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1. Introduction

People use and extend their knowledge of the physical world constantly. Understanding
how this fluency is achieved would be an important milestone in understanding human learning
and intelligence, as well as a useful guide for constructing machines that learn. Our purpose is to
construct a computational account of human experiential learning in physical domains.

We are still at the stage of refining the questions rather than providing detailed answers. In
many cases, there is no direct evidence for our claims. In other instances, support for the theory
is obtained by combining evidence from several different areas, including developmental
psychology, studies of learning, and other psychological research. No one of these is adequate by
itself. When extrapolating from adult learning research, we must keep in mind that cases of pure
experiential learning are rare in adult life; some sort of instruction or prior expectation is
typically involved. Developmental research provides a good source of data, since much of young
children's learning is truly from direct experience. Yet when developmental results are applied it
must be remembered that children are not only learning, but also maturing. Therefore, in order
to isolate and study experiential learning, the existing empirical findings must be examined,

filtered, and carefully fitted together. Although space does not permit detailing all the relevant
lines of evidence, we will try to give the reader some justification for our claims whenever
possible.

The past few years has seen significant progress in machine learning. However, to construct
programs that learn as well as (or better than) people do, it is important to understand how
human learning works. Ultimately both psychological studies and direct computational
experiments (i.e., constructing programs) will be necessary to provide a full account. To this
end, we will try when possible to indicate how techniques developed in machine learning might be
used to implement such programs.

1.1. Overview

A brief prolog may help to organize the material. Three key ideas underlie the theory: (1)
the centrality of physical processes in mental models of science; (2) the importance of analogy in
learning; and (3) the primacy of rich, contextually specific representations. The idea that the
notion of process is central to human knowledge about physical domains is the chief tenent of
Qualitative Process (QP) theory (Forbus 1981; Forbus, 1984). This is not to say that notions of

process are there from the beginning. Rather, we hypothesize that a person's experiential
knowledge of a domain begins as a collection of scenarios that describe particular phenomena,
out of which is developed a vocabulary of processes that provide a notion of mechanism for the
dornain. The second key idea concerns the role of comparisons among related knowledge
structures. We conjecture that much of experiential learning proceeds through spontaneous
comparisons - which may be implicit or explicit - between a current scenario and prior similar or
analogous scenarios that the learner has stored in memory. Structure-mapping theory (see
(jentner 1980; Gentner, 1983) describes these kinds of comparisons.

Thv third idea is a rather paradoxical claim: in human processing, more is often easier.i

IPich. perci.ptmlly based represen tations are acquired earlier in learning than sparse abstract
represpntations. ['hat is, early domain representations differ from more advanced

ids o the iaime doinain in containing more information, especially perceptual "

'It. iho lI b1 rwt... tI hat. psychboigists by no means generally agree with this claim. Consequently, wo will try to
tw 1urly x'plii in r- W'VIg dvnit r,, for this imsitin %

Framework 2 Forbus & Gentner
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information specific to the initial context of use and acquisition. A second aspect of the "more is
easier" claim concerns comparisons: we suggest that, for humans, similarity comparisons are
easier when there is more overlap between the two knowledge structures being compared.

On the basis of these three ideas, we propose a canonical learning sequence. The claim is
that human experiential learning of physical domains can be viewed as a sequence of different
mental models: (1) protohistories, (2) the causal corpus, (3) naive physics, and (4) expert models.
Briefly, protohistories are rich, contextually specific, highly perceptual representations of
phenomena, capturing expectations about typical phenomenological patterns - for example, "If I
turn the key, the car will start." With the causal corpus, the expectation of mechanism enters;
here the representation consists of simple statements that some sort of causal connection exists
between variables - "If the car has no gas, it will not start." In the naive physics stage, processes
are introduced to provide the mechanism underlying the causal corpus - "Gas must flow from the
tIank to the carburator and mix with air so that the mixture can be ignited by the spark." The

*" disparate local connections of the causal corpus are replaced with qualitative models organized
around the notion of process. Finally, in the expert models stage, quantitative representations
are created - for example, models of the effects of different mixtures of oxygen and gasoline.

In this paper we discuss our conjectures about these models and how a learner constructs
one type of model from another. First, however, the component theories that underlie this
framework are briefly summarized: Qualitative Process theory, which provides concepts needed
to represent the models (particularly in the naive physics stage); and structure-mapping theory,
which characterizes the kinds of computations that move the learner from one representation to
another. Then the overall role of structure-mapping comparisons is examined in the progression
from rich to sparse representations. With these foundations in place, the four stages of learning
for physical domains we postulate are then described.

2. Qualitative Process Theory

'rhe first requirement is a language in which to describe people's common sense knowledge
about physical situations. People know about a great many kinds of physical changes: things
move, collide, bend, break, heat up, cool down, flow and boil. Intuitively we think of these as
processes. Qualitative Process theory attempts to formalize this notion of process to provide a
common form for qualitative theories of dynamics. As will be clear later on, we do not believe
that the first models people construct of a domain take the form of processes, nor even that
people become knowledgeable enough to construct these models for every domain they
.xperience. Nevertheless, some of the concepts of QP theory will be useful for describing models
in other stages as well.

In QP theory, a physical situation is modelled as a collection of objects and relationships
aniong them, with processes res)onsible for causing changes. The continuous paraieters of all
object., such as tevmperature and pressure, are represented by quantities. A quantity has Wwo
part.s. all arnount and a leri,ative. A\nouints and derivatives art' both numbe:rs. The niodl t

keep in mind f'or rulwlribrs is Ihat of the reals, but. it is important to note that ii O P th,,rv
particular nilmnerical value.s are never used. Instead, the value of a number is described in tieris
OF il., qupznlaly .pace a colection of inequalities L.at, hold between it aind other qVuatites.ilr,
I ill,,str:s~ ; e1,Aint,t ,y s)a:e for (he level or liquid in a container. The quantitv SpaCe is a useful
'11ialittl,ive reprv,',ntati,)m b'cause processes tvpie-allv start, and stop when inequaities bet ween

*pra w rF c emngt.

Vraruework 3 Forbus & Gentner

-. .rIe- .1.1 .1 M r . . .. .r --



I

Figure 1 - A quantity space
A quantity space describes the value of a number by the inequality relationships that hold
between it and other numbers. An arrow indicates that the number at its head is greater than
the number -t its tail. Thus LEVEL(wa) is less than LEVEL(wb) and greater than BOTTOM(a),
while LEVE. ,:b) and TOP(a) are unordered.

a b

J ~ ~~BOTTOM ( a )-'m.-LEVEL ( wa )--TOP (a )
...LEVEL (wb)

Figure 2 illustrates a typical process, called LIQUID-FLOW. A process has five parts:

individuals, preconditions, quantity conditions, relations, and influences. Roughly speaking, the
~individuals part describes where instances of a process might occur, the preconditions and

~quantity conditions tell when it will be acting, and the relations and influences describe wvhat
holds a.. a consequence of it acting. In more detail, for any collection of objects that matches the

~individual specifications there is a process instance which represents the potential for that process
to occur between those individuals in a particular way. For example, there will he two instances
of LIQUID-FLOW bet ween the liquid in the containers of figure 1, each corresponding to flow in a
p;,rticmlar direction.

A process instance is active whenever both its preconditions and its quantity conditions are
J rme. The (listinction between preconditions and quantity conditions is that quantity conditions

,ant he dletermine~d within QP theory but preconditions cannot. Quantity conditions concern
what, inequalities hold and what other processes (or individual views, which are introdluced belowv)
:,r,. active. lPrecondlitions concern any relevant factors other than quantity conditions, such as
'spatial boundaries. For exanmple, in "traditional" physics we can solve equations to figure, out
how fast a ball will be unoving when it hits the rIoor, but the equations will not tell us a priori

~~where the floor is. (Or, returning to the presenxt example, if we know that all the valves in the

llujid path betIweenl I e two co ntainers are openl (i.e.. the tluid path is aligned) then fluid will flow,
holl we, calnll, prd ietl within QI' t~heory hen ,,r ilf sonreone will walk bx' and turn oil a valve.
I 'arisq' these. tart ors sill ;LItet, rhymamnical covtcltisiotis. lprecnn)litions rnuIt hbe explic'it ly

F rame work 4 Forbus & Gentner



Figure 2 - A typical process

This process specification describes a simple kind of liquid flow. It can occur between two con-
* tained liquids that are connected by a fluid path, whenever the path is aligned - that is, all valves

in the path are open - and the pressure in the one taken as source is greater than the pressure in
the contained liquid taken as destination. The quantity type AMOUNT-OF represents how much
"stuff' there is in an object. The function A maps a quantity into the number which is its
amount, a number, as opposed to AMOUNT-OF, which is a function that maps a piece of stuff into
a quantity.

Process LIQUID-FLOW

IndIviduals:
source, a CONTAINED-LIQUID
dest, a CONTAINED-LIQUID
path, a FLUID-PATH, FLUID-CONNECTION(source, dest, path)

Preconditions:
ALIGNED (path)

Quantity Conditions:
A[PRESSURE(source)] > A '.:'SURE(dest)]

Relations:
Let flow-rate, diff be quantities
diff = PRESSURE(source) - PRESSURE(dest)

flow-rate :Q, diff

Influences:
I +(AMOUNT-OF(dest) , A If low-rate])

I- (AMOUNT-OF (source) , A If low-rate])

kiVeever a proce. instance is active, its influences and relations hold. The irilbierices

C,,Ilpo1ent, of a process specilies its direct effects; the relations component describes other [acts
f lial. are Lrm while Hie process is active. The direct effects-called direct influences-takeI lhe form

I-(Q, n) or t-(Q, n)
I,'epvwilrlrn on whihl-r n is a positive or negal,ive contributiion to the derivative of' Q. If a1

,tlI;tfltiI v is flirectly inifluence:d, its derivative will be the suni of all the direct inillueice, on it.

1'it lrr, irit Io wih ,,escripioni of LIQUID-FLOW. for example, we see that when an inst, nr ce of

" 'D-FLOW 1 aive Owfr, will be a positive influence on the amount of liquid in I he
1,,,l 1;,1loll anild ;tl C'tIlt, 14"";t ive illIlhIVe ce on he a runo t of liquid in the source.

I,,, r,'1;l niw, fi,'ld can d,-scrilbe nfow individlials that are created by virtue of the process

1,,ilen , ,r,.live. Inii ;ta Ihw t-vain prodfini-I , oiling water) as well as properties needed by

I"r;irur.work *. Forbus & Gentner



representations outside of QP theory (such as the appearance of boiling water). An especially
important kind of fact expressed in the relations component is functional dependency between

quantities. Functional dependencies between quantities are expressed by
Q1 -'<Q+ Q2 2

(read "Q1 is qualitatively proportional to Q2," or informally, "Q1 q-prop Q2"), meaning there

exists a function which determines Q1 and is strictly increasing in its dependence on Q2.'-
indicates that the dependence is strictly decreasing. Note that qualitative proportionalities

express partial information, since the exact nature of the function relating the parameters is not

known and the function may or may not depend upon other quantities. 2 If a quantity Q1 is
functionally dependent on a quantity Q2, and Q2 is influenced by a process P, then we will say
that P indirectly influences Q1; that is, when P is acting it can cause Q1 to change. If, for
instance, the PRESSURE and LEVEL of a liquid are qualitatively proportional to the AMOUNT-OF
of the liquid, then LIQUID-FLOW will indirectly influence both PRESSURE and LEVEL because it
directly influences AMOUNT-OF. It is important to note that the only way a quantity can change
is if it is directly or indirectly influenced. This means one can reason by exclusion: If nothing is

influencing the amount of fluid in a container, then it isn't changing, but if the amount is
changing, something must be influencing it. No changes happen by themselves. Furthermore, we
can trace the possible paths of influences in a situation and determine whether or not particular
kinds of changes can occur.

Two other important types of descriptions should also be mentioned here. Individual views
are descriptions used to represent both objects whose existence are subject to dynamical
constraints and states of objects. "The water in a cup," for example, is described as a
CONTAINED-LIQUID, (see figure 3) because we can get rid of it by reducing its amount to zero
(perhaps by making it the source of an instance of LIQUID-FLOW). Another example is a model

* of a spring. Springs have three states-relaxed, compressed, or stretched-each of which can be
modeled by individual views. Individual views are specified in the same way that processes are,
in that they have individuals, preconditions, quantity conditions, and relations. However. they

do not have direct influences; directly influencing quantities is the sole prerogative of processes.

The other kind of description is the encapsulated history. How an object changes through

* time is represented by its history (Hayes 1979b). Histories are annotated pieces of space-time;

thus they ar- object centered, have finite spatial extent, and extend over time.3 As its name

suggests, an encapsulated history is a schematized description of some fragments of histories for
a collection of objects. Encapsulated Histories are useful as summaries of behavior and to
dirfctly describe phenomena that have not been accounted for by process descriptions. An

-xainple of the latter usage is describing collisions between moving objects. A very simple way to
model collisions is to say that the very next thing that happens after, say, an object hits a wall is

fhat, its velocity reverses and it starts moving the other way. Given how rapidly collisions occur.
this model is quite adequate for most purposes, and encapsulated histories allow us to write it
this wav.

: rg' theorv also provides ways to specify dependence on properties that are not quantities (such as shape. in re-
latin ith level of a liquid in a container to its volume) and to make stronger statements about functional rplatiou-
b 11:;, ,,h i :i Li ! deponls on -,2 directly, with no intervenig parameteis" and "g. depends on and 2,S and nih-
,' -- Nhi, reqmi,-l i',i riamir i stro ger hypotheses about, a domhain However, precise specilic:atious F) tit !1,,it

02 -.2 ir- !io i pl-rR ttPd

liv 01r:, i. : la, vi,: 3tuatooal :alculus (McCarthy & 11aves, 19 description of change consists , f :ittia-

trot li 'orit-t it,, vhle o itv,'rsp :it Siir particlar in i,allf. "f hlie

iFrarnvwork 6 Forbus & Gentner



Figure 3. - A typical individual view
This typical individual view describes a piece of liquid in a container, using the ontology for
liquids described in (Hayes 1979a). there is is just "syntactic sugar" for stating that whenever
the preconditions and quantity conditions are Lrue, g will exist.

INDIVIDUAL-VIEW CONTAINED-LIQUID

Individuals:
c a CONTAINER

s a SUBSTANCE

Preconditions:
CAN-CONTAIN-SUBSTANCE(c, s)

QuantityConditions:
A [AMOUNT-OF-IN(s, c)] > ZERO

Relations:
THERE IS g, a PIECE-OF-STUFF
HAS-QUANTITY (g, AMOUNT-OF)
AMOUNT-OF(g) =AMOUNT-OF-IN(s, c)
HAS-QUANTITY(g, LEVEL)
LEVEL (g) -,-Q+ AMOUNT-OF (g)
HAS-QUANTITY (g, PRESSURE)
PRESSURE(g) ..-Q+ LEVEL (g)

A reasoner's theory of dynamics for a particular domain is characterized in terms of (1) a
process vocabulary that describes the kinds of processes the reasoner believes can occur and (2) a
view vocabulary that describes dynamical objects and relevant states of objects. All changes are
assumed to be directly or indirectly caused by processes-the sole mechanism assumption-which
provides a strong constraint on the form of dynamical theories. Importantly, the content of
dvamical theories is not tightly constrained-incorrect theories can be expressed as easily (and
sometimes more easily!) than correct theories. For example, versions of Newtonian, Aristotelian,
and Impetus theories oi motion have all been encoded using QP theory.

(-!) theory sanctions several basic deductions. For example, the kinds of processes tlhat
inight. occur in a situation can be determined by using the process and view vocabularies to
'oiu.sr lnl ilstanices rulpresenting the diflerent p)ssibilities. The collection of processes :acling at
-n iinn caracterizes 'what is happening" then in that situation, and these processes cal be
[wi nd by evaduating the pr'conditions and ,luantitv conditions for these instances.

ou'(unilder ag;ain the VX4Liir[)le iII Ligure t. 'here will be two iistances of the LiQUID-FL','
rc-,,' Iric firicu h, level iII -wb is greater Iha wa, the LIQUID-FLOW imistance represenilimu llow

fr,,it isb if) va will I,' ;LI*tive. 13v t aking it., accouIII all or the Influences on e wach nuantity (calhcd

F'rarnework 7 Forbus & Gentner
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resolving its influences), we can often determine the sign of its derivative. The sign of the
derivative is important because it represents how the amount of the quantity is changing-
increasing, decreasing, or constant. In this example there is only one process instance acting,
which makes things simple. AMOUNT-OF(wb) is directly influenced, and since this influence is
negative it will decrease. By the -', statements in the CONTAINED-LIQUID description,
LEVEL(wb) and PRESSURE(wb) will be indirectly influenced and thus will also decrease.
Similarly, AMOUNT-OF (wa), LEVEL (wa), and PRESSURE(wa) will increase.

From the ways the quantities are changing we can determine how the process and view
structures themselves might change, since they depend in part on the inequalities stated as
quantity conditions. This computation is called limit analysis. In the example, two things might
happen-the pressures in wb and wa might equalize, or AMOUNT-OF(wb) could become zero, thus
ending wb's existence (the geometry of this example rules out the latter).

The basic deductions of QP theory can be combined to perform more complex reasoning
tasks. Two exanipies of more complex deductions are qualitative simulation (Forbus, 1984) and
measurement iil, ,,,reLation (Forbus, 1983; 1986). Qualitative simulation consists of performing
limit analysis rep, :edly. It is useful for making predictions: for instance, that boiling water in
a sealed container could cause an explosion. Measurement interpretation provides a link between

*physical theories and observations; for example, it might be hypothesized that the level of fluid in
a container is dropping because the fluid is flowing out somewhere. Measurements may be
interpreted by searching through the space of process and view structures, looking for situations
where the results of influence resolution match the observations and which can be woven together
to form a temporally consistent pattern of behavior.

3. Comparisons and structure-mapping

,o far we have considered how portions of a person's knowledge about the physical world
night be represented. Let us now turn to the question of how such domain models might be

* learned. e conjetcture that a major process in experiential learning is comparing the current
situation with stored descriptions.. Consider for example a person who has just moved to a cold
climate and is learning to operate a furnace. Suppose that at first he wrongly believes that the
house will get w,rrn faster if the thermostat is set to a temperature higher than the desired
temperature. (Kerupton (1985) shows that this view is quite common.) low can he reach the
correct conclusion that the rate of heating does not depend on the temperature setting" There
are at least three different ways, each based on a different kind of implicit comparison. First, he

* could compare his past furnace experiences with each other and notice a regularity in the rate of'
heatirig that is independent of the thermostat setting. Second, he may compare t he ',rhirace

• situation with known abstractions, and realize that it is best described as a position action
controller (as opposed to a proportional--action controller). Third, he may use an ;tial,,o.
comparing the fi urnace situation with a description from another domain. such as Iliid tl-iw . to
'llggest, Loverning principles. Each of these ways of learning relies on sone for i of coiimarison,
f.ither witi a stord re cord of literally similar events, with a stored abstraction. or with a slred
Iesc riIptri that can fiunction as an analogy.

'-Iriclure iniapliig theory is concerned with such comparisons (see (;etitier 1) t). I982.
1 ,: (;,,itner ,- (;,rittier. 1983). The theory describes the rules that are used to ) itifort ;i

,l.rripiiv,. ,I rliotire trort (oe uloiaii (the bose domain) ito atother (the, lirqjcl iloii;iII). [he
c,,,lr;,l Ii IuItiol i, that, a ll - ,ulggevsts that, a )rvdi'(;i ' structure from o e ldoitin ill caii be
.t!)tpi, I miiioihi-r ,l,,maii i with ;rbitrarilY liffer w, ib Jets a nid surface al))eara iiu'I. /.ih rai

IrrtMlriIb, irial,)qy, mcrc ,ippirarfncc rl pii ys and abstracttoti rIappings (applicatrions ,fl g en ral

8rarne work Forbus &, Gentner



laws) are viewed as different kinds of mappings between descriptions. The types of comparisons
are defined syntactically, in terms of the form of the knowledge representation, not in terms of
its content. Each type of comparison will be considered in turn.

1. An analogy is a comparison in which ielational predicates, but few or no object
attributes, are mapped from base to target. The particular relations mapped are determined by
systematicity, as defined by the existence of higher-order constraining relations which can
themselves be mapped. 4 Thus, a relational chain - such as a causal chain - in the base that
matches a relational chain in the target constitutes good support for its members. Winston
(1983) gives an insightful demonstration of the need for such importance-dominated matching.
The correspondences between objects of the base and objects of the tnrget are determined by the
roles of the objects in the relational structure, not by any intrinsic similarity between the objects
themselves.

A2. literal similarity statement is a comparison in which a large number of predicates,
both attributes and relations, can be mapped from base to target. Here, the model is based on
one proposed by Tversky (1977), which states that the similarity between A and B increases with
the size of the intersection of their feature sets and decreases with the size of the intersection of

the two complement sets.5 There are many more shared predicates than nonshared predicates.

3. An abstraction mapping is a comparison in which the base domain is an abstract
relational structure. Predicates from the abstract base domain are mapped into the target
domain. As in analogy, the mapped predicates are a relational structure. Abstraction differs
from analogy in t he nature of the base domain. There are almost no object attributes in the base,
so there are few, if any, one-place predicates to be left behind. Applying a rule to a situation is

ri exarraple of ahstraction mapping. Sometimes the relational structure so mapped will also be
referred to as an abstraction.

I. .,\ mere-appearance match is a comparison in which the object attributes match, but the
relational structure does not. In a sense it is the opposite of analogy. Such matches are easily
made; bit they guarantee nothing beyond similarity in appearance.

"A weries of related examples, starting with the analogy between heat flow and water flow,
I illustrate these distinctions. Figures -ia and 4b show a water-flow situation and the

"orr,.sponding heat -flow situation (adapted from Buckley, 1979, pp. 15-25). Figure 5 shows a
- possiblF representation a person might have of the water situation. Notice that the description

,,rita;ins both object attribute predicates, such as CYLINDRICAL (beaker), and relational

pr,,dicates, such as

Oh, ) ' Lrt, r i!, arn prehc::.'id which take onv object ;as an argursuent, such as RED(x) We defino 'he ordfr
-' ,, Th t ',iIw (Iist anls )lT bp'c. hav ord r zero The order of a proposition is ono pis the ii:n x-

'on~ ,U '1 .... ~i,, A I, Irli'ots Thx ".'XSZ , would be [irst, o rer if x and v are doniaifl :l:i iti

-. . " " ,_,.'." would tie s nd--o r'er Lvxi.ipl.s of hiiher-orler reations are .' - iii I .

' vi r , if, ' im -, i -r 'r v 'ii'' rii.this;' v tf':ts ,f 4 !hv two) ,.oim lrri ert(, i:e s are not. -iua . for
- i, ri ' v ir, i ii -\ ', I iV i T' IT'; Itl \; TLOa rT, if Bi nii, ihar,,d hv A - oints rmor, 'h an h, \
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Figuire I Tlwo Physical Situations Involving Flow
We will tiIh lese physical situations to illustrate the kinds of comparisoas sanctioned by
striv t 'ire-inapping theory, and later to illustrate how QP-style domain descriptions can be used
in analogies. Part (a) is a water-flow situation; part (b) is the corresponding heat-Hlow situation.
(a)

(b)

ICE
CUBE

WARM COFFEE

rGREATER-THAN [PRESSURE (-#aer, beaker) , PRESSURE (-ater, vrial)]
Lvl, is,- cmlisidvr Owe cinipariusuI lyIWM its exeip1 lified here:

Fr ame work 10 Forbus & Gentner
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1. The analogy Heat is like water conveys that certain aspects of the water description can
be mapped onto the heat domain. In particular, (1) object attributes should be dropped; (2) some
relational predicates should be carried over; and (3) systrematicity determines which relations
should be mapped. 'Thus,
CYLINDRICAL (beaker)
is dropped, along with other object attributes; that is, the target objects do not have to resemble
their corresponding base objects. Some relations are carried across, such as,
GREATER-THAN [PRESSURE (water, beaker), PRESSURE(water, vial)].

4.

,j,
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Yet not all relations are carried across. By the systematicity principle, this GREATER-
THAN [PRESSURE(water, beaker), PRESSURE(water, vial)] relation is preserved because it

is part of the mappable chain governed by the higher-order relation IMPLIES. In contrast, the
relation

GREATER-THAN [CROSS-SECTIONAL-AREA (beaker), CROSS-SECTIONAL-AREA (vial)] }
is not carried across, since it is not part of any mappable system of constraining relations in this
representation of the base domain.

Figure 6 shows the representation in the target domain of heat-flow that results from the
analogical mapping. Given the object correspondences heat/water, beaker/coffee, vial/ice cube,

pipe/bar, and PRESSURE/TEMPERATURE, 6 systematicity operates to enforce a tacit preference for
coherence and predictive power. The systematic relational structure in the water domain
IMPLIES (GREATER-THAN [PRESSURE (water, beaker),

PRESSURE (water, vial) ],
FLOW(water, pipe, beaker, vial))

is mapped into
IMPLIES [GREATER-THAN [TEMPERATURE (heat, coffee),

TEMPERATURE (heat, ice cube)],
FLOW(heat, bar, ',' ice cube)].

Note that the systematicity piuit"lile requires a mappable relational chain. If a particular chain
of higher-order relations in of the base chain is nut valid in the target, then another chain is
selected. For example, suppose that we keep the same base domain - the system of containers
shown in Figure 5 - but change the target domain. Suppose the two target objects are identical
in temperature, but differ in their specific heats: say, a metal ball-bearing and a marble of
equal mass. Now, the natural :ii igy concerns capacity differences in the base, rather tha
pres.ure differences. '[his is because the deepest relational chain that can be mapped to the
target now concerns the situation in which pressures are equal in the base domain (analogously to
temperatures being equal in the target domain):
IMPLIES [GREATER-THAN [CROSS-SECTIONAL-AREA (beaker),

CROSS-SECTIONAL -AREA (vial)],

GREATER-THAN [AMOUNT-OF-WATER (beaker),
AMOUNT-OF-WATER (vial)]]

This carries over into the target as
IMPLIES [GREATER-THAN (HEAT-CAPACITY (marble),

HEAT-CAPACITY (ball-bearing)],
GREATER-THAN [AMOUNT-OF-HEAT (marble),

AMOUNT-OF-HEAT (ball-bearing)]].
h'lat is, given the same height (pressure) the container with a larger area will hold more water. N

.\nalogously, at the saine temnerature the object with greater heat capacity will hold more heat.
'lhus the interpretation o" an analogy depends on the best relational match between base and
tatrgt,.i

tI his in;.iogy, th,! first ,rdcer pr,'flicate of 113.IR iD the water Jonlain Hilist be replaced by
rl ,, h;al. , i ;iia Although systeins oI re .atioins c(an often be imported in to the largpt without chan v,. sub I lofe s
d F I M(c',IM, vL vw ll as 'ibjvs and their attributes, are soinetirnes made in order to pemiit rni;wpiri4 a I:tr,''r ;Vs-
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Figure 5 - A representation of the water situation

This network represents a portion of what a person might know about the water situation illus-

trated in the figure 4. In this and other figures, predicates are written in upper case and circled.

Objet, are written in lower case and uncircied. A simplified representation is uscd Lo illu: trate

the ru;-' of analogy. A more detailed model will be shown later.

condition implication

tGREATER THNGREATER THAN FO
(a, a.82) (a, I FLO

DIAMETER DIAMETER PR ESSURE PRESSURE

obet object o 1goal object path sorce

o b i l 1

obj 2 obj 2 water pipe

CYLINDRICAL I
beaker water va

CLEAR
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Figure 6 - A representation of the heat situation that results from the heat/water analogy
This network represents the knowledge a person would map across into the heat domain from the
water situation illustrated in the previous figure. As in that figure, a simplified representation is
its.'t hwr. A more detailed treatment of this analogy is presented later.

IMPLIES

condition implication

GREATER THAN F O
(a,, a2  FO

a1  a2

TEMPERATURE 
TEMPERATURE

go Ial object path souirce

abject objectj

j jheat bar
coffee ice cube

2. Trhe literal similarity comparison Kool-Aid is like water conveys that most. of (he water
description can be applIied( to Kool -Aid. In literal simnilarity, both object, attribuiites, so1c h as

NET(waer) and re~lational predicates, such as the systematic chain discussed above. are
mapped over.

'I.ll(, abstraction /tent Iis (1 through -variable rnigli, available to a student, who knJows
,oliie 'i(ttIiiiiaiis. This, al)5i,raclI,i(ii coiivevs tine it(1hat heat cain be thought of' as

onle lngtug lWSa'i55a hilreic ii~tt~ltJ(i.e ., ac Ii somne sort. of' "across -v~ariable" -

inhi-s c-ase., temperature). This is mnuchn the samne rev'i.t structure as conveved by tle
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analogy above; the difference is that in the abstract base domain of through-variables and
across-variables there are no concrete properties of objects to be left behind in the mapping.

4. A mere-appearance match is a match with overlap chiefly in lower-order predicates.
such as object-attributes, but little or no relational match. Ali example is The tabletop sparkled
like water. Such a match typically yields little or no useful information about the target; here,
for example, little can be learned about the table by mapping across knowledge about water.
These matches, however, cannot be ignored in a theory of learning because a novice learner may
be unable to tell them from true literal similarity matches.

Table I summarizes Ilie kinds of predicate overlap that characterize literal similarity,
analogy, abstraction, and ii,re appearance matches, as well as one other kind of comparison,
anomaly. An anomaly is a match with little or no predicate overlap; it is included simply for
completeness.

It should be clear that the contrasts described here are continuua, not d11, -.'. 1
example, analogs and literal similarity lie on a continuum. Given that two d,,,, ,i, (, I-,.,, I ill
relational structure, then the comparison becomes more a literal similarity match to t lic exlii'n
that their object attributes also overlap, and more an analogy to the extent that few or no object
attributes overlap. A different sort of continuum exists between analogies and general laws. In
both cases, a relational structure is mapped from base to target. If the base representation
includes concrete objects whose individual attributes must be !eft behind in the mapping, the
comparison is an analogy. As the object nodes of the base domain become more ab6tract and
variable-like, the comparison is seen as a general law.

4. Structure-Mapping and Learning

The role of a comparison in learning depends on at least two things: (1) accessibilit - tlie
likelihood that the match will be noticed, and (2) usefulness - what can be deduced from the
match if it is accessed. Accessibility, in turn, depends at least on (a) thn' familiarity of the base
description and (b) the overall similarily between the base description and the current target.
The inimediate ,se'ilness of a match depends, of course, on whether the content of the imialch is

l';LlAC I Types of Comparisons

ATTRIBUTES RELATIONS EXAMPLE
,iteral Similarity Many Many Milk i, like --..

.\ rialogy F ew Many atis like w ,.r
\ bstratl, ior Few Many Heat is a through variable

\ iiurll)m t V Few Few c7offve is like the solar system

\lre .\ w.;tr) tnc', %lany Few The Klass tabletop KI,.%m..d like a pool of water
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appropriate to the task at hand. In addition, the usefulness of a match depends on the
tnspectability of the matching content - the degree to which it can be consciously analyzed and
articulated. The comparisons discussed above behave very differently with respect to
accessibility and inspectability.

For novice learners, literal similarity matches are the most accessible comparisons and
abstractions, because they are typically extremely unfamiliar, are the least accessible. In
contrast, abstraction matches are far more inspectable than literal similarity matches. On both
dimensions, analogies are intermediate. This is one reason that analogy is crucial in learning: it
is the novice's best route to an abstract, inspectable data structure. Some evidence for these
conjectures will now be reviewed.

Surface matches are highly accessible. This includes both literal similarity matches and
mere-appearance matches. It has been shown in education and training literature that the more
similar the new situation is to the original situation the more readily transfer of training occurs
(cf. Brown & Campione, 1985; Ross, 1984). The term "generalization gradient" expresses the
fact that a learned response generalizes more readily the more similar the new situation is to the
original situation. In contrast, subjects are often quite slow to use an available analogy. In
research done by Reed, Ernst & Banerji (1974) and later by Gick and Holyoak (1980, 1983),
subjects were asked to solve a rather difficult problem, such as how to cure an inoperable tumor
with radiation without killing the flesh along the path of the rays. Just prior to receiving the
problem some of the subjects read material that contained an analogous solution, such as a story
about a general who split his troops up so that they all converged simultaneously on a fortress he
wished to capture. There are three interesting results here. First, a good analogy can be very
powerful, if it is noticed. Without the analogy, only about 10% of the subjects could solve the
problem. Once the experimental subjects were told to use the prior story as an analogy, 80 to 90
percent of them solved the problem correctly. Second, a potentially powerful analogy can easily
go tnnoticed. Before the analogy was pointed out, only about a third of the subjects
spontaneously noticed and used it. It cannot be taken for granted that a potential analog will be i.
spontaneously noticed and used. Third, literal similarity is far more accessible than true
analogy. In one of their studies, Gick and Holyoak (1983) happened to set up a literal similaritv
match between the story and problem. Subjects had to solve a problem involving tying two
ropes together, and the story they were given involved tying two ribbons together. In this case,
70 to 80 percent of the subjects were able to access the matching story spontaneously. In a
systematic series of studies, Ross (1984) varied the surface similarity between problems ubjects
were taught and later problems they had to solve and found thAt subjects were much more likely
to be reminded of problems with similar surface content.

There is developmental evidence that literal similarity and mere-appearance inatche'.
appear prior to analogies and abstraction matches in learning. Kemler (1983) has found that
young children group objects on the basis of overall similarity in situations where adults would
group more analytically, using a single dimension. Keil and Batterman (198-1) compared
children's meanings and adults' and found a "characteristic -to-defining shift." For exammple., in
defining "island" preschoolers use such surface features as "having palm trees and beaches" or "a
warm place." Adults rely )n defining features such as "surrounded by water." Another example 
,rcur in labeling ,arly word learning. In spontaneous labeling, one -ear old children frequu., ly
.,pply words to objects that closely resemble the original referent o1 the word: for exartiple dowjgti

will be alpli,',l I. anolher ,loI.g or tIo a cat,, anrd car to cars, trucks or other vehicle, ( 'lark. 1973).
lr~ilv tiiilogolii, lstgs are eltni heard ilimi I he ago of two or hirve years, whien for exaiplo.,

I br,, v-oar oIl child night. romark about, his dirty, bedraggled blanket.' "It's out of gas' 1.(t il er
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X- Stuart. 1984, Winner 1979).

Children are said Loi move froin rich, concrete representations to more abstract, rule based

systelis (llruner. Olver & (;reeufield 1966; Gibson, 1969). Even three-year-olds can sort d)jec.ts

into perceptually similar categories; for example, they can group a cat and a dog and exclude a
hen. However, not until they are five or six years can they succeed with a nore abstract

category, such as "living thing" which requires grouping perceptually dissimilar things. In the

same vein, research oln the novice-expert shift in adult learning has demonstrated that whereas

novice science students typically match situations on the basis of surface features, experts use

-deeper and more abstract criteria (Larkin, 1983). For example, Chi, Feltovich, and Glaser ( 19811
have shown that when novice physics students are asked to classify problems into similar groups
they put together problems with similar surface features, such as "inclined planes" or "pulleys."
Experts, on the other hand, use categories like "force problems" and "energy problems."

One final indication of the ease with which literal similarity matches are made ilnvolve, al

indirect, but very important, line of argument. In the realm of object concepts, there is somne

oidence that peo l' autoniatically perform literal similarity conparisons anmolig perceptu ill"
imiilar experience,s. Such comparisons are thought to result in composite prototypes se [),wr

A- Mitchell, 1967; Posch, 1973, 1975, 1978; Smith & Medin, 1981). 7 In the Posner &" litchell

itidy,. people classified dlot, patterns into categories. After they had sorted the patterns, t he%
were asked to remember which patterns they had seen. Although the task simply called for
;Lc eSliiig verbAiiii ieimiory, subjects showed systematic inisrecognitions: they falsely
remembered having seen prototypical patterns that were never presented. Thus, without being
told to do so, people formed composite mental representations, apparently based on implicitr
co nmparisons among the patterns that they saw. Even theories which rely exclusively on stored

,xvinplar information (such as that of Medin and Schaffer, 1978) share the assumption that,

liIeral similarity matches are made easily - indeed, automatically. The difference is that thcy

;tssurie that these implicit comparisons are made at the time of use of the stored exemplars.
r;tther than assuming that the exemplars are encoded into a composite prototype. The virtu;ill\
;,itornatic nature of basic category learning is further evidence that the literal similarity matches

Onii Which they are based are highly accessible - indeed, evidence that making such comparisows is

a passive, essentially autotnatic process (see also Reber 1967a, 1967b).

lowever, prototypes also illustrate the limited usefulness of literal similarity niatclh,,.

\lthough these implicit composites are often sufficient for recognizing and catevorizit ,
s ituations, they are of limited use in deriving causal principles. This is because (I) a match h1,)s,l
largely on perceptual commonalities will often fail to contain the correct principles, and (2) ev,,n

when some of the correct. relations are present, literal similarity matches are too rich to b,

inpectable. There is some evidence, albeit indirect., for this notion of rich, noninspct I,

-- pr,,sentations. Nic kerson and Adams (1979) studied people's memory of the colmon t),,r-nnt.
I),,spite the overwhelmning amount of experience that the subjects have had with pennies. ;trn1

'lspite their evident, ability to recognize and categorize pennies, they were remarkably p or at
% r,'aLdlirig or recognizing, gtiven close near - misses, the details of how pennies look. 'hi'

,l-rimo it rate(s th;it , po-. "iirtg a descripltion sullicient to pick out a class of objects in ,,rliilar, Ife'
rI'4 r ti1JLr;tI ttc th il the ,le'o-riI)I or) c i h' b ,rti<'ulat d,or that it, is very precise'.

- , mIie" ol f-r ,t, chilrl're -.hI, (hat overall sititilarit,. udtugment can byi dilliciutt i,,

', (IIItri l III I ,l , , +' i, ,hildtt-c i ,1)1)4,+Lr to a ,, rthe7ir si ilarity JMiI'

! ~ ~ ~ ~ ~ ~ ~ 1 Vo r b u s &,, e , n t ti r r i r~
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some kind of overall similarity (Kemler, 1983). Indeed Shepp (1978) has found that three- and
four-year-olds are typically unable to judge one dimension independently of another. For
example, they cannot ignore height when judging width. Unlike adults, they are unable to treat
length and width as separable.

Abstraction matches are at the opposite pole from literal similarity. An abstraction match
is likely to be extremely useful, in both respects: it should contain the correct principle, and the
match should be inspectable. But abstractions are often not particularly accessible, especially for
novices. Novice learners may not know the appropriate abstraction, or it may be so unfamiliar
that they will not retrieve it when appropriate. Thus abstraction mappings, while ultimately
important, are unlikely to play a major role in the early stages of learning.

Analogies lie between the highly accessible literal similarity matches and the highly useful
abstraction matches. Potential analogies are less accessible in experiential learning than literal
similarity matches (Gentner & Landers, 1985; Ross, 1984). This is because analogy requires
accessing the learner's data base via relational matches; object matches are of little or no use.
lowever. once found, an analogy should be more useful than a literal similarity match in

deriving the key principles, since the shared data structure is sparse enough to permit analysis.
(Of course, educators often explicitly introduce analogies in teaching beginners for exactly this
reason. In this case, the problem of noticing the analogical match is bypassed. Moreover. by the
systematicity principle, the set of overlapping predicates is likely to include higher-order
relations. such as causality and logical implication. Thus analogy can function to reveal principles
in a domain that previously lacked the appropriate abstractions (Burstein, in press; Carbonell,
1981, in press; Clements, 1982; Darden, in press; Gentner 1980, 1982; Gentner & Gentner, 1983;
Gick & lolyoak, 1983; l1offman, 1980; Van Lehn & Brown, 1980)

The .,Inalogzal Shift Hypothesis (Gentner, 1983) concerns the role of these comparisons in
* experiential learning. In the earliest stages most ol lie spontaneous matches are either mere-

appearance matches (and thus erroneous) or are literal similarity matches, based on massive
fe.ature overlap. This is to say that initial learning is conservative, based on rich, specific -case
kinds of matches. :\s the domain becomes familiar, more distant comparisons begin to occur;
matches in which fewer object attributes are shared. These sparse comparisons lead to the kinds
of binary connections that form the bulk of the causal corpus - for example, "lighter things go
farther when thrown." Analogy also serves as a means of introducing structured mental models.
Successful analogies may yield abstractions which can be stored and accessed (Gick & Ilolyoak.
1983). Winston's system (see Winston 1980; Winston 1982), which derives if-then rulles by
abstracting the predicates common to two analogs, shows how this can be done. Thus, aiialogy
plays art important role in the middle and later stages of learning. In the final stages,. hea

* learning is well advanced, abstraction mappings play a major role.

5. Stages of Understanding

We suspect that four kinds of mental models are generated in the process of understanding

F lh V'ical donmains. The sequence of models proposed here is developmental, in t hat t hi',eories f
,.;o h ,itre gr generated botih by the phenomena leing understood and by the theoric.' of I he
,t;,, before it. It is it() proposced that, every person goes through each stage for ,vwr- d ,iaii.

tor t lt l pr on is ;tl Ihe -amn stage il every domain at the same t, r1e.
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.5.1. Stage 1: Protohistories

Suppose some new physical phenomenon is being observed. If there is no prior model, all
one can do is observe and remember what is happening. We conjecture that the simplest
physical models of a domain are protohistories - prototype histories which serve as summaries of

experience. s Like object prototypes, protohistories are the "most typical instances" of
phenoniena. The terms in these descriptions are observables, and their deductive import can be
roughly expressed as "If I see X, then Y will happen (has happened)."

Consider a balance beam or seesaw. If a weight is placed on each side of the fulcrum, the
sceesaw will either tilt counterclockwise, tilt clockwise, or not tilt at all. Most people have had
enough experiences with seesaws to have formed protohistories concerning their behavior. By the
conjecture described here, a protohistory is automatically available whenever they encounter a
seesaw. From it, they can often predict which way the particular seesaw will move. For
oxample, thiev may have a protohistory that describes what happens if a small person gets on the
seesaw opposite a large person.

I lowever, the predictive power of protohistories is quite limited. There is no guarantee that
ite 'eatures iiatched actually correspond to relevant factors. For example, an observer will be

fooled when a large person sits close to the fulcrum if the observer's see-saw protohistories have
been lornied front watching people sitting at equal distances. Massive overlap in features is
needed for reliable use, which means protohistories will yield conclusions in fewer situations than
an abstract theory would. Consider, for example, two weights hung from opposite ends of a stick
that is suspended by a string. The principle involved is the same, yet the situations look
dissimilar enough that the protohistories for seesaws would not match. Furthermore, there is no
,',rtain way to decide between conflicting results if more than one protohistory matches a

i:: ,, i at ton.

* 5.1 .I. Learning Protohistories

h'h process of constructing protohistories involves dividing up experience into classes
: ;,ccorditg to literal similarity and abstracting a summary for each class. There has been little

direct re-search on this process. However, investigations into the process of constructing object
prtoIypes provides some hints. First, people seem to be able implicitly (i.e., unconsciously) to
,ottipite a kind of component match. Second, this intersection is not merely a simple feature
irse ,sct ion; rather, it appears that configurations among features are important inl the
prtolype. Third, once this prototype is computed, it, has powerful effects on subseqtet,
.ro, ci of ,xperience. As mentioned previously, once people abstract a prototype from ;, el
,1 palterrs they may be more confident of having seen the prototype - which was rtver
-,r,.sit *d than they are of having seen the patterns actually presented (Posner 1967). Firitallv.
p,.,,pl yiiv not be aware of forming prototypes, except as a general sense of increased t'aitiliarit
, I It ' (;tegorv .

'.r ilit ariz,, it prot ohistories behave like object prototypes, then they sh,, ld be fmlid tt )
., i , ,,tuput,,d itttplicitly; (2) act as composite concepts; (3) be sensitive to pvrcEtf tial

.tt~ztrt ,,I> ;111t4)W, f-veills: ain(1 (1) once compted if how the' recogiti i trcri in d letw
Ife-""''" iu pr v 2,es t" pro r ,types.

I. I ,.L n ri",f ro inon iloqrcui prirnufzv,,.; (hv , d ,Svs.a I .1 1 Lti 1 7t 1, r i -I -1'1. i,
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The machine learning research that most closely captures this type of learning is concerned
with conceptual clustering (see Michalski & Stepp 1983, 1983b). So far, such research has focused

on classifying objects that can characterized mainly by differing attributes. Extending such

*ii  techniques to describe situations that depend critically on relational descriptions could provide a

*method for computing protohistories.

5.2. Stage 2: The Causal Corpus

Protohistories summarize the phenomena, but they do not constitute a theory of it.

Building a detailed theory directly can be quite difficult. The space of possible models connecting

all observable (and possible) parameters in a typical situation can be quite large. We conjecture

that weaker theories, theories that characterize which parts of the situation are relevant to

desired conclusions are formed first. In particular, we conjecture that a collection of CAUSE

statements, the causal corpus, is computed from prototype objects and protohistories.

CAUSE is viewed here as an approximation concept, a weak form of ontological
coininitnment. In particular, saying

CAUSE (A, B)
expresses belief iII the existence of some mechanism, specified by sonic theory T, such that

AAT -B

Many, perhaps most, of the causal corpus relations are binary relations among variables - for
example, "Bigger objects weigh more." (Piaget, 1951; Smith, Wiser & Carey, in press), or

"Smaller objects have higher pitch when struck." (diSessa, 1983).

The notion of mechanism in the causal corpus is quite primitive: the causal beliefs need be
neither explicit nor internally consistent. Later in the learning sequence, as we will see, processes
will assume the role of mechanisms for physical domains. Nevertheless, we conjecture that, even
at this early stage, the learner makes a distinction between mechanistic connections and, say,

definitional connections. 10 Further, we suspect that many of the initial causal connections are
in orrect. Novices often include diagnostic and correlational relations in their causal corpus. For

example. when asked if an increase in the evaporation rate will cause a change in the temperature
of the water, a novice may reply "Yes, because it would have to be hotter to evaporate more."
llut however vague or confused, a causal attribution is a statement of belief in some mechanistic
connection.

The distillation of experience from protohistories into the causal corpus serves three
purposes. First, it, serves as a means of data reduction. Second, it provides a collection of
Ieuristirs that caii be used directly to draw inferences. Even if the learner doesn't, have firm
" rounds to consider the CAUSE statements complete or correct, CAUSE statements niav often
sOlice for the desired class of inferences. Third, the collection of CAUSE relations can be used to
'7, jide the search for a deeper theory of the domain. The CAUSE statements suggest connections
arnng various aspects of the domain which a deeper theory must either explain or explain away.

;lelirning to the seesaw example, suppose the causal corpus is now applied to a balance

brai uilt, out, ,f blocks. Suppose the two blocks on it are called a and b. The causal corpus

rilight bv as follows:

CAUSE (BIGGER(a, b), TILT-TOWARDS(a))

, r x,.r< t ' k 1w tL'iltnt, hi,,w is not, I! ,itirliaL. iso r -A!, by our :cco rij t, since the r'' ,,,iir-i .XjiIlS

r'. I' 1" - , '' if . I l " , .l ill l

':AUJSE(-THANCLE(f), HAS-THREE-S3DES(f))
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CAUSE (FARTHER (a, b), TILT-TOWARDS(a))
These statements can be interpreted as rules in several ways: If we see that block a is bigger
than block b, one can predict lilt, and if one sees tilt, one may hypothesize that one block is
farther out than another. 'I ,tatemerits are more broadly applicable than protohistories
since they refer to fewer propcri .. Unlike protohistories, the causal corpus is sparse enough to
be debugged to some degree.

However, the approximate nature of the CAUSE relation and the binary characteristic of the
laws limit the ability to discriminate between conflicting predictions. With the causal corpus
above, for instance, if block a is bigger and block b is farther out, we will have two predictions.
Inhelder & Piaget (1958) and Siegler (1976, 1981) have documented such a stage in the
development of understanding about the balance beam (with analogous developmental sequences

*,€ in other domains). Typically, children's first causal ,pproach to the problem is to focus oil
weight. But there is an interesting second stage when l,,'v come to realize that both weight, and
distance are important but do not yet know the interrelations. They can manage either propertV
by itself if the other is constant; but if both properties vary, they tend to focus on one or ,he
other Inconsistently. It. is as though they had two separate binary laws. Eventually. they becoiie
able to coordinate weight and distance in the balance beam problem. At this stage, they have
gone beyondI the causal corpus. As will be discussed, in order to make more precise inferences Ihe
learner must eventually uncover the mechanisms whose behavior is described by causal corpus.

5.2.1. Learning the Causal Corpus

We suspect that there are several techniques for computing and debugging a causal corpus.
The simplest technique is to hypothesize causality from co-occurrence, using rules like:
if you always see A before B, then hypothesize CAUSE(A, B)
and

- If A is true whenever B is true, then hypothesize CAUSE(A, B)
''hese rules make certain assumptions on the form of memory, namely that some number of
circuistances can be remembered, and that they can be remembered in sufficient detail that A
arid B are either explicitly stored or computable from what is stored. Protohistories should .serve
as a means of initial data reduction from which a causal corpus can be constructed.

It is not clear exactly how the learner abstracts out particular variables from the rich
representations of the protohistory stage. One interesting mechanism is suggested by .Medin and
Wattenmaker's (in press) extension of the context theory (Medin & Schaffer, 1978). They suggest
;in abstraction niechanism whereby a similarity match which leads to correct predictions results
in common information being augmented; whereas if a similarity match gives wrong predict ions.
the ,lifferertces are awgniented. However this is done, the simplification achieved wit h the car.-.a
corpus is considerable. Another study by Siegler (1978) shows the power of focusing on
)oarticillar variables. Three-year old children were shown a balance beam, asked to predict

which way it. would tilt, and then shown what actually occurred. Even after large nunmbers ,,f
trials. their performance failed to improve. But, when they were taught to think of lie doni:in iI
trr M ,if a few rlevant, variables weight, and length - their performance did i i pr \v e Wit h

'Y'leiic('. 'Ilir' mioral to bedrw is trhat the pace of learning is greatl.1 acc'l('r;iteid i
rl;tl winler of v tir;bles (atit be alstract(led frmn all the possibly relevant factors.

\ ~g-vie',st,'d ,'atrli'r. mianv oI' ti early causal relations will be incorrect. We, usput I liii

ir,. ,'xi-..; v class o' rule" 'A ih h ire used if) i(cb ,,,I a causal corpus in the ',w( d,1t f,%%
iil1,,ri|ation (c,'. N )7Ii). 1- 1ch IIri' 'orri'sponils to a hvpol he'.is about .i li)I, il Th

I if I ri (do I lie f• .t rpus. i ". . i i pricondition, We belie ' hat lie ,k d
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judging a causal corpus for consistency -s an example of an important, but relatively neglected,
kind of learning, coherence-driven learning. Coherence- dri ven learning is learning that Is driven
not by a mismatch between the model and the world but by inconsistencies within the model
itself. WVilliamis, Hollan, &- Stevens (1983) found evidence of such learning. They studied a

ubetwho was learning about a heat exchanger, and noted that one source of insight, was, a
boggle" experience, in which the person noticed that a curreint inference contradicted a prior

belief. We are still examining the criteria for judging the consistency of a causal corpus.'" Such
* criteria will play a major role in controlling the debugging rules and in the mixture of generation

and debugging that occurs.

Analogy provides another imnportant technique for extending a causal corpus (see Gentner
'1 per. 1983; Stevens, 1979). l'he CAUSE relations from one domain can be mapped into

IpI' her, since CAUSE qualifies as a higher-order constraining relation (see also WVinston. 1982).

i~.3. Stage 3: Naive Physics

Tlhe niaiv physics models replace CAUSE statements with theories about the s;pecilic

Il, hiisris o)f chanige. Thie ontology is extended by adding processes to explain observed
4 h.irus. Thel( ontology ;it - includes properties and objects that are not directly observable ( for
example, heat and 1 w l 'low) and the new relationships (such as fluid path and heat p~ath)
required to reason ' em.

An\! important adv.iitage of these models is the ability to reason by exclusion. In the naive
physics stagp, unlike the previous stages, predictions that fail still yield information about the
-.it iation. For instance, if fluid is flowing into a container and the level is not rising, thieii it is
reasonable to hypothesize that Hlid is flowing out of it through some unknown path.

R~eturning to our balance beam, a process SWING might be used to describe rotation arou nd

a contact, polint (-,ee ligumre 7). The p~reconditions describe the geometric configurationi of thle

,Ystern, and the quantit v condlition say's that SWING will occur whenever there is a lion zero(
anrgu lar velocity. SWING directly influences thie angular position of the beam. Thus at preolict ion
roncerninrg tilt becomnes a p~rediction about, which instance, if any, of the SWVING proce ss wvill be

active.1

\Vhiat nilhienices ANGUJLAR-VELOCITY9 The existenice of an ANGULAR- ACCELERAT ION proce-s L. ev
I: igi rc S) that direct l intluenices ANGULAR- VELOCI'TY whenever there is a net torque vill bev

.Lssirred. It 1., fiurt her ctasiiid thIal

N IKTTOI{OLI x ,tp) Il-t)FIT0IQIl-ON~x. cp))

*~~~~l ll, ir %orl., Otif lift loqu oni~i ai*n )iect aroundi~ a contact point ite Slim tf ilie to)rllt> on

hat ob6ject rria>i fdbot t at torlicit point. The ii ss of owh be.,11i will be i-,ioredl. ;iiid ill

1. ?.' I 1i !w tI ri, rwiv ti chi,:a 'iw ve r nvsirer Il 71 1 i rir.i % 4

lIt~
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-. I'igiire 7 - A SWING process
A SWING process describes rotation of an object around another object. For the balance beamn
there will be two instances of this process, differing only in their bindings for the direction dir.
In each instance b will be bound to the beam, c will be bound to the fulcrum, and cp will be
bound to the contact point between them.

* It Is assumed that each physical object (PHYSOB) has quantities to represent its angular po-
sition and velocity with respect to each point of contact with other objects. Directions will be
noted by the symbols CW, CCW, and NULL, corresponding to clockwise rotation, counterclockwise
cotation, and no rotation.

Process SWING

Individuals:
b a PHYSOB
c a PHYSOB
cp a CONTACT-POINT
dir a DIRECTION

Preconditions:
MOBILE(b)

not MOBILE(c)
. CONNECTED(b, c, cp)

ROTATION-FREE(b, c, cp)
DIRECTION-OF (dir, ANGULAR- VELOC ITY (b, cp))

C;uantity Conditions:

Am [ANGULAR -VELOC ITY (b, cp)] > ZERO

S IInfluences:

n i(ANGULAR-POSITION(b, cp) A [ANGULAR-VELOCITY (b, cp)r a p

sitin d eoty whst o2 Forb.-ns iertler

Procss WIN
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Figure 8 - ANGULAR-ACCELERATION process

Process ANGULAR-ACCELERATION

Individuals:

b a PHYSOB
c a PHYSOB

cp a CONTACT-POINT

dir a DIRECTION

Preconditions:

MOBILE(b)

not MOBILE (c)

CONNECTED(b, c, cp)

ROTATION-FREE(b, c, cp)

DIRECTION-OF (dir, NET-TORQUE(b, cp))

Quantity Conditions:

Am [NET-TORQUE(b, cp) ] >ZERO

Relations:

Let acc be a quantity

acc .Q+ NET-TORQUE(b, cp)

acc .Q- MASS (b)

Influences:
I+(ANGULAR-VELOCITY(b, cp), Afacc)

of gravity on the blocks on each side of the fulcrum will be assumed to be the only source of

torques. Figure 9 describes this induced torque by means of an individual view. Notice that the

factors illuminated in the causal corpus of BIGGER and FARTHER have become the quantities

MASS and DISTANCE, and their role in the producing swinging has been explicated. In particular,
these properties determine how much torque each block places on the beam. The sum o[" the

torques determires the net torque, which can cause the beam to accelerate and thus swing.

This model coomes one step closer to a model that can always determine which way

something will tilt. There will still be cases in which exactly what will happen cannot determined

(e.g.. if the nasS oln one side is increased and it is brought closer to the pivot), but this is a
precise hypothelsis about what all the relevant factors are.

5.3.1. Learning Naive Physics

The rnajor prolhbiii M learnhig a naive phiysics is constructing a vocabulary of po'0ces-ses
t., r,,siY,., ly il -srih., (!xp ,rievw,. Tlie learner must strip away the irrelevani predicates

NiOtt ;Lrr part ol' it, in pro'olist urhs and causal corpus and construct inure apl r)pr~iite
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Figure 9 - A description ol gravity-induced torque

Positive torques are assigned to clockwise (CW) and negative torques are assigned to
counter-clockwise (CCW).
Individual View GRAVITY-INDUCED-TORQUE

Individuals.
b a PHYSOB
c a PHYSOB
d a PHYSOB
cp a CONTACT-POINT

Preconditions:

CONNECTED (b, c, cp)
ON (d, b)

4 Relations:
Let f be a quantity
f E TORQUES-ON(b, cp)

f :,DISTANCE (C-M Cd) , cp)
f " +MASS (d)
ON(C-MWd) , SIDE-OF (CW, b, cp)) if fAs[f] =1
ON(C-.M(d) , SIDE-OF (CCW, b, cp)) if fAs [f =-i
ON (C-M (d) , S IDE-OF (NULL, b, cp) ) If fAs [f =0

dlescriptionis. In addition, the learner must sometimes hypothesize the existence of objects arnd
properties that are not directly observable. Research in machine learning, particularly I he wvork
on explaLahori-based learning (Mitchell, 1986; DeJong & Mooney, 1986), should be useful here.
Seve ral researchers are already beginning to directly address such problems in modelling scivnitic
dliscovery (Langley 1983, Falkenhainer, 1985, Rajamoney, Deiong, & Faltings, 1,985).

ruie causal corpus provides a search space for potential process vocabularies. FLicir
,rtatetnent. in thte causal corpus must be elaborated into a consequence of a process vocabulary. It
appear, that. (hurp Is only a small number of distinct ways to perform the elaboration, depending

1)JIhv pairt-ic rar formn of the arguments. For exam ple, the statement

The 'Jq- rease 1n AVOUNT-OF q causes the LEVEL of q to fall.

Inicjroi- hI Li itinf artivi- !irocv. (or individuial view) in the Iit ioni cont1?ains the i I4IHi

-. /; ', ,AYOUNT-CJF'q)

I"rarriework 25 Forbus & Gcntncr



!typothesizing a process vocabulary from a causal corpus should be much simpler than
working front protohistories or direct observation. Yet it still appears difficult. We conjecture
that there are several constraints that make the problem more tractable. First, people are
apparently conservative in the introduction of unobservable properties. For example, some
subjects have a model of a domain that appears to be organized around one parameter - a
"generalized strength" attribute. In reasoning about fluids, for instance, they appear to use
pressure. flow rate, and velocity as different names for the same thing. In electricity, they use
voltage, current, power, potential, and velocity of electrons interchangeably. The advantage of
this generation strategy is, of course, that simpler models will be explored first, with further
distinctions made only when necessary. Second, some physical laws are used as constraints on
what process vocabularies are possible. Conservation of energy, for example, demands that if a
process directly influences a quantity representing some form of energy, it must also directly
influence some other quantity representing some form of energy, but in the opposite direction.

Once again, analogy can provide a constructive mechanism. It can be used to import
candidate processes from previously understood domains - for example, as when one understands
electricity in terms of water flow (Gentner & Gentner, 1983) or evaporation in terms of an
implicit niodel of rocket ships escaping from earth (Collins & Gentner, in press) This is an
especially powerful mechanism because if the model for the previous domain is consistent with
physical laws, then it suggests that the model for the new domain may be so as well.

We can illustrate this with an analogy from liquid-flow to heat-flow. Recall the liquid flow
model presented in Section 2. Figure 10 illustrates a collection of assertions which describe the
consequences of a particular instance of LIQUID-FLOW. 1 4 Suppose a person hypothesizes that
there is a process of heat flow which is analogous to the process of liquid flow. By the structure-
mapping theory, this means that the person suspects that a similar relational structure holds
among the objects in the heat-flow situation (the coffee, the ice cube, the silver bar, and the
instance of heat flow) as as among the objects in the liquid-flow situation (the water in the
beaker, the water in the vial, the pipe, and the instance of liquid flow). Mapping the systematic
relational structure (see Figure 11), leads to several predictions that the person can check to see
whether the analogy is correct. For example, it can be determined whether or not the
temperature of the ice cube is rising and the temperature of the coffee falling. The structure-
mapping rules f or analogy have provided an initial model for the process of heat [low: in
particular. the preconditions, quantity conditions, relations, and influences are all carried across
from liquid flow. Note that to make the analogy really work, a new kind of object a HEAT-
PATH ,nust he postulated. Thus analogy can provide candidates for extending ontologies.11

5.4. .Stage 4: Expert Models

T'he mod(Is wgenerated so far have two important limitations. First, they still contain
Il ndlamien Lil aim bigilities, ambiguities which are inherent in the nature ol qualitative

" ' "F, ',rt,,i w,.r,, g',nerated by .in earl% v. ion of ;:ZM0, a computer program constructed to explore the

"' ltt,,t ltrdi i L.,;- )I f ()[' thie)ry ;" 2 4_ wa, i t to make predictions and interpret measurements, nol?. to be
r it I, l t,irtiiiiar swie 'ls'rIIiii were r! it generated witb learning or analogy in mtind

Of ii , , , ,xt.!-i,,, [r,. tio?, , P rIa,te 14111,V The auithors auspuct thal. new pc. es 4, (o -o t. IF,, puit o-
, ' '

'  
,ri;il iv' w ri , ieu ssarV t,) pI-erv- a much larger systematic tructiire
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Figure 10 - Relational structure for an instance of liquid flow
Depicted below are several important conclusions which follow from the definition of liquid flow
presented in Figure 2 and the assumption that an instance of liquid flow exists involving the
liquids in the two containers. Specifically, they describe the conditions for and consequences of
the process instance pi-O being active.

FLUID-FLOW

AND

POCESS PESUR

, C-S; (WATER. BEAKER) C-S (WATER. VIAL)

ACT VE 27 Fobu su

r~r~ri~wok 27Forbu & Gntne
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Figure 11 - Relational structure transferred to heat flow
Here the relational structure describing a situation involving liquid flow has been transrerred to a
situation involving heat flow. Notice the systematicity of the relational structure, as indicated

i5 by the nested chains of implications.

LoftOE O O Fb
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representations.' 5 Second. they lack domain-independent generalizations (except in the raw fortir
of' the representation - CAUSE statements, processes, and so on). The final stage of learning
consists of overcoming these limitations, of discovering ways to resolve ambiguities and to
construct powerful generalizations.

Clearly several kinds of knowledge are involved, and the potential complexity of the models
in this stage is open-ended (it includes the whole of mathematical physics, for example).
Examples of the kinds of knowledge involved include equations to describe relationships between
parameters, "rules of thumb" to specify useful default resolutions for ambiguities, and new
ontologies to allow reasoning about more complex systems. The importance of mathematical
models is fairly obvious. The rules of thumb are less obvious but equally important (see e.g.,
Lenat. 1982). In physical domains they include empirical knowledge about the circumstances
under which certain processes can be ignored (such as evaporation when water is poured from one
glass to another) and what their net effect is (such as Black's law for the temperature of
mixtures). Finally, different ontologies are sometimes necessary to deal with certain types of'
complex systems. In the process-oriented physics discussed here, describing flow requires linding
tlow paths. Finding flow paths in complex networks such as electrical circuits can quickly
become computationally intractable; switching to a device-centered physics (such as that
described in deKleer & Brown, 1983) can reduce the computational burden to manageable
proportions for such systems.

To complete the balance beam example, we know that the force of a block on the bean is
qualitatively proportional to the mass of the block and to the distance from the fulcrum. If we
also know that the torque is the product of distance and weight, then providing numerical values
for these quantities will allow an unambiguous prediction about tilt.

5.4.1. 1earning Expert Models
The transition to expert models involves several kinds of learning. Some aspects )f this

transition probably lie outside the scope of experiential learning; for example, people typicailly
learn mathematical models by being taught rather than by discovery. Some aspects 1f this
learning - such as developing new ontologies - involve improving the content. of the
representations. Other aspects of the transition from a naive physics to an expert phy.sicsr are
better described as translating the existing qualitative representations into quantitative
statements, using mathematics to express laws. By converting a physical theory into a
mathematical model, the learner gais fre ability to make precise predictions and to recognize
powerlul generalizations more easit, . \it important part of this relinement is to elabor:o. Q,
statements into constraint equatioi-. Langley (1979; Langley, Zytkow, Simon , t3rralsh;iw,
1983) and Falkenhainer (1985) describe techniques that should be useful for conycrlifinT
f,,alitatiye laws into matheniatical relations.

Dleveloping rules of' thumb means knowing not just what is possible, but what is pr1b)h.
lie Iarrier iImust discover which ouI ' nes raised by qualitative r,:,soning are likel% or ,i lik.lv

,114d which p(otential iteractions calt be ignored. The techniques u1, \eloped in iuachine l,;,rir1,-
,,r Luqnring heuristics lhould Iw directly applicable (c.f. Lenal. 1982: Nlitchell. I1T.5 In
uddil limi, the ;urtlhors spal'ot the possible behaviors raised by ialve phyisics are coni l)arediv t 1rtir

ku ori prt)lui:,tories. Ilypothsizeul 'itlcounii' that have no corresponding i)rofol or ;,rc
JwI'it!,'' miuiklv. ;rid co)4 4rrvsi)4 milwii. to a 1huit1iri familiar ;if)( accessible protilmtihr\ irc

P - " 
" 
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judged very likely (see Tversky , Kahneinan, 1973).

Further, it seems likely that at least some expert rules of thumb derive from learning new
and better protohistories. This intuition is based in part on research in automaticity (Schneider
, Fisk. 1983). It has been d,',,,,,trated that, given an orderly domain and sufficient practice,
adult subjects can learn a wn . ,sponse pattern well enough so that it becomes essentially
effortless (see also Anderson. l1-",2, Rumelhart & Norman, 1978). Moreover, there is some
transfer from this over-learned material to new similar material. These learned sequences have
many of the essential qualities of protohistories. First, they are triggered by recognition (in the
terms used here, by a literal similarity match between the present situation and a stored
situation). Second, computing aid carrying out the procedures that follow from the match is
automatic; virtually no atteiitional resources are required. Third, these computations are
implicit; subjects are typically poor at introspecting about what they are doing, and Nhen they
do introspect, it can interfere with the response (Brooks, 1978; Reber, 1967, 1976). It rrav be to,)
simplistic to view protohistories as a special case of automatic pattern-response corribinaliott.
Nevertheless, there is enough overlap in the phenonieia to allow some confidetnce that
protohistories can continue Lo be learned at all stages of expertise. Of course, tie cormltnt,. of
expert protohistories may be different from those of novices, since experts' protohistorits niai
reflect a more advanced ontology, as discussed below. lowever, the mechanism of a
perceptually-triggered automatic match should be the same.

We suspect that ontological shift is driven both by the desire to understand more complex
physical systems and by the emergence of domain-independent mathematical abstractions. As
an example of the first kind, consider the problem of reasoning about fluid flow in a complex
;yvstem. such as a steam plant. Uayes (1979b) hLs distinguished two separate ontologies for
liquids: a contained-liquid ontology, in which liquid is thought of as the fluid in a place and a
mollctiar collection ontology, in which water is thought of as little bits of fluid that move around
inside the system. The contaiied-liquid ontology is appropriate if the goal is to determine what
flows can occur. lowever, it will not help us determine how changes in th properties of the
w orking fluid in one part of the system (say, the rising temperature of the inlet water ini a boiler)
'all allect properties of the fluid in another part of the system (say, temperature of the steaii
,omilig out of the boiler's superheater). In this case, liquid must be viewed in terms of molecular
collections that move around inside the system. Conversely, establishing flows ,usin the
molecular collection view is very difficult. A learner with only one of these two ontolovies will
have a diflicult time with certain questions, and such difficulties may drive the search for a "ew
,iitology.

Mathematical abstractions provide another importanit (Iriving force in ontoh)i;dl I hit c.
Irt s;ystem dynamics, for example, physical systems involving fluid elements, neclhanical , I,. n i,. "
I hermnal olemenits, arid acoustical elements are viewed as variatioiis on a c(011111011. 11)'i r,!( I

nh,.r,. 'Tiis nieans that tihe analysis and synthesis tools developed for abstract I .li hcm i1 ;J
Models (:,an b used to solve problems in several donains. This is a powerful intP.at,'t14il .,
,.vilricd b the wave of initerest in atteimipting diverse applications evoked b'y ih ftilllt Li

,11 ror i;i n w mat hernat.ical fornalisms (e.g.. cal ast rophe thevor and fractal ge ,met rx ,

3. tirtiryary 7
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domnains. 'I'he- larniir i tqunt, I, built around three Ideas. First, development proceeds froin
rich to sparse, and fri,, concrvi t,, to abracl that is, iitial representations differ from later

p ripr en it aIoms iI I ,,t aIiting m,,rtI infiritat Ion, and ii particular, more conitext-specific
info,,rmation. S , l.otdll mr ,itliciit experience. people develop experiential models that are
centered around the notlon of pi sical process, as described by Qualitative Process theory.
Third.i inplicil processe, if comparing and mapping between stored knowledge and a current
situation, as descri bed i, tILructure mapping theorv, are central to experiential learning.

F oiiur stages off experiential learning have been laid out: protohistories, the causal corpus,

tuaive phsics and expert niodels.16 The first stage, that of protohistories, embodies the idea that
4,arl representatiii- are rich and context specific; this stage attempts to capture a combination
,0f ivideite front deelipmental patteris. similarity judgmet,ts. basic -level categories and object
p r,,it,,pe.. The ihird stagc is the process-tentered stage described by Qualititative Process
,hiirv. The foirth iage builds on tile third stage models, adding donain--independent
,",turi'rilat ioiis w.Ld iIn, cdses itatheinatical models. There is some evidence for the third ari

thie .r u h Ittes iii the research oii expert.i~e under the rubric of the novice expert. shift
S('li. ' etitoNih aLid (;tasr, 1981: Larkiri. 198:3).

The second stage, the causal corpus, is the mnost speculative. There is no direct evidence for
is existence, nor d(o we currently have a detailed theor of the kinds of causal statements that
can enter into the representations. ,Moreover, detailing ioi the causal corpus emerges from
protohistories will not be easy. But something like the causal corpus seems necessary: a
collection of simplistic, mostly binary directed regularities among dimensions and quantities that
begin to be differentiated out of the tangled representations of the protohistory stage. IhLe

learner can use these simple assertions as grist for further progress.

What happens to prior stages as new stages occur " First, stored representations have t(, be
distinguish from new learning. We conjecture that learners retaini inu'h of their ,toretd
knowledge even w ien they go beyond the stage at which it wa. furnred. lhi. a hvdrt i(

,irgi neer still uses the same protohistory he or she formed as a clhii to decid, hovi fati it, ,;rr% .,
glass of water without spilling it. And, as de kleer (1979 points out. exper, ;htL ,'i i- dt,

i ,t gi ners do not always resort to quantitative iodels (fourth stage : frequent, 1, lt LtiN% r i t,

want can be obtained by using a good qualitative uodel (third tage 1.

But what about new learning? Does new learning occur ,filn at the leading idiz,.. ,hr ,
ji'opli c,,ntinue to learn at. levels below the most advanced stage tle have attaintei' \" 11wI"
that e ,n experts continue to learn at all prior stages, % it t hi possibh. - except bit ,It I , I,,i- ,

o ,irt),l .- s described earlier, thiore is evide fnce th: xhiirts mitifl i i' t ,t ''\, T. A A

-,riiihi-iiri . 'jnilarlv, learners %h,, ire operating it li fiiirtl .lavv. that 4d v\ .r! lit..
.il , '-, t,. to liarnt and retine thiur tiav, ph hl, i"L .- is ti L s t he tL it t riuitw.u '1.

taw- krf- ri ,t -,hs I itiitc f r the proiiis t i mod, li ( Il t- thir -i 
t  ltiir \

"i , ir, iF,v h hi h it h r r t tirit tlllL li r l n iid.t trc .ii, i' . ti)ii, \ til'ibir
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increases the least new learning is expected within the causal corpus.

Of the four levels, the causal corpus has the least claim to continued independent existence
ini an advanced expert. The causal corpus is not reliable for prediction, nor does it possess the

advantages of ..utomaticity.18 In summary, the overall picture is that a learner moves from rich,
perceptually specific protohistories to the sparser representation of the causal corpus. The
causal corpus serves as a staging area in which rough connections among variables can be stored
until they can be subsumed into a true system. If learning continues, a person develops a
process-centered naive physics, and, for some domains, expert models.

7. Acknowledgments

We gratefully acknowledge the intellectual and financial support of Schlumberger-Doll
Research in our initial efforts. This research is supported by the Office of Naval Research,
Contract No. N0001,-85-K-0559. We thank Allan Collins, Dave Chapman, Ed Smith, Albert
Stevenis. and Dan Weld for their insightful comments on an earlier dr;,I't, c r this paper.

8. References

Anderson, J. R., Acquisition of cognitive skill, Psychological Review 89(4):369-406, 1982

flroks, L., Nonanalytic concept formation and memory for instances, Cognition and
Categorization. Lloyd, B. B. and Rosch, E., Eds., Erlbaum Associates, Hitlsdale, NJ, 1978

Irowti. A. L., and Campione, J. C., Three faces of transfer: Implications for early
c,,mpetence,indivilual dilferences, and instruction, in M. Lamb, A. Brown, & B. Rogoff, Advances
??I ,letelopmental psychology, Erlbaum Associates, Hillsdale, N. J., in press

Irmner..J S., Olver. R., & Greenfield, P., Studies in cognitive growth, Wiley, New York. 1966

1luckh.v, S., Sun up to sun down, McGraw-Hill Company, New York, 1979

Iurstein, M. It., Concept formation by incremental analogical reasoning and debugging, In
i roe, ,digs of the International Machine Learnzng Vorkshop, University of Illinois, lonticello,

ff lIllin"i", lur T 9.3

( .Lrb,,,,'tl, 1....\ .oinputational model of problem-solving by analogy, Proceedings of the
Ii Irl,,rn Linal Joint (on ference on Artificial Intelligence, August, 1981

.. (1.. I),rivational an;lgy in problem solving and knowledge acquisition, In
",,,,,,, o ,,f , h , rt,,onal lach,,,- Learning Workshop, University of Ill sl, . NIon ticello,

ir m - ro' "i'* , I,iiit1.4 fur hwh the Iaruer lee s evptutuaiV acquir .xprt k1,,iw ,i g
. .. '; , ,' , l'. u i ,i:;tL ir'u kuu~wI'i e tn ,jr uins II wh h thev ire iiern'f. Fur'ir h'?

' i0, trifiK r . I ii whi, h ia.k , firutive rmi delk Collins J1T$Il w( rk i[,

, ,'t . , 'aa p,.p rl n Iw ausal (,')rl s k ,ew t , S,,-, i ,i oil"

I r,'w )work 32 Forbis & Gentner



('ase, R., Intellectual development from birth to adulthood: A neo-piagetian interpretation, In
Siegler, R. S., Children's thinking: What develops? Erlbaum Associates, Ilillsdale. N.1., 197,

%Clii, %I. T. H., Feltovich, P. J., and Glaser, R., Categorization and representation of' physics
problems by experts and novices, Cognitive Science,5(2), April-June, 1981

Clark, E. V.. What's in a word? On the child's acquisition of semantics in his first language,ln
Moore, T. E., Cognitive development and the acquisition of language, Academic Press, New York,
1973

Clement, J., Analogical reasoning patterns in expert problem-solving, Proceedings of the Fourth
Annual Conference of the Cognitive Science Society, Berkeley, 1982

Collins. A.. Fragments of a theory of human plausible reasoning, In D. Waltz, Theoretical issu'cs
., natuiral language processing II, University of Illinois, Urbana, Illinois, 1978

Collins. .\. & Gentner, D.. low people construct mental models, In D. Holland & N. Quinn (Eds.)
'ultural models in language and thought, Cambridge, England: Cambridge University Press, in

press

Collins, A. Warnock, E.Hl.,Aiello, N., & Miller, M.L., Reasoning from incomplete knowledge, In
Bobrow, D. & Collins, A., eds, Representation and Understanding: Studies in cognitive science,
Academic Press, New York, 1975

IDarden. L., Reasoning by analogy in scientific theory construction, Proceedings of the
International Machine Learning Workshop, University of Illnois, Monticello, Illinois, June, 198:3

u,.loug, (;. I. & Mooney, R. J., Explanation-Based Learning: An alternate viea, Mahine
[earning. \olume i, Nuniber 2, April, 1986

de Klher. J., Causal and Teleological Reasoning in Circuit Recognition, Technical Reprl No.
.-29. MIT Artilicial Intelligence Laboratory, Cambridge, Massachusetts, September, 1979

de Kleer, .. and Brown, J.S., Assumptions and Ambiguities in Mechanisitic Mental Models, In I).
(wnrtner, & A. L. SLvens, (Eds.), Mental Models, Erlbauni Associates, Hillsdale, N.J.. 198:3

I)ietterich. T. and Michalski, R. S., A comparative review of selected methods for learning [rmn
exatnp luf. In Machine Learninq, Michalski, R. S., Carbonell, .1., and Mitchell, T., eds.. 'I'og I
l',jbli-hin' ( 'ornpany, Palo Alto, California, 1983

,liS,' .i. \ .. l'h.ruor nrology and the Evolution of intuition, Iii D. (',entner. & .V L.. >-1 vuv s.
Il-.1 . , \ tld l,odl.s. rILbauni Associates. Hlillsdale, N.J., 1983

I *kr;}i . r. Ir . I'roprtionality graphs. units analysis., and dollain c n..trainl s: l1uuipj) ile
, , 'riicv (,F OIe ciew ilic oiscovery I)rocess. l'ro eediung ul l/l( .\l .;, I.i,s \o,.,',..

.'.'. , .rri,.. \,'i'.,i-l I 1'5.)
.'. .

I .,, 1. I! I'1 , , l,,lPm,,JIVl .I ,l, (, y 4f ./,van I'lag, . Van Noi r;ind Pe , ,i ld ( u i jui .i

!r:,r'.;vrrl: 33 Forbus & Gentner
,I

- , - . . . , .. , . . ...J..,.. ,,S.: .. ,... ....*- . , . , , ...... , . , ., ... ? - .3 - , -, 2 .. , -



New York, 1963

Forbus. K., Qualitative reasoning about physical processes, Proceedings of IJGAI-7, Vancouver,
1.C., August. 1981

Forbus, K., M'veasuremient Interpretation in Qualitative Process Theory, Proceedings of IJCAI-8,
1983

Forbus, K., Qualitative Process Theory, Artificial Intelligence 24:85-169, 1984

Forbus, K., The problem of existence. In Proceedings of the Seventh Annua! Conference of the
Cognitive Science Society, Irvine, CA, August, 1985

Forbus. 1K. Interpreting observations of physical systems, technical report No. UIUCDC'S-R-86-
12-18, Department. of Computer Science, University of Illinois, Mvarch 1986. A short version will
appear in the proceedings of AAAI-86.

Garrner, W. It., Aspects of a stimulus: Features, dimensions, and configurations, hI Lloyd, B.B. &
Rosch, E., (Eds.), Cognition and Categorization Eribaum Associates, Hillsdale, N.J., 1978

* Gelman, It., Counting ini the Preschooler: What does and does not develop, In Siegler, It. S.,
Children's thinking: What develops?, Erlbaum Associates, Hillsdale, N.J.,

(Gentrier, D.. T'he structure of analogical mnodels in science, Technical Report No. 4451, Bolt
Bleranek and Newman Inc., Cambridge, Mass, 1980

C entrier, D., Are --l-tific analogies metaphors?, In Miall, D., M'etaphor: Problcmns and
p~ersp~ectlives, H-arve- r P'ress, Ltd., Brighton, England, 1982

(ientner, D., Structure-mapping: A theoretical framework for analogy, Cognitive Science 7(2),
1983

4. Gentner D.. & Gentner, D. R., Flowing waters or teeming crowds: MVental models of electricity,
In D. Gentner & A. L. Stevens. (Eds.), Mental Vodels, Erlbaum Associates, Hillsdale, N.J., 1983

(,entner. D. k- Landers, It., Analogical reminding: A good match is hard to find, Proceedings of
the International Conference on Systemns. Man and Cybernetics, Tucson, Arizona, November t )85

(#tlril-r. D. &- 1tar. %'.etaphor as structure-mapping: What develops' T1echnical Report. No.
1 . ('enter For tip' Study of I~ eadinrg, University of Illinois, Urbana, IL, June 19841

1"'Y-or. .lPrrples. of perr-eptual learning and development, Preritice-Ill, New York. 1969

%j-k\. . X IIl d'.k . 1%. \ J. nalogical problemi solving, C'ognitive Psychology,.12:30 It.3 55,

'k, VI. L..Y I'u'ir. K. . ulhira lrict tiorn arid An;: ogical rransfer, (ogrit ive 1)''Yrhloy

Framework 34 Forbus & Gentner



Ilayes, P. J.. The Naive Physics Manifesto, In NMichie, D., Expert systems in the micro-electronic
agc, Edinburgh University Press, May, 1979

Haves. P. J.,alite Physis I - Ontology for Liquids, Memo, Centre pour les etudes Seinantiques
et Coguilives, Geneva, Switzerland, 1979

Ilesse, M. B., Models and analogies in science, Uiiversity of Notre Dame Press, Notre Dame,
Indiana, 1966

otffinan, R. R., Metaphor in science, In Honeck, R. P. & Hoffman, R. R., The psycholinguistics of
figurative language. Erlbaum Associates, Hillsdale, N.J., 1980

Inhelder. B., & Piaget. J., The growth of logical thinking from childhood to adolescence, Basic
Books. New% York, 1958

Rahinemai. I). and Tversky. A., Subjective probability: A Judgement of representiveness ]!R,

Coynzltuc Psyholoyy, 3:430-451, 1972

eled, 1. & Batterynan, N. A., A characteristic-to-defining shift in the development of word
Fneaning. Journal of Verbal Learning and Verbal Behavior, 1984, 23, p. 221-236.

Keniler. D. G. Holistic and analytic modes in perceptual and cognitive development. In T. J.
Tighe & B. E. Shepp (Eds.), Perception, cognition and development: Interactional analysis.
IHillsdale, New Jersey: Erlbauni, 1983, p. 77-102.

IKempton, W. Two theories used for home heat control., In D. Holland and N. Quinn (Eds.),
('dltura models in language and thought., 1983

.awilev. P.. Iedisvovering physics with BACON.3, In Proceedings of IJCAI-6, 1979
.4

Langley, '.. Zvtkow, J., Simon, 1H. and Bradshaw, G., Mechanisms for Qualitalivc and
')'manl.itatmve Discovery, Proceedings of the Second International Machine Learning lorkshop.
1983

l.arkin, .1., Thv role of problem representation in phiv J.s, In D. Gentner k A. ,. S tevens (F'ds.),
"eMntal Models.. Erlbamn Associates, lillsdale, N.J.. 1 3

I,,,iat.. D., TiM' Naitrre , ,f lIeuristics, Artificial Intelligeuc',, 19:189-249, 1982

rM#('trhv..J. and illai. P., Suorle philosophical prol.ins from the standpoirt of arliliial
in lt ,.n' r'. .lc bachm,, litellig,:n,,-. Edinburgh I'niversit 'ress, 1969

l,.,lI i. I). IL. .. %'htall,'r. NI. N.. (',,rtxt. ttu,1 ,ry of clas.sili'ation learning, Psychological Iri'c, ir,
19I7'. 3.. \ ,. 2. 217 '238.

I. I,. , \\ .III ll.l;Lk r. , '. 1). c atv'r,rv r'rlr,,ivrn,,' i"heor?.es ,ttrl ,oyniirc a r,',rc *,)/! , i

\1i( hI, ki. I,. A\ Th. ,,,rv ;Ll(a lviho olrr v )I' Irliirtiv .erarnin,,. .lrtlicmal Jmlcl ,l , ,,.

I" rarr,,rk 35 Forbits & (;(:entner



Michalski, R. S.. and Stepp, R. E., Learning from Observation: Conceptual Clustering. In
Michalski, R. S., Carbonell, J. and Mitchell, T., Machine Learning, Tioga Publishing, Palo Alto,

California, 1983

\Michalski. R. S., and Stepp, R. E., How to Structure Structured Objects, Proceedings of the

International Machine Learning Workshop, University of Illnois, Monticello, Illnois, 1983

Mitchell, T. NI., Utgoff, P. E., Nudel, B. and Banerji, R., Learning problem-solving heuristics

through practice, Proceedings of the Seventh International Joint Conference on Artificial

Intelligence, August, 1981

Mitchell, T. M., Generalization as Search, Artificial Intelligence, 18:203-226, 1982

lichell. T. M., Keller, R., & Kedar-Cabelli, S., Explanation-Based Generalization: A unifying

view. Machine Learning, Volume 1, Number 1, January, 1986

Nelson, K.. [low children represent knowledge of their world in and out of language: A

preliminary report, In Siegler, R. S., Children's thinking: What develops?, Erlbaum Associates,
Hillsdale, N.J., 1978

Nickerson, R. S., and Adams, NI. J., Long-term memory for a common object, Cognitive

Psychology, 11:287-307, 1979

Palmer, S. E., Fundamental aspects of cognitive representation, In Lloyd. [3. 13. & Rosch. IE..

,( Lds.), Cognition. and Categorization, Erlbauni Associates, Ilillsdale, N.J., 1978

Piagt, J., The child's conception of physical causality, Routledge & Kegan Paul. London. 195 1

fPiaget, .I., The construction of reality in the child, Basic Books, New York, 1954

Posner. M. I., k Mitchell, R. F., Chronometric analysis of classification. I'sycholog cal l,'; ,r.

7 1:392-.109, 1967

IRaj amoney, S., I.eJong, G. F., & Faltings, B., Towards a model of conceptijal k n , wldy, '

% acquisition through directed experimentation, P)roceedings of IJ('.Al 19. 5. I -

( ';ilifornia.

,,r. A. . Implicit learning of artilicial grammars, .Joirnal of Verbal Learnnq td rhal

/rhayior. 6.:57)i 63, 1967

I'ch.r. \. '.. !rii~ibvi? h,;trniiing of synthieti(. ,arnguages: The role of instrtction;l -,'. ,,truail ,f

/L p'rT i,:r Irr11!I / ,hol,,jy: hurnan .Memory and Learning. 2:' 8 9-1, 1976

* P .I.. . I- .Irri-t, ., tnd Ilanrji. IR.. The role of imalogy in transter ,,I , rlt -I I II;1r
1- 01t1-11i (I l, ",,,irl-v. t' q,. y~, 6: 136 A50I. 197 1

I:, I ,l,.1)'I I 11) , I, .k1 .+ i + l h r J ' I n, , d u clit n k£. i , -, rf.d In lprn .i ¢,i ,otllr , i ,
I rr, ,,l], i,, tl, Irlt.l , lull li -.earchl +i ,j'd). [)epartu n t ,af ( 0nl/lIty'r "'I , , /t1,,r

Slrari.work 36 Forbus X (;entner

' ~ ~ ~ , ° -1 . . • . + . N -. , " , " '" "A. -, - ". - , ,% ". " '% .', , -. '% % % "%



I;1CI)S-1? 85-1 1198, lini% F Illinois, May 1985

Rendell, L. R...~ general frainvexx IL tor induction and a study of selective induction. Machine
* . Learning, in pres.

Rosch. E., On the internal structure of perceptual and semantic categories, In Moore, T. E.,
('ognitite detvelopment and the acqu5,ztion of language, Academic Press, New York, 1973

Rosch. E., Cognitve representations of semantic categories, Journal of Experi~mental Psychology:
G;enerail, 107:192-233, 1975

Rosch, I.- Principles of' categorization, In Rosch, E. & Lloyd, B. B., Cogntion and
ategorzzation. Lrlbauni Associates. Hlillsdale, NJ, 1978

R~oss. B3.. Reniniding s and their effects in learning a cognitive skill, Cogni'ti've Psychology, 1984,
16, 3_l--116.

lRiimnelhart, D. k- Norman, D . A., Accretion, tuning, and restructuring: Three [nodes of learning,
in Cotton. J. WV. &- Klatzky, R. L., Semantic Factors i'n Cogntion, Eribaum Associates, Hillsdale,
N.J. 1978

Schneider, NV. S& Fisk, A. D., Attention theory and mechanisms for skilled performance, In
Miagill, R. A., Memory and control of action, North-Holland Publishing Company, New York,

I Slepp [)1,3. L., F'ronh pcrceived similarity to dimensional structure: A new hypothesis about
perspective development, In Rosch, E. &Lloyd, 13. B., Cognition and categorizalion. Erlbaiimi
Associates, llillsdale, N.J,. 1978

>iler. It. S,.. Three aspects of cognitve development, Cognitive Psychology, 8:481-321)7

-'p iegler, It. 'S., Developmental sequences within and between concepts. Monographs of the 5"oczety
for Research in Chlid Development, 416(2), 1981

Siegler. R?. S., The origins of' scientific reasoning. In ,ie~gler, It. S.. Children's thlnking: Wlhat
* develops .', Erlba'i ii Associates, Iillsdale, N.J., I 978

E'rh . FE., V Nledin, D. L., Categori'es and concepts. Harvard tiniversity P~ress, Cam lbrilde.
\Iassachusetis. 1981

St ves. .. ( ol lins Ak., .Y F ,oldi n . M.>.Nisconiceptions in studlent's iinderst andimn . Jo ml irn(i f
fari Wlqehzn, 11: 1 F) I Th.i 1979

'r'ir ?I (a I. to. ri aur paIo model of skill arqiiz.s tho n, Sp'Ir inger Ver lag. New )*or k. 19 I

1 r .- j; ir, -i1. ' t t i i l'syIf h, ologqi rl I 1? , -? ra , ' 1:3,2 7 3 52. 19 7 7

1'.,-r cp.N..~ .'. . ~ti~ raill,% Jiii lie l ai~ l FI;LI .b req :Ii1ty. I'syholoywul 1' rici

I rarfrvevvor 37 Forbus & Gcntner
V

A .jj~sfii~/. > K 2K ..



89(2): 123-154, 1982

Tversky, A., and lKahneinan, D., Availability: A heuristic for judging frequenicy and probability,
Cognitive Psychology, 5:207-232, 197.3

Van Lehn, K. & Brown, J. S. Planning nets: A representation for formalizing analogies and
semantic models of procedural skills. In R. E. Snow, P. A. Federico & W. E. Montogue (Eds.)
Aptitude, learning and instruction: Cognitive process analyses. Hillsdale, N. J.: Lawrence
T'rlbaum Associates, 1980.

Williams, iM., Hollati, J1., and Stevens, A. L., Human Reasoning about a simple physical system,
[it (ientner, D. and Stevens, A. L., (Eds.), Mental Models, Erlbaum Associates, Hillsdale, NJ, 1983

Winner, E.. New nines for ol(1 things: rhe emergence of metaphoric language. Journal of Child
Lamjuage, 6:469-191, 1979)

Winston, 1). IL. Learning and reasoning by analogy., Coynnuio ' 'ons of the A CM, 23(12), 1980

Winston, 1). 11., Learning new principles from precedents andl exercises, Artificial Intelligence,
19:321--350, 1982

lrriwwork 38 F'orbtis & Getitner



Distribution List [Illinois/Gentner] NR 667-551

Dr Phillip L. Ackerman Dr. Patricia Baggett Dr R. Darrell Bock
University of Minnesota University of Colorado University of Chicago
Department of Psychology Department of Psychology NORC
Minneapolis, MN 55455 Box 345 6030 South Ellis

Boulder, CO 80309 Chicago, IL 60637

Dr Beth Adelson
Dept of Computer Science Dr Eva L Baker Dr Sue Bogner
Tufts University UCLA Center for the Study Army Research Institute
Medford, MA 02155 of Evaluation ATTN PER[-SF

145 Moore Hall 5001 Eisenhower Avenue
University of California Alexandra, VA 22333-5600

AFOSR. Los Angeles, CA 90024
Life Sciences Directorate

Boiling Air Force Base Dr Jeff onar
Washington, DC 20332 Dr. Meryl S. Baker Learning R&D Center

Navy Personnel R&D Center University of Pittsburgh
San Diego, CA 92152-6800 Pittsburgh, PA 15250

Dr Robert Ahlers
Code NT1t
Human Factors Laboratory prof. dott. Bruno G Barn Dr Gordon H Bower
Naval Training Systems Center Unita di ricerca di Department of Psychology
Orlando, FL 32813 intelligensa artificiale Stanford University

Universita di Milano Stanford, CA 94306
20122 Milano - via F Sforta 23

Dr Ed Aiken ITALY
Navy Personnel R&D Center Dr Robert Breaux
San Diego CA 52152-6800 Code N-0gSR

Dr William M Bart Naval Training Systems Center
University of Minnesota Orlando, FL 32813

Dr James Anderson Dept of Educ Psychology
Brown university 330 Burton Hall
Center for Neural Science 178 Pillsbury Dr , S E. Dr Ann Brown
Providence, RI 02912 Minneapolis, MN S5455 Center for the Study of Reading

University of Illinois
51 Gerty Drive

Dr John R Anderson Leo Beltracchi Champaign, IL 61280
Department of Psychology U S. Nuclear Regulatory Comm.
Carnegie-Mellon University Washington, D C. 20555
Pittsburgh, PA 15213 Dr. John S Brown

XEROX Palo Alto Research
Dr. Mark H. Bickhard Center

Dr Steve Andriole University of Texas 3333 Coyote Road
George Mason University EDB 504 ED Psych Palo Alto, CA 94304
School of Information Austin, Texas 78712

Technology & Engineering
4400 University Drive Dr Bruce Buchanan
Fairfax, VA 22030 Dr Gautam Biswas Computer Science Department

Department of Computer Science Stanford University
University of South Carolina Stanford, CA 94305

Technical Director, ARI Columbia, SC 29208
001 Eisenhower Avenue

Alexandria, VA 22333 Mal Hugh Burns
Dr John Black AFHRL. DE
Teachers College, Columbia Univ Lowry AFB. CO 80230-5000

Dr Gary 4ston-Jones "25 West 121st Street
Department if Biology New York, NY 10027
New York University Dr Patricia A Butler
1009 Main Bldg OERI
Washington Square 555 New Jersey Ave , NW
New Yore. NY 10003 Washington DC 20208



-

Distribution List [Illinois/Gentnerl NR 667-551

Dr. Joseph C. Campion* Dr. Paul R. Chatelier Dr. William Crano
Center for the Study of Reading OUSDRE Department of Psychology
University of Illinois Pentagon Texas A&M University
51 Gerty Drive Washington, DC 20350-2000 College Station, TX 77843
Champaign, IL 61820

Dr Michelene Chi Brian Dallman
Joanne Capper Learning R & D Center 3400 TTW/TTGXS
Center for Research into Practice University of Pittsburgh Lowry AFB, CO 80230-5000
1718 Connecticut Ave.. N.W. 3939 O'Hara Street
Washington, DC 20009 Pittsburgh, PA 15213

Dr Laura Davis
NRL,'NCARAI, Code 7510

Dr Jaime Carbonell Dr. L. J. Chmura 4555 Overlook Ave., SW

Carnegie-Mellon University Computer Science and Washington, DC 20375-5000
Department of Psychology Systems Branch
Pittsburgh, PA 15213 Naval Research Lab.

Washington. DC 20375-5000 Dr. Natalie Dehn
Department of Computer and

Dr Susan Carey Information Science
Harvard Graduate School of Mr Raymond E Christal University of Oregon

Education AFHRL, MOE Eugene, OR 97403
337 Gutman Library Brooks AFB, TX 78235
Appian Way
Cambridge, MA 02138 Dr. Gerald F DeJong

6_ Professor Chu Tien-Chen Artificial Intelligence Group
Mathematics Department Coordinated Science Laboratory

Dr Pat Carpenter National Taiwan University University of Illinois
Carnegit-MellonTiversity Taipei, TAIWAN Urbana, IL 61801
Department of Psychology~Pittsburgb, PA 1S213

Dr Yee-Yeen Chu Goery Delacoce
Perceptronics. Inc. Directeur de L'informatique

LCDR Robert Carter 21111 Erwin Street Scientifique et Technique

Office of the Chief Woodland Hills. CA 91367-3713 CNRS
of Naval Operations 15, Quai Anatole France

OP-ol 75700 Paris FRANCE
Pentagon Dr. William Clancey
Washington, DC 20350-2000 Stanford University

Knowledge Systems Laboratory Dr. Sharon Derry
701 Welch Road, Bldg. C Florida State University

Chair, Department of Palo Alto, CA 94304 Department of Psychology
Psychology Tallahassee, FL 32306

College of Arts and Sciences
Catholic University of Dr. Charles Clifton

America Tobin Hall Dr. Andrea di Sessa
Washington, DC 20064 Department of Psychology University of California

University of School of Education
Maeachusetts Tolman Hall

Dr Fred Chang Amherst. MA 01003 Berkeley, CA 94720
Navy Personnel R&D Center
Code 51
San Diego. CA 92152-6800 Dr. Allan M Collins Dr. R. K. Dismukes

Bolt Beranek k Newman, Inc. Associate Director for Lire Sciences
50 Moulton Street AFOSR

Dr Davida Charney Cambridge, MA 02138 Boiling AFB
English Department Washington. DC 20332
Penn State University
University Park, PA 16802 Dr Stanley Collyer

Office of Naval Technology Dr Stephanie Doan
Code 222 Code 6021
800 N Quincy Street Naval Air Development Center
Arlington. VA 22217-5000 Warminster. PA 18974-;000

I



Distribution List (lllinois/Gentnerl NR 667-551

Dr Emanuel Donchin Dr Jean Claude Falmagne Dr. John R. Frederiksen

University of Illinois Department of Psychology Bolt Beranek & Newman

Department of Psychology New York University 50 Moulton Street

Champaign. IL 61820 New York, NY 10003 Cambridge, MA 02138

Oefense Technical Dr Beatrice J Farr Dr. Norman Frederiksen
Information Center Army Research Institute Educational Testing Service

Cameron Station, Bldg 5 5001 Eisenhower Avenue Princeton, NJ 08541
Alexandria, VA 22314 Alexandria, VA 22333
Attn TC
(t2 Copies) Dr Michael Friendly

Dr Pat Federico Psychology Department
Code 511 York University

Dr Thomas M. Duffy NPRDC Toronto Ontario
Communications Design Center San Diego, CA 92152-6800 CANADA M3J IP3
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213 Dr Piul Feltovich Julie A. Gadsden

Southern Illinois University Information Technology
School of Medicine Applications Division

Dr Richard Duran Medical Education Department Admiralty Research Establishment

University of California P 0 Box 3926 Portsdown. Portsmouth P06 4AA
Santa Barbara, CA 93106 Springfield. IL 62708 UNITED KINGDOM

Dr John Ellis Mr Wallace Feurneig Dr. Michael Genesereth

Navy Personnel R&D Center Educational Technology Stanford University
San Diego. CA 92252 Bolt Beranek & Newman Computer Science Department

10 Moulton St Stanford, CA 94305
Cambridge, MA 02238

Dr Susan Embretson
University of Kansas Dr Dedre Gentner
Psychology Department Dr Gerhard Fischer University of Illinois

426 Fraser University of Colorado Department of Psychology
Lawrence. KS 66045 Department of Computer Science 603 E. Daniel St.

Boulder CO 80309 Champaign, IL 61820

_4 Dr Randy Engle
Department of Psychology J D Fletcher Chair, Department of
University of South Carolina 9931 Corsica Street Psychology

Columbia, SC 29208 Vienna VA 22180 George Mason University
Fairfax, VA 22030

Dr Susan Epstein Dr. Linda Flower
Hunter College Carnegie-Mellon University Chair, Department of
144 S. Mountain Avenue Department of English Psychology

Montclair, NJ 07042 Pittsburgh, PA 15213 Georgetown University
Washington. DC 20057

ERIC Facility-Acquisitions Dr Kenneth D Forbus

4833 Rugby Avenue University of Illinois Dr Robert Glaser
Bethesda, MD 20014 Department of Computer Science Learning Research

1304 West Springfield Avenue & Development Center
Urbana, [L 51801 University of Pittsburgh

Dr K Anders Ericsson 3939 O'Hara Street

University of Colorldo Pittsburgh. PA 15260

Department of Psychology Dr Barbara A. Fox
Boulder CO *0309 University of Colorado

Department of Linguistics
Boulder CO 80309



Distribution List (Inos/Gentner] NR 607-551

Dr. Arthur M. Glenbefg Dr Henry M. Hale Dr. Jim Hollan
University of Wisconsin Hallr Resources, Inc. Intelligent Systems Group
W. J Brogden Psychology Bldg 4918 33rd Road. North Institute for
1202 W Johnson Street Arlington, VA 22207 Cognitive Science (C-015)
Madison, WI 53706 UCSD

La Jolla, CA 92093

Dr Ronald K. Hambleton
Dr Sam Glucksberg Prof. of Education & Psychology
Department of Psychology University of Massachusetts Dr Melissa Holland
Princeton University at Amherst Army Research Institute for the

Princeton, NJ 08540 Hills House Behavioral and Social Sciences
Amherst, MA 01003 5001 Eisenhower Avenue

Alexandria. VA 22333

Dr Susan Goldman
University of California Stevan Harnad
Santa Barbara, CA 93106 Editor, The Behavioral and Dr Keith Holyoak

Brain Sciences University of Michigan
20 Nassau Street. Suite 240 Human Performance Center

Dr Sherrie Gott Princeton. NJ 08540 330 Packard Road

AFHRLMODJ Ann Arbor, MI 48109

Brooks , B, TX 78235
Dr Wayne Harvey
SRI International Ms Julia S. Hough

Dr T Govindaraj 333 Ravenswood Ave Lawrence Erlbaum Associates

Georgia Institute of Technology Room B-$324 8012 Greene Street

School of Industrial & Systems Menlo Park, CA 94025 Philadelphia. PA 19144

Engineering
Atlanta, GA 30332

D,. Reid Hastie Dr James Howard
Northwestern University Dept of Psychology

Dr Wayne Gray Department of Psychology Human Performance Laboratory

Army Research Institute Evanston, IL 60201 Catholic University of

5001 Eisenhower Avenue America

Alexandria, VA 22333 Washington, DC 20064
Prof John R Hayes
Carnegie-Mellon University

Dr James G Greeno Department of Psychology Dr Earl Hunt

University of California Schenley Park Department of Psychology

Berkeley, CA 94720 Pittsburgh, PA 15213 University of Washington
Seattle, WA 98105

Dr Dik Gregory Dr. Barbara Hayes-Roth

Behavioral Sciences Division Department of Computer Science Dr. Ed Hutchins

Admiralty Research Establishment Stanford University Intelligent Systems Group

Teddington, Middlesex Stanford, CA 95305 Institute for

ENGLAND Cognitive Science (C-015)
UCSD

Dr. Frederick Hayes-Roth La Jolla, CA 92093

Dr Gerhard Grossing Teknowledge
Atominstitut 525 University Ave.

Schuttelstrasse 115 Palo Alto, CA 94301 Dr Barbara Hutson

Vienna, AUSTRIA a-1020 Virginia Tech
Graduate Center

Dr Shirley Brice Heath 2990 Telestar Ct.

Prof Edward Haertel School of Education Falls Church, VA 22042

School of Education Stanford University
Stanford University Stanford, CA 94305

Stanford, CA 94305 Dr Barbel Inheider
University of Geneva

Dr Joan I Heller Geneva SWITZERLAND 12U-4

05 Haddon Road
Oakland. CA 94606



Distribution List [Illinois/Gentner] NR 667-551

Dr Dillon Inonye Dr Daniel Kahneman Dr. Walter Kintsch
WICAT Education Institute The University of British Columbia Department of Psychology
Provo, UT 34057 Department of Psychology University of Colorado

-154-2053 Main Mall Campus Boa 345
Vancouver. British Columbia Boulder. CO 80302

Dr Alice [sen CANADA VTT 1Y7

Department of Psychology
University or Maryland Dr David Klahr
Catonsville, MD 21228 Dr Ruth Kanfer Carnegie-Meilon University

University of Minnesota Department of Psychology
Department of Psychology Scheniey Park

Dr Robert Jannarone Elliott Hall Pittsburgh, PA 15213

Department of Psychology 75 E River Road

University of South Carolina Minneapolis, MN 55455

Columbia, SC 29208 Dr Marie Knerr
Program Manager

Dr Mary Grace Kantowski Training Research Division

Dr Claude Janvier University of Florida HumRRO

Directeur. CIRADE Mathematics Education 1100 S Wishington

Universite du Quebec a Montreal 359 Norman Hall Alexandria, VA 22314

Montreal. Quebec H3C 3PS Gainesville, FL 32511

CANADA
Dr Janet L Kolodner

Dr Milton S Kati Georgia Institute of Technology

Dr Robin Jeffries Army Research Institute School of Information

Hewlett-Packard Laboratories 5001 Eisenhower Avenue & Computer Science

P 0 Box 10490 Alexandria, VA 22333 Atlanta, GA 30332

Palo Alto. CA 94303-0971

Dr Frank Keil Dr Stephen Kosslyn

Dr Robert Jernigan Department of Psychology Harvard University

Decision Resource Systems Cornell University 1236 William James Hall

5595 Vantage Point Road Ithaca, NY 14850 33 Kirkland St

Columbia. MD 21044 Cambridge, M.A 02138

Dr Wendy Kellogg

Margaret Jerome IBM T J Watson Research Ctr Dr Kenneth Kotovsky

c1o Dr Peter Chandler P 0 Box 218 Department of Psychology

83, The Drive Yorktown Heights, NY 10598 Community College of

Hove Allegheny County

Sussex 800 Allegheny Avenue

UNITED KINGDOM Dr Dennis Kibler Pittsburgh. PA 15233
University of California
Department of Information

Chair, Department of and Computer Science Dr David H Krantz

Psychology Itvine, CA 92717 2 Washington Square Village

The Johns Hopkiane University Apt - iSJ

Baltimore, MD 21218 New York. NY 10012

Dr David Kieras
University of Michigan

Dr Douglas A Jones Technical Communication Dr Benjamin Kuipers

Thatcher Jones Assoc. College of Engineering University of Texas at Austin

P 0 Box 6640 1223 E. Engineering Building Department of Computer Sciences

10 Trafalgar Court Ann Arbor. Mt 48109 T S Painter Hll1 3 28

Lawrenceville Austin. Texas 78712

NJ 08648
Dr Peter Kincaid
Training Analysis Dr David R Lambert

Dr Marcel Just & Evaluation Group Naval Ocean Systems Center

Carnegie-Mellon University Department of the Navy Code 441T

Department of Psychology Orlando, FL 32813 271 Catalina Boulevard

Scnenley Park San Diego CA 921521-6800

Pittsburgh. PA 15213



Distribution List [Ifllnois/Gentner] NR 667-561

Dr Pat Langley Dr Clayton Lewis Dr Barbara Means

University of Caiforaia University of Colorado Human Resources

Department of Information Department of Computer Science Research Organisation

and Computer Science Campus Box 430 100 South Washington

Irvine, CA 92717 Boulder. CO 80309 Alexandria, VA 22314

Dr Marcy Lansman Matt Lewis Dr Douglas L Medin

University of North Carolina Department of Psychology Department of Psychology

The L. L Thurstone Lab Carnegie-Mellon University University of Illinois

Davie Hall 013A Pittsburgh, PA 15213 603 E Daniel Street

Chapel Hill, NC 27514 Champaign. IL 61820

Library
Dr Jill Larkin Naval Training Systems Center Dr George A Miler

Carnegie-Mellon University Orlando, FL 32813 Department of Psychology

Department of Psychology Green Hall

Pittsburgh. PA 152L3 Princeton University

Dr Jane Malin Princeton, NJ 08540

Mail Code SR 111

Dr Jean Lave NASA Johnson Space Center

School if Social Sciences Houston, TX 7058 Dr William Montague

University of Caihfornia NPRDC Code 13

Irvine CA 92717 San Diego, CA 92152-6800

Dr William L. Maloy
Chief or Naval Education

Dr Robert Lawier and Training Dr. *'len Munro

Information 4:iences, FRL Naval Air Station Behavioral Technology

GTE Laboratories. Inc Pensacola, FL 32508 Laboratories - USC

40 Sylvan Road 1845 S. Elena Ave., 4th Floor

Waltham, MA 02254 Redondo Beach, CA 90277

Dr Sandra P Marshall
Dept of Psychology

Dr Alan M Lesgold San Diego State University Chair. Department of

Learning R&D Center San Diego, CA 92182 Computer Science

University of Pittsburgh U.S. Naval Academy

Pittsburgh. PA 15260 Annapolis, MD 21402

Dr Manton M Matthews
Department of Computer Science

Dr Jim Levin University of South Carolina Dr. Allen Newell

Dept of Educational Psy Columbia, SC 29208 Department of Psychology

210 Education Building Carnegie-Mellon University

1310 South Sixth St Schenley Park

Champaign. IL 51810-6990 Dr Richard E. Mayer Pittsburgh, PA 15213

Department of Psychology
University of California

Dr John Levine Santa Barbara. CA 93106 Dr. Richard E Nisbett

Learning R&D Center University of Michigan

University of Pittsburgh institute for Social Research

Pittsburgh, PA 15260 Dr Joe McLachlan Room 5261

Navy Personnel R&D Center Ann Arbor, Ml 48109

San Diego, CA 92152-6800
Dr Michael Levine
Educational Psy'tiology Dr Mary Jo Nissen

210 Education Bldg Dr James McMichael University of Minnesota

Univ-rsity of Illinois Assistant for MPT Research, N218 Elliott Hall

Champaign. IL 61820 Development, and Studies Minneapolis, MN 55455
OP 01B7

Washington. DC 203.0
Director Training LaborAtory

NPRDC ICode 05

San Diego CA 92152-6800



Distribution List [Illinois/Gentner] NR 667-65t

Director, Manpower and Personnel Special Assistant for Marine Military Assistant for Training and
Laboratory, Corps Matters. Personnel Technology.
NPRDC (Code 06) ONR Code 00MC OUSD (R & E)

San Diego, CA 92152-6800 800 N Quincy St. Room 3DI29, The Pentagon
Arlington, VA 22217-5000 Washington, DC 20301-3080

Director, Human Factors
& Organitational Systems Lab, Psychologist Dr David N Perkins
NPRDC (Code 07) Office of Naval Research Educational Technology Center

San Diego, CA 92152-6800 Liaison Office, Far East 337 Gutman Library
AJPO San Francisco. CA 96503 Appian Way

Cambridge, MA 02138

Fleet Support Office.
NPRDC (Code 301) Dr Judith Orasanu

San Diego. CA 92152-6800 Army Research Institute Dr Nancy Perry
5001 Eisenhower Avenue Chief of Naval Education

Alexandria, VA 22353 and Training, Code 00A2A

Library, NPRDC Naval Station Pensacola

Cade POIL Pensacola. FL 32508

San Diego. CA 92152-5800 Prof Seymour Papers
20C-109
Massachusetts Institute Department or Computer Science

Dr Harold F O'Neil. Jr of Technology Naval Postgraduate School

School of Education - WPH 801 Camoridge. MA 02139 Monterey, CA 93940

Department of Educatioaal
Psychology k Technology

Lniversity of Southern California Dr James Paulson Dr Steven Pinker
Los Angeles CA 90089-0031 Department or Psychology Department of Psychology

Portland State UnLiversity EI0-018
P0 Box75t MIT

Dr Michael Oberlin Portland, OR 97207 Cambridge, MA 02139

Naval Training Systems Center
Code 711

. Oriando FL 32813-7100 Dr Roy Pea Dr Tjeerd Plomp
* Bank Street College or Twente University of Technology
4 Edication Department of Education

Dr Steilan Ohtsson 610 W 112th Street P 0 Box 217

Learning R & D Center New York, NY 10025 7500 AE ENSCHEDE

University of Pittsburgh THE NETHERLANDS

3939 O'Hara Street
Pittsburgh. PA 15213 Dr Douglas Pearse

DC[EM Dr Martha Poison
Box 2000 Department of Psychology

Office of Naval Research. Downeview, Ontario Campus Box 346

Code 1133 CANADA University of Colorado

800 N Quincy Street Boulder, CO 80309

Arlington. VA 22217-5000 Dr James W Pellegrino

University of California, Dr Peter Poison

Office of Naval Research. Santa Barbara University of Colorado

Code 1142 Department of Psychology Department of Psychology

400 N Quincy St Santa Barbara. CA 93106 Boulder, CO 80309

Arlington, VA 22217-5000

Dr Virginia E Pendergraas Dr Steven E Poltrock

Psyhologist Code 711 MCC

Offi: of Naval Research Naval Training Systems Center 9430 Research Blvd.

Branch Office, London Orlando. FL 32813-7100 Echelon Bldg -1

Box 39 Austin, TX 78759-8509

FPO New York, NY 09510



Distribution List [llinois/Gentner] NR 667-551

Dr Harry E. Pople Dr. Mary S Riley Dr Judah L. Schwarts
University of Pittsburgh Program in Cognitive Science MIT
Decision Systems Laboratory Center for Human Information 20C-120

1360 Scafe Hall Processing Cambridge, M.A 02139
P~ttsburgh. PA 15261 University of California

La Jolla, CA 92093
Dr Marc Sebrechts

Dr Mary C Potter Department of Psychology
Department of Psychology Dr. Linda G. Roberts Wesleyan University
MIT IE-10-032) Science, Education, and Middletown, CT 06475
Cambridge, MA 02139 Transportation Program

Office of Technology Assessment
Congress of the United States Dr. Judith Segal

Dr Joseph Psotka Washington, DC 20510 OERI
ATTN PERI-IC 555 New Jersey live., NW
Army Research Institute Washington, DC 20208
oot Eisenhower Ave Dr William B. Rouse

Alexandria, VA 22333 Search Technology, Inc.
25-b Technology Park"Atlanta Dr Sylvia A. S. Shafto
Norcross, GA 30092 Department of

Dr Lvine Reder Computer Science
Department of Psychology Towson State University
Carnegie-Mellon University Dr. David Rumelhart . Towson, MD 21204
Schenley Park Center for Human
Pittsburgh, PA 15213 Information Processing

Univ of California Dr Ben Shneiderman
La Jolla, CA 92093 Dept. of Computer Science

Dr James A. Reggia University of Maryland
University of Maryland College Park, MD 20742
School of Medicine Dr Roger Schasik
Department of Neurology Yale University
22 South Greene Street Computer Science Department Dr. Lee Shulman
Baltimore, MD 21201 P 0 Box 2158 Stanford University

New Haven, CT 06520 1040 Cathcart Way
Stanford, CA 94305

Dr Fred Reif
Physics Department Dr Walter Schneider
University of California Learning R&D Center Dr. Robert S. Siegler
Berkeley, CA 94720 University of Pittsburgh Carnegie-Mellon University

3939 O'Hara Street Department of Psychology

Pittsburgh, PA 15260 Schenley Park
V Dr Lauren Resnick Pittsburgh, PA 15213
p' Learning R & D Center

University of Pittsburgh Dr. Alan H. Schoenfeld
3939 O'Hara Street University of California Dr Derek Sleeman
Pittsburgh, PA 15213 Department of Education Stanford University

Berkeley, CA 94720 School of Education
Stanford, CA 94305

Dr Gil Ricard
, Mail Stop C04-14 Dr Janet Schofeld

-. Grumman Aerospace Corp. Learning R&D Center Dr Edward E. Smith
Bethpage, NY 11714 University of Pittsburgh Bolt Beranek & Newman, Inc.

Pittsburgh, PA 15260 50 Moulton Street
Cambridge, MA 02138

Mark Richer
L041 Lake Street Karen A. Schrtver
San Francisco. CA 94118 Department of English Dr Richard E Snow

Carnegie-Mellon University Department of Psychology
Pittsburgh, PA 15213 Stanford University

Stanford. CA 94306

I
I'11IIIlI iIilllllli3Td'ip i. "



Distribution List [Illinois/Gentner] NR 667-551

Dr Elliot Soloway Chair, Department of Dr. Michael Williams
Yale University Computer Science lntelliCorp
Computer Science Department Towson State University 1975 El Camino Real West
P 0 Box 2158 Towson, MD 21204 Mountain View, CA 94040-2216
New Haven. CT 06520

Chair, Department of Dr. Robert A. Wisher
Dr Richard Sorensen Psychology U S. Army Institute for the
Navy Person:.el R&D Center Towson State University Behavioral and Social Sciences
San Diego, CA 92152-6800 Toweon, MD 21204 5001 Eisenhower Avenue

Alexandria, VA 22333

Dr Kathryn T Spoehr Dr. Kurt Van Lehn
Brown University Department of Psychology Mr John H. Wolfe
Department of Psychology Carnegie-Mellon University Navy Personnel R&D Center
Providence, RI 02912 Schenley Park San Diego. CA 92152-6800

Pittsburgh. PA 15213

Dr Robert Sternberg Dr Wallace Wuifeck, Ill
Department of Psychology Dr Beth Warren Navy Personnel R&D Center
Yale Lniversity Bolt Beranek & Newman, Inc. San Diego, CA 92152-6800
Box 1IA. Yale Station 50 Moulton Street
New Haven, CT 06520 Cambridge, MA 02138

Dr Joe Yasatuke
AFHRL, LRT

Dr Albert Stevens Dr Donald Weitzman Lowry AFB, CO 80230
Boit Beranek l Newman. Inc. MITRE
to Moulton St 1820 Dolley Madison Blvd
Camoridge. MA 02238 MacLean. VA 22102 Dr Masoud Yazdani

Dept. of Computer Science
University of Exeter

Dr Thomas Sticht Dr Keith T Wescourt Exeter EX4 4QL
Navy Personnel R&D Center FMC Corporation Devon, ENGLAND
San Diego. CA 92152-6800 Central Engineering Labs

I185 Coleman Ave, Box 580
Santa Clara, CA 95052 Mr Carl York

Dr John Tangney System Development Foundation
AFOSR, NL 181 Lytton Avenue
Bodiig AFB. DC 20332 Dr Douglas Wetzel Suite 210

Code 12 Pailo Alto, CA 94301
Navy Personnel R&D Center

Dr Kikumi Tatsuoka San Diego, CA 921$2-6800
CERL Dr Joseph L. Young
252 Engineering Research Memory & Cognitive

Laboratory Dr. Barbara White Processes
Urbana, 1 61801 Bolt Beranek & Newman, Inc. National Science Foundation

10 Moulton Street Washington. DC 20550
Cambridge, MA 02238

Dr Perry W Thorndyke
FMC Corporation
Central Engineering Labe Dr Christopher Wickens
1185 Coleman Avenue. Box 580 Department of Psychology
Santa Clara, CA 95052 University of Illinois

Champaign. IL 61820

Dr Douglas Towne
Bonaviorai Technoiogy Labs Dr Heather Wild
1845 5 Elena Ave Naval Air Development Center
Rodondo Beach CA 90277 Code 6021

Warminster PA 18974-5000

ALMIiillg i i' l l ll



''


