable segments are not automatically

removed.

G. MAKEKNOWN/TERMINATE SEGMENT

The Makeknown segment call adds the specified segment to the address

space of the calling process (including the segment number in its LDT table) [Ref.

9:pp. 17-191. Like all the primitives it has its own record Mk kn structure.

which must be initialized with the pathname that the segment will use in the

30

hierarchical structure. Complete details are provided in Chapter IV. The inverse

step eliminates the pathname created in the makeknown process and also frees the

segment number from the LDT table. This primitive is Terminate segment

and it is described in [Ref. 9:p. 20].

H. SWAPIN/SWAPOUT SEGMENT

A segment is created in secondary storage by first utilizing the primitive

Swapin segment. to provide main memory space for the new segment. and the

_ writing the new segment out to secondary storage by utilizing

Swapout segment primitive. This function call writes any segment currently

stored in main memory out to secondary storage [Ref. 9:pp. 21-22]. releasing the

main memory.

I. SYNCHRONIZATION

Synchronization among processes is maintained by the use of eventcounts and

sequencers- [Ref. 10.pp. 115-124]. which are maintained in segments used to

synchronize processes. The segments used must be common to all the processes

involved in the same synchronization. An eventcount is maintained by an integer

*. counter under control of the cooperating process. Completion of an operation

(event) is signaled by incrementing the eventcount. The updated eventcount

provides a signal to a waiting process that the operation which it has been waiting

for is complete. The primitives used are described in [Ref. 9:pp. 33-371.

31

t" ?

IV. SYSTEM DESIGN

A. INITIAL DESIGN

1. Objective

The initial objective of the design was to build the upper levels of ,

operating system based on the Kernel provided by GEMSOS, which would

provide multiuser mass secondary storage capability, in a multilevel, secure

internal environment. User access through terminals was initially to be without

physical security barriers, and terminal access levels determined dynamically

based on user access levels. I/O device servicing was to be interrupt driven.

Figure 4.1 shows the initial design containing 3 main modules that compose the

upper levels operating system : Basic Input/Output (BIOS). Console Command

Processor (CCP), and Basic Disk Operating System (BDOS). Implementation of

these modules duplicates the same organization used in CP/M or DOS Operating

Systems. Secondary storage is to be by segments. providing a "one level" storage

system. i.e.. no file concept. Security is provided by the GEMSOS operating

system.

2. Initial Design Constraints

One major limitation to the above design was the restricted way in which

GEMSOS handles interrupts. I/O interrupt handlers currently can not be used

from ring 2 or 3 levels, and as such can not be developed in the BIOS module.

32

e4 FeJ ee *'

J.%

BIOS

CC?

Figure 4.1 Initial Design

Future versions of GEMSOS from Gemini Computers Inc. will resolve this

constraint, but the efforts in this thesis were restricted to programmed I/O type of

device handling.

The second limitation was related to the number of users that the BIOS

module can handle. Since the communications are performed through a RS-232

interface board with 8 ports. and each user needs one physical port (read/write).

the maximum number of users is 8 (without considering a device for the main

application program). This limitation still exists in the Naval Postgraduate School

system configuration.

Q3

B. COMPROMISE DEI(;N

1. Objective

The primary objective i-, th ,ane a . ic larec n the initial design. except

that the BIOS module iI replaced by a ,iedicateu, program to handle each

terminal, instead of ,everal teriiinak handled by one program. Each of the

% programs are identical rout,:nes whlic, (pe-a-e at a System high access level to

identify a new user through the teriiiniial. and create a corresponding access level

proce , to which, th', terminal i, r: "attached" Figure 4.2 shows the actual

:t i ti.L de'ign. (,inini- capabilit ies of multiprocessing can also be

I. taken advantage of Each u.er can have a virtual procesor attached to itself and:4.,

work iii a iiult :programnming configuration, limited only by the resource, available

tprocesses. I-iigent,. rneniorv. ports, etc.). Considering the NPS system. it iS

poshibi(to emulate multiprocessing with a single processor in which (EMSOS

multiplexes the processes using synchronization methods. The distribution of the

svstern resources among individual users can be dynamically assigned/reassigned

based on the needs of the user. The amount of resources assigned to the users

.': must not be greater than the resources that the complete system has.

2. Actual Design Constraints

As previously mentioned. the number of users is limited to 8 because of

the NPS system configuration.

-t
34

,~ . ~ 5~ *~':%

User User User

,I I

BDOS

Figure 4.2 Actual Design

The second limitatior is related to the size of the LDT. i.e., the number

of entries that the application programmer is able to use. If a process nominally

needs 3 segments (stack. code. and data) this means that not more than 9

processes can be created in the main application program. Considering the actual

design in which a process creates another process. it means that for each user

process six segments are needed. Since there are only 27 segments available in the

LDT for each process. then the maximun number of processes is 4 (3 users and

the BDOS process). By including the data segment in the stack segment. only 4

35

segment, are needed for each process. the result is a maximun of 5 users and the

BDOS process.

An additional limitation comes from the fact that there are no developed

modules to handle the hierarchical structure or to handle the LDT table of each

process. This means that the next available entry or segment number in the LDT

or the next entry related to a segment mentor are not dynamically provided by

the system and must be obtained in some way. Instead of designing and

implementing these modules. temporary modules were designed to create

parameters that were useful to the system. A complete set of modules was

provided by Gemini Computers Inc. when the system was delivered, but these

were coded in Pascal MT+ and the implementation language for this research was

Janus/Ada. Conversion from Pascal %IT+ to Janus/Ada was one alternative but

there was no documentation of the function and structure of these modules

resulting in the creation of parameters instead of conversion.

These temporary modules create parameters statically for those that the

system should provide automatically. Using these temporary modules it is possible

to evaluate system functions and observe how the the hierarchical structure is

maintained.

3. Hierarchical Structure Design

Figure 4.3 shows the complete structure design of the system, considering

the segment., needed to work with 3 users. The numbers indicated inside the

cirle. rercrvvri t ari riry riumbii r in the mn? or's LDT (maxi mum 12 segmient.).

N3

S*ystem mentor

applicatio mentor' r ~.-f Y' -

0 mt 5 31 user 7 33 user 8 35user g 3 10 3

cppode code code bdon

coe code

1 2 3 4 5 8 11 3 44 4 3 44 4 3 44 4
32 34 36 38 40 41 42 43 51 chld ch4d chld

ur ueruer usrunruar synch. code code code

bdoo bdos

stack data 45 48 47 48 4g 50
stack data stack data stack data

Figure 4.3 System : Hierarchical Structure

and the numbers shown outside the circle represent the process-local segment

numbers of the CCP application program. They are used to identify each

segment. This can be seen in Figure 4.4. The hierarchy shows the segments

33.35.37.39 as segments that hold the code developed to support the application

program in each specific level : User Handler processes and the BDOS process.

These segments are specified in the Submit file and are created in the sysgening

process together with those segments needed to hold the code of the three Active

Users processes. The segments 32.34.36.38 are used to hold the stack segments.

and the segments 40.41.42.43 are used to pass information between processes.

The segment 51 is used by CCP to effect synchronization with the other processes.

37

t " . . ' " " " . . ." -." " - , ' ",) %.';,,-', ' . ' '' '':. '- '-V",: ''"

...'LP --..- -

D eg user user user bdoe user user user segment

ntry hdlr 1 hndlr hdlr 3 proces appic. 1 pplc.2 appic. name

0 32 34 38 38 45 47 49 STACK

1 33 35 37 3g -- -- -- CODE

2 51 51 51 S1 51 51 51 SYNCIRONIZAT.

3 40 41 42 43 48 48 50 DATA

>''.4 TRAP

Figure 4.4 Address Space Specification for each user process

awaiting the eventcount of this segment until some other process advances it,

thereby letting the CCP execute its functions.
4°.-.

J.

33 35 37
0 5 7Lmin 8 LD man" LDT main

4.'

metr 33 3433 3433

1 2 234 1 2 234 1 2 234

"s tack data stack dat

Figure 4.5 Hierarr',ical Structure •User Processes

8

%"4

*

A uniuue pathname identifies each segment in the hierarchical structure.

An example of this concept is shown in Figure 4.5. This tree represents the user

handier application code segments and their segment numbers in each process.
".3

Although the segment numbers are the same (32.33.34). they differ by the

pathname associated with them. i.e.. pathname 5.7.3.1 (useri) pathname 5.S.3.1

(user2), and pathname 5.9.3.1 (user3).

C. SYSTEM SOFTWARE DESIGN

" 1. Application Programs Design
,U

The design was divided into 2 types of programs. applicative programs

('-\lain Application program CCP. User Handler program. Active User application

program. and BDOS application program) and utility programs (common

-procedures and functions). Structured programming techniques were used to

develop the application programs. These techniques are well supported by the

implementation language selected. Janus/Ada. Figure 4.6 shows the modules

supporting the Main Application program (CCP) that are used to manage the

whole system.

These modules arc

I) Load parameters
2) Create segments
3) Create procees
4) Synchronize processes

5) Delete Processes
6) Terminate segments
7 Delete segitients

S%39

-- -t : d - .

SMAIN APPLICAT.

PROCRAM

load creae crae ycr delete terninat dolet
paramet segment prcs Poes proceso segment' segmenta

Figure 4.6 Main Application Program

Each module was developed as an independent procedure or function.

requiring, in some cases. additional subdivisions because of the high complexity of

the module. These modules represent upper level interfaces to GEMSOS system

calls.

a. Load Parameters Module

Figure 4.7 shows the table of parameters created by this module. In

addition it creates another table with segment numbers that will be used to

synchronize the main application program (CCP) with the Active User programs.

b. Create Segments Module

This module creates the segments necessary either to represent some

part of the hierarchical structure or to perform synchronization among processes.

The size of these segments is fixed (1 byte) because they only function as mentors

of other segments or as synchronization segments. A synchronization segment is

created as a common segment, which must be known for all the processes in the

40

user user user
handler 1 handler2 handler3

S mentor 31 31 31 31

T

A entry 1 2 3 4
C

number
h naebgne 32 34 38 38

mentor seg(2) weg(3) seg(2) seg(2)
C 22 22 22 22

0
entry 7 8 9 10

D

! numbernubr 33 35 37 39

assigned

D mentor 31 31 31 31

A entry 5 7

T

A number 40 42 43

ansigned

"2 - Figure 4.7 System Parameters

application program. This is necessary because the execution of the main module

CCP must be accessible to all processes communicating with the CCP to perform

some operation.

The segments created are

1! Function mentor of stack and data segments
of the User Handler processes

Mentor initial segment (2) system segment
Entry 5
Classif unclassified
Number 31

2) Function synchronization
Mentor segment 31 (created previouslv)

41

SJ

Entry 11
Classif top-secret
_Number 51

c. Create Process Module

This module contains a loop that is executed 4 times which creates

three User Handler processes (3) and the BDOS process. All of these processes will

have multilevel access classes to handle users with different levels of clearance.

This module is sub-divided into sub-modules that are easier to test

and understand. The sub-modules are :

1) Create and Makeknown segments
2) Fill the Address Specification
3) Initialize the Register record
4) Fill the Resource record

V- An explanation of each module was provided in Chapter III. The

main point here is that the process will be created using the paramenters loaded
-4-

previously and each process will receive the following resources

Memory 100 bytes
Segments 300 segments available
Process 1 (max number of processes that can create)

d. Synchronization Module

The synchronization used can be cataloged in one of four types

-1) Main Application Program-User Handler Process. This is performed in two
ways

After process creation the User Handler Process communicates that it was

SI created and returns control to CCP.

4.2

..~

- During process synchronization the User Handler Process %vill communicate
to CCP that a User (terminal) is active or inactive.

2) Main Application Program-Active User Process. This is performed when the
Active User created by a User Handler process sends a message (command -
information) to CCP in order to execute some specified operation. i.e.. The
CCP performs this command (calling BDOS if necessary) and returns a
result to the Active User.

3) Main Application Program-BDOS. This synchronization is performed when
the Active User executes a command that requires BDOS participation. such
as a read/write segment to secondary storage. CCP receives the message from
the user and directs it to BDOS. When BDOS executes the command. it
returns the result to CCP which in turn directs the result to the Active User.

4) User Handler Process-Active user Process. This is performed when the
Active User is created and communicates that it wa._, created. returning the
control to the User Handler. The same communication is performed when the
Active User finishes execution (entering "bye").

When the communication is between CCP and a User Handler or an

Active User. the CCP must recognize which user sent the message in order to

return the result. The synchronization is obtained using the following segments

1) Stack Segment. To synchronize the execution of that process.

2) Data Segment. To determine which user was activated. The CCP stores the
previous value of the data segment of each process. When User Handlers or
Active Users send a message. it advances the eventcount (also the
synchronization segment eventcount) then CCP compares this value against
the value stored previously. If the result is different it means user activated.
otherwise CCP checks the eventcount of the next user until an active user is
found.

3) Synchronization Segment. To synchronize the execution of the CCP. All the
processes know this segment in order to activate the CCP execution.
advancing the eventcount of this segment. When CCP finishes execution. it
advances the eventcount of the process that activated it previously and then
waits until another process calls it again.

43

.-. A ----- ,

tD'

The CCP knows the synchronization segments used by each process

since they are specified in the system parameters. The segments used are

STACK DATA

user handler 1 32 40

active user 1 45 46

user handler 2 34 41

active user 2 47 48

user handler 3 36 42

active user 3 49 50

The synchronization mechanisms used here are Await. Advance

and Read eventcount. as provided in GEMSOS.

e. Delete Processes Module

This module will delete the processes created before. It is executed

when users enter "bye". In addition to this, it will also terminate and delete the

segments created in the process creation (stack and data). and will terminate the

code segment. The success of this module depends on the previous self deletion of

the User Handler process.

f. Terminate Segments Module

This module terminates the segments created previously (mentor and

synchronization segments). The result is that segments numbered 31 and 51 are

now available in the LDT.

44

%
%

g. Delete Segments Module

This module returns the space used by the segments terminated

before, and marks free the entry numbers used to create these segments.

2. User Handler Application Program

The design is like that of the CCP design. The differences are related to

the way the modules perform internally. The function of this application program

is to create a single access level Active User according to the user clearance level

determined during the Logon process. It is also divided into the following

modules

a. Load Parameter 'Module

This module creates a table with parameters that are needed in the

Active User process creation. The parameters are the same for all users' processes

since each User Handler has its own LDT table. This means that the-" have

independent segments. Again. Figure 4.5 shows the structure and numeration of

each segment.

b. Create Segments 'Module

This module creates the segment that will be used as mentor of the

Stack and Data segments for the Active User process. One difference between this

module arid the Create segment module in the Main Application program (CCP)

is that it does not create a specific synchronization segment. Another difference is

rclated to the mentor used to create the User Active process. The User Handler

45

/

program's code was used. because it is unclassified and can satisfy requirements of

= security.

An unclassified segment has minimum access class constraints and

can be mentor of classified segments. As such the segment that holds the User

Handler code was used since it is unclassified and satisfies security requirements.

The inverse case occurs when a classified segment is used. It can only be mentor

of those segments with equal or greater classification. This means that segments

with less access class cannot be created, limiting the participation of users with no

classification level. In a multilevel system. the mentor segments must be capable

of handling different kinds of users and segments associated with those users.

c. Create Process .Module

This module creates a single access level Active User Process (only

one). The access level is determined when the user enters the system. The

difference between this module and the one contained in the Main Application

program is tho resources assigned to the created process

Memory : 60 bytes
Segments 100 segments available
Processes : 0 (cannot create child processes)

d. Synchronization Module

The synchronization used ws explained previously: the segments
u>,Pd are

1) Codc Segment. To synchronize the execution of User Handler Process.

2) Stack Segment. To synchronize the execution of the Active User.

46

This synchronization takes place when the User Handler process

releases the attached terminal, creates and activates the Active User process

(advancing its stack eventcount), and waits until the Active User (child) finishes

execution (entering "bye" and self deleting). When this happens, it terminates

and deletes the segments created to support the execution of the Active User

(stack, data, mentor segments), and communicates to CCP that this user is

inactive.

"S
fACTr' USER

Fgr .UerA ppl. program

':

attac detach e

wrt u e & ync.
p
r
om

t
IPtdt ycrra wri te

• i Ladvanc e7-

terminal

~Figure 4.8 User Active Application Program NModules

47
Id

I'

3. Active User Application Program

This program was designed following structured programming techniques.

Figure 4.S shows the modules that compose the Active User application program.

These modules are

1) Attach terminals (read - write)

2) Loop
- Prompt the user
- Get user input
- Load data segment

- Synchronize

- Put result
3) Detach terminals
4) Self delete

Following the same structure used in the description of the Main

Application prograi , and the User Handler Application program. the modules

indicated above are described individually

a. Attach-terminal Module

This module assigns a terminal to the Active User process, the object

being to allow the user to perform I/O operations. There is a specific

Attach-device call for assignment of read and write.

b. Loop Module

This module handles the main process. It starts with the input

entered by the user, and finishes when the user receives a result for the input

entered. The intermediate steps necessary to get the output result from CCP are

1) Load Data Segment. The segment created to pass data.

48

2) Synchronize with CCP. Data segment is passed to CCP and the
synchronization segments are activated (advance synchronization and data
segments eventcounts: await stack segment eventcount).

c. Detach-terminal Module

-.: This module detaches the device previously attached, returning

control of this device to the Operating System, making it available for future

assignments in other processes. There must be a balance between Attach and

Detach calls, otherwise a system error will occur.

d. Self-delete Module

This module holds the ending of a child process. Self delete is

required if the next step is delete the child (Active User) process from the address

space of the parent (User Handler). When the delete process is complete. the

parent recovers all the resources that were assigned to the child in the

Createprocess step. In addition to the Self deletion call, a segment number must

be specified in order to perform the synchronization. This is due to the fact that

when the process finishes, it automatically Advances the segment eventcount

indicated in the Self delete call.

49

V. IMPLEMENTATION

A. GENERAL DISCUSSION

Implementation of the model was designed considering one application

program for each process. The following programs were developed

1) Main Application Program- CCP (Appendix A)
2) User Handler Application Program (Appendix B)
3) Active User Application Program (Appendix C)
4) BDOS Application Program (Appendix D)

To this end. it was necessary to construct the following support programs

1) Primitive Calls
2) Auxiliary Functions

1. Primitive Calls

The object of this program is to be used as an interface between the

GEMSOS primitives at the Kernel level of the system and the application

programs. All primitives use a record structure initialized by the programmer
-a.

before calling for the specific operation. The set of programs developed to perform

these functions are called "PROCE": they were built by modifying the

demonstration program provided by Gemini Computers Inc. and adapting them

to the requirements of the proposed no(lel.

The program "PROCE" has two extensions: "PROCE.LIB" contains the

e, specifications that can be visible to the user. and "PROCE.PKG" contains the

50

'aZ

code developed to handle these specifications. T -is is an ADA feature that helps

To reinforce security aspects (Information Hiding Principle).

The procedures developed in these modules are :

PROCEDURE PRIMITIVE SUPPORTED

CR-SEGMENT CREATE-SEGEMENT
DL-SEGMENT DELETE-SEGMENT
YIK-SEGMENT MAKEKNO WN-SEGMENT
.MAKEKNOWN-SYNCH Used to makeknown the synchronization

segments (CCP-to-Active User)
TERMINATE-SYNCHR-SEG Terminates the segments indicated

above
FILL-INIT Fills the resources record needed by

Create-process primitive
CR-PROCESS CREATE-PROCESS

The program listing is contained in Appendix E. Those GEMSOS

primitives not requiring record initialization (i.e.. Terminate-segment and all

-he primitives used for synchronization) were not included. The primitives

Attachi-device and Detaclh-device. were separated into the Auxiliary Functions

program because they may be called in future applications that may not need the

use of the other primitives declared above.

2. Auxiliary Functions

This program contains additional data structure needed by the main

application program. i.e.. command record. password's record description.

constants used. etc.. It also contains procedures and functions to perform 1/0

operations (read and write), and functions to create parairieters replacing the

mod'iles that the system needs but were not delivered in the NPS (;ernini package

51

(The LDT entry allocation procedure for exampie). These were described in the

design constraints of Chapter IV. As in the previous program. some procedures

and functions provided by Gemini Computers Inc. were used as a basis to

construct this program segment. with the addition of code and records required to

support the current research. This program. called "FILES", has two extensions.

"FILES.LIB" contains the specifications and records. and "FILES.PKG" contains
41

the code developed.

The procedures and functions included are:

' NAME TYPE DESCRIPTION

GET-STR Procedure Gets a string from the terninal
PUT-STR Procedure Displays a string in the "terminal
PUT-DEC Procedure Displays a number in the terminal
PUT-SUCC Procedure Displays a string and a number
GET-INPUT Function Gets an input string from the terminal

and echoes the input if the echo option
is on. It also convert , all the input to
lower case

ATTACH-TEW/TER Procedure Supports the primitive ATTACH
DEVICE specifying if the device is
to read or write

LOAD-PARAM Procedure Produces a table of parameters with
information needed by the main appli-
cation program (segment number. entry.
mentor)

LOAD-ACCESS-CLASS Procedure Produces a table with the security
access level depending on the user level

LOAD-PARAMI Procedure Produces a table of parameters with
information needed by the user handler
program (segment number.entry.nientor)

LOAD-CHILD-ACTIVE Procedure Initializes the Active User record to
false. It lets the CCP load the Active
User segments each time a false record
is found

52

"-.r A%., ~

LOOK-FOR-LEVEL Procedure Simulates the Logon process. loading the
access class of the user depending on
Username and PasswordI CONVERT Procedure Assembles the command line using
the input message Typed by the user

The program listings are contained in Appendix F.

B. IMPLEMENTATION CONSTRAINTS

Two factors dictated splitting the implementation into several steps thus

making the systen easier to develop and test. These factors were

I Lack of 5.vTen: Documentation and prior experience.

2 Time re'uired to (evelop. implement. integrate and test.

At the time thi, research started. sufficient information about the system

did not exist. As such numierous system "quirks" posed additional time delays in

the implementation process. Upper level interfaces to GEMSOS had to be

imemented. at times by experimentation. Program development using an

unfamiliar set of procedures and new functions is error prone. requiring

progranming tools that are still not available in this machine. Another

iinplernentation constraint was the time required for program development.

A main factor related to the speed of development is the fact that a

program. in addition to compiling and linking, requires a special process, called

"',s gen" prior to execution. 5vsgening takes longer than 10 minutes each time.

Cven if only a ,ingle line was changed. Since debugging tools were limited, it often

took everal atteripts to find a mistake or the exact way of performing a specific

.1.

• -

- F .

operation. As previously described, the "sysgen" process has the functions of

creating and formating logical volumes in secondary storage. and creating a

bootable Gemini System Segment Structure on formatted volumes. This

second function is called each time a program must be loaded to execution [Ref.

8:p. 1J. The use of the system program (sysgen) is explained in [Ref. 8:pp. 8-18].

C. IMPLEMENTATION STEPS

The basic approach starts with a model using the demonstration program

provided by Gemini Computers Inc. The primary steps followed were

1. Single User. Single Security Access Level

This step established the ability to create a child process and to

establish communication between parent and child processes. The main issue here

was the stack size. Its size had to be determined experimentally (AFFF hex), since

it is not clear as to the correct way to measure the size. The size of the stack is

determined by the following constants :

stack-size = vector-size + segment-manager-size + constant
= 4 bytes 76 bytes AFFF bytes

The size of the last constant was derived empirically, and is

apparently a combination or the amount of memory needed to create a child

process and the number of processes that can be activated simultaneously in the

system.

54

x*1

2. Several Users. Single Security Access Level

This step proved the creation and synchronization among several

processes. The key points were

a) The hierarchical structure of the system required special procedures for
handling. A procedure was created to dynamically determine the next
segment available in the system. This procedure was written to associate the
next segment number to be used in process creation. and the entries used by
each segment. The resulting table of parameters created by this procedure
was previously shown in Figure 4.7.

b) A synchronization method among processes was needed. which included the
structure needed to determine which process was activated (two
synchronization segments for each process).

c) Communication between processes was developed (passing information). The
procedure Move bytes is considered to pass information from one process
to another. an example and further explanation is provided in JRef. 9:pp. 5-
6.

3. Several Users. Multilevel Security Access

This step introduced the security constraints needed to work in a

110i ¢ve ,ecire system, the key points were

S(ra'io:: ,f a C(hild process (Active User) by another child process (User
Har,! t r) previoii1y created by a main application program (CCP). This
;,t'iire. . , thu resources passed by the parent process. A balance was

,,v,, ,,woer, the resources passed by CCP when it creates a User

Handler , and the resources passed by the User Handler process to
:. Active l ser process during its creation. In other words the following

'l ,er Handler (1 - 2 - 3) - BDOS resources) < CCP resources

Active T'ser resources < User Handler resources

,if thrvv k.inds of ynchronizatiori between Child (Active User)

'c'ar,: Ir Hadler): (;randchild (Active I-ser) arid Grandparent

P Ptrcr. T r Handler) and (;randparent (('CP). Different segments

55

..

Pathname

0 - i kernel

20 - 24 address

specif.

25 - 30

not used here

31 users' mentor 5,s
32 stack user 1 5,5,1

33 code user 1 5,7

34 stack user 2 5,5,2

35 code user 2 5,8
38 stack user 3 5,5,3

37 code user 3 5,9

38 stack EDOS 5,5,4
39 code BDOS 5,10

40 data user 1 5,5,5

41 data user 2 5,5,8

42 data user 3 5,5,7

43 data BDOS 5,5,8

44 mentor chld users 5,7,3/5,8,3/5,9,3

45 stack chld user 1 5,7,3,1
48 data chld user 1 5,7,3,2

47 stack chld user 2 5,8,3,1

48 data chld user 2 5,8,3,2

49 stack chld user 3 5,9,3,1

50 data chld user 3 5,9,3,2

51 SYNCHRONIZATION 5,5,11

Figure 5.1 Main Application Program LDT

were used to synchronize the execution of Active User and User Handler from
those used to synchronize Active User with Main Application (CCP) or User
Handler with CCP. The synchronization of the Main Application program
with all users was implemented through the same segment.

c) Restrictions imposed on segment handling due to security access levels:
segments with equal or greater access class must be passed between processes.
The security access level is composed of two parts : Compromise (Observe)
and Integrity (Modify). This research worked within Compromise
constraints. Integrity involves levels in the system's rings,

56

S p

compartmentalization (audit. operator. programmer. etc.). and the concept of
ring brackets. In order to keep the model simple. integrity was not
considered. The execution of each primitive checks security constraints and if
satisfied. the execution continues, otherwise the system aborts for security
reasons.

d) Main Application Program Segment Distribution. Figure 5.1 shows the LDT
table including all segments needed by the seven processes (3 User handler
processes. 3 Active User processes. and BDOS process). It also presents the
segments used as mentors of other segments (31 and 44) and the segment
used to synchronize the CCP (51).

D. SYSGEN SUBMIT FILE

Appendix F shows the Sysgen Submit File used to define the structure of

the application programs developed in this research.

57

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. System Operation

The security check starts with the logon process. If the operator

has a valid username and password that is recognized by the system, then the

security level of this operator is adopted for the terminal, otherwise the system

continues prompting for the username three more times. Failing a correct

response. the system restarts the logon process. The main testing performed was

the validation of the segments defined in the submit file. If they were "classified"

the operator had to satisfy the security constraints in order to use this

application. Otherwise. the system aborted the execution and prompted for a new

logon operation.

The application programs work according to the design, dynamically

loading the user's security level in the "terminal logon" process. Access is limited

to those users recognized by the system and restricted to the use of information

based on the user's access level. The interaction between Active User-CCP-BDOS

is performed within security constraints (only compromise). The messages passed

are "precessed" by the CCP and results are returned to the user.

58

2. System Performancc

Because of the NPS system configuration. the performance of the

application program is degradated for the following reasons

- Single processor emulating parallel processing
- Secondary storage consisting of only floppy disks
- Programmed I/O environment instead of interrupts

B. RECOMMENDATIONS

1. Hardware Improvements

A system upgrade should be considered which at least addresses

adding a hard disk to the present configuration. This would provide an

improvement in the access time required to handle segments and decrease the

response time in process creation. In addition, there would be a considerable

reduction in the system development time, i.e.. the time required to compile. link

and sysgen. frequent operations in the development phase.

Additionally. to take tall advantage of the machine's parallel

processing abilities, more processors. two at least. should be added. Memory

expansion would relax many restrictions currently imposed on process creation as

utilized in this thesis work.

2. Software Improvements

The current system as delivered was incomplete with respect to the

modules necessary to develop application programs in the Janus/Ada language.

59

Software improvements should include better documentation related to the

system and debugging and programming tools for the application programmer.

3. Future Research

As a result of the research presented in this thesis. areas of related

research should include the following :

a. Directly Related to this Research

(1) Inclusion of integrity access constraints (modify) into this current
implementation. In this thesis, system integrity was considered at its
minimum level in order to execute the application programs without
limitations. Since this is a main issue with respect to the information
security, a careful implementation should be developed working in this area.

(2) Development of interrupt driven environment in the current design.
The initial design using the BIOS module is an event driven system. This
design approach was not used due to present hardware limitations as
explained in Chapter IV. "Initial Design Constraints".

(3) Addressing (solving) the issue of a restricted LDT size. This
restriction is due to a limited number of application programs or application
program complexity. since an upper bound of 27 segments are available for
the user from the bounded LDT of 52 that a process can have.

(4) Implementation of the "terminal logon" method. This function is
simulated in the actual development through a module that loads the access
class of a recognized user. A possible solution would be the conversion of

VI those libraries provided by Gemini Computers Inc. from Pascal language into
Ada language.

b. Related to Secure Mass Storage System

(1) Development of software "crossbar" in the Concentrator for
integration of the Gemini computer into the Naval Postgraduate School
Laboratory as a Secure Mass Storage System (S3).

(2) Implementation of BDOS using a design for a one-level segmented
secondar. storage system and a large capacity hard disk (mass storage).

60

V - b.-~. V'~ .44'. 4' ~ 3

APPENDIX A - MAIN APPLICATION PROGRAM (CCP)

This appendix presents the Main Application Program code.

including the modules developed to handle the dynamic sharing of system

resources. Instead of the present system consisting of several programs. each

containing one module. all modules are grouped into one main program with the

indicated modules separated by comments. This program is called "PRMAIN"

and is 'isted below.

i-

p.

w,,.,61

,

t ragrna rareecheck(off) ragna detug(off)
pragmra arithcherk(off);pragra enutab(off)

WITE agate, agatej, anl, alit, alibj, strlit, util, -Proce,
ft1 le s

PAICKAGE iODy ;rrain IS
USE agate, agatej, anl, alit, alibj, strlit, util, proce,

fi11es;

-- Constants used by the trograrr

-- STDI.) W -> assigns logical device 1 to writ.e
-- STDO P - assigns logical device 0 to read
-- 10 PORT ->main programr uses ;ort 0 of the RS-232

P- PRBO 4-->3 process numbler f or the BDOS

ST--!CO : CONSTANT integer 1
ST!3_- : C.JNSTAN integer 0;
IC PORT :CCNSTANT integer 0; -- pcrt zero for mair
NUMBER _ OF _USERS :CO'NS"TAkNT integer :=3;
NU!1BER _OF _PEOCESS :CONSTAN~T integer 4;
PR'BDO)(S COfNSTANT integer:=4
NU 1PFR P-RCESS1S :CONSTANT integer i1 -- # of chills
MEMOIRY AVAILAPLE :CONSTANTi integer 130;
SHGMFNTS _AVAILAKBLE CONSTANT integer 30,

-- Variatles vrsed ty rain programr.

w class : access-_class; -- security ascrects
su-cess :integer; r re s ult
rode : attach _struct;
rode -r :attach _struct;
def - of f :in teger;
def seg :irteger;
rlidef size intezer:
synchr seg integer;
oh _cut ccrard lire;

ch resource :child resource;
1 7t ri rccess def;
rd str :strine;
class : ccess cess
rre rtocr :int eger ;
entryx :intezer;
s-g _rode :seg Pccess typ.e;
s eg "urter : 1r t ever;
CC? BUSY :tcolean:

V6

chparareter : rlarameters;
h _Darar : rl_ ararr;

ch level : user level;
ch access level : level reccr";
ch-chuser_synchrc : users-active;
ch _ ch _ eve val : integer;
proces : integer;
no active users : irteper;
eve value Integer;
evc active integer:
active user integer;
index integer;

-- !AIN
BI N

init get rldef(); -- this sentenre is
_- obligatory

-- attact serial port for writing.
-- This sentence is optional and is usei to display essa-
-- ges provided ty the main application Drograrr on the
-- screen

attach tew(IO PORT, STDIO i,

lit set bracket(1, 1, 1, init.resources.min class)

-- LOAD PARAVYTIRS MODULE

-- This mcdule assigns fixed parameters to each process
-- that will be created. The pararreters are mentor nurber
-- entry nurrber, segment number. They are used to create
-- each segment reeded ly the ;rccess to le created
-- ('SER EANILER). There is a group of these parareters for
-- the stack, cede, and data segrerts

lcadparar(init, chIparas);

-- load child ectives array are additional parameters
-- used ty the main applicatior rrogram tc synchrorize its
-- operation with the ACTIVF USER processes

loadchild active(ch ch-user _ s.nchro);

-- load access class that each process will have. In cur
-- case all the processes will be multilevel. MinirruT is
-- unclassified ard raxirur is top-secret

loadaccess class(inlt,chlevel);

w class init.resources.rax class;

-- CREATE SEGMENTS MODULE

-- This module creates the segments needed for the
-- following :
-- a.- Mentor of the stck and data segments cf each
-- process and ?DOS process. The standard elected
-- was use entry 5 of the mentor intial _segmert(2
-- "application mentor" and call this new -pr-e t
-- 31 in the LDT of' the main

-- b.- Synchronization se-rrent. Its mentor is tte
sement created in the previous step, entry 11I

-- of segment -1 was elected and this rew sezrert
-- was called 51 in the same L7T. The access class

is TOP-SECRET

ch accesslevel := ch level(1);
mentor init.initial _seg(2);
entryx 5;
class := init.resources.in class;

. cr seg en t init,mentorn tryx ,class,stcces s);
if success /= 0 then

put succ("success value 00 is ,success,w class;,
put_ in (ST"2IOW~wcless,....) ;

.ND IF;

-- makefwcwn this segment with nurter 31
seg mode r w;
seg nurter 21;
rrksegrent(init ,mentor entryx,seg_ nurr er,

seg _mode,success);
"V,. if success /= e then

put succ("success value 21 is ,success,w classl
put ln(STDI -W.w _class,..);

ND IF;

-- create synchronization seg,'ert (max access class)

class ch access level.max;
mentor 31; -- segremt 31
e-tryx = i;

64

mNw

cr Segrent init,rrentcr,entryx,c7lass,sc-tccess)'
if success !,'= 0 then

rut-succ(s,,.ccess value ?" is ,success~w _class;;t

END IF;

- rakekncwn this segment with nurter 51

seg _mode := ra,

sE 4 nu~rtIer :=
nk-segrre-nt(init,mentor,ertryx,seg niurrter,

seg _mrcde, success
if success /= 0 then

put sucrr(*success value 24 is ,1 success,W class;
p ut ln(STLI3_W,w _class, -);

IND IF;
synchr seg :=seg _nurrber;

-- swari- this seerr'e'ts

swapinsegr-ent(synrhrse,sc-ess)/;

if success /= 7 ther
zut succ('success value 25 is ",success,M _ '1i;5,'

EhrD IF1

C-CREATE FROCKSS mOLULE

-- This rcdulo creetes 4 processes
-- (Z user handler and 1 EDOS)

W_ (_ lnS3W w cls, F ;(" PRC, CES S C RFA T'I2K)

-- STAFT CP.EATI "T FACE PR3CFSS IN TIHE SYS TAI

-- proCess 1 === TirMINAL ENrLER
-- '~.rr'ss2 ==> TFRMIINAL HAN:LFR

-- rccess 3 ==> TEBMINAL HANLEP
-- ro 0'ss 4 P== DOS HAN LF?

wtile inley NZT 'BR O F FOOCY3 TGeP

ch-rarameter ch_;rrire;

-all the pro~ess-s will L,:-v- rrultil-vPl arcc 3,

ch access _level -h-level(l);

-- cad the rescurces that the cnild,' will have

-- emrory ->100 (ccnverted to KB24 forrit,
-- segmrents)30e
-- processes 1 (rrax nurr~er of j roc. that -an c-reate)

cl _ rescurt-e rerrcry :=MFrCRY- M.AIL A BLF;
ch resource.segments SEG 'E TS _AVAILABLE;
ch-rescurce.trocesses NUM1BER ?ROCESSFS

read evclsynchr seg, evc value, succ-ess)

cr _ trccess(init,ch p~ararreter,ch _ access level,
index,ch _resource,synchr.see, suc'ess);

-- synchrcn i z oach time t let the new LroCe ss -.Ia=.s
-- its rressa.-e (word '?SEF

Vawait(synchr _eg, evc _vaiue+1, success);
index :=index - 1

end LOOP;

-- SYNCH?.CNIZATION FRcCFSS AN: LOOP UNTIL No USE?7 IS
-A -- ACTIVE

V -- This rrcduiC executes the synchronizatic. amonfy
-- processes, starting with the synchronization with tne
-- user's hardler processes and then with tne active user
-- rocesses whei these have tleen activated

-- ACTIVATE IUSER'S PRCCESS
-- This step stcres the value of the eventconts ir the
-- users'I seprrents, the otjec-t is to know which user
-- sent the message

Index :=1;
while index <= NUMBFR OF_ USFRS LOOP

readevo~chparaTindex,.se,- nurlter stack,
chp- ararr(index,'evn _ccunt, suc-ess '

read _evc(ch_-pararr(index).seg numbter _ ata,
chparam' lrdex).evr _ccunt _ 4ata,suicCess)

advance(ch Daram(index).s- _umt~r_ stack su-vcess
irde! index 1;

%

e'-d L3OP;

-- LOOP UNTIL NC USE?. IS ACTIVE
T- 'his lo op is t In-r-airn Trccess 's r-ccule ir the while

-- system- lecause will le in executicr. until all the users
-- finish their icbs (enter the_ word "btye,

COP _ BSY :=FALSF;
no active _ users
whilen active _users < NUME?' OF U'SES 7LOOP

if' CCF? BUSY th en
CCP? BSY F AL S F

else
read _ evc(synchr _seg, evc _value, success)
await(synchr-seR, evc _vaiue+1, success ~

active _user :=0;
index -1*.

-- determine the user that sent the messai- -omi~erirf: tre
-- event court value, differen t valu,,e means that user was

while ind~e <= NUr-F? OF _USERS LO
read _evc(ch_ pamindex).seg ni-, t-r _date,

evc active, success ~
if (evc _ ctive

ch _Dararrtirdex).evn _court data) then
a ac t ive user :=inde:
chparan(index).evn _ cunt date

evc _active;

index NUMBE? _OF US!BS + 1;

i rd ex i rdex -1;
IN: Ir;
F :LOOP;

-- checks if the activated process came fromn an user
-- andier cr an active user. If carre from tte active
-- user it -eans tnat the variable active _user" is in

ct!otherwise it 1reans that the ccr-murnicaticr is. between
-- auser handler Lrocess and the mrain pro, ra,7rC (P;

c acive user 0= the
def -see liti mksel 4 lt tatle,

oh _pararlictive u--er).s nurt er 1A'a
' '-3 " f 0

r _ d, f - size i'it essa-e 'SIZ--/P

St7

mnove-bytes(def seg,defoff,getss()
ch Tin'ADDRESS, ri-de! size);

ch araneter := chtararr~tivue
if ch _ ch _user_ synchro(active user) .active tbh'n

ch-chuisersychro(activeiser) .active :
FALSE;

termrinate_ synchr seg-(init,ch paramreter,
ch in .inputclass~s1C1-pss'.

if success /= 0 then
put sucrCterrrirate " ,succoess'w-_class5);
putln(STDIC_'*,w class, "

end if ;
if ch -in.inputc-e = bye" then

no -active-_users :=no active users -1
else

advance (
cbpraram(active-user).segnurterstc',

success)
F N 1IF;

if ch -ir.inut one /= "ye* then
make kncw~s src (I r.t ,ch_ parame ter,

chl- n.iiput class, artive user,
ch -ch -u ser sy nchr o, suc cess)

ch-ch user-synchrok'active user).active
T TR''F;

a dvance(
ch _-param(active user).seg _ urrter _stacK,

success);
else

no active users :=no active _users -1
FNrD If~

END IF;
ELSE

index := 1;
while Index <= NUtIBIFR OF_ USERS LOOP

if ch chusersynchro(Tndex).active then
read evc(ch ch user synchro(index; .seg data,

ch _ ch _ evc _ val, success);
if ch-ch_- evc _val >

ch _ ch -user~syrchro~index).evc-"data ther
active user :=Index;
ch rh user syrcbro(index).evc data

ch ch evc val;
index :=NUMBER OF USERS - 1

FND IF;
FNI IF;
inlex :=index + 1;

END LOOP;

if active-user 0 then

es ~

iput~l l(ST Io_ ,w-class,'active user error");
.N D I F;

d ef _seg i b r k s e1(ld t table,
chr _ch _user syrnchrc(actlve user).seg data';

d e f cff =e
ri def -size :=input rressage'SIZF/ ?;
rncve bytes(def _ se~defcft,getss(,

chin 'ADL.,SS , ri def -size)

convprt(chi ir,w class,ch _cut);

-- ss tre seg~rent to prblos process

def-selz: lit_m _ sel(ldt_*table,
chpararr (PiRDOS).seg _nurmber1 lat a;

def c cff 0
ri _de±' _size :=ccrrard _lire'SIZE/Ce;
rove tytves(pet ss(),rTh cut'ADB)R_1SS5 , ie f"_~g

def off,ri de=f size ;

-- AC:IVA:F 77C3S PROCESS

~dva rc e fclh ra ram (PR?7,S se-nur, ter _s stack,
success);

read evc(synchr seg, evc _value, success);
await(sy-chr _sez, evc value-1-, success,

-- :CE IVFr wFSSAGF WI~TH RF:EL:T HAS TO PE PASSF TC TH7

de' se lit _rr~ sel(ldt table,
rhperar-(p?3B0S3.seg _number data;

d ef -of f
ri -lef size ccrand line'SIZ- /&
mrove ytesfdef _seg,d"ef c*f ,getss(,

cn cut AUDIESS, ri-def size.2

-- sserrile user mressape with the result

ch-in rlut-_resiult :=h _ cut.result;

-- pass !t- smg-,ent to user proce-ss

ch ch _user srrr(cleue)sgdt)

ridef~~~~~ siE iItr~saeZF/?

move_ ytes(,get"ss()ch ir'A DESS def -seg ,
iet' cff',ri def size)';

-- advar, 7e the process that executes the command

advarce(ch-ch _user _syrchro(active user)s sa ck,
sucress

FINr IF;

active user =;
Index -=1;

-- deterri-e if while CCF was tusy executing the p~revious
-- comm~rands, sorre user hanlierzr i-tive User sent

a- message

-- deter-ire !he user thtl se-t -esa- -rir'.z tna
-- eve-t ccu-t value, differ-t value r-a"s t na t user was

while index %'= N'IM'_FF C 7 S FRS LOOPC
real -evc (chp pardr- 1 1nle X 15ei 1r t'e r -, ate,

EVC active, sucress
if 'evc artive '

ch Dara(irdey).evr cc'int I a ta tne r

-C tiv 1Vuser := index.
irdex : NM_!BEF OF _JSEFS +1

-reex intdex + 1;
EN:l IF;

I LCO F ;

-- AC'7 IVE T2SFR
J- eterrrire the user that1 sent tte rressage -o-rparing tte

-- eveit ccu-t value, lifferert value mrean.s that user was

inder : 1;
if' active user = 0 then

whillr index <= NtU1ThCFUS_7RS LOOP
if ch chuserynchro(ndey).active then

real e-vo(ch chuser synchrc(iridex).seg_ data,
rh _ch _ ev _ val, success);

if ch _ch evc val
ch _ oh user _synchro(index) .evc data then
CC? BUMSY!:- TR'JF;
index NUMER - OFUSFRS 1

IF r;

FNT 7F

index :=index + 1;
END. ICOF;

j ND if;

erd LOOP;

-- ACTIVATE BDCS AGAIN AND WAIT UTIL CHILD DELETE ITSFF

ch _out .commrand "ye
defseg lit irk -sel kldttatie,

ch_ param(PRD-OS).sez nurberlata);
def c ff e;
ri ceef size := corrand lire'SIZFE;
mrove tytes(get_ ss(),ch out'ADESS,d.ef_ efc,

ri def_ size);
advance (ch _pa rarr. PRE DOS). seg numbers _ tac K,

su!ccess s;
real4 evc'syr'chr _se, evc value, suess,;
aW~i;(sy~ichr_ se, ,, evr value-i, sucrcess

EEGI? E-i ET1 I NG FROCE SE SS V\OrULE

-- This rodule eliminates the user's handler processes created
-- to suj. ort the active user processes, since each
-- process reauired oil a specific rlurrler of' segrre'-ts that
-- werp -reatcs1 in tte m~T RCS odule, these will
-- e ter7 ir- tod - nd deleted in Yhis ste.j

prcces:=;
wh il 1P rora- <1 NUt'?F_ iOF _PROCESS LOOP

Child -deletp~proces, success);
put _surc(-c ,lld deleted success, w _ class
put lr (SILIC _ , wc lass ,)

ter-ri-ate segrrrt(ch pararr(prcces+l seg_-umr .,_ stack,
success);9

terrriratp spgmer t(ch _pararc, ces+)se'nurrterd-,ata ,
siuccess';

terrinatce seemer t(-h _ paramr~kprcoces+1). n-er_-role-,
success);

del -t= _s s-grt (ch _pararm(prcces-1).ment or _ stacir
pror'es+1,success); -- delete entries

_ot e~rtc rarr roces+1.r- n tor _ da ta,
proces-',success;'; -- delete ert-ies iata

71

delete-segrment(ch parar(proces+i) .m-entor c ode,
proces+6,success); -- delete entries code

,roces rroces + 1

end 1oop;

ii TE.NATE SEZMIENTS AND DELETE SEGMENT MODULES

-- These modules will terminate and delete the segmrents
-- created lreviously to hold the mentor segrerit used to
-- create the user's stack segments and the user's data
* segmrents, arni the synchrcnization segment to

estallish commrunication ar-on4 Trocesses.

-- termriiate and. delete synchronization segrent

terminate _segmrent(E1,successfl - segrent t-1
delete _segmert(3".1,11,success; - ertry 11

-- terminate and delete mentor segrent

ter~rinate -segent(31,success) -- segment 31
delete segirent(init.initial seg(2), 5, success)

put in(STO W. wClass ,GOOD PYF

-Irfinite lcop to prevent trap. Coujld also await an
everitcount.

success:=0
while success = 0 LOOP

surrEss := 2;
FE lop

7N- prrnain;

72

APPENDIX B - USER HANDLER APPLICATION PROGRAM

This appendix lists the User Handler Application Program

code. Only one program is provided since the three different programs. one for

each different user, differ only in the port used on the RS-232 board. which is

indicated below :

Port 6 User 1
Port 5 User 2
Port 3 User 3

The programs are called PUSERi. PUSER2. and PUSER3.

The program listing for user I is detailed next.

73

pragrra rangechecli(off) ; ragra detug' off) ;rag~r
arithcheck(c'ff,' r~ragra enurtat(cffl;

PACKAGE POEY puseri IS
,SF agate, agaeje~, art, alit, alitj, strlit, files, util,

rr oce

-. crnstarnts used ty the prograrm

-- STIC -- > assigns logical device 1 t write
-- STTDIO R - assigns logical cievice QJ tc re a4
-- 0 _PORT -)assign~s the ports according with the

-- follow detail:
puseri - port E
puser2- > port
.user2 -- ort

-- PROCESS ->assigns pr-lss rumnter 1,2,-' for p-useri,
-- puser2 and puser'1 respectively

ST'ilOW :CD 'STANT integer 1
ST7r0b : CONST'ANT integer ?
10 PORT :CON'STANT integer 6
FROCESS :CONSTANT integer 1
r7'IORY-AVAILkLE :CONSTA.&NT integer i O
3--GmFNTS _AVAIIAE: CONSTANT irteger := 102;
NUM3FER FPOCESSEFS :CONSTANT integer 0;

-- Varieables used by the -rogrem

w -class :access _clas5;
srres : in.teer;
ch ir inpt message;
data _def _size :integer;
defCof: integer;

defse integer;
ch evc val : integer;
Pvoc h Val :integer;
rd t r :string;
userrarre :string(8);
passworl strinziE);

rhcla s s :access _class;

ch rpsourCE : child-_resource;
e-co :tcoleen;
erdTprog :tcolean;
oh access _level level _reccrd;

!74

ch level user -level;
entryx integer;
me'.tor integer;
see rocde seg access type;
segr~ufte r :integer;
chper areters :ri parameters;
init :riprocess def

-- 'A IN

Fegi r

init :=get rld1ef(; -- this sentence is otligcatory

-- ATTACH TERY INAT VMODU1.1

-his rclile attaches port y to i.ts process in order to
-- use it. in I/C c~erations

-- attach terinal as write device

attarh _tew(IC _PORT , STDI) W):

w clIass : init.resources.rrax _class;.

-- attach terrinal as a read device

attach ter(ICPORT, STDI _R)

-- Indicates that was activated ok

jut -ln(S3:Ic_- w~class, UL S ER

-- synchrcnize with the main application (CCP; to indicate
-- that it was created ok and allow continued executicn
-- si- e await operatcr. It rrears that the rrocess will
-- wait until the Fiain application returns control to this
-- roress

advarce(init.initial _seg(2), success)
real _ evr'init.initial se4Z), evrc ch_ val, success)
await(init.initial-seg(O). evc ch val+i, success)

-- LOAD PARA"FTFRI- VCDULF

'V..

-- This cdule assiens parameters to the prccess that it
-- will create. These parameters are rentor nurber, entry
-- nurler, and segment nurber, used by stack, code and data
-- segme-ts needed by the crocess to be created
-- (ACTIVF US3R \

loadprarl'init,ch_parareters);
load access class(irit,ch-level);

en _prog := false;
while nct enid_prcg LOOP

-- LOOP MODULE

-- This ,module executes several operations until the opera-
-- tr enters the wrd e This means that the users wcr..
-- Is fiiishei and termiantes this prccess execution. The
-- steis considered ere

-- a.- Clearance identification
-- USERNA"! and PASSWCRD (login process)

-- t.- Create and akekncwn.rrentor and synchronization
-- segments

-- .- Load the child's resources (this will be
-- subtracted from the parent resources)

-- d.- Create child process (ACTIVE USER) single level

-- e.- Detach the device used for I/O, it will be used
-- "ty child

-- f.- SNchronlze with the child created to indicates
-- what was created (USER CtHILD)

-- g.- Synchronize with main application DrcgrakCCF) tc
-- indicate that an ACTIVE USER was created. In turn
-- CCP will makeknown the segments that are synchro-
-- nized with ACIVW !TqYE (4 ,4i for userl;
-- 47,4F for user2, 49,5 1 for user3)

-- h.- S~rchroize main with active user and wait until
-- the active user finishes his job

-- i.- kher ACTIVE USE. terrirates his jc the user
-- handler recovers the rescurces assigned to his
-- child and terminates ard deletes the segments
-- created to be mentor a-d s nchrcnizato., ;lus all

7b

1%

-- the segments needed' to create the child
-- (loaded in step b)

-- j.-Synchronize with CC? to indicate that ACIIIVE USER
-- is not longer active

-- NL LOOP
-- clearance identification

tlk -sc-(STDI-D_ W,w _class,');
put -str(STDIC _W,w _class,'USYRNAVE
eco := true;
usernarre
userna!e get input(eco,w class);
put-lrJSTDIC WAw-clas s,) - put cursor in next line
if userramre t ye" then

Prnd-prog :=TRtJI;
el se

-put _str(STDI3W,wclass,"PASSli3RD)
eco :=false;
pzassword : "
passwcrd := aet _inrut(ecc,w_ class),;
put _lniS'IPIO '~wclas,)

lock _ f~or _level'usernene,password.,ch level.1-h _class);

-- create mrentor to the child process

h access level := ch level(4-); -- min access class
mentor := nit.initialseg(1);
entryx 3;
rh Plass := ch access level.mmin;

-- create the mrentor segrent
cr-segrrent(liit,mrentor,entryx,ch _class,su~cess);
if sur'cess /= 0 then

'Put succ("success value 04 is ",success~w _class);
nut _ n(STDIO_W w _class,'"');

Ff-r IF,

-- akek-cw- this segment

spg _rmode :=r w;
seg _number :=-31;
r.K _ segm"ent(init,rrentor,entryx, seg nurber,seg _mode,

success);
if success /= 0 ther

put sucr("sucoess value,04 is ",success,w class,,
put-lr(ST'IC W,w class,

END IF;

ct access- level.rrin :=ch-access _level.rax;
-- irele level_

77

-- load the resources that the child will have

-- memory -- eo format B24)

-- segments ->100

-- rocesses -> ;

ch-resurce.meriory MEMOY _AVAILABLE;
ch -resource segments SFG",ENTS AVAILABLE;
ch resource.processes :=NU1BEPROCESSES;

-- SNCHaCNIZATION :code segment will be used to
-- synchr. parent and its child, tut
-- initial seg(2) is used to synchr.
-- child with main application program

c:rprocess(init,ch parar-eters,ch ~access level,
Drccess,ch -rescurce,irit.initial seg(2,,success,;
If success /= ? then

put _suc-,(success value OE is' ",success,w class';
Dut ln(\STD,,I O _Ww w_cl ass,"";

E)4t IF,

read -evc (ch_ pararre te rs .seg numrberc code,
ch evc _val,success)

detach -device(STDIO_ *, success);
detach_ device(STDIOR, success);
await (chbparameters .seg _numbterc code, cn -evc val-l,

success);

-- synchronize with main applicition program to create
-- segmrerts to hold stack ard data (will be used as synchr.
-- scents with the new process)

def _see lit mk_ sel(ldt table,init.initial see(3));
def _off 0;
ch in.input one usernc2rme*
oh in.input result : -
rh in.input class :=w class;
data def _size (input message EIZE/@)l
mrovo tytes(get ssO, oh-in'PA:DDESS, def-_seg, def _off,

data def size);

-- syrv-hronization proress

adva ncp(init.initial _seg(3), success)

adv~nrei'init.initial-seg(2), success)

?e

read evc(init.initial seg(O), evc _ch _val, success)

await(init.inltial 5eg(O), evc-chval'l1, success

read evc(ch pararreters seg ruumber code,
ch _evc _ val success)

advance (ch pararmete rs .seg numbters tack, sucress)

-- will! await until child self' delete

await(ch _varameters.segnu,-ber codIe,ch evc val-,
success);

if' success /= (7 then
tut _succ-("success value 1? is ",succ.ess,w _class);
put ln(%STDIC _W,w class,'")

E ' IF;

-- atac' I/C terminals a-ain and delete segrents created
-- created for the child Trocess

attach_ tew(ID POPT,STrIO_ 'i);

-- elete segnr-ts

terrinate-segrent(ch _parareters seg number _stacK,
success);

t ermrina te _segr-em tch paramet er s .seg nurmber _c code ,
success)

te rrina t-sgrnt1h ar . e s.s -- nrterm ata
success)'

d ele te_ egr-en t(31 ,ch pa rame ters .en trys tck, succe s s
delete _segrrert(31,ch paramr.eters .entrv _ .at,succ~ess

ter74inatE_5egrrent(-71, success); -- terminate mrentcr
delete sepgment'inlt,.iritial-seg(l),3,suiccess);
child delete!'PROC?7SS-l,success);

c- c r-n Ln czt e with main ea!plicatic. Trogram to delete the
-- seg're-ts tc hcld stack a.rd data that were Created to
-- sy n rhro:n i z 'raln with rthiii

d f ser lit _m i s el(ld-' t t a tle , ir. iti n it aI s e g~)
def of'f
..hir.irut one :=userra.,re;
ch ir.ir~ut _result : "
c h in. in p Lt c Iass w r1a s s

79

data def _size (in~ut Tessage'siZ-F/F);
novettes(getSS(), ch in'ADDBESS,Ief seg. del' cff,

da ta de.0-5 _ize)

-- synchroni zaticn ;rccess , the control will return t o
M-Tain appliCaLion programn CCF

advance(in-it.initial seg(t.1), success)
advace(init.initiia-seg(2;1, success ~
read ev-(init.initiai seg(O), evc _ch _val, success ,

awaiT(init.irnitial se() ovc _ch _vel+l, success)

enid if

eri :00?P:

-- synchron~ize with main aprlicaticn trcgrar, tc tell that
-- the user no longer will use the terr-iral

del' _ e- lit mk sel(ld--t table,init.initial sei:7,
def _off 0
ch ini~ut one : usernarre;

d at a del' _ siz e :=(inrut-rressage'SIZE/E);
roVe- ty tes (g-ts ssO ch in'A~r-:SS,def --e.-, ftel' off,

da ta _de' -si ze)

detach device(ST-DIO_ R, sticcess);
eletach device(STDIC _W, success);
advancefinit.initial segl'), success)
self ielete(i-it.initlal _seg,(2 ~,success ,
if success ,' 0 then

attach tew '1 IJ-OF 1:i~);7 j'
put succ$ successor is ,success, w _class);

FN: if:1

-::user'i;

00

f's

-. APPENDIX C - ACTIVE USER APPLICATION PROGRAM

This appendix lists the Active User Application Program

code. Only one program is provided since the three different programs. one for

each different user. differ only in the port used on the RS-232 board. which is

indicated below

Port 6 User 1
Port 5 User 2
Port 3 User 3

The programs are called PRCHL1. PRCHL2. and PRCHL3.

The program listing for user 1 is detailed next.

.

18

81

pragrra ranizecheck(off) lpragr'a detug(off);
pragra arlthcheck(off')pragmra enumrtab(off);

WIT9 agate. agetei, anl, alit, alitbj, strlibt, files, util;
PUCKAZE .ODY prchll IS
Usy -agate, agatej. arl, alit, ellbj, strlit, files, util;

-- Ccrstants used by the vrcgrarr

-- STI3 ' --) assigns lcgical device 1 tc write
-- STDIO R -> assigns logical device 0 to read
-- IC PCRT -> assigns the po-rts accorcing with the

-- fcllcwing detail
puseri - port e
puser2 -- I ort 5

puser3 - port 3

IC~ CC.> STANT integer 1
S723 CV'txS---ANT integer 0

TO _ ?C : CONSTANT integer IF;

-- varietles used by the -,rogren

w class :acces class;
*success :Integer;

ch~i : irput message;
*data _def _size :integer;

def _ ff :Integer;
d ef s seg :integer;
eve _ h _val :irteger;
ri d s tr :s t ri ne

eT^_ :toolean;
e rd r crog :boolean;

t :trniprocess def;

Init get rl-def(); -- this sentence is otligatry

.ri -c-,.ui= attaches port X to this process in orler to

-- use it in I/C operations , the device will have the se~re
-- clearance that the process ha5'

w-class :=init.resources.ray class;

-- attach terminal s (,reai a~d wri te)

attach ter(TO _'PORT, ST2DIC R)

attach tew(10 _FORT, STDI0

put ln(STD)IO ',w_.lassJUSER CHiIL

-- Syncrznize with JSEF. RANDLEE to indicate that it was
-- created ok and let him continue his execution using the
-- advance, arnd await operator (advance User Handler
-- evertccunt to continue, and await tc stop its process
-- and returns the -ontrcl

adv~nce 'in it irAtial _seg 1) ,success);
read e vc,(rit.initial sep(2),evo7 _ chval,success,;
await i"t .initial seg(2),evc _ h _val-l,success');

-- LOOP MODULE

-- This module Executes several operations until the
-- operatocr enters the word "tye" that means work is done
-- he stets considered are

a- a.- Put prompt ("Y)indicating that i s ready to
-- acrept ACTIVE USEF input mressages

I- .- CGet tre user's input message

- -Loa input m-essaee entered ty the user into
-- segrent data used to pass the information

-- d.- Synrhronize with main application programn CCP
-- waiting !or the answer to the ressage sent

-- -Display the result of the mressage after it was
-- roresse-' ty CCF

e pr -, : fAlse;

ga11M

Alm ~

while 'ict end prcg LOOP

-- get irput messages f romr the terminal

rd str

put _str(Sc-rlo-w,wclass,"' *);

PUT In(STrlo-w, w-_class,) -put the cursor in
-- the next line

def _seg lit m rk -sel(ldt table, init.initial~seg(17)';
def_ -off e. ;
ch in.input one :=rd str;
ch-in.input _ result :
'in ln-iriut class :=w class;
data del' size (invut _ message'SIZE/E);
move bytes(get sso, ch i-n'A1DRFSS, del' seg, del' of"f,

data del' size);
if ((rd str "Eye"7 or (success 1=?,then

ed-prog true;
el1se

-- egin the synchronizaticn process

advance(init.initialse-(3), success)

edvarre(init.initialseg(2), success)

read _evc(init.initial-_seg(e;, evc-c-val, success ,

2wait(irit.initiaIlseg(0), evc-ch-val+1, su'cress);

-- display tbe answer's mressag;:e that was transrritted ty CC?

del' seg lib -mk -sel(ldt tteii~niilsg3)
del' _off'T
date def-size :~(inpttrressege 'SIZF/6);
r~ve bytes~def _ seg, del' cff',-et sso, chir'ADDRESSI,

data _ eV si ze'
ut-, _ n'3'TIO 'wt, w-class, -hin.irjput-resvlt)

F-d if

ond LOCP*.

E4

-- DETACH TEF4INAL MODULE

-- !his rcdule returns the device's control to the user
-- handler

detach device(STDIO R, success,;
detach-devi'e(STDIO-W, success');

-- SELF DSLETY MODULE

-- This module terminates the child process (ACTIVE USFR)
-- and advances the eventccunt of the segment indicated.
-- in this case it is the segment used to synchronize with
-- his paret (user handler)

sel -' delete(init.initial seg(I), success
if success /= 0 then

attach tew(IC _PORT, STDIO)
nut succr"successor is ",success, w class);

FND if;

E: prchll;

R5

APPENDIX D - PRBDOS APPLICATION PROGRAM

This appendix presents the application program used to

simulate the behavior of the BDOS operating system. Because of time constraints

this program only has code that shows the process that should be performed when

BDOS in invoked, simulating the result in order to pass it to the CCP process.

This program is called PRBDOS. and its listing is next.

)Al
i 86

i:r agr rangecheck(off): pragra detugoff);
pragma ari thchPCk(off);rag!"a enrutat(cffi;

?ACK3~BOEY tvrtdos IS
UST agate, agatej, art, alit, alitj, strlit, files, util;

This -proerar only simrulates the behavior of tn= ZnCs
work, in order to handle "disk files"

-- costants
ST:_IcW :. CONSTANT integer 1
STrIC- : CONSTANT integer 0= ;
TO PF.T :CONSTANT integer 3;

-- A M I N
w-class :access-_class;
surcess : nteger;
data -def -size :integer;
def' cff : i-t-ger;

del': -ginteger;
evc c~h vel integer;
ch-cr : cc cma-d _line;

en!Drog tcolean;
--file data :files data;
--seg_headi segmrent _header;

-- sepdatasegmen t _data;
it _niprcess def;

init get _ri_ def();

-- attach termrinal as write device

w class :=irit.resource,,.may class;
a attach _ tew (I0 FORT . STL.LC -W

-- initialize directory

pu ut _ln(STIC _ W . wclass , "P 1) 0 S

-- Synchronization with CC? to tell that it was created

-- without trouble

-- begin the synchronization rccess

advance(init.initial seg(2), success)

read evc(init.initlal sep(0),evc _ch _val.success;

await(init.initial _seg(0),evcchval+i,success)

-- ROGR&M WAITS UNTIL TE CONTROL IS PASSID FROM CC?

- Begin !cop until CC? sends btye"

while rot erd rrgLO

-- get command line passed by CC?

def seg lib -mk -sel(ldt _table,irit.initial' seg(-)J;;
def of f 0;
data def _ size (corrand -line'SIZE/6);
mrove _ ytes(defseg,def -off,getss(),cccr'ADDRESS,

data def size);

-- put ln(STrIO _W,w _class, chcorrmr.cormmand);

if (rh _comrrr.corrrrarnd 1 bye ")then

IF ch comn.cornmand " create THFN
ch corrrr.result "=file created"

create fileofl

FISIF ch comm.corr~mand delete ,t hen
ch-comm.result := "file deleted"

-- delete fileo;

FISIF ch-cor.c-omrand = "rerarre then

ch-corr.result := "file renamred";

-- rename fileo;

I S F
ch c orrrr .re sul1t ress. prccessed*;

IN D If;

-- load the result to pass it to the parent process

def off 0
data _def _size (com'and lire'SIZE/CZ);
m-ove bytes (get-ss(U ,ch cormm ADDRESS ,def seg ,def off,

data def _size);

-- Synchror'ize process with CCP in order to Lass the
-- re sul1t

edvance C mit .ini tialseg(2), success)
read evc(li-it.initial _sep(P.), evc chval, success ~

awai~i~t~litllse(O), evc c"_val+l, success)

end prog :=true;

erd Loop;

- 3; -vx V., "*V V.) -;.X *"C * . "" .y

-- Erd of the ;rcerair and self deletion 'process

-detach devic-e(STCDIO_ , success);
-- detach-_device,' STDIO-W, success);

self -delpte(inlt.lnitlal _seg(2 1. success ;
If success /= 7 then

attach tew(IOPORT,". IO'
put -succ(ST*CCISSOR IS ,success,w class);

P-~D if;

YS: prtdcs;

APPENDIX E - COMMON PROCEDURES UTILITY

This appendix contains the procedures and functions used to

provide information when the system primitives are used. These were obtained

from the demonstration program provided by Gemini Computers Inc., and

modified to reflect a generic use by the application programs developed in this

research. The programs are "PROCE.LIB" (contains the specifications) and

"PROCE.PKG" (contains the code developed).

'90

A 9(

WITH agate, agatej, arl, alit, alitj, strlib, util, files;
PACKAGF FODY rrcce IS
USF agate, agatej, arl, alit, alibj, strlib, util, files;

-- Constants for device slots.

ST.IC W : CONSTANT integer 1;
STDIO P : CONSTANT integer =;
10 PCRT : CCNSTANT integer -- port 7 for main

-- Constants for segments.

SIZE NTOF • CONSTANT inteeer := 1; size mentor
-- synchr. segmt

-- .FROCEDURE C.R SEIGMENT

-- ~This procedure completes the parameters needed ty the
-- zriTitive createsegrent. The record structrre is
-- descrited in the file agate.lib" rrcvided ty emiri
-- Computers Inc.

-- The uarameters received by this procedure are
-- iat -- > initial prccess definition
-- entcr -- > indicates the segrrent number that

will be Larert of this new segment
-- entryx -- > indicates which entry number of the

mentor is used to create this segn'ent
-- class -- > indicates the security level of the

segment to be created
-- success -- > output variatle that indicates the

result of the operation after call
the primitive

-- This rrcceduce is used to create the mentor an-
-- synchrcnization segments

PROCEURH crsegrrent(init : in rl_processdef;
rmentor : in integer;
entrx : in irteger;
class in access class;
success cut integer IS

cr _seg,_str : create se _ struct;
wclass :access class;

91

w -class := init.resources.nin clas.s;
cr -segstr.rentcr rrentor;
cr-segstr.entryx : entrx;
cr -segstr.limit : SIZE MNTDR;
er-seg _str.class class;

Create segmnent(crsegstr, success)
if (success = El17? TEE-N

put ln(STDIOW, w _class, 8217 mreans se--rr=nt alrealiy
exists.)

EN cr segrren t

-- FRCCE-i?.F --I SEGMENT

-- This Lrocedure corpletes the parameters reedet ty tne
-- primi"tive delete _sevrrent. The reri structure is
-- dosried. in the file "agate.lit" -rcvided by Gerini

c- Ooputers Inc.

-- The Tererreters received by ti rcdr r

i- it ->initial process definition
-- ent cr ->indicates the segment numbter tnat

will bte -carent, of this new segmrent
-- entryx ->indicates which entry r'jmter of the

mentcr is used to create this segment
-- Class ->indicates the security level of the

segmr-ert to be created
-- suc~cess ->output variatle that indicates the

result of the operation after call
the primritive

PR.CC-,r.URF dl-seegment (mit :in ri _ process def;
mrertorx :in integert'
segnunter :in integer;
success o ut integer 13I

Tentor, entry : irteper;
w c~less a ccess class;

w _ class irit.rescurces.rir class;
m~entor rtorx:
entryx se,-_ nurter;
delpte-seg-7e-t(m-entor, e-tryx, success .

P~~~ se - t s t': ~

-- tFRCCI]rU ' i(SIG""',.NT

-- ~This procedure competes the varameters needed 11y5 the
-- .rimitive makeknown se 'ent. The record structure is
-- described in the file agate.lit- provided by emini
-- Corrputers Tn'.

-- The rarameters received by this rrccedure are
-- int -- > initial process definition
-- .entor -- > indicates the segment numter tnat

will be parert of this new segrrent
-- entryx -- > indicates which entry nurrer of tre
-- mentor is used to create this se ,-ent
-- tumber -- > indicates the nuter that the se -e-

will have in the LDT
-- .ode -- > indicetes the kind of segrent that

will be created (r w. r e, etc.'
-- success -- output variable that indicates the
-- result)f the operation after call

the primitive

-- This vroceduce is used to makekrown the mentor and
-- sy-chrcnizatior segrronts

.FROC :77r.-r .c-se rent (init : in rl_ rccess def;
mentor : In integer;
entrx : in integer;
nurmbe r in integer;
mc.ie in se_ access type.
success out integer) IS

segrec : rk kn struct*
seg_ret_re : rrk _kn _return;
w class : access class;

w class := init.rescurces.min _lass;
se rw . erto: mentor;
sI eb- rec.ertre~-trx;
see rec.se.- number :-numter;
se--_rec.se,-oe := c e;
segrec.prot level :tyte(1 -- ri- 1 rrctectiz-

t b%

segrec.gateprct tyte(2)
mnakekn~cwn segrent (segrec, seg _ret rec, success ,

H-0- F?.OCEURE FMIA K F KNO*N _ N SYIN C

-- This Drocedure effects several actions related to the
-- creaticon of' special segrents to syncrronize the rain
-- applicaticr program with the active user. Sir.ce the
-- segr'ents were created by the active user this zrocedure
-- will only makeknown those ir its own L: tpltle, ernc
-- swapin these in mremo-ry

-- he pararreters received ty this prccedure are
in it -)initiai process dolfinitior

-- h _ ra ->irdicate5 the varareters us:t-
create the user hardler '-rccess

:- h --lass ->indicates the access _ cAss -)f tre
-- se,;?rert to be created

- rh a Ct i Ve ->indicates which active user is
* -- tryinz to cormiinicate with

-- C*IUser sY-.c--> is ar. output record tnat ccntairs
the seer=t numbters assi.,:ned t3 h
sync hr on i zti on segrenit s

S--F scss -)Oiitput v.ariatle that ind-icates the
-- result of the operation aft-or a

7- Pis prc re4Ur9 is Used to Taeel~.ow the ycno:t2
-- segrrents 'rpin eH.~licetio. activp user)

7c-'KR 'Xe knw syn~c(i-it in ri_ ; r~c~ s e
ch rara in ri _traaretr-r,-
ch _class In ~~s is
- actlve in irtPeger;

o ser sy nc clit users _act lve
SUC-CE~S Cut int Fp~r J

see,7 :e E-, ir -e ss ty pr
s-,-- -,-, r ;r *-
class 3-CE S -lass;

To_ - rke 'K o wn r ot 5segrert (ccae segmert fe h cc. Ch i

rre-tcr ct L~zra .seog rurbEr ccde;

hearausyrch :=hd re~o
see rocde :=r-
class :=init.resources.min cla s s;

if su-Cess /=~ 0~ Ten
put succ,'-success valu~e 2176 is ",suocess,ch _claiss);
put ln(ST10 t*A,ch class,");

end if ;

-ake Krcwr staci segment

rentor h arsycrhi.rtr
entryx 1
sezg _ r-,er -h _ tara.s,-chr _chid14 stack;

-k seg7ent'irit,r'entor,entryrseg--nUTrler,
s eg- d cce suce s s

if success /~2 then
pu ts u success vae i-2? i s~ succ'ess , ch~~ _ iass,

*pu t n (S T:J 13- .ch _cIa s s, ,
end i f

-- rr'ake knc-wn date segrren t

-e!'tcr ch - ara .sy nchr _chic -,Tentor;
entryx 2;
se Le Ih _para.syrnchr chld deta:

se,- rcdAe :=r w
rik_ segrent,' Init ,rrent or, Entryx , seg nurrter ,

see_ -6-e , .r' s s
if' success /- 0 then

put su i("Success value 7Eis , e
put nSO ,ccas,)

erd if~

ch usersync(ch active).sege data
ch p-ra .Y nr

ch _user _sync(ch active).see stac,
* 'b el h

sw a i -ser en t (h _user s:1.c Ch na".

-- read event coun ts of ea. s-

read _ vc(ch user _sy-' -6-W.
c1user sync -

7 -A175 988 DYNAMIC SHARING OF THE SYSTEM RESOURCES IN MULTILEVEL 2/2
SECURE SVSTEMhU) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
M A REYES 26 SEP 86

UNCLASSIFIED FIG 9/2

EIIoIIIIIIEIEIIIEIIIIEIII
EIl.

1111111. 25 1114Dii1.6

terminatesegment(44,success);
if success /= 0 then.

put suc-("success value 71,? Is ,surresschclass);
pLt in (STDIO_Wch class, .);

end if;

XNE make know _sync;

-- -PROCEDURE TFRMINATF_ SYNCHR SFG

-- This procedure terminates t.e seer.ents makeknown
-- previously with the object t. synchronize the corr'cnic;-
-- tior between an active user and the rain aDol. trcrar

-- The parameters received by this 1rccedure are
-- init --> initial Irocess definition
-- ch_ oaa -- > indicates the odrameters -ised to
-- -create the user handler proess
-- ch class -- > indicates the access class of the
-- -segment to be created
-- success --) output variable that indicates the

result of the operation after c:all
-- the primitive

-- This pro-peduce is used to delete the synchronization
-- seg"ments created before (main - active user,

FRCC-DU2E terrinate synchr seg(init in rlprocess def;
ch_Tara in rl_-para-eters;
rh class in access class;
success out integer " IS

-- terminates the segments created to syr.chronize train
-- application program with the process created --y the
-- child process leaving availalle the segment numbers in
-- the L-,T

-p.

terminate_ sgrment(ch para.s chr chld data, success

terminate _segrent(chpa r.synchr chld sta rk, success

END termrnate s~rchr-sep;

P6

-- ?RCCErURF ?:ILL INIT

-- This -.rocedure fills the process definitior record with
-- the dlata provided in the initial process definition plus
-- the resorces that the parent will pass to his ch~ild end
-- the access class of' this specefic trocess

-- The paramreters received by this procedure are
irAit -> initial rcsdliritn

-- ch _ init ->output process defiritior
-- ohresource -)indicates the resources pa'-5ed its

parer t
-- success -> outvut variatle that i,.icates the

result of' h operation aftEr -dAl
the primitive

PRCCEDURE fill irit(init :in riprocess-def;
ch _ mit :out ri rrocess del';
ch resource :in child resource;
ch access :level -record 'IS

-- fill in the initial process record of a child
-- process celled by crtproctst.

P EGI N

ch init.cpu :=init.opu;
c'h in it .numr-cpu init.nurr-cpu;
ch_ irnit.rnum kst init.nu" kst;
ch init.rcct_ access :=init.rcct access;
ch init.s seg :=3;
ch-irit .resources .pricrity

init resourres priority; -- sarre as parenit.
b24 frin teger(ch_ resource.rrerrcry,

r'h in it .re s wir .,e s -emcry)
ch -irnit.resources.prccesses -ch -resurce.rocPsses*;
oh _init.rescurces.semnts := oh resource.segmerts;

-- this will be modif ied with the specif ic ac-cess -Iass
-- of each process

ch-irit.resources.mrin. class :c haccess.mrir;
chlinit.rescurces.max class ch access.may;
ch in it .rin? r rurn, by te P) 1

97

ch inlt.sp2 = ;FN:E fiillinit;

-- ~ ~ '1 2; * 3" X.*4 ~ : ,c ;

-- ~PROCEDURE CR PROCESS

-- This .rocedure performs all the operations necessary to
-- create a child prccess, this operatio-'s include
-- ralkekncwn the code segment cf the child, creation of
-- stack end data segments, fill the addess space
-- specificaticn and process creation

-- The pararreters received by tis prccedure are
-- init -- > initial process definition
-- ch _par -- > parareters to create a child

(segrent nurters,entry '.,rr~rs, t,;)
-rocess --) indicates the process nuter t 1-

created (example active user I
-- oh _ resource -- indicates the resources that the
-- child will have
-- synchrse. -- > indicates the seprent that is uSc,

to synchronize this new process with
its I;arer.t

-- success -- > output variable that indicates the
result of the operation after call

-- the primitive

PROCEDURE or_ rccess(init : ir rirocess def;
chpar : in rlparameters;
ch _access : in level record;
proces : in integer;
ch resource : in childreso-irce;
synchr_seg : in integer;
success : out integer) IS

chld seg : rlse_struct;-- rladdrarray for child seerrent
ch _init : rl_.rocess def; -- rirocessdef for chili

sep rec : create-seestruct; -- ,:sed to create stack se&e-t
segl_mkn : ,rkkn-struct; -- used to rrake known stark ser ret
segl_ret : rk-kn-return;
crt rec : rlcp_struct; -- create process struct'ure
chseglist : se -_array;

91-

PA k' C..

ch_ in t mess input mressage;
data _def _size :in.teger;
end chld- : oolean;
w class :access class;
evo value irteger;
stack size integer;
seg mrgr bytes : integer;
def off : integer;
defseg : integer;
ri -def size : inteeer;
dummy :. integer;

-- constants for determining stack size

ri -stack_- size :CONSTANT integer 16#AFF9;
vect size :CONSTANTL irteger

PEGIN
w class :=oh access .rin;

segli rkr.mentor ch_ rar.rrentor cz-.e -- ,' root
segl-mrkn.ertryx~: ch~par.ei.!ry code;
segl mkn.se-4nrrmber := ch par seg_-umterc code;
seglmrkn .s6gj _ ode :=r -e;
segi _ mknprot level := yte% 1)
seg1 _mkn..gate rumrber NUTL _IN3 X; - ao at e
mrakekncwnsegrnrent (segl-r,n , segi- re t, suc cess)
if success /=- 0 then

put succ("success value i5~ ,succ-ess,wcla5s,;
put ln(STDIO_ W,w _class,')

ENEr IF;

-- address spec- for child's steack

chlAcseg. seg -nurrter :=chjer. seg number _stac~r;
chld s e, . s e -, mode :=r w
chld seg.swalin RE
chld seg.prctec-t byte(1 ~
crt-rec.rl-addrarray(2 chldseg;

-- address spec for child's code

chld _seg.seg _number :=oh _.pr.se _ nurber _cole;
chld_ seg.seg -ode :=r e
chld _seg.swa~lr TRUF;
chld _seg.prctect tyte(1)
crt-rec .rl-addrarray(1)chld sep7

-- address spec for child's mentor

* -' ~ ~ ~*>~ & ->9

chid_- seg.segnumber := 5yr.chrseg;
chld -seg.se-,_mode := n a;
cbld -seg.swapin :=RuIP;
chld -seg.prctect tyte(1)
crt rec-rl adr array'k 2)chid seg;

-- address spec fcr trap handler Segmrent

ch1d -seg.segnu~rber :=irit.lknitial-seg(4)
chld -seg.seg_mode := r e:
chid _ seg-swapin TRUE;
chid _ seg.prctect tyt.e(1)
crt-rec.rl-addrarray(4) chld-seg;

-- address Spec fc.r child's data

chid _ seg.sea _ number :=ch~par.segnurnberia-taP
chid _ seg.seR mode :=r w:
chid _sep.swapin :=TRUE
chid _seg.prctect byte(1
crt-rec.rl _addr array(3) :=Chld seg;

-- fill the order in which the segmerts will be passed

chseglist(e.) chpar.segnurrter _ stack;
ch seg list(1) :=chpr~sg re oe
c b.seg -list(2) synchrseg;
ch-seg -list(37) ch par.seg numbter data;.

-- calculate required staclk size.
-- (in the future will calcvlate based on data inCT"
-- file header but now just use ccrstant.)

seg_ rrgr bytes (stack header'SIZF/P) +
init.rutm kst (kst _entry 'SZF/a)) +

(kst header'SIZI:/e);
stack-size :=ri stack -Si2e+vect-size+seg_rmgr _tytes

(rltprocess-def'SIZE/a);

-- create and make known child's stack, segrent

seR -rec.mentor ch--ar.rrertor stack;
seg-re . ent ryx chpar *entry s tack;
seg rec.liimit stack _ size - 1
segrec.class ch _access.rrax; -

* create segrrent(seg_ rec, success)
if success /= 0 then

*put succ(success value aa Is ",success,wclassA;

put ln(310 W~w ls

%~

EN D I F
segrkn .mrentor :=ch par.rrentor stack;
segl _mkn.entryx ~=chvar.entry s-tack;
seg1_rrkn.segnumber := ch _par .seg_ nurnbers stack;
seg1_rrkn.seg _rrode := r - ;
segl rrkr.prot level := yteC 1)
seglrnkn g2 te numrber :=NULL INDE-X;
segrkn'.gate -prot tytel(0),
makekncwnsegrrent(seglrrkn. segi ret, success
if success /= 0 then

put -succ("success value a is- ",success,wclass);
put Tln(STDIO _W,w_ class."t ');

YND IF;
swapirsegm-ert(ch -ar.seg number _stack, success j
if success /= 0 then

put succ("success value t is ",svcress,wcl,s)
put ln(STD-IO _W~w_ class, -,;

END IF;

-- create and rrake knowr child's cdata se-.r-e-t

seg_ rec.rentor chpar.rrentor _ lata;
segrec .entryx ch par .entry data;
seg_ rec.litrit in~ut rressa~e',SI?F/F;
seg rec.class ch _access.rrax; -

create segy-ent(seg_ rec, s'~ccess)
if succESS /= 0 then

put succ("success value cc is ",succe--s,w class';
put ln(STDIOW,w _class,'-);

FND I F
segi _ rkn.rrentcr ch -par.rentcr-data;
seg _ rrkr.ertryx~: ch-par.ertry-dat2;
segi _ rT!k.seg_ "umter := ch_ p3r.seg numbter -lata;
seg-1 mrk-A.se4rrmode :=r w;
segl _r mkn.Trct level byte(1
seglrnkn.gate _ urrber NULL INr-F!;
seglrrkr.gateprot tyteT ? ',;
rrakekncwr _ segrent (segl-mk" , segi ret, si~ccess)
if success /= 0 then

p.ut -succ("success value c is ,success,w cles
put -ln (STL 10 W,w class,-");

FND IFi
swapinsegrentf ch a~enrrer data, sucress
if success /= 2 ther

,put sur-c(success value -4 Is %sucress,w~_ c.'!3ss
Tu t ln(STEICW,w _class, "

.NL IF;

-S -- fill in childs rlprocess-def

.8 fill _ nit(irit, ch~irit, ch _rescurce, ch _access

101

-- determine segment & offset of rlprcress _def initial
-- record

def-seg lit-mk-sel(ldt table,
chpar. segnumber-stackc

def off stack -size - vect size + segmgrbtytes -
riprocess _def'SI7F/8);

ro nve ch Thit into 1proper piace in child's stack segment

ri def size (l rirocess defrSIZE)/B;
move-_bytes(get _ss(Y, ch 1 it'address, def-se.., def-off,

ri-def size*)

f fIll in rerrainder of create process structure

crt rec.ip 12e; -- skip command file header "E21 hpe(
crt _rec.sLX def -cff; -- set childs stack pcinter
c rt _rec. sO. stack-size - (vect -size -see-rg ty te s
crt rec.sp2 0; -- no rine 2 stack
c r trec.vec -sep := 0 -ri address arra.) e'lerrnt 27
crt rec.vec off := stack _s17e - vect size;
crt rec.child-_num proces-1;
crt rec.priority ch _ irit.resources.priority;
crt rec.memrory :=ch init.resources.menory;
crt _rec.processes := ch -init.resources.Trocesses;
crt rec.segmnts :=ch_ init.resources.segmrnts;
crt rec.rrini class C= h irit.resources.min class;
crt-rec.nay class ch _init.resources-max _ciass;

-- real event count so we know when child has self deletpd

-- read _evc(sYrchr seg,evc _value, success)

-- create the 'process

create process (crt-rec, success
If success /= 0 THYEN

put succ("create -process success
success, w-class '

FIND if;

4 END cr_ process;

-ND proce;

102

WITH*agate, agatej , arl, alit, alibj , strlit, util , files;
PACKAGE proce IS
U US agate, agateji, an,. alit, alitj, strlit, util, files;

* -- THIS PROGRAMl IS PROCE.LIB

-Contairns the s- ecificaticns needed ty PPCCF.PKG iprcgrarr

FiOCEDURE crsegment(init in ri .rocess _del';
mrent or :in in~teger;
entrx :in integer;
class :in access class;
success :cut integer

PRcCE:URF dl segrrent (n mt :in ri pr.--ess _def: srress
out integer);

FRCCIIMJ?. T rrsegmrent (mit :in ri prccess _ ief;
mentor :in inteper;
entrx :in intei-:er;
number :in in~teger;
mrode :in sc-g _ access _ t e;
success :out integer)

PRCCEDURE rrake know-Syncl irnit :in rl process -del';
ch _vara ir ni _ oaranreters;
c-b class in access _class;
c-active in integer;
ch _ user -syrc :cut users _active;
success :out integer);

.POCED7-RE tern-i rate- synchr seg (irit :in rliprocess _del';
c7bpara in rlparameters
ch class in access class;
Success out integer);

PROC7:LURF fill init(init :in rlprccess _def;
ch ni :i out rlrcesi;
ch resource :in chili Lresc1-,-.'e(;
c-access :ii level _rec&r!

?3CK7FF cr tr--cess(init :in ri _ rccess-ief;
rhparA in rl _ raraflpters;
c- cess in levrel rec-,r

prc-es in' integer;
ch-resource :in chl4 _resource;

synchr seg in integer;
success cu.t in~teger);

F'IE prcle;

104

APPENDIX F - SERVICE ROUTINES AND ADDITIONAL DATA STRUCTURE

This appendix contains the procedures and functions used by

the application programs related to execution of I/O operations. It also contains

additional data structures necessary to run specific application programs

(parameters. record's description, constants, etc.). The program is "Files" and is

composed of two modules. "FILES.LIB" (contains the specifications of records.

functions and procedures used) and "FILES.PKG" (contains the code developed

for each procedure or function).

105

' " " " " ,, " ' ," " " " . : " . " ." " " ." "," "- " ." - - " - . L " ', - .' '. - . - , , .' "2 . . , " " ' '- " '. -I " -(J" " " .3.

., 4 . A : : <, ,. ,, :< x , .. , -. , ,:-:..--.:..:.-..:-. --. :--

PACKAGE ECLY files IS
USE agate, agatei. arl, alit, aliti, st rlt, util;

ST-IC W_: CC"NSTANT integer 1
ST'IC R :CC',JSTANT integer 0

FROCED)UE t24 _frr- integEr(in val in integer;

t24 val :out b24-tvre 'IS

-- Routine to corvert an integer into a
-- 24 _type variable (-tytes

b24 val.byte? tyte(7
b24 val.tytel hi(in _val)
t24 ve I. yteO I o(in -vai)

FN D t24-frri r it eger

FDCC--:-URF Tut~n (ldev :in in~teger;
w class :in acc'pss class;
str :in string 'IS

-- put a string on device Idev with cr and if,

out tuf :strirp(992
5ur-ctss : nteeer;
wt 510 wt _sec _struct;

size str :integuer;
CR CC\')STANT integer 13;

CONSTP.T integ-er

out _tuf str;
size _str ltengthK' str)
cut tuf cut _tuf & char _to _str(character,'val (
out tuf out buf & rnl ar to _str(char-icter'val(F)
wt si:.cdevice :=ldev;
wt sio.tata off out _tutfADD?ESS + 1:
wt sio.'lata seg get-_sso:
wt sio.-,urnt size str -42;

wt-sio=wclass;
write sequential(wt sic, surcess ~

P~o~:F~ ik -~r / Mev :i n n t r-eer;
W class i- access class;
s tr s~ st i IS

cu t tuf stri-"-' :227

w *, sic wt : sec -so ru:
size str :4 1e?=

F 3C' C C -i7 e2

Cu t _tuf st r
s-i ze _str :enlg~ 5 sr '
cut _ uf cut *.tuf chart tc _ tr{ c-haracter'v61(S C
out _ uf c ut bu f c a r t tc s tr cr'rrAc e r'va(FI
wt _sic,."evice 'dv
w t si Cda t a _f ft Cut t u f AFES

w t s i ~ : r t r - 2

w t s i C 1as s wC a s5 *
write sezuenrtial(wt sic, sucress ~

PORrFT: ~et _ str (1 Fv :in irnte~er:
r _cla5s cul , ccess _ciass:
str .clt stri-,~) TS

-- ge t a st ri ng f rorr device ldev.
in buf strirg E2
success i-tezer;
rd _sic :rd -se strur't;
rd- ret :rd seq return;
size str ,integ-er;

r~ dsi o .da ta cff :=ir- _tv-f'p.MR3-SS3 1;
rd _sio.device := dev;
rd s sio.Cata seg get ss~l;
r ead -sequertial(rd _sic,, r ret, success)
in _tuf(2 ',: h~arter'val(r.rtc~t2
str ir _ uf;
r _class :=rd ret.class;
pC et _str:

F RcCE i u t s str ' lev :in i~gr
C. ca ss ic access S

str i 5t r in~'2

-- put a string on device ldev.

out buf : string;
success : integer;
wt sic : wtseqstruct;
size str : integer;

BEGIN
out tuf str;
size str := length(str 1;
wt sio.device := Idev;
wt sio.data off= out tuf'ADDRESS + 1;
wt sio.data 5, = e ss("
wt sio.count size str;
wt sio.class := w class"
write _sequential(wt sic, success ,

END put_str;

PROCHUREput •ec(14ev in integer;
w class : in access class;
dval : in integer)-IS

-- put the string equivalent of a integer on the terminal
'.I -- screen.

outbuf :'string(1? ,1;

PFGIN
out buf := Int to str(dval);
putstr(idev, w_class, cutluf);

'DJ putdec;

FROCEDURE rut _succ, in str : in string;
dec val in integer;
w class in access class) iS

-- print a string ard an integer on device attached in
-- slot STDIC W (should be a serial terminal).

BEg

put str(STDIO , w class, in str
put dec(STIOW, w class,,,dec val);
put ln(STLIO_'W, wclass, "

END putsucc;

105

A. _%

FUNCTION getinput(eco : in boclean;
rd-class : in access class ' RETURN string IS

-- Gets an input string from the terminal and echoes the
-- input if the echo option is on. It also converts all the
-- input to lower case

-- constants
STDIO R : CONSTAtNT integer 0;
STDIO_'W : CONSTANT integer 1;

rd str : string;
ind : integer;
values : Integer:
inpch : string(l);
wclass - accessclass;end-irput boclear;

BFGIN

w_ class rd_ class;
end input false;
mnd "=1;
rd str : ,
while not end input LOC?

get str(STrIC P., woclass, inpch);
if inp ch(1) in 'A ..'Z then
inpch(l) :=

charecter'val(cherea.ter'pos(in _ch(1 ,)+32 ;
end if ;
if (character'pos(inpch(1)) = 13) tren

end input := true;
else

if eco then
put str(STDIC_';, rd class, inp ch):

ENT IF;
rd _ str := insert(inpch, rdstr, ind)
ind := ind + 1;

end if;
end LOOF;
RETURN rd str;

. F- e t_ i,.Ut ;

PR0CiD.JR! attah ftew(IO PT : in integer;
L1FV : in integer) IS

-- attach serial port for writlnp.

1 9.

~ *.*.

rode :attach struct;
W class :access_ class;
success : integer;

BEG IN

rrode.dev rarre := siow;
rode.siow_ rec.dev _nur io-;oport;
mode.siow rec.dev type ic;
mrode.sicw rec.dev id :=LDFV;
mode.siow rec.rrrt : byte(117#24r#)
mode.siow rec.rrr2: bytp(16#03F#
rrode.sicw _rec.io -mode := asrt rts;
attach-device(mode, success 1

END attach_ tew;

PROCEDURE attach-ter(IC =PORT. : 4n integer;
LDFrV : ir~ integer) IS'

-- attach serial rort for reading.

mode r :attach _struct;

w class :access-_class;
success :Inteeer;

BEG IN

*rode-r dev_- name :=sior;
rcde _r.sior-rec.evnu- io-crt;
7ode _r.sior rec.dev -typje io;
mrode r.sicr re-c.dev_ id :=L:2V;
rrode r .s or rec.mrl :~bte(W);
rrode r r.s io r rec:%mr2 tyte(16003F7
mode _r.sicr rec.ic rrodp : asrt _ dtr;
imode r.sicr-re .delirr active :=FkLSF;
rode r.sior rec.deliriter := yte\' 13
mcde _r.slcr-rec.maxirrur =1

-- only reads one character at a tire.
attach-device', mode-r, success 'I;

EN! attach-ter;

PRCCFDUJEF loadpararr(init :n iri rprocess _def;

chpara: out rlpararr) IS

-- rodures a tatle If pearmeters with informnati--n neede!

110

-- ty the main applicaticn prcgram" (segment numrber, entry,
-- entor).

INITIAL :CONSTANT integer :=31;
N!7T NUMBER FRIE :CONST ANT integer :=4?;

CH-SYNCHR MEfNTOR : CONSTANT integer 44;

index :integer;
next_ segment :integer;
data -number :integer;
ch-tararr rl~pararreters;
usr -level :level-_record;
synchr-chld : integer;

BEGIN
next segrrent :=INITIAL;
data numler NEXT -N U VB E'R; FR F
synchr _chid CHi 3S'NCHRF. -'NTC?01 1;

,- ext Se-rr,-t av -iabie
i rd ex 1
while index < 5 LOOP
chparam .en trys stack :=index;
rh~pararr.mentor -stack :=INITIAL;
next segrrert := next segr4re1t
cbpaem .se?_ number stack :=nextsget
rnext _segmert := next segment + 1Z
chparam.seg number_ code :=next segrnert;
chparar.entry -code :~indeT + 6;
ch~rarar.rrentor code init.iritialsegf.2);
chpararr.entry-data index + 4;
ch_-aram.mentor-data :=INITIAL;
chparar-. spg _numnber -data :=data _ nurrber;
data_- numter :=data numbter + 1;
if index < 4 then

oh _param.syrchr chi dm!entcr CF _SYNCH MENTOR;
cbparamr.synchr_- chld -stack synchr _chld'

synchr -chld :=synchr chld -1
ch~laramr.synchr -chld -data :=synchr _chld;

synchr _chld :=synchr-chld -~ 1;
else

ch iaramr.synchr chld _mentor t0
ch-Daramn.synchr-cld stack 0
ch _ aramr.synchr chld data 0

:mND IF;
ch-para(lndex) != ch-parar;
index := index 1

ErT Loop;

FN- load pararr;

-
I - e 1 :

PROCEDURE load access class(init : in r1~lrocessdef;
usr acc-ess :out user-_level) IS

-- Produces a table with the security access level de~en-
-- ding on the user level

usr level level-record;

BEGIN
usr-leve1.mrin.com] rornise.int0 : 0;
usr-level.lnr.comprcrmise-.intl : 0;
usr -level.min.integrity .int2' =0;

usr -level mrax .compromrisp .intO : 6;
usr-level.nx.comrorrise.int1 0;
usr -level.rrex.integrity.intO =0;
usr level .rax.integrity-i Qti 21te4:
usr eccessTOP-SECREI) :=usr level;

usr level. rn .compromise .1n tO =0
usr -level mrin..-orrorrise.intl

4~.usr level .irn.irtegrity .intO 0
usr -level.rnin.integrity.int1 : 21 24;
usr-level.max-corrise-int0 : 4;
usr -level rr ax c mrrrcri se-i n t1 0= ;
usr level .rax .itegrity .int2 :=

* usr level .max .integrity.intl :=21504;
usr access(SECRET) := usr level;

us r- level1 .m in .ccrp rori s e . i nt0 2;
iusr -level-rin-comn~ro~rise.intl 0
usr level .rir .irtegrity .inte 0;
usr -level .nrn.integrity.intl 21tM4
usr level .rrax . rrlrorise.intO 2 ;
usrl-1evel rax -c ompr rrise . i nt 1
usr-level.rrax.integrity.intO 0
usr -level .mrax .integrity .intl 21504;
usr-access(CONFI)ENTIAL) := usr level;

usr 1evel . rin c omroi se .in tO
usrl1evel rri r. c cmprorrise .int 1 : = ;
usr level .mln .integrity .1ntoK
usr -level.min.Litegrity.inti 215e04;
usr-level.max.comprorrise-intvl =0;
usr _ level rray -corrprori se - ntl e
usr-level.rx.integrity.inte 0
usr level.r-ax.integrity.inti 21504;
usr acress(UNCLASSIIIR,!) :=usr level;

112

PL NA!

ENT- load access class;

PROCEDrJRI loadpararrl(init :irn r1_,rccess-def;
:,hparar-, : out ripararreters) IS

-- Produces a table of pararneters with i~for'ratior -eede,'
-- by the User Fandler

MENTOR :C3NSTANT integer :=311;

ch pararr en try_ stack 1; - alw~ys 1
ch_-ararr..rrentor -stack MENTOR;
ch _ tararr.segnurrber _stack :=32; -- 3
ch taerar .see- number_- code 77:
ch tararr.entry ccde 4;
chparar.rfrtcr cod1e inlrit.initial _se, zl
ch_ erar.pntry -data :=2;
ch arar.rrentcr data :M MTF.;
chparar.seiz nurber _data := 4;

7Nr load _pararri;

PROCIDURY load child active
(usr artive :cut users-active) I

-- Initializes the Active User record to FALSE. Tt lets
-- CP load the Active Uspr seer-ents Pach tirrE a F315E
-- record is fournc

index : nteger:

irdex := 1.;
while index < 3 LOOP

usr _actlve(lndex).active := FALSF:
usr _active(Aindex).seg data:=0
usr _active(1rdex).segstack z0
usr _active(index).evc _data =2;
usr _ ective(index).evc staclk 0;
irdex :=irdex + 1.;

end LCOP*,

END load _child _active;

PRQCCFPUB.F lock -for level(usernare :in strn.z;

1;asswor! in. strnr

ch access *in user level;
ch-class :ou.t access class) I,--

-- Simulates the Lcgon rocess, loading~ tne access class cf
-- the user deitendiui? on t~e Usernarre and Pasword

BE I N
if' password ="falcor" then.

ch-class :=ct access(l).rax;
elsif assword = -falcon" !ten

choclass :=cl access(2,.mrax;
EIF password = "secrret" t~e'i

ch - lass :=cliaccess(3.rax;
FLSF

ch class ch _access(4 ',.max;
END iE;

FN'-r lcc _ fcr _level;

FRCCKUR! initialize !et.es'seg-tate out tlsdt
seg head cull se.gent heaer~ .

-- Initializes the internal tatles that will s4ruate the
-- ut crati c crea tion of ser- er ts numrters usi -gF thie

w la s s : ccess class;

w class.corrrvts.irtl 1= ;
w class.corrprcrise.irtl := ;

seg nee d . ra - f ile s st or d
see head.-ext _avail seg NTILF1T
seg_ head.neyt a av ail _e nt IN I T I AL FEE IF 1NT? I
sep-head .ne xt a avail I men I 1T I AL JFE _7_ m JI;
seg _ ead .rra x open _seg I N T I Al _Rr1Sl',F\

seR heed .ra~x-ojen ent =INITIAL FF N
s ee _hea d. -ax -c re-, mren IN IT I ALVFF.E:MFTF;

-- initialization CIO array tt.at .clds files in!'077aticn

in~dex := ;
while index < TMAX NU>4BEF 3FFiLFS + 1 1,3;F

s eg tabtle (index) nurter 0
se _ tatle'irdex).entrys2,

114

hut'2-.

seg tatle(index).'entor
seg tatle(index).file name :
seg-tatle(irdex).access cla w class;
seg -tatlefindey).-next-ava ilse,- INITI1AL FREE SEGMENT;
seg-table'lndex).next avail _en-t IIIA R PDR
seg _ tatle(index).next -avail mrer INITIAL VF: MENTO.9
index :=index + 1;

end LOOP;

END initialize-_tables;

FUNCTION chec-k if exists file nrre
(seg table in files -Iata;
file _na~re In strinp7 R.ETURN boolean IS

:, heck if file narre declared in ir-put ronmra~t exists or
-- d-es not

indeir inteer;
answer : -olean;

P -C IN
* index

answer FALSE;
while inder < +A IU~?PO IE LOOP

if segtatle',index).file name file rame then
ars we r :=TRUE;
RETURPN answer;

elIs e
index :=index + 1;

end IF;

END L-OOP;
PET'JP.N ans-wer;

NT- check if exists _ file name;

PiCCEDURE convert(ch -in :in injutmressage;
w -class :in access-class;
ch-out :out ror-ani lIne' IS

* -- this procedure assembles the cor-rred line using the input
-- rressage typed by the user

in,,-ex :inteper;
lnotexl :Inteper;
temrp :strine;
inp _ch :string(l);

l11

t erp
index 1
indexi 1
while ((index <= 40

and (index (=length(ch in.input one)Y LOCP

if ((ch in.input cne(inde!)' in.) or
(chbin.inputon-(iideX) in '0'..'9')) then

terqrlindexl) :=ch in.inputone(index);

else
if ((cha-ractwer 'pos(chin.input ore(irdex--)) =32)

a rd
index /= 1) and

(character 'pcs (rh_ in . input _one (index-1))/ 3Z4'
the r

indexl := indeTi - 1
el se

i f
(character'pos(c-in.inputcne(index)) §4

cr
(character 'pcs(ch in.input onefindey') =1215')

indexi .,= irdel 1.
temrp(inlexl)'

end if;
end if;

end if ;
index :=index +1;

end LCCP;

-- load corrmrand line

rh out.corurend
ch-out.file _rarme1
ch cut .file-narre2
ch out.corruard class ch-in.injiutclass;
irdex 1 ;
indexl 1

-- lo. to fill comm~and

while ((chararter'pcs(terrp(ind.ey)) /= 32) anid
(indexl < 9)) LOOP

ch cut corrrard(irdex1): terDp(index);
irndexl indexi + 1;
Irdex index 1;

end LOOP;

-- lool. to fill filenrre 1

irdex i-dex + 1;
indexl

while ((character'vos(tenpy(i.dex))j /= 32) ard
(irdexi < 9)) LOOP

ch out.file narelkindexl) :=terrp(index)l;
inqdexi : indexi + 1;
index index + 1;

end LOOP;

!- cop to fill filenarme 2

index irdex -1
irlexl 1

while ((chardeter'pos(terr-p(ln-iex))) /= Z!" n
~'iidexl < 9)) LOOP

c hou t f iIe n arre2(Ind e x 1 t -p i nd ex

indexl indexl + 1;

end LOcp;

~Nconvert;
IN- files;

117

*ITE agate, agatej, arl, alit, alibj, strlit, util;
PA C K(AG F files IS
USY agate, a-atej, arl, alit, alibj, strlit, util;

MAX USERS : CONSTANT integer := 3;
M'AX PROC : CONSTANT integer 4;
MAX LINES : CONSTANT integer 100;

-- max. records for file
MAX NUTER CF FILES : CONSTANT integer 21;
MAX INFUT CHSAR : CONSTANT integer :-g;
INITIAL FRESFGMYNT : CONSTANT integer : 31;
INITIAL FRIE _ ENTPY : CONSTANT integer 0;
INITIAL FREE MENTOR : CONSTANT integer 25;
LAST FREE SE,MTNT : CONSTANT integer 51;
LAST FREE INTRY : CONSTANT Integer ii;
LAST FEEE MEhTOR : CONSTANT integer $0;
SEGMYENT L-ENGTH : CONSTANT integer := O3;

.-AX LEV S : CONSTANT integer 4;
-- rax. se-urit, y levels

TCP SECRET : CONSTANT integer 1i
SECRET : CONSTANT integer 2
CcNFIDENTIAL : CONSTANT integer 3;
UNCLASSIFIET : CONSTANT integer 4;

SUETIFE segrent number IS irteger RANGE 31. .51;

SUBTYPE entry number IS integer RANG . .11;

SU2TYPF rentor number IS integer RANGE 25..3"

TYPE rl tarareters IS RECORD
entry_stacrk : integer;
mentor stack : integer;
seg_ number _ stack : integer;
entry _code :integer;

mertcr code : integer;
segnumber code : integer;
entry _data : integer;

me-tr _data : Integer;
seg_number - Iata : integer;
evn count : integer;
evr ccurt data : integer;
syr.rhrc.1d entor : integer;
syr.chr ctld stack : integer;
synctr chld data : inteper;

FN! RICCRD;

TY.PF rl_ aram IS ARRAY (o..M:XPROC ,f rljarempters:

111

TYF-7 data recr:_ is EFC3:;

ata A XrT I C7 a

TYPE da~a file I5 AR RAY (I ''XL~F~ cf aa eor

T Y P s e _ inf o IS DfCCR-
nrr f e r se ome n t n~irer;
entrys entry nur-ter
m-en t or mentor nurt-r;
f ile -are st-ingTE);.

rne xt av a il s e p s e g-e. t - I,-te r
rext avail e-* ertry :urrter;
next avail m-en rentornurler;

'rP y emn Zeatr ZF~D

n e xt av ail s -g se v;r P-t -nu '.en
Se xt azv ail - -t ent11r.-ry nu--e r~
n ex7t a vailI r- e n rre nt or num t Pr

ra x C cen _ en-t e ntry5 n :-be r;
ra x _ pe n T e i Te nt or nr'e r

TYPE_ i rrut _r-essage I S E F C 3F

inpiut oesl: strire(:*i-)5

intut class :access class;

T YF '-:I-orr r d i n e is R1 COC
ccor-r a r.d :stri-gE';

f ile -n arel. s ' r i ,

corrrma-d _class access class;
result strin._{_?);

EN- RFCC-R;

TYFE segrert d da ta is TRECoRD_
segr _info :data-file;
segm, class :access cliss;

70,- RECOFRD;

TYP1 files data IS ARRAY(. .MAX 'IF F 7P FLS of
S e i 0o

TYElevel _reco rd IS FECOFT

119

I : cvess ci5ss

access - lass;

us r _ eve 1S A Y (?..AX LEVILS) of level eccrl

% * '~ "ser s:,r:r IS RFCORD
: :atire : c ean,
, ~~seg _ dete r t~

sei stack integer
evr lata inte-er,

C inteeer;
e, t int'er;

Y clasd resoir IS ?class

, - cin : te er

t I k s o in teR~ r

. -/ L:-4 frr- i.nteer in v! ine
"; r:2. Ti : Rut .24_ tr 4e ';

.,4,

" l 7577L,_ :ut_:n l1ev :in integer;

w cl1ss : i acess class;
str iu striri

: .C[LF 1lk scr d ev 7in inteer;
w class in access elass,
str : i strin-

.C.. r. t t vr i , ir integer;

- rclass ut access 3iass;
str :out strifes);

dt v n stn2c r

i
'%, , w _ files° in a 's olass;

w4 dvla~ i ir Acre~ l~s
.4

P-4 ' cu 't Su (i ~n str in strin;

12~

'Wa-
i ,%

dec Val : in i"*eeer;
w Class : i- access- c'-ss

F'.INCIC% -et-_in~ut eco in tcclea:-n;
r^. Cless in ccess cas ?K.

??CF:FFattacn tew(I_ C. : i ite.,er;
L DY V in integer);

;:?JCKUH. attAch _ er(10F?! i integer:
L FV i a i nt ege r)

7" r I CF la, car ar'(i t in rl-. rccess 4 e";
rh _ arar- out ri Lara7 ;

?C C F U load-_ ccess cla ss' i n i in r! r's ~
usr a cceS S cl.t user _level

r 1;': -cd rrn1 ri in :rcc~ : C

ch iare- : ciit ri _ ra-pt--

PROCcEF7u- I cal chrild _active(act Jv usr u *u uer s

FPOFDIlock for-ievel ,sprnare :ir. strinLi
password :i r s tr in
ch access :in -,se r _ level
ch I hclass o ut acceisclass2

,pRCrFi>p- aiitiali ze tables (seg tatle cut files dat, *
s e h e; d ou t s -n r e~r;

fmCUC T bc T ir e _ e x ists f il1e n n-e s eg tabe -n ti I
f il-? nerrn0 ir strine .E:l

--CU. crvert(chn i n i r.~u _ rres s -3g
w-cla ss :in -access _cia-ss;
Ch- 2 ut cuto n lire)

121

APPENDIX G - SYSGE.N SUBMIT FILE (SSB)

This appendix contains the description of the Sysgen Submit

File used to sysgen the entire system, the commands used are

bs:1d3.cmd
ks:kO.cmd
ks:kl.crnd
ks :k2. cmd
cs :v lloader.cmd ;2;
ds:vilogiii.cmd;2.10;
ds:nv.ds:2,5:
ds:n-v.ds;5:
ds:prmain.cmd:5.O:t:
ds:puserl.cmd:5.7:,
ds:prchll.cmd:5.7.4:
ds:puser2.cmd:5.8;
ds:prchl2.cmd:5,8,4:
ds:puser3.cmd:5.9:
ds:prchl3.cmd:5..9.4:
ds:prbdos .cmd:5.1O;
ds:rltrap .cmd:6;
end

1L22

LIST OF REFERENCES

1. Schiller. W.L.. Design and Abstract Specification of a Multics Security
Kernel. Mitre ESD-TR-77-259. Mitre Corp.. Bedford. Massachusetts.
November 1977.

2. Department of Defense Computer Security Center. Ft. Meade, Maryland.
Report CSC-STD-001-83. DoD Trusted Computer System Evaluation
Criteria. August 15. 1985.

3. Gemini Computers Inc.. Carmel, California, System Overtvieu Gemini
Trusted Multiple Iicrocomputer Base. September 1985.

4. Boebert. E.. Kain. R.. and Young.B.. "Trojan Horse Rolls Up to DP
System." Computeruorld. December 2. 1985.

5. Rushby and Randel. "Distributed Secure System." Compute. July 1985.

C. Ames. S.. Gasser. -M.. and Schell. R.. "Security Kernel Design and
Implementation : An Introduction." Computer. July 1983.

7. Corbett. P.J.. Multilevel Secure Front End For Data Communications.
Master's Thesis. Naval Postgraduate School. Monterey. California. March
1983.

8. Cavalcanti. C.A.. Modelling of a Multilet-el Secure Tactical Combat Computer
System. Master's Thesis. Naval Postgraduate School. Monterey. California.
June 1986.

9. Gemini Computers Inc.. Carmel. California, Gemsos Ring 0 Users Manual for
the Janus/Ada Language. (Version 1.4). May 1986.

10. Reed. D.P. and Kanodia. R.K.. "Synchronization with Eventcounts and
Sequencers." Communications of the ACM. Vol. 22. No. 2. February 1979.

11. Gemini Computers Inc.. Carmel. California. Gemsos Ring 0 Sysgen User',
Manual. September 1985.

123

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library (Code 0142) 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman (Code 52)
Department of Computer Science
Naval Postgraduate School
Monterey. California '93943

4. Computer Technology Programs (Code 37)
Naval Postgraduate School
Monterey. California 93943

5. Gary S. Baker (Code 52Bj) 5
Department of Computer Science
Naval Postgraduate School
Monterey. California 93943

6. Uno R. Kodres (Code 52Kr) 5
Department of Computer Science
Naval Postgraduate School
Monterey. California 93943

7. Peruvian Air Force-Comando de Instruccion
Ministerio de Aeronautica
Lima, Peru

8. Peruvian Air Force-Centro de Informatica
NMinisterio de Aeronautica

Lima, Peru

9. Mayor FAP Miguel A. Reyes 2
Ministerio de Aeronaut ica-Centro de Informatica
Lima. Peru

124

~'c.

