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1. Introduction

People use and extend thcir knowledge of the physical world constantly. Understanding
how this fluency is achieved would be an important milestone in understanding human learning
and intelligence, as well as a useful guide for constructing machines that learn. Our purpose is to
construct a computational account of human experiential learning in physical domains.

We are still at the stage of refining the questions rather than providing detailed answers. In
many cases, there is no direct evidence for our claims. In other instances, support for the theory
is obtained by combining evidence from several different areas, including developmental
psychology, studies of learning, and other psychological research. No one of these is adequate by
itsell. When extrapolating from adult learning research, we must keep in mind that cases of pure
experiential learning are rare in adult life; some sort of instruction or prior expectation is
typically involved. Developmental research provides a good source of data, since much of young
children’s learning is truly from direct experience. Yet when developmental results are applied it
must be remembered that children are not only learning, but also maturing. Therefore, in order
to isolate and study experiential learning, the existing empirical findings must be examined,
filtered, and carefully fitted together. Although space does not permit detailing all the relevant
lines of evidence, we will try to give the reader some justification for our claims whenever
possible.

The past few years has seen significant progress in machine learning. However, to construct
programs that learn as well as (or better than) people do, it is important to understand how
human learning works. Ultimately both psychological studies and direct computational
experiments (i.e., constructing programs) will be necessary to provide a full account. To this
end, we will try when possible to indicate how techniques developed in machine learning might be
used to implement such programs.

1.1. Overview

A brief prolog may help to organize the material. Three key ideas underlie the theory: (1)
the centrality of physical processes in mental models of science; (2) the importance of analogy in
learning; and (3) the primacy of rich, contextually specific representations. The idea that the
notion of process is central to human knowledge about physical domains is the chief tenent of
Qualitative Process (QP) theory (Forbus 1981; Forbus, 1984). This is not to say that notions of
process are there from the beginning. Rather, we hypothesize that a person’s experiential
knowledge of a domain begins as a collection of scenarios that describe particular phenomena,
out of which is developed a vocabulary ol processes that provide a notion of mechanism for the
domain. The second key idea concerns the role of comparisons among related knowledge
structures. We conjecture that much of experiential learning proceeds through spontaneous
comparisons - which may be implicit or explicit - between a current scenario and prior similar or
analogous scenarios that the learner has stored in memory. Structure-mapping theory (see
CGentner 1980; Gentner, 1983) describes these kinds of comparisons.

The third idea is a rather paradoxical claim: in human processing, more is often easier.!

lich. perceptually based representations are acquired earlier in learning than sparse abstract
representations.  That is, early domain representations differ from more advanced
representations of the same domain in containing more information, especially perceptual

"1y should be noted that psvehologists by no means geoerally agree with this claim. Consequently, we will try to
bhe Furly exphert o presenting evidenee for this position
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information specific to the initial context of use and acquisition. A second aspect of the “more is
easier” claim concerns comparisons: we suggest that, for humans, similarity comparisons are
easier when there is more overlap between the two knowledge structures being compared.

On the basis of these three ideas, we propose a canonical learning sequence. The claim is
that human experiential learning of physical domains can be viewed as a sequence of different
mental models: (1) prolohistories, (2) the causal corpus, (3) native physics, and (4) expert models.
Briefly, protohistories are rich, contextually specific, highly perceptual representations of
phenomena, capturing expectations about typical phenomenological patterns — for example, “If |
turn the key, the car will start.” With the causal corpus, the expectation of mechanism enters;
here the representation consists of simple statements that some sort of causal connection exists
hetween variables — “If the car has no gas, it will not start.” In the naive physics stage, processes
are introduced to provide the mechanism underlying the causal corpus - “Gas must flow from the
tank to the carburator and mix with air so that the mixture can be ignited by the spark.” The
disparate local connections of the causal corpus are replaced with qualitative models organized
around the notion of process. Finally, in the expert models stage, quantitative representations
are created - for example, models of the effects of different mixtures of oxygen and gasoline.

In this paper we discuss our conjectures about these models and how a learner constructs
one type of model from another. First, however, the component theories that underlie this
framework are briefly summarized: Qualitative Process theory, which provides concepts needed
to represent the models (particularly in the naive physics stage); and structure-mapping theory,
which characterizes the kinds of computations that move the learner from one representation to
another. Then the overall role of structure-mapping comparisons is examined in the progression
from rich to sparse representations. With these foundations in place, the four stages of learning
for physical domains we postulate are then described.

2. Qualitative Process Theory

The first requirement is a language in which to describe people’s common sense knowledge
about physical situations. People know about a great many kinds of physical changes: things
move, collide, bend, break, heat up, cool down, flow and boil. Intuitively we think of these as
processes. Qualitative Process theory attempts to formalize this notion of process to provide a
common form for qualitative theories of dynamics. As will be clear later on, we do not. believe
that the first models people construct of a domain take the form of processes. nor even that
people become knowledgeable enough to construct these models for every domain they
experience. Nevertheless, some of the concepts of QP theory will be useful for describing models
in other stages as well.

in QP theory. a physical situation is modelled as a collection of objects and relationships
among them, with processes responsible for causing changes. The continuous parameters ol an
object, such as temperature and pressure, are represented by quantities. A quantity has two
parts, an amounnt and a derivalive. Amounis and derivatives are both numbers. The model to
keep in mind for numbers is that of the reals, but it is important to note that in QP theory
particular numerical values are never used. Instead, the value of a number is described in terms
of s quantily space o collection of inequalities that hold between it and other quantities, Figure
I illnstrates o quantity space for the fevel of liquid in a container. The quantity space is a useful
qualitative representation because processes typically start and stop when inequalities between
parameters change.

Framework 3 Forbus & Gentner
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Figure 1 - A quantity space

A quantity space describes the value of a number by the inequality relationships that hold 4
between it and other nuinbers. An arrow indicates that the number at its head is greater than
the number ot its tail. Thus LEVEL (wa) is less than LEVEL (wb) and greater than BOTTOM(a),
while LEVE .. vb) and TOP(a) are unordered.
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Figure 2 illustrates a typical process, called LIQUID-FLOW. A process has five parts: N
rndividuals, precondilions, quantity conditions, relations, and influences. Roughly speaking, the ;

individuals part describes where instances of a process might occur, the preconditions and
quantity conditions tell when it will be acting, and the relations and influences describe what A
holds a. a consequence of it acting. In more detail, for any collection of objects that matches the '
individual specifications there is a process instance which represents the potential for that process

-

to occur between those individuals in a particular way. For example, there will be two instances :
of LIQUID-FLOW belween the liquid in the containers of figure 1, each corresponding to flow in a "
particular direction. .
\
\
A process instance is active whenever both its preconditions and its quantity conditions are \
true. The distinction between preconditions and quantity conditions is that quantity conditions
can be determined wilhin QP theory but preconditions cannot. Quantity conditions concern ),
what inequalities hold and what other processes (or individual views, which are introduced below)
are active. Preconditions concern any relevant factors other than quantity conditions, such as .
spatial boundaries. For example, in “traditional” physics we can solve equations to figure out :
how fast a ball will be moving when it hits the floor, but the equations will not tell us a priori .
where the floor is. Or, returning to the present example, if we know that all the valves in the !

llutd path between Lhe two containers are open (i.e., the luid path is aligned) then tluid will How.
but we eannot predict, within QP theory when or if someone will walk by and turn olf a valve.

g0 g o

Because these factors still affeer dynamical conclusions, preconditions must  be  explicit]y

l".'prvs(-m,trd. )
L]
..'
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Figure 2 - A typical process

This process specification describes a simple kind of liquid flow. It can occur between two con-
tained liquids that are connected by a fluid path, whenever the path is aligned - that is, all valves
in the path are open - and the pressure in the one taken as source is greater than the pressure in
the contained liquid taken as destination. The quantity type AMOUNT-OF represents how much
“stuff” there is in an object. The function A maps a quantity into the number which is its
amount. a number, as opposed to AMOUNT-OF, which is a function that maps a piece of stuff into
a quantity.

Process LIQUID-FLOW

Indivlduals:
source, a CONTAINED-LIQUID
dest, a CONTAINED-LIQUID
path, a FLUID-PATH, FLUID-CONNECTION (source, dest, path)

Preconditions:
ALIGNED (path)

Quantity Conditions:
A[PRESSURE (source)] > A: " .. SURE(dest)]

Relations:
Let flow-rate, diff be quantities
diff = PRESSURE (source) - PRESSURE (dest)
flow-rate Qe+ diff

Influences:
I+ (AMOUNT-0F (dest), A[flow-rate])
I- (AMOUNT-OF (source), A[flow-rate])

Whenever a process instance is active, its influences and relations hold. The influences
compouent, of a process specifies its direct effects; the relations component describes other facts
that are true while the process is active. The direct eflects-called direct influences-take the form

[+(Q, n) or 1-(Q, m)
depending on whether nois a positive or negative contribution to the derivative of Q. [If a
nuantity s directly inlluenced, s derivative will be the sum ol all the direct influences on it.
Returning Lo the description of LIQUID-FLOW, for example, we see thal when an instance of
LIRUTD-FLOW is active there will be a positive influence on the amount of liquid in the
destination and an equal, nesative inlluence on the amount of liquid in the source.

The relations field can desertbe new individuals that are created by virtue ol the process

beine aetive (sueh s the steam produced B haoiling water) as well as properties needed by
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representations outside of QP theory (such as the appearance of boiling water). An especially
important kind of fact expressed in the relations component is functional dependency between
quantities. Functional dependcncies between quantities are expressed by
Q1 Ng+ Q2

(read “Qt is qualitatively proportional to Q2,” or informally, “Ql gq~prop Q2”), meaning there
exists a function which determines Q1 and is strictly increasing in its dependence on Q2. x_
indicates that the dependence is strictly decreasing. Note that qualitative proportionalities
express partial information, since the exact nature of the function relating the parameters is not
known and the function may or may not depend upon other quantities.? If a quantity Q1 is
functionally dependent on a quantity Q2, and Q2 is influenced by a process P, then we will say
that P indirectly influences Q1; that is, when P is acting it can cause Q1 to change. If, for
instance, the PRESSURE and LEVEL of a liquid are qualitatively proportional to the AMOUNT-OF
of the liquid, then LIQUID-FLOW will indirectly influence both PRESSURE and LEVEL because it
directly influences AMOUNT-OF. It is important to note that the only way a quantity can change
is if it is directly or indirectly influenced. This means one can reason by exclusion: If nothing is
influencing the amount of fluid in a container, then it isn’t changing, but if the amount is
changing, something must be influencing it. No changes happen by themselves. Furthermore, we
can trace the possible paths of influences in a situation and determine whether or not particular
kinds of changes can occur.

Two other important types of descriptions should also be mentioned here. Individual views
are descriptions used to represent both objects whose existence are subject to dynamical
constraints and states of objects. “The water in a cup,” for example, is described as a
CONTAINED-LIQUID, (see figure 3) because we can get rid of it by reducing its amount to zero
(perhaps by making it the source of an instance of LIQUID-FLOW). Another example is a model
of a spring. Springs have three states-relaxed, compressed, or stretched—each of which can be
modeled by individual views. Individual views are specified in the same way that processes are,
in that they have individuals, preconditions, quantity conditions, and relations. However. they
do not have direct influences; directly influencing quantities is the sole prerogative of processes.

The other kind of description is the encapsulated history. How an object changes through
time is represented by its history (Hayes 1979b). Histories are annotated pieces of space-time;
thus they are object centered, have finite spatial extent, and extend over time.® As its name
suggests, an encapsulated history is a schematized description of some fragments of histories for
a collection of objects. Encapsulated Histories are useful as summaries of behavior and to
directly describe phenomena that have not been accounted for by process descriptions. An
example of the latter usage is describing collisions between moving objects. A very simple way to
madel collisions is to say that the very next thing that happens after, say, an object hits a wall is
that its velocity reverses and it starts moving the other way. Given how rapidly collisions occur,
this model 15 quite adequate for most purposes, and encapsulated histories allow us to write it
this wayv.

> QP theory also provides ways to specily dependence on properties that are not quantities (such as shape. 1o re-

tating the level of a ligmd 1o a container to its volume) and to make stronger statements about functional relation-
bips. ek s 20 depends on 32 directly, with no iotervening parameters” and “Q depends on 5! and 2. and noth-
me else” ahen required for Traming strouger hypotheses about a domain. However, precise specifications of Dinctions
A Q2" 2) are uot permiatted

Py contrast, the classic situational caleulus {McCarthy & Haves, 1969) description of change cousists of sina-
fton s that deserrhe the whole umiverse at some particular wastaot of tune

Frameworlk 6 Forbus & Gentner
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Figure 3. — A typical individual view

This typical individual view describes a piece of liquid in a container, using the ontology for
liquids described in (Hayes 1979a). there is is just “syntactic sugar” for stating that whenever
the preconditions and quantity conditions are true, g will exist.

INDIVIDUAL-VIEW CONTAINED-LIQUID

Individuals:
c a CONTAINER
s a SUBSTANCE

Preconditions:
CAN-CONTAIN-SUBSTANCE(c, s)

GuantityConditions:
A[AMOUNT-OF-IN(s, c)] > ZERO

Relatlons:
THERE IS g, a PIECE-OF-STUFF
HAS-QUANTITY (g, AMOUNT-OF)
AMOUNT-OF (g) = AMOUNT-0F-IN(s, c)
HAS-QUANTITY (g, LEVEL)
LEVEL (g) ‘g, AMOUNT-OF (g)
HAS-QUANTITY (g, PRESSURE)
PRESSURE (g) -, LEVEL (g)

A reasoner’s theory of dynamics for a particular domain is characterized in terms of (1) a
process vocebulary that describes the kinds of processes the reasoner believes can occur and (2) a
view vocabulary that describes dynamical objects and relevant states of objects. All changes are
assumed to be directly or indirectly caused by processes-the sole mechanism assumption-which
provides a strong constraint on the form of dynamical theories. Importantly, the content of
dynamical theories is not tightly constrained-incorrect theories can be expressed as easily (and
sometimes more easilv!) than correct theories. For example, versions of Newtonian, Aristotelian,
and Impetus theories o1 motion have all been encoded using QP theory.

QP theory sanctions several basic deductions. For example, the kinds of processes that
might occur in a situation can be determined by using the process and view vocabularies to
construet instances representing the different possibilities. The collection of processes acting at
any time characterizes “what is happening” then in that situation, and these processes can be
found by evaluating the preconditions and quantity conditions for these instances.

Consider again the example in Figure 1. There will be two instances of the LIQUID-FLOW
process, and sinee the level in wb is greater than wa, the LIQUID-FLOW iustance representing flow
from #b to wa will be active. By taking into account all of the intluences on each quantity (called
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resolving its influences), we can often determine the sign of its derivative. The sign of the
derivative is important because it represents how the amount of the quantity is changing-
increasing, decreasing, or constant. In this example there is only one process instance acting,
which makes things simple. AMOUNT-OF (wb) is directly influenced, and since this influence is
negative it will decrease. By the X, statements in the CONTAINED-LIQUID description,
LEVEL (wb) and PRESSURE(wb) will be indirectly influenced and thus will also decrease.
Similarly, AMOUNT-OF (wa), LEVEL (wa), and PRESSURE (wa) will increase.

From the ways the quantities are changing we can determine how the process and view
structures themselves might change, since they depend in part on the inequalities stated as
quantity conditions. This computation is called limit analysis. In the example, two things might
happen-the pressures in wb and wa might equalize, or AMOUNT-OF (wb) could becomne zero, thus
ending wb’s existence (the geometry of this example rules out the latter).

The basic deductions of QP theory can be combined to perform more complex reasoning
tasks. Two examples of more complex deductions are qualitative simulation (Forbus, 1984) and
measurement inftcroretation (Forbus, 1983; 1986). Qualitative simulation consists of performing
limit analysis rep-atedly. It is useful for making predictions: for instance, that boiling water in
a sealed container could cause an explosion. Measurement interpretation provides a link between
physical theories and observations; for example, it might be hypothesized that the level of fluid in
a container is dropping because the fluid is flowing out somewhere. Measurements may be
interpreted by searching through the space of process and view structures, looking for situations
where the results of influence resolution match the observations and which can be woven together
to form a temporally consistent pattern ol behavior.

3. Comparisons and structure-mapping

So far we have considered how portions of a person’s knowledge about the physical world
might be represented. Let us now turn to the question of how such domain models might be
learned. We conjecture that a major process in experiential learning is comparing the current
situation with stored descriptions.. Consider for example a person who has just moved to a cold
climate and is learning to operate a furnace. Suppose that at first he wrongly believes that the
house will get warm faster if the thermostat is set to a temperature higher than the desired
temperature. (Kempton (1985) shows that this view is quite common.) How can he reach the
correct conclusion that the rate of heating does not depend on the temperature setting” There
are at least three different ways, each based on a different kind of implicit comparison. First. he
could compare his past furnace experiences with each other and notice a regularity in the rate of
heating that is independent of the thermostat setting. Second, he may compare the furnace
situation with known abstractions, and realize that it is best described as a position action
controller {as opposed to a proportional-action controller). Third, he may use an analogy.
comparing the furnace situation with a description from another domain. such as Huid How, to
suggest governing principles. Lach of these ways of learning relies on some form of comparison,
cither with a stored record of literally similar events, with a stored abstraction. or with a stored
deseription that can fuinction as an analogy.

Structure mapping theory is concerned with such comparisons (see Gentner 1980, 1932,
PR3 Gentner & Gentner, 1983). The theory describes the rules that are used to import
deseriptyve <teneture from one domain (the base domain) into another (the farget domaini. The
central wbnition is that an analogy suggests that a predicate structure from one domain ean be
applied in another domain with arbitrarily different objects and surface appearances. Lileral

amdarily, analogy, mere appearance nappings and abstraction mappings {applications of general
Framework 8 Forbus & Gentner
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laws) are viewed as different kinds of mappings between descriptions. The types of comparisons
are defined syntactically, in terms of the formn of the knowledge representation, not in terms of
its content. Each type of comparison will be considered in turn.

1. An analogy is a comparison in which relational predicates, but few or no object
attributes, are mapped from base to target. The particular relations mapped are determined by
systematicity, as defined by the existence of higher-order constraining relations which can
themselves be mapped.! Thus, a relational chain - such as a causal chain - in the base that
matches a relational chain in the target constitutes good support for its members. Winston
(1983) gives an insightful demonstration of the need for such importance-dominated matching.
The correspondences between objects of the base and objects of the target are determined by the
roles of the objects in the relational structure, not by any intrinsic similarity between the objects
themselves.

2. A literal similarity statement is a comparison in which a large number of predicates,
both attributes and relations, can be mapped from base to target. Here, the model is based on
one proposed by Tversky {1977), which states that the similarity between A and B increases with
the size of the intersection of their feature sets and decreases with the size of the intersection of

the two complement sets.®> There are many more shared predicates than nonshared predicates.

3. An abstraction mapping is a comparison in which the base domain is an abstract
relational structure. Predicates from the abstract base domain are mapped into the target
domain. As in analogy, the mapped predicates are a relational structure. Abstraction differs
from analogy in the nature of the base domain. There are almost no object attributes in the base,
so there are few. il any, one-place predicates to be left behind. Applying a rule to a situation is
an example of abstraction mapping. Sometimes the relational structure so mapped will also be
referred to as an abstraction.

.\ mere-appearance match is 2 comparison in which the object attributes match. but the
relational structure does not. In a sense it is the opposite of analogy. Such matches are easily
mmade; but they gnarantee nothing beyond similarity in appearance.

A series of related examples, starting with the analogy between heat flow and water flow,
will illustrate these distinctions. Figures 42 and 4b show a water-flow situation and the
corresponding heat-flow situation (adapted from Buckley, 1979, pp. 15-25). Figure 5 shows a
possible representation a person might have of the water situation. Notice that the description
contains both object -attribute predicates, such as CYLINDRICAL (beaker), and relational
predicates, such as

Y Obieey wttoibutes are predicates which take one object as an argument, such as RED(x)  We define the order
roonrapouation s foilows  Constants and objects have order zero  The order of a proposition 15 one pius the max-
monn of the ocders S0ty argaments . Thas " LLITE x0 ¢ would be first order f x and v are domatn objects. aud

o : « o seiad 20 would be secnnd-order  Examples of igher-order relatious are “A7708 and -

T Agun veording co Tyeriky the negative etfocts of the two complement sots are not equal: for exampie. given
e e top e i s A o BT the set TR AL Teanures of B onow shared by A - counts more than the o0\
134
.
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Figure t  Twa Physical Situations Involving Flow
We will use these physical situations to illustrate the kinds of comparisoas sanctioned by
structrre-mapping theory, and later to illustrate how QP-style domain descriptions can be used

) in analogies. Part (a) is a water-flow situation; part (b) is the corresponding heat-flow situation.
(a)

[

\ig )

L,'

"l

LARGE
BEAKER

g‘.«:i (b)

e

vy
.,,:
% WARM COFFEE
!
; GREATER-THAN [PRESSURE (water, beaker), PRESSURE (water, vial)].
" Let us consider the comparison Lypes as exemplitied here:
’ ¢
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1. The analogy Heat is like water conveys that certain aspects of the water description can
) be mapped onto the heat domain. In particular, (1) object attributes should be dropped; (2) some
o relational predicates should be carried over; and (3) systematicity determines which relations
should be mapped. Thus,
" CYLINDRICAL (beaker)
“ is dropped, along with other object attributes; that is, the target objects do not have to resemble
their corresponding base objects. Some relations are carried across, such as,
B GREATER-THAN [PRESSURE (water, beaker), PRESSURE (water, vial)].

3 Framework 11 Forbus & Gentner

l‘.
" - - ~ . - N N - o Cmiml g - « ey ml oy a - - . - ., - -
M A'.- 'y ‘-(.," .‘.‘. R '." 0 ' ?"L'- '« ) ‘p S R Y L PRy L] a

B R N T O N N O e I D TN P i Tt A Tl O "ML‘ MIARA




.
'Zf\f»ft

» M) h
ey ﬂ"\".\.\‘.l‘ LA O L O 0 SR, (g U, D N, »-'o

Yet not all relations are carried across. By the systematicity principle, this GREATER-
THAN [PRESSURE (water, beaker), PRESSURE (water, vial)] relation is preserved because it
is part of the mappable chain governed by the higher-order relation IMPLIES. In contrast, the
relation

GREATER-THAN [CROSS-SECTIONAL-AREA (beaker), CROSS-SECTIONAL-AREA(vial)]}
is not carried across, since it is not part of any mappable system of constraining relations in this
representation of the base domain.

Figure 6 shows the representation in the target domain of heat-flow that results from the
analogical mapping. Given the object correspondences heat/water, beaker/coflee, vial/ice cube,
pipe/bar, and PRESSURE/TEMPERATURE,® systematicity operates to enforce a tacit preference for
coherence and predictive power. The systematic relational structure in the water domain
IMPLIES (GREATER-THAN [PRESSURE (water, beaker),

PRESSURE (water, vial)],
FLOW(water, pipe, beaker, vial))
is mapped into
IMPLIES (GREATER-THAN (TEMPERATURE (heat, coffee),
TEMPERATURE (heat, 1ice cube)],
FLOW(heat, bar, ~» "¢ . ice cube)].
Note that the systematicity prin-iple requires a mappable relational chain. If a particular chain
of higher-order relations in ol Lhe base chain is not valid in the targel, then another chain is
selected. [For example, suppose thut we keep the same base domain ~ the system of containers
shown in Figure 5 - but change the target domain. Suppose the two target objects are identical
in temperature, but differ in their specific heats: say, a inetal ball-bearing and a marble of
cqual mass. Now, the natural :malogy concerns capacity differences in the base, rather than
pressure ditferences. This is because the deepest relational chain that can be mapped to the
target now concerns the situation in which pressures are equal in the base domain (analogously to
ternperatures being equal in the target domain):
IMPLIES [GREATER-THAN [CROSS-SECTIONAL-AREA (beaker),
CROSS-SECTIONAL-AREA (vial)],
GREATER-THAN [AMOUNT-OF-WATER (beaker),
AMOUNT-OF-WATER (vial)]]
This carries over into the target as
IMPLIES [GREATER-THAN (HEAT-CAPACITY (marble),
HEAT-CAPACITY (ball-bearing)],
GREATER-THAN [AMOUNT-0OF-HEAT (marble),
AMOUNT-OF-HEAT (ball-bearing)]].
That is, given the same height (pressure) the container with a larger area will hold more water.
Analogously, at the same temperature the object with greater heat capacity will hold more heat.
Thus the interpretation of an analogy depends on the best relational match between base and
',.'lrg(",.

*1a this snalogy. the firstorder predicate of PRESSURE 1o the water domain must be replaced by 119 Coa 0 as

i the heat domain - Althongh systems of relations cap often be imported into the target without change. substitutions
A Fnaction, 1 well as obgects and their attnibutes, are sometimes made 1o order 1o perout mapping a larger sys-
terpatic o haan
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Figure 5 - A representation of the water situation

This network represents a portion of what a person might know about the water situation illus-
o trated in the figure 4. In this and other figures, predicates are written in upper case and circled.
{ Objec - are written in lower case and uncircled. A simplified representation is uscd to illustrate
"4. the rui~= of analogy. A more detailed model will be shown later.

.
- @

. :, condition implication

GREATER THAN
la,,a,)

GREATER THAN

FLOW
(a, .3, Lo

goal object path source

§ 1
water pipe

water vial

-
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Figure 6 - A representation of the heat situation that results from the heat/water analogy :
¢ This network represents the knowledge a person wouid map across into the heat domain from the '

water situation illustrated in the previous figure. As in that figure, a simplified representation is '

used here. A more detailed treatment of this analogy is presented later.
)
4,
) condition implicati{(
1
¢ GREATER THAN ELOW
¥ j, a, d
b 5

TEMPERATURE TEMPERATURE
). goal object path source
!
object object
] y
\ heat  bar
coffee ice cube
(I '

: 2, The literal similarity comparison Kool-Aid 1s like water conveys that most of the water
p deseription can be applied to Kool-Aid. [n literal similarity, both object attributes, such as

WET (vater), and relational predicates, such as the systematic chain discussed above, are
4 mapped over.

3. The abstraction [leal is a through-variable might ' o available to a student who knows

wome system dvnamies. This absiraction couveys the idei that heat can be thought of as
~omething that flows across a difference in potential {i.e., acro . some sort of “across-variable” -

in this case, temperature). This is mnach the same relationad structure as conveved by the
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analogy above; the difference is that in the abstract base domain of through-variables and
::;,z. across-variables there are no concrete properties of objects to be left behind in the mapping.
i.::t 4. A mere-appearance match is a match with overlap chielly in lower-order predicates,
e.l:a. such as object-atiributes, but little or no relational match. An example is The tabletop sparkled
:::o": like water. Such a match typically yields little or no useful information about the target; here,
! for example, little can be learned about the table by mapping across knowledge about water.
o5 These matches, however, cannot be ignored in a theory of learning because a novice learner may
’: be unable to tell themn from true literal similarity matches.
::{ Table 1 summarizes 'he kinds of predicate overlap that characterize literal similarity,
M) analogy, abstraction, and mere appearance matches, as well as one other kind of comparison,
anomaly. An anomaly is a match with little or no predicate overlap; it is included simply for
ol completeness.
e
P [t should be clear that the contrasts described here are continuua, not di-li i . 1 or
[ example, analogy and literal similarity lie on a continuum. Given that two dormaiis ¢ rlap in
H::;! . . . C .
- relational structure, then the comparison becomes more a literal similarity mateh to the extent
—.s that their object attributes also overlap, and more an analogy to the extent that few or no object,
p ‘_ attributes overlap. A different sort of continuum exists between analogies and general laws. In
X" both cases, a relational structure is mapped from base to target. If the base representation
::' includes concrete objects whose individual attributes must be left behind in the mapping, the
:a:. comparison is an analogy. As the object nodes of the base domain become more abstract and
variable-like, the comparison is seen as a general law.
ti.
L)

K

BN 4. Structure-Mapping and Learning

o The role o a comparison in learning depends on at least {wo things: (1) accessibilily - the
:% likelihood that the match will be noticed, and (2) usefulness - what can be deduced from the
Ny match if it is accessed. Accessibility, in turn, depends at least on (a) the familiarity of the base

e description and (b) the overall similarily between the base description and the current target.
] e . . . . .

W 5 I'he immediate usefulness of a match depends, of course, on whether the content of the match is

=3

:’
‘3 )
)". Table 1 Types of Comparisons
-‘I.

ATTRIBUTES RELATIONS EXAMPLE

; .“ Literal Similarity Many Many Milk is like war -
' ,': .\fl.’dl()L’,y Few Many Heat is like watir
y ::: \bstraction Few f\Ian_v Heat is a through -variable
"y \H')Hlill}:’ I" cw FG\V Cotlee 1s like the solar system
4 3

b Mere A ppearance \Iany IFew The glass tabletop gleamed like a pool of water
. e - |
N |
R |
'\i:: :
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appropriate to the task at hand. In addition, the uselulness of a match depends on the
inspectability of the matching content - the degree to which it can be consciously analyzed and
articulated. The comparisons discussed above behave very differently with respect to
accessibility and inspectability.

For novice learners, literal similarity matches are the most accessible comparisons and
abstractions, because they are typically extremely unfamiliar, are the least accessible. In
contrast, abstraction matches are far more inspectable than literal similarity matches. On both
dimensions, analogies are intermediate. This is one reason that analogy is crucial in learning: it
is the novice's best route to an abstract, inspectable data structure. Some evidence for these
conjectures will now be reviewed.

Surface matches are highly accessible. This includes both literal similarity matches and
mere-appearance matches. It has been shown in education and training literature that the more
similar the new situation is to the original situation the more readily transfer of training occurs
{cf. Brown & Campione, 1985; Ross, 1984). The term “generalization gradient” expresses the
fact that a learned response generalizes more readily the more similar the new situation is to the
original situation. In contrast, subjects are often quite slow to use an available analogy. In
rescarch done by Reed, Ernst & Banerji (1974) and later by Gick and Holyoak (1980, 1983),
subjects were asked to solve a rather difficult problem, such as how to cure an inoperable tumor
with radiation without killing the flesh along the path of the rays. Just prior to receiving the
problem some of the subjects read material that contained an analogous solution, such as a story
about a general who split his troops up so that they all converged simultaneously on a fortress he
wished to capture. There are three interesting results here. First, a good analogy can be very
powerful, if it is noticed. Without the analogy, only about 109 of the subjects could solve the
problem. Once the experimental subjects were told to use the prior story as an analogy, 80 to 90
percent of them solved the problem correctly. Second, a potentially powerful analogy can easily
go unnoticed. Delore the analogy was pointed out, only about a third of the subjects
spontaneously noticed and used it. It cannot be taken for granted that a potential analog will be
spontaneously noticed and used. Third, literal similarity is far more accessible than true
analogy. In one of their studies, Gick and Holyoak (1983) happened to set up a literal similarity
match between the story and problem. Subjects had to solve a problem involving tving two
ropes together, and the story thev were given involved tying two ribbons together. In this case,
7 to 80 percent of the subjects were able to access the matching story spontaneoustv. In a
systematic series of studies, Ross (1984) varied the surface similarity between problems subjects
were taught and later problems they had to solve and found that subjects were much more likely
to be reminded of problems with similar surface content.

There is developmental evidence that literal similarity and mere-appearance matches
appear prior to analogies and abstraction matches in learning. Kemler (1983) has lound that
voung children group objects on the basis of overall similarity in situations where adults would
group more analytically, using a single dimension. Kecil and Batterman (1984) compared
children’s meanings and adults’ and found a “characteristic-to-defining shift.” For example, in
defining “island™ preschoolers use such surface features as “having palm trees and beaches™ or *a
warm place.” Adults rely on defining features such as “surrounded by water.” Another example
oceurs in labeling carly word learning. In spontaneous labeling, one -yvear old children frequently
apply words to objects that closely resemble the original referent of the word: tor example dogqre
will be applied Lo another dog or to a cat, and car to cars, trucks or other vehicles (Clark. 1973).

Truly analogous usages are seldom heard until the age of two or three vears, when for example, o
three vear old ehild might remark about his dirty, bedraggled blanket, *1t's out of gas” (Gentner
IFramework 18 Forbus & Gentner
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£ Stuart, 1934, Winner 1979).

Children are said to move [rom rich, concrete representations to more abstract, rule based
systems (Bruner, Olver & Greentield 1966; Gibson, 1969). Even three-year-olds can sort objects
into perceptually similar categories; for example, they can group a cat and a dog and exclude a
hen. However, not until they are five or six years can they succeed with a more abstract
category. such as “living thing” which requires grouping perceptually dissimilar things. In the
same vein, research on the novice-expert shift in adult learning has demonstrated that whercas
novice science students tvpically match situations on the basis of surface features, experts use
deeper and more abstract criteria (Larkin, 1983). For example, Chi, Feltovich, and Glaser (19%1)
have shown that when novice physics students are asked to classify problems into similar groups
they put together problems with similar surface features, such as “inclined planes” or “pulleys.”
Experts, on the other hand, use categories like “force problems” and “energy problems.”

One final indication of the ease with which literal similarity matches are made involves an
indirect, but very important, line of argument. In the realm of object concepts, there is some
evidence that people automatically perform literal similarity comparisons among perceptually
similar experiences. Such comparisons are thought to result in composite prototypes (sec Posner
& Mitchell, 1967; Rosch, 1973, 1975, 1978; Smith & Medin, 1981).7 In the Posner & Mitchell
study, people classilied dot patterns into categories. After they had sorted the patterns, they
were asked to remember which patterns they had seen. Although the task simply called for
accessing  verbatim  memory, subjects showed systematic misrecognitions: they [alsely
remembered having seen prototypical patterns that were never presented. Thus, without being
told to do so, people formed composite mental representations, apparently based on implicit
comparisons among the patterns that they saw. Even theories which rely exclusively on stored
exemplar information (such as that of Medin and Schaffer, 1978) share the assumption that
literal similarity matches are made easily - indeed, automatically. The difference is thal they
assume that these implicit comparisons are made at the time of use of the stored exemplars,
rather than assuming that the exemplars are encoded into a composite prototype. The virtually
antomatic nature of basic category learning is further evidence that the literal similarity matches
on which thev are based are highly accessible - indeed, evidence that making such comparisons is
4 passive, essentially automatic process (see also Reber 1967a, 1967b).

However, prototypes also illustrate the limited usefulness of literal similarity matches,
Although these implicit composites are often sufficient for recognizing and categorizing
situations, they are of limited use in deriving causal principles. This is because (1) a mateh based
largely on perceptual commonalities will often fail to contain the correct principles, and (2) even
when some of the correct relations are present, literal similarity matches are too rich 1o be
inspectable.  There is some evidence, albeit indirect, for this notion of rich, noninspectable
representations.  Nickerson and Adams (1979) studied people’s memory ol the common penny,
Despite the overwhelming amount of experience that the subjects have had with pennies, and
despite their evident ability Lo recognize and categorize pennies, they were remarkably poor at
recadling or recognizing, given close near -misses, the details of how pennies look.  This
demonstrates that possessing a description sutlicient to pick out a elass of objects in ordinary life
1sono guarantes that the deseription can be articulated.or that it is very precise.

Studies of yvouny ehildren ~how  that overall similarity judgments can be diflicult 1o

decotmpo-e. Ns o diecussed aboves voung chitdren appear to base their similarity judements on
1 Certnooralntyne o e el L ) W LY LI v Bl Here it o need to refer to a0 tructuriu "y
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some kind of overall similarity (Kemler, 1983). Indeed Shepp (1978) has found that three- and
four-year-olds are typically unable to judge one dimension independently of another. For
example, they cannot ignore height when judging width. Unlike adults, they are unable to treat
length and width as separable.

Abstraction matches are at the opposite pole from literal similarity. An abstraction match
is likely to be extremely useful, in both respects: it should contain the correct principle, and the
match should be inspectable. But abstractions are often not particularly accessible, especially for
novices. Novice learners may not know the approupriate abstraction, or it may be so unfamiliar
that they will not retrieve it when appropriate. Thus abstraction mappings, while ultimately
3 important, are unlikely to play a major role in the early stages of learning.

Analogies lie between the highly accessible literal similarity matches and the highly useful
abstraction matches. Potential analogics are less accessible in experiential learning than literal
similarity matches (Gentner & Landers, 1985; Ross, 1984). This is because analogy requires
accessing the learner’s data base via relational matches; object matches are of little or no use.

. However, once found. an analogy should be more useful than a literal similarity match in
deriving the key principles, since the shared data structure is sparse enough to permit analysis.
(Of course, educators often explicitly introduce analogies in teaching beginners for exactly this
reason. In this case, the problem of noticing the analogical match is bypassed. Moreover, by the
systematicity principle, the set of overlapping predicates is likely to include higher—order
relations. such as causality and logical implication. Thus analogy can function to reveal principles
in a domain that previously lacked the appropriate abstractions (Burstein, in press; Carbonell,
1981, in press; Clements, 1982; Darden, in press; Gentner 1980, 1982; Gentner & Gentner, 1983;
Gick & Holyoak, 1983; lloffman, 1980; Van Lehn & Brown, 1980)

‘ The Analogical Shift Hypothesis (Gentner, 1983} concerns the role of these comparisons in
y experiential learning. In the earliest stages most vl the spontaneous matches are either mere-
appearance matches (and thus erroneous) or are literal similarity matches, based on massive
feature overlap. This is to say that initial learning is conservative, based on rich, specific -case
kinds of matches. As the domain becomes familiar, more distant comparisons begin to occur;
matches in which fewer object attributes are shared. These sparse comparisons lead to the kinds
of binary connections that form the bulk of the causal corpus - for example, “lighter things go
Y farther when thrown.” Analogy also serves as a means of introducing structured mental models.
‘ Successful analogies may yield abstractions which can be stored and accessed (Gick & Holvuak.
1983). Winston's system (see Winston 1980; Winston 1982), which derives if-then rules by
abstracting the predicates common to two analogs, shows how this can be done. Thus, analogy
plays an important role in the middle and later stuges of learning. In the final stages. when
learning is well advanced, abstraction mappings play a major role.

5. Stages of Understanding

We suspect that four kinds of mental models are generated in the process of understanding
physical domains. The sequence of models proposed here is developmental, in that the theories of
cach stage are generated both by the phenomena being understood and by the theories of the

tage before it It is not proposed that every person goes through each stage for every domain,
nor that o perconis at the same stage in every domain at the same time.

g
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5.1. Stage 1: Protohistories

Suppose some new physical phenomenon is being observed. If there is no prior model, all
one can do is observe and remember what is happening. We conjecture that the simplest
physical models of a domain are protohtstories — prototype histories which serve as summaries of

experience.® Like object prototypes, protohistories are the “most typical instances™ of

phienomena. The terms in these descriptions are observables, and their deductive import can be
roughly expressed as “If | see X, then Y will happen (has happened).”

Consider a balance beam or seesaw. If a weight is placed on each side of the fulcrum, the
scesaw will either tilt counterclockwise, tilt clockwise, or not tilt at all. Most people have had
enough experiences with seesaws to have formed protohistories concerning their behavior. By the
conjecture described here, a protohistory is automatically available whenever they encounter a
seesaw. l'rom it, they can often predict which way the particular seesaw will move. lor
~xample, they may have a protohistory that describes what happens if a small person gets on the
seesaw opposite a large person.

However, the predictive power ol protohistories is quite limited. There is no guarantee that
the features matched actually correspond to relevant factors. For example, an observer will be
fooled when a large person sits close to the fulcrum if the observer’s see-saw protohistories have
been formed from walching people sitting at equal distances. Massive overlap in [eatures is
needed lor reliable use, which means protohistories will yield conclusions in fewer situations than
an abstract theory would. Consider, for example, two weights hung from opposite ends of a stick
that is suspended by a string. The principle involved is the same, yet the situations look
dissimilar enough that the protohistories for seesaws would not match. Furthermore, there is no
certain way to decide between conflicting results if more than one prolohistory matches a

“ituation.’

5.1.1. Learning Protohistories

The process of constructing protohistories involves dividing up experience into classes
according to literal similarity and abstracting a suminary for each class. There has been little
direct research on this process. However, investigations into the process of constructing object
prototypes provides some hints. First, people seem to be able implicitly {i.e., unconsciously) to
compute a kind of component match, Second, this intersection is not merely a simple leature
mtersection; rather, it appears that configurations among features are important in the
prototype.  Third, once this prototype is computed, it has powerful effects on subsequent
processing of experience. As mentioned previously, once people abstract a prototype from o set
ol patterns they may be more confident of having seen the prototype - which was never
proesented  than they are of having seen the patterns actually presented (Posner 1967). I"inally,
people may not be aware of forming prototypes, excepl as a general sense of increased familiarity
with oo eategory,

To <ummarize, if protohistories behave like object prototypes. then they should be tound to
CHhe computed Gaplicitly; (2) act as composite concepts; (3) be sensitive to perceptial
conhanrations aunong events: and {4) once computed, show the recognition strength and other
p-vebioogieal privileses of prototypes.,

st ffises shenomeenodogreal promatives (diSessa 1IR3 appear 1o be ceproesental v piaton e

Sere are U e hearc e ortteri suchoas uzmg the protabistors Chat has worked ot ctten T e
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The machine learning research that most closely captures this type of learning is concerned
with conceptual clustering (see Michalski & Stepp 1983, 1983b). So far, such research has focused
on classifying objects that can characterized mainly by differing attributes. [Extending such
techniques to describe situations that depend critically on relational descriptions could provide a
method for computing protohistorics.

5.2. Stage 2: The Causal Corpus

Protohistories summarize the phenomena, but they do not constitute a theory of it.
Building a detailed theory directly can be quite difficult. The space of possible models connecting
all observable (and possible) parameters in a typical situation can be quite large. We conjecture
that weaker theories, theories that characterize which parts of the situation are relevant to
desired conclusions are formed first. In particular, we conjecture that a collection of CAUSE
statements, the causal corpus, is computed from prototype objects and protohistories.

CAUSE is viewed lhere as an approximation concept, a weak form of ontological
commitment. In particular, saying
0 CAUSE (A, B)

expresses belief in the existence of some mechanism, specified by some theory T, such that
AAT-+B
\ Many, perhaps most, of the causal corpus relations are binary relations among variables - for
> example, “Bigger objects weigh more.” (Piaget, 1951; Smith, Wiser & Carey, in press), or

“Smaller objects have higher pitch when struck.” {diSessa, 1983).

The notion of mechanism in the causal corpus is quite primitive: the causal beliefs need be
neither explicit nor internally consistent. Later in the learning sequence, as we will sce, processes
will assume the role of mechanisms for physical domains. Nevertheless, we conjecture that, even
at this early stage, the learner makes a distinction between mechanistic connections and, say,
definitional connections.!® Further, we suspect that many of the initial causal connections are
incorrect. Novices often include diagnostic and correlational relations in their causal corpus. Vor
example, when asked if an increase in the evaporation rate will cause a change in the temperature
of the water. a novice may reply “Yes, because it would have to be hotter to evaporate more.”
But however vague or confused, a causal attribution is a statement of belief in some mechanistic
ronnection.

The distillation of experience from protohistories into the causal corpus serves three
pucposes.  [First, it serves as a wmecans of data reduction. Second, it provides a collection of
heuaristics that can be used directly to draw inferences. Even if the learner doesn’t have hrm
grounds to consider the CAUSE statements complete or correct, CAUSE statements may often
suflice for the desired class of inferences. Third, the collection of CAUSE relations can be used to
anide the search for a deeper theory of the domain. The CAUSE statements suggest connections
among various aspects ol the domain which a deeper theory must either explain or explain away.

leturning to the seesaw example, suppose the causal corpus is now applied to a balance
heam built out, of blocks. Suppose the two blocks on it are called a and b. The causal corpus
might be as follows:
> TAUSE(BIGGER (a, b), TILT-TOWARDS(a))
M Far examnple, Che staterent below s not a legitimate use of JAUCE by our account. stnce the reqired axiems

S renenetry oot pefe L mechamis

TAUGE(THIANGLE(f) , HAS-THREE-SIDES(f))
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- CAUSE(FARTHER (a, b), TILT-TOWARDS(a))

Lo o . . .
':t‘ These statements can be interpreted as rules in several ways: If we see that block a is bigger
X < than block b, one can predict tiit, and if one sees tilt, one may hypothesize that one block is
N : farther out than another. 1 + statements are more broadly applicable than protohistories
5:% ! since they refer to fewer properise . Unlike protohistories, the causal corpus is sparse enough to
e be debugged to some degree.
f.& However, the approximate nature of the CAUSE relation and the binary characteristic of the
}.*- laws limit the ability to discriminate between conflicting predictions. With the causal corpus
SN . . - ) : e
" above, for instance, if block a is bigger and block b is farther out, we will have two predictions.
“ > Inhelder & Piaget (1958) and Siegler (1976, 1981) have documented such a stage in the

development of understanding about the balance beam (with analogous developmental sequences
- in other domains). Typically, children’s first causal npproach to the problem is to focus on

3

::f weight. But there is an interesting second stage when [y come to realize that both weight and
\; distance are important but do not yet know the interrelations. They can manage either property
q,':: by itsell il the other is coustant; but if both properties vary, they tend to locus on one or the

e other inconsistently. [t is as though they had two separate binary laws. Eventually. they become

able to coordinate weight and distance in the balance beam problem. At this stage. they have

»l

' gone bevond the causal corpus. As will be discussed, in order to make more precise inferences the
':. learner must eventually uncover the mechanisms whose behavior is described by causal corpus.
:s 5.2.1. Learning the Causal Corpus

' We suspecl that there are several techniques for computing and debugging a causal corpus.
o The simplest technique is to hypothesize causality from co-occurrence, using rules like:

N If you always see A before B, then hypothesize CAUSE(A, B)

o, and

y '.'; [f A 1ls true whenever B 1s true, then hypothesize CAUSE(A, B)

B These rules make certain assumptions on the form of memory, namely that some number of

cirenmstances can be remembered, and that they can be remembered in sufficient detail that A

" il and B are either explicitly stored or computable from what is stored. Protohistories should serve
_:_3 as a means of initial data reduction from which a causal corpus can be constructed.

>

"i: It is not clear exactly how the learner abstracts out particular variables from the rich
W, e representations of the protohistory stage. One interesting mechanism is suggested by Medin and

Wattenmaker’s (in press) extension of the context theory (Medin & Schaffer, 1978). They suggest

.-J. an abstraction mechanism whereby a similarity match which leads to correct predictions results
;: in common information being augmented; whereas il a similarity match gives wrong predictions,
:\-,’ the differences are angmented. However this is done, the simplification achieved with the causal
4 corpus is considerable.  Another study by Siegler {1978) shows the power of focusing on
= particular variables. Three-year-old children were shown a balance beam, asked to prediet
o which way it would tilt, and then shown what actually occurred. Even after large numbers of
‘:.r trials. their performance failed Lo timprove. But when they were taught to think of the domain in
::. terms of a few refevant variables - weight and length - their performance did tmprove with
'::: experience. The moral to be drawn s that the pace of learning is greatly accelerated when o
"N el nimber of variables can be abstracted from all the possibly relevant factors.

e, A~ sugaested earlier, many of the early causal relations will be incorrect. We <uspect that
;. there exists o elass of rules which are used 1o debug a causal corpus in the faee of pew
SN mformation (e Sassman, 1976).0 Fach rule corresponds to a hypothesis about o bug in rhe
:;. tracture of the cansal corpus. sueh as a4 missing precondition. We believe that the task of
[}

-— B o .
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judging a causal corpus for consistency ‘s an example of an important, but relatively neglected,
kind of learning, coherence-driven learning. Coherence-driven learning is learning that is driven
not by a mismatch between the model and the world but by inconsistencies within the model
itself.  Williams, Hollan, & Stevens (1983) found evidence of such learning. They studied a
subject who was learning about a heat exchanger, and noted that one source of insight was a
"boggle™ experience, in which the person noticed that a current inference contradicted a prior
belief. We are still examining the criteria for judging the consistency of a causal corpus.'! Such

criteria will play a major role in controlling the debugging rules and in the mixture of generation
and debugging that occurs.

\nalogy provides another important technique for extending a causal corpus (sce Gentner &
“otner, 1983; Stevens, 1979). The CAUSE relations from one domain can be mapped into
iwother, since CAUSE qualifies as a higher-order constraining relation (see also Winston. 1982).

5.3. Stage 3: Naive Physics

The naive phyvsies models replace CAUSE statements with theories about the specific
mechunisms of change. The ontology is extended by adding processes to explain observed
changes. The ontology ol ticludes properties and objects that are not directly observable (for
example, heat and he+t How) and the new relationships {such as fluid path and heat path)
required to reason alvy hem.

An important advintage of these models is the ability to reason by exclusion. In the naive
physics stage, unlike the previous stages, predictions that fail still yield information about the
situation. For instance, if fluid is fluwing into a container and the level is not rising, then it is
reasonable to hypothesize that Buid is flowing out of it through some unknown path.

Returning to our balance beam. a process SWING might be used to describe rotation around
a contact point (See ligure 7). The preconditions describe the geometric configuration of the
svstem, and the quantity condition says that SWING will occur whenever there is a non zero
angular velocity, SKING directly inlluences the angular position of the beam. Thus a prediction
concerning tilt becomes a prediction about which instance, if any, of the SWING process will be

- 12
active,

What inllnences ANGULAR-VELGOCITY? The existence of an ANGULAR-ACCELERATION process isee
Figure 8} that directly intluences ANGULAR-VELOCITY whenever there is a net torque will be
assumed. [t s farther assumed tha
Wiy
PHYSOB(«} A CONTACT - I"OINT(ep)
— NET TORQUE(x, cp) = SUM-OF(TORQUES-ON(x. cp}))

I other words, the net torque on an objeet around a contact point is the sum of the torgues on
that ohject measured about that contact point. The mass of the beam will be ignored. and pall

CWath Loanee Ran of he Paiversity of Chieago, we are investigating the mole b optransitovie. 5 er oy
28 £ 5
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"-'.‘f Figure 7 - A SWING process
' A SWING process describes rotation of an object around another object. For the balance beam
N there will be two instances of this process, differing only in their bindings for the direction dir,
"t: ) In each instance b will be bound to the beam, ¢ will be bound to the fulecrum, and cp will be
Mo, bound to the contact point between them.
K
:0:.' It is assumed that each physical object (PHYSOB) has quantities to represent its angular po-
> sition and velocity with respect to each point of contact with other objects. Directions will be
N noted by the symbols CW, CCW, and NULL, corresponding to clockwise rotation, counterclockwise
" rotation, and no rolation.
J .f
Sl;n
*a"" Process SWING
kD
Individuals:
_\.'.; b a PHYSOB
2 ¢ a PHYSOB
“a cp a CONTACT-POINT
S dir a DIRECTION
o Preconditions:
e MOBILE (b)
o not MOBILE (c)
e CONNECTED (b, ¢, cp)
"ol ROTATION-FREE (b, ¢, cp)
DIRECTION-OF (dir, ANGULAR-VELOCITY (b, cp))
o
o~ Quantity Conditlions:
- Am [ANGULAR-VELOCITY (b, cp)] > ZERO
.l:‘n
= Influences:
ey I+ (ANGULAR-POSITION (b, cp), A[ANGULAR-VELOCITY (b, cp)])
".f::.‘
e
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o
B
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D Figure 8 - ANGULAR-ACCELERATION process

b Process ANGULAR-ACCELERATION
Individuals:
: b a PHYSOB
c a PHYSOB

cp a CONTACT-POINT
dir a DIRECTION

Preconditilons:
) MOBILE(b)
not MOBILE(c)
CONNECTED(b, ¢, cp)
ROTATION-FREE (b, c, cp)
DIRECTION-OF (dir, NET-TORQUE(b, cp))

Quantlity Conditions:
Am [NET-TORQUE (b, cp)] > ZERO

Relatlions:
Let acc be a quantity
acc g, NET-TORQUE(b, cp)
i acc g MASS(b)

Influences:
I+ (ANGULAR-VELOCITY (b, cp), Alacc])

of gravity on the blocks on each side of the fulcrum will be assumed to be the only source of )
torques. Figure 9 describes this induced torque by means of an individual view. Notice that the

factors illuminated in the causal corpus of BIGGER and FARTHER have become the quantities

MASS and DISTANCE, and their role in the producing swinging has been explicated. In particular,

Lhese properties determine how much torque each block places on the beam. The sum ol the

Lorques determines the net torque, which can cause the beam to accelerate and thus swing,.

This model comes one step closer to a model that can always determine which way

‘ something will tilt. There will still be cases in which exactly what will happen cannot determined

: {e.g.. if Lhe mass on one side is increased and it is brought closer to the pivot), but this is a
precise hypothesis abont what all the relevant factors are.

‘ r

5.3.1. Learning Naive Physics

Mt w—

The major problem in learning a naive physics is constructing a vocabulary of processes
that consistently deseribes experience. The learner must strip away the irrelevant predicates
that. are part. ol the protohistories and causal corpus and construcl more appropriate
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i Figure 9 - A description of gravity-induced torque
. Positive torques are assigned to clockwise (CW) and negative torques are assigned to
g?i"‘ counter-clockwise (CCW).
‘;-;'s Individual View GRAVITY-INDUCED-TORQUE
l‘|‘
PAAY)
-'-?f'f Individuals:

b a PHYSOB

,:t’g: ¢ a PHYSOB
Wl d a PHYSOB
W cp a CONTACT-POINT
b
1,0:1
bt Preconditions:
i CONNECTED (b, ¢, cp)
23 ON(d, b)
l" :v
i Relations:

-

Let f be a quantity

f € TORQUES-ON(b, cp)

f.vQ+ DISTANCE (C-M(d), cp)

f xQ+MASS(d)

ON(C-M(d), SIDE-OF (CW, b, cp)) 1ff As[f] =1

.ﬂt‘.
o od

R A e
I

! ON(C-M(d), SIDE-OF(CCW, b, cp)) iff As(f] =-1
!!" p
N ON(C-M(d), SIDE-OF(NULL, b, cp)) 1ff As[f] =0
p
.“u.
i
N L - . . . .
::::‘ descriptions. In addition, the learner must sometimes hypothesize the existence of objects and
:" properties that are not directly observable. Research in machine learning, particularly the work
on erplanation-based learning (Mitchell, 1986; DeJong & Mooney, 1986), should be useful here.
vl Several researchers are already beginning to directly address such problems in modelling scientific
:; discovery (Langley 1983; Falkenhainer, 1985, Rajamoney, DeJoug, & Faltings, 1985).
-l
.:::.' The causal corpus provides a search space for potential process vocabularies. Fuach
3:::-:: statement in the causal corpus must be elaborated into a consequence of a process vocabulary. |t
appears that there is only a small number of distinct ways to perform the elaboration. depending
"N on the particular form of the arguments. For example, the statement
e
o
'y
::":: The decreage in AOUNT-OF q causes the LEVEL of q to fall.
)
J
."" - . . . . . - . . . .
0 tmeientes that ~ome active process (or individual view) in the situation contains the statement
N LRIELy ) RMOUNT-0F (q)
. !!‘ )
«f.‘ ot relation-,
&
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Hypothesizing a process vocabulary from a causal corpus should be much simpler than
working from protohistories or direct observation. Yet it still appears difficult. We conjecture
that there are several constraints that make the problemm more tractable. First, people are
apparently conservalive in the introducivion of unobservable properties. For example, some
subjects have a model of a domain that appears to be organized around one parameter - a
“generalized strength” attribute. In reasoning about fluids, for instance, they appear to use
pressure, flow rate, and velocity as different names for the same thing. In electricity, they use
voltage, current, power, potential, and velocity of electrons interchangeably. The advantage of
this generation strategy is, of course, that simpler models will be explored first, with further
distinctions made only when necessary. Second, some physical laws are used as constraints on
what process vocabularies are possible. Conservation of energy, for example, demands that if a
process directly influences a quantity representing some form of energy, it must also directly
influence some other quantity representing some form of energy, but in the opposite direction.

Once again, analogy can provide a constructive mechanism. It can be used to import
candidate processes from previously understood domains - for example, as when one understands
electricity in terms of water flow (Gentner & Gentner, 1983) or evaporation in terms of an
implicit model of rocket ships escaping from earth (Collins & Gentner, in press) This is an
especially powerful mechanism because if the model for the previous domain is consistent with
physical laws, then it suggests that the model for the new domain may be so as well.

We can illustrate this with an analogy from liquid-flow to heat-flow. Recall the liquid flow
model presented in Section 2. Figure 10 illustrates a collection of assertions which describe the

consequences of a particular instance of LIQUID-FLOW.' Suppose a person hypothesizes that
there is a process of heat flow which is analogous to the process of liquid flow. By the structure-
mapping theory, this means that the person suspects that a similar relational structure holds
among the objects in the heat-Rlow situation {the coffee, the ice cube, the silver bar, and the
instance of heat fiow) as as among the objects in the liquid-flow situation (the water in the
beaker, the waler in the vial, the pipe, and the instance of liquid flow). Mapping the systematic
relational structure {see Figure 11}, leads to several predictions that the person can check to see
whether the analogy is correct. For example, it can be determined whether or not the
temperature of the ice cube is rising and the temperature of the coffee falling. The structure-
mapping rules lor analogy have provided an initial model for the process of heat flow: in
particular, the preconditions, quantity conditions, relations, and influences are all carried across

from liquid How. Note that to make the analogy really work, a new kind of object a HEAT-

PATH must be postulated. Thus analogy can provide candidates for extending ontologies.'*

5.4. Stage 4: Expert Models

The models generated so far have two important limitations. First, they still contain
fundamental  ambignities, ambiguities which are inherent in the nature of qualitative

" The asrertions were generated by an early socaon of 3I1IMO, a computer program coastructed to explore the
computational wpects of QP theory 5 TIMO was o 0oed to make predictions and (nterpret tneasurements, not to be
cloarming e oo particuiar these deseripuons were not generated with learming or analogy 1o mind

O our uch extension, are not to be made lightly The authors suspect that new Lypes of objects 1re posti-
thetan the target domann iy when necessary to preserve amuch larger systematic structure
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Figure 10 — Relational structure for an instance of liquid flow

Depicted below are several important conclusions which follow from the definition of liquid flow
presented in Figure 2 and the assumption that an instance of liquid flow exists involving the
liquids in the two containers. Specifically, they describe the conditions for and consequences of
the process instance p1-0 being active.
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Figure 11 - Relational structure transferred to heat flow

Here the relational structure describing a situation involving liquid flow has been transferred to a
situation involving heat flow. Notice the systematicity of the relational structure. as indicated
by the nested chains of implications.
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representations.'® Second, they lack domain-independent generalizations (except in the raw form
of the representation -~ CAUSE statements, processes, and so on). The final stage ol learning
consists of overcoming these limitations, of discovering ways to resolve ambiguities and to
construct powerful generalizations.

Clearly several kinds ol knowledge are involved, and the potential complexity of the models
in this stage is open-ended (it includes the whole of mathematical physics, for example).
Examples of the kinds of knowledge involved include equations to describe relationships between
parameters, “rules of thumb” to specify useful default resolutions for ambiguities, and new
ontologies to allow reasoning about more complex systems. The importance of mathematical
medels is fairly obvious. The rules of thumb are less obvious but equally important (see e.g.,
llenat, 1982). In physical domains they include empirical knowledge about the circumstances
under which certain processes can be ignored (such as evaporation when water is poured from one
glass to another) and what their net effect is (such as Black’s law for the temperature of
mixtures). Finally, different ontologies are sometimes necessary to deal with certain types of
complex systems. In the process-oriented physics discussed here, describing flow requires finding
How paths. Finding flow paths in complex networks such as electrical circuits can quickly
become computationally intractable; switching to a device-centered physics (such as that
described in deKleer & Brown, 1983) can reduce the computational burden to manageable
proportions for such systems.

To complete the balance beam example, we know that the force of a block on the beam is
qualitatively proportional to the mass of the block and to the distance from the fulcrum. If we
also know that the torque is the product of distance and weight, then providing numerical values
for these quantities will allow an unambiguous prediction about tilt.

5.4.1. Learning Expert Models

The transition to expert models involves several kinds of learning. Some aspects of this
transition probably lie outside the scope of experiential learning; lor example, people typically
learn mathematical models by being taught rather than by discovery. Some aspects of this
learning - such as developing new onlologies - involve improving the content of the
representations. Other aspects of the transition from a naive physics to an expert physics arce
better described as translating the existing qualitative representations into quantitative
statements, using mathematics to express laws. By converting a physical theory into a
mathematical model. the learner gains the ability to make precise predictions and to recognize
powerlul generalizations more easil~. \n important part of this relinement is to elaborate .
statements into constraint equatiou.. Langley (1979; Langlev, Zytkow, Simon & Bradshaw,
1983) and Falkenhainer (1985) describe techniques that should be useful for converting
nualitative laws into mathematical relations.

Developing rules of thumb means knowing not just what is possible, but what is probable.
The learner must discover which outcomes raised by qualitative reasoning are likels or unlikely
and which potential interactions can be ignored. The techniques developed in machine learning
for acquiring heuristies <hould be direetly applicable (e.f.  Lenat, 1982: Mitchell. 19511, In
addition, the anthors suspect the possible behaviors raised by naive physics are compared against
known protohistories. Hypothesized onteomes that have no corresponding protohistory are

judged unlikely. and those corresponding to a highly familiar and accessible protohistory are

Fro nature of wnbigmty oo quaditdve deseriptions codiseused by de Kleer & Brown (1983) nd orbus
1R
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judged very likely (see Tversky & Kahneman, 1973).

Further, it seems likely that at least some expert rules of thumb derive from learning new
and better protohistories. This intuition is based in part on research in automaticity (Schneider
& Fisk, 1983). 1t has been demovstrated that, given an orderly domain and suflicient practice,
adult subjects can learn a nc . esponse pattern well enough so that it becomes essentially
effortless (see also Anderson. li#s2; Rumelhart & Norman, 1978). Moreover, there is some
transfer from this over-learned material to new similar material. These learned sequences have
many of the essential qualities of protohistories. First, they are triggered by recognition (in the
terms used here, by a literal similarity match between the present situation and a stored
situation). Second, computing and carrying out the procedures that follow from the match is
automatic; virtually no attentional resources are required. Third, these computations are
implicit; subjects are typically poor at introspecting about what they are doing, and when they
do introspect. it can interfere with the response (Brooks, 1978; Reber, 1967, 1976). It may be too
simplistic to view protohistories as a special case of automatic pattern-respouse combinatiou.
Nevertheless, there is enough overlap in the phenomena to allow some confidence that
protohistories can continue to be learned at all stages of expertise. Of course, the contents of
expert protohistories may be diflerent from those of novices, since experts’ protohistories may
reflect a more advanced ontology, as discussed below. However, the mechanism of a
perceptually-triggered automatic match should be the same.

We suspect that ontological shift is driven both by the desire to understand more complex
physical systems and by the emergence of domain-independent mathematical abstractions. As
an example of the first kind, consider the problem of reasoning about fluid flow in a complex
system, such as a steam plant. Hayes {1979b) his distinguished two separate ontologies for
liquids: a contained-liguid ontology, in which liquid is thought of as the fluid in a place and a
maolecular collection ontology, in which water is thought of as little bits of fluid that move around
inside the system. The contained-liquid ontology is apprupriate if the goal is to determine what
Hows can occur. However, it will not help us determine how changes in th: properties of the
working fluid in vne part of the system (say, the rising temperature of the inlet water in a boiler)
can allect properties of the fluid in another part of the system (say, temperature of the steam
coming out of the boiler’s superheater). In this case, liquid must be viewed in terins of molecular
collections that move around inside the system. Conversely, establishing flows using the
molecular collection view is very difficult. A learner with only one of these two ontologies will
have a ditficult time with certain questions, and such difficulties may drive the search for i new
ontology.

Mathematical abstractions provide another important driving force in ontological change.
In svstem dynamices, for example, physical systems involving Huid elements, mechanical elements.
thermal elements, and acoustical elements are viewed as variations on a comimon. absirac
theme. This means that the analysis and synthesis tools developed for abstract mathematical
models can be used Lo solve problems in several domains. This is a powerful motivation. as
evidenced by the wave ol interest in attempting diverse applications evoked by the publications

ol certain new mathematical formalisms (e.g.. catastrophe theory and fractal geometryv).

. Summary

W hive deseribed our progeess in combining strueture wapping theors and Ouaiica e
Vroes theory into o Iramework that aims to accaunt for expertential Tearming o phy o
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domains. The learning sequence is built around three ideas. First, development proceeds rom
rich to sparse, and from concrete to abstract  that is, initial representations differ from later
representations in contaning  more information, and in particular, more context-specific
mformation.  Second. alter suthcient experience, people develop experiential models that are
centered around the notion of physical process, as described by Qualitative Process theory.
Third. unplicit processes of comparing and mapping between stored knowledge and a current
situation, as described in structure mapping theory, are central to experiential learning.

Four stages of experiential learning have been laid out: protohistories, the causal corpus,
naive physics and expert models.'® The first stage, that of protohistories, embodies the idea that
early representations are rich and context specific; this stage attempts to capture a combination
of evidence from developmental patterns, similarity judgments, basic-level categories and object
prototyvpes. The rthird stage is the process-centered stage described by Qualititative Process
theary. The fourth stage builds on the third stage models, adding domain-independent
zeneralizations and i some cases mathematical models. There is some evidence for the third and
possibly the fourth <tages o the research on expertise under the rubric of the novice -expert shilt
1Chy, Feltovich and Glaser, 1951 Larkin, 19%3).

The second stage, the causal corpus, is the most speculative. There is no direct evidence for
its existence, nor do we currently have a detailed theory of the kinds of causal statements that
can enter into the representations. Moreover, detailing how the causal corpus emerges from
protohistories will not be easy. DBut something like the causal corpus seems necessary: a
rollection of simplistic, mostly binary directed regularities among dimensions and quantities that
begin to be differentiated out of the tangled representations of the protohistory stage. The
learner can use these simple assertions as grist for further progress.

What happens to prior stages as new stages occur? First, stored representations have to be
distinguish from new learning. We conjecture that learners retain much of their stored
knowledge even wuen they go beyond the stage at which it was formed. Thus, a hvdraulics
engineer still uses the same protohistory he or she formed as a child to decide how fast 1o carry o
glass of water without spilling it.  And, as de Kleer (19791 points out, expert physicists and
engineers do not always resort to quantitative models (fonrth stage); {requentls the auswer thes
want can be obtained by using a good qualitative model (third <tage).

But what about new learning” Does new learning oceur only at the leading edue. or
people continue to learn at levels below the most advanced stage they have attained” We icpe
thiat even experts continue to learn at all prior stages, with the possible exception of the cage

corpus.  As deseribed earlier, there is evidence that coxperts continue to lav down s
arotohictories. Similarly, learners who are operating at the fourth <stage. that of expert oo,
il eoromme to learn and refine their naave phyvsies, This s because the mathematiea e o
Chee tage are ot a sabstitute tor the process models ot the thira stage " Tpross e
v cbaares are asefal whether or not mathematical models are also availabie A\ oo
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increases the least new learning is expected within the causal corpus.

Of the four levels, the causal corpus has the least claim to continued independent existence
in an advanced expert. The causal corpus is not reliable for prediction, nor does it possess the
advantages of .utomaticity.'® In summary, the overall picture is that a learner moves from rich,
perceptually specilic protohistories to the sparser representation of the causal corpus. The
causal corpus serves as a staging area in which rough connections among variables can be stored
until they can be subsumed into a true system. If learning continues, a person develops a
process—centered naive physics, and, for some domains, expert models.
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